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For instance, on the planet Earth, man had always assumed that

he was more intelligent than dolphins because he had achieved

so much — the wheel, New York, wars and so on — whilst all the

dolphins had ever done was muck about in the water having a

good time.

But conversely, the dolphins had always believed that they were

far more intelligent than man — for precisely the same reasons.

— Douglas Adams, “The Hitchhiker’s Guide to the Galaxy”

To my grandparents. . .
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Abstract
Aerial robot swarms have the potential to perform time-critical and dangerous tasks such as

disaster response without compromising human safety. However, their reliance on external

infrastructure such as global positioning for localization and wireless networks for communi-

cation is still a limiting factor for many applications. Such infrastructure may not be available

everywhere, increasing their chance of collisions in case of signal interruptions and limiting

their robustness to failure. Moreover, agent-to-agent wireless communication can suffer

from time delays and outages, preventing their scalability to large swarms that fly in dense

configurations. Drones should have the autonomy to make their own decisions exclusively

based on local sensory information to avoid scalability and robustness issues.

To address these limitations, we propose an entirely vision-based approach to swarm control

inspired by flocking birds. In particular, we develop methods that enable drones to coordinate

their motion by recognizing each other only with visual perception. We propose two distinct

strategies that leverage the predictive power of convolutional neural networks: an end-to-end

approach based on imitation learning and a modular system based on object detection and

tracking. We test the algorithms using agent-based models and physics-based simulations

with realistic sensor noise and validate them with a fleet of custom-built quadcopters in

controlled indoor and challenging outdoor environments. The drones are equipped with

an omnidirectional camera setup to avoid blind spots and onboard computation to process

the images in real-time without requiring specialized hardware such as easy-to-recognize

visual markers. Extensive simulations and real-world experiments show that vision-based

swarms can perform collision-free and cohesive navigation while only relying on local visual

information for control. We finally address the scalability of vision-based swarms in terms of

group size and density.

Keywords: unmanned aerial vehicles, multi-robot systems, vision-based control, deep learn-

ing, collective motion, robot learning, object detection, flocking algorithms, imitation learning,

multi-target tracking, sim-to-real transfer
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Résumé
Les essaims de robots aériens ont la possibilité d’accomplir des tâches dangereuses et urgentes,

telles que l’intervention en cas de catastrophe, le tout sans compromettre la sécurité humaine.

Cependant, leur dépendance à l’égard d’une infrastructure externe, comme le système de

positionnement global pour la localisation et les réseaux sans fil pour la communication,

reste un facteur limitant pour de nombreuses applications. Ces infrastructures ne sont pas

forcément disponibles partout, ce qui augmente les risques de collisions en cas d’interruption

du signal et limite leur robustesse aux pannes. De plus, la communication sans fil entre agents

peut souffrir de retards et de pannes, ce qui empêche son extensibilité à de grands essaims qui

volent dans des configurations denses. Les drones devraient avoir l’autonomie nécessaire pour

prendre leurs propres décisions en se basant exclusivement sur les informations sensorielles

locales afin d’éviter les problèmes de scalabilité et de robustesse.

Pour remédier à ces limitations, nous proposons une approche entièrement basée sur la vision

pour le contrôle d’essaims, inspirée des oiseaux en essaim. En particulier, nous développons

des méthodes qui permettent aux drones de coordonner leurs mouvements en se reconnais-

sant mutuellement uniquement par la perception visuelle. Nous proposons deux stratégies

distinctes qui exploitent le pouvoir prédictif des réseaux neuronaux convolutifs : une approche

de end-to-end learning basée sur l’apprentissage par imitation et un système modulaire basé

sur la détection et le suivi d’objets. Nous testons les algorithmes en utilisant des modèles basés

sur des agents et des simulations basées sur la physique avec un bruit de capteur réaliste.

Nous les validons avec une flotte de quadcoptères personnalisés dans des environnements

intérieurs contrôlés et des environnements extérieurs difficiles. Les drones sont équipés d’un

système de caméras omnidirectionnelles pour éviter les angles morts et d’un système de calcul

embarqué pour traiter les images en temps réel sans nécessiter de matériel spécialisé tel que

des marqueurs visuels faciles à reconnaître. Des simulations approfondies et des expériences

dans le monde réel montrent que les essaims basés sur la vision peuvent effectuer une naviga-

tion sans collision et cohésive tout en se basant uniquement sur des informations visuelles

locales pour le contrôle. Nous abordons enfin la scalabilité des essaims basés sur la vision en

termes de taille et de densité de groupe.
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Zusammenfassung
Flugroboterschwärme haben das Potenzial, zeitkritische und gefährliche Aufgaben wie Kata-

strophenhilfe zu übernehmen, ohne die Sicherheit von Menschen zu gefährden. Ihre Abhän-

gigkeit von externer Infrastruktur wie der globalen Positionsbestimmung für Lokalisierung und

drahtlosen Netzwerken für Kommunikation ist jedoch für viele Anwendungen noch immer ein

limitierender Faktor. Solche Infrastrukturen sind möglicherweise nicht überall verfügbar, was

die Wahrscheinlichkeit von Kollisionen bei Signalunterbrechungen erhöht und ihre Robustheit

gegenüber Ausfällen einschränkt. Des Weiteren kann die drahtlose Kommunikation von Droh-

ne zu Drohne unter Zeitverzögerungen und Ausfällen leiden, was ihre Skalierbarkeit für große

Schwärme, die in dichten Konfigurationen fliegen, verhindert. Drohnen sollten die Autonomie

haben, ihre eigenen Entscheidungen ausschließlich auf der Grundlage lokaler sensorischer

Informationen zu treffen, um Probleme hinsichtlich der Skalierbarkeit und Robustheit zu

vermeiden.

Um diese Einschränkungen zu beseitigen, schlagen wir einen vollständig visuellen Ansatz zur

Schwarmkontrolle vor, der von Vogelschwärmen inspiriert ist. Insbesondere entwickeln wir

Methoden, die es den Drohnen ermöglichen, ihre Bewegungen ausschließlich mittels visueller

Wahrnehmung zu koordinieren. Wir schlagen zwei unterschiedliche Strategien vor, die sich

die Leistungsfähigkeit von neuronalen Faltungsnetzen zunutze machen: einen Ende-zu-Ende

Ansatz, der auf Imitation Learning basiert, und ein modulares System, das auf Objekterken-

nung und -verfolgung beruht. Wir testen die Algorithmen mit Hilfe von agentenbasierten

Modellen und physikbasierten Simulationen mit realistischem Sensorrauschen und validie-

ren sie mit einer Flotte von speziell angefertigten Quadcoptern in kontrollierten Innen- und

anspruchsvollen Außenumgebungen. Die Drohnen sind mit omnidirektionalen Kameras aus-

gestattet, um tote Winkel zu vermeiden, und verfügen über genug integrierte Rechenleistung,

um die Bilder in Echtzeit zu verarbeiten, ohne dass spezielle Hardware, wie z.B. leicht zu

erkennende visuelle Marker, erforderlich sind. Ausführliche Simulationen und Experimente

zeigen, dass bildverarbeitungsbasierte Drohnenschwärme, die nur auf lokale visuelle Stimuli

reagieren, Kollisionen bei der Navigation erfolgreich vermeiden können, ohne dabei den

Gruppenzusammenhalt zu beeinträchtigen. Zuletzt befassen wir uns mit der Skalierbarkeit

von bildverarbeitungsbasierten Schwärmen in Bezug auf Gruppengröße und -dichte.
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1 Introduction

1.1 Motivation

Aerial robots — commonly called drones — have enormous socio-economic potential and

find applications in fields such as agriculture, mapping, construction, and delivery [1, 2, 3].

For instance, drones can be deployed to monitor crops, build detailed 3D maps, survey

construction sites, and deliver medicine to inaccessible places — all without compromising

the safety of human operators. Deploying drones in swarms — as opposed to a single robot

— allows them to parallelize and complete time-critical tasks faster and more efficiently

(Fig. 1.1). Collaboration between multiple drones can also enable entirely new applications

such as cooperative transport [4] or mobile sensor networks [5, 6]. However, most drone

swarms deployed today are far from autonomous since the robots cannot make their own

decisions (i.e., they are remotely controlled) or rely on external infrastructure (e.g., satellite-

based systems) to operate. Their lack of autonomy severely limits their applicability in many

scenarios.

(a) Agriculture (b) Delivery (c) Firefighting

Figure 1.1 – Example applications of aerial robot swarms. Drone swarms can be used in
(a) agriculture for tasks such as reporting on crop health, monitoring livestock, improving
spraying accuracy, and mapping of farmland. They can also be used for (b) deliveries since
they can quickly traverse densely populated areas and reach remote locations with limited
road infrastructure. In (b) firefighting, they can be used to monitor the spread of a fire or to
access burning buildings.
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Chapter 1. Introduction

Most drone swarms deployed today fall into either of two categories: centralized or decen-

tralized [7]. Centralized drone swarms rely on a ground computer that precomputes their

trajectories and continuously monitors their positions and velocities [8, 9, 10, 11]. In central-

ized systems, the ground computer represents a single point of failure and its malfunction can

have disastrous consequences since all drones rely on it to receive new motion commands. In

contrast, decentralized drone swarms typically rely on the the wireless exchange of position

information obtained from external localization systems to operate [12, 13, 14, 15]. Local-

ization is usually achieved with optical motion capture for indoor deployments [8, 16, 9, 11]

or satellite-based systems for outdoor applications [17, 13, 12, 14]. Optical motion capture

systems are very precise but entirely centralized, difficult to deploy at a large scale, and costly.

Satellite-based localization systems are unavailable indoors and suffer from inaccuracies

in many outdoor environments where satellites may be occluded and signals reflected on

obstacles, e.g., cities and forests. Communication-based approaches are inflexible since all

agents must be localized in the same reference frame and adhere to the same communication

protocol. Moreover, wireless communication often suffers from delays and outages, which

increase the risk of collisions and thus prevent the drones from flying in dense configurations

[14, 18].

Natural swarms such as flocks of birds are a great source of inspiration since they do not

depend on any central infrastructure or explicit communication to fly in swarms and navigate

their environment. In particular, they rely only on their local sensing capabilities to perceive

other swarms members. For example, large flocks of starlings can fly in dense configurations

while keeping a safe distance between each other to avoid collisions [19]. Faced with a predator

attack, they swiftly split and reunite again to maintain group cohesion [20]. Their migration

patterns show that birds can efficiently solve complex navigation problems in a completely

self-organized manner [21]. The consensus among biologists is that visual perception is the

essential sensory modality to give rise to these behaviors [22, 23, 24].

Giving drones the ability to perceive each other can remove their dependence on external

infrastructure and wireless communication. The failure or malfunction of external localization

infrastructure would no longer cause entire missions to fail. Delays and outages in wireless

communication would no longer cause collisions since the drones are aware of each other. By

only relying on local visual information, drone swarms can operate in a decentralized fashion

and would be more flexible, scalable, and robust to failures [7]. Moreover, vision is arguably the

ideal sensory modality for localization on aerial robots since cameras are small, lightweight,

and provide high information density at comparatively low power consumption [25]. However,

vision-based methods come with their own set of unique challenges. Visual recognition

of drones with computer vision techniques is challenging because they are relatively small

and can fly in environments with large amounts of background clutter and difficult lighting

conditions [26, 27]. Additionally, the image processing algorithms must run onboard the

drones, whose own motion may generate motion blur and whose small dimensions and

lightweight mass can restrict computational capabilities. Furthermore, other perceptual

factors such as visual occlusions become relevant for larger group sizes and swarms that fly in
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dense configurations.

1.2 General approach

This thesis is concerned with the synthesis of vision-based aerial robot swarms in which the

drones recognize each other only using visual perception. The use of local visual information

will enable the drones to cooperate without external localization infrastructure or wireless

communication. The overall goal is to deploy a vision-based group of drones that can perform

navigation tasks without collisions or fragmentation into subgroups. Such collision-free and

cohesive swarms can be an enabling factor for a variety of real-world applications (Fig. 1.1).

We take biological inspiration from natural collectives such as flocks of birds to develop vision-

based controllers for aerial robot swarms. We expect many characteristics of natural swarms

(e.g., scalability and flexibility) to translate to robotic swarms if they are built on the same

principles (e.g., self-organization and decentralization). Biological research suggests that

flocking birds rely predominantly on visual perception for motion coordination [19, 22, 23,

28, 24]. We argue that visual perception is sufficient to generate the desired behavior with

robots, so we limit this thesis to strategies that rely on vision as a sensory modality for control.

Notably, this excludes methods that are based on modalities such as sound [29, 30] or wireless

signal strength [31, 32], for example.

This thesis focuses on methods that are based on deep learning [33, 34] due to its empirical

successes in related fields such as computer vision [35], robotics [36], and biology [37]. Deep

neural networks give machines an unprecedented ability to extract useful and actionable

information from the world around them. In computer vision, convolutional neural networks

have drastically lowered error rates of tasks such as object detection [38, 39, 35] and semantic

segmentation [40, 41, 42], enabling computers to recognize and localize objects in images with

pixel-level precision and human-level accuracy. In robotics, deep learning enables robotic

arms to grasp novel objects [43], legged robots to walk over difficult terrain [44], and aerial

robots to navigate without collisions [45]. In biology, convolutional networks have become an

indispensable tool for detecting and tracking animals [37] to study the interactions between

them [46]. Deep learning approaches — and convolutional neural networks in particular —

seem to be suitable methods for vision-based control of aerial robot swarms.

We use agent-based modeling and physically realistic simulations to test and validate the

developed methods. Agent-based models are very useful for the development of multi-agent

systems and are widely used in fields such as robotics [47, 48, 49] and biology [50, 51, 52].

Simple kinematic agents allow us to gain insights into collective behaviors by rapid prototyping

and to generate reproducible statistical results. Moreover, they enable the simulation of large

group sizes without running into computational bottlenecks. Physics-based simulations

increase the realism of agent-based models by considering the drone dynamics and sensors

such as cameras and inertial measurement units [53, 54, 55]. Realistic simulators enable us to

validate and run our algorithms like on real hardware without solving engineering problems
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related to actuation, communication, or perception.

We implement and deploy the methods and algorithms on real drones and evaluate them in

controlled indoor environments and challenging outdoor scenarios. The real-world results

obtained in this thesis are based on a fleet of custom-built quadcopters — nicknamed leQuad

— that were adapted and redesigned from the work of previous students [56, 57]. Each drone is

equipped with an open-source autopilot [58, 59] and a powerful embedded computer that

enables the onboard processing of images from an omnidirectional camera array in real-time.

1.3 Thesis outline

In the following, we provide a brief outline of the thesis and summarize the content of each

chapter. The summaries are based on the abstracts of the publications mentioned in the

respective chapters.

Chapter 2: Flocking algorithm for aerial robot swarms

We describe a flocking algorithm that serves as the basis for high-level control in subsequent

chapters. We also define the metrics we use throughout the thesis to assess the performance

of vision-based swarms.

Chapter 3: End-to-end vision-based flocking using imitation learning

We propose a method for vision-based swarm control based on end-to-end imitation learning.

Each drone is controlled by a convolutional neural network that takes omnidirectional im-

ages as inputs and predicts velocity commands that match those computed by the flocking

algorithm (Chapter 2). We train the neural network using a combination of real and simulated

images and propose a task-specific unsupervised domain adaptation approach to facilitate

the sim-to-real transfer. We test the approach in simulation with a vision-based flock of

nine drones and in a motion tracking hall with two real quadcopters that perform several

leader-follower experiments. The results show that end-to-end imitation enables collision-free

and cohesive vision-based flight without an explicit spatial representation of the neighboring

drones, e.g., range and bearing. The neural network implicitly learns to localize other agents,

which we show with an attribution study that highlights the regions of the visual inputs with

the most influence on the motion of an agent. The proposed method can be optimized end-

to-end, does not require camera calibration, and works without visual fiducial markers to

simplify the recognition. We thus remove the dependence on sharing positions among swarm

members by taking only local visual information into account for control.
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Chapter 4: Modular vision-based flocking using object detection and tracking

We propose a modular approach to vision-based flocking based on visual detection and multi-

target tracking. Each drone employs a convolutional neural network to detect and localize

its neighbors onboard in real-time. We train the neural network with automatically labeled

images using background subtraction by systematically flying a quadcopter in front of a static

camera. The method enables us to collect a diverse image dataset with precise bounding box

annotations in different environments without manual labeling. We use a multi-target tracker

to transform the predicted bounding boxes into estimates of relative positions and velocities,

which are subsequently used by the flocking algorithm for high-level control (Chapter 2). We

test the approach in simulation and validate it using a group of three real quadcopters in an

outdoor environment with substantial background clutter and difficult lighting conditions.

The results show that the drones can navigate safely and cohesively without relying on external

localization, wireless communication, or visual fiducial markers. Moreover, the proposed

method is modular and easy to debug since the performance of each component can be

assessed individually.

Chapter 5: Scalable vision-based flocking in the presence of occlusions

We address the scalability of vision-based flocking with regard to group size and density.

Vision-based swarms rely on the detection of neighbors but usually neglect mutual visual

occlusions because they operate in small groups (Chapter 4). We extend the flocking algo-

rithm (Chapter 2) with a realistic model of visual occlusions that discards agents if they are

obstructed by closer ones. We evaluate the occlusion model with up to one thousand agents,

showing that occlusions have adverse effects on the inter-agent distances and velocity align-

ment as the swarm scales up, both in terms of group size and density. In particular, we find

that small agent displacements have considerable effects on neighbor visibility and lead to

control discontinuities. The destabilizing effects of visibility switches, i.e., agents continuously

becoming visible or invisible, can be mitigated if agents select their neighbors from adjacent

Voronoi regions. We evaluate the Voronoi-based flocking algorithm with one hundred quad-

copters in a physics simulation with realistic quadcopter dynamics and sensor noise. The

results show that vision-based swarms can remain collision-free and cohesive across group

sizes and densities despite visual occlusions.

Chapter 6: Conclusions

We summarize the thesis and conclude with a discussion of the implications, significance,

limitations, and possible directions for future work.
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Appendix A: Vision-based localization in dynamic environments

We propose a dataset and method for vision-based localization in dynamic environments.

This task is highly relevant for vision-based swarms since each drone has to localize itself

while neighboring robots are constantly in motion. However, these deployment scenarios are

still challenging for most vision-based localization algorithms because they assume to operate

in static scenes. We propose a dataset that captures the dynamicity of common environments

as a benchmark for evaluating the robustness of vision-based localization algorithms. We

also propose a method to mitigate the adverse effects of dynamic objects by taking semantic

information into account.

Appendix B: Open-source software

We briefly describe the software packages that were developed during this thesis.

Appendix C: Publications

The work presented in this thesis is based on the following publications:

• F. Schilling, J. Lecoeur, F. Schiano, and D. Floreano, “Learning vision-based flight in

drone swarms by imitation,” in IEEE Robotics and Automation Letters, vol. 4, no. 4, pp.

4523–4530, Oct. 2019 [60].

• F. Schilling, F. Schiano, and D. Floreano, “Vision-based drone flocking in outdoor envi-

ronments,” in IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2954–2961, Apr.

2021 [61].

• F. Schilling, E. Soria, and D. Floreano, “On the scalability of vision-based drone swarms

in the presence of occlusions,” in IEEE Access, vol. 1, no. 1, pp. 1–13, (submitted) Aug.

2021 [62].

• K. Minoda, F. Schilling, V. Wüest, D. Floreano, and T. Yairi, “VIODE: A simulated dataset

to address the challenges of visual-inertial odometry in dynamic environments,” in IEEE

Robotics and Automation Letters, vol. 6, no. 2, pp. 1343–1350, Apr. 2021. [63]
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2 Flocking algorithm for aerial robot
swarms

In this chapter, we describe a simple and versatile flocking algorithm that we use to synthesize

collective motion throughout the thesis. The purpose of the flocking algorithm is threefold.

Firstly and most importantly, collisions among agents should be avoided. Secondly, the swarm

should remain cohesive as a single unit without breaking into subgroups. Thirdly and finally,

the swarm should be able to perform collective waypoint navigation.

2.1 Preliminaries and notation

We consider a set of N homogeneous agents that are labeled by i ∈A, where A= {1,2, . . . , N }

denotes the set of all agents and |A| = N its cardinality. We also define the set of all but the

focal agent i as Ai =A \ {i }. The state of each agent i can be described by its position and

velocity pi ,vi ∈ Rm . We are especially interested in the cases where m ∈ {2,3}, i.e., planar or

three-dimensional agent configurations, respectively. We denote the relative position of agent

i with respect to j as ri j = p j −pi with distance di j = ‖ri j‖ where ‖ ·‖ is the Euclidean norm.

We model the swarm of agents as a directed sensing graph G = (V ,E), where the set of vertices

V = {1, . . . , N } denotes the agents and the set of edges E ⊆V ×V contains the ordered pairs of

agents (i , j ) ∈ E if an agent i is adjacent to agent j , which we denote by i ∼ j . The graph G can

also be represented by an N ×N adjacency matrix of the form Ai j with entries of 1 if i ∼ j and

0 otherwise.

2.2 Flocking algorithm

The objective of the swarm is to perform waypoint navigation while avoiding inter-agent

collisions and staying together as a group (Fig. 2.1). We formulate this objective as an artificial

potential field that is inspired by the Reynolds flocking algorithm [64]. The motion of an

agent is composed of an attractive/repulsive potential that provides separation and cohe-

sion between agents (Sec. 2.2), as well as a migratory potential responsible for goal-directed
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(a) Cohesion (b) Separation (c) Migration

Figure 2.1 – The flocking algorithm is composed of three complementary terms: (a) cohesion,
(b) separation, and (c) migration. The focal agent (red triangle) reacts only to the neighboring
agents (blue triangles) within its perception radius (light blue disk) but not the ones outside of
it (gray triangle). All agents are attracted equally by the migration point (small orange disk).
The cohesion term (a) keeps agents together by steering them towards the average position of
their neighbors. The separation term (b) prevents collisions among agents by repulsing them
from each other. The migration term (c) introduces a navigation goal and steers the agents
towards a waypoint. The sum of all terms produces collision-free and cohesive goal-directed
navigation.

navigation (Sec. 2.2).

