
Laboratory for Automated
Reasoning and Analysis

Informal Systems

Master Thesis

Formal Verification of Rust
with Stainless

Yann Bolliger

Company supervisor: Romain Rüetschi, Informal Systems
Academic co-supervisor: Georg Stefan Schmid, EPFL
Academic supervisor: Prof. Viktor Kunčak, EPFL

July 30, 2021

i

Abstract

Writing correct software is hard, yet in systems that have a high failure cost or are not easily
upgraded like blockchains, bugs and security problems cannot be tolerated. Therefore, these sys-
tems are perfect use cases for formal verification, the task of mathematically proving that a system
conforms to its specification. Many recent blockchains are implemented in the Rust programming
language because it guarantees memory safety at compile-time while providing full control over
efficiency to the programmer.

To explore the powerful combination of the safety guarantees of Rust’s compiler with the ability
to formally verify high-level properties on programs, we present Rust-Stainless. Stainless is a formal
verification tool for Scala backed by Satisfiability modulo theories (SMT) solvers. Rust-Stainless
is a frontend for Stainless that extracts a subset of Rust, translates it to Scala and verifies it with
Stainless. In this thesis project, I significantly advance the feature set of Rust-Stainless, increasing
its expressiveness to programs that cannot be processed in Scala Stainless. In particular, this thesis
adds support for mutability and in-place updates, by introducing a translation for mutability from
Rust to Scala. I argue that the translation yields equivalent runtime semantics in both languages
and refine it to work with Stainless. This allows to verify data structures implemented in Rust
without sacrificing performance. Other new features are traits with verified contracts, references,
and heap allocation.

The tool is evaluated on real-world Rust examples from a blockchain context. Remaining limi-
tations concern missing support for some Rust language features, the limitation of only processing
one crate at a time, and certain aliasing restrictions of the current Stainless backend for mutability.
Finally, I explore possible promising ways for the future advancement of Rust-Stainless.

ii

Contents

1 Introduction 1

2 Background 3
2.1 Rust Language . 3

2.1.1 Syntax Overview . 3
2.1.2 Owning and Referencing Data . 6
2.1.3 Rust Compared to Scala . 9

2.2 Stainless Verifier . 9
2.2.1 Specifications . 9
2.2.2 Algebraic Properties . 10

3 Mutability Translation 13
3.1 Translation for Runtime Equivalence . 13

3.1.1 Algorithm . 13
3.1.2 Correctness . 17

3.2 Translation for Stainless . 19
3.2.1 Avoiding Aliasing . 19
3.2.2 Optimisations . 21
3.2.3 Limitations . 22

4 Implementation 24
4.1 Background . 24

4.1.1 Rust Compiler . 24
4.2 System Overview . 25

4.2.1 Design . 25
4.2.2 Pipeline . 26

4.3 Extraction . 27
4.3.1 Supported Rust Features . 27
4.3.2 Implementation Details . 31

4.4 Limitations . 33
4.4.1 Unsupported Rust Features . 33
4.4.2 Stainless Backend Limitations . 34
4.4.3 Design Limitation . 35

5 Evaluation 37
5.1 Benchmarks . 37
5.2 Code Examples . 37

5.2.1 Test Suite Examples . 39
5.2.2 Peer-List Implementation . 41

CONTENTS iii

6 Related Work 43
6.1 Background Topics . 43
6.2 Rust Formalisations . 44
6.3 Verification . 44

7 Conclusion 47

Bibliography 52

A Appendix 53
A.1 THIR Example . 53
A.2 Rust Benchmarks . 55
A.3 Informal Systems Code . 60

1

1 Introduction

Everyone who has ever written a computer program knows, it never runs correctly on the first
try. Writing correct software is a hard task, yet the longer the more, software dominates our lives.
While finding bugs in a student software project may be time-consuming but harmless, there are
countless places where logical errors and worse, security problems cannot be tolerated. These are
usually systems where failure has too high of a cost in terms of money or even human safety,
imagine a railway control system. Software errors are also intolerable in systems that are costly or
impossible to upgrade like embedded systems or satellites.

One type of systems that have both a high financial cost of failure and are difficult to upgrade
are blockchains that power cryptocurrencies. Bitcoin [36] and Ethereum [12] have become very
popular and are valued at amounts reaching into the hundreds of billions of dollars at the time
of writing1. Upgrading such distributed systems is hard because a majority of the participating
machines need to reach a consensus about the upgrade. This makes upgrading the two former
blockchains nearly impossible and even systems designed with upgrades in mind like the Cosmos
network [27] wish to minimise the number of upgrades required, hence the need for correct software.

A powerful and strict approach to writing correct software is to mathematically prove the
correctness of a program, called formal verification. The Stainless verification framework [21] is
a formal verification tool for the Scala programming language. It enables programmers to prove
high-level properties about functions and data structures, for instance that they conform to their
specification, in a semi-automated fashion. Additionally, Stainless establishes program termination
and the absence of runtime crashes.

However, blockchains are usually not implemented in Scala, but rather in C++, Go or Rust
for performance reasons. While Go achieves high performance despite its garbage collector, C++
and Rust leave memory management to the programmer. This is the primary source of security
problems in C++. Rust, however, guarantees memory safety by introducing a new type checking
phase in its compiler, the borrow checker. Rust is therefore well-suited for implementing highly
performant, correct, and safe systems, for example the Tendermint blockchain consensus imple-
mentation2 developed by Informal Systems.3 But even with type safety and memory safety at
compile-time, Rust cannot guarantee correctness on its own.

Therefore, and with the vision of combining the safety guarantees of Rust with the formally
verified correctness guarantees of Stainless, we present Rust-Stainless, a verification tool created
by Georg Schmid. Rust-Stainless4 is a frontend to the Stainless verifier capable of extracting a
subset of the Rust language, translating it to a subset of Scala and verifying it with Stainless. In
this thesis project, I substantially extend the fragment of Rust that can be translated by the tool,
adding features like mutability, references, and type classes.

1https://coinmarketcap.com/historical/20210725/
2https://github.com/informalsystems/tendermint-rs
3https://informal.systems
4Pun not intended, but – needless to say – welcome.

https://coinmarketcap.com/historical/20210725/
https://github.com/informalsystems/tendermint-rs
https://informal.systems

CHAPTER 1. INTRODUCTION 2

Before this thesis project, I mainly worked on the translation of Rust traits to Scala type classes,
in the context of a semester project supervised by Georg Schmid. The thesis project was the best
way to continue the ongoing work on Rust-Stainless. Therefore, this report also presents some
of the results of the previous project. Thanks to Georg and Prof. Viktor Kunčak, my academic
supervisor, I had the luck to conduct this thesis project as an intern at Informal Systems, where
I was supervised by Romain Rüetschi. The blockchain- and Rust-focussed company provided the
perfect motivation and context to push Rust-Stainless in the right direction.

Contributions

• Theory: In chapter 3, I develop a translation from Rust to Scala that produces equiva-
lent runtime semantics in Scala for Rust features like mutability, mutable and immutable
references, mutable tuples and data types, and move semantics. The translation is further
adapted for use with the current state of Stainless’s imperative phase.

• Implementation: The largest contribution of this project are the numerous features that
I added to the implementation of Rust-Stainless. In over 70 pull requests