=Pr-L

Thése n°8790

Efficient geometric integrators for the linear and
nonlinear time-dependent Schrodinger equation

Présentée le 25 mars 2022

Faculté des sciences de base
Laboratoire de chimie physique théorique
Programme doctoral en chimie et génie chimique

pour I'obtention du grade de Docteur &s Sciences

par

Julien ROULET

Acceptée sur proposition du jury

Prof. T. Rizzo, président du jury
Prof. J. Vanicek, directeur de thése
Prof. V. Engel, rapporteur

Prof. K. Houfek, rapporteur

Dr S. Bonella, rapporteuse

m Ecole
polytechnique

fédérale
de Lausanne 202 2



Pour Claudine. ..






Acknowledgements

This thesis became a reality with many people’s valuable help and kind support. I

would like to express my deep sense of gratitude to them.

Foremost, I would like to thank my advisor, Prof. Jifi Vanicek, for his guidance,
support, patience, and his overwhelming enthusiasm for science. I have learned a

lot from him and greatly appreciated working in the LCPT group.

I am grateful to all colleagues I met during my doctoral studies: Aurélien Patoz
and Konstantin Karandashev, for their guidance and valuable advice during my
Master’s project. I thank Seonghoon Choi and Tomislav Begusi¢, with whom
I started the PhD, for their help and the excellent time we spent joking and
struggling with programming and science. I am grateful to postdocs Antonio Prlj,
Christophe Vaillant, Lipeng Chen, Nikolay Golubev, Sergey Antipov, and Soléne
Oberli for sharing their scientific knowledge and technical advice. I thank Alan
Scheidegger, Eriks Kletnieks, Fabian Kroninger, Roya Moghaddasi Fereidani, and
Zhan Tong Zhang for their help in understanding their respective research projects
and being amazing colleagues. I would like to thank Sylvie Dentan for always
organizing smooth travel to our various conferences and her assistance with all the

administrative paperwork.

[ am extremely grateful to Leyla Vuong for her kindness, patience, and unconditional
love. I thank her for all the amazing moments we shared, travelling, hiking and

camping.

Last but not least, I am deeply indebted to my family for their lifelong encourage-
ment: parents Maria and Vincent; siblings Mélina, Thomas, and Kelian; grandpar-

ents Jean-Daniel and Claudine.

Lausanne, February 18, 2022 J. R.






Abstract

Many physical and chemical reactions are driven by nonadiabatic processes, which
imply the breakdown of the celebrated Born—Oppenheimer approximation. To
understand these processes, experimentalists employ spectroscopic techniques.
However, the obtained results are difficult to decipher, and accurate molecular

quantum dynamics simulations are used to interpret the results.

The second-order split-operator algorithm is one of the most popular numerical
methods for simulating the nonadiabatic quantum dynamics because it is explicit,
easy to implement, and it preserves many geometric properties of the exact solution.
However, the second-order accuracy of this algorithm makes it unaffordable if very
accurate results are needed, as tiny time steps are required. To remedy this lack
of efficiency, we use composition methods to generate higher-order split-operator

algorithms.

Although compositions methods increase the accuracy of the standard split-operator
algorithm to arbitrary even orders of convergence, the efficiency of the obtained
algorithms is still questioned because the computational cost per time step in-
creases drastically with the order of convergence. Therefore, using one- and
three-dimensional models of Nal and pyrazine, respectively, we investigate the
convergence, efficiency, and geometric properties of these high-order integrators
and find that they are, for accurate simulations, more efficient than the standard

split-operator algorithm while still preserving the same geometric properties.

Besides employing these integrators for simulating the nonadiabatic quantum
dynamics, we also explore quantum control and, more specifically, local control
theory. This technique uses the instantaneous dynamics of the system to compute
an electric field, which interacts with the system in order to drive the state in
a desired direction. Because the electric field is obtained from the state itself,
we demonstrate that this technique translates into a nonlinear time-dependent

Schrodinger equation.
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Abstract

Although it is geometric and second-order accurate for simple nonlinearities, the
standard split-operator algorithm loses its time-reversal symmetry and second-
order accuracy when employed for more complicated nonlinear time-dependent
Schrodinger equations. One example of the latter is the one appearing in local

control theory.

We demonstrate that this lack of generality of the standard split-operator algorithm
occurs due to its explicit nature. Thus, we propose two strategies to overcome
this issue: First, we completely abandon the split-operator algorithm and present
a numerical method based on the implicit midpoint method instead. Second, we
make the standard split-operator algorithm implicit, which avoids abandoning
the split-operator algorithm altogether. The accuracy and geometric properties
of both strategies are then numerically verified using a two-dimensional model of
retinal, a molecule whose photochemistry triggers the first event in the biological
process of vision. The results demonstrate that both approaches yield second-order
methods that preserve all the geometric properties of the exact solution. Because
the developed integrators are symmetric, we further improve their accuracy and

efficiency using composition methods.

Keywords: nonadiabatic quantum dynamics, geometric integrators, split-operator
algorithm, composition methods, quantum control, local control theory, nonlinear

time-dependent Schrodinger equation
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Résumé

De nombreuses réactions physiques et chimiques sont induites par des processus
nonadiabatiques, impliquant la rupture de la célebre approximation de Born-
Oppenheimer. Afin de comprendre ces processus, les expérimentalistes font appel
a des techniques spectroscopiques. Puisque les résultats obtenus sont difficiles a
déchiffrer, des simulations précises de la dynamique quantique moléculaire sont

employées afin d’interpréter ces résultats.

L’algorithme split-operator du second ordre est I'une des méthodes numériques
les plus populaires pour simuler la dynamique quantique nonadiabatique. En effet,
cet algorithme est explicite, facile a mettre en ceuvre et préserve de nombreuses
propriétés géométriques de la solution exacte. Cependant, comme il n’est précis
qu’au second ordre, il devient rapidement inabordable car des pas de temps minus-
cules sont nécessaires afin d’obtenir des résultats tres précis. Pour remédier a ce
manque d’efficacité, nous utilisons des méthodes de composition pour générer des

algorithmes split-operator d’ordre supérieur.

Bien que les méthodes de composition améliorent la précision de 'algorithme split-
operator jusqu’a des ordres de convergence arbitraires, 'efficacité des algorithmes
obtenus est souvent remise en question car le cotit de calcul par pas de temps
augmente considérablement avec 1'ordre de convergence. Par conséquent, en ayant
recours a des modeles unidimensionnel de Nal et tridimensionel de la pyrazine,
nous étudions la convergence, l'efficacité et les propriétés géométriques de ces
intégrateurs d’ordre élevé. D’apres les resultats obtenus, nous constatons qu’ils sont,
pour des simulations tres précises, bien plus efficaces que ’algorithme split-operator

standard, et ce, tout en conservant les mémes propriétés géométriques.

Outre 'utilisation de ces intégrateurs pour simuler la dynamique quantique nonadia-
batique, nous explorons également le contrdle quantique et, plus particulierement,
la théorie du controle local. Cette technique emploie la dynamique instantanée du

systéeme pour produire un champ électrique qui interagit avec le systeme afin de



Résumé

conduire ce dernier dans une direction souhaitée. Comme le champ électrique est
obtenu a partir de I’état lui-méme, nous démontrons que cette technique se traduit

en une équation de Schrodinger non-linéaire dépendante du temps.

Bien que I'algorithme split-operator standard soit géométrique et précis au second
ordre pour les non-linéarités simples, il perd sa symétrie temporelle et sa précision
au second ordre lorsqu’il est utilisé pour des équations de Schrodinger non-linéaires

plus sophistiquées, comme celle qui apparait dans la théorie du contréle local.

Nous démontrons que ce manque de généralité de 1’algorithme split-operator est
dii & sa nature explicite et proposons deux stratégies pour remédier a ce probleme.
Dans la premiere approche, nous abandonnons completement 'algorithme split-
operator et présentons a la place une méthode numérique implicite, basée sur la
méthode du point médian. Dans la seconde approche, nous rendons ’algorithme
split-operator standard implicite, évitant ainsi I’abandon complet de I’algorithme.
La précision et les propriétés géométriques des deux stratégies sont ensuite vérifiées
numériquement a l’aide d’'un modele bidimensionnel du rétinal, une molécule dont
la photochimie déclenche le premier événement du processus biologique de la vision.
Les résultats montrent que les deux approches donnent des méthodes de second
ordre qui préservent toutes les propriétés géométriques de la solution exacte. Les
intégrateurs développés étant symétriques, nous améliorons encore leur précision et

leur efficacité en utilisant des méthodes de composition.

Mots-clés : dynamique quantique nonadiabatique, intégrateurs géometriques,
méthodes split-operator, méthodes de composition, controle quantique, théorie du

contrdle local, équation de Schrodinger non-linéaire
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I} Introduction

In the Born-Oppenheimer approximation [1, 2], which separates nuclear and
electronic motion, independent electronic potential energy surfaces are assumed.
However, many important processes in nature [3| can only be described by several
coupled Born-Oppenheimer potential energy surfaces [4-7], i.e., by taking into

account nonadiabatic effects.

These rapid nonadiabatic processes can be experimentally monitored using pump-
probe spectroscopy [8-12], and with the help of new laser technologies, which allows
the production of phase and amplitude mediated pulses [13-18], it is possible to
not only monitor chemical reactions but also to drive them into a desired outcome
[19-21], which we refer to as quantum control. In this vein, several theoretical
approaches for the quantum control have been developed. An intuitive way is
provided by the pump-dump scheme [22, 23|, which employs two time-delayed
pulses to guide a wavepacket in a desired reaction channel. The most effective
technique for the control is optimal control theory [22, 24-26], which designs a
pulse to maximize the overlap between the state at the final time and a selected
target state. However, this technique is global in time as it is iterative and requires
full forward and backward propagations at each iterative step. Local control
theory [25, 27] provides an alternative to the heavy cost associated with optimal
control theory. For instance, in local control theory, the control pulse, which drives
the system to a desired objective, is designed only from the instantaneous dynamics

of the state, and a single propagation is required for achieving the control.

To interpret the results obtained by experimentalists and simulate the quantum

control, one needs to solve the time-dependent Schrodinger equation. Various
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approaches [28] have been developed to solve this equation but they can be
separated into two classes. The approximate methods, which rely on semiclassical
approximations and the exact methods, which account completely for the quantum
nature of the problem. Because the scaling of exact methods increases exponentially
with the number of degrees of freedom, they are only applicable to systems with a
few degrees of freedom. In contrast, the semiclassical methods can be used to treat
systems with numerous degrees of freedom, at the cost of not entirely accounting

for the quantum nature of the problem.

To treat high-dimensional systems, several semiclassical methods have been devel-
oped, including thawed [29-32] or variational [33, 34] Gaussian approximation, ab
initio multiple spawning [35-38] and cloning [39], multiconfigurational Ehrenfest
[40, 41], variational multiconfigurational Gaussian [42-44], and methods based
on the Herman-Kluk propagator [45, 46]. Note that some of the methods listed
above are multi-trajectory and can still be costly because they may require many
trajectories to converge. Nevertheless, a nice property of some of these methods
is that they need only local potential energy information along the trajectory
and thus, are suitable for ab initio dynamics. Indeed, these methods have broad
applications, including the description of charge transfer in molecules [47-49] and

the computation of absorption spectra [35, 41, 50, 51].

For low-dimensional systems, the starting point is to compute the potential energy
surface, i.e., solving the time-independent Schrodinger equation with a suitable
electronic structure calculation. Then, before solving the dynamics, the problem
is represented in a reduced Hilbert space. Several approaches [28, 52| use a time-
independent basis composed of localized pseudospectral or delocalized spectral
functions, which reduces into a grid and a matrix representation of the wavefunction
and the Hamiltonian, respectively. However, some of these techniques, such as the
discrete variable representation [53, 54|, require constructing the Hamiltonian, a
significant task. Other approaches, such as the multiconfigurational time-dependent
Hartree method [55-57], which expands the state using orthogonal time-dependent
basis functions, rely on the fact that only a small fraction of the tensor-product
Hilbert space is typically accessible during the time of interest. This method
has been applied to describe a large variety of problems, including photodissoci-
ation [58-60], photoabsorption spectra [61-63], and charge separation in organic
photovoltaics [64-66].



However, there are systems in which the full Hilbert space is accessible, and then
full grid or time-independent basis sets are preferable. Thus, the dynamic Fourier
method [67-69] is an alternative that can access the full Hilbert space, preventing
the construction of the Hamiltonian. Similar to the discrete variable representation,
this method represents the wavefunction on a grid but only computes the action
of the Hamiltonian on the wavefunction. Assuming that the Hamiltonian can be
separated into a sum of a term depending only on the nuclear momenta and a
term depending only on the nuclear coordinates, the action of each of these terms
is obtained by pointwise multiplication in the space in which it is diagonal. The
wavefunction representation is then switched between momentum and coordinate

space by Fourier transformation.

After space discretization, a suitable numerical method, approximating the exact
evolution operator, should be used to propagate the wavefunction. Again, various
approaches already exist [70, 71], ranging from finite difference methods, such as
the Euler and the second-order differencing methods [68, 71, 72], to polynomial
approaches, such as the short iterative Lanczos algorithm [73-75] and Chebyshev
method [76]. Another technique, called the split-operator method [67], separates
the terms contained in the Hamiltonian and computes their respective exact
evolution operator in the representation in which they are diagonal. Next, employing
the dynamic Fourier method [67-69], each exact evolution operator propagates
the wavefunction separately in the correct representation. Due to its ease of
implementation, many important applications have made use of the split-operator
algorithm. For example, it has been employed for the description of dissociation of
molecules at metal surfaces [77-79], photoionization [80-82] and photodissociation

[83—85] processes, as well as various pump-probe spectroscopy experiments [3, 86,

87].

However, the standard versions of the numerical methods mentioned above preserve
only some of the geometric properties of the time-dependent Schrodinger equa-
tion [88, 89]. Nevertheless, the preservation of these invariants can be important
in some situations, and accuracy should not be the only criteria for choosing a
propagation method. Therefore, this thesis will focus on geometric integrators [88],
which are numerical methods that preserve the geometric properties of the differ-
ential equation, such as time-reversal symmetry, symplectic structure, norm, inner
product, energy, and stability. The geometric integrators acknowledge that the

time-dependent Schrodinger equation is not any general differential equation but
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is special, and their usage can be likened to using a well-fitting screwdriver instead

of a hammer to attach a screw.

Overall, the aim of this thesis is to investigate the accuracy, efficiency, and geometric
properties of integrators employed for simulating the nonadiabatic dynamics and its
local control in low-dimensional systems. In the context of nonadiabatic dynamics,
we present efficient integrators to solve the linear time-dependent Schrodinger
equation, whereas for local control theory, we demonstrate later that this technique
implies nonlinearity, thus presenting efficient geometric integrators for solving the

general nonlinear time-dependent Schrodinger equation.

In this introductory Chapter, we introduce the linear time-dependent Schrédinger
equation and define the geometric properties conserved by its exact evolution
operator. Next, we describe how light-matter interactions can be considered
and present local control theory. After this, we present some standard numerical
methods employed to solve the linear time-dependent Schrodinger equation. Finally,

a brief overview of the thesis is provided at the end of this Chapter.

1.1 The linear time-dependent Schrodinger
equation

The central object of the first part of this thesis is the linear time-dependent

Schradinger equation
L d A
Zh@Wt) = Holvx), (1.1)

which describes the time evolution of the molecular state 1); at time ¢ under the

influence of a linear time-independent Hamiltonian H,.

1.1.1 Geometric properties of the exact evolution operator

With the initial condition vy, the formal solution of Eq. (1.1) is

W) = Uy, >0, (1.2)
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where the exact evolution operator U is given by

A

0(t) = U, (1 (13)

with U 4(t) := e/l denoting an evolution operator associated with a Hermitian
operator A and time ¢. The exact evolution operator possesses many geometric
properties. Indeed, it is linear, unitary, symmetric, time-reversible, stable, symplec-
tic, and conserves the norm, energy, and inner product. Because these geometric
properties are also desirable when approximating the exact evolution operator with

a numerical method, it is relevant to define them clearly.

An evolution operator U is said to preserve the norm || - || == (-|-)'/2 if

1Tl = [lel (1.4)

for all ¢, and preserve the inner product (-|) if

<U¢t|U¢t> = <¢t|UTU¢t> = <¢t|¢t> (1‘5)

for all ¢, and ¢, with Ut denoting the Hermitian conjugate of U. For linear
operators, these two properties are equivalent because norm conservation implies
conservation of the inner product. In contrast, for general, and possibly nonlinear,
operators, norm preservation implies neither linearity nor preservation of the inner
product [90]. The condition for conservation of the inner product is equivalent to
the condition that UTU be the identity operator, i.e.,

Ut=0", (1.6)

for which the evolution operator U is said to be unitary. Since the Hamiltonian

is Hermitian, i.e., H} = Hy, the exact evolution operator (1.3) is unitary due to

A

U(t)t = eiflit/h — ¢iflot/h — {7(#)=1, and consequently, conserves the norm and the

inner product.

An operator U is said to be symplectic if

WU, Ugy) = w(thr, 6), (1.7)

where w(1), ¢) denotes the symplectic two-form, which is a nondegenerate skew-
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symmetric bilinear form on the Hilbert space. In quantum mechanics, a symplectic

two-form can be defined as [89]

w(¥, 9) = =2hIm(P|9), (1.8)

and is naturally conserved if the inner product is. The exact evolution operator

(1.3) is therefore symplectic.

An evolution operator U is said to preserve the energy if Ey(t) = <f[0>0wt =
(Hy)y, = Eo(0), where (A), := (4| AJ)) denotes the expectation value of operator
A in state 1. This property holds if the evolution operator is unitary and commutes

with the Hamiltonian, i.e.,

A

(Ho)pry, = (U Ho| Uy
= <¢t’UTﬁoﬁ|¢t>
= (4| U0 Holth)
= (e Holt)

= (Ho)y,- (1.9)

The exact evolution operator (1.3) conserves the energy because it is unitary and
commutes with the Hamiltonian since it can be Taylor expanded into powers of
Hy.