The motion of an agent is composed of a social term that captures agent-to-agent interactions

and a migration term that introduces the navigation objective. The velocity command of an

agent can be written as

vi = vsoc
i +vmig

i (2.1)

where vsoc
i and vmig

i denote the respective social (Eq. 2.3) and migration terms (Eq. 2.5). In

order to obtain a final velocity command that is feasible even under the actuation constraints

of a physical robot, we limit its magnitude as

ṽi = vi

‖vi‖
min(‖vi‖, vmax) (2.2)

where vmax denotes the maximum speed.

Separation and cohesion

Cohesion and collision avoidance can be achieved with an attractive/repulsive potential that

keeps the agents at an equilibrium distance (Fig. 2.2). The cohesion term keeps the swarm

together by attracting agents to the average position of their neighbors. The separation term

leads to collision avoidance by repulsing nearby agents from each other. We can express these
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Figure 2.2 – Pairwise artificial potential of cohesion and separation terms as a function of inter-
agent distance. The cohesion term is a linear function of the inter-agent distance, whereas the
separation term is inversely proportional to the distance. The equilibrium distance is defined
as the inter-agent distance at which the cohesion and separation terms balance.

rules more formally as

vsoc
i = kcoh 1

|Ni |
∑

j∈Ni

ri j︸ ︷︷ ︸
cohesion

−ksep 1

|Ni |
∑

j∈Ni

ri j

‖ri j‖2︸ ︷︷ ︸
separation

(2.3)

where kcoh and ksep are gains that regulate the strength of the attraction and repulsion, re-

spectively.

Neighbor selection is an important consideration for all flocking algorithms since it introduces

the notion of locality (e.g., in communication, perception, etc.) as opposed to all-to-all

information transfer. Unless specified otherwise (e.g., in Chapter 5), we select neighbors from

a metric perception radius defined by

Ni =
{

j ∈Ai | di j < r max} (2.4)

where r max denotes the maximum perception range.

Migration

The purpose of the migration term is to give the agents a navigation goal by steering them

towards a waypoint. The migration term can be written as

vmig
i = kmig rmig

‖rmig‖ (2.5)
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where rmig denotes the relative position of the migration point with respect to the focal agent,

and kmig the gain for modulating the migration speed.

Other considerations

In this section, we briefly explain our decisions on other modeling choices such the alignment

term (Sec. 2.2), limited field of view (Sec. 2.2), and alternative flocking algorithms considered

(Sec. 2.2).

Alignment

We do not make use of the alignment term (also: velocity matching) that is used in the

original Reynolds flocking formulation [64]. We only consider the separation (also: collision

avoidance) and cohesion (also: flock centering) terms for agent-to-agent interactions since

they only depend on relative positions. Conversely, the alignment term depends on relative

velocities which are difficult to infer without tracking agents over multiple time steps. Inferring

the heading from the agent orientation is equally difficult for holonomic platforms such as

quadcopters which are symmetric along both horizontal axes. However, the alignment of

velocities is a byproduct and a direct consequence of adding the migration term for waypoint

navigation.

Limited field of view

Similarly, we do not limit the field of view of the perception radius as is sometimes done in the

literature [65]. Research on flocking algorithm with a limited field of view shows that lateral

vision is crucial for collision-free collective motion [66, 67] and may explain why flocking

birds have near omnidirectional vision [68]. For a robotic implementation, a limited field of

view can be seen as a rather artificial constraint since omnidirectional cameras are available

off-the-shelf [69] and more cameras can easily be added to achieve omnidirectional vision

while limiting distortions [70].

Other flocking algorithms

The flocking algorithm literature is extensive and there exist many formulation with different

assumptions and goals [47]. Most notably, we consider other algorithms such as Olfati-Saber

[71] and Vásárhelyi flocking [14] for their desirable properties. The Olfati-Saber algorithm

has the advantage that a precise inter-agent reference distances can be specified apriori. The

agents form a lattice-like structure in which nearest neighbor distances converge to the desired

value. The Vásárhelyi algorithm is specifically designed to dampen oscillations with a viscous

friction-like term. This enables the agents to avoid collisions and align their velocities even in

the presence of time delays and communication outages. However, both of these algorithms
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are prone to fragmentation if they are not constrained to confined environments [72, 11]. In

particular, the Olfati-Saber algorithm can only be used with a very limited perception radius

[71] and the Vásárhelyi algorithm does not model cohesion at all [14]. Therefore, we find

that Reynolds flocking is sufficient for our needs since it enables collision avoidance, group

cohesion, and waypoint navigation in a simple formulation.

2.3 Flocking performance metrics

We briefly describe several complementary metrics to evaluate the performance of flocking

algorithms. The most relevant metrics are the 1) minimum nearest neighbor distance d min,

2) order φorder, and 3) union φunion. These metrics capture whether we have achieved 1)

collision-free, 2) ordered, and 3) cohesive collective navigation, respectively.

Distance

The minimum nearest neighbor distance is arguably the most important metric since it

captures whether or not the agents can effectively avoid collisions during migration. It is

computed as

d min = min
i 6= j

di j (2.6)

and we say that a collision occurs whenever two agents get closer than twice their radius

d min < 2r . We also use the maximum inter-agent distance d max = maxi 6= j di j to capture the

dispersion between agents.

Order

The order metric measures the correlation of the velocity vectors of the agents within the

swarm. It is computed as

φorder = 1

N (N −1)

∑
i 6= j

vi ·v j

‖vi‖‖v j‖
. (2.7)

An order value of one indicates that all agents are moving in the same direction in perfect

alignment, whereas a value around zero means that the swarm is in a completely disordered

state in which no two agents align their direction of motion.

Union

The union metric measures the cohesion of the swarm and expresses whether the swarm has

split into subgroups. It is computed as

φunion = 1− ncomp −1

N −1
(2.8)
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where ncomp is the number of connected components of the neighbor adjacency matrix

(Sec. 2.1). A union value of one indicates that the swarm is moving as a single cohesive unit. A

value of zero represents the degenerate situation in which the swarm is split into N subgroups

and the agents are unable to perceive any other agent.
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3 End-to-end vision-based flocking
using imitation learning

Most drone swarms deployed today either rely on sharing positions among agents or detecting

swarm members with the help of visual markers. This chapter proposes a vision-based ap-

proach to coordinate drone swarms based on end-to-end imitation learning without the need

for markers. Each agent is controlled by a convolutional neural network that takes omnidi-

rectional images as inputs and predicts velocity commands that mimick those computed by a

flocking algorithm with access to ground-truth positions. We train the neural network using

a combination of real and simulated images and propose a simple yet effective unsupervised

domain adaptation approach to facilitate the transfer to the real world. The neural network

learns to avoid mutual collisions, stay cohesive to the group, and localize other drones in the

input images, the latter without direct supervision. We demonstrate the behaviors with a swarm

of nine agents in realistic physics-based simulation and with a group of two quadcopters per-

forming leader-follower experiments in an indoor motion tracking hall. The neural network

policy removes the need to share positions among agents by taking only local visual information

into account for control.

The work presented in this chapter is adapted from [60]1:

• F. Schilling, J. Lecoeur, F. Schiano, and D. Floreano, “Learning vision-based flight in

drone swarms by imitation,” in IEEE Robotics and Automation Letters, vol. 4, no. 4, pp.

4523–4530, Oct. 2019.

3.1 Introduction

The collective motion of animal groups such as flocks of birds is an awe-inspiring natural

phenomenon that has profound implications for the field of aerial swarm robotics [1, 2].

Animal groups in nature operate in a completely self-organized manner since the interactions

between them are purely local. By taking inspiration from decentralization in biological

systems, we can develop powerful robotic swarms that are 1) robust to failure, and 2) highly

1Video: https://youtu.be/I9vFvPphfpU.
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Figure 3.1 – Vision-based leader-follower flight in the motion tracking hall. The proposed
visual controller operates fully decentralized and provides collision-free, coherent collective
motion without the need to share positions among agents. The behavior of an agent only
depends on its omnidirectional visual inputs (orange rectangle). Collision avoidance and
cohesion between agents are learned entirely from visual inputs.

scalable since the number of agents can be increased or decreased dynamically depending on

the workload of the task.

One of the most appealing characteristics of collective animal behavior for robotics is that

decisions are made based on local information. Thus, the behavior of animal groups does

not require extensive knowledge of the swarm state or a central coordinator. As of today,

however, most multi-agent robotic systems rely on entirely centralized control [8, 9, 10] or

wireless communication of positions [13, 12, 14], which are obtained either from a motion

capture system or global navigation satellite system (GNSS). The main drawback of these

approaches is the introduction of a single point of failure, as well as the use of unreliable

data links, respectively. Relying on centralized control bears a significant risk since the agents

lack the autonomy to make their own decisions in failure cases such as a communication

outage. The possibility of failure is even higher in dense urban environments, where GNSS

measurements are often unreliable and imprecise.

Vision is arguably the most promising sensory modality to achieve a maximum level of auton-

omy for robotic systems, particularly considering the recent advances in computer vision and

deep learning [33]. Apart from being lightweight and having relatively low power consumption,

even cheap commodity cameras provide an unparalleled information density with respect

to sensors of similar cost. Their characteristics are specifically desirable for the deployment
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of an aerial multi-robot system. The difficulty when using cameras for robot control is the

processing of the visual information which this work addresses directly.

In this chapter, we propose a reactive control strategy based entirely on local visual information

(Fig. 3.1). We formulate the swarm interactions as a regression problem in which we predict

control commands as a nonlinear function of the visual input of a single agent. To the best of

our knowledge, this is the first successful attempt to learn vision-based swarm behaviors such

as collision-free navigation in an end-to-end manner directly from raw images.

Our contributions can be summarized as follows:

• We propose a data-efficient imitation learning approach to solve the problem of vision-

based coordination of a swarm of drones. The control policy is trained incrementally by

following the previous best policy and thus collecting relevant data from its failure cases.

The proposed system generates high-level control commands from raw images in the

form of velocity setpoints, whereas a classical cascaded feedback control architecture

handles low-level control.

• We present a remarkably simple and effective task-specific unsupervised domain adap-

tation approach to transfer the image data obtained from simulation to the real world.

To this end, we collect a dataset of unlabeled images from the target environment to

serve as backgrounds for images generated in simulation.

• We implement the algorithm on a physical quadrotor platform and show that all com-

putations (policy evaluation, state estimation, and control) can be run entirely onboard

in real-time.

• We provide an evaluation of the system in simulation and experimental validation

in a motion tracking hall to show that the control policy generalizes to coordinated

multi-agent flights in the real world.

3.2 Related work

Decentralized swarms of drones such as quadrotors and fixed-wings are the focus of recent

research in swarm robotics. Early work presents ten fixed-wing drones deployed in an outdoor

environment [17]. Their collective motion is based on Reynolds flocking [64] with a migra-

tion term that allows the swarm to navigate towards the desired goal. Thus far, the largest

decentralized quadrotor swarm consisted of 30 autonomous agents flying in an outdoor en-

vironment [14]. The underlying algorithm has many free parameters which are optimized

using an evolutionary algorithm that relies on a fitness function that incorporates several

swarm order parameters. The commonality of the mentioned approaches and others, for

example, [13, 73], is the ability to share GNSS positions wirelessly among swarm members.

However, there are many situations in which wireless communication is unreliable or GNSS
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positions are too imprecise. We may not be able to tolerate position imprecisions in situations

where the environment requires a small inter-agent distance, e.g., when traversing narrow

passages in urban environments. In these situations, tall buildings may deflect the signal and

communication outages occur due to the wireless bands being over-utilized.

Recent advances in the field of machine learning facilitate the vision-based control of flying

robots. In particular, the controllers are based on three types of learning methods: imitation

learning, supervised learning, and reinforcement learning. Imitation learning is used in [74]

to control a drone in a forest environment based on human pilot demonstrations. The authors

motivate the importance of following suboptimal control policies in order to cover more of

the state space. A supervised learning approach [75] features a convolutional network that

is used to predict a steering angle and a collision probability for drone navigation in urban

environments. In contrast with the previous methods based only on supervised learning, an

approach based on reinforcement learning [76] shows that a neural network trained entirely in

a simulated environment can generalize to flights in the real world. The work described above

and other similar methods, for instance, [45, 77], use a data-driven approach to control a

flying robot in real-world environments. The probability of collision is learned by minimizing

the binary cross-entropy of labeled images collected while riding a bicycle through urban

environments. A shortcoming of these methods is that the learned controllers operate only in

two-dimensional space which bears similar characteristics to navigation with ground robots.

Moreover, the approaches do not show the ability of the controllers to coordinate a multi-agent

system.

The control of multiple agents based on visual inputs is achieved with relative localization

techniques [78] for a group of three quadrotors. Each agent is equipped with a camera and

a circular marker that enables the detection of other agents and the estimation of relative

distance. The system relies only on local information obtained from the onboard cameras

in near real-time. Thus far, decentralized vision-based drone control has been realized by

mounting visual markers on the drones [79]. Although this simplifies the relative localization

problem significantly, the marker-based approach would not be desirable for the real-world

deployment of flying robots. The used visual markers are relatively large and bulky which

unnecessarily adds weight and drag to the platform; this is especially detrimental in real-world

conditions. Another recently proposed approach is the use of active ultraviolet markers to

identify the relative range and bearing to other agents [80]. However, the markers have to

be placed in carefully chosen pre-defined locations, and the system is thus unable to detect

markerless drones that do not precisely conform to these specifications.

3.3 Method

At the core of the proposed method lies the prediction of a velocity command for each agent

that matches the velocity command computed by a flocking algorithm (Fig. 3.2a). We consider

the velocity command from the flocking algorithm as the target for a supervised imitation
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Flocking algorithm 

Agent positions Velocity targets
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(a) Step 1: Collect new dataset from current policy

New policy

Images

Minimization of loss function

Gradients

Velocity commands

Aggregate datasets

Velocity targets

(b) Step 2: Train next policy on aggregate datasets

Figure 3.2 – Each iteration of the imitation learning algorithm follows two steps: (a) dataset
collection and (b) policy training. In the (a) dataset collection step, we follow the current
policy to obtain omnidirectional images and the corresponding velocity targets computed
from a flocking algorithm with privileged access to the positions of the agents. In the (b)
policy training step, we obtain a new policy by minimizing the loss function on all previously
collected aggregate datasets. The new policy from (b) is then used in (a) as a current policy to
collect a new dataset and so on. The current policy learns to recover from the failure cases
of the previous policies which are contained in the aggregate datasets. The final policy no
longer depends on the knowledge of the agent positions since it learns to imitate the flocking
algorithm entirely from visual inputs.

learning problem (Fig. 3.2b). The main idea is to eliminate the dependence on the knowledge

of the positions of other agents by taking only local visual information into account for control.

Imitation learning presents a practical alternative to the approach in which separate modules

are responsible for object detection, multi-object target tracking, and control, respectively

(Chapter 4). The modular approach requires the labeling of large amounts of images with

precise bounding box annotations. By using direct imitation, the control inputs can be

calculated directly from the relative positions of other agents obtained either from simulation

or a motion capture system.

Flocking algorithm

We use an adaptation of Reynolds flocking [64] to generate targets for the learning algorithm

(Sec. 2.2). In particular, we only consider the collision avoidance and flock centering terms

from the original formulation since they only depend on relative positions. We omit the

velocity matching term since estimating the velocities of other agents is a challenging task

given only a single snapshot in time. One would have to rely on either estimating velocities

from several consecutive images or estimating the orientation and heading with relatively

high precision in order to infer velocities from a single image.

In the formulation of the flocking algorithm, we use the terms separation and cohesion to

denote collision avoidance and flock centering, respectively [81]. We further add an optional

migration term that enables the agents to navigate towards a goal. An important consideration

when modeling the desired behavior of the swarm is the notion of neighbor selection. It is
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reasonable to assume that each agent can only perceive its neighbors in a limited range. We

therefore only consider agents as neighbors if they are closer than the desired cutoff distance

r max which corresponds to only selecting agents in a sphere with a given radius. We do not

make any restrictions on the field of view of the agents since limiting perception, specifically

in the lateral direction, has been shown to have adverse effects on the flocking performance

[67].

The separation term steers an agent away from its neighbors in order to avoid collisions,

whereas the cohesion term can be seen as the antagonistic inverse since its purpose is to

steer an agent towards its neighbors to provide coherence to the group (Sec. 2.2). For the

implementation, the separation and cohesion terms are sufficient to generate a collision-free

swarm in which agents remain together, given that the separation and cohesion gains are

chosen carefully. We denote the combination of the two terms as the social velocity command

vsoc
i = vsep

i +vcoh
i which is later predicted by the neural network. Moreover, the addition of the

migration term provides the possibility to give a uniform navigation goal to all agents (Sec. 2.2).

The velocity command for an agent i is computed as a sum of the social terms, which is a

combination of separation and cohesion, as well as the migration term, as vi = vsoc
i +vmig

i . In

general, we assume a homogeneous swarm, which means that all agents are given the same

gains for separation, cohesion, and migration.

3.3.1 Drone model

We perform simulations in Gazebo with a group of nine quadrotor drones, each equipped with

six simulated cameras to provide omnidirectional vision (Fig. 3.3). The cameras are positioned

away from the center of gravity of the drone in order to have an unobstructed view of the

surrounding environment, including the propellers. Each camera has a 135×90◦ horizontal

and vertical field of view and takes a grayscale image of 128×128 pixels with a refresh rate of

10 Hz. We concatenate the images from all six cameras along the horizontal axis to form a

128×768 pixels grayscale image.

3.3.2 Imitation learning

We use an on-policy imitation learning approach to synthesize a purely vision-based control

policy, denoted by π̂, that matches the behavior of the position-based flocking policy, denoted

by π∗, as closely as possible. More formally, we denote the learned policy π̂(ot ) = at as a

mapping from observations to actions, where the observations ot ∈ R128×768 are grayscale

images and the actions at ∈ R3 velocity commands for each time step t ∈ T . The expert

policy π∗(st ) = at , on the other hand, computes velocity commands from the state st of the

system, which is represented by known relative positions ri j to other agents (Sec. 3.3). The

image observations can be seen as a lossy representation of the underlying system state (e.g.,

the relative positions of other agents) because of adverse factors such as limited resolution,

occlusions, lens distortions, and inherent noise in the system. To learn the vision-based policy
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Figure 3.3 – The visual input of an agent is the (a) concatenation of six orthogonal camera
images. We show the positioning of the cameras schematically as a (b) side view and (c) top
view of the simulated drone. The images are combined into the full visual field of an agent
(color-coded by camera direction). The cameras are positioned such that the visual field of an
agent corresponds to an image cube map, i.e., each camera is pointing at a different face of a
cube as seen from the center of the cube itself.

π̂, we use the DAGGER imitation learning algorithm [82] (Alg. 1).

We collect data and train the policy in an iterative fashion, first in simulation and then in a

motion tracking hall. We use a 80%/20% split between training Dtrain and validation data

Dval. In simulation, each iteration of the imitation learning algorithm proceeds as follows.

The drones take off and assume random positions within a cube of side length 4m, and

with a minimum inter-agent distance of 1.5m. The side length and minimum distance were

chosen to resemble a plausible real-world deployment scenario in a confined environment

such as the motion tracking hall. All agents then switch to vision-based control and use raw

velocity commands generated by the learned policy (which is randomly initialized at first)

from the visual inputs sampled at 10Hz. Simultaneously, ground truth control commands

are computed from the flocking algorithm and stored for post-processing. The iteration is

considered complete as soon as 1) any two drones collide, 2) any two drones are too far away

from each other, or 3) 200 observation-action samples are generated. We consider two agents

too close if any pair of drones falls below a collision threshold of 1m; similarly, we consider

two agents as too far away when the distance between them exceeds a threshold of 7m. The

collision threshold follows the constraints of the drone model, and the dispersion threshold

stems from the diminishing size of other agents in the field of view. For data collection in the
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Figure 3.4 – The hardware implementation of the drone is based on the design in [73]. The
drone uses six OpenMV Cam M7 with ultra-wide angle lenses for image acquisition, an Odroid
XU4 onboard computer for image processing, and a PixRacer autopilot for state estimation
and control.

real world, we relax the above requirements and stop an iteration as soon as the situation

becomes subjectively too dangerous, for instance when the inter-agent distance becomes too

small, or the drone starts to move too close to the walls of the motion tracking hall. A new

policy is then trained using the collected image samples, the control commands generated by

the learned policy, and the expert control commands computed from the flocking algorithm

rules. Finally, the data collection process is repeated with the new policy.

3.3.3 Domain adaptation

One fundamental problem with the on-policy imitation learning approach (Alg. 1) is that

the learned policy needs to be executed online in order to collect samples. Executing an

untrained policy in a multi-agent setting with quadcopters in a confined space such as a

motion tracking hall can be dangerous. A possible solution is to set an initial policy πi (ot ) =
βiπ

∗(st )+(1−βi )π̂i (ot ), i.e., a linear combination of the expert and learner’s action and let the

factor βi decay from one to zero over time. While this approach would work, data generation

in the real world is error-prone and collecting large datasets would require significant amounts

of time.

To avoid the collection of a large real-world dataset, we propose a simple yet effective task-

specific domain adaptation method to learn an initial vision-based policy from simulated and

unsupervised images. To this end, we construct a simulated environment in which there is no

visual clutter such that the drones appear in front of a uniform white background (Fig. 3.5a).
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Algorithm 1: Multi-agent dataset aggregation.

Initialize empty dataset D←;.
Initialize parameters of learned policy π̂1.
for i ← 1 to N do

Sample trajectories from learned policy π̂i simultaneously for all agents.
Collect dataset Di = {(ot ,π∗(st ))}T

t=1 of observations from the learned policy π̂i and
actions given by expert π∗ for all agents.

Aggregate datasets D←D∪Di .
Train new policy π̂i+1 on D.

end
return Best policy π̂i on hold-out validation set Dval.

Next, we collect a 20k-sample image background dataset from the six onboard cameras during

a single-agent flight in the motion tracking hall (Fig. 3.5b). During the flight, we rotate the

drone in several yaw configurations and cover as much of the space in the hall as possible

to increase the variability in the image data. As a final step, we add the simulated drones

onto the background in order to create a dataset that resembles actual drones flying in the

motion tracking hall. The real and domain-adapted images are almost indistinguishable to

the human eye at the resolution used by the control policy (Fig. 3.5c and 3.5d). The control

actions corresponding to the images from the simulated dataset remain unchanged during

this process.

3.3.4 Visual policy

We formulate the vision-based imitation of the flocking algorithm as a regression problem

that takes an image (Fig. 3.3) as an input and predicts a velocity command which matches

the ground truth velocity command as closely as possible. To produce the desired velocities,

we consider a small and efficient convolutional neural network [75] that is geared towards

drone navigation. However, unlike [75], we opt for a single-head regression architecture to

avoid convergence problems caused by different gradient magnitudes from an additional

classification objective during training. This simplifies the optimization problem and the

model architecture and thus the resulting controller.

We use mini-batch stochastic gradient descent to minimize the regularized mean squared

error loss between predicted and target velocity commands. We employ variance-preserving

parameter initialization by drawing the initial weights from a truncated normal distribution

[83]. The biases of the model are initialized to zero. The objective function is minimized using

the Adam optimizer [84] and an initial learning rate of 10−3 which is decayed by a factor of 0.5

after 10 consecutive epochs without improvement on the hold-out validation set. We train

the network using a mini-batch size of 128, a weight decay factor of 5 ·10−4, and a dropout

probability of 0.5. We stop the training process as soon as the validation loss plateaus for more

than ten consecutive epochs.
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(a) Foreground

(b) Background

(c) Fake sample (foreground + background)

(d) Real sample

Figure 3.5 – Sim-to-real transfer with domain adaptation: simulated foreground + fake back-
ground. Example of unsupervised domain adaptation method in which (a) simulated fore-
ground images and (b) real background images from the motion tracking hall are combined
into (c) domain-adapted images. For visual comparison, we also show (d) a real sample from a
two-agent flight in the motion tracking hall.

The raw images and velocity targets are pre-processed using feature standardization such that

each input batch has a mean of zero and a standard deviation of one. For the velocity targets

from the flocking algorithm, we perform a frame transformation from the world frame W into

the drone’s body frame B as vi = RB
W i vsoc

i where RB
W i ∈ SO(3) denotes the rotation matrix from

world to body frame for robot i and vsoc
i corresponds to the target velocity command. We

perform the inverse rotation to transform the predicted velocity commands from the neural

network back into the world frame. In terms of data augmentation, we randomly adjust the

image brightness and contrast of each mini-batch by ±25%. Furthermore, we randomly rotate

the image cube map and the control command in 90◦ increments around the body frame

z-axis (yaw) such that the vision-based controller becomes invariant to the direction in which

agents are predominantly present in the data. In practice, this is equivalent to shifting and
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wrapping around the first four images (left, front, right, and back) in 128-pixel increments, as

well as rotating the last two images (top and bottom) by 90◦ increments.

3.4 Simulation results

This section presents an evaluation of the learned controller as a comparison to the target

flocking algorithm. We refer to the swarm operating on the learned controller (which relies

on visual inputs) as vision-based. We refer to the swarm operating on the flocking algorithm

(which relies on shared agent positions) as position-based. The results show that the proposed

controller represents a robust alternative to communication-based systems in which the

positions of other agents are shared with other members of the group.

The experiments are performed using the Gazebo simulator [53] in combination with the

PX4 autopilot [59] for state estimation and control. The neural network is implemented in

PyTorch [85]. We employ the same set of flocking parameters used during the training phase

throughout the following experiments. We set the number of agents N = 9, the maximum

perception radius r max = 7m, and the maximum speed vmax = 2ms−1. We set the separation,

cohesion, and migration gain to ksep = 7ms−1, kcoh = 1ms−1, and kmig = 1ms−1, respectively.

We report the results in terms of minimum and maximum inter-agent distances, two com-

plementary metrics that describe the state of the swarm at a given time step. The minimum

and maximum inter-agent distance are direct indicators for successful collision avoidance, as

well as general segregation of the swarm, respectively. Two conditions are tested: a first one in

which all agents share a common migration goal, and a second one in which a subset of the

agents have an opposing migration goal.

3.4.1 Common migration goal experiment

In the first experiment, we give all agents the same migration goal and show that the swarm

remains collision-free during navigation. The vision-based and the position-based swarm

exhibit remarkably similar behavior while migrating (Fig. 3.6a and 3.6b). For the vision-based

controller, the velocity commands predicted by the neural network are sent to the agents in

their raw form without any further processing. The vision-based swarm matches the position-

based one very well since the inter-agent distances do not deviate significantly over the course

of the entire trajectory (Fig. 3.6c). The minimum inter-agent distance remains larger than the

collision threshold of 1m, which indicates that the neural network policy has learned to keep

a minimum inter-agent distance and thus to avoid collisions.

3.4.2 Opposing migration goals experiment

In this experiment, we assign different migration goals to two subsets of agents. The first group,

consisting of five agents, is assigned the same waypoint as in Sec. 3.4.1. The second group,
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Figure 3.6 – Position-based vs. vision-based flocking with a common migration goal in sim-
ulation. Top view of a swarm migrating using the (a) position-based and (b) vision-based
controller, as well as their respective (c) minimum and maximum inter-agent distances over
time. The path of each agent is shown in a different color. The colored squares, triangles,
and circles show the agent positions during the first, middle, and last time step, respectively.
The gray square and gray circle denote the spawn area and the migration point, respectively.
The mean minimum distance between any pair of agents is denoted by a solid line, whereas
mean maximum distances are shown as a dashed line. The colored shaded regions show the
minimum and maximum distance between any pair of agents.

consisting of the remaining four agents, is assigned a migration point on the opposite side

with respect to the first group. The position-based and vision-based swarm exhibit very similar

migration behaviors (Fig. 3.7a and 3.7b). In both cases, the swarm cohesion is strong enough
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Figure 3.7 – Position-based vs. vision-based flocking with opposing migration goals in sim-
ulation. Top view of a swarm migrating using the (a) position-based and (b) vision-based
controller, as well as their respective (c) minimum and maximum inter-agent distances over
time. The path of each agent is shown in a different color. The colored squares, triangles, and
circles show the agent positions during the first, middle, and last time step, respectively. The
gray square and gray circle denote the spawn area and the migration point, respectively. The
waypoint on the right is given to a subset of five agents (solid lines), whereas the waypoint on
the left is given to a subset of four agents (dotted lines). The mean minimum distance between
any pair of agents is denoted by a solid line, whereas mean maximum distances are shown as a
dashed line. The colored shaded regions show the minimum and maximum distance between
any pair of agents. The position-based distances plot does not continue until the last time step
since the agents reach the migration point faster than the vision-based agents.

to keep the agents together despite the diverging migration goals. Note that the vision-based

swarm reaches its migration goal far later than the position-based swarm.
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3.5 Real-world results

We propose three experiments involving two quadrotors to show that the learned controller

can perform vision-based markerless flight in the real world. We conclude with an attribution

study that visualizes the regions of the visual input that contribute the most to the neural

network’s predictions. All flights are performed in a motion tracking hall that is equipped with

26 OptiTrack cameras. Each drone receives its ground truth pose via Wi-Fi at a frequency of

100Hz.

3.5.1 Circle experiment

The circle experiment showcases the ability of the learned policy to maintain cohesion with

another agent. To this end, the leader drone is given a circular trajectory, whereas the vision-

based follower uses raw velocity commands generated onboard by the neural network. We

set the radius of the circle as 2.5m and the angular velocity along the circular trajectory to

10°s−1. The follower drone keeps a stable distance between itself and the leader drone during

a representative 6min flight (Fig. 3.8). One can observe that the visual policy can recover from

small mistakes reliably, most notably after the 70s and 210s marks (Fig. 3.8c).

3.5.2 Carousel experiment

The carousel experiment can be seen as an extension of the circle scenario with the added

difficulty that the altitude of the leader is now modulated by a sinusoid as well. The parameters

of the circle trajectory remain the same, but we add a sinusoid component to the altitude

tracked by the leader drone. The altitude component has an amplitude of 1m and the same

frequency as the horizontal components, which leads to a tilted circular trajectory (Fig. 3.9b).

The vision-based follower thus needs the ability to operate in full 3D space in order to stay

cohesive with the leader. The inter-agent distance in the carousel experiment increases

slightly compared to the circle experiment, especially when the leader agent deviates the most

from the average flight altitude. Nevertheless, the vision-based drone can maintain a steady

cohesion with the leader (Fig. 3.9). Upon closer examination of the altitude of both agents

over time, it is clear that the follower can modulate its altitude as a reaction to the leader. The

extreme points in altitude of the follower are indeed aligned with the intersection points of the

two curves (Fig. 3.9c).

3.5.3 Push-pull experiment

The motivation for the push-pull experiment is the validation of the separation ability of

the vision-based flocking policy. In both the circle and carousel experiments, the follower

drone is never on a direct collision course with the leader. In order to encourage collisions,

we let the leader navigate between two waypoints and position the follower in the middle.

We further set both the x and the z-component of the velocity command computed by the
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Figure 3.8 – Vision-based leader-follower flight with circular leader trajectory in reality. We
show (a) the top view of the trajectories, (b) an annotated photo of the experimental setup,
and (c) the inter-agent distance over time.

neural network to zero in order to fix the follower’s degrees of freedom to a line defined by the

two waypoints. This adjustment is necessary to show collision avoidance since leaving the

control input unrestricted would degenerate into a cohesion-like scenario where collisions

are not explicitly encouraged. Moreover, since the drones may get into situations where they

are on top of each other, downwash may blur the lines between the separation due to the

learned controller and the physical repulsion due to the airflow. The vision-based follower

avoids collisions and maintains a constant equilibrium distance to the leader drone (Fig. 3.10).

This behavior results directly from the spring-like dynamics of two agents in which one is

following the flocking algorithm. The oscillations in the position may occur because distances

smaller than equilibrium are penalized quadratically, while distances larger than equilibrium

are penalized linearly by the flocking rules (Fig. 2.2). In addition, noise in the raw control

command leads to small and sudden repulsive maneuvers that are quickly compensated

(Fig. 3.10c).
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Figure 3.9 – Vision-based leader-follower flight with height-modulated circular leader trajec-
tory in reality. We show (a) the top view, (b) the side view of the trajectories, and (c) the vertical
position over time.

3.5.4 Attribution study

Since the vision-based controller provides a very tight coupling between perception and con-

trol, the need for interpretation of the learned behavior arises. To this end, we employ the Grad-

CAM (gradient-weighted class activation mapping) attribution method [86], which shows

how much influence each pixel in the input image has on the predicted velocity command

(Fig. 3.11). In particular, we opt for the Grad-RAM (gradient-weighted regression activation

mapping) formulation since we use a regression objective to predict velocity commands [87].

More specifically, we compute the gradients for the heat map with respect to the last convo-

lutional layer of the neural network in which the individual feature maps have a spatial size

of only 8×48 pixels. We then employ bilinear upsampling to increase the resolution of the

resulting saliency map before we blend it with the original input image using a jet colormap

for visualization purposes. The attribution map can be generated very efficiently using one

forward and backward pass and could therefore serve as a valuable attention-like input for
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Figure 3.10 – Vision-based leader-follower flight with linear leader trajectory in reality. We
show (a) the top view of the trajectories (separated for clarity), (b) an annotated photo of the
experimental setup, and (c) the longitudinal position over time.

further real-time processing.

One can observe that the network is effectively localizing the other agent spatially in the visual

input. However, the network is putting non-zero importance on regions with more visual

clutter such as the control room in the backward-facing camera (Fig. 3.11). One may note that

the most salient region is not perfectly matching the location of the visible agent, which can

be attributed to the low spatial resolution of the activations generated at the last convolutional

layer.

3.6 Conclusions

This chapter presented a machine learning approach to the problem of collision-free and

coherent motion of a dense swarm of quadcopters. The agents learn to coordinate themselves
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Figure 3.11 – Attribution heat maps computed for (a) real images taken from a leader-follower
flight and (b) fake samples composed of simulated foreground and real background images.
The attribution heat maps visualize the relative importance of each pixel in the visual input of
the drone towards its velocity command. Red regions contribute most to the magnitude of the
control command, whereas blue regions contribute the least. Best viewed in color.

entirely via visual inputs in 3D space by mimicking a flocking algorithm. The learned controller

removes the need for communication of positions among agents and thus presents the first

step towards a fully decentralized vision-based swarm of drones.

The algorithm naturally handles navigation tasks by adding a migration term to the predicted

velocity of the neural network policy. The method does not require camera calibration since

the policy computes velocity commands directly from raw images. The absence of any in-

termediate spatial representation of the other agents means that the entire policy can be

optimized end-to-end — without possibly occurring losses at module boundaries such as

object detection or tracking.

While end-to-end learning has many desirable properties such as the ones mentioned above,

it comes with several key limitations. Firstly, it is very hard to debug and find errors since

the entire algorithm — from perception to control and everything in between — is encoded

entirely in the neural network weights. To gain useful insights about which computations

these weights are performing, attribution methods such as the one employed in this chapter

(Sec. 3.5.4) can be extremely helpful. For example, during our initial experiments, we found

that the neural network would attend to the cameras of the motion tracking hall because of

their similarity to the drones at low resolution. This was a very useful indicator that the training

data did not include enough objects that may confuse the policy. Unfortunately, collecting

more training data or more data augmentation is often the only remedy for performance
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issues with the method presented here.

Secondly, the lack of modularity is another key limitation. Due to the tight coupling between

perception and control, we lose flexibility such as the ability to change parameters that affect

the swarm behavior. For example, if the requirements change and the swarm should operate

at larger inter-agent distances than encoded by then neural network weights, the entire policy

needs to be re-trained with an increased separation gain. The method proposed here also

prevents the use of dynamic swarm behaviors such as expansion and contraction since there

is no way to adjust parameters during runtime. Another example is a scenario in which the

quadcopters have a different visual appearance than the neural network policy is trained

on. While domain adaptation and data augmentation can help, the policy still needs to be

re-trained end-to-end for changes to take effect. Therefore, employing separate modules for

perception and control can increase flexibility since parameters can be adjusted depending

on the task.

Finally, the performance assessment is difficult and may be dangerous. The output of the

neural network policy is a control command and, as such, requires a dynamical system in

order to be properly assessed. In the case described here, it requires the interaction of several

quadcopters with partially trained policies which may pose a security hazard. During the initial

experiments, we employed a proxy for performance which consisted in comparing ground

truth and estimated velocity commands in unseen agent configurations and environments.

While this is useful to see if the neural network has learned useful representations, it is

equivalent to the loss function used to train it and not an actual performance metric. Adopting

a more modular approach can be beneficial since each module, e.g., perception and control,

can be tested in isolation with performance metrics that are relevant for the task.

Another problem we identified during experiments is the strong effect of physical downwash

in dense three-dimensional configurations (Sec. 3.10). For example, if a quadcopter hovers

in close proximity above another one, its spinning propellers create an airflow that pushes

the lower quadcopter, which in turn needs to increase its thrust in order to compensate for

the downward force. Downwash compensation is not only energetically inefficient but also

makes the evaluation of the system more difficult since the repulsion between drones can be

caused by deliberate control or aerodynamic forces — or both. While methods exist that take

the effect of downwash into account [88], they usually require the planning of trajectories as

opposed to reactive control strategies. In the remainder of the thesis, we will therefore limit

the swarm to horizontal planar configurations embedded in three-dimensional space.

Regarding future work, a natural subsequent step will be to scale up the real-world experiments

with more vision-based drones, as well as the transfer to outdoor scenarios where ground truth

positions will be obtained using RTK-capable GNSS receivers. However, the current drone

hardware is not well-suited for this task since the camera resolution is too low to distinguish

other drones in front of cluttered backgrounds and difficult lighting conditions. The transfer

to outdoor scenarios therefore requires upgrading the cameras, whose larger resolutions will
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also require more onboard computational power for image processing.
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4 Modular vision-based flocking using
object detection and tracking

This chapter aims to address the limitations of end-to-end learning and proposes a modular

approach to vision-based swarm control based on object detection and multi-target tracking.

Each drone uses a convolutional neural network to localize its neighbors in omnidirectional

images. Rather than manually labeling a dataset to train the neural network, we automatically

generate bounding box annotations using background subtraction by systematically flying a

quadcopter in front of a static camera. We use a multi-target tracker to transform the predicted

bounding boxes into estimates of relative positions and velocities used for high-level control.

We evaluate the approach in simulation and with a group of three real quadcopters in a

challenging outdoor environment. The results show that the drones can navigate safely and

cohesively without relying on external localization, wireless communication, or visual fiducial

markers. Instead, the approach relies entirely on local visual inputs that are processed onboard

in real-time.

The work presented in this chapter is adapted from [61]1:

• F. Schilling, F. Schiano, and D. Floreano, “Vision-based drone flocking in outdoor envi-

ronments,” in IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2954–2961, Apr.

2021.

4.1 Introduction

Drone swarms have a large socio-economic potential and can serve in a variety of real-world

applications [1]. For example, drones can be leveraged to automatically monitor crops, safely

inspect confined spaces, or quickly deliver medicine to inaccessible locations. Operating these

vehicles in swarms could bring increased robustness to failures, larger area coverage, and

faster task completion times [7].

Despite this potential, decentralized control has been a limiting factor in the deployment

1Video: https://youtu.be/wU8-Wm9_YLs.
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left camera front camera right camera back camera

Figure 4.1 – Photo taken during outdoor experiments with detection annotations. The quad-
copters avoid collisions with each other and remain cohesive as a group while performing
a variety of navigation tasks. Each agent detects its neighbors in real-time from omnidirec-
tional images. There is no communication of state information between agents, and relative
positions and velocities are estimated onboard using local visual inputs.

of drone swarms. For instance, large groups of quadcopters can be used to perform awe-

inspiring aerial choreographies in the night sky. These robotic light shows are a true feat of

engineering but individual drones are far from autonomous: their motion is centrally con-

trolled by a ground computer that precomputes their trajectories and continuously monitors

their positions. Hence, the ground computer represents a single point of failure. Researchers

attempted to remove the central computer by equipping drones with hardware that allows

them to wirelessly communicate with each other. Notable examples of these decentralized

swarms feature bearing-only formation control [16], exploration of unknown environments

[15], as well as flocking with ten fixed-wing drones [17] or thirty quadcopters [14].

Scaling up decentralized drone swarms is complicated by the limitations of wireless com-

munication. As the number of robots increases, the communication channels may become

saturated and possibly jammed since the data transfer volume scales quadratically with the

robot count [18]. Frequent retransmissions of messages can lead to delays that render the

control of each drone extremely difficult. Researchers have experimented with different sen-

sory modalities such as sound [30], but vision seems to be the most scalable approach to

address the relative localization problem. Indeed, there is evidence to support that vision is

the primary sensory modality that enables collective motion in animal groups [22].

Visual detection of outdoor flying drones is challenging because they are relatively small
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and can fly in environments with large amounts of background clutter and difficult lighting

conditions [26]. Additionally, the visual detection algorithm must run onboard the drones,

whose own motion may generate motion blur and whose small dimensions and lightweight

mass can restrict computational capabilities. To simplify the relative localization problem,

researchers have mounted different types of easily detectable visual markers on the drones

[89, 80]. However, this approach is less general since specialized hardware has to be mounted

on each drone, which can result in increased weight and drag, thus reducing the energetic

autonomy of the drones.

In recent years, markerless detection of drones has become an active research topic. In [90],

the authors use a boosted cascade of classifiers in combination with visual tracking and finite

set filtering to estimate the positions and velocities of markerless drones from a mostly static

observer. However, the method is applied in post-processing and not validated in a sense-and-

avoid setting. In [91], the authors propose a combination of stereo vision and convolutional

detection to enable leader-follower flight. However, the to-be-localized agent is always visible

in front of the clear sky which simplifies the detection problem and would be impossible to

guarantee in a self-organized flock. Moreover, the limited field of view and processing delays in

the proposed system are known to be problematic when flying in dense swarms [14, 67]. Other

notable examples of markerless detection include approaches based on template matching

and morphological filtering [92], as well as convolutional neural networks [93].

The previous chapter (Chapter 3) proposes a fundamentally different approach to visual

flocking based on imitation learning. Rather than detecting neighboring agents, we predict

flocking algorithm commands directly from omnidirectional visual inputs, which allow the

drones to remain collision-free and cohesive. The approach is validated with leader-follower

experiments in an indoor environment but its reliance on end-to-end learning means that

the entire monolithic neural network has to be retrained each time the task and/or visual

appearance of the drones change. Adopting a more modular approach can be beneficial since

the flocking algorithm may easily be exchanged for another task-dependent controller, and

only the detector would have to be retrained for different drone appearances or environmental

conditions. In all of the above cases, the algorithms are validated on a single agent and not in

a multi-robot control setting.

Here, we propose a modular detection and tracking algorithm that enables collision-free

and cohesive navigation for drone swarms. We automatically label images of drones using

background subtraction to generate a dataset for the drone detector. We show that the detector

can localize other drones in the presence of background clutter from onboard a flying drone

despite being trained on images from a static camera. We assess the method with a dense

group of three real quadcopters that flock in planar configurations in an outdoor environment

with difficult lighting conditions. The omnidirectional camera configuration of the drone is

specifically designed to enable safe operation in swarms regardless of the agent configuration.