An evolution operator U (t) is said to be symmetric 88, 91] if
Uy =U(t), (1.10)

where U(t)* := U(—t)~" denotes the adjoint of operator U/(t). A direct consequence
of symmetry is time reversibility, i.e., forward propagation of a state 1y from time
0 to time t, followed by backward propagation from time ¢ to time 0, yields g
again. Indeed, any symmetric evolution operator U (t) is also time-reversible due
to

U(=t)U (t)h = U(=) T (t)*1hy = U(—)T (=) 4y = 2¢. (1.11)

The exact evolution operator (1.3) is symmetric and time-reversible because U (t)* =
e~ Mot/ = ().,
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Finally, an evolution operator U(t) is said to be stable [91-93] if for every e > 0,
there exist d(e) > 0 such that

[0 — ¢ol| < & implies [|U(t) — U(t)do|| < € for all . (1.12)
It is said to be attracting [92, 93] if there exists a § > 0 such that

1o — ¢l < & implies || T (¢)1hg — U ()| — 0 as t — oo. (1.13)

It is said to be asymptotically stable if it is both stable and attracting. Due to norm
conservation, the exact evolution operator (1.3) is stable but not asymptotically

stable because

1T ()0 = U)ol = llt0 — ol (1.14)

1.1.2 Interaction of a molecule with an electromagnetic
field

The interaction of a molecule with an explicit laser field £ (t) is described by the

linear time-dependent Schrédinger equation

L d -

Zhah@ = H(t)|tr), (1.15)
where the time-dependent Hamiltonian

H(t) == Ho + Vi (1) (1.16)

is composed of the molecular Hamiltonian Hy and a time-dependent interaction
potential \A/}nt(t). Within the electric-dipole approximation [94], the interaction
potential is given by

Vi) 1= —ji(4) - E(t), (1.17)
where the vector function ji(§) of the position operator ¢ denotes the electric dipole
operator of the system. Direct integration of Eq. (1.15) with the initial condition v,

A

leads to the formal solution |¢) = U(t,ty)|v,) with the exact evolution operator



Chapter 1. Introduction

given by the time-ordered exponential

—; tdt’ﬁ(t’)] | (1.18)

to

A

Ul(t,ty) :=T exp

where 7 denotes the time-ordering operator. Similarly to the evolution operator
(1.3), this evolution operator has many important geometric properties: it is
linear, unitary, symplectic, symmetric, time-reversible, and stable [88-91]. Because
it is unitary, the evolution operator (1.18) conserves the norm as well as the
inner product and symplectic structure [90]. However, since the Hamiltonian is
time-dependent, the Schrodinger equation (1.15) is a nonautonomous differential
equation [88], and consequently, the evolution operator (1.18) does not conserve

energy.

1.1.3 Local control theory

Contrary to Eq. (1.17), the electric field used in local control theory [25, 27|, called
control field and denoted by ELCT(t), is not known explicitly as a function of time.
Instead, it is chosen “on the fly” according to the current state v, of the system,
in order to increase or decrease the expectation value (OA)% of a chosen operator
O. More precisely, the control field is computed so that the time derivative of the
expectation value,

d<§t>¢f - ii([ff(t),émt = ;{([ﬁo, Oy, = Evor(t) - (i, Ol)w ), (1.19)

remains [25, 27] positive or negative at all times. If the operator O commutes with

the system’s Hamiltonian Hy, this goal is achieved by using the field
Evor(t) = ([, O]y, = TN, Oy, (1.20)

where A > 0 is a parameter which scales the intensity of the control field and
the sign in Eq. (1.20) is chosen according to whether one wants to increase (+)

or decrease (—) (O)y,. This claim is proven by inserting the definition (1.20) of
ELCT(t) into Eq. (1.19), which yields

d<OA>1/)t _ 3
dt  h

(1A, Ol), + I Ol (1.21)
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for the derivative of the expectation value. This equation confirms that a strictly
increasing or strictly decreasing evolution of <OA)¢t is guaranteed only if [lflo, O] =0
[95, 96], largely reducing the choice of operators O whose expectation values
we can control monotonically. Despite this restriction, local control theory has
been successfully used to control various processes such as energy and population
transfer [25, 27, 97, 98], dissociation and association dynamics [96, 99-101] direction

of rotation in molecular rotors [102], and electron transfer [103].

1.2 Numerical methods

To propagate the state, a numerical method is employed. The basic idea is to
decompose the full evolution operator into a number of small time steps At. Then,
the state ¥, a; at time t + At is obtained from the state v, at time ¢ using the

relation

A

wt-i-At = Uappr (At)% y

where Uappr(At) is an approximate evolution operator. By construction, all consis-

tent propagation methods converge to the exact solution in the limit At — 0.

1.2.1 First-order Euler methods

The simplest methods are the explicit and implicit Euler methods [89, 91| which

approximate the exact evolution operator, respectively, as

U (AL) := 1 — %ﬁoAt, (1.22)
and . .
Uimpt (AL) = {1 + ;ﬁom} . (1.23)

Both methods are only first-order in the time step and, therefore, very inefficient.
Moreover, both Euler methods lose the exact evolution operator’s norm conservation,
symmetry, time reversibility, symplectic structure, and unitarity [104]. Even though
they commute with the Hamiltonian, neither method preserves the energy due to
their lack of unitarity. Worst still, the explicit Euler method is unstable, whereas the
implicit Euler method is asymptotically stable. Nevertheless, they are applicable

to both separable and nonseparable Hamiltonian operators.
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1.2.2 First-order split-operator algorithms

Until now, we considered general Hamiltonian operators Hy = Hy(q,p), which can
be either separable or nonseparable. For split-operator algorithms, we require the
Hamiltonian to be separable as

Hy=T+Vo=T(p) + Vo(q) (1.24)

into a sum of kinetic 7" and potential Vo energies, which depend, respectively, only

on the momentum p and position ¢ operators.

Depending on the order of kinetic and potential propagations, the approximate

evolution operator is [67, 105]

Urv(At) i= Up(At) Ty, (At) (1.25)
in the TV split-operator algorithm and

Uvr(At) i= Uy, (At Uz (At) (1.26)

in the VT split-operator algorithm. Both Ury and Uyt are unitary, symplectic,
stable, but only first-order in the time step At. Neither method conserves energy
because neither evolution operator commutes with the Hamiltonian. Moreover,
neither method is symmetric nor time-reversible. These properties are justified in

Appendix A and summarized in Table 2.1.

1.2.3 Recovery of geometric properties by composed meth-

ods

None of the Euler methods (1.22)—(1.23) are symmetric nor time-reversible. Indeed,
they are adjoints of each other, and hence, time-irreversible [104]. Nevertheless,
composing two adjoint methods together, each with a time step At/2; yields a
second-order accurate symmetric method [89]. Employing such a composition
with the implicit and explicit Euler methods yields, depending on the order of
composition, either the implicit midpoint method

Umia(At) = Uppr(At/2) Uinpi (A /2) (1.27)

10
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or the trapezoidal rule [106, 107] (or Crank—Nicolson method)
Usrap (A1) = Uit (AL/2) Ui (AL/2). (1.28)

Both methods are second-order accurate, norm- and energy-preserving, stable,
symmetric, and time-reversible regardless of the size of the time step [88, 104].
However, note that the geometric properties of the implicit midpoint and the
trapezoidal rule are only preserved if the implicit step (1.23) is solved exactly (or in
practice to machine accuracy). In this thesis, we solve this linear system of equations
using the generalized minimal residual algorithm [108-110] (see Appendix C for a
detailed presentation of this algorithm).

Similarly, because they are also adjoints of each other, the time-irreversible first-
order split-operator algorithms (1.25)—(1.26) can be composed together to obtain
a symmetric second-order method. Depending on the order of composition, one
obtains [111] either the VTV algorithm

Uyrv(At) == Uyr(At/2)Ury (AL/2), (1.29)
or TVT algorithm
Uryr(At) == Upy (AL/2)Uyr(AL/2). (1.30)

Both are explicit, unitary, symplectic, stable, symmetric, and time-reversible,
regardless of the size of the time step. In contrary to the second-order integrator
based on the Euler methods [Egs. (1.27)—(1.28)], neither the TVT nor VTV split-
operator algorithms commute with the Hamiltonian and, therefore, neither method
conserves the energy exactly (see Table 2.1 and Appendix A for a summary and

the proofs of these geometric properties).

1.2.4 Adaptation to time-dependent Hamiltonians

The first-order explicit and implicit Euler methods can be extended to solve the lin-
ear time-dependent Schrédinger equation with time-dependent Hamiltonian (1.15).

Indeed, by acknowledging the time dependence of the Hamiltonian, the explicit

11
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(1.22) and implicit (1.23) Euler methods are modified, respectively, as

Ut (t + AL 1) =1 — %ﬁ@)m, (1.31)
and . .
Uimpt(t + ALE) == |1+ ~H(t + ADAE| . (1.32)

St

Moreover, following the procedure described in Sec. 1.2.3, the Euler methods
(1.31)—(1.32) can be composed together to obtain second-order accurate modified

versions of the implicit midpoint method
Unia(t + At 1) := Unept (t + At t+ At/2)Uipnpi (t + At /2, 1) (1.33)
and the trapezoidal rule
Usvap (t + At 1) := Uinpt (£ + At t+ At/2) Ui (t + At/2,1). (1.34)

Although the trapezoidal rule conserves the norm of a state evolved with a time-
independent linear Hamiltonian, it loses this property when the Hamiltonian is
time-dependent or nonlinear [104] (which results in an implicit time dependence).
In contrast, the implicit midpoint method preserves all the geometric properties of

the exact evolution operator (1.18).

Similarly, assuming that the Hamiltonian be separable as H(t) = T + Vioy(t), where
Vtot(t) = Vo + ‘A/im(t) denotes the sum of the potential energy and the interaction
potential operators, the first-order split-operator methods can be adapted for

time-dependent Hamiltonians as
Urv(t + At t) == Up(A)Uy, ) (At) (1.35)
in the TV split-operator algorithm and as
Ovr(t + At,t) o= Uy ne (A UR(AL) (1.36)

in the VT split-operator algorithm. The composition of these two adjoint methods
leads to modified versions of the VI'V

Uvry(t+ At, 1) := Uyrp(t + At t 4+ At/2)Upy(t + At/2, 1), (1.37)

12
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and TVT
Uryr(t + At t) := Upy(t + At ¢+ At/2) Uy (t + At/2,t) (1.38)

split-operator algorithms, which are both second-order accurate, geometric, and

explicit.

1.2.5 Dynamic Fourier method

To employ the numerical methods presented above, an efficient method for com-
puting f(2)vy, where f(&) is an arbitrary function of & and % denotes either
the momentum p or position ¢ operators, is needed. In the dynamic Fourier
method [28, 67—69], each action of f(Z) in the state 1 is performed in the -
representation, in which z is a diagonal operator. Therefore, the representation
of 1, is changed, as needed, using a Fourier transform, and a simple pointwise

multiplication yields the action.

1.3 Thesis overview

We have seen that the exact solution of the linear time-dependent Schrodinger
equation (1.1) conserves many geometric properties. However, these geometric
properties are usually not preserved by first-order approximate methods. In this
regard, we showed that we could obtain second-order implicit methods, preserving
all the geometric properties of the exact solution, by composing the first-order
explicit and implicit Euler methods together. Similarly, second-order accurate
splitting techniques are obtained by composing the two first-order split-operator
algorithms. In contrast to the algorithms based on the Euler methods, these second-
order split-operator algorithms are only applicable to separable Hamiltonians and
do not preserve the energy exactly. However, because the splitting techniques
are explicit, they are much more efficient than the algorithms based on the Euler

methods.

Since the split-operator algorithms only have a second-order accuracy, using these
methods to obtain highly accurate results would be costly. Chapter 2 addresses
this issue by employing composition methods to obtain higher-order split-operator

integrators which possess the same geometric properties as the original second-order

13
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algorithm.

In Chapter 3, we focus on the nonlinear time-dependent Schrodinger equation
which appears, as we will demonstrate in that chapter, in local control theory.
Additionally, we show that, although the standard split-operator is geometric
and second-order accurate for some examples of nonlinear Schrédinger equations,
it is not geometric and loses its second-order accuracy in the general case. To
remedy this lack of generality, we abandon the split-operator algorithm and present
second-order geometric integrators based on the implicit midpoint method for

solving general nonlinear time-dependent Schrodinger equations.

Subsequently, Chapter 4 demonstrates that the split-operator algorithm does not
need to be abandoned altogether, but only its explicit nature. Therefore, we
propose an implicit version of the split-operator algorithm that is geometric and

applies to the general nonlinear time-dependent Schrédinger equation.

Finally, Chapter 5 summarizes the main results of the thesis and proposes valuable

applications of the developed numerical integrators.

14



] Efficient high-order integrators
for the nonadiabatic dynamics in
the diabatic basis

We have seen in Chapter 1 that the exact nonadiabatic quantum evolution preserves
many geometric properties of the molecular Hilbert space. In Ref. [104], numerical
integrators of arbitrary-order of accuracy based on the implicit midpoint method
(1.27) and the trapezoidal rule (1.28) were developed. These integrators preserve
all the geometric properties exactly even in the adiabatic representation, in which
the molecular Hamiltonian is not separable into kinetic and potential terms. Here,
we focus on the separable Hamiltonian in diabatic representation, where the split-
operator algorithm provides a popular alternative because it is explicit and easy
to implement, while preserving most geometric invariants. Whereas the standard
version has only second-order accuracy, we implemented, in an automated fashion,
its recursive symmetric compositions, using the composition methods employed
in Ref. [104], and obtained integrators of arbitrary even order that still preserve
the geometric properties exactly. Because the automatically generated splitting
coefficients are redundant, we reduce the computational cost by pruning these
coefficients and lower memory requirements by identifying unique coefficients.
The order of convergence and preservation of geometric properties are justified
analytically and confirmed numerically on a one-dimensional two-surface model of
Nal and a three-dimensional three-surface model of pyrazine. As for efficiency, we
find that to reach a convergence error of 10719, a 600-fold speedup in the case of Nal
and a 900-fold speedup in the case of pyrazine are obtained with the higher-order
compositions instead of the second-order split-operator algorithm. Additionally,

the pyrazine results suggest that the efficiency gain survives in higher dimensions.

The content of this Chapter has been adapted from Ref. [112]. I acknowledge

Seonghoon Choi for his help with the code implementation and calculations.
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Chapter 2. Efficient high-order integrators for the nonadiabatic
dynamics in the diabatic basis

2.1 Introduction

The molecular Hamiltonian used in nonadiabatic simulations is obtained from
ab initio electronic structure methods, which typically yield adiabatic potential
energy surfaces. However, in the regions of conical intersections [113, 114], the
Born-Oppenheimer surfaces, which are nonadiabatically coupled via momentum
couplings, become degenerate and the nonadiabatic couplings diverge. To avoid
associated problems, it is convenient to use the diabatic representation, in which
the divergent momentum couplings are replaced with well-behaved coordinate

couplings.

Although exact diabatization is only possible in systems with two electronic states
and one nuclear degree of freedom [115], there exist more general, approximate
diabatization procedures [116-118], starting with the vibronic coupling Hamiltonian
model [119]. Another benefit of the diabatic representation is that it separates the
Hamiltonian into a sum of kinetic energy, depending only on nuclear momenta, and
potential energy, depending only on nuclear coordinates, which makes it possible
to propagate the molecular wavefunction with the split-operator algorithms. The
split-operator algorithms are explicit, easy to implement, and, in addition, they
are geometric [88, 91] because they conserve exactly many invariants of the exact

solution, regardless of the convergence error of the wavefunction itself.

Indeed, the standard, second-order split-operator algorithms (1.29)—(1.30) are
unitary, symplectic, stable, symmetric, and time-reversible, regardless of the size of
the time step. However, to obtain highly accurate results, the standard algorithms
require using a small time step, because they have only second-order accuracy.
There exist much more efficient algorithms, such as the short-iterative Lanczos
algorithm [73-75], which has an exponential convergence with respect to the time
step, and also conserves the norm and energy, but not the inner product (because

it is nonlinear) and other geometric properties.

To address the low accuracy of the second-order split-operator algorithms and
the nonconservation of geometric properties by other more accurate methods,
various higher-order split-operator integrators have been introduced [120-123],
some of which allow complex time steps [123-125] or commutators of the kinetic
and potential energies in the exponent [126-128], thus reducing the number of

splitting steps. Here we explore one type of higher-order integrators, designed for
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nonadiabatic dynamics in the diabatic basis, which we have implemented using
the recursive triple-jump [121, 122] and Suzuki’s fractal [121], as well as several
non-recursive, “optimal” compositions of the second-order split-operator algorithm.
While the recursive compositions permit an automated generation of integrators of
arbitrary even order in the time step [88, 91, 121, 122, 129, 130], the efficiency of
higher-order algorithms is sometimes questioned because the number of splitting
steps grows exponentially with the order of accuracy, and, consequently, so does
the computational cost of a single time step. Motivated by this dilemma, we have
explored the convergence and efficiency of the higher-order compositions using
a one- and three-dimensional systems, concluding that, despite the increasing
number of splittings, the higher-order methods become the most efficient if higher
accuracy of the solution is required, and that this gain in efficiency survives
in higher dimensions. We have also confirmed that all composed methods are
unitary, symplectic, stable, symmetric, and time-reversible. A final benefit of
the higher-order methods is the simple, abstract, and general implementation of
the compositions of the second-order split-operator algorithm; indeed, even this
“elementary” method is, as we have seen in Sec. 1.2.3, a composition of the simpler,
first-order algorithms (1.25)—(1.26).

One of the only challenges of implementing the split-operator algorithm for nonadia-
batic dynamics in the diabatic representation is the exponentiation of the potential
energy operator, which is nondiagonal in the electronic degrees of freedom (in
contrast to the diagonal kinetic energy operator). We, therefore, explored several

methods for the exponentiation of nondiagonal matrices.

The main disadvantage of the split-operator algorithm and its compositions is that
their use is, unlike the integrators based on the implicit midpoint method (1.27)
and the trapezoidal rule (1.28) developed in Ref. [104], restricted to separable
Hamiltonians. To compare them with the integrators from Ref. [104], we cannot
use the adiabatic representation, but instead must perform the comparison in
the diabatic representation, where the compositions of the explicit split-operator
algorithm are, as expected, much more efficient than the more generally applicable
compositions [104] of the implicit midpoint method and the trapezoidal rule.
Nevertheless, the comparison confirms that, in contrast to the split-operator

compositions, the integrators from Ref. [104] conserve also the energy exactly.

The remainder of this Chapter is organized as follows: In Sec. 2.2, we present
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the symmetric composition methods and describe several strategies for reducing
the computational cost and memory requirements by pruning redundant splitting
coefficients generated automatically by the symmetric compositions. After briefly
discussing the molecular Hamiltonian in diabatic representation, we analyze, in
Sec. 2.3, the convergence properties and the conservation of geometric invariants of
various methods using a diabatic one-dimensional two-surface model [131] of Nal
and a diabatic three-dimensional three-surface model [132] of pyrazine. Section 2.4
concludes this Chapter.

2.2 Theory

2.2.1 Symmetric composition schemes for symmetric
methods

Composing any symmetric second-order method (such as those presented in
Sec. 1.2.3) with appropriately chosen time steps leads to integrators of arbitrary
even order of accuracy [88, 91, 121, 122]. More precisely, there are a natural number
M and real numbers ~v,, n =1,..., M, called composition coefficients, such that
for any symmetric evolution operator ng(At) of even order 2p, composing this
symmetric evolution operator with coefficients 7, yields a symmetric integrator of
order 2p + 2:

ﬁ2p+2(At) = ﬁ2p('YMAt) T UQP(”YlAt)- (2.1)

The choice of the composition coefficients must satisfy several relations to increase
the order of convergence. Indeed, the composition (2.1) must be consistent in order
to allow convergence, which is ensured if the composition coefficients satisfy the
relation [133]

Z_: Yo = 1. (2.2)

By acknowledging that the original method ng approximates the exact evolution
operator (1.3) as
U(At) = Uy, (At) + O(At*TY), (2.3)

where O(At?+1) is the local error of Uy, the local error of the composition (2.1) is
given by O[SM | (v,At)?P*1]. Therefore, the composition coefficients are chosen so

that this error vanishes, which is ensured when the composition coefficients satisfy
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the relation

M
> yptt = 0. (2.4)
n=1

Note that this condition only increases the order of convergence of the composition

to 2p + 1. By ensuring that the composition coefficients are symmetric, i.e.,

(2.5)

YM+1-n = Vn,

the order of convergence of the composition (2.1) is further increased to 2p + 2
because it can be demonstrated [88] that any symmetric method has an even order

of convergence.

Order of convergence

4 order 6" order 8th order 10*™ order
3 1 | 9: 1 1 27: 1 1 §
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Figure 2.1 — Pictorial representation [104] of the recursive (triple-jump and Suzuki’s

fractal) and nonrecursive “optimal” composition schemes.

The simplest symmetric composition schemes (see Fig. 2.1) are the triple jump [120-
122, 134] with M = 3,

M=

1
9 _ o1/(p+1)

=73,

Yo =

91/ (p+1)
9 _9l/(p+1)’

(2.6)
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and Suzuki’s fractal [121] with M = 5,

1 41/ (p+1)

71272=m:74=75a 73=—m~ (2.7)

Note that from Eqs. (2.6)—(2.7), a composed method of order p requires (5/3)z
more composition steps if it is obtained using Suzuki’s fractal rather than with the
triple jump composition. Therefore, for a single time step, the pth-order method
obtained with Suzuki’s fractal is also (5/3)%~! slower than the method of the
same order obtained with the triple jump composition. However, the leading order
error coefficient of a pth-order method obtained with Suzuki’s fractals is smaller
than its analogous method obtained with the triple-jump composition because
the magnitude of the composition coefficients are smaller in Suzuki’s fractals.
Consequently, to reach the same final error at the end of a simulation, larger time
steps can be employed with integrators obtained from Suzuki’s fractal compared to
those based on the triple jump. For specific orders of convergence, more efficient
non-recursive composition schemes exist and will be referred to as “optimal.” These
were implemented according to Kahan and Li [133], who obtained, by minimizing
maxy, |Y,|, composition methods for the sixth (M =9) and eighth (M = 17) orders
and according to Sofroniou and Spaletta [135], who found, by minimizing > | |v,|,

a composition scheme (M = 35) for the tenth order.

2.2.2 Compositions of split-operator algorithms

The split-operator algorithm is applicable if the Hamiltonian can be written as a

sum

H—Ai+h (2.8)

of operators A and B with evolution operators, U ;(t) and Ug(t), whose actions
on v, can be evaluated exactly. Note that in Eq. (2.8), H represents a general
separable Hamiltonian, which is not necessary H, but can also be time-dependent
[H(t)] or even nonlinear [H(¢)]. If the Hamiltonian is of the form (2.8), a general

split-operator evolution operator can be expressed as

USO (At) = Ug(byAt)U j(anAt) - - - Ug(by AU 4 (ar At),
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where N is the number of splitting steps, and a; and b; are the splitting coefficients
associated with the operators A and B. These coefficients in general satisfy the
identity Z;\/:l a; = Z;V:l b; =1, and are a; = b; =1 for the first-order TV and VT
algorithms [Eqgs. (1.26)—(1.25)] and

1

a; = a9 = 57 b1 = 1, bg =0 (29)

for the second-order VIV or TVT algorithms [Eqs. (1.29)—(1.30)].

Order of convergence
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Figure 2.2 — Split-operator algorithms composed by the recursive (triple-jump
and Suzuki’s fractal) and nonrecursive “optimal” composition schemes shown
in Fig. 21. In other words, each elementary method U(y,At) (solid line
segment in Fig. 2.1) is replaced by a second-order split-operator algorithm
Ui (1t /2)U 5 (va AU 4 (12 At /2), represented here by a triple of consecutive solid,
dotted, and solid line segments. Solid line segments represent U 1(7nAt/2), whereas
the dotted line segments represent U 5(1mAt). N is the number of actions of UO

on 1.

Because the second-order split-operator algorithm is symmetric, it can be composed

by any of the composition schemes discussed in Sec. 2.2.1. For example, the splitting
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coefficients of a fourth-order method are

1 21/3
M=M= o0 oy BT T sy
1 21/3
b= o b= 5o by = bs = (2.10)

with N = 6 if the triple-jump composition scheme [Eq. (2.6)] is used, and

1 41/3
24— 413 T To — 41y

1 41/3
:4_41/3a b2:b4:b10207 b5:_4_41/3

] = Q9 = a3 = Qg4 =

by = by (2.11)
with N = 10 if Suzuki’s fractal [Eq. (2.7)] is used instead. The remaining coefficients

are obtained from symmetry as
aAN—j+1 = Qj, bN—j = bj. (212)

Both composition procedures can be applied recursively to obtain higher-order
split-operator algorithms. These as well as the optimally composed algorithms of

up to the tenth order are represented pictorially in Fig. 2.2.

Table 2.1 — Geometric properties and computational cost of the first-order and
recursively composed second-order split-operator (SO) algorithms. Cost (here
before speedup by pruning splitting coefficients) is measured by the number of
fast Fourier transforms required per time step (see Sec. 1.2.5). n is the number of
recursive compositions and C' the total number of composition steps per time step
(C' = 3" for the triple jump [121, 122], C' = 5" for Suzuki’s fractal [121]). + or —

denotes that the geometric property of the exact evolution operator is or is not

preserved.
- C tes o - 1 -
Method Order  Unitary Symp e or.nmuA e Energy Sym. Tlm.e Stable Cost
ctic with H cons. metric reversible
1%t order SO 1 + + — — — — + 2
214 order SO 2(n + 1) + + — - + + + 2C

All compositions of the second-order VTV or TV'T split-operator algorithms are
unitary, symplectic, and stable; all symmetric compositions are symmetric and,
therefore, time-reversible. These geometric properties are summarized in Table 2.1

and justified in Appendix A.1.
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2.2.3 Pruning splitting coefficients

Many b; coefficients of the higher-order integrators obtained by recursive compo-
sition of the second-order split-operator algorithm are zero [for an example, see
Egs. (2.10) and (2.11)]. The computational cost can be reduced by “pruning,” i.e.,
removing the splitting steps corresponding to b; = 0 and merging the consecutive
actions of U ;(a;At) and U (a;1At). If b; = 0 and j # N, the splitting coefficients

are modified as

by =ber1, for j<k<N-1,

aj = aj + Qjy1,

ap = apy1, for 7+1< k<N -1,

N=N -1, (2.13)

th steps. The composed methods after the

in order to merge the j* and (j + 1)
merge are exhibited in Fig. 2.3 and the reduction in the number N of splitting

steps, which measures the computational cost, is summarized in Table 2.2.

For a time-independent separable Hamiltonian, one can either precompute and
store the evolution operators, U ;(a;At) and Ug(b;At), or compute them on the
fly. The former approach is more memory intensive than the latter, which does
not store any evolution operators, but the computational cost is reduced since
the evolution operators are only computed once at initialization. To alleviate
the memory requirement of the former approach, one can exploit the repetition
of certain splitting coefficients, which is obvious from Egs. (2.10)—(2.11) and
Fig. 2.3. If either Aor Bis time-dependent, it is always beneficial to compute the
corresponding evolution operator pertaining to the time-dependent operator on
the fly because no reduction in computational cost is possible by precomputing the

evolution operators.

The effort spent in searching for repeated coefficients is reduced if the symmetries of
the composition scheme and of the elementary method are exploited [see Eq. (2.12)].
The repeated coefficients are then identified from only half of the original coefficients

a; and b;.

Once identified, only the unique evolution operators U A(a;™At) and U 5(b7"AL)

are stored in arrays of lengths N'™ and N,"™, together with the information when
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Figure 2.3 — Composed split-operator algorithms from Fig. 2.2 after removing zero
splitting coefficients and merging adjacent coefficients, i.e., after each two adjacent
solid line segments representing U 4 (41 At/2)U (7,2t /2) in Fig. 2.2 are merged
into a single solid line segment representing U ;[(7n + Yni1)AL/2].

to apply them, stored in integer arrays I* and I° of length IV, containing the indices

in unique coefficient arrays, i.e.,
a un b un
1< I7 < N, 1< I7 < N (2.14)

Exploiting the repeated coefficients, the number of stored evolution operators
reduces from 2N to N4+ N™ (see Table 2.2).

2.2.4 Molecular Hamiltonian in the diabatic basis

The molecular Hamiltonian in the diabatic basis can be expressed as

~ 1A B R R
HozipT'm Lp1 4+ Vo(9), (2.15)

where m is the diagonal D x D nuclear mass matrix, D the number of nuclear

degrees of freedom, and V{ the potential energy. In Eq. (2.15), the dot symbol
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Table 2.2 — Computational cost and memory requirement of the com-
posed split-operator algorithms before and after pruning (i.e., removing
zero coefficients and merging adjacent coefficients) and identifying re-
peated coefficients. The computational cost is measured by N; + Ny,
where N is the number of actions of [7@ on the wavepacket. The
memory requirement before and after pruning is N; + Ny, and after

identifying repeated coefficients decreases to N4+ N,™9.

Composition Order Ni+ N N;i+ Np Npma Ny
method before merge ! after merge 2
Elementary 1 2 2 1 1
methods 2 3 3 1 1
4 9 7 2 2
Triple 6 27 19 4 4
jump 8 81 55 8 8
10 243 163 16 16
4 15 11 2
Suzuki’s 6 75 51 6 4
fractal 8 375 251 12
10 1875 1251 24 16
27 19
Optimal 8 51 35 9
10 105 71 18 18

1NA:2NB for order > 2.
2]\fA:]\fB—i—lfororder22.

(-) denotes the matrix product in nuclear D-dimensional vector space, the hat
symbol (*) represents a nuclear operator, and the bold font indicates an electronic
operator, i.e., an S x S matrix, where S is the number of included electronic
states. Using the dynamic Fourier method (Sec. 1.2.5), each evaluation of the
action of the pair ﬂvo (At) and U4 (At) on a molecular wavepacket 9(t), which
now becomes an S-component vector of nuclear wavepackets (one on each surface),
involves two changes of the wavepacket’s representation. In the numerical examples
below, the Fourier transform was performed using the Fastest Fourier Transform
in the West 3 (FFTW3) library [136]. Although its accuracy is sufficient for most
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applications, small deviations from unitarity, which were due to the high number of
repeated application of the forward and backward Fourier transforms, affected the
most converged calculations. To reduce the nonunitarity, we used the long-double
instead of the default double precision version of FEFTW3. The above-mentioned
nonunitarity of the solution, partially due to the numerical implementation of
the fast Fourier transform algorithm, was made worse by the matrix exponential
required for evaluating the potential evolution operator ﬁvo (At), which contains
offdiagonal couplings between the electronic states. Although we tried different
approaches for matrix exponentiation, including Padé approximants [137, 138] and
exponentiating a diagonal matrix obtained with the QR decomposition [137, 139]
or with the Jacobi method [137], none of the three methods was better than the
others in reducing the nonunitarity. Since both in the Nal and pyrazine models,
only 2 x 2 matrices are relevant, and since for such matrices, the Jacobi method
yields already after one iteration the analytically exact result for the exponential,
we used the Jacobi method for all results in Sec. 2.3. Note, however, that the
other two methods (based on Padé approximants or QR decomposition), while not
exact in the two models used in these examples, converge, in general, faster than
the Jacobi method, and are, therefore, preferred in systems with more than two

coupled electronic states.

2.2.5 Trapezoidal rule and implicit midpoint method

In addition to nonconservation of energy, the main disadvantage of the split-
operator algorithms is that they can be applied to nonadiabatic dynamics only
in the diabatic representation. Yet, there exist closely related, arbitrary-order
geometric integrators, discussed in Ref. [104], which, in addition, conserve energy
and are applicable both in the diabatic and adiabatic representations. These
integrators are, like the higher-order split-operator algorithms, based on recursive
symmetric composition (see Sec. 2.2.1) of the second-order trapezoidal rule or the
implicit midpoint method, which were presented in Sec. 1.2.3. Due to the presence
of implicit steps, the trapezoidal rule, implicit midpoint method as well as their
compositions require solving large, although sparse, linear systems iteratively [104],
and, as a result, in the diabatic representation are expected to be significantly less
efficient than the explicit split-operator algorithms of the same order of accuracy.
More details about these higher-order integrators can be found in Ref. [104], which

discusses their geometric properties and studies their efficiency in applications

26



2.3. Numerical examples

to nonadiabatic quantum dynamics in the adiabatic representation, in which the

molecular Hamiltonian is nonseparable.

2.3 Numerical examples

To test the geometric and convergence properties of the split-operator algorithms
presented in Secs. 1.2.2, 1.2.3, and 2.2.1, we used these integrators to simulate the

nonadiabatic quantum dynamics in a one- and three-dimensional systems.

2.3.1 One-dimensional model of Nal

Motivated by the experiment of Mokhtari et. al. [3], we used a one-dimensional
two-surface diabatic model [131] of the Nal molecule. We assumed that the initial
state was, before the electronic excitation, the ground vibrational eigenstate of a
harmonic fit to the ground-state potential energy surface at equilibrium geometry.

Therefore, the initial state is a one-dimensional Gaussian wavepacket of the form

D
vo(w) = [T (o ;m) 7" explipo(2; — qog)/h — (x5 — q0,4)* /208, (2.16)
j=1

with D = 1, space coordinate x = ¢, initial position gy ; = 4.9889 a.u., momentum
po1 = 0 a.u. and width o¢; = 0.110436 a.u. This initial state was then excited to
the excited-state potential energy surface by employing the sudden approximation,
which assumes the simultaneous validity of the time-dependent perturbation theory
and Condon and ultrashort pulse approximations during the excitation process.
Then, the nonadiabatic dynamics was simulated by solving the time-dependent
Schrodinger equation up to the final time ¢y = 10500 a.u., which ensured that
the wavepacket traverses the crossing of the two electronic states. For all the
simulations, we employed a uniform grid with 2048 points between ¢ = 3.8 a.u. and
q = 47.0 a.u. which assured that the wavepacket at the final time ¢; was converged
(see Fig. A.1 in Appendix A.2).

The top panel of Fig. 2.4 shows the two diabatic potential energy surfaces as well
as the initial wavepacket at ¢ = 0 and the ground- and excited-state components of
the final wavepacket at the final time ¢; = 10500 a.u. The population dynamics of
Nal, displayed in the middle and bottom panels of Fig. 2.4, shows that after passing
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Figure 2.4 — Nonadiabatic dynamics of Nal. Top: Diabatic potential energy surfaces
with the initial | @ (¢)] and final nuclear wavepacket components [wt(;)(q) and
@?)(q)] in the two diabatic electronic states [the initial ground-state component is
not shown because it was zero: wél)(q) = 0]. Middle: Populations of Nal in the
two diabatic states computed with four different second-order methods. Bottom:
Populations computed with three different sixth-order compositions of the VIV
algorithm. Populations were propagated with a time step At = 0.01 a.u. for
the second-order methods and At = 82.03125 a.u. for the sixth-order methods,
i.e., much more frequently than the markers suggest. The time step guaranteed

wavepacket convergence errors below ~ 1075 in all methods.

the crossing, most of the population jumps to the other diabatic state, while a
small fraction remains in the original, dissociative diabatic state. The converged
populations obtained with the VTV and TV'T split-operator algorithms agree, on
the scale visible in the middle panel, with each other and also with the results of

the implicit midpoint (1.27) and trapezoidal rule (1.28). Moreover, the results of
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the triple-jump, Suzuki’s fractal, and optimal compositions of the second-order
VTV algorithm agree with each other (bottom panel).

Composition type Order
No comp. = =  Optimal —_— —2 —
= = ' Suzuki =+ = = Triple J. —6 ——8 ——10

[|26e, (AE) — e, (AL/2)]|

A
At (au.)
Figure 2.5 — Convergence of the molecular wavefunction as a function of the
time step. The wavefunction was propagated with the VT algorithm or with the
compositions of the VTV algorithm. Gray straight lines indicate various predicted
orders of convergence O(At"). Top: all discussed methods, bottom left: methods
composed with the triple-jump scheme, bottom right: sixth-order methods.

For a quantitative comparison of various algorithms, it is necessary to compare
their convergence errors at the final time t;, which we measure, as a function of

the time step At, by employing the Lo-norm error

[, (A1) = 4y, (At /2)

E (2.17)

where 1, (1) represents the wavepacket propagated to the final time t; with a
time step 7. This error is shown in Fig. 2.5, which confirms, for each algorithm,
the asymptotic order of convergence predicted in Secs. 1.2.2, 1.2.3, and 2.2.1. For
clarity, in this and all remaining figures, only the VT algorithm and compositions
of the VTV algorithm are compared because the corresponding results of the TV
algorithm and compositions of the TVT algorithms behave similarly. The top panel

of Fig. 2.5 compares all methods, whereas the bottom left-hand panel compares only
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the different orders of the triple-jump composition and the bottom right-hand panel
compares only different composition schemes with the sixth-order convergence. The
prefactor of the error is the largest for the triple-jump [121, 122], intermediate for
the optimal [133], and smallest for Suzuki’s fractal composition [121], as previously
obtained in Ref. [104]. The figure also shows that for the smallest time steps, the
error starts to increase again. This is due to the accumulating numerical error
of the fast Fourier transform, which eventually outweighs the error due to time
discretization. As a result, the predicted asymptotic order of convergence cannot

be observed for some methods because it is only reached for very small time steps.

While the probability density has a classical analogue, the phase of the wavefunction
is a purely quantum property. As a consequence, an accurate evaluation of the phase
is very important in the calculation of electronic spectra and in other situations,
where quantum effects play a role. To investigate the convergence of the phase as a
function of the time step, we used the phase of the wavefunction at the maximum of
the probability density, i.e., [p(At) — @(At/2)[, where p(At) := arg[t)y, (¢max, At)]
and gmax ‘= argmax,|[|¢, (¢, At)|] is the position for which the amplitude of the
wavefunction at the final time ¢;, obtained using a time step At, achieves its
maximum. Figure 2.6 displays the convergence of the error of the phase for the
triple-jump compositions, and confirms that the order of convergence is the same

as for the wavefunction itself (bottom left-hand panel of Fig. 2.5).
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Figure 2.6 — Convergence error of the phase of the wavepacket as a function of the
time step for the triple-jump compositions. Gray straight lines indicate various

predicted orders of convergence O(At").