The overall proposed flocking algorithm is modular since each component, i.e., detection,

tracking, and control, is self-contained and can be evaluated independently. To the best of our

35



Chapter 4. Modular vision-based flocking using object detection and tracking
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(a) Step 1: Real-time drone detection

x
y

egomotion
range noise

bearing noise

(b) Step 2: Multi-agent state tracking
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(c) Step 3: Potential-field-based control

Figure 4.2 – Overview of the processing steps of the vision-based flocking algorithm for a single
time step: a) detection, b) tracking, and c) control. Step 1 (detection): we detect neighboring
agents from omnidirectional images to estimate their relative range and bearing from the
camera intrinsics and the drone’s known physical size. Step 2 (tracking): we track the positions
and velocities of the detected agents using a linearized observation model of range and bearing,
as well as a state transition model that takes the focal agent’s egomotion into account. Step
3 (control): we control the focal agent using a Reynolds-rules-based flocking algorithm that
keeps the swarm collision-free and cohesive while following a navigation goal.

knowledge, this is the first entirely vision-based flock that does not depend on visual markers

to simplify mutual detections.

4.2 Method

The proposed approach to vision-based flocking can be divided into the following steps: de-

tection, tracking, and control (Fig. 4.2). Firstly, the detection module (Fig. 4.2a) takes grayscale

images from an omnidirectional camera setup as inputs and outputs bounding boxes of

nearby drones in real-time (Sec. 4.2.2). Secondly, the tracking module (Fig. 4.2b) transforms
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the bounding boxes into range and bearing measurements using the known dimensions of

the drones. Their relative positions and velocities are then estimated from the noisy mea-

surements using a multi-agent state tracker (Sec. 4.2.2). Finally, the control module (Fig. 4.2c)

applies a flocking algorithm to the relative positions to obtain high-level control commands

that keep the drones collision-free and cohesive (Sec. 4.2.2). In the tracking and control steps,

we assume that the agents are moving on a horizontal plane. We mainly introduce this con-

straint to be able to attribute their mutual repulsion to the flocking algorithm and avoid the

effects of physical downwash that may be caused by nearby agents.

4.2.1 Real-time monocular drone detection

We first describe how we collect the drone image dataset and the procedure used to label the

dataset using background subtraction (Sec. 4.2.1). We then outline how we train the detector

to perform real-time drone detection (Sec. 4.2.1).

Automatic drone labeling with background subtraction

We use background subtraction to automatically generate a labeled image dataset for the

object detector (Fig. 4.3). We record images from a stationary camera mounted on a tripod and

manually fly a quadcopter within its field of view. The image data is recorded under varying

lighting conditions in both indoor and outdoor environments that contain large amounts of

background clutter (Fig. 4.4). For each scene, the camera location and orientation are carefully

chosen such that the quadcopter is the dominant source of motion. The final dataset consists

of 9891 training and 1931 testing examples.

In post-processing, we apply a nearest neighbor background subtraction algorithm [94] to

the sequence of images to learn a background model of the scene. We extract a foreground

mask of the moving parts of the image (and therefore the quadcopter) by computing the

element-wise difference of the input image and the background, followed by a thresholding

step. The ground truth label is obtained by filtering out the largest contour present in the

foreground mask and enclosing it with an axis-aligned rectangular bounding box.

Training the real-time drone detector

We train a single-stage convolutional object detector on the automatically annotated image

dataset to obtain drone detections. We opt for the YOLOv3-tiny architecture [95] due to its

favorable tradeoff between detection accuracy and inference speed on embedded devices. The

network architecture is comprised of a total of 13 convolutional layers that are interspersed

with max-pooling operations and leaky rectified linear units (ReLUs). The final detections are

computed independently at two different scales and subsequently filtered by non-maximum

suppression to account for bounding box overlaps.
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background model labeled image

image sequence foreground mask

Figure 4.3 – Schematic overview of the background subtraction process for automatic genera-
tion of detection annotations. We manually fly a quadcopter in front of a static camera and
use background subtraction to generate bounding box annotations for the drone. We find that
the most precise bounding box labels are obtained by dilating the foreground mask since it
eliminates discontinuities that occur due to the mechanical design of the drone. Enclosing
the dilated mask with a bounding box (red rectangle) overestimates the size of the drone. We
therefore scale the bounding box down (green rectangle) to obtain a precise label. We record
six flights of roughly one-minute duration in the above target environment.

We make a few notable modifications to the training procedure of the original publication [95].

Firstly, we replace the mean-squared error localization loss with an objective that is based on

the generalized intersection over union (GIoU) [96]. The GIoU loss is nonzero even if bounding

box predictions have no overlap (therefore producing gradients) and directly optimizes the

intersection over union (IoU) metric [97]. Secondly, we employ two recently popularized

data augmentation techniques to improve detection accuracy: 1) multi-scale training and 2)

mosaic augmentation [98]. In multi-scale training, each training batch is scaled at random by

up to ±50% of its side length to make the detector invariant to object scales. Mosaic training

refers to concatenating four random training samples along their spatial dimensions to obtain

an image collage. The resulting four-image mosaic is subsequently cropped randomly in the

center to obtain a new training sample. We use hold-out cross-validation to find suitable

values for the most critical hyperparameters.

The parameters of the network are initialized with weights that are pre-trained on the COCO

[99] dataset. The detector is then fine-tuned on a single drone class with stochastic gradient

descent and Nesterov momentum of µ= 0.937. We modulate the learning rate using a cosine

annealing schedule [100] with an initial learning rate η= 0.01 and a final learning rate η f =
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(a) Dronedome (b) Workshop

(c) Parking (d) Passage

Figure 4.4 – Example images with bounding box annotations from the dataset generated using
background subtraction. We record image data from a static camera in both indoor (top
row) and outdoor (bottom row) environments. The environments are selected to maximize
the variety of background clutter and lighting conditions. We record three flights of roughly
one-minute duration in each of the above environments.

0.0005. We also employ a weight decay term of λ= 0.0005. The total loss is computed as

L= kbalLloc +Lobj (4.1)

whereLloc denotes the GIoU-based localization loss andLobj refers to the binary cross-entropy

objectness loss. We set the hyperparameter kbal = 0.055 to balance the losses and to account

for their different magnitudes during training. Unlike the original article [95], we omit the

classification loss term since we are only training on a single class.

Our highest-scoring model achieves an average precision (AP@0.5) of 98.9% [97] at a confi-

dence threshold of pconf = 0.001% on the hold-out test set after 77 epochs of training. The

model can be trained in less than 1h using a batch size of 64 on a recent GPU such as the
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Nvidia GeForce RTX 2080Ti. We also evaluate the model at different image scales on the

onboard computer (Sec. 4.3.1) to determine a reasonable speed/accuracy tradeoff of the

detector. We find that performing inference at a resolution of 512×384 pixels (in batches of

four, one image per camera) provides accurate detections at a frequency of around 5Hz. For

the experiments, we set the confidence threshold to pconf = 50% and use a non-maximum

suppression threshold of pnms = 60%.

We have also experimented with spatiotemporal detection architectures that use a sequence

of images to detect drones [101]. The experiments were inspired by the combination of

appearance and motion cues for the detection of flying objects using a single moving camera

[102, 26]. The key idea was to use deformable convolutions [103] to spatially shift and fuse

features from past frames to increase the detection accuracy of the current frame. While the

approach outperforms the detector described here by a slight margin, it does so at a noticeable

additional computational cost. Moreover, the computational overhead was higher on the

embedded hardware, most likely because deformable convolutions are not well optimized

(Sec. 4.3.1).

4.2.2 Multi-agent localization and tracking

Relative localization based on known physical size

We compute the relative location of the drone detections using their apparent size in the

field of view and the camera parameters. The camera parameters are obtained using the

Kalibr visual-inertial calibration toolbox [104]. We use the equidistant — or Kannala-Brandt —

camera model for its compatibility with fisheye lenses and its resulting sub-pixel reprojection

errors [105]. The projection function of the equidistant camera model can be formalized as[
u

v

]
=

[
fxθd

x
r

fyθd
y
r

]
+

[
cx

cy

]
(4.2)

where [u, v]> are the pixel coordinates, [x, y, z]> the camera coordinates, [ fx , fy ]> the focal

lengths, [cx ,cy ]> the optical centers in horizontal and vertical direction, respectively, and

r =
√

x2 + y2, (4.3)

θ = atan2(r, z), and (4.4)

θd = θ+k1θ
3 +k2θ

5 +k3θ
7 +k4θ

9 (4.5)

denote the range, bearing, and polynomial that models distortions with the coefficients

[k1,k2,k3,k4]>. Note that we use the conventions from the camera calibration literature to

denote range r and bearing θ which differ from the notation in the rest of the section [105, 106].

To obtain the relative position estimate from the detection, we first compute the unit-norm

bearing vector to the center βctr and one of the extreme points βext of the image bounding box
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from the intrinsic camera parameters. We assume the drone can be enclosed by a bounding

cube with side length l which is reasonable given its mechanical design (Fig. 4.5). We can then

compute the approximate distance to the three-dimensional center of the detected object as

d = l/2

tan(α)
+ l/2 (4.6)

where α= cos−1(βctr ·βext) denotes the angle between the unit-norm bearing vectors. Note

that the second term in the above equation accounts for the depth of the object.

Multi-agent state estimation using random finite sets

We use the Gaussian mixture probability hypothesis density (GM-PHD) filter [107] to filter out

spurious false-positive detections and to estimate the positions and velocities of nearby agents

over time. We briefly describe the workings of the filter but refer the reader to [107] for more

details. We omit the subscript i to denote the dependence on the focal agent for notational

brevity. The following steps are computed independently for each agent in a decentralized

fashion.

Theory. The GM-PHD filter takes as input a set of relative localization measurements Zk =
{zk,1, . . . ,zk,Mk } and computes an output set of agent statesXk = {xk,1, . . . ,xk,Jk } for each discrete

time step k. The states can be described as a single intensity that consists of a weighted sum

of Gaussian components of the form

vk (xk ) =
Jk∑

i=1
w (i )

k N (xk ;m(i )
k ,P(i )

k ) (4.7)

where w (i )
k denotes the weight associated with each of the Jk Gaussian components which are

described by their mean m(i )
k and covariance P(i )

k . Each of the Gaussian components is then

propagated with a prediction and update step, similar to the Kalman filter.

The prediction step can be formalized as

vk|k−1(xk ) =
Jk∑

i=1
wk|k−1N (xk ;m(i )

k|k−1,P(i )
k|k−1)+γ(zk ) (4.8)

with respective weight, mean, and covariance

w (i )
k|k−1 = ps,k w (i )

k−1 (4.9)

m(i )
k|k−1 = Fk−1m(i )

k−1 +Bk−1uk−1 (4.10)

P(i )
k|k−1 = Fk−1P(i )

k−1F>
k−1 +Qk−1 (4.11)

where Fk−1 is the state transition matrix and Qk−1 is the process noise covariance. To account
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for the egomotion of the observing drone, we include a control input matrix Bk−1 and its

control input uk−1. We let ps,k denote the probability that a Gaussian component survives the

prediction step. We assume an adaptive agent birth model γk (zk ) in which each observation

generates a new Gaussian component with weight wγ, mean mγ, and covariance Pγ. We

further assume that new agents cannot be spawned from existing ones and that there are no

spontaneous births without associated measurement.

The update step can be formalized as

vk (xk ) = (1−pd ,k )vk|k−1(xk ) (4.12)

+ ∑
zk∈Zk

Jk∑
i=1

w (i )
k (zk )N (xk ;m(i )

k|k (zk ),P(i )
k|k ) (4.13)

with respective weight, mean, and covariance

w (i )
k (zk ) =

pd ,k w (i )
k|k−1q (i )

k (zk )

κk (zk )+∑Jk|k−1

j=1 pd ,k w ( j )
k|k−1q ( j )

k (zk )
(4.14)

m(i )
k|k (zk ) = m(i )

k|k−1 +K(i )
k (zk −Hk m(i )

k|k−1) (4.15)

P(i )
k|k = (I−K(i )

k Hk )P(i )
k|k−1 (4.16)

and

q (i )
k (zk ) =N (zk ;Hk m(i )

k|k−1,Hk P(i )
k|k−1H>

k +Rk ) (4.17)

K(i )
k = P(i )

k|k−1H>
k (Hk P(i )

k|k−1H>
k +Rk )−1 (4.18)

where Hk is the measurement matrix and Rk is the measurement noise covariance. We let

pd ,k denote the probability that an agent is detected during the update step. We model false

positive detections as clutter κk .

Since the number of Gaussian components increases at each filter iteration, the intensity

quickly becomes computationally intractable. Therefore, we prune the components according

to the following three conditions to guarantee fast tracking performance. Firstly, we discard

components with a weight of less than the truncation threshold of T . Secondly, we merge

components with Mahalanobis distance less than the merging threshold of U . Finally, we

retain only the Jmax components with the largest weights.

Implementation. We model the state of each agent as xk = [
px,k ,py,k ,vx,k ,vy,k

]> which con-

sists of relative position (px,k ,py,k ) and velocity (vx,k ,vy,k ). The position and velocity com-

ponents of the state are two-dimensional since the agents are assumed to fly in a planar

configuration at approximately the same altitude. The control input uk is defined as the linear

velocity of the drone in the body frame which we obtain from the internal state estimate of the

autopilot. Finally, the measurements zk = [dk ,βk ]> consist of range and bearing, respectively.
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The process and measurement noise covariances are modeled as

Qk =σ2
v

∆4
k

4 I2
∆3

k
2 I2

∆3
k

2 I2 ∆2
k I2

 and Rk =
[
σ2

d 0

0 σ2
β

]
(4.19)

where ∆k denotes the time elapsed since the last measurement and is computed as the

difference between consecutive timestamps ∆k = tk − tk−1. We further let σv , σd and σβ

denote the standard deviation of the process, range, and bearing noise, respectively.

The state transition function follows a linear Gaussian model and is defined as

f (xk−1,uk ) = Fk xk−1 +Bk uk (4.20)

where

Fk =
[

I2 ∆k I2

02 I2

]
and Bk =∆k I2. (4.21)

The observation model is nonlinear and consists of measurements of range and bearing

h(xk ) =
[

dk

βk

]
=

[ √
p2

x,k +p2
y,k

atan2(py,k ,px,k )

]
(4.22)

where we use the two-argument function atan2 to avoid ambiguities in the conversion from

cartesian to polar coordinates. We linearize the measurement model by computing the

Jacobian with respect to the state as

Hk = ∂h(xk )

∂xk
=


px,k√

p2
x,k+p2

y,k

py,k√
p2

x,k+p2
y,k

− px,k

p2
x,k+p2

y,k

py,k

p2
x,k+p2

y,k

02

 . (4.23)

We set the probability of detection to pd = 90% to provide a slightly more conservative estimate

of the detection performance during real-time inference than the results on our test dataset

suggest (Sec. 4.2.1). We assume a probability of survival of ps = 100% since agents that are

detected once should not disappear. New Gaussian components are initialized directly from

the measurements using an adaptive birth model with weight, mean, and covariance

wγ = 10−5 (4.24)

mγ =
[
dk cos(βk ),dk sin(βk ),0,0

]> (4.25)

Pγ = diag
([
σ2

p,σ2
p,σ2

v,σ2
v

])
(4.26)
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whereσp andσv are the standard deviation of the position and velocity which we set to 1m and

10ms−1, respectively. The mean is computed by converting the raw measurement from polar

to cartesian coordinates, assuming zero initial velocity. We model false positive detections

by assuming that we observe one clutter return per time step and therefore set κk = 1/a2

where a = 10m is the side length of the virtual arena. Although the bearing measurements

are precise to a single degree, we set its standard deviation to a slightly larger value of σβ = 3◦

to account for factors such as calibration inaccuracies or imprecisions in the detections due

to background clutter. Since we experimentally determined that the range noise varies with

the distance to the observer, we model its standard deviation as a function of the measured

distance itself (Sec. 4.5.1). Finally, we model the truncation threshold as T = 10−5, the merging

threshold as U = 0.5, and the maximum number of components to Jmax = 100.

Flocking algorithm

The method described so far could be leveraged by any flocking algorithm. In this work, we use

a control algorithm based on the Reynolds flocking rules [64] to compute high-level velocity

commands from the relative position estimates of nearby drones [60]. The weighted velocity

commands are: 1) a repulsive separation term to steer nearby drones away from each other, 2)

a cohesion term to keep the drones close to each other, and 3) a migration term that provides a

navigation goal to the swarm (Sec. 2.1).

During the experiments, we set the maximum speed to vmax = 0.5ms−1, and the separation,

cohesion, and migration gains to ksep = 7, kcoh = 1, and kmig = 1, respectively. The gains are

chosen such that the agents converge to an equilibrium distance of approximately 2m during

migration.

4.3 Experimental setup

4.3.1 Hardware

We use a custom-built quadcopter named LeQuad for all experiments (Fig. 4.5). Each quad-

copter features four FLIR Firefly S global-shutter cameras mounted at a right angle from each

other to obtain omnidirectional visual inputs. Each camera is equipped with an OpenMV

ultra-wide angle lens which provides a horizontal and vertical field of view of 166° and 116°,

respectively. We operate the cameras over a powered USB 2 hub at a binned resolution of

720×540 to obtain grayscale images at a frequency of 10Hz. We refrain from using USB 3

to avoid electromagnetic interference with the Drotek F9P RTK-GNSS receiver, which pro-

vides centimeter-accurate absolute positions. We use the Nvidia Jetson TX2 mounted on a

ConnectTech Orbitty carrier board as an onboard computer and the Holybro Pixhawk 4 as an

autopilot.
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RTK GNSS

Computer

Camera

Autopilot

Figure 4.5 – Physical drone hardware for outdoor experiments. The LeQuad drone features
omnidirectional vision via four cameras, a high performance onboard computer with em-
bedded GPU for real-time inference, and a RTK-enabled GNSS to obtain centimeter-accurate
ground-truth positions.

4.3.2 Software

The onboard computer runs Ubuntu 18.04 bundled with the Linux4Tegra (L4T) distribution,

and we use ROS Melodic [108] as a robotics middleware. The autopilot runs PX4 [59] and is

responsible for hardware-triggering the cameras to provide the resulting images with IMU-

synchronized timestamps. The neural networks are trained and evaluated using PyTorch

[85].

4.4 Simulation results

We evaluate the proposed approach using the Gazebo simulator [53]. We create a simple

scene that resembles the outdoor environment in which we spawn the simulated quadcopters

(Fig. 4.6). The drone detector is trained analogously to real-world experiments, albeit with

simulated images and labels obtained using background subtraction (Sec. 4.2.1). Due to

the simplicity of the scene and minimal background clutter, the detection model achieves

an average precision (AP@0.5) of 100.0% at a confidence threshold of pconf = 0.001% on the

hold-out test set already after 12 epochs of training.

To further increase the realism, we additionally model misdetections in terms of false negatives

and positives, as well as processing delays. In particular, we model false negatives as a Bernoulli

random variable by discarding detections with a probability of 10%. We also model false
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left camerafront camera right camera back camera

Figure 4.6 – Annotated screenshot of vision-based flocking experiments in a simulated outdoor
environment. We simulate three quadcopters operating in a fictitious disaster scenario. We
show the visual inputs from the four orthogonal cameras (white inset rectangle) of the focal
agent (white rectangle). Here, the focal agent detects two other drones (yellow and pink
rectangle) in its field of view.

positives as a random variable that is Poisson-distributed in time, i.e., as clutter (Sec. 4.2.2),

and uniformly distributed in space over the perception radius of an agent which we set to

r max = 5m. We finally add a processing delay of 200ms to account for the inference time of the

drone detector (Sec. 4.2.1). We note here that it is difficult to realistically model misdetections

in simulation since their distribution highly depends on environmental conditions such as

visual clutter. We therfore provide real-world experiments in outdoor environments with

substantial background clutter and difficult lighting conditions (Sec. 4.5.2)

4.5 Real-world results

We report the visual relative localization errors of drones in a controlled indoor environment

with access to millimeter-accurate position information (Sec. 4.5.1). We show vision-based

flights in outdoor environments with three real quadcopters performing several navigation

tasks (Sec. 4.5.2) and free flocking, i.e., self-organized flocking without a navigation goal

(Sec. 4.5.3). We finally show examples of predicted detection bounding boxes to provide a

qualitative overview of success and failure cases (Sec. 4.5.4).
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Figure 4.7 – Vision-based flocking in simulated environments with circular migration. We
show (a) the paths and (b) inter-agent distances of the drones over the course of the migration
experiment.

4.5.1 Visual relative localization

We show results on the theoretical performance of the visual relative localization system to test

its operational bounds and to find suitable values for the range and bearing noise parameters

σd and σβ (Eq. 4.19). To this end, we employ a setup similar to the one used for automatic

labeling (Sec. 4.2.1) except that we additionally obtain ground truth poses of the observing

camera and drone from a motion capture system. After transforming the visual detections

into the frame of the motion capture system, we can directly compare the drone’s true position

with its estimate obtained using vision in metric space. We find that the relative localization

error varies considerably as a function of the distance to the drone, whereas the error caused

by bearing variations is negligible (Fig. 4.2.2).

4.5.2 Collective outdoor navigation

We report results for three different navigation scenarios: linear, rectangular, and circular mi-

gration. Before each flight, we place the drones at roughly 2.5m distance from each other and

wait for their RTK-GNSS receivers to converge to a fixed solution which provides centimeter-

accurate absolute positions at 10Hz. These measurements are only used to provide a reliable

ground-truth for the evaluation of the experiments.

After the RTK fix is obtained, we let all agents take off simultaneously and reach a height of 2m

above the ground before we let the vision-based flocking algorithm take over the control of

their motion. The agents are given the same list of migration points depending on the type

of navigation scenario. We switch from one migration point to the next as soon as an agent
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Figure 4.8 – Comparison of vision-based relative localization errors as a function of (a) range
and (b) bearing. We show example images of the experimental setup at (c) 1 m, (d) 3 m, and (e)
5 m relative distance to the observer. The bearing estimates are near-constant over the field of
view, whereas the range errors increase with distance from the observer. Millimeter-accurate
ground-truth positions are obtained at 100Hz using a motion capture system. The counts
above the boxes indicate the number of measurements used to calculate their statitics.

enters an acceptance radius of r acc = 3m. As the list of migration points is exhausted, we

repeat the procedure from the first waypoint. We stop the experiment as soon as the battery

level of one of the agents reaches a critical capacity of 15%.