Because the number of composition steps depends on the composition scheme and
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Figure 2.7 — Efficiency of the VT algorithm and of various compositions of the VI'V
algorithm shown using the dependence of the convergence error on the CPU time.
Top: all methods, bottom left: triple-jump compositions, bottom right: sixth-order
methods. The reference wavefunction w{;f was chosen as the most accurate point in
Fig. 2.5, i.e., the wavefunction obtained using the optimal eighth-order composition
with a time step At = ¢;/2°.

increases with the order, the efficiency of an algorithm is not determined solely
by the convergence error for a given time step At. It is, therefore, essential to
compare directly the efficiency of the different algorithms. Figure 2.7 displays the
wavefunction convergence error of each algorithm as a function of the computational
cost, which we measure as the central processing unit (CPU) time. Comparison of
the compositions of the VTV split-operator algorithm in the top panel of Fig. 2.7
shows that the fourth-order Suzuki composition already takes less CPU time to
achieve convergence error 1072 than does the elementary VTV algorithm. To reach
errors below 1072, it is more efficient to use some of the fourth or higher-order
integrators. Remarkably, the CPU time required to reach an error of 1071 is
roughly 600 times longer for the basic VI'V algorithm than for its optimal sixth-
order composition. The bottom right-hand panel of Fig. 2.7 confirms the prediction
that the optimal compositions are the most efficient among composition methods

of the same order.
Convergence curves in Figs. 2.5-2.7 were obtained using the long-double precision
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Figure 2.8 — Efficiency of the optimal compositions of the trapezoidal rule and of
the VTV split-operator algorithm applied to the Nal model. For the trapezoidal
rule, only the double precision version of the FFTW3 fast Fourier transform was
used, while for the VTV split-operator algorithm, both double and long-double
precision versions are compared. The “exact” reference wavefunction wijff is the
same as in Fig. 2.7. The result of the elementary second-order trapezoidal rule
was extrapolated below the error of ~ 10~7 using the line of best fit. As for the
fourth-order algorithms, Suzuki’s fractal is considered as the “optimal "composition

scheme.

for the FFTW3 algorithm, which lowered the error accumulation resulting from
the nonunitarity of the FFTW3 Fourier transform. If high accuracy is not desired,
the double precision of the FFTW3 algorithm can be used instead, resulting in
much more efficient higher-order algorithms. This is shown for the Nal model
in Fig. 2.8, which compares the efficiency of the optimal compositions of the
VTV algorithm evaluated either with the double or long-double implementation
of the FFTW3, and also with the corresponding compositions of the trapezoidal
rule (1.28) (for which the double precision of FFTW3 was sufficient). Even the
more expensive, long-double precision calculation with the compositions of VIV
algorithm are faster than the corresponding double precision calculations with
the trapezoidal rule, which requires an expensive iterative solution of a system of
linear equations. In particular, the sixth-order optimal composition of the VTV
algorithm reaches a convergence error of 10719 forty times faster than the same
composition of the trapezoidal rule (see Fig. 2.8) and 30000 times faster than the

elementary trapezoidal rule (see Figs. 2.7 and 2.8).

Note that the dependence of CPU time on the error in Fig. 2.8 is not monotonous for

the compositions of the trapezoidal rule because the convergence of the numerical
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solution to the system of linear equations required more iterations for larger time
steps; as a result, both the error and CPU time increased for time steps larger than

a certain critical value.
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Figure 2.9 — Conservation of geometric properties by various algorithms: (a) norm,
(b) symplectic two-form, (c¢) molecular energy, and (d)—(e) time reversibility. ¢,
is a Gaussian wavepacket with ¢o = 5.05 a.u., pp = 2.5 a.u., and o identical to
that of ¢y. Time reversibility was measured by the distance of the initial state
from a forward-backward propagated state ¢y := U (—t)U (t)to, i.e., the state 1y
propagated first forward in time for time ¢ and then backward in time for time ¢
[see Eq. (1.11)]. The Nal model and a time step At = t;/27 a.u. was used in all

calculations.

To check that the increased efficiency of higher-order compositions is not achieved
by sacrificing the conservation of geometric invariants, we analyzed, using the
Nal model, the conservation of norm, symplectic two-form, molecular energy,
and time reversibility. Conservation of the norm and symplectic two-form, and

nonconservation of molecular energy by all split-operator algorithms is demonstrated
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in panels (a)—(c) of Fig. 2.9. The tiny residual errors (< 1072 in all cases) result
from accumulated numerical errors of FFTW3 and matrix exponentiation (see
Sec. 2.2.4). Panels (d) and (e) confirm, on one hand, that the first-order split-
operator algorithm is not time-reversible, and, on the other hand, that the second-
order VTV algorithm together with all its compositions are exactly time-reversible;
the tiny residual errors are again due to accumulated numerical errors of the fast

Fourier transform and matrix exponentiation.
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Figure 2.10 — Conservation of molecular energy as a function of the time step in
simulations of the nonadiabatic dynamics of Nal. Note that Fa.(t) denotes the
molecular energy Ey(t) at time ¢ and obtained using a time step At. Gray straight

lines indicate various orders of convergence O(At").

The nonconservation of energy by the split-operator algorithms is further inspected
in Fig. 2.10, showing the error of energy as a function of the time step. For the
Suzuki’s fractal compositions of the VIV algorithm, the energy is only conserved
approximately; its conservation follows the order of convergence of the integrator,
as indicated by the gray lines. In contrast, the trapezoidal rule conserves the energy

to machine accuracy, regardless of the size of the time step.

2.3.2 Three-dimensional model of pyrazine

To investigate how the dimensionality of the system affects the efficiency of various
algorithms, we also performed analogous simulations of a three-dimensional three-
surface vibronic coupling model of pyrazine. The model, which includes only the
normal modes ()1, g, and QQ19,, was constructed by following the procedure from
Ref. [132] with the experimental values from Ref. [140] for the vertical excitation
energies. Thirty-two equidistant grid points between x; = —7 a.u. and z; = 7 a.u.
were included for each vibrational mode. Therefore, the total number of grid
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points was increased to 32768. The initial three-dimensional Gaussian wavepacket
was obtained as the vibrational ground state of the ground-state potential energy
surface [Eq. (2.16), with D = 3, v = (@1, Qéa; Q10a) as well as qo; = 0, po; =0
and op; = 1 a.u. for j = 1,2,3]. Using the sudden approximation, employed
also for the Nal model, this initial wavepacket was then promoted to the second
excited electronic state and the nonadiabatic quantum dynamics performed until a
final time ¢y = 10000 a.u. The population dynamics, shown in Fig 2.11, indicates
significant nonadiabatic transitions between the two excited states, while the ground
surface remains unpopulated. Moreover, on the scale visible in the figure, the
population dynamics obtained with sixth-order optimal compositions of the VIV

algorithm and of the trapezoidal rule agree with each other.

vV—v VTV %=X Trapezoidal

L

1.0 A |
P3

A 0.5
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Figure 2.11 — Population dynamics of pyrazine obtained using the sixth-order
optimal compositions of the trapezoidal rule and VTV algorithm. The same time
step At = t;/25600 was used for both calculations.

Figure 2.12 compares the efficiency of different (yet always optimal) compositions
of the VTV algorithm and trapezoidal rule. Higher-order integrators become more
efficient already for convergence errors below 1072 for compositions of the VTV
algorithms and, remarkably, already for errors below 10~! for compositions of the
trapezoidal rule. In particular, to reach an error of 1071, a 900-fold speedup over
the second-order VTV algorithm and a 300-fold speedup over the second-order
trapezoidal rule are achieved by using their tenth-order optimal compositions.
These results suggest that increasing the number of dimensions is either beneficial
or, at the very least, not detrimental to the gain in efficiency from using the
higher-order integrators. As in Fig. 2.8, the compositions of the VTV algorithms

are much more efficient than the compositions of the trapezoidal rule, but this was
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expected, because the Hamiltonian (2.15) is separable. One must remember that
the main purpose of the compositions of the trapezoidal rule is for nonseparable

Hamiltonians, where the split-operator algorithms cannot be used at all.
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Figure 2.12 — Efficiency of the optimal compositions of the trapezoidal rule and
VTV split-operator algorithm applied to the three-dimensional pyrazine model. For
the trapezoidal rule, only the double precision version of the FFTW3 fast Fourier
transform was used, while for the VTV split-operator algorithm, both double and
long-double precision versions are compared. As for the fourth-order algorithms,

Suzuki’s fractal is considered as the “optimal” composition scheme.

2.4 Conclusion

We have described geometric integrators for nonadiabatic quantum dynamics in the
diabatic representation, in which the Hamiltonian is separable into a kinetic term,
depending only on momentum, and potential term, depending only on position.
These integrators are based on recursive symmetric composition of the standard,
second-order split-operator algorithm, and as a result, are explicit, unconditionally
stable and exactly unitary, symplectic, symmetric, and time-reversible. Unlike the
original split-operator algorithm, which is only second-order, its recursive symmetric
compositions can achieve accuracy of an arbitrary even order in the time step. These
properties were justified analytically and demonstrated numerically on a diabatic
two-surface model of Nal photodissociation. Indeed, the higher-order integrators
sped up calculations by several orders of magnitude when higher accuracy was
required. For example, the CPU time required to achieve a convergence error of
1071% was reduced by a factor of 600 when the optimal sixth-order composition
was used instead of the elementary second-order split-operator algorithm. The

gain in efficiency due to the higher-order integrators was also confirmed by the
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nonadiabatic simulations in a diabatic three-dimensional three-surface model of
pyrazine. Although other efficient propagation methods, such as Chebyshev [76]
or short iterative Lanczos schemes [73, 74], might have comparable efficiency in
this and other typical chemical systems, in contrast to the integrators presented
here, those methods do not preserve time reversibility and several other geometric

properties of the exact solution.
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8] Geometric high-order integrator
for the nonlinear time-dependent

Schrodinger equation

The explicit split-operator algorithm has been extensively used for solving both
linear and nonlinear time-dependent Schrodinger equations. When applied to the
nonlinear Gross—Pitaevskii equation, the method remains time-reversible, norm-
conserving, and retains its second-order accuracy in the time step. However, this
algorithm is not suitable for all types of nonlinear Schrédinger equations. Indeed,
we demonstrate that local control theory, a technique for the quantum control of a
molecular state, translates into a nonlinear Schrodinger equation with a more general
nonlinearity, for which the explicit split-operator algorithm loses time reversibility
and efficiency (because it has only first-order accuracy). Similarly, the trapezoidal
rule, while time-reversible, does not conserve the norm of the state propagated by
a nonlinear Schrodinger equation. To overcome these issues, we present high-order
geometric integrators suitable for general time-dependent nonlinear Schrodinger
equations and applicable to nonseparable Hamiltonians. Based on the symmetric
compositions of the implicit midpoint method, these integrators are both norm-
conserving and time-reversible. Beyond this, the geometric properties of the
integrators are proven analytically and demonstrated numerically on the local
control of a two-dimensional model of retinal. For highly accurate calculations,
the higher-order integrators are more efficient. For example, for a wavefunction
error of 1079, using the eighth-order algorithm yields a 48-fold speedup over the
second-order implicit midpoint method and trapezoidal rule, and a 400000-fold

speedup over the explicit split-operator algorithm.

The content of this Chapter has been adapted from Ref. [141].
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time-dependent Schrodinger equation

3.1 Introduction

By definition, nonlinear time-dependent Schrédinger equations contain Hamilto-
nians that depend on the quantum state. Such state-dependent effective Hamil-
tonians appear in many areas of physics and chemistry. Examples include the
approximations generated by the Dirac—Frenkel variational principle [89, 142-144],
such as the multiconfigurational time-dependent Hartree method [55, 58, 145],
variational Gaussian approximation [33, 34], and variational multiconfigurational
Gaussian method [43, 146]. Furthermore, such examples appear in methods based
on local expansion of the potential, such as the thawed Gaussian approxima-
tion [29, 50, 147], Hagedorn wavepacket method [34, 148, 149], or single Hessian
approximation [150, 151]. Additionally, many numerical methods for solving the lin-
ear Schrodinger equation, such as the short-iterative Lanczos algorithm [71, 73, 74],
can be interpreted as exact solutions of an effective nonlinear time-dependent
Schrodinger equation. Probably the best known nonlinear Schrédinger equations,
however, are approximate equations for Bose-Einstein condensates [152, 153], in

which the Hamiltonian depends on the probability density of the quantum state.

The dynamics of a Bose—Einstein condensate is often modeled by solving the
celebrated Gross—Pitaevskii equation with a cubic nonlinearity [154-158]. To
solve this equation, several numerical schemes, such as the first-order explicit split-
operator algorithms [Eqs. (1.25)—(1.26)] or time and spatial finite difference methods,
are employed [159, 160]. These methods are of low accuracy (in time, space, or both)
and do not always preserve the geometric properties of the exact solution [161]. For
example, the Crank—Nicolson finite difference method is geometric but exhibits only
second-order convergence with respect to the spatial discretization. To remedy this,
the explicit second-order split-operator algorithm [Egs. (1.29)—(1.30)], commonly
used for the linear time-dependent Schrodinger equation [Eq. (1.15)], provides a
great alternative, as it conserves, in some cases, the geometric properties of the
exact solution and has spectral accuracy in space. Unfortunately, this algorithm
cannot be used for all types of nonlinear time-dependent Schrodinger equations.
Indeed, in the case of the Gross—Pitaevskii equation, this algorithm is symmetric
and, therefore, time-reversible only because the ordinary differential equation that
must be solved when propagating the molecular state with the potential part of
the Hamiltonian leaves the nonlinear term invariant in time [159]. We show here

that for nonlinear terms of more general form, this algorithm becomes implicit. If
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this implicit nature is not considered and the explicit version is used, the algorithm
loses its time reversibility and efficiency due to its low accuracy, which is only of

the first order in the time step.

An example of a situation, where a more general nonlinearity appears, is provided
by local control theory. As discussed in Sec. 1.1.3, this technique employs a pulse
[Eq. (1.20)] that is computed on the fly, based on the instantaneous molecular
state, to increase or decrease an expectation value of a specified operator. Because
the time dependence of the pulse is determined exclusively by the molecular state,

the time-dependent Schrodinger equation becomes autonomous but nonlinear.

Furthermore, the nonlinear nature of local control theory is often not acknowl-
edged and the standard explicit split-operator algorithm for linear time-dependent
Schrodinger equations is used [96, 99-101, 103], instead of its time-reversible,
second-order, but implicit alternative. Most previous studies have used local con-
trol theory for applications requiring neither high accuracy nor time reversibility.
Therefore, these works could rely on this approximate explicit integrator, which, as
displayed below, in the context of local control theory, has only first-order accuracy
in the time step and is time-irreversible. However, such an algorithm would be very
inefficient for highly accurate calculations, and could not be used at all if exact time
reversibility were important. Because this failure of the explicit splitting algorithm
in local control theory is generic, while its success in the Gross—Pitaevskii equation
is rather an exception, it is desirable to develop efficient high-order geometric

integrators suitable for a general nonlinear time-dependent Schrodinger equation.

In Chapter 2, we presented high-order time-reversible geometric integrators for the
nonadiabatic quantum dynamics driven by the linear time-dependent Schrodinger
equation. In this Chapter, we extend this approach to the general nonlinear
Schrodinger equation, to address the slow convergence and time irreversibility of

the explicit split-operator algorithm.

The remainder of this Chapter is organized as follows: In Sec. 3.2, we define the
nonlinear time-dependent Schrodinger equation, discuss its geometric properties,
and explain how local control theory leads to a nonlinear Schrodinger equation. In
Sec. 3.3, after demonstrating the loss of geometric properties by Euler methods, we
describe how these geometric properties are recovered and how accuracy is increased

to an arbitrary even order by symmetrically composing both implicit and explicit
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Euler methods. Then, we describe a general procedure to perform the implicit
propagation and derive explicit expressions for the case of local control theory.
Furthermore, we show the derivation of the approximate explicit split-operator
algorithm for the nonlinear Schrodinger equation and explain how this algorithm
loses time reversibility. Finally, in Sec. 3.4 we numerically verify the convergence
and geometric properties of the integrators by controlling, using local control theory,
either the population or energy transfer in a two-state two-dimensional model of
retinal [162].

3.2 Nonlinear Schrodinger equation

The nonlinear time-dependent Schriodinger equation is the differential equation

L d -
Zh%WQ = H () |vy), (3.1)

describing the time evolution of the state 1, driven by the nonlinear Hamiltonian
operator H (1), which depends on the state of the system. This dependence on 1,
is what distinguishes the equation from the linear Schrédinger equation (1.1). As
the notation in Eq. (3.1) suggests, we shall always assume that while the operator
H:¢ [—A[(wﬁﬂ is nonlinear, for each 1 the operator FI(¢) NORS ﬁ(ww is linear.
We will also assume that H (1) has real expectation values (H(1)))4 in any state ¢,
which for a linear operator implies that it is Hermitian, i.e., f](w)T = ﬁ(@/}), or,
more precisely, that for every ¥, ¢, x,

(G| H(W)x) = (H(W)d|x)- (3.2)

A paradigm of a nonlinear Schréodinger equation is the Gross—Pitaevskii equa-
tion [154, 155, 158], which is expressed as

B0 (0) = 224 q) + V@)ala) + P (@) (0)

in position representation, where the real coefficient C' is positive for a repulsive
interaction and negative for an attractive interaction. This equation has a cubic

nonlinearity and is useful, e.g., for approximate modeling of the dynamics of a
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Bose-Einstein condensate [161]. Many other examples are provided by the Dirac—
Frenkel variational principle [142, 143], which approximates the exact solution of a
linear Schrédinger equation with general Hamiltonian H by an optimal solution
of a predefined, restricted form within a certain subset (called the approximation

manifold) of the Hilbert space. This optimal solution 1), satisfies the equation
(8n|(ihd/dt — H)|¢) = 0, (3.3)

where 01, is an arbitrary variation in the approximation manifold. Equation (3.3) is

equivalent to the nonlinear Eq. (3.1) with an effective state-dependent Hamiltonian
H(w) = P H,

where P (1) is the projection operator on the tangent space to the approximation
manifold at the point ¢, [34, 89]. (Note that in the very special case, where
the projector does not depend on v, the resulting Schrodinger equation remains
linear. This happens in the Galerkin method, in which ), is expanded in a finite,

time-independent basis and the approximation manifold is a vector space [89]).

3.2.1 Geometric properties of the exact evolution operator

With initial condition ¢, and assuming that t > ty, Eq. (3.1) has the formal

A

solution |¢;) = U(t,to; ¢)|¢y,) with the exact evolution operator given by
~ ) [t ~
Ul(t,to;¢) := T exp [_;i dt'H(q/)t/)} , (3.4)
to

where the dependence of U on 1 was added as an argument to emphasize the
nonlinear character of Eq. (3.1). Expression (3.4) is obtained by solving the

differential equation

ihgtﬁ(t,to;w) = H(W)U(t, to; )

with initial condition U(to, to; 1)) = 1. The Hermitian adjoint of U(t, t; ) is the

operator

. _ ) [t N N
Ot to: ) = Texp | [ ()] = Ot o), (33)
to
where T denotes the reverse time-ordering operator.
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Compared to the linear case, the nonlinearity of the Hamiltonian leads to the loss
of some geometric properties, even if Eq. (3.1) is solved exactly. Indeed, since the

Hamiltonian is nonlinear, the exact evolution operator is also nonlinear.

Therefore, the exact evolution operator does not preserve the inner product because

(el de) = (U (t, to; )1 | U (t ;) dro)
= (i |U(t, t039) U (¢, to; 8) )
= (Yio| U (t, t; ) U (t, to; §)hr,)
# (V10| b1o) (3.6)

if Yy, # ¢1,, where we used the property (3.5) of the Hermitian adjoint of U to
obtain the third line. The exact nonlinear evolution operator is, therefore, not

symplectic.

The nonlinear evolution does not conserve the total energy Fioi(t) := (H (),

dEi(t)  ,+ 7 J .
dt = (e H (1) |9) "‘. <1/}t|£H(77/}t)|¢t>
+ (e H (1) )
= (dH (¢,)/dt)y, #0, (3.7)

where the first and third terms in the intermediate step cancel each other because
1, satisfies the nonlinear Schrodinger equation (3.1). Note, however, that in special
cases, such as the Gross—Pitaevskii equation, there exist modified energy functionals

that are conserved [161].

The exact nonlinear evolution operator U=0 (t,t0; 1) conserves the norm because

1ell* = 101 |I* = (Ut Uty
= <wt0’UTtho> = WtthJ = HwtOHQ> (38)

where we used relation (3.5).

Similar to the linear case, the adjoint [7(15, to; )" of U(t, to; 1) is defined as the
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inverse of the evolution operator taken with a reversed time flow:

U(t, to; )" = Ulto, t;90) " (3.9)

For the operator (3.4), the reverse evolution operator is given by the anti-time-

ordered exponential

U(to, t:) = T exp [—;/f dt']fl(l/zt/)} (3.10)

and, therefore, the adjoint is

U(t,to;@b)* = {7_’exp [—; /tto dt/ﬁ](ﬂbt’)} }1
— Texp [; /t Y (wt/)}
=T exp [—; /t; dt/ﬁ(wt')] = Ut to; ¥). (3.11)

Because it is equal to its adjoint, the previous equation shows that the exact
evolution operator (3.4) is symmetric. Furthermore, it is also time-reversible
because, due to symmetry, a forward propagation of an initial state followed by a

backward propagation recovers the same initial state, i.e.,

Ulto, t;0)U (¢, to; 1)y,
= Ulto, t; V)" U(t, to; )by,
= U(t, Lo; ¢)_1U(t, to; )y, = Yy (3.12)

Although the exact evolution conserves the norm, because it does not conserve the

inner product, we cannot, in general, say anything about preserving the distance:

[0 = &ul” = 1ell® + [ @ell* — 2 Re(wrl¢r)
= [|[901 1> + [l 1o I* — 2 Re(ebr|r)
= [[tt = b1o|I” + 2 Re (Yo bro) — (t|1))
# v, — ool (3.13)

Moreover, since the sign of the real part of the difference of the inner products can

be arbitrary, we cannot deduce anything about stability.

45



Chapter 3. Geometric high-order integrator for the nonlinear
time-dependent Schrodinger equation

3.2.2 Nonlinear character of local control theory

We now show that the local coherent control of the time evolution of a quantum
system with an electric field provides another example of a nonlinear Schrodinger
equation. We have seen in Sec. 1.1.3 that the control field (1.20) is computed on the
fly according to the current state of the system. This suggests that the control field
can be either viewed as a function of time or a function of the molecular state [i.e.,
Ercr(t) = Eper(iy) in Eq. (1.20)]. More precisely, the control field does not depend
on time explicitly but only implicitly through the dependence on v;. Therefore, the
time-dependent Schrodinger equation changes from a nonautonomous linear to an
autonomous nonlinear differential equation [88]. By acknowledging this nonlinear

character, the interaction potential from Eq. (1.17) becomes

Vior (i) i= —fi - Erer(ir) (3.14)

and Eq. (1.15) becomes an example of a nonlinear time-dependent Schrodinger
equation (3.1) with Hamiltonian operator H (1)) := Hy + Vier(1)).

3.3 Geometric integrators for the nonlinear

Schrodinger equation

Numerical propagation methods for solving the nonlinear equation (3.1) obtain the

state at time t + At from the state at time ¢ by using the relation

A

|¢t+At> = Uappr(t + Ata tu w)|¢t>7 (315)

where Uappr(t + At, t;7)) is an approximate nonlinear evolution operator depending
on 1. As the exact operator, these approximate evolution operators Uappr(t +
At, t;1)) are, therefore, nonlinear and conserve neither the inner product nor the
symplectic form. Moreover, nothing can be said about their stability in general.
However, some integrators may lose even the remaining geometric properties of
the exact evolution: norm conservation, symmetry, and time reversibility. In this
section, we simply state the properties that are lost by different methods; detailed
proofs are provided in Appendix B.1.
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3.3.1 Loss of geometric properties by Euler methods

The Euler methods (1.22)—(1.23), which were presented for the linear case in
Sec. 1.2.1, can be adapted for solving a nonlinear time-dependent Schrodinger

equation. In that situation, they approximate the exact evolution operator as

A

Uexpl(t + Ata t) ¢t) :

1— ;ﬁ(m)m, (3.16)
-1

7 A
Uinpt (t + At 8 Ppae) 2= |1+ ﬁH<wt+At)At : (3.17)

As in the linear case, both methods are only first-order in the time step and,
therefore, very inefficient. Moreover, both methods lose the norm preservation,

symmetry, and time reversibility of the exact evolution operator.

3.3.2 Recovery of geometric properties and increasing ac-

curacy by composition

As described in Sec. 1.2.3, composing the implicit and explicit Euler methods yields
either the implicit midpoint or the trapezoidal rule, depending on the order of
composition. In the nonlinear setting, employing such compositions modifies the

implicit midpoint method (1.27) to

A

Unmia(t + At £ 0 ae/2)
= Aexpl(t + At t + At/2; 1/Jt+At/2) Aimpl(t + At/2,t; ¢t+At/2)7 (3.18)

and the trapezoidal rule (1.28) to

Usrap (t + AL, 159 = Uipt(t + Ayt 4+ At)2; 00 n0) Unsept (t + AL/2,854,). (3.19)

As in the linear case, both methods are second-order, symmetric, and time-reversible
regardless of the size of the time step [88, 104]. However, only the implicit midpoint

method is time-reversible at all time steps.

Because they are symmetric, both methods can be further composed, using the
symmetric composition schemes [88, 89, 104, 121, 122, 133, 135] described in

Sec. 2.2.1, to obtain integrators of arbitrary even order of accuracy in the time
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step. Indeed, Eq. (2.1) can be modified to

A A

Upot + At t;00) == Uyt + Egg AL L+ Eyp1 At ) - - Uyt 4+ &AL 1:4h),  (3.20)

in order to generate a symmetric nonlinear method Up+2 of order p + 2 from a
symmetric nonlinear method U, of order p. In Eq. (3.20), &, = 1 7; denotes
the sum of the first n real composition coefficients 7;, which satisfy the relations

for symmetry, consistency, and order increase, given in Sec. 2.2.1.

3.3.3 Solving the implicit step in a general nonlinear

Schrodinger equation

Similarly to the linear case, the implicit Euler method requires an implicit propa-
gation. However, because its integrator [Eq. (3.17)] depends on the result of the

propagation, 1,4 a; is obtained by solving the nonlinear system

ﬁimpl(t + At? t; ¢t+At)_l‘¢t+At> = ‘¢t>> (321)

which can be written as f(¢;1a;) = 0 with the nonlinear functional

f(@D) = Uimpl<w)_1w — Uy
- {i + ;FI(@U)At} . (3.22)

A nonlinear system f(¢)) = 0 can be solved with the iterative Newton—Raphson
method, which computes, until convergence is obtained, the solution ¥**+1 at

iteration k + 1 from *) using the relation

Pl = g = J@E) (), (3:23)

where J := % f(v) is the Jacobian of the nonlinear functional f(v).

If the initial guess ¥ is close enough to the exact solution of the implicit prop-
agation, the Newton—Raphson iteration (3.23) is a contraction mapping and by
the fixed-point theorem is guaranteed to converge. We use as the initial guess the
result of propagating ¢, with the explicit Euler method [Eq. (3.16)]. Note that

this initial guess is sufficiently close to the implicit solution only if the time step is
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small. If the time step is too large, the difference between the explicit and implicit
propagations becomes too large for the algorithm to converge and no solution can
be obtained.

Equation (3.23) requires computing the inverse of the Jacobian which is an expensive

task. It is preferable to avoid this inversion by computing each iteration as
w(kﬂ) - w(k) + 5w(k) (3.24)
where §1)F) solves the linear system

J(p®)5ep®) = — f(p®)), (3.25)

We solve this linear system by the generalized minimal residual method [109, 110,
163], an iterative method based on the Arnoldi process [164, 165] (see Appendix C

for a detailed presentation of this algorithm).

The procedure presented for solving the implicit propagation is applicable to any
nonlinear system whose Jacobian is known analytically. Therefore, the integrators
proposed in Secs. 3.3.1 and 3.3.2 can be employed for solving any nonlinear time-
dependent Schrodinger equation of the form of Eq. (3.1), i.e., with a Hamiltonian
H (1¢) depending on the state of the system.

To sum up, each implicit propagation step, given by the evolution operator (3.17),

is performed as follows:

1. Compute the initial guess ¢(*) using the explicit Euler method [see Eq. (3.16)].

Choose an error threshold € and a maximum iteration number m.
2. For k=0,1,...,m —1, Do:
3. Compute §1)¥) by solving the linear system shown in Eq. (3.25).
4. Compute a new approximate solution ¢**1) using Eq. (3.24).
5. I || f (v * )| < g, take 1+ as the solution of the implicit step.

6. End Do. The algorithm fails when k£ = m and no approximate solution has

been found.
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3.3.4 Solving the implicit step in local control theory

In the specific case of local control theory, the inverse of the implicit Euler method
is ,

N _ n 72 ~ ~

Urcrimp(¥) ™ =1+ ﬁAt[Ho + Vier(¥)], (3.26)

and the Jacobian of the nonlinear functional (3.22) is given by

36) = 55 [Oucrimn (0] + Grcram(0) 11
= 28 [Picr(u)] 0+ Drcmama(®)”
=~ Atfion() + 1+ T At [+ Vior(w)]
— iy ;At[ﬁo + 2Wor(w)]. (3.27)

Note that to obtain the third row of Eq. (3.27), we used %[VLCT(@]#J = Vier(¥),
where the generalized complex derivative [166] of the interaction potential is given
by the bra vector

0 o

@VLCT(W = —fi- @ELCT(¢) = FXiji - (¢|[i7, O]. (3.28)

3.3.5 Approximate application of the explicit
split-operator algorithm to the nonlinear

Schrodinger equation

The algorithms that we described above apply to Hamiltonians that are not only
nonlinear but also nonseparable. If the time-dependent Schrédinger equation
is linear and its Hamiltonian is separable, the midpoint method (1.27) remains
implicit, but the split-operator algorithms and their compositions yield, as we
have seen in Chapter 2, explicit high-order integrators satisfying most geometric
properties (except for the conservation of energy). In the case of local control
theory, if Hy is separable [Eq. (1.24)], so is the total Hamiltonian, which can be
written as f](w) =T+ th(w)’ where th(w) =V + VLCTW) is the sum of the
system’s and interaction potential energy operators. It is, therefore, tempting to

use the split-operator algorithm, with the hope of obtaining an efficient explicit
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integrator.

More generally, let us assume that the Hamiltonian operator in the general nonlinear

Schrodinger equation (3.1) can be separated as

A

H(Y) =T (D) + Vior(q, ¥).

Then, the VT (1.26) and TV (1.25) split-operator algorithms are adapted to the

nonlinear case, which yields the explicit TV

A

Urv(t + At ) = U (AN Ty, ) (AD), (3.29)

and implicit VT

A

Ovr(t + At tpar) == Uy, g, 0 (ADUz(AL) (3.30)

¢t+At)

split-operator algorithms. As in the linear case, these integrators are norm-
conserving but only first-order accurate and time-irreversible. From their def-
initions (3.29) and (3.30), it follows immediately that the TV and VT algorithms
are adjoints of each other and require, respectively, explicit and implicit prop-
agations. By composing these two adjoints together, one obtains the modified
TVT or VTV split-operator algorithms, which will be discussed in further detail in
Chapter 4. Both TVT and VTV algorithms are norm-conserving, symmetric, and
time-reversible. However, these geometric properties are only acquired if the im-
plicit part, i.e., the propagation with the VT algorithm (3.30) is performed exactly.
This procedure requires solving a nonlinear system, which can be performed using
the Newton—Raphson method, as described in Sec. 3.3.3. This, however, implies
abandoning the explicit nature of the split-operator algorithm, which is one of its

main advantages over implicit methods for solving linear Schrodinger equations.

The nonlinearity of Eq. (3.1) is often not acknowledged. As a consequence, the
implicit character of Eq. (3.30) is not taken into account and explicit alternatives
are used. For example, instead of using 14, A; in the VT algorithm (i.e., performing
the implicit propagation exactly), the state (DN e—iTAl/ M)y, obtained after
the kinetic propagation is often used to perform the potential propagation. After

composition with the TV algorithm, it yields the approximate explicit TVT split-
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operator algorithm

A

Uexpl VT (t + Ata t 7vbt’TAAt/Q)
= UTV(t + At;t + At/2, ¢t,TAt/2)
X Uy (t + At/2; 4,0, 7, 5)- (3.31)

Because this approximate explicit integrator depends on 9, j5, /2 instead of ¥y a¢/2,
it is not time-reversible and achieves only first-order accuracy (see Appendix B.1
for proofs of the geometric properties). Indeed, any explicit version of the TVT or
VTV algorithm will be first-order accurate and time-irreversible due to ignoring
the implicit character of the VT algorithm. Nevertheless, the explicit algorithms
can be used for performing practical local control theory calculations in typical

situations, which do not require high accuracy [96, 99-101, 103].

3.4 Numerical examples

We tested the general integrators for the nonlinear Schrédinger equation, presented
in Sec. 3.3, by using them for the local control of a two-dimensional two-state
diabatic model of retinal taken from Ref. [162]. The model describes the cis-trans
photo-induced isomerization of retinal—an ultrafast reaction mediated by a conical
intersection which is the first event occurring in the biological process of vision.
The two vibrational modes of the model are the reaction coordinate €, an angle
describing the torsional motion of the retinal molecule, and a vibronically active
coupling mode ¢.. In the diabatic representation, the Hamiltonian of the system in
the absence of the field,

3 - V Aca é V Ac
fly — 71+ | 1000 Viald) ) (3.32)
Var(de)  Va2(e, 0)
is separable into a sum of the kinetic energy operator
. 1 0% 1 0?
T = — = —m ! (3.33)

g 2" o
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and potential energy operator with components

1 1
Vi1(ge, 0) = quz + §W1 [1—cos(8)], (3.34)
1 1
V22(Qc, ‘9) = gqu + X2qc + Lo — §W2 [1 - 005(9)] ) (3-35)
Via(ge) = Var(ge) = &q.. (3.36)

Here (all parameters are in €V units), w = 0.19 is the vibrational frequency of the
coupling mode, m~! = 4.84 - 10~ is the inverse mass of the reaction coordinate,
Wi = 3.6 and W5 = 1.09 determine the depth of the well in the reaction coordinate
for the ground and excited electronic states, respectively, yo = 0.1 is the gradient
of the linear perturbation in the excited electronic state, Fo = 2.48 determines the
maximum of the excited electronic state in the reaction coordinate, and ¢ = 0.19
is the gradient of the linear coupling between the two electronic states. The two

diabatic potential energy surfaces (3.34) and (3.35) are displayed in Fig. 3.1.
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Figure 3.1 — Diabatic potential energy surfaces of the model. Orange: Ground
electronic state [Eq. (3.34)]. Blue: Excited electronic state [Eq. (3.35)].

In the simulations, the reaction and coupling coordinates are represented on regular
grids consisting of 128 points between § = +7/2 a.u. and 64 points between
g. = 19 a.u. Figure B.1 of Appendix B confirms that this grid is sufficient by
showing that the grid representation of the wavepacket is converged even at the
final time ¢;. We assume the coordinate independence of the electric dipole moment
operator (Condon approximation) and, therefore, can write ﬁ — fil = éud, where
€ is a constant unit vector in the direction of fi. In this case, the control field
is aligned with i and we can write it as ELCT = €Ecor. As a consequence, we
can drop the vector symbol “from fi and Epcr in Eqs. (1.20) and (3.14) and
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consider only the analogous scalar equations satisfied by f&t and Frcr. In addition,
we assume the electric dipole moment operator to have unit transition elements
(12 = flg1 = 1 = 1 a.u.) and zero diagonal elements (fi;1 = fiag = 0). The
calculations presented below aim to simulate the photo-excitation step of the
photo-isomerization of the retinal molecule. We therefore use as initial state 1 the
ground vibrational state of the harmonic fit of the ground potential energy surface
i.e., a two-dimensional Gaussian wavepacket of the form (2.16), with D = 2, space
coordinate z = (q.,0), g0 = po = (0,0), and o9 = (0.128,1) a.u.] with initial
populations P;(0) = 0.999 and P»(0) = 0.001 of the ground and excited electronic
states, respectively. The tiny initial seed population of the excited state is essential

for the control because it ensures that Eq. (1.20) does not stay zero at all times.

Two ways of populating the excited state based on local control theory were
investigated: the former used as the target observable the population of the excited
state described by the projection operator onto the excited state (i.e., 0=P,=
P,1= P,), while the latter employed as the target observable the molecular energy
described by the unperturbed molecular Hamiltonian (i.e., O = Hy). To show
that the monotonic evolution of the target observable <(A)>¢t is guaranteed only
if [O, I:IO] = 0, we also compare the results obtained from control calculations in
the presence of nonadiabatic couplings (where [Py, Ho] # 0 and [Hy, Ho] = 0) and
in the absence of nonadiabatic couplings (where both target operators P, and
H, commute with ﬂo). The control calculations were performed by solving the
nonlinear time-dependent Schrodinger equation (3.1) with the implicit midpoint
algorithm combined with the dynamic Fourier method (Sec. 1.2.5) for a total time
ty = 256 a.u. and with a time step At = 272 a.u. In addition, intensity parameters
A=1.430 x 1072 and X\ = 1.534 x 10~! were used for the control of excited-state
population Ps(t) := (P3)y, and molecular energy Ey(t) := <I:IO>wt, respectively.
These parameters were chosen arbitrarily so that the electric fields of the obtained
control pulses were similar during the first period and so that their amplitude was
not too high, while strong enough to induce a significant increase of the controlled

expectation values.

Figure 3.2 shows the excited-state population, molecular energy, and obtained
control pulse for the control of either the excited-state population (left panels) or
molecular energy (right panels). In the figure, the results obtained in the presence
and in the absence of nonadiabatic couplings are also compared for each target. The

population and energy control schemes result in similar population dynamics and in
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Population control Energy control
Vi2(ge) = &qe

Ercr (t) (a.u.)