The height of the drones is individually regulated using a proportional controller to constrain

their motion to a horizontal plane. However, the planar constraint may be lifted by mounting

additional cameras that point to the top and bottom, or by equipping the existing cameras

with lenses that provide a larger field of view (Chapter 3).

During the linear migration experiment, the agents fly between two waypoints that are lo-

cated 10m apart from each other (Fig. 4.9b). Over a total flight duration of around 2.5min,

the minimum inter-agent distance the agents reach is 1.82m and the overall mean 2.42m

(Fig. 4.9c).

The rectangular migration experiment defines four waypoints that are located at the corners

of a square with side length 10m (Fig. 4.10b). The total flight time is around 3.3min and

the overall minimum and mean inter-agent distances are 1.45m and 2.36m, respectively

(Fig. 4.10c).
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Figure 4.9 – Vision-based linear migration in outdoor environments. We show (a) an annotated
photo, (b) the paths, and (c) inter-agent distances of the drones over the course of the migration
experiment. The drones remain collision-free and cohesive using only local visual information,
which is processed onboard in real-time. Centimeter-accurate ground-truth positions are
obtained at 10Hz using RTK-enabled GNSS receivers mounted on the drones. These positions
are not shared between the drones during the experiments and only serve to analyze the
inter-agent distances.

Finally, the circular migration experiment leads the agents through a series of twelve waypoints

that are linearly spaced around a circle with 10m diameter (Fig. 4.11b). During an overall flight

time of around 5min, the agents remain collision-free while reaching a minimum inter-agent

distance of 1.37m and an overall mean distance of 2.32m (Fig. 4.11c).

The above experiments are three representative flights taken from a total of 30min of collision-

free experimental recordings. The progressively lower inter-agent distances across linear,

rectangular, and circular migration experiments can be explained by examining the distribu-

tion and/or density of waypoints. During the rectangular migration experiment, the lowest
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Figure 4.10 – Vision-based rectangular migration in outdoor environments. We show (a) an
annotated photo, (b) the paths, and (c) inter-agent distances of the drones over the course of
the migration experiment.

inter-agent distances are reached close to the corners where directional changes occur. In

the case of the circular migration experiment, the larger number and density of waypoints

have a cohesive effect since the agents simultaneously approach points that are more densely

spaced.

4.5.3 Outdoor free flocking

We perform free flocking experiments analogously to the collective navigation experiments

(Sec. 4.5.2) except that we do not add a migration term to the flocking algorithm (Sec. 4.2.2).

Hence, we let the drones self-organize their collective motion entirely based on agent-to-

agent interactions. The absence of waypoints leads to some interesting behaviors such as

spontaneous migration (Fig. 4.12) and reconfiguration (Fig. 4.13).
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Figure 4.11 – Vision-based circular migration in outdoor environments. We show (a) an
annotated photo, (b) the paths, and (c) inter-agent distances of the drones over the course of
the migration experiment.

During the spontaneous migration behavior, the first agent (orange line; Fig. 4.12b) mistakenly

detects a drone in the background clutter of the far side of the football field. The majority of

false positives occur due to the line-like features of the poles in front of the bushes, which are

falsely detected as drones. The bounding boxes are relatively small, suggesting the detected

neighbor is far away, thus causing the drone to decrease its relative distance. The other drones

start to follow the — in this case misinformed — drone to keep their inter-agent distances

at equilibrium. On the one hand, this behavior highlights a failure case of the modular

flocking system since the detector and tracker cannot reliably reject false positives. On the

other hand, the result shows that a single agent, representing only a small proportion of

the group, can steer the other drones towards a goal. This behavior could be exploited for

situations in which the drones need to navigate based on local information (e.g., by detecting

an object of interest in their environment) which may not be visible from the perspective of
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(a) Photo (left: t = 100s, right: t = 0s)

(b) Paths

(c) Distances

Figure 4.12 – Vision-based spontaneous migration in outdoor environments. We show (a) an
annotated photo, (b) the paths, and (c) inter-agent distances of the drones over the course of
the free flocking experiment.

every agent within the swarm (e.g., due to visual occlusions of other group members or the

environment). The group would therefore have to rely on an informed subset of agents to

steer them. The trajectories and inter-agent distances suffer from noticeably higher levels of

oscillations around the equilibrium distance (Fig. 4.12b and 4.12c) However, the agents remain

collision-free throughout the experiment, while reaching a minimum inter-agent distance of

1.41m and an overall mean distance of 2.35m (Fig. 4.12c).

During the spontaneous reconfiguration behavior, the first agent (orange line; Fig. 4.13)

squeezes through a gap in between the other two drones. The three drones temporarily

form a linear formation at around t = 55s after which they return to their regular triangular

equilibrium. The maneuver is caused by a combination of false negative and false positive

detections on all drones and occurs roughly in between t = 25s and t = 75s. Some of the false
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(a) Photo (left: t = 100s, right: t = 0s)

(b) Paths
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Figure 4.13 – Vision-based spontaneous reconfiguration in outdoor environments. We show
(a) an annotated photo, (b) the paths, and (c) inter-agent distances of the drones over the
course of the free flocking experiment.

positives are valid detections caused by a spare drone that was not appropriately covered at

the beginning of the experiment. Although the drones reach the smallest minimum inter-

agent distances of 1.29m, the group can remain collision-free and cohesive (Fig. 4.13c). The

overall mean distance of 2.64m is larger than during the previous experiments due to the

reconfiguration maneuver (Fig. 4.13c).

4.5.4 Qualitative detection results

During the experiments, a variety of objects that can potentially confuse the detector are

present in the background (Fig. 4.14). In descending order of frequency, the most common

objects aside from drones are trees, buildings, cars, people, fences, traffic signs, tables, and
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even dogs. The other drones are generally detected despite background clutter and adverse

lighting conditions (Fig. 4.14a and 4.14b). False-negative detections occur most frequently

when another drone is flying far away and/or in front of the ground control station, i.e. a

camping table with the experimental equipment covered by a sun umbrella (Fig. 4.14c). False-

positive detections appear most often in image regions that contain many line-like features

since they resemble the mechanical design of the drone (Fig. 4.14d). They are mostly present

for the duration of a single frame and the tracker can reliably reject them. False tracks are

occasionally created if false-positive detections are present for more than one frame. However,

the false tracks do not cause instabilities that lead to collisions.

4.6 Conclusions

We presented a vision-based detection and tracking algorithm that enables dense groups of

drones to fly cohesively and without mutual collisions. The proposed approach does not

depend on visual markers or inter-agent communication and is thus suitable for flocking

operation in GNSS-denied environments or in situations where wireless links are unreliable.

The approach is fully decentralized since each agent relies exclusively on onboard processing

of local visual information to estimate the positions and velocities of neighboring drones. The

outdoor navigation experiments show that the system is robust to background clutter and

enables collision-free flight even in demanding lighting conditions.

The approach to multi-agent tracking used in this chapter (Sec. 4.2.2) is well-suited for reduc-

ing the noise from the visual relative localization module (Sec. 4.2.2) but is rather ineffective

against misdetections. In general, the GM-PHD filter is more effective at rejecting false pos-

itives (Fig. 4.14d) than it is at filling in missing detections due to false negatives (Fig. 4.14c).

During the experiments, false negative detections would cause the filter to lose track after a

single time step, whereas new tracks would be created after two consecutive false positive

detections if they occur in close proximity to each other. The main issue here is that misdetec-

tions — whether false positives or false negatives — tend to occur in bursts that last several

time steps, which makes them difficult to properly reject. In particular, false positive detec-

tions are usually not uniformly distributed in space but occur at the same location because the

detector is identifying background clutter as a drone. We generally recommend lower detector

confidence thresholds that favor occasional false positives over false negatives. This approach

is also safer since it more likely to avoid collisions at the expense of jitter in the trajectories.

The experiments presented here should be considered as minimal validation conditions of

vision-based flocking algorithms without explicit communication or localization infrastruc-

ture. Further experiments are needed to ensure the scalability of the proposed system to

larger numbers of vision-based agents. However, large-scale real-world experiments with

custom quadcopter platforms (Sec. 4.5) are both prohibitively expensive and time-consuming.

Moreover they require additional logistic infrastructure and human resources to manage. We

will therefore limit the study of scalability to simulation for the remainder of the thesis.
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(a) High confidence (b) Low confidence

(c) False negative (d) False positive

Figure 4.14 – Qualitative examples of detection results categorized by confidence score (high
and low) and type of error (false negative and false positive). (a) High confidence: the drone is
easily detected in front of the grass texture despite direct sunlight. (b) Low confidence: the
drone blends in with the background due to the line features and lighting conditions. (c) False
negative: the right drone (yellow, manually labeled) can not be reliably distinguished from
the background clutter. (d) False positive: this type of spurious detection occurs relatively
frequently but is filtered out by the multi-agent state tracker.
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5 Scalable vision-based flocking in the
presence of occlusions

This chapter addresses the scalability of vision-based drone swarms in terms of group size and

density. Vision-based swarms rely on detecting neighbors but usually neglect perceptual factors

such as mutual visual occlusions because they operate in small groups. To study the impact of

occlusions on the scalability of the swarm, we propose a simple but perceptually realistic visual

neighbor selection model that discards obstructed agents. We evaluate the visibility model with

up to one thousand point mass agents, showing that occlusions have adverse effects on the

inter-agent distances and velocity alignment as the swarm scales up, both in terms of group size

and density. In particular, we find that small agent displacements have considerable effects on

neighbor visibility and lead to control discontinuities. We show that the destabilizing effects of

visibility switches, i.e., agents continuously becoming visible or invisible, can be mitigated if

agents select their neighbors from adjacent Voronoi regions. We validate the resulting flocking

algorithm using up to one hundred agents with quadcopter dynamics and subject to sensor

noise in a high-fidelity physics simulator. The results show that Voronoi-based interactions

enable vision-based swarms to remain collision-free, ordered, and cohesive in the presence of

occlusions. These results are consistent across group sizes and agent densities.

The work presented in this chapter is adapted from [62]1:

• F. Schilling, E. Soria, and D. Floreano, “On the scalability of vision-based drone swarms

in the presence of occlusions,” in IEEE Access, vol. 1, no. 1, pp. 1–13, (submitted) Aug.

2021.

5.1 Introduction

Aerial robot swarms have a vast socio-economic potential and are used for numerous real-

world applications in industries such as agriculture, mapping, and construction [1, 3, 7]. Drone

swarms can be deployed to monitor crops, create maps, and survey sites much faster than

a single drone since they can solve tasks cooperatively and in parallel. Larger group sizes

1Video: https://youtu.be/2MZ-TN7MnYw.
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Figure 5.1 – Screenshot of a collective search and rescue mission with a swarm of one hundred
quadcopters in the Gazebo simulator. During the mission, the quadcopters take off from the
ground and navigate towards a fictitious disaster scenario.

can further decrease task completion times and operating swarms in compact formations

can enable new applications in confined spaces such as buildings. However, most drone

swarms deployed today rely on external localization and wireless communication, both of

which represent major limiting factors towards their scalability in terms of group size and

swarm density.

Localization in drone swarms is usually achieved with satellite-based systems for outdoor

applications or optical motion capture for indoor deployments. The drones are typically

equipped with wireless communication devices that enable the exchange of state information

such as positions and velocities with each other [17, 11]. While this approach has enabled

successful deployments of impressive aerial swarms, it comes with several key limitations.

Firstly, wireless communication suffers from inherent scalability issues since the bandwidth

requirement scales quadratically with the number of agents [18]. In practice, this leads to

compounding delays whose durations are difficult to estimate and thus require dampening

and interpolation [13, 14]. Secondly, the approach lacks flexibility since the agents must

adhere to the same communication protocol and need to be localized in the same frame of

reference. Thirdly, the exclusive use of an external positioning system represents a single point

of failure and its malfunctioning can have disastrous effects.

Vision-based relative localization methods rely entirely on local information to detect other

agents, thus removing the dependence on external localization systems and additional com-

munication infrastructure. Moreover, vision is arguably the ideal sensory modality for lo-
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calization on aerial robots since cameras are small, lightweight, and provide extremely high

information density at comparatively low power consumption [25]. Multi-robot systems that

use a vision-based approach to mutual localization have recently emerged in the form of

leader-follower formations [93, 60, 91, 109] and the first aerial flocks [78, 110, 61]. Important

perceptual factors such as visual occlusions, i.e., agents that are obstructed by others, are

usually neglected in these swarms because of their small group size. However, these factors

become a deterrent for larger swarms, especially when they have to fly in dense configurations

(Fig. 5.1).

While some swarm roboticists explicitly make use of visual occlusions to solve collaborative

transport problems [111] and robotic shepherding tasks [112], the most thorough treatment

of visibility constraints can be found in the collective motion literature. Using computer

vision techniques, researchers are able to reconstruct the poses and visual fields of individual

animals and show that visual perception best explains how information about food sources

and predators transfers within the group [20, 22, 23, 24]. How individuals select and react

to their neighbors is one of the fundamental questions in the study of collective motion

and agent-based flocking models provide an indispensable tool to test and verify different

hypotheses [113, 114, 115, 116]. Notable examples of neighbor selection methods include

metric (i.e., within a metric radius) [71], topological (i.e., the set of n nearest neighbors) [117],

or voronoi-based (i.e., from adjacent Voronoi regions) [118] interactions. Recently, different

forms of visual neighbor selection have gained popularity due to their biological plausiblity

[20, 22, 23, 24]. For example, research on flocking models with a limited field of view shows

that lateral vision is crucial for collision-free collective motion [66, 67] and may explain why

flocking birds have almost omnidirectional vision [68]. Simulations of large schools of fish

show that visual obstructions lead to more realistic group shapes and densities than purely

metric interactions [65]. Simulations of large vision-based flocks show that bird density can

be regulated effectively if individuals only react to the projection of their neighbors [28]. Other

researchers show that many natural behaviors such as milling and polarized flocking emerge

from purely visual interactions even in the absence of a spatial representation of neighbors

[52]. Although these models offer interesting collective behaviors, they often make modeling

choices that are geared towards a particular species or result in undesirable behavior for

robotic swarms since they lead to frequent collisions.

In this chapter, we tackle visibility constraints arising from occlusions from a robotics perspec-

tive with the goal of synthesizing large and compact vision-based drone swarms. In particular,

we study the effect of occlusions on the performance (i.e., collision avoidance, cohesion, and

velocity alignment) of vision-based swarms as they scale from low densities and a handful of

agents to high-density swarms with thousands of individuals. To this end, we propose a visual

neighbor selection model that offers a perceptually plausible alternative to the ubiquitous

but unrealistic metric selection of neighbors, i.e., methods that assume agents can sense all

neighbors within a given radius. We simulate vision-based swarms of up to one thousand

point mass agents and program them to perform collective waypoint navigation using a simple

attractive/repulsive flocking algorithm. The results show that swarms in which agents react to
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all visible neighbors perform poorly, especially at high densities and as the group size increases

beyond tens of agents. However, by limiting visual interactions to their Voronoi neighbors,

we can successfully synthesize collision-free, cohesive, and ordered vision-based swarms. A

comparison of Voronoi interactions with other common neighbor selection methods (i.e.,

metric and topological) reveals their superiority in large, high-density swarms. We validate

the scalability of the resulting flocking algorithm at different densities and group sizes with

quadcopter dynamics using a simulator with realistic physics and noise levels. The analysis

shows that visually-constrained Voronoi interactions are both perceptually plausible and

highly effective for the coordination of large aerial robot swarms in which agents rely purely

on local visual information for control.

5.2 Method

We aim to synthesize a vision-based swarm that remains as compact as possible and collision-

free while performing collective waypoint navigation. We define this objective since it enables

many practical applications such as cooperative mapping, aerial deliveries, and search &

rescue. In the following, we restrict ourselves to swarms that operate in two-dimensional

planar configuations.

We first describe a simple attractive/repulsive flocking algorithm that provides collision avoid-

ance and cohesion, as well as a navigation capability to the swarm (Sec. 5.2). To obtain a

flocking algorithm that is plausible for vision-based swarms, we define the notion of agent

visibility in the form of a neighbor selection strategy that is based on a realistic occlusion

model (Sec. 5.2.1). Since vision-based detection is an inherently stochastic process, we further

model sensing noise on the range and bearing measurements (Sec. 5.2.2).

The motion of each agent can be described by single-integrator dynamics of the form

pk+1
i = pk

i +vk
i ∆t (5.1)

where k denotes the index of the discrete time step with duration ∆t .

In the remainder of the section, we skip the dependence on the discrete time step k for

notational brevity and clarity. However, all computations in this section are performed at

every time step without exception.

Flocking algorithm

The objective of the swarm is to perform waypoint navigation while avoiding inter-agent

collisions and staying together as a group (Sec. 2.2). We formulate this objective as an artificial

potential field that is inspired by the Reynolds flocking algorithm [64]. The motion of an

agent is composed of an attractive/repulsive potential that provides separation and cohe-

sion between agents (Sec. 5.2), as well as a migratory potential responsible for goal-directed
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Figure 5.2 – Scalability of minimum nearest neighbor distances to increasing numbers of
agents using the baseline metric neighbor selection model, i.e. agents within the perception
radius are detected irrespective of whether they are occluded. Each line represents the min-
imum equilibrium distance between nearest neighbors obtained from different separation
gains as the swarm size increases (mean and std. dev. over ten trials, all other parameters
constant). Aside from a noticeable increase of inter-agent distances between ten and thirty
agents that occurs due to the saturation of the perception range with agents, the inter-agent
distances remain constant across different group sizes (note the logarithmic scale).

navigation (Sec. 5.2).

Separation and cohesion

Cohesion and collision avoidance can be achieved with an attractive/repulsive potential that

keeps the agents at an equilibrium distance (Sec. 2.2). The cohesion term keeps the swarm

together by attracting agents to the average position of their neighbors. The separation term

leads to collision avoidance by repulsing nearby agents from each other.

Note that we do not scale the separation velocity command by the number of agents. This

formulation has the advantage that minimum inter-agent distances remain quasi-constant as

the group size increases and thus reduces the need for readjusting the control gains (Fig. 5.2).

We further use the analytical solution to the above equations for three agents as a first ap-

proximation of the desired inter-agent distance d ref. This allows us to express an approximate

reference distance by using a separation gain of the form ksep = (d ref)2/2ms−1 and keeping

the cohesion gain fixed at kcoh = 1ms−1. Note that in general, the separation gain slightly

overestimates the reference distance for larger swarms since it does not take the number of

neighbors into account. It is nevertheless a useful approximation that spares us the tedious

task of finding the reference distance empirically for each agent swarm scale separately.
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(a) Metric (b) Visual (c) Topological (d) Voronoi

Figure 5.3 – Schematic visualization of different neighbor selection strategies: (a) metric, (b)
visual, (c) topological, and (d) Voronoi-based. We take the perspective of a focal agent within
a swarm (central red disk) that selects agents (blue disks) and discard others (gray disks)
depending on the following selection criteria: (a) metric selects all agents within a metric
perception radius, (b) visual selects all visible agents within a metric radius, i.e., all agents
that appear large enough and are not occluded by others, assuming agents are equally sized
and have an omnidirectional camera at their center, (c) topological selects only the n closest
agents (here n = 6), irrespective of their distance, and (d) voronoi selects only those agents
that belong to a neighboring Voronoi region.

Migration

The purpose of the migration term is to give the agents a navigation goal by steering them

towards a waypoint (Sec. 2.2).

5.2.1 Neighbor selection

Neighbor selection is an important consideration for all flocking algorithms since it introduces

the notion of locality (e.g., in communication, perception, etc.) as opposed to all-to-all

information transfer. In the following, we denote the neighbors of agent i as a set Ni where

Ni ⊆Ai .

Note that the adjacency matrix is not necessarily symmetric and the resulting graph may be

directed. The metric and voronoi neighbor selection mechanism we define in the following

sections (Sec. 5.2.1 and 5.2.1) result in an undirected graph and a symmetric adjacency matrix,

whereas visual and topological neighbor selection (Sec. 5.2.1 and 5.2.1) are generally asymmet-

ric and directed. In other words, the visibility between a pair of agents i ∼ j does not imply

that the inverse relationship j ∼ i is true.
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Metric: distance-based neighbor selection

Metric neighbor selection keeps only those agents that fall within a radius r max centered

around the focal agent (Fig. 5.3a). We can formalize metric neighbor selection as the set

N metric
i = {

j ∈Ai | di j < r max} (5.2)

where r max denotes the maximum perception range.

Defining the set of neighbors based on a metric range is the most popular means of neighbor

selection in the literature [64, 119, 71, 47]. Metric neighbor selection is a simple and effective

method to introduce locality in the interactions and can be interpreted as a perception radius

for vision-based swarms or a communication range for swarms that can exchange information

via wireless links, for example. With the assumption that all agents are homogeneous and

equally sized, we can use the metric perception range to represent visual acuity, i.e., the

minimum size that another agent spans on the retina of the focal agent before it can no longer

be perceived. We therefore encourage the reader to think about the perception range as the

equivalent of the minimum subtended angle that another agent spans on the retina of the

focal agent.

Visual: occlusion-based neighbor selection

Visual neighbor selection keeps only those agents that appear large enough and are not

occluded by closer ones as seen from the perspective of the focal agent (Fig. 5.3b). The set of

visible agents can be formalized as

N visual
i = {

j 6= k ∈N metric
i | ¬(‖ui j −ui k‖ < r̂i j + r̂i k ∧di j < di k

)}
(5.3)

where ui j = ri j /di j and r̂i j = r /di j are the projections of the agent position and radius onto

the unit circle, respectively.

In other words, we represent each agent as an opaque disk with a given radius centered around

its position. To compute if an agent occludes another one, we project their relative positions

and radii onto the unit circle of the observing agent and check whether their projected radii

intersect each other. We consider the first agent occluded if there is an intersection and its

relative distance is smaller.

Note that by combining metric and visual neighbor selection, we obtain a model of visibility

that takes into account both visual acuity and occlusions. We consider this model plausible

for vision-based swarms since it captures the information that is de facto available to an

individual that operates purely on visual perception.

The above definition of visibility contains two key assumptions. The first assumption is that

agents can distinguish individuals from each other. Note that this assumption does not require
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identities to be maintained over time. The second assumption is that partially occluded agents

are considered invisible, i.e., only the closest set of agents with an uninterrupted line of sight

are contained in the visible set. This assumption is reasonable for monocular vision since the

relative distance to other agents can only be reliably estimated if all of their spatial extent is

visible.

Topological: n-nearest neighbor selection

Topological neighbor selection keeps only the n nearest neighbors of the focal agent (Fig. 5.3c).

We can write the set of nearest neighbors as

N topo
i =

{
n-argmin

j∈Ai

di j

}
(5.4)

where the n-argmin operator selects at most the n nearest neighbors.

Topological neighbor selection is a popular method due to its explanatory success in natural

swarms [20, 120] and is often used in models of collective motion to maintain group cohesion

[47, 117].

Voronoi: spatially balanced nearest neighbor selection

Voronoi neighbor selection keeps only those agents whose Voronoi regions share a border

with the focal agent (Fig. 5.3d). We can write the set of Voronoi neighbors as

N voronoi
i = {

j ∈Ai |Vi ∩V j 6= ;}
(5.5)

where ; denotes the empty set and Vi the Voronoi region of agent i which can be defined as

Vi =
{

j ∈Ai ,q ∈Rm | ‖q−pi‖ ≤ ‖q−p j‖
}

. (5.6)

In other words, the Voronoi region of an agent can be described as the set of all points that are

closer to itself than to any other agent.

Neighbor selection based on the Voronoi tessellation can be seen as topological interactions

that are parameter-free and automatically balanced in space [117]. Moreover, it can be shown

that the average number of Voronoi neighbors is at most six for the planar case we are consid-

ering here [121].

5.2.2 Sensing noise

We model the visual relative localization inaccuracies in two independent components: range

and bearing. We model range noise as a function that varies linearly with relative distance
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from the observer whereas the bearing noise is constant over the field of view [89, 122, 91, 61].

More formally, we define the noisy version of range and bearing with which agent i detects

agent j as

d̂i j = di j (1+ωd ), ωd ∼N (0,σd ) (5.7)

β̂i j =βi j +ωβ, ωβ ∼N (0,σβ) (5.8)

where ωd and ωβ are independent and identically distributed white noise with zero mean

and standard deviation of σd and σβ, respectively. The noisy relative position can then be

constructed from polar coordinates as

r̂i j =
[

d̂i j cos(β̂i j )

d̂i j sin(β̂i j )

]
(5.9)

where r̂i j can serve directly as an input to the social term of the flocking algorithm (Eq. 2.3). The

exact values for range and bearing noise depend on several factors such as camera resolution,

lens quality, calibration accuracy, and target deformation.

5.3 Experimental setup

We briefly describe the experimental setup and parameters (Sec. 5.3.1), as well as the simula-

tion environments that are used to obtain the experimental results (Sec. 5.3.2).

5.3.1 Experimental parameters

We perform ten repeated runs of migration experiments to make statistical statements about

the scalability of the swarm using different neighbor selection methods, group sizes, swarm

densities, agent dynamics, and noise levels.

The specific parameter values we use are informed by our previous experiments with real

vision-based quadcopters in indoor [60] and outdoor environments [61], as well as the lit-

erature on vision-based drone localization [89, 78, 122, 80, 90, 26, 92, 123, 93]. We choose

the radius of an agent as r = 0.25m since it reflects a common physical size of quadcopter

platforms used in robotic experiments. The perception radius r max = 10m is chosen as the dis-

tance at which other drones were no longer reliably detected during outdoor experiments. The

time delta∆t = 100ms is chosen as a reasonable amount of time to solve the visual perception,

state estimation, and control problems in real-time. The desired inter-agent distance is set

to d ref = 1m to generate the most compact formation that simultaneously provides enough

safety margin against potential collisions.

In order to provide a fair comparison of the visual neighbor selection methods, we choose

parameter values that result in comparable numbers of neighbors as the group size increases

(Fig. 5.4d). In particular, we set the maximum number of agents for topological neighbor
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Name Set notation

metric N metric
i (r max)

visual N visual
i (r max)

visual + myopic N visual
i (2d ref)

visual + topological N visual
i (r max)∩N topo

i (n)
visual + voronoi N visual

i (r max)∩N voronoi
i

Table 5.1 – Neighbor selection methods used during the experiments.

selection to n = 6 since it reflects the average number of Voronoi neighbors for planar con-

figurations [121]. We further let r max = 2d ref for myopic interactions since it approaches an

average number of six neighbors as the group size increases. We provide an overview of the

neighbor selection methods used during the experiments in Tab. 5.1.

At the beginning of each experiment, the agents are spawned randomly within a circular region.

The initial positions are sampled uniformly in a non-overlapping fashion using rejection

sampling such that no pair of agents are closer than their desired reference distance d ref.

The area of the circular region is chosen such that the agent number density ρN remains

constant for different numbers of agents. The agents exhibit no motion at the beginning of

the experiment, i.e., their initial velocities are set to zero. The agents are given a constant

navigation direction rmig = [1,0]> along the horizontal axis which can be seen as a migratory

route along the magnetic field [21]. We let the swarm develop its collective motion for a total

of T = 200s composed of 2000 isochronous discrete time steps k with duration ∆tk = 0.1s.

At each time step, the agents select their neighbors according to the indicated neighbor

selection function (Fig. 5.3) and compute their motion command (Sec. 5.2). We set the

separation and cohesion gains to ksep = 1ms−1 and kcoh = 1ms−1 to provide an approximate

nearest neighbor distance of d ref = 1m. The separation gain is set to kmig = 0.5ms−1 which

provides goal-directed motion without overpowering the attractive/repulsive commands. We

set the maximum speed an agent can sustain to vmax = 1ms−1. A concise overview of the

experimental parameters is provided in Tab. 5.2.

In order to provide a fair comparison across vastly different group sizes, we compute the

metrics over the last quarter of the simulation, i.e. considering only the final 500 time steps.

Particularly for large swarm sizes, we avoid computing metrics during an initial transient

period in which agents have not yet aggregated to their final configuration. We refer to the

time range during which we compute the metrics as the equilibrium period for convenience.

We report the minimum nearest neighbor distances as a minimum over time over the equi-

librium period since it reveals whether collisions occur. For the order and union metrics, we

report time averages over the equilibrium period. The mean and standard deviations are

computed over the ten independent runs with random initial conditions.
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Description Notation Value

Agent radius r 0.25 m
Reference distance d ref 1 m
Perception radius r max 10 m
Bearing noise σβ 1°
Range noise σd 0.05 m
Maximum topological neighbors n 6
Maximum speed vmax 1 ms−1

Separation gain ksep 1 ms−1

Cohesion gain kcoh 1 ms−1

Migration gain kmig 0.5 ms−1

Time delta ∆t 0.1 s
Simulation duration T 200 s

Table 5.2 – Parameters used during the experiments.

5.3.2 Simulation environments

We employ two different simulation environments that serve complementary purposes. The

simulation environment with point mass dynamics allows us to rapidly prototype algorithms

and quickly generate statistical results with up to one thousand agents without running into

time or computational constraints.

The Gazebo simulator, on the other hand, provides more physical realism and allows us to

obtain an approximation of how an algorithm would behave on real hardware. However, by

default, Gazebo, ROS, and PX4 run asynchronously, meaning that messages are exchanged

on a best-effort basis given the computational load. To provide a fair comparison at different

group sizes, we must ensure that the number of agents does not have any adverse effects on the

simulation fidelity by lockstepping all of its software components. In practice, this means we

run Gazebo and PX4 in their respective lockstep modes and additionally pause the simulation

at each time step, compute the velocity commands for all agents in parallel, and resume the

simulation. Unfortunately, even with lockstepping, Gazebo reaches its computational limits

at around one hundred agents, after which the real-time factor decreases considerably and

spawning additional agents becomes unreliable. We therefore limit the experiments with

quadcopter dynamics to one hundred agents.

5.4 Results

We report results on three sets of complementary simulation experiments: 1) we compare

several neighbor selection methods with increasing numbers of agents to show their perfor-

mance for different swarm sizes (Sec. 5.4.1), 2) we evaluate the neighbor selection methods for

increasing inter-agent distances to show the effect of varying agent number densities on the

swarm performance (Sec. 5.4.2), and 3) we validate the highest-performing neighbor selection
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method (across group sizes and densities) with quadcopter dynamics and realistic sensing

noise to show its performance under real-world conditions (Sec. 5.4.3).

5.4.1 Performance across swarm sizes

We assess the performance of the swarm for all neighbor selection methods and six levels of

increasing group size N ∈ {3,10,30,100,300,1000}. We set the reference distance d ref = 1m

constant throughout the experiments to keep the agent number density fixed and to allow a

direct comparison of the effect of group size.

Visual neighbor selection

Purely visual neighbor selection shows the overall lowest performance as the group size

increases. There is a considerable performance penalty in the distance and order metrics

(Fig. 5.4a and 5.4b). The minimum distance is tracked well only for a group size of 3 agents

(d min = 1.0± 0.0m; Fig. 5.4a). The distance gradually approaches the collision threshold

of 2r = 0.5m and reaches its minimum at 1000 agents (d min = 0.58±0.0m; Fig. 5.4a). The

order metric shows a similar trend since the agents start out perfectly ordered for 3 agents

(φorder = 1.0± 0.0; Fig. 5.4b). However, for larger group sizes, the order metric decreases

monotonously until reaching its minimum at 1000 agents (φorder = 0.87±0.0; Fig. 5.4b). The

swarm stays cohesive as a single unit across all group sizes (φunion = 1.0±0.0m; Fig. 5.4c).

Generally, using visual neighbor selection, the swarm performance decreases as soon as

occlusions start to emerge (Fig. 5.4d). There is no performance penalty for 3 agents using

visual neighbor selection since they predominantly occur in equilateral triangle formations in

which there are no occlusions (i.e., Ni = 2). For larger group sizes, an increasing number of

agents within the perception radius is occluded (32% occluded for N = 10; up to 90% occluded

for N = 1000).

Qualitatively, the trajectories of agents using purely visual neighbor selection are jittery

(Fig. 5.5a). The agents migrate with considerable deviations from the optimal linear tra-

jectory in the migration direction. In particular, the relative positions of the agents within the

swarm are not fixed but rather subject to frequent topology switches. For instance, agents that

initially belong to the swarm periphery move towards the swarm center (Fig. 5.5a; blue line)

and vice versa.

The topology switches can be explained by considering that an agent within the swarm is

exposed to constant changes of its neighbor set (Fig. 5.7). Small agent displacements result in

considerable changes of perspective that cause neighbors to appear and disappear from the

visible set (Fig. 5.7a and 5.7b: 11 agents appear and 4 disappear, for example). Here, the focal

agent is exposed to a total of 32 visibility switches (8±1.22 switches per timestep) over the

course of four consecutive seconds of the experiment.
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Figure 5.4 – Swarm performance during the collective migration experiment for different
neighbor selection methods and reference distance d ref = 1m. We show the effect of different
neighbor selection methods on the (a) minimum nearest neighbor distance d min, (b) average
order φorder, (c) average union φunion, and (d) the average number of neighbors Ni , expressed
as a function of the number of agents N (note the logarithmic scale). The neighbors are se-
lected as follows: 1) metric selects all agents within the perception radius r max = 10m, 2) visual
selects all visible agents, 3) visual + myopic selects all visible agents within a smaller radius
r max = 2m, 4) visual + topological selects the n = 6 topologically closest visible neighbors,
and 5) visual + voronoi selects the neighbors from adjacent Voronoi regions. The Voronoi
neighbor selection method scales most predictably with the number of vision-based agents,
i.e., distance, order, and union remain quasi-constant as the swarm size increases.

Alternatives to purely visual neighbor selection

Neighbor selection based on the Voronoi tesselation shows the highest performance of all

neighbor selection methods across group sizes. The minimum distance, order, and union
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(b) Visual + voronoi

Figure 5.5 – Example trajectories of a swarm of thirty agents during a single run of the collective
migration experiment using (a) visual and (b) Voronoi neighbor selection mechanisms. We use
the same random seed to create equal initial conditions and highlight an arbitrary focal agent
(colored, thick line) to reveal its motion among the other agents (grey, thin lines). The agents
start from their initial positions (solid squares) on the left and migrate along the horizontal
axis (solid triangles) to the right side of the virtual arena (solid disks). (a) Visual neighbor
selection leads to control discontinuities and disorder; agents frequently change positions
inside the swarm. (b) Visual and Voronoi neighbor selection together result in collision-free,
ordered, and cohesive migration (see Fig. 5.6 for continuation).

metrics show performance comparable to metric neighbor selection (Fig. 5.4a, 5.4b, and

5.4c). In particular, the minimum distance is tracked even closer to the reference distance

of d ref = 1m for increasing group size (for 1000 agents: d min = 1.13±0.02m for visual and

d min = 1.21±0.02m for metric, for example; Fig. 5.4a). This can be explained by considering

that metric swarms have a significantly larger number of neighbors compared those based on

visual + voronoi neighbor selection for group sizes N > 3 (Fig. 5.4d). For example, at N = 1000

agents, the metric neighbor set contains around 22 times the number of agents than it does for

visual + topological neighbor selection (on average 11.2±8.5 times the number of neighbors

for all group sizes; Fig. 5.4d). Recall that the flocking algorithm computes the separation

term as a sum of reciprocal distances (Sec. 5.2). Therefore, each neighbor has an additive

contribution towards the repulsion (albeit a very small one for distant agents) that explains

the slightly larger distances. The agents are perfectly ordered and cohesive for all group sizes

(φorder = 1.0±0.0 and φunion = 1.0±0.0, respectively; Fig. 5.4b and 5.4c). Qualitatively, the

paths taken by visual + voronoi swarms are generally linear and smooth (Fig. 5.5b). The swarm
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Figure 5.6 – Example trajectories of a swarm of thirty agents during a single run of the collective
migration experiment using (a) myopic and (b) topological neighbor selection mechanisms
(see Fig. 5.5 for description). (a) Myopic visual interactions mitigate the discontinuities but
lead to fragmentation. (b) Visuo-topological interactions mitigate strong discontinuities but
swarms are not well-ordered, especially for peripheral agents.

performs collision-free, ordered, and cohesive collective migration. Switches in the neighbor

set do occur but are infrequent and do not lead to unsafe situations or disorder (e.g., changes

in neighbor configuration at x ≈ 23m; Fig. 5.5b).

Swarms that use visual + myopic or visual + topological neighbor selection do not perform

as well as those using visual + voronoi selection for different group sizes. Generally, visual +

myopic swarms exhibit low cohesion and easily fragment into several subgroups (Fig. 5.4c).

Fragmentation occurs because agents that exit the perception radius are usually found within

small subgroups or entirely isolated due to their limited perception range (see subgroups and

isolated agent; Fig. 5.6a). The fragmentation phenomenon also skews the minimum distance

metric towards lower values with large standard deviations compared to other neighbor

selection methods (average of d min = 0.82±0.12m across group sizes; Fig. 5.4a). This occurs

because isolated agents are usually far away from any other agent (see isolated agent; Fig. 5.6a).

We verified that minimum distances to nearest neighbors are usually well-tracked within

subgroups of at least three agents. The union metric is always belowφunion < 1 which indicates

that fragmentation occurs for all group sizes (Fig. 5.4c). Cohesion is lowest for small groups

and approaches, but never reaches, a value of φunion = 1 that would indicate a single-unit

cohesive swarm (φunion = 0.7±0.25 for N = 3, up to φunion = 0.98±0.0 for N = 1000; Fig. 5.4c).
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Figure 5.7 – Visual representation of the switching topologies caused by occlusions during a
collective migration experiment. We show the perspective of an arbitrary focal agent (central
red disk) over the course of four isochronous time steps t ∈ {1s,2s,3s,4s}. The focal agent
uses visual neighbor selection and therefore perceives only agents within its perception radius
that are in a direct line of sight (blue disks), whereas occluded agents are invisible (grey disks).
We further highlight visibility switches, i.e., when an agent that has been occluded since the
previous time step becomes visible (green disks) and when a previously visible agent becomes
occluded (brown disks). A total of 32 visibility switches occur over the course of four seconds.

Note that larger groups exhibit higher union performance since the metric is normalized by

group size, i.e., larger groups consist of fewer subgroups relative to the overall group size.

Swarms with visual + myopic neighbor selection are effectively ordered (φorder = 1.0±0.0;

Fig. 5.4b) Qualitatively, apart from fragmentation, larger subgroups tend to have irregular

shapes that are less circular compared to other neighbor selection methods (see the largest

subgroup; Fig. 5.6a).
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Swarms that use visual + topological neighbor selection do not exhibit consistent performance

across swarm sizes. Especially for intermediate group sizes of 10, 30, and 100 agents, both

minimum distances and order metrics suffer a decrease in performance (Fig. 5.4a and 5.8b,

respectively). For the respective distances and order metrics, the minimum performance oc-

curs at 30 agents (d min = 0.85±0.04m and φorder = 0.97±0.01; Fig. 5.4a and 5.4b, respectively).

We can explain this behavior by considering that agents always select the six closest visible

neighbors, irrespective of where they are located. Agents that belong to the swarm center tend

to have six neighbors that are spaced around them at approximately equal angles from each

other. Conversely, agents on the periphery consider only neighbors in one direction which are

subject to occlusions. This leads to similar visual switching topologies as for the purely visual

neighbor selection, albeit less severe since even the most distant nearest neighbor for n = 6

is usually in close proximity. The effect of occlusions is mostly mitigated for larger swarm

sizes N > 100 since a smaller proportion of agents is located on the periphery relative to the

swarm center. We do not observe fragmentation with visual + topological neighbor selection

for any group size (φunion = 1.0±0.0; Fig. 5.4c). Qualitatively, visual + topological interactions

generate paths that are not perfectly straight (Fig. 5.6b). We also observe swarms that exhibit

rotations, as well as ones that periodically switch between a set of recurring configurations.

5.4.2 Performance across swarm densities

We evaluate the swarm performance for all neighbor selection methods and for five levels

of increasing inter-agent distances d ref ∈ {1m,2m,3m,4m,5m}. We let N = 100 to fix the

group size and to enable a direct comparison between agent number densities. We define the

normalized minimum nearest neighbor distance as d norm = d min/d ref to make the minimum

distances more easily comparable for different agent densities.

Visual neighbor selection

Purely visual neighbor selection does not show consistent performance for different swarm

densities. The performance penalty in distance and order is especially severe for agents in

high-density configurations with small reference distances (Fig. 5.8a and 5.8b, respectively).

The normalized distance is much lower than the desired reference of d norm ≥ 1 and has

its minimum for d ref ∈ {1m,2m} (d norm = 0.66±0.01 and d norm = 0.67±0.02, respectively;

Fig. 5.8a). For larger reference distances, d ref ∈ {3m,4m}, the normalized distance stabilizes

again to larger values (d norm = 0.97±0.03 and d norm = 0.94±0.09, respectively; Fig. 5.8a) Note

that the minimum distance, order, and union metrics for large reference distances d ref = 5m

decrease for all neighbor selection methods. A reference distance of d ref = r max/2 = 5m

effectively renders all neighbor selection methods myopic and fragmentation starts to occur.

The union metric indicates that this is indeed the case for d ref = 5m since all neighbor selection

methods show comparable mean performance to myopic swarms (average of all neighbor

selection methods φunion = 0.97±0.01; Fig. 5.8c). The order metric reaches its minimum at

d ref = 2m (φorder = 0.78±0.01; Fig. 5.8b). The minimum order coincides with the maximum of
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Figure 5.8 – Swarm performance during the collective migration experiment for different
neighbor selection methods and group size N = 100. We show the effect of different neighbor
selection methods on the (a) normalized minimum nearest neighbor distance d norm, (b)
average order φorder, (c) average union φunion, and (d) average number of neighbors Ni ,
expressed as a function of the reference distance d ref. The neighbors are selected as follows:
metric selects all agents within the perception radius r max = 10m, visual selects all visible
agents, visual + myopic selects all visible agents within a smaller radius r max = 2m, visual
+ topological selects the n = 6 topologically closest visible neighbors, and visual + voronoi
selects the neighbors from adjacent Voronoi regions. With the exception of myopic conditions
(at d ref = 5m), the Voronoi neighbor selection method scales most predictably with the density
of the vision-based swarm and the performance remains quasi-constant as the reference
distance increases.

the average number of visible neighbors at d ref = 2m (Ni = 22.62±0.04). This indicates that

order follows an inverse relationship with the number of visible neighbors: if more agents
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are visible, the likelihood of visual topology switches that lead to disorder increases (Fig. 5.7).

The neighbor graph also highlights that the effect of occlusions is maximized at intermediate

densities. At high densities, the nearest neighbors occlude most agents in all directions (87%

occluded for d ref = 1m; Fig. 5.8d). Conversely, the effect of occlusions diminishes at lower

densities since the agents are not large enough to break the line of sight (5% occluded for

d ref = 3m, for example; Fig. 5.8d).

Alternatives to purely visual neighbor selection

The Voronoi-based neighbor selection provides the highest and most consistent performance

across different group densities. The distance, order, and union metrics remain stable for all

but the lowest density level (d ref = 5m) at which interactions are rendered myopic (Fig. 5.8a,

5.8b, and 5.8c; Sec. 5.4.2 for discussion of myopic interactions). The normalized distance,

order, and union remain stable for high and intermediate swarm densities (average d norm =
1.12±0.03m, φorder = 1.0±0.0, and φunion = 1.0±0.0; Fig. 5.8a, 5.8b, 5.8c, respectively).

Swarms with visual + myopic and visual + topological interactions perform comparatively

poorly to visual + voronoi neighbor across group densities. The visual + myopic neighbor

selection method shows consistently low performance in terms of distance and union metrics

(Fig. 5.8a and 5.8c). Myopic interactions effectively reduce the negative impact of occlusions.