-

0 50 100 150 200 250 O 50 100 150 200 250

t (au.)
Figure 3.2 — Local control calculations whose goal is increasing either the population
Py(t) of the excited state (left panels, A = 1.430 x 1072) or the molecular energy
FEo(t) (right panels, A = 1.5634 x 1071). As expected, the local control theory applied
to these closely related objectives yields very similar results. Top: Excited state
population. Middle: Molecular energy. Bottom: Pulse obtained by local control
theory.

both schemes, the population of the excited state reaches 0.99 at time ¢¢. The carrier
frequencies of the obtained control pulses are, as expected, similar and correspond
to the electronic transition between the two electronic states of the model. As
predicted, when controlling the excited-state population (Ps),, in the presence
of nonadiabatic couplings given by Eq. (3.36), the evolution of the population
is not monotonic (see the solid line in the inset of the top left panel of Fig. 3.2)
because the control operator does not commute with the molecular Hamiltonian.
Compare this with the monotonic increase of the population when the nonadiabatic
couplings are zero [dotted line in the same inset; ‘712((]0) = ‘721(qc) = 0] and the
target operator commutes with the molecular Hamiltonian. In contrast, when

controlling the molecular energy (IA{OMU its time evolution is always monotonic

%)



Chapter 3. Geometric high-order integrator for the nonlinear
time-dependent Schrodinger equation

because the molecular Hamiltonian commutes with itself, whether the nonadiabatic
couplings are included or not (see the inset of the middle right-hand panel of
Fig. 3.2). Because increasing the population of the excited state has almost the
same effect as increasing the molecular energy, very similar dynamics and control
pulses are obtained. Yet, the energy and population controls do not always yield
similar results. In the retinal model, when performing energy control, no vibrational
energy is pumped into the system because the diagonal terms of the electric-dipole
moment operator are all zero by construction (hence ([, T])y, = 0). Consequently,
only electronic potential energy is added to the system, and the corresponding

control pulse is similar to the one obtained from the population control.

Composition type Elementary method Order
No comp. = = Optimal + Expl. Euler O Impl. Euler Higher-order impl. midp. —] — —
= = « Suzuki = = = Triple J. O Trap. Rule X Expl. TVT ¢ 2"d-order impl. midp. —_—f =——8 ——10

102 | | | | |7

1071 OB i T T T T s T
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Figure 3.3 — Convergence of the molecular wavefunction at the final time ¢; achieved
by the local population control in the presence of nonadiabatic couplings. Top: All
studied methods, i.e., explicit and implicit Euler methods, approximate explicit
TVT split-operator algorithm, trapezoidal rule, implicit midpoint method and its
symmetric compositions. Bottom-left: Methods obtained with the Suzuki compo-

sition. Bottom-right: Sixth-order methods obtained with different composition
schemes.

To verify the orders of convergence predicted in Sec. 3.3.2, we performed convergence

analysis of control simulations using various integrators. Simulations with each
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integrator were repeated with different time steps and the resulting wavefunctions at
the final time ¢ ; were compared using Eq. (2.17). Figure 3.3 displays the convergence
behavior of both Euler methods, approximate explicit TVT split-operator algorithm,
trapezoidal rule, and the proposed implicit midpoint method as well as its symmetric
compositions, when controlling the excited state population. Notice that all
integrators have their predicted orders of convergence. The approximate explicit
TVT split-operator algorithm is, for the reasons mentioned in Sec. 3.3.5, only
first-order and not second-order as one might naively expect. For the convergence
of other simulations, we refer the reader to Figs. B.3-B.5 of Appendix B. Together,
these results confirm that both population and energy control follow the predicted

order of convergence regardless of the presence of nonadiabatic couplings.

= 10° -
< >
+ 10—2 4 -
3 0
> 1074 -
S ~
| 1076 4 -
10781 -
ey —10 | L
5 10
10—12

CPU time (s)

Figure 3.4 — Efficiency of the integrators used for the local population control of
retinal in the presence of nonadiabatic couplings. Efficiency is measured by plotting
the convergence error as a function of the CPU time. Line labels are the same as
in Fig. 3.3.

Because the higher-order methods require more work to perform each step, a higher
order of convergence may not guarantee higher efficiency. Therefore, we evaluated
the efficiency of each method directly by measuring the CPU time needed to reach a
prescribed convergence error. Figure 3.4 shows the convergence error as a function
of the CPU time and confirms that, except for very crude calculations, higher-order
integrators are more efficient than any of the first- and second-order methods. For
example, to reach errors below a rather high threshold of 3 x 10™#, the fourth-order
integrator obtained with the Suzuki composition scheme is already more efficient
than any of the first- or second-order algorithms. The efficiency gain increases
further when highly accurate results are desired. Indeed, for an error of 107, the

eighth-order optimal method is 48 times faster than the basic, second-order implicit
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midpoint method and approximately 400000 times faster than the approximate
explicit TVT split-operator algorithm (for which, due to its inefficiency, the speedup
had to be estimated by linear extrapolation). High accuracy is hard to achieve
with the explicit methods because both the explicit Euler and approximate explicit
TVT split-operator algorithms have only first-order convergence. Notice also that
the cost of implicit methods is not a monotonous function of the error because
the Newton—Raphson method needs more iterations to converge for larger than for
smaller time steps. Indeed, for time steps (or errors) larger than a critical value,
the CPU time might in fact increase with further increasing time step (or error).
The efficiency plots of other control simulations (see Figs. B.6-B.8 of Appendix
B) confirm that the increase in efficiency persists regardless of the control target

(energy or population) and presence or absence of nonadiabatic couplings.

Figure 3.5 analyzes how the time reversibility and norm conservation depend
on the time step. The figure confirms that all proposed integrators are exactly
time-reversible and norm-conserving regardless of the time step (the slow increase
of the error with decreasing time step is due to the accumulation of numerical
roundoff errors because a smaller time steps requires a larger number of steps to
reach the same final time ¢y). In contrast, the figure shows that an unrealistically
small time step would be required for the trapezoidal rule and both Euler methods
to conserve norm exactly and for the explicit split-operator algorithm to be exactly
time-reversible. Figures B.9-B.11 of Appendix B confirm that neither the chosen
control objective nor the nonadiabatic couplings influence the geometric properties

of the integrators.

We also checked how the conservation of geometric properties by the integrators
depend on time t for a fixed time step. For these simulations, we used a greater
final time ¢; = 2048 a.u. and an intentionally large time step At = 272 a.u. The
grid was modified to 256 points between § = +37/2 a.u. and 64 points between
g = £9 a.u., ensuring that the grid representation of the wavefunction at the
final time ¢; was converged (see Fig. B.2 of Appendix B). Figure 3.6 displays the
time evolution of the geometric properties for the elementary integrators (i.e., the
trapezoidal rule, implicit midpoint, approximate explicit split-operator, and both
Euler methods). The top panel confirms that the implicit midpoint method and
the approximate explicit TVT split-operator algorithm conserve the norm exactly
(i.e., to machine precision) even though a large time step was used. In contrast, the

trapezoidal rule and both Euler methods do not conserve the norm. The second
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Norm conservation
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Figure 3.5 — Norm conservation (top) and time reversibility (bottom) of various
integrators at the final time ¢; as a function of the time step At used for the local
control of population in the presence of nonadiabatic couplings. Time reversibility
is measured by the distance between the initial state 1y and a “forward-backward”
propagated state i := U(O, t; Q/J)U(t, 0;9)1 [see Eq. (3.12)] and line labels are the
same as in Fig. 3.3.

panel shows that only the trapezoidal rule and the implicit midpoint method are
time-reversible. However, due to the nonlinearity of the Schrodinger equation (3.1)
and the accumulation of roundoff errors, the time reversibility of these integrators
slowly deteriorates as time increases. (For a more detailed analysis of this gradual
loss of time reversibility, we refer the reader to Sec. B.4 of Appendix B.) The
bottom three panels of Fig. 3.6 confirm that even the implicit midpoint method
does not conserve the inner product, distance between two states, and total energy;
this is not surprising because, due to nonlinearity, the exact solution does not
conserve these properties either. Figures B.12-B.14 of Appendix B also confirm

that neither the chosen control objective nor the nonadiabatic couplings influence
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Figure 3.6 — Geometric properties of various integrators used for the local population
control in the presence of nonadiabatic couplings. Panel (a) shows that only the
implicit midpoint and approximate explicit split-operator methods conserve the
norm, while panel (b) demonstrates that only the implicit midpoint method and
the trapezoidal rule are time-reversible. (Reversibility is measured as in Fig. 3.5).
Bottom three panels show that no method conserves (c) the inner product, (d)
distance between two states (which would imply stability), or (e) total energy
Eiot(t) := Eo(t) + (Ve (), because even the exact evolution operator does not
preserve these properties. State ¢q is 1y displaced along the reaction coordinate,
i.e., a two-dimensional Gaussian wavepacket of the form (2.16), with parameters
g0 = (0.1,0), po = (0,0), and oy = (0.128,0) a.u. The time step At = 272 a.u.
was used for all calculations and line labels are the same as in Fig. 3.3. Note that
only a few points of the Euler methods are visible in some of the plots because the

results of the Euler methods leave the range of these plots very rapidly.
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the time evolution of the geometric properties of these integrators.

3.5 Conclusion

We presented high-order time-reversible integrators for the nonlinear time-dependent
Schrodinger equation and demonstrated their efficiency and geometric properties
on the problem of local control of quantum systems. The basic time-reversible
integrator is an adaptation of the implicit midpoint method to the nonlinear
Schrodinger equation and is obtained by composing the explicit and implicit Euler
methods. It is norm-conserving, symmetric, time-reversible, and of second order of
accuracy in the time step. Because it is symmetric, the implicit midpoint method
can be composed using symmetric composition methods to obtain integrators of
an arbitrary even order of accuracy. These higher-order integrators conserve all

the properties of the original second-order method.

In contrast, the explicit TVT split-operator algorithm is generally only an approxi-
mate adaptation of the standard second-order TV'T split-operator algorithm to the
nonlinear Schrodinger equation which results from local control theory. Because
this integrator is not implicit, it is only of first order accuracy in the time step
and loses time reversibility while still conserving the norm. For instance, the
trapezoidal rule, another popular algorithm for solving the Schrodinger equation,
remains symmetric and time-reversible, but does not conserve the norm of the

wavefunction propagated with a nonlinear Schrodinger equation.

Although we applied the proposed algorithms only to the special case of local control
theory, they should also be useful for any nonlinear time-dependent Schrodinger
equation if high accuracy, norm conservation, and time reversibility of the solution

are desired.
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“} An implicit split-operator algo-
rithm for the nonlinear time-

dependent Schrodinger equation

We have seen in Chapter 3 that, when applied to certain nonlinear time-dependent
Schrodinger equations, the explicit split-operator algorithm loses its time reversibil-
ity and second-order accuracy, which makes it very inefficient. Here, we propose
to overcome the limitations of the explicit split-operator algorithm by abandon-
ing its explicit nature only. In this regard, we describe a family of high-order
implicit split-operator algorithms that are norm-conserving, time-reversible, and
very efficient. The geometric properties of the integrators are proven analytically
and demonstrated numerically on the local control of a two-dimensional model of
retinal. Although they are only applicable to separable Hamiltonians, the implicit
split-operator algorithms are, in this setting, more efficient than the integrators

based on the implicit midpoint method of Chapter 3.

The content of this Chapter has been adapted from Ref. [167].

4.1 Introduction

To overcome the limitations of the explicit split-operator algorithm applied to
general nonlinear time-dependent Schrodinger equations, in Chapter 3 we developed
high-order integrators by symmetrically composing the implicit midpoint method.
These integrators are applicable to the general nonlinear Schrodinger equation
with both separable and nonseparable Hamiltonians and, in contrast to the explicit
split-operator algorithm, are efficient, while preserving the geometric properties of

the exact solution.
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Here, we show that it is not necessary to abandon the split-operator algorithm
altogether, but only its explicit nature. In the linear case, the second-order split-
operator algorithms are obtained by composing two adjoint first-order split-operator
methods, which are both explicit. We show that to achieve a second-order accuracy
in the nonlinear case, one of the two adjoint algorithms must be implicit. Although
implicit generalizations of the Verlet algorithm exist [88, 91, 168, 169] for classical
systems with nonseparable Hamiltonians, to the best of our knowledge no implicit
splitting methods were developed for quantum systems with separable but nonlinear
Hamiltonians. Therefore, we present an implicit generalization of the second-order
split-operator algorithm, which is geometric, applicable to the general nonlinear
time-dependent Schrodinger equation, and can be composed with the composition
methods [121, 122, 133, 135] of Sec. 2.2.1 to further increase its order of convergence

and efficiency.

The remainder of this Chapter is organized as follows: In Sec. 4.2, we present the
algorithms, their geometric properties and the procedure employed to perform the
implicit propagation required by the implicit split-operator algorithms. In Sec. 4.3,
we verify the convergence and the geometric properties of the proposed integrators
by performing local control theory on the two-dimensional model of retinal used in
Sec. 3.4. Finally, Sec. 4.4 concludes this Chapter.

4.2 Split-operator algorithms for the nonlinear

time-dependent Schrodinger equation

In this section, we present the different numerical methods and discuss their
geometric properties. Detailed proofs of the geometric properties of the presented

numerical methods are shown in Appendix D.1.

4.2.1 Recovery of geometric properties and increasing ac-

curacy by composition

As discussed in Sec. 3.3.5, the explicit TV [Eq. (3.29)] and implicit VT [Eq. (3.30)]
split-operator algorithms can be composed together to obtain the implicit TVT
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algorithm

UTVT(Yf + At t Py arg2)
= Urv(t+ At t+ At/2; g, ar2)
X UVT(t + At/2, 60 ae2)  (41)

or the implicit VI'V algorithm

UVTV(t + At t;9)
= U\/T(t -+ At, t+ At/zy wt-‘y—At)
X 0TV(t + At/27 t; 1/%), (4'2>

depending on the order of composition. Both of these integrators are second-order
accurate in the time step and geometric because they preserve all the geometric
properties of the exact evolution operator, i.e., they are norm-conserving, symmetric,
and time-reversible. However, since both rely on the implicit VT split-operator
algorithm (3.30), both are implicit methods.

The second-order methods (4.1)—(4.2) are all symmetric and time-reversible regard-
less of the size of the time step. Therefore, as discussed in Secs. 2.2.1 and 3.3.2,
they can be further composed using symmetric composition methods to obtain

integrators of arbitrary even orders of convergence.

Note that by “order” we mean the formal order because, as shown by Lubich [170]
and Thalhammer [171], who performed rigorous convergence analysis of splitting
methods applied to the nonlinear time-dependent Schréodinger equation, the actual
order depends on the regularity of the initial state. Because we do not perform this

analysis here, we will verify the predicted (formal) order numerically in Sec. 4.3.

4.2.2 Solving the implicit propagation

Both TVT and VTV implicit split-operator algorithms rely on the implicit VT
method. Following the procedure described in Sec. 3.3.3, the implicit step of

evolution operator Uy [Eq. (3.30)] is translated into solving the nonlinear system

UVT<t + At hrean)” [ Wan) = [ (4.3)
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This nonlinear system, which we solved employing the Newton—Raphson method,

can be written as f(¢;1a:) = 0 with the nonlinear functional

F@W) s = Up(At)[Ovr(t + At 1) ™) — 4]
= Up(A0)[Uz(A1) Uvm (D)1 — ]
= Uy, ) (A) 7 — Up(At)uy, (4.4)

where we have, for convenience, included a nonzero factor of Uz(At) into the
definition of f(v).

As described in Sec. 3.3.3, we employ the solution from the explicit propagation,
i.e., the solution obtained using Eq. (3.29), as the initial guess ("), Fortunately,
the use of approximations for estimating the Jacobian is, as for the implicit Euler
method, avoided because the Jacobian J(1) of the nonlinear function (4.4) can be

obtained analytically:

J

5
)

5@0

= gAthmt(w(At)

J@) = — [Oppoun (A0 0]

(Uionn (AT 0+ T (A1)

L0
50 [VLCT(lp)} (0
+ U (A0 71

A

P
= Up, (A1) {1 + gAtVLCT(%D) ,

(4.5)

where we employed Eq. (3.28) in the third line.

4.3 Numerical examples

Integrators presented in Sec. 4.2 were tested on a local control simulation in the

two-dimensional model describing the cis-trans photo-isomerization of retinal (see
Fig. 3.1).

In all simulations, we used local control theory for increasing the molecular energy
Ey(t) = (ﬂ0>¢t of the system, which required employing the molecular energy
operator Hy as the target observable. First, we reproduced the simulation depicted

in the right panel of Fig. 3.2 (the one including the nonadiabatic couplings) using
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Figure 4.1 — Local control simulation whose goal is increasing the molecular energy
Eo(t). (a) Molecular energy. (b) Excited state population. (c¢) Pulse obtained by

local control theory.

the implicit TVT split-operator algorithm instead of the implicit midpoint method.
Since we used the same parameters, the results obtained with the implicit TVT split-
operator algorithm, which are shown in Fig. 4.1, are thus similar to those depicted
in the right panel of Fig. 3.2. Indeed, the results indicate a successful increase in
molecular energy [panel (a)] and, as predicted in Sec. 1.1.3, this increase is monotonic
because the molecular energy operator commutes with itself. Moreover, because
there are no nonzero diagonal elements in the electric dipole moment operator,
the control pulse cannot add vibrational energy ({[f, T])y, = 0). Consequently,
only the electronic energy of our system is increased, as reflected by the monotonic
rise of the excited state population Py(t) [panel (b)]; this is confirmed by the
carrier frequency of the control pulse [panel (c¢)], which corresponds to an electronic

transition between the two states.

To verify the order of convergence of the integrators presented in Sec. 4.2, the same
simulation was repeated for each integrator with different time steps, and the errors
in the obtained wavefunctions were compared, using Eq. (2.17), at the final time
ty = 256 a.u. Figure 4.2 shows the convergence behavior of various integrators,

including higher-order integrators obtained by composing the implicit TVT method
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Figure 4.2 — Convergence of the molecular wavefunction at the final time t; =
256 a.u. achieved by the local energy control. (a) First-order and implicit TVT
methods. (b) Methods obtained with the optimal composition (Suzuki’s fractal
is the optimal fourth-order composition scheme [104]). (c¢) Sixth-order methods

obtained with different composition schemes.

with the triple-jump, Suzuki’s fractal, and optimal composition schemes (see also
Fig. D.1 of Appendix D.2, which displays the convergence results for all studied
methods). The results in panel (a) indicate that the implicit TVT method has the
expected order of convergence and that it is, for a given time step, more accurate
than all first-order methods, including the approximate explicit TVT algorithm.

Comparison between different orders of the optimal composition of the implicit
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TVT algorithm [panel (b)] shows that, for a given time step, a higher order of
composition yields more accurate integrators. Similarly, comparing sixth-order
methods obtained with different composition schemes [panel (c)] indicates that,
for a given time step, Suzuki’s fractal composition is more accurate than both
the optimal and triple-jump compositions. Note that after reaching a machine
precision plateau, the higher-order integrators show a slight increase in the error
with a decreasing time step, which is due to the accumulation of roundoff errors
since the number of steps increases for a fixed total time of simulation. Moreover,
some results for high-order integrators could not be obtained because they did not
converge at large time steps (the difference between the initial guess and the implicit
solution was too large for the Newton—Raphson method to converge) and became
computationally unaffordable at smaller time steps, when the Newton—Raphson

method was converging.