However, they also induce low distances and fragmentation (average d norm = 0.84± 0.02

and φunion = 0.97±0.01 across reference distances; Fig. 5.8a and 5.8c, respectively). Swarms

with visual + topological interactions can avoid the fragmentation issues but their minimum

distances fluctuate for different densities (e.g., d norm = 1.05±0.04 for d ref = 2m and d norm =
0.95±0.10 for d ref = 4m; Fig. 5.8a).

5.4.3 Validation in realistic conditions

We finally assess the performance of the most promising visual + voronoi neighbor selection

method in more realistic conditions. This is done to evaluate whether the performance

transfers to agents with quadcopter dynamics and more realistic sensor noise. Analogous to

the previous experiments, we vary the reference distance d ref = {1m,2m,3m,4m,5m} while

keeping the number of agents N = 100 fixed to show the effect of agent number density on the

flocking performance. Similarly, we vary the number of agents N ∈ {3,10,30,100} (N ≤ 100 due

to the limitations of the physics simulation; Sec. 5.3.2) while keeping the reference distance

d ref = 1m constant to show the effect of group size on the performance metrics. We replace

the single-integrator dynamics (Eq. 5.1) with a cascaded PID controller [59] that uses the

velocity commands from the flocking algorithm as inputs (Eq. 2.1). We further set the range

and bearing noise to σd = 0.05m and σβ = 1°, respectively. The specific values are informed

by our previous experiments in indoor [60] and outdoor environments [61] and resemble

estimates from visual relative localization using object detection with a multi-target state

tracker [107].
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The visual + voronoi neighbor selection method shows comparable performance with point

mass agents and quadcopters operating with realistic sensor noise. The swarm performance

generally degrades more with increasing reference distances than it does for increasing group

size, regardless of the simulation realism. We omit an analysis of the union since the swarms

remained cohesive as a single unit during all experiments without exception (φunion = 1.0±0.0).

We further omit the neighbor statistics since we did not observe any discernable differences.

The only noticeable difference between point mass and quadcopter simulations is the di-

vergence of the average order for decreasing density (φorder = 0.81±0.05 for point mass and

φorder = 0.70±0.04 for quadcopter; Fig. 5.9d). This difference can largely be attributed to the

range noise that increases linearly with distance (Eq. 5.7). The effect of the noise for quad-

copter dynamics can also be observed in the slightly lower normalized distances compared

to point mass dynamics (Fig. 5.9a) Interestingly, the more realistic simulation also results in

slightly larger minimum distances for 100 agents than would be expected with decreases due

to noise (d min = 1.07±0.04m for point mass and d min = 1.11±0.05m for quadcopter; Fig. 5.9a).

However, these effects are too small to be significant and could have occurred due to chance.

5.5 Conclusions

Methods for multi-agent coordination often make unrealistic assumptions about the in-

formation that is available to the individual agent. One of the most pervasive simplifying

assumptions is that vision-based agents can sense the state of all surrounding neighbors

within a metric perception radius, even if they are obstructed by closer ones. Here, we break

this common assumption and construct a simple yet realistic model of visibility that selects

neighbors only if 1) they appear large enough in the field of view, and 2) are not occluded

by other agents. Extensive flocking simulations with the visual occlusion model show that

perfectly ordered metric-based swarms become disordered and unsafe when agents react

to all of their visible neighbors. These adverse effects can be attributed to small perspective

changes that continuously influence the set of visible neighbors, thus causing the agents to

move in reaction to the new neighbor configuration. We show that this interplay between

visibility constraints and collective motion can lead to severe instabilities for vision-based

swarms, especially for large numbers of agents and high swarm densities.

Selecting a subset of visible neighbors from adjacent Voronoi regions significantly improves

the swarm performance (i.e., collision avoidance, velocity alignment, and group cohesion)

across group sizes and densities. Controlled experiments with subsets of the visual neighbors

show that Voronoi-based interactions are a more effective countermeasure against occlusions

than metric and topological ones. The main drawback of metric and topological neighbor

selection methods is their dependence on specific parameters, namely the perception range

and the number of nearest neighbors, respectively. Choosing favorable values for these

parameters that provide high performance at all group sizes and densities may be impossible

for vision-based swarms. In particular, swarms that select too many neighbors suffer from the

adverse effects of occlusions and selecting too few neighbors inevitably leads to fragmentation.
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Figure 5.9 – Quantitative results from the collective migration experiment comparing point
mass dynamics (green) and with quadcopter dynamics and realistic noise (purple). We show
the effect of the simulation realism on the (a, b) minimum (normalized) nearest neighbor
distances d min (d norm) and (c, d) average order φorder metrics. The metrics are shown as a
function of (a, c) the number of agents N (note the logarithmic scale) and (b, d) the reference
distance d ref. The metrics follow very similar trends under point mass and quadcopter dynam-
ics with realistic noise. For quadcopter dynamics, we limit the analysis to one hundred agents
since simulations with larger group sizes proved to be too unreliable for statistical analysis.

Voronoi-based interactions provide an elegant solution to this problem since they are both

parameter-free and spatially balanced [117].

The occlusion model presented here is undoubtedly useful but it neglects an important aspect

of vision-based relative localization: errors due to misdetections. False positives (i.e., detecting

an agent that is not there) and false negatives (i.e., not detecting an agent that is defacto there)
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(a) Point mass dynamics without noise
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Figure 5.10 – Example paths taken by a swarm of thirty agents during a single run of the collec-
tive migration experiment using (a) point mass dynamics without noise and (b) quadcopter
dynamics with realistic noise. We use the same random seed to create equal initial conditions
and highlight an arbitrary focal agent (colored, thick line) to reveal its motion among the
other agents (grey, thin lines). The agents start from their initial positions (solid squares) on
the left and migrate along the horizontal axis (solid triangles) to the right side of the virtual
arena (solid disks). Apart from the effect of noise, there is no discernable qualitative difference
between the point mass and quadcopter swarms.

inevitably occur in real-world conditions but are notoriously difficult to model. The main

difficulty is that the distribution of misdetections depends not only on the used hardware and

detection algorithm but also on environmental conditions such as background clutter and

lighting conditions. Multi-target filtering algorithms can alleviate errors due to sensing noise

and false positive detections to some extent but are largely ineffective against false negatives

[61].

We argue that occlusions should not be neglected when designing algorithms for vision-

based swarms since they are comparatively easy to model. We consider the occlusion model

presented here (Eq. 5.3) simple enough to be a drop-in replacement for algorithms that would

otherwise default to purely metric interactions (Eq. 5.2). Simple agent-based simulations can

thus prevent significant hardware damage by considering occlusions early in the algorithm

design and before they are implemented on real robots. The validation presented here is

specifically geared towards drones but we expect the results to translate well to other types of
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vision-based robots.
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6 Conclusions

In this thesis, we have developed and implemented methods for the synthesis of drone swarms

in which the robots perceive each other only using visual perception. We have validated the

vision-based approach to collective motion using extensive simulations and experiments

with real drones in indoor and outdoor environments. The results show that collision-free

and cohesive motion of multi-robot systems can be achieved without relying on external

infrastructure, wireless communication, or visual markers. The vision-based approach has

the potential to increase the safety, flexibility, and scalability of robot swarms.

In the following, we address the limitations of the vision-based approach presented in this

thesis (Sec. 6.1). We qualitatively compare the two strategies, i.e., end-to-end learning and

detection-based control, and discuss their advantages and limitations (Sec. 6.2). We finally

briefly discuss interesting directions for future work (Sec. 6.3), as well as the importance of

open-source software and hardware in research (Sec. 6.4).

6.1 Limitations of the vision-based approach

The vision-based approach to multi-robot coordination presented in this thesis has sev-

eral important limitations. Possibly the most obvious shortcoming compared to, e.g., a

communication-based approach is that it is limited to conditions with adequate visibility.

Counterexamples are conditions in which there is no visible light (e.g., outdoors at night,

indoors without a light source) or external factors reduce visibility (e.g., fog, heavy rain, snow,

dust, smoke). However, possible remedies for some low-visibility conditions include the use

of external light sources [124] or techniques that are based on light outside of the visible

spectrum, e.g., infrared [125] or ultraviolet [122, 80].

Another shortcoming is that vision-based swarms are limited to relatively dense configurations

whose inter-agent distances do not exceed their perception range. Therefore, vision-based

approaches may not be suitable for missions that involve extensive area coverage such as

establishing ad-hoc communication networks [126]. The maximum perception radius itself
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depends on many factors, such as the camera resolution and computational constraints and

environmental factors such as the low-visibility conditions described above. Communication-

based swarms notably suffer from the same limitation since their communication range is

also limited, albeit typically to larger distances than for visual perception.

In real-world decentralized swarms, wireless communication can complement visual percep-

tion to enable higher efficiency or applications that require cooperation. For instance, wireless

communication enables the robots to share not only their current state but also their planned

trajectories with each other [88, 127, 11]. This approach can lead to faster navigation and

more effective collision avoidance since the robots have access to a future projection of their

neighbors instead of relying purely on local visual information. Moreover, wireless commu-

nication can also remove the need for external localization since drones can collaboratively

build a shared map of the environment in which they self-localize [128, 129, 18]. However, as

previously discussed, a fully decentralized implementation with agent-to-agent communica-

tion incurs large bandwidth requirements and suffers from inherent scalability limitations.

An alternative approach that reduces the required bandwidth is to estimate relative distances

using the received signal strength of the wireless transmitters [31].

6.2 End-to-end learning vs. the modular approach

In this thesis, we proposed two different approaches to synthesize vision-based drone swarms:

an end-to-end learning-to-control approach based on visual imitation (Chapter 3) and a

modular approach based on object detection and tracking (Chapter 4). In the following, we

discuss the inherent advantages and disadvantages of the two methods.

The imitation learning approach solves the multi-agent coordination problem using a single

neural network that optimizes perception and control jointly. End-to-end learning can be

advantageous for performance since the neural network can learn an internal representation

that is most suitable to solve a given task. It also has the potential to reduce performance

losses at the module boundaries. For example, imposing a specific representation such as

object detection for the perception module can discard useful information such as the pose

of the drone (Sec. 4.2.1). Subsequent modules, e.g., tracking or control, can not recover this

information which may limit the performance of drone swarms. An interesting side effect of

end-to-end learning is that camera calibration is no longer required since image observations

directly produce control commands. The absence of the transformation to metric space begs

the question of whether such intermediate representations, e.g., relative positions, are even

necessary for vision-based flocking. The results presented here and others suggest it is not

[52, 28, 130].

The lack of intermediate representations in end-to-end learning also has several key limita-

tions that make it hard to recommend for engineering problems. In the learning-to-control

framework, the predicted command is a complex nonlinear function of the input image.

However, given an input image that produces a command, it is not immediately clear what
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causes a specific behavior and which features in the input image are responsible. Attribution

methods (Sec. 3.5.4) can be helpful to answer these questions but are far from an exact science

since different methods can produce vastly different results [131, 86]. Another problem is

that end-to-end learning is inflexible since it couples perception and control too tightly. For

example, suppose we move a camera to make space for additional hardware components on

a drone. In that case, the policy may no longer work since the old camera configuration is

encoded in its weights. A modular approach that decouples perception and control improves

flexibility since a frame transformation can easily be adjusted. Moreover, since there are no

individual modules in end-to-end learning, components cannot be tested and evaluated in

isolation, making it challenging to predict whether a method will work before trying it in the

control loop. Controlled simulation experiments also show that end-to-end policies based on

raw images perform suboptimally compared to those that have access to standard computer

vision representations, e.g., depth estimation and semantic segmentation [132]. These results

suggest that the intermediate representations obtained from end-to-end learning may not be

the most suitable or most efficient to solve a given task after all.

In summary, end-to-end learning has great potential to optimize perception and action jointly

but it is difficult to justify for real-world applications that demand modularity, safety, flexibility,

and interpretability.

6.3 Possible directions for future work

The method for detection and tracking presented in this thesis does not explicitly take the

robotic platform and its dynamics into account (Sec. 4.2). However, observing the orientation

of the platform in addition to its relative range and bearing can give very useful additional

information for predicting its future state. In the case of quadcopters, there exists a strong

coupling between the rotational and translational dynamics due to their under-actuated

nature [133]. For example, a nonzero pitch angle will inevitably lead to a translation along the

longitudinal axis, i.e., induce a forward or backward motion. Therefore, detecting the full pose

of the platform and considering it in the motion model of the tracking phase may lead to more

accurate state estimates. Similar arguments can be made for other types of robotic platforms

such as fixed-wing drones [134].

More sophisticated control algorithms such as model predictive control (MPC) can be used to

improve the flocking performance of vision-based swarms. In particular, they can replace the

combination of cascaded PID controllers and potential-field-based flocking algorithms used

in this thesis to improve the speed, order, and safety of the swarm [11]. MPC algorithms use a

dynamic model of the drones to predict how their motion will develop in the future. Hence,

they have an advantage over purely reactive algorithms used in this thesis since they can

optimize for the best command to issue based on a projection of the future state of the swarm.

The detection and tracking methods developed in this thesis are suitable for integration with

MPC algorithms since they provide relative positions and velocities of neighboring agents
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(Chapter 4).

The main focus of this thesis has been the motion coordination of drone swarms with vision-

based agent-to-agent interactions and did not consider obstacles. However, vision-based

swarms need to perform autonomous navigation in unstructured and unknown environments

such as cities or forests to be useful for many applications (Sec. A). To this end, the detect-and-

track approach presented in this thesis (Sec. 4) can be combined with vision-based methods

for obstacle detection and avoidance [7, 110].

6.4 Closing remarks

This thesis would not have been possible without relying on third-party software tools and

libraries and the importance of free software in research — especially in fields such as robotics

— cannot be overstated. Notable examples include the Robot Operating System (ROS) [108],

the Gazebo physics simulator [53], the RotorS drone simulation framework [54], the Kalibr

visual-inertial calibration toolbox [104], the PX4 open-source drone autopilot [59], SwarmLab

[48], the MRS UAV system [55], and many others. Over the course of this thesis, we attempted

to follow these examples and contribute open-source software to the community (Appendix B).

This thesis also resulted in the development of a custom quadcopter platform that required

solutions to a myriad of technical problems. Fortunately, we could also — at least partly —

rely on open hardware platforms such as the Pixhawk autopilot [58] and the PX4Flow smart

camera [135]. The world of open hardware is — compared to open-source software — still in

its infancy, but the work of many dedicated researchers is slowly improving the situation.
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A Vision-based localization in dynamic
environments

This chapter proposes both a dataset and method for vision-based localization in dynamic

environments. Dynamic environments such as multi-robot deployments in urban areas are

still challenging for popular visual-inertial odometry (VIO) algorithms. Existing datasets typ-

ically fail to capture the dynamic nature of these environments, therefore making it difficult

to quantitatively evaluate the robustness of existing VIO methods. To address this issue, we

propose three contributions: firstly, we provide the VIODE dataset, a novel benchmark recorded

from a simulated drone that navigates in challenging dynamic environments. The unique

feature of the VIODE dataset is the systematic introduction of moving objects into the scenes.

It includes three environments, each of which is available in four dynamic levels that progres-

sively add moving objects. The dataset contains synchronized stereo images and IMU data,

as well as ground-truth trajectories and instance segmentation masks. Secondly, we compare

state-of-the-art VIO algorithms on the VIODE dataset and show that they display substantial

performance degradation in highly dynamic scenes. Thirdly, we propose a simple extension

for visual localization algorithms that relies on semantic information. The results show that

scene semantics are an effective way to mitigate the adverse effects of dynamic objects on VIO

algorithms.

The work presented in this chapter is adapted from [63]1:

• K. Minoda, F. Schilling, V. Wüest, D. Floreano, and T. Yairi, “VIODE: A simulated dataset

to address the challenges of visual-inertial odometry in dynamic environments,” in IEEE

Robotics and Automation Letters, vol. 6, no. 2, pp. 1343–1350, Apr. 2021.

A.1 Introduction

Vision-based localization in dynamic environments is an important and challenging task in

robot navigation. Camera images can provide a rich source of information to estimate the pose

of a robot, especially in environments such as indoor and urban areas where GNSS information

1Video: https://youtu.be/LlFTyQf_dlo.
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may be unreliable or entirely unavailable. In such environments, however, dynamic objects

such as humans, vehicles, or other mobile robots often coexist in the same workspace. These

dynamic objects can be detrimental to vision-based algorithms since they commonly use the

assumption of a static world in which they self-localize. Breaking the static-world assumption

may result in large estimation errors since the algorithms cannot distinguish between dynamic

objects and static ones.

One possible way to remove these errors is to introduce additional proprioceptive information,

such as data from inertial measurement units (IMUs), into the estimation pipeline. Unlike a

camera that measures the environment, proprioceptive sensors measure the internal state of

the robot, which is usually not affected by the environment. Thus, visual-inertial odometry

(VIO) has the potential to perform more robustly compared to purely visual odometry (VO).

However, as we show in this study, adding inertial information does not necessarily guarantee

robustness, and further information is required to obtain a reliable state estimation algorithm.

Despite the importance of visual-inertial fusion for robust localization in dynamic scenarios,

there are no publicly available datasets that are suitable as a benchmark of VIO algorithms in

dynamic environments. While a considerable amount of VIO datasets are proposed, most of

them contain only a few dynamic objects. While there are VIO algorithms that aim to perform

robustly in dynamic environments [136, 137], it is difficult to quantitatively compare them

due to the lack of a benchmark that addresses object dynamicity.

This chapter presents a novel dataset called VIODE (VIO dataset in Dynamic Environments) —

a benchmark for assessing the performance of VO/VIO algorithms in dynamic scenes. The

environments are simulated using AirSim [138], which is a photorealistic simulator geared

towards the development of perception and control algorithms. The unique advantage of

VIODE over existing datasets lies in the systematic introduction of dynamic objects at in-

creasing numbers and in different environments (Fig. A.1). In each environment, we use the

same trajectory of the aerial vehicle to create data sequences with an increasing number of

dynamic objects. Therefore, VIODE users can isolate the effect of the dynamic level of the

scene on the robustness of vision-based localization algorithms. Using VIODE, we show that

the performance of state-of-the-art VIO algorithms degrades as the scene gets more dynamic.

The VIODE dataset further contains ground-truth instance segmentation masks, since we

believe that semantic information will be useful for researchers and engineers to develop

robust VIO algorithms in dynamic scenes. In order to assess the effects of semantic information

in algorithms operating on the VIODE dataset, we develop a method incorporating semantic

segmentation into VINS-Mono [25]. We refer to this method as VINS-Mask. VINS-Mask

masks out the objects which are assumed to be dynamic. Using the proposed dataset, we

demonstrate that VINS-Mask outperforms the existing state-of-the-art algorithms. Though

VINS-Mask uses ground-truth segmentation labels provided by AirSim, these results indicate

the potential of the utilization of scene semantics in dynamic environments.

In summary, the main contributions of this work are:
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Figure A.1 – The VIODE dataset is created using a photorealistic drone simulator to which we
systematically add moving objects while keeping trajectory, lighting conditions, and static
objects the same — a setup that would be prohibitively difficult to achieve with real-world
data. Each environment in the dataset contains four sequences with the same trajectory and
IMU data, but with increasing levels of dynamic objects.

• We propose a novel simulated visual-inertial dataset (VIODE) where we systematically

add dynamic objects to allow benchmarking of the robustness of VO and VIO algorithms

in dynamic scenes.

• Using VIODE, we experimentally show performance degradation of state-of-the-art VIO

algorithms caused by dynamic objects.

• We show that incorporation of semantic information, implemented as a state-of-the-art

VIO algorithm with semantic segmentation, can alleviate the errors caused by dynamic

objects.

A.2 Related work

In this section, we briefly outline related work in three areas. Firstly, we summarize existing VIO

datasets and their shortcomings. Secondly, we discuss the state-of-the-art of VIO algorithms.

Finally, we highlight methods for robust vision-based localization in dynamic environments.
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VIO datasets

Existing VIO datasets are diverse, as they span various carriers, environments, and sensor se-

tups. However, they are not sufficient to assess the robustness of VIO in dynamic environments

on 6-DoF trajectories.

Most of the datasets that are recorded on drone or handheld rigs contain only a few moving

objects. For instance, widely used VIO benchmarks such as the EuRoC MAV dataset [139] only

contain a small number of people moving in indoor scenes and thus the scenes are mostly

static. Thus they are not suitable for benchmarks for systematically studying performance in

environments with moving objects.

Outdoor datasets tend to contain more dynamic objects. The TUM VI dataset [140] and the

Zurich Urban dataset [141] contain outdoor sequences in which moving vehicles and people

appear sporadically. KITTI [142], Urban@CRAS [143], and KAIST Urban [144] are recorded

from driving cars in urban areas. These datasets, especially the latter two, contain several

moving vehicles. However, the field of view in these datasets still contains mainly static objects

and they are thus not challenging enough as a benchmark of state estimation robustness

in dynamic environments. The Oxford Multimotion Dataset [145] is an indoor dataset that

contains dynamic objects. Their dataset aims at providing a benchmark for motion estimation

of moving objects as well as vehicle self-localization. However, the scenes do not contain

environments typically encountered by robots such as drones. Furthermore, these datasets do

not cover the most challenging dynamic scenes which can occur in real-world applications of

vision-based localization.

To the best of our knowledge, the ADVIO dataset [146] contains the most challenging scenes

in terms of dynamicity among the existing VIO datasets. However, their work does not contain

quantitative information on the dynamic level. Moreover, unlike the VIODE dataset, dynamic

objects cannot be isolated to estimate their effect on the robustness of VIO.

In conclusion, the existing VIO datasets are not suitable to systematically benchmark the

robustness of VIO methods in the presence of dynamic objects. The VIODE dataset seeks to

enhance the development of localization in dynamic scenes by providing a challenging, quan-

titative, and high-resolution benchmark. We achieve this goal with a systematic configuration

of dynamic objects and an evaluation of dynamic levels in each scene.

VIO algorithms

Here, we provide an overview of existing VIO algorithms, including VINS-Mono [25] and

ROVIO [147] which we benchmark on the VIODE dataset.

Common VIO algorithms can be classified as either filter-based or optimization-based. MSCKF

[148] and ROVIO [147] are both filter-based algorithms that fuse measurements from cameras

and IMUs using an extended Kalman filter. On the contrary, optimization-based approaches
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utilize energy-function representations for estimating 6-DoF poses. OKVIS [149] utilizes

non-linear optimization and corner detector. VINS-Mono [25] and VINS-Fusion [150] are

optimization-based algorithms that contain a loop detection and closure module and, as a

result, achieve state-of-the-art accuracy and robustness. Furthermore, the recently proposed

ORB-SLAM3 [151] is an optimization-based visual-inertial SLAM algorithm that achieves

high performance and versatility. In [152] the authors provide a comprehensive comparison

among the existing open-sourced monocular VIO algorithms. Their survey highlights that

VINS-Mono and ROVIO are the two best-performing methods among the existing monocular

VIO algorithms in terms of accuracy, robustness, and computational efficiency. Thus, in this

study, we compare these two algorithms on the VIODE dataset.

Vision-based localization in dynamic environments

Vision-based localization algorithms such as visual odometry (VO) and visual simultaneous

localization and mapping (vSLAM) commonly make use of the random sample consensus

(RANSAC) algorithm [153]. RANSAC is an iterative algorithm to estimate a model from multi-

ple observations which include outliers. Thus, common vision-based methods often adopt

this algorithm to enhance their performance in dynamic environments. One of the major

drawbacks is that RANSAC is more likely to fail when the observation contains outliers that

follow the same hypothesis. For example, RANSAC in visual localization is more vulnerable to

one large rigid-body object than several small objects with different motions.

Some recent works report that the use of semantic segmentation or object detection can

improve the robustness of algorithms in dynamic environments. Mask-SLAM [154] uses the

ORB-SLAM architecture while masking out dynamic objects using a mask generated from

semantic segmentation. DynaSLAM [155] is built on ORB-SLAM2 and combines a geometric

approach with semantic segmentation to remove dynamic objects. The authors of Mask-SLAM

and DynaSLAM evaluate proposal methods on their original dataset recorded in dynamic

environments. Empty Cities [156] integrates dynamic object detection with a generative

adversarial model to inpaint the dynamic objects and generate static scenes from images in

dynamic environments.

There are several works that not only address robust localization in dynamic environments

but also extend the capability to track surrounding objects [157, 158, 159, 160]. For example,

the results of DynaSLAM II [157] show that motion estimation of objects in the environmnet

can be beneficial for ego-motion estimation in dynamic environments.

Compared to VO/vSLAM, the performance of VIO algorithms in dynamic environments has

not been investigated in depth. Several works, however, report that the utilization of se-

mantic/instance segmentation improves the performance of VIO in dynamic environments

[136, 137]. A limitation of these two studies is, however, that they reported performances only

on limited data. For example, [136] uses only a short subsequence of the KITTI dataset. Our

VIODE benchmark is well suited to systematically assess and compare these VIO algorithms.
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A.3 Method

A.3.1 The VIODE dataset

We created the VIODE dataset with AirSim [138], a photorealistic simulator based on Unreal

Engine 4, which features commonly used sensors such as RGB cameras, depth cameras,

IMUs, barometers, and LiDARs. To simulate motions that are typically encountered in VIO

applications, we used a quadrotor as the carrier vehicle as it is a platform where VIO algorithms

are commonly employed.

The VIODE dataset is designed for benchmarking VIO algorithms in dynamic environments.

This can be accredited to three unique features. Firstly, compared to other existing datasets,

VIODE contains highly dynamic sequences. Secondly, we provide quantitative measures

of the dynamic level of the sequences based on clearly defined metrics. Finally, and most

importantly, VIODE allows us to isolate the effect of dynamic objects on the robustness of

VIO. In general, the performance of VIO is influenced not only by dynamic objects but also

by a variety of parameters such as the accuracy of the IMU, the type of movements (e.g.

rotation or translation), the lighting condition, and the texture of the surrounding objects.

Therefore, a way to fairly assess algorithm robustness in dynamic scenarios is to compare

multiple sequences where the only difference is the dynamic level. To achieve this, we create

four sequences of data on the same trajectory and strategically add dynamic objects.

Dataset content

The dataset is recorded in three environments, one indoor and two outdoor environments.

In each environment, we generate four sequences which are recorded while executing the

same trajectory. The only difference between these four recorded sequences is the number of

dynamic vehicles. To set up the situation as realistic as possible, we also placed static vehicles

in all the sequences. The three environments can be described as follows (Fig. A.2):

• parking_lot contains sequences from a parking lot indoor environment.

• city_day contains sequences from a modern city environment during day time. This

is a commonly encountered outdoor environment that is surrounded by tall buildings

and trees.

• city_night contains sequences from the same environment as city_day, however

during night time. Trajectories of ego-vehicle and dynamic objects are different from

those of the city_day environment.
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Figure A.2 – Example images and ground truth segmentations of the different environments.
We show RGB images (top row) from each environment and ground-truth segmentations
(bottom row) from each of the three environments. The images and their corresponding
segmentations are time-synchronized and obtained directly from AirSim.

Dataset generation

The procedure for generating VIODE data involves two steps: 1) collect IMU and ground-truth

6-DoF poses, and 2) capture images and segmentation masks (Fig. A.1). These steps were

executed on a desktop computer running Windows 10 with an Intel(R) Core i7-9700 CPU and

a GeForce RTX 2700 SUPER GPU.

In the first step, we use the ROS wrapper provided by AirSim to generate synchronized IMU

measurements and ground-truth odometry data at a rate of 200 Hz. While recording this

sensory data, we control the drone with the PythonAPI in AirSim. We generate one trajectory

for each environment. Each of the trajectories contains linear accelerations along the longitu-

dinal, lateral, and vertical axes, as well as rotation movements around roll, pitch, and yaw. In

order to obtain accurate timestamps, we slow down the simulation by a factor of 0.05 during

this procedure.

In a second step, we add images to the above data. To do so, we undersample ground-truth

poses from the odometry sequence to a rate of 20 Hz. In each of the undersampled poses,

we capture synchronized RGB images and segmentation maps with stereo cameras. This

procedure is done four times in each environment to generate four sequences with different

dynamic levels: none, low, mid, and high.

Sensor setup and calibration

The drone in AirSim is equipped with a camera and an IMU. The camera captures RGB images

and AirSim provides segmentation maps.
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• Stereo camera uses two equal cameras and captures time-synchronized RGB images at

a rate of 20 Hz with WVGA resolution (752×480 px). We set up the stereo camera with a

baseline of 5 cm. Both of these cameras are global shutter cameras and have a 90◦ field

of view (FOV).

• Ground-truth segmentation images are computed for both cameras at a rate of 20 Hz,

synchronized with the corresponding RGB images (Fig. A.2). The provided segmentation

is an instance segmentation. As such, the vehicles and all the other objects in the scene

are labeled as different objects.

• IMU data is also acquired from AirSim at a rate of 200 Hz. This uses the same parameters

as MPU-6000 from TDK InvenSense. The noise follows the model defined in [161]. Since

the IMU data does not take into account the vibration of rotors, the noise magnitude is

lower than that of IMU data recorded on real-world drone flights and similar to the one

recorded with handheld carriers.

• Ground-truth trajectory is also included for all the sequences of the dataset. This

consists of ground-truth 6-DoF poses provided by the simulator. This is recorded at a

rate of 200 Hz.

• Intrinsic and extrinsic parameters are provided for the stereo camera and camera-IMU

extrinsics.

Dynamic objects & dynamic level evaluation

We use cars provided in Unreal Engine 4 as dynamic objects since cars are commonly encoun-

tered dynamic objects in real-world applications. We use six types of vehicles with varying

textures and sizes. These dynamic objects are controlled by Unreal Engine with constant

speeds along the designated trajectories. As mentioned previously, we generated four se-

quences in each environment: none, low, mid, and high. The none sequences do not contain

any dynamic objects. Starting from none, we progressively add the vehicles to generate three

different dynamic sequences: low, mid, and high. Furthermore, we allocate not only dynamic

vehicles but also some static ones to make the scenes more realistic.

We also introduce metrics to evaluate how dynamic the sequences are. Simply counting the

number of dynamic vehicles in the scene is not a suitable metric of the dynamic level. For

example, even if the number of dynamic objects is the same, the scene is more dynamic when

the objects are close to the camera. Thus, a better metric is necessary to evaluate the dynamic

level. Possible information sources for defining a better metric are semantic information,

optical flow, ground-truth ego-motion, or rigid-body-motion of vehicles. Here, we assess the

dynamic level by considering how much of the FOV is occupied by dynamic objects based on

ground-truth instance segmentation. The pixel-based dynamic rate rpix is defined as

rpix = N dyn
pix N all

pix (A.1)
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Feature pointsSegmentation Mask

Figure A.3 – Overview of the processing steps of the VINS-Mask algorithm. We use semantic
segmentation maps to create binary masks that represent dynamic (white) and static (black)
image regions. For example, the semantic class car (pink) is likely dynamic and we therefore
ignore its feature points in the image. The remaining feature points are then coupled with
IMU information analogously to VINS-Mono to estimate the 6-DoF pose of the vehicle.

where N dyn
pix is the number of pixels occupied by dynamic vehicles and N all

pix is the total number

of pixels in the image.

However, the pixel-based dynamic rate does not contain speed information of the surrounding

objects. In order to obtain a metric for the magnitude of the motion of objects, we also define

the optic-flow-based (OF-based) dynamic rate rof as

rof =
1

N

∑
(x,y)∈D

√
‖∇I (x, y)−∇Inone(x, y)‖2 (A.2)

where D is a set of pixel coordinates in the frame which belong to dynamic objects. We

determine D from ground-truth instance segmentation. N is the total number of pixels,

∇I (x, y) is the optic flow at (x, y) in a frame, and ∇Inone(x, y) is the optic flow at (x, y) in a

corresponding frame in none sequence from the same environment.

We further provide the two types of dynamic rate along the time axis (Fig. A.8).

A.3.2 The VINS-Mask algorithm

One of the goals of this study is to show that scene semantics have the potential to improve the

performance of VIO in challenging dynamic scenes. To this end, we develop the method VINS-

Mask, which is based on VINS-Mono [25]. VINS-Mask uses the same algorithm as VINS-Mono,

except that it avoids using feature points on dynamic objects by leveraging semantic infor-

mation. In the feature points extraction phase of VINS-Mask, we perform semantic/instance

segmentation for each image. By exploiting the segmentation and preliminary knowledge,

we mask out the region of the dynamic objects right before the feature extraction phase of

VINS-Mono (Fig. A.3). By applying the mask, VINS-Mask can estimate the robots’ pose based

on reliable feature points (Fig. A.4). Although this technique is not a novel idea as stated in

Sec. A.3.1, we use this method to assess the impact of semantic information on the robustness

of VIO in dynamic scenarios.
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VINS-Mask (Ours)VINS-Mono

Figure A.4 – Comparison of feature points without (left) and with (right) masking of dynamic
objects. We visualize both the extracted (blue circles) and tracked (red circles) feature points
in VINS-Mono and VINS-Mask. The redder the feature point is colored, the longer the feature
has been tracked and more likely to be used in VINS-Mono and VINS-Mask to estimate the
6-DoF pose. VINS-Mono relies on feature points located on dynamic objects while VINS-Mask
excludes those regions entirely.

In this work, we use ground-truth segmentation labels provided in the VIODE dataset, instead

of applying a semantic segmentation algorithm on camera images. The mask consists of the

region which belongs to vehicles. We include both dynamic and static vehicles in the mask

to make the setup more realistic, although it is possible to distinguish moving objects from

static objects with ground-truth instance segmentation. This is because distinguishing moving

objects from static objects in real-world applications is itself a challenging task.

A.4 Results

A.4.1 Performance metrics

To analyze the performance of VIO algorithms, we use the absolute trajectory error (ATE) [162]

which is defined as

ATE(P1:T ,Q1:T ) =
√√√√ 1

T

T∑
k=1

‖trans(Fk )‖2 (A.3)

where P1, ...,PT ∈ SE(3) is the estimated trajectory, Q1, ...,QT ∈ SE(3) the ground-truth tra-

jectory, Fk = Q−1
k SPk is the absolute trajectory error at time step k, trans(X) refers to the

translational components of X ∈ SE(3), and S the rigid-body transformation between P1:T and

Q1:T calculated by optimizing a least-square problem.

Moreover, we use relative pose error (RPE) [162] for local accuracy of the sub-trajectory. RPE
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ROVIO VINS-Mono VINS-Mask (Ours)

parking_lot 5.27 14.7 1.12

city_day 17.1 16.2 1.26

city_night 5.19 1.91 1.26

Table A.1 – Performance degradation rate rdeg for different VIO algorithms and environments.

for the k-th time step is defined as

RPE(P1:T ,Q1:T ,k) = ‖trans(Ek )‖ (A.4)

where Ek = (Q−1
k Qk+∆)−1(P−1

k Pk+∆) is relative pose error at time step k. Here, ∆ is a fixed time

interval for which we calculate the local accuracy.

We additionally introduce the performance degradation rate rdeg for the VIODE dataset. This

is defined as rdeg = ATEhigh/ATEnone, where ATEhigh and ATEnone are the ATE of the algorithm

in the high and none sequences respectively. This metric illustrates the robustness of the VIO

algorithm in dynamic sequences compared to that in static sequences. We calculate this value

for all evaluated algorithms in each environment.

A.4.2 Evaluation of existing VIO algorithms

We apply ROVIO and VINS-Mono, two state-of-the-art VIO algorithms, on the VIODE dataset.

Since the performance of these algorithms is not deterministic, each is evaluated ten times.

Our findings show that both ROVIO and VINS-Mono perform worse in the presence of dynamic

objects. We observe that the ATE of both algorithms increases as the scene gets more dynamic

(Fig. A.5). Furthermore, estimated trajectories illustrate the degradation of VINS-Mono in

highly dynamic sequences. For example, in parking_lot/high, there is a drift around (x, y) =
(0,8) while is not present in parking_lot/none (Fig. A.6). The degradation rate is mostly

higher than 5.0 for ROVIO and VINS-Mono (Tab. A.1). Comparing the degradation rate of

ROVIO and VINS-Mono among the three environments, city_day environment is the most

challenging one among the three. The degradation rate of both ROVIO and VINS-Mono was

the lowest in city_night, in which the average and maximum pixel-based dynamic rate were

also the lowest (Fig. A.2).

We show that the wrong estimation often occurs when the dynamic objects are in field of view.

One evidence is a correspondence between two types of dynamic rates (rpix and rof) and RPE

estimated by VINS-Mono (Fig. A.8). For example, rpix, rof, and RPE mark the highest value

between 40 and 50s in parking_lot/high. These correspondences between RPE and two

types of dynamic rate support the hypothesis that the performance degradation of current

VIO algorithms is caused by dynamic objects.
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Figure A.5 – Performance comparison of VIO algorithms in dynamic environments. We show
the absolute trajectory error (ATE) of (a) ROVIO, (b) VINS-Mono, and (c) VINS-Mask for
different dynamicity levels. The performance of these methods is not deterministic. Thus,
we run the simulation ten times for every sequence. We observe an increase in errors as the
dynamic level increases for ROVIO and VINS-Mono. The ATE of VINS-Mask is consistently
lower than for the other two algorithms.

A.4.3 Evaluation of VINS-Mask

In addition to ROVIO and VINS-Mono, here we evaluate VINS-Mask on the VIODE dataset.

VINS-Mask is also applied ten times for each sequence. We found that the performance of

the VINS-Mask is almost independent of the dynamic level. The ATE of VINS-Mask is mostly

lower than the results of ROVIO and VINS-Mono (Fig. A.5). The degradation rate of VINS-Mask

is consistently lower than the other two algorithms (Tab. A.1). The estimated trajectories in

high sequences for each algorithm also illustrates the improvement by VINS-Mask (Fig. A.7).

While the existing algorithms exhibit some drifts in highly dynamic sequences, VINS-Mask

successfully suppresses these drifts. It is also worth noting that VINS-Mask performs similarly

with VINS-Mono in static sequences, in which VINS-Mask masks out static objects while

VINS-Mono does not. The improvement by VINS-Mask suggests the usefulness of this type of

approach as a technique to run VIO robustly in dynamic environments. Moreover, the results

indicate that the performance degradation of the existing algorithms is due to the dynamic

objects in the scene.

A.5 Conclusions

In this chapter, we proposed the VIODE dataset, a novel visual-inertial benchmark that con-

tains variable and measurable dynamic events. Through the systematic introduction of

dynamic objects, the users can isolate the effect of dynamic objects on the robustness of VIO.

Using the VIODE dataset, we have shown that both VINS-Mono and ROVIO, the two state-

of-the-art open-source VIO algorithms, perform worse as the scenes get more dynamic. We

also demonstrated that the utilization of semantic information has the potential to overcome

this degradation. By masking out the region of the objects, we could mitigate the impact of

dynamic objects on the VIO algorithm.

As a future research direction, it is necessary to evaluate the VINS-Mask by using semantic
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Figure A.6 – Estimated trajectories of VINS-Mono in each environment with different dynam-
icity levels: none, low, mid, and high.

segmentation instead of ground-truth segmentation. One of the challenges would be a real-

time onboard deployment, as latency can be critical for the performance of VIO. It is also

important to investigate the better utilization of semantic segmentation for VIO. One of the

directions would be to distinguish static objects from dynamic ones. Since the current VINS-

Mask can mask out static objects such as parked vehicles, further research is still necessary for

robust VIO in challenging dynamic scenes. As a future direction of the VIODE dataset, we are

also interested in introducing other types of sensors in the dataset to enable the evaluation

of localization algorithms with various sensor configurations. Another possible future work

is, similarly to [163], to use real IMU and trajectory data recorded on a real drone platform

instead of simulated ones.
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Figure A.7 – Estimated trajectories of ROVIO, VINS-Mono, and VINS-Mask for sequences with
high dynamicity level.
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Figure A.8 – Comparison of two types of dynamic rate and estimation performance of VINS-
Mono over time axis for none, low, mid, and high sequences in each environment. The first
row shows the pixel-based dynamic rate rpix (Eq. A.1), the second row the OF-based dynamic
rate rof (Eq. A.2), and the last row shows the RPE (Eq. A.4).
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B Open-source software

This thesis has lead to the development of several software packages. We briefly describe the

purpose and content of these packages.

B.1 vswarm: vision-based flocking in simulation and reality

The vswarm1 package — short for visual swarm — enables physics-based simulations and real-

world experiments with quadcopters (Chapter 3, 4, and 5). It implements several computer

vision algorithms such as generic object detection [95], marker-based detections [164], and

background subtraction [94]. It also supports multi-target tracking with implementations of

the linear, extended, and unscented versions of the GM-PHD filter [107]. It is mainly written

in Python (and some C++) and is based on the ROS ecosystem [108]. The physics-based

simulations rely on Gazebo [53], as well as sensors and models from RotorS [54] and PX4 [59].

The software stack can either be run in simulation (Fig. B.1) or on real hardware to synthesize

vision-based swarms. It relies on PyTorch [85] for the neural network implementations and

NumPy for numerical computations [165].

B.2 vmodel: agent-based simulations for swarms

The vmodel2 package — short for visual model — enables agent-based swarm simulations

and is used throughout the thesis (Chapter 3, 4, and 5). It implements point mass dynamics

and several flocking algorithms such as Reynolds [64], Olfati-Saber [166, 71], Gregoire [167],

Leonard [168], and Vásárhelyi [14] flocking. The package allows the evaluation of the flocking

algorithms using several metrics (Sec. 5.2.1) such as order [14], union [67], and connectivity

[16]. It supports common neighbor selection methods such as metric [64], topological [20],

spatially-balanced [117], and Voronoi-based [121] strategies. It is written entirely in Python

and supports live plotting for visualization purposes (Fig. B.2) based on Matplotlib [169]. It

1The vswarm package on GitHub: https://github.com/lis-epfl/vswarm.
2The vmodel package on GitHub: https://github.com/lis-epfl/vmodel.
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Figure B.1 – Screenshot of the vswarm simulation environment running the vision-based
flocking algorithm with three agents. The screenshot contains a top view of the agents in the
Gazebo simulator (left side), the same perspective from the RViz visualization tool (right side),
and a live camera feed from the focal agent (bottom right window). We take the perspective of
the focal agent (central drone in both halves) that estimates the positions and velocities of the
two other drones. We show the position uncertainty of the other drones due to noise on range
and bearing (pink ellipsoids, exaggerated for visualization purposes).

relies heavily on several libraries of the scientific Python ecosystem such as NumPy [165],

SciPy [170], and IPython [171].

B.3 openmv_cam: ROS driver for the OpenMV Cam

The openmv_cam3 package is a ROS driver for the OpenMV Cam4, a low-powered and exten-

sible machine vision camera. It implements a wrapper that acquires images over the USB

interface and relays them as ROS (compressed) image messages.

3The openmv_cam package on GitHub: https://github.com/fabianschilling/openmv_cam.
4OpenMV: https://openmv.io/.
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B.3. openmv_cam: ROS driver for the OpenMV Cam

(a) Live view (b) States and metrics

Figure B.2 – Screenshot of the vmodel simulator running a simulation with three hundred
vision-based agents. The (a) live view screen shows the agents (their size, positions, and
velocities) and highlights the perspective of a single focal agent. The (b) state screen shows
statistics on inter-agent distances, speed, and several metrics.
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ronments,” in IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2954–2961, Apr.

2021 [61].
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Robotics and Automation Letters, vol. 6, no. 2, pp. 1343–1350, Apr. 2021 [63].

• V. Ramachandran, F. Schilling, A. Wu, and D. Floreano, “Smart textiles that teach: Fabric-

based haptic device improves the rate of motor learning,” in Advanced Intelligent Sys-

tems, vol. X, no. X, pp. 2100043, Jul. 2021 [172].

Articles submitted to peer-reviewed journals:
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