Composition type

No comp. == == Optimal
Elementary method Order
Impl. TVT ¢ Impl. Midp. ] — —
X Expl. TVT — — m— ()
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Figure 4.3 — Efficiency of various integrators used for simulating the local energy

control of retinal up to the final time ¢; = 256 a.u.

To check that greater accuracy for a given time step is not detrimental to efficiency,
in Fig. 4.3 we plot the dependence of errors of the wavefunctions obtained by various
methods on the CPU time (see also Fig. D.2 of Appendix D.2, which displays
the efficiency results for all studied methods). Note that the results displayed in
Fig. 4.3 should not be compared with the efficiency results of Chapter 3, as they

were obtained using a different machine.
Figure 4.3 demonstrates that, if high accuracy is desired, the higher-order integrators
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are more efficient even though they require performing many substeps at each time
step. For example, below an error of 3 x 1074, the second-order implicit TVT split-
operator algorithm is already more efficient than the approximate explicit TVT
split-operator algorithm. Figure 4.3 also shows that the implicit TVT split-operator
algorithm is more efficient than the implicit midpoint method, indicating that the
implicit split-operator algorithm is the method of choice for separable Hamiltonians
and that the implicit midpoint method should only be used when the Hamiltonian is
not separable. Indeed, for errors below 7 x 1074, the TVT split-operator algorithm
is more efficient than the implicit midpoint method. Moreover, the sixth-order
composition of the TVT split-operator algorithm is always more efficient than the
corresponding composition of the implicit midpoint method, indicating that the
improved efficiency of the TV'T split-operator algorithm survives when composition

methods are employed.

In Fig. 4.4, we checked the preservation of geometric properties by the implicit
and approximate explicit TVT methods as a function of time (see Fig. D.3 of
Appendix D.2 for a version of this figure which displays the results for all the
elementary methods). Note that these results were obtained by employing the
same parameters as those used for obtaining Fig. 3.6 (i.e., the same final time, time
step, and grid). The results show that while both the implicit and approximate
explicit TVT integrators conserve the norm [panel (a)], only the implicit TVT
method is time-reversible [panel (b)]. However, due to the nonlinearity of the
time-dependent Schrodinger equation and the accumulation of roundoff errors, one
observes a gradual loss of time reversibility as the time increases (see Appendix B.4
for a detailed analysis of this loss of time-reversibility). The bottom three panels
of Fig. 4.4 (and Fig. D.3 of Appendix D.2) demonstrate that none of the methods
conserves the inner product [panel (c)], distance between two states [panel (d)], or
total energy [panel (e)], because these properties are not conserved even by the

exact nonlinear evolution operator (3.4).

Finally, Fig. 4.5 analyzes the norm conservation [panel (a)] and time reversibility
[panel (b)] of various integrators at the final time ¢; = 256 a.u. as a function
of the time step (see Fig. D.4 of Appendix D.2 for a version of this figure with
all the studied methods). As expected, all the integrators presented in Sec. 4.2
conserve the norm, regardless of the time step. Whereas the first-order integrators
are irreversible (the time reversibility is satisfied only to the first order in the time

step), the implicit midpoint, VTV and TVT methods as well as compositions of
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Figure 4.4 — Time dependence of the geometric properties of the implicit and
approximate explicit TVT methods used for simulating the local energy control
up to the final time ¢; = 2048 a.u. (a) Norm of the wavefunction. (b) Time
reversibility. (c¢) Inner product. (d) Distance between two states (conservation
of this distance would imply stability). (e) Total energy. Time reversibility is
measured by the distance between the initial state ¢y and a “forward-backward”
propagated state [see Fig. 3.5 and Eq. (3.12)]. The state ¢q is the same as the

one used in Fig. 3.5 and line labels are the same as in Fig. 4.2.

the latter are time-reversible for all time steps.
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Figure 4.5 — Norm conservation (a) and time reversibility (b) of various integrators
at the final time ¢y = 256 a.u. as a function of the time step At used for the local
energy control of retinal. Reversibility is measured as in Fig. 4.4 and line labels

are the same as in Fig. 4.2.

4.4 Conclusion

We presented high-order integrators for solving the nonlinear time-dependent
Schrédinger equation with separable Hamiltonians. In contrast to their first-order
explicit versions, the proposed methods, obtained by composing an implicit split-
operator algorithm, preserve all geometric properties of the exact solution, i.e.,
they are symmetric, time-reversible, and norm-conserving. Moreover, the proposed
integrators are more efficient than both the explicit split-operator algorithm and

the compositions based on the implicit midpoint method.
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5 Conclusions and outlook

In this thesis, we employed composition methods to increase the efficiency of stan-
dard numerical methods employed for solving linear and nonlinear time-dependent

Schrodinger equations.

As stated earlier, the standard split-operator algorithm, which is often used to solve
the time evolution of a state driven by a separable Hamiltonian, is only second-order
accurate, despite conserving many geometric properties of the exact solution. Using
composition methods, we increased its order of convergence to arbitrary even order
and provided a strategy to reduce the cost and memory needs of the composed
methods. By solving the nonadiabatic dynamics on a one-dimensional model of
Nal, we demonstrated that the high-order integrators are very efficient if highly
accurate wavefunctions are needed and preserve all the geometric properties of the
original second-order split-operator algorithm. Moreover, using a three-dimensional
model of pyrazine, we demonstrated that the efficiency of the high-order integrators

is retained in higher dimensions.

As for local control theory, this thesis demonstrated that this technique translates
into a nonlinear time-dependent Schrodinger equation for which the explicit split-
operator algorithm is only first-order accurate and does not preserve the time-
reversal symmetry. Indeed, although this algorithm is geometric and second-
order accurate for simple nonlinearities, such as the one appearing in the Gross—
Pitaevskii equation, it fails to preserve these properties when the nonlinearity is
more complicated. Thus, to remedy this lack of generality, we showed that the
explicit nature of the split-operator algorithm, which is an appealing property, must

be abandoned. To this end, we adapted the implicit midpoint for the nonlinear
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Chapter 5. Conclusions and outlook

case and used local control simulations on a two-dimensional model of retinal
to demonstrate that despite being implicit, the developed method is geometric
and second-order accurate, in contrast to the explicit split-operator algorithm.
Additionally, the developed method applies to both separable and nonseparable
Hamiltonians, and because it is symmetric, its efficiency can be further increased

using composition methods.

Finally, we have seen that to recover the geometric properties of the exact nonlinear
evolution operator, it is not necessary to abandon the split-operator algorithm
completely, but only its explicit nature. In this regard, we have developed an
implicit split-operator algorithm that is geometric, second-order, and applicable
to the general nonlinear Hamiltonian. However, the obtained integrator is only
applicable in the diabatic representation, for which the Hamiltonian is separable.
Even so, in this situation, the developed method is more efficient than the nonlinear

integrator based on the implicit midpoint method.

Together, these results provide a general methodology for obtaining efficient high-
order integrators. Indeed, employing the composition methods on any symmetric
algorithm will lead to numerical methods of an arbitrary even order of convergence

that possess the same geometric properties as the original noncomposed method.

Moreover, the accurate solutions obtained from these algorithms are valuable
because they can efficiently provide very accurate exact benchmarks, which are
helpful, e.g., in endeavors such as identifying the error induced by a novel, more

approximate method and defining its range of validity.

For example, one possible application of this work would include employing the same
composition methods to solve the dynamics within various semiclassical methods,
such as the thawed [29-32] or variational [33, 34] Gaussian approximation. These
methods are crude approximations of the exact solution but remain valid for a
short time and are suitable for ab-initio dynamics. When employed in this setting,
the bottleneck of these methods is the local potential energy information, which
is provided by electronic structure calculations. Therefore, one could use the
composition methods to eliminate the error from the time propagation entirely
and focus only on the accuracy of the approximation. In this way, the composition
methods would allow obtaining the exact result (within the approximation) with

larger time steps and fewer potential energy evaluations than with the standard
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second-order Verlet integrator typically used.

Because they apply to any nonlinear time-dependent Schrodinger equation, the
developed nonlinear integrators could be employed to solve that equation in any
other method where it appears. For example, the equations of motion of the
multiconfigurational time-dependent Hartree method are nonlinear and the constant
mean field scheme [172, 173], which is often used for the propagation, is only second-
order accurate. Thus, by using the nonlinear integrators presented in this thesis,

its accuracy and efficiency could be further improved.

To conclude, the results presented in this thesis have broad implications in molecular
dynamics. For instance, they help increase the efficiency and accuracy of existing
methods and facilitate the development of novel techniques, thus, allowing a better

understanding of the molecular nonadiabatic dynamics.
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iN Supporting information for Chap-
ter 2

A.1 Local error and geometric properties

To simplify many expressions, we set 7 = 1 and denote the increment At with e
throughout this appendix. The A can be reintroduced by replacing each occurrence
of t with ¢/h (and € with €/h). To analyze geometric properties of various integrators,
we will use several well-known identities satisfied by the Hermitian adjoint and

inverse operators:

Proposition 1. Let A and B be invertible operators on a Hilbert space, and let
At and BT be their Hermitian adjoints. Then both A" and AB are invertible and
the following identities hold:

The first identity shows that the Hermitian adjoint and inverse operations are
commutative, while the last three properties indicate that these two operations are

involutive antiautomorphisms on the group of invertible operators [90, 174].
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Appendix A. Supporting information for Chapter 2

A.1.1 Local error

The local error of an approximate evolution operator, defined as Uyppr(€) — U (€), is
typically analyzed by comparing the Taylor expansion of ﬁappr(e) with the Taylor

expansion of the exact evolution operator:

A A

() = 1 — ie(T + V) — ;3@ + V)2 4+ O(é). (A.5)

If the local error is (’)(e"+1), the method is said to be of order n because the global

error for a finite time ¢t = Pe is O(€").

The Taylor expansion of the TV algorithm (1.25) is
2 gy = L oo 3
Ury(e) = (1—Z€T—2'€ T ) (1—26%—2'6 VO) + O(€”)
~ N 1 ~ A ' ~
=1—ie(T+Vp) — 5eQ(T2 + 21V + V7)) + O(€)

= () + 20, T] + O, (A.6)

(\V]

so the leading order local error is €2[V;, 7]/2. Likewise, for the VT algorithm (1.26),

Ove(e) = U(e) — ;8[%, 1+ O(). (A7)

The Taylor expansions of the second-order TVT and VTV algorithms are obtained
by composing Taylor expansions (A.6) and (A.7) for time steps €/2:

Orvee) = Ovav(e) = 0 (5) 0 (5) + 3¢ (176,71 = 170, 71) + O

U (e) + O(€%), (A.8)

demonstrating that both TVT and VTV are second-order algorithms.
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A.1.2 Unitarity, symplecticity, and stability

Both first-order split-operator algorithms are unitary because

UTV(e)_l _ 6ieVoeieT _ UT\/(E)T;

Oyp(e)™ = i“TeicVh = Uyp(e)'.

Both second-order split-operator algorithms are unitary because they are composi-

tions of unitary first-order algorithms.

Because the symplectic form was defined in Sec. 1.1.1 as the imaginary part of the
inner product and because VT, TV, VTV, and TVT algorithms as well as their

compositions are unitary, all of them are also symplectic.

Stability follows from unitarity because

[(t +€) = ¢t + )l = 9 (t) = o)l (A.9)

for unitary evolution operator Uappr(e). Since all split-operator methods are unitary,

all are stable as well.

A.1.3 Commutation of the evolution operator with the

Hamiltonian and conservation of energy

Because the kinetic and potential energy operators do not commute, unless Vo =
const, the evolution operator of no split-operator algorithm commutes with the

Hamiltonian. E.g., for the TV algorithm,

A A

[, Urv(€)] = [T+ Vo, e Te 0] = e 7T [T, V0] - [V, e7T]e 7% 2£ 0. (A.10)

As a consequence, split-operator algorithms do not conserve energy.
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A.1.4 Symmetry and time reversibility

As shown, e.g., in Refs. [88, 91, 104], the adjoint of an evolution operator satisfies

the following properties:

Oy = 0(e), (A1)
(U1(€)Ua(e))" = Us(e)* T, (A.12)
U(e)U(e)* is symmetric. (A.13)

Note that the third property gives a simple recipe for developing symmetric
methods—by composing an arbitrary method and its adjoint, with both composition
coefficients of 1/2.

The first-order VT and TV split-operator algorithms are adjoints of each other
because
UTV(—G)_l = ¢ VoIl — UVT(e) (A.14)

and because of Eq. (A.11). Therefore, neither VT or TV algorithm is symmetric or
time-reversible. In contrast, the second-order VI'V and TVT algorithms are both
symmetric, which follows from Eq. (A.13) applied to the two possible compositions
of the VT and TV algorithms with composition coefficients 1/2. As shown, e.g., in
Refs. [88, 91, 104], time reversibility follows from symmetry. Therefore, both VTV

and TVT algorithms and their symmetric compositions are time-reversible.

A.2 Exponential convergence with grid density

The top panel of Fig. A.1 exhibits the exponential convergence of the molecular
wavefunction with the increasing number of grid points for the Nal model in
the diabatic basis. The ranges as well as the densities of both the position and
momentum grids were increased by a factor of /2 for each increase in the number
Ngiiq of grid points by a factor of two. Convergence error required comparing wave-
functions on grids with different densities, which was carried out by trigonometric
interpolation of the wavefunction on the sparser grid. Increasing Ngiq reduces the
convergence error at time ¢; (top panel) because the errors of both the required
overlap integral and of the propagation decrease. To compare these two effects,

the bottom panel of Fig. A.1 shows the ratio of the purely integration error and
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Figure A.1 — Top: Convergence of the initial and final wavepackets with the
increasing number of grid points. Bottom: Ratio of the integration error and total
convergence error at the final time as a function of the number of grid points.
(See Appendix A.2 for details.) The sixth-order optimal composition of the VTV
algorithm with time step At = t;/27 was used for the propagation.

the total error. The integration error is defined as H&Ngm (tf) — Yaoos(ts)|| where
Va006(ty) is the wavefunction propagated on the fully converged grid and ¢, (ty)
is 14006(t ) represented with Ngyiq grid points. In other words, the representation
on a reduced grid is done only after propagation. The panel shows that at the final
time, the integration error is approximately one half of the total error. Therefore,

the integration and propagation errors due to a finite grid are similar.
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Supporting information for Chap-
ter 3

B.1 Geometric properties of nonlinear numeri-

cal integrators

Here, we verify which geometric properties of the exact evolution are preserved
by various integrators. The analysis generalizes the analysis from Appendix A of
Ref. [104] for the linear to the nonlinear Schrodinger equation. To simplify the
proofs, wherever it is not ambiguous, we shall use abbreviated notation Uappr(@b) =

Usppr (t + At, t;10) for the evolution operator for a single time step and € := At/h
for the time step divided by Planck’s constant.

B.1.1 Norm conservation

In general, the norm is conserved if and only if

A

Uappr (1/1) f Uappr (1/1) =1 )

which follows from a derivation analogous to Eq. (3.8) for the exact operator U (1)).

As in the linear case, neither Euler method conserves the norm because

Uexpt (Vo) Ut (1) = [L + ieH (¢)][1 — ieH ()]
— 1+ EH@W)? #1 (B.1)
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and

Uimpl(wt—i-At)TUimpl<wt+At)
= [1—ieH (rpa0)] 1+ ieH (Yrya)]
— [t ] AL (B.2)

The trapezoidal rule, norm-conserving in the linear case, loses this property for

nonlinear Hamiltonians since

Utrap (%) Utrap (1))
= [1+deH () /2)[1 — ieH (rons) /2]
X [1+ ieﬁ[(i/}tJrAt)/Q]fl[l - ieﬁ(%)/ﬂ
= [1 4 ieH (1) /2)[1 + EH (P a0)? /4]
x [1—ieH (4y)/2]
1. (B.3)

the last nontrivial expression does not reduce to 1 because H (1) # H(¢pa:). In
contrast, both the implicit midpoint and approximate explicit TVT split-operator

algorithms conserve the norm even in the nonlinear setting because

Unia(Visae/2) Unia (Ve ar/2)
= [1—ieH ($rra02) /2] 1+ i€ H (g arj2) /2]
x [1— ieﬁWHAtﬂ)/Q][l + iﬁg(thrAt/?)/ﬂfl
~1 (B.4)

(where in the last step we used the commutativity of the middle two factors in the

previous expression) and

J R T R
Uexpl VT (wt,TAt/Q) Uexpl VT (wt,TAt/Q)
_ ei€T/2eigvtm(wt,i“At/Q)eifT/Q

% efieT/2€*iEVtoc(thYTAt/Q)efieT/Z

~ 1. (B.5)
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B.1.2 Symmetry and time reversibility

Neither Euler method is symmetric nor time-reversible because they are adjoints

of each other:

A A

Uexpl(t + At; t; ¢t)* = Uexp1<t7 t+ At; ¢t+At)_1
(1= i(—A8H (rin) /B
Aimpl<t + At) tv wt+At)' (B6)

The approximate explicit TVT split-operator algorithm is also time-irreversible

because forward propagation is not cancelled by backward propagation:

Uespr v (£ €+ At ) U v (8 + At Uriats)
_ eieT/2€ie\7tot(1/JVT)eieT/2

% e*iCT/2€77:€‘/tot(wt7TAt/2)e*l’ﬁ’f‘/2

£1, (B.7)

where Y7 1= eiel/ 2hins = e_iemtwt*TAt/?)wtj At)2 denotes the state obtained af-
ter forward propagation of ¢, 7, /2 with the potential evolution operator and
Viot (Vyrp) # %ot(wt’jﬂAt/Q) was used to obtain the last line. It is clear from
Eq. (B.7) that if the nonlinear term is as in the Gross-Pitaevskii equation, i.e., if
Viot (¥, q) = Vo(q) + C|p(q)|* with C a real constant, the approximate explicit TVT
split-operator algorithm becomes time-reversible because Vtot(@/)f/f) = Vtot(%j A /2)
in that particular case; the reason is that wavefunctions ¢y.+(q) and 9, 7, /2(‘1) in
position representation only differ by a position-dependent phase factor. However,
the equality ‘A/tot(z/)VTA) = Vtot(?/ftj A /2) does not hold for other nonlinear Hamil-
tonians, such as the one in local control theory, which contains a more general

nonlinearity.

In contrast, both the implicit midpoint method and trapezoidal rule are always
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time-reversible because they are symmetric:

Unia(t + At s aee)” = Unia(t,t + At hars)
= {1+ el Wrra2) 21 — il (rea) 27}
= [1 — ieH (Yo aes2) /2)[1 + ieH (Vrrar2) /2]
= Unia(t + At, t; Yeiat)2); (B.8)

and

Utrap(t + A, 159)" = Usap (1, £+ At; 1) ™!
= {[1 —ieH(y1) /2 '[1 + ieﬁ(wHN)/Q]}_l

=[1+ iEﬁ(wt+At)]_1[1 - ief[(¢t)/2]
= Uspap (t + AL, 1:9)). (B.9)

B.2 Exponential convergence of the wavefunc-

tion with respect to the grid density

Figures B.1 and B.2 show the convergence of the wavefunction with respect to
the grid density at the final times ¢; = 256 a.u. and t; = 2048 a.u., respectively.
For both figures, the goal of the calculation was to increase the population of the
excited state in the presence of nonadiabatic couplings and the approximate explicit
TVT split-operator algorithm was used with a time step At = 27! a.u. The grid
convergence was obtained by fixing the number of grid points of one of the two
dimensions and repeating the calculation with a varying number of grid points for
the other dimension. For each increase in the number of points by a factor of k &~ /2
in the varying dimension, the position and momentum ranges as well as densities in
that dimension were increased by a factor vk &~ 21/4. Then, the error was measured
by the distance |1, (N1,Y) — ¢y, (V2N Y)|| and [[¢h, (X, N2) — ¢, (X, V2N,)|
for the grid convergence of the first and second dimension, respectively, with
¥t (N1, N2) denoting the wavefunction at the final time ¢y, obtained using grids
consisting of N; and N, points in the first and second dimension, respectively. Note
also that X and Y are the fixed numbers of grid points of the first and second
dimensions, respectively. The comparison of wavefunctions that are represented on

different grids was performed by trigonometric interpolation of the wavefunction
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tf = 256 a.u.
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Figure B.1 — Error of the wavefunction at the final time ¢; = 256 a.u. as a
function of the number of grid points. The figure indicates that the numerical
grids consisting of N; = 128 points between § = +7/2 a.u. and Ny = 64 points
between g. = £9.0 a.u. are converged. All calculations were performed using the

approximate explicit TVT split-operator algorithm with time step At = 27! a.u.
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Figure B.2 — Error of the wavefunction at the final time ¢y = 2048 a.u. as a
function of the number of grid points. The figure indicates that the numerical
grids consisting of N; = 256 points between § = £37/2 a.u. and Ny = 64 points
between g. = £9.0 a.u. are converged. All calculations were performed using the

approximate explicit TVT split-operator algorithm with time step At = 27! a.u.
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represented on the sparser grid. In both figures, exponential convergence with

respect to the grid density of each dimension is observed.

B.3 Results for the other simulations

We present here the results obtained when controlling the population (in the
absence of nonadiabatic couplings) as well as the energy (in the presence and
the absence of nonadiabatic couplings). Figures B.3-B.5 show the convergence
with respect to the time step At of the wavefunction at the final time ¢; for the
different simulations and Figs. B.6-B.8 show the efficiency of various algorithms.

The geometric properties are displayed in Figs. B.9-B.14.

Composition type Elementary method Order
No comp. == == Optimal + Expl. Euler O Impl. Euler Higher-order impl. midp. —] — —
= = = Suzuki = = = Triple J. O Trap. Rule X Expl. TVT o 2"d_order impl. midp. —f =8 =10

102 1 1 1 1 1 —

10° | oy
1072 4 T

Figure B.3 — Convergence of the molecular wavefunction at the final time ¢ achieved
by the local population control in the absence of nonadiabatic couplings. Top: All
studied methods, i.e., explicit and implicit Euler methods, approximate explicit
TVT split-operator algorithm, trapezoidal rule, implicit midpoint method and its
symmetric compositions. Bottom-left: Methods obtained with the Suzuki compo-
sition. Bottom-right: Sixth-order methods obtained with different composition

schemes.
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Composition type Elementary method Order
No comp. = = Optimal + Expl. Euler O Impl. Euler Higher-order impl. midp. —] — —
= = = Suzuki = = = Triple J. O Trap. Rule X Expl. TVT ¢ 2"d-order impl. midp. —_—6 ——8 —10

102

10°
10—2
1074
106
10-8

10710

10712

([, (At) = e (A/2)]|

100
10—2 4
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106
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10—10
1012 += —
102 101 100 10t 102 101! 100

Figure B.4 — Same as Fig. B.3, but for energy control with nonadiabatic couplings.

Composition type Elementary method Order

No comp. == == Optimal + Expl. Euler O Impl. Euler Higher-order impl. midp. — — —
= == « Suzuki = « = Triple J. O Trap. Rule X Expl. TVT ¢ 2"_order impl. midp. —_—f =8 ——10

102 !

100_
10—2 4=
1074 4

1076_ v e

10—2 10—t 100 10t 10—2 101! 100
At (a.u.)

Figure B.5 — Same as Fig. B.3, but for energy control without nonadiabatic

couplings.
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Figure B.6 — Efficiency of the integrators used for the local population control of
retinal in the absence of nonadiabatic couplings. Efficiency is measured by plotting

the convergence error as a function of the CPU time.
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Figure B.7 — Same as Fig. B.6, but for energy control with nonadiabatic couplings.
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Figure B.8 — Same as Fig. B.6, but for energy control without nonadiabatic
couplings.
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Norm conservation
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Figure B.9 — Norm conservation (top) and time reversibility (bottom) of various
integrators at the final time ¢; as a function of the time step At used for the local
population control in the absence of nonadiabatic couplings. Time reversibility is
measured by the distance between the initial state 1y and a “forward-backward”
propagated state thy 1= U(O,t : Q/J)U(t, 0; )1 [Eq. (3.12)].
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Norm conservation
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Figure B.10 — Same as Fig B.9, but for energy control in the presence of nonadiabatic
couplings.
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Norm conservation
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Figure B.11 — Same as Fig B.9, but for energy control in the absence of nonadiabatic
couplings.
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Figure B.12 — Geometric properties of various integrators used for the local popu-
lation control in the absence of nonadiabatic couplings. Panel (a) shows that only
the implicit midpoint and approximate explicit split-operator methods conserve the
norm, while panel (b) demonstrates that only the implicit midpoint method and
the trapezoidal rule are time-reversible. (Reversibility is measured as in Fig. B.9).
Bottom three panels show that no method conserves (c) the inner product, (d)
distance between two states (which would imply stability), or (e) total energy
Eiot(t) := Eo(t) + (Ve (), because even the exact evolution operator does not
preserve these properties. State ¢q is 1y displaced along the reaction coordinate,
i.e., a two-dimensional Gaussian wavepacket of the form (2.16), with parameters
g0 = (0.1,0), po = (0,0), and o = (0.128,0) a.u. The time step At =272 a.u. was
used for all calculations and line labels are the same as in Fig. B.3. Note that
only a few points of the Euler methods are visible in some of the plots because the

results of the Euler methods leave the range of these plots very rapidly.
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Figure B.13 — Same as Fig. B.12, but for energy control with nonadiabatic couplings.
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Figure B.14 — Same as Fig. B.12, but for energy control without nonadiabatic

couplings.

B.4 Loss of time reversibility due to roundoff er-
rors

Figure B.15 displays, for the population control in the presence of nonadiabatic
couplings, the influence of various parameters on the time reversibility of the
implicit midpoint method. This figure aims at demonstrating that the loss of
time reversibility at longer times is due to the combination of nonlinearity and
accumulation of roundoff errors and errors due to the approximate solution of the
nonlinear system described by Eq. (3.21) of the main text. Indeed, when using
the implicit midpoint method, this nonlinear system is only solved up to a limited

accuracy ¢ (i.e., the nonlinear system is considered solved if || f(y*TV)|| < ¢).
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Figure B.15 — Influence of various parameters on the time reversibility of the
implicit midpoint method. The three panels show that the time reversibility of
the implicit midpoint method deteriorates (a) if the time step At is decreased,
leading to a faster accumulation of roundoff errors, (b) if the error e threshold
of the nonlinear solver is increased, and (c) if the precision of the floating-point
arithmetic is decreased. Note that decreasing the floating-point precision does not
have a visible influence on the approximate explicit split-operator algorithm, which

is irreversible by construction. Time reversibility is measured as in Fig. B.9.

Panel (a) shows the influence of the time step on the time reversibility of the
implicit midpoint method. For this, we propagated the wavefunction to the final
time t; = 2048 a.u. with different time steps and kept the same error threshold
¢ for solving the nonlinear system. We observe that decreasing the time step
decreases the time reversibility of the implicit midpoint method. This is due to
a faster accumulation of roundoff errors caused by the greater number of steps

performed when using a smaller time step.

Panel (b) depicts the influence of the error threshold € on the time reversibility.
Here, we propagated the wavefunction using the implicit midpoint method using
the same parameters but only changed the error threshold . As expected, a larger

error threshold results in a faster loss of time reversibility as the time increases.

Finally, panel (c) shows the influence of the floating-point format precision. We
compare the single and double precision floating-point formats for the implicit

midpoint method and the approximate explicit TVT split-operator algorithm. The
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results indicate that decreasing the floating-point format from double to single
precision, while keeping other parameters fixed, decreases the time reversibility of
the implicit midpoint method while it does not affect the approximate explicit TVT
split-operator algorithm. Because the implicit midpoint method is by construction
time-reversible, decreasing the floating-point format has the same effect as increasing
the threshold e, namely increasing the roundoff error when solving the nonlinear
system, hence decreasing its time reversibility. In contrast, the approximate explicit
TVT split-operator algorithm is not affected by the change of precision because it
is, by construction, time-irreversible and would remain irreversible even if infinite

precision were available.
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@] The generalized minimal residual
method

The generalized minimal residual method is an iterative method for solving linear

systems
Az =0, (C.1)

such as the one encountered in Eq. (3.25), with A = J(x®), 2 = 6¢®, and
b = —f(v™®). Here, we used the restart version of the algorithm. Following
Refs. [110] and [109], the algorithm can be summarized in four steps:

1. Initialization
2. Arnoldi’s method for constructing an orthonormal basis of the Krylov subspace

3. Forming the solution

4. Restart
Each step is described in more detail below.

C.1 Initialization

The initialization is performed as follows: Choose an initial guess zy, an error
threshold e, a maximal number of iterations m, and compute the initial residue
ro =b— Axg, B := ||rol|, and vy :=ro/B.
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C.2 Arnoldi’s method
Arnoldi’s method obtains an orthonormal basis of the Krylov subspace [164, 165]
Ko = span{vy, Avy, ..., A" 1o}

The orthonormal vectors, which span the Krylov subspace, are obtained using the

modified Gram-Schmidt process. The algorithm is:

1. For 7 =1,2,...,m Do:

2. Compute w; := Av;

3. Forv=1,...5 Do:

4. hij o= (vilwy)

5. wj = w; — hi;v;

6. End Do

7. hjt1; = ||lwjl]. If hjs1; =0, set m = j and stop
8. vjp1 = wj/hjy1;

9. End Do

C.3 Forming the solution

Here, the goal is to find the solution which minimizes the norm of the residue after
m iterations of Arnoldi’s method. Now that the orthogonal basis is constructed,
we know that the solution lies in the affine subspace x¢ + KC,,,. Thus, any vector x

in that space can be written as
x=x0+ Vo, (C.2)

where V,,, := {v1, ..., vy} is the matrix constructed from the orthonormal vectors v,

and y is an arbitrary vector of size m. The problem translates to the minimization
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of the function

M(y) = [|b — A(xo + V)|
= |lro — AVnyl||
= ||Bv1 — Vi1 Huy||

= [Vinsr(Ber — Huy)|
= [[(Ber — Huy)||; (C.3)

where H,,, = {hi;}1<icms11<j<m i the the (m + 1) x m Hessenberg matrix con-
structed from the elements h;; obtained in Arnoldi’s method and where e; =
(1,0,...,0)T is the first vector in the standard basis of R™*!. The third line of
Eq. (C.3) was obtained using AV,, = V1 H,,, while the last line follows because
the columns of V,,, 1 are orthonormal. This step of the generalized minimal residual

algorithm can be summarized as:
1. Construct the Hessenberg matrix H,,

2. Compute y,,, the vector of dimension m minimizing M (y)

3. Compute the solution x,, = zo + Viym

C.4 Restart

This last step of the generalized minimal residual algorithm determines whether the
solution x,,, obtained at the previous step, is sufficiently accurate. If the condition
|7mll == ||b — Azp,|| < € holds, z,, is taken as the solution. If ||r,| > €, we set

o = Ty, and restart the algorithm.

C.5 Practical implementation

In practice, it is difficult to compute the vector y,,, minimizing M (y). For this, it

is preferable to use the decomposition
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where Q,, is an (m+1) x (m + 1) orthogonal matrix and R,, is an upper triangular
matrix of dimension (m + 1) x m with a bottom row consisting only of zeroes, i.e.,

it can be decomposed as

Ry, = : (C.5)

where R,, is an m X m upper triangular matrix. Once this factorization is performed,

the minimization problem simplifies to
Ym = argmin, ||Be; — Hyy|| = argming, ||, — Ryl (C.6)

where g, == QmpBer = (71, .-+, Yms1)? and can be decomposed as o = (G, Ymr1)® -
The solution of the minimization problem is now trivially obtained by solving the

linear triangular system R,,%,, = gm, Which yields
Ym = Ry gm. (C.7)

Note that it can be proven that the residue after m iterations of the algorithm is

given by the last element of g,,, i.e., 1, = |Ym41| [110].

Instead of constructing H,, and computing its decomposition (C.4) after m itera-
tions of Arnoldi’s method, both can be performed in an iterative manner, at each
iteration j of Arnoldi’s method. This makes it possible to obtain g; and therefore
to check if r; < € at each iteration step j, without even solving the minimization
problem.

To do so, H j+1 is obtained by concatenation of H ; and the elements obtained in
steps 4 and 7 of Arnoldi’s method, i.e.,

hij+1
) g
Higy= |7 . (C.8)
hjt1,j+1
0 hjragn

Then, multiplying F[jﬂ on the left by the orthogonal matrix obtained at the
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previous iteration yields an almost upper triangular matrix

T1,5+1
Q; 0 o
RjJrl = ’ HjJrl = T5+1 (Cg>
0 1
0 7
0 v

of dimension (j + 2) x (j + 1). Note that n and v denote the arbitrary elements
j+ 1,74+ 1and j+ 2,5 + 1 of the matrix RjH. From there, RjH, which is upper

triangular, is obtained by rotating Rjﬂ:

1,541
_ _ . R. :
Rip1 = Qi =GR = | 7 , (C.10)
0 7jy1 41
0 0
where
1
G S
=S G

is a rotation matrix of dimension (j + 2) x (j + 2). The complex coefficients

S S 8 1= S (C.12)
|2+ [v]?

Cj 1= 5 3
[nl* +[v|

of 2, are selected so that multiplying €2; with RjH yields the upper triangular
matrix RjH. From Eq. (C.10), Q41 is obtained by applying the rotation matrix
2, to Q; as

Q; 0
0 1

Q1 = O (C.13)
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ter 4

D.1 Geometric properties of various integrators

Here we demonstrate the geometric properties of the explicit TV and implicit VT,
TVT, and VTV algorithms.

D.1.1 Norm conservation

The evolution operator U;(At) of the Hermitian kinetic energy operator 7' conserves

the norm ||| of the state 1, because

1O AL* = (| U(AL) U£(A)e) = (wrltrr)

where we used the relation
U (AN = (e A2 = T (A1), (D.2)

which holds for any Hermitian operator fl, to obtain the second equality.

For the potential evolution operator, we first assume that while the operator
Vit : 1 ‘A/tot(w)w is nonlinear, for each ¢ the operator th((b) RN th(@w is
linear. Moreover, we assume that Vie(6) has real expectation values (Vig(4))y in
any state 1, which for a linear operator implies that it is Hermitian. Therefore,

the evolution operator U\%ot@ (At) conserves, for any ¢, the norm of the state 1
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because

”ﬁffmt(@ (ALY = (¢t|U‘7tot<¢)(At)TUth(d))(At)ﬂ)Q
= (U]hr) = |2, (D.3)

where we used Eq. (D.2) to obtain the second equality.

Composing two norm-conserving evolution operators U 4 and U 5 of Hermitian
operators A and B, respectively, yields a norm-conserving integrator U ap(At) =
Ui (At)Ug(At). Indeed, we have

1045 (AL 17 = | T4(AOE = (4]
= [[Us(A)e* = 19, (D.4)

where ¢ := Us(At)1,. Therefore, all proposed integrators (including the integra-
tors obtained by symmetric composition of TVT or VTV algorithms) conserve the

norm because they are all compositions of the norm-conserving integrators UT(At)
and Uy, (At).

D.1.2 Symmetry and time-reversibility

Neither the explicit TV nor implicit VT method is symmetric because

[A]Tv(t + At tay)" = ﬁTV(ta t4 At ag)
= [UT(_At)UVMwHN)(—At)]_l
= Ugywronn (DD TR (AL)
= Uyr(t + At thn)
# Ury (t + AL, £ ) (D.5)
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and

Uvr(t + Attt ne)” = Oyt t+ Aty )™
= Uy (AT (AL
Up (A Ty, (AL)
Urv(t + At, t; 1)
# Uyp(t + At G ar). (D.6)

As a result, neither the TV nor VT method is time-reversible.

From Egs. (D.5) and (D.6), we notice that the explicit TV and VT methods are,
in fact, adjoints of each other, i.e., Uz, = Uyp and Uy = Upy. In general, the
composition of adjoint methods U and U * each with a time step At/2, yields
symmetric methods UU* and U*U [88]. Because the implicit TVT and VIV
methods are such compositions of adjoint TV and VT methods, both TVT and
VTV integrators are symmetric. Applying symmetric composition schemes to these
symmetric methods will always yield a symmetric method [88]. Therefore, the

proposed high-order integrators are also symmetric and time-reversible.

D.2 Results for all the studied methods

To avoid clutter in the figures of the main text, we showed there only the results of
some studied methods. Here, we show the results displayed in Sec.4.3 for all the
studied methods. Note that the results of some high-order methods could not be
obtained because they did not converge at large time steps (the difference between
the initial guess and the implicit solution was too large for the Newton-Raphson
method to converge) and became computationally unaffordable at smaller time

steps, when the Newton—Raphson method was converging.
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Composition type Elementary method Order
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Figure D.1 — Convergence of the molecular wavefunction at the final time
t; = 256 a.u. achieved by the local energy control. (a) All studied methods, in-
cluding symmetric compositions of the TVT split-operator algorithm. (b) Methods
obtained with the optimal composition (Suzuki’s fractal is the optimal fourth-order

composition scheme. (c¢) Sixth-order methods obtained with different composition
schemes.
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Figure D.2 — Efficiency of various integrators used for simulating the local energy
control of retinal up to the final time ¢; = 256 a.u. Line labels are the same as in
Fig. 4.2.
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Figure D.3 — Time dependence of the geometric properties of the elementary
integrators used for simulating the local energy control up to the final time t; =
2048 a.u. (a) Norm of the wavefunction. (b) Time reversibility. (c¢) Inner product.
(d) Distance between two states (which would imply stability). (e) Total energy.
Time reversibility is measured by the distance between the initial state ¢y and a
“forward-backward” propagated state 1 [see Fig. 3.5 and Eq. (3.12)]. The state ¢

is the same as the one used in Fig. 3.5 and line labels are the same as in Fig. 4.2.
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Figure D.4 — Norm conservation (a) and time reversibility (b) of various integrators
at the final time ¢y = 256 a.u. as a function of the time step At used for the local
energy control of retinal. Reversibility is measured as in Fig. D.3 and line labels

are the same as in Fig. 4.2.
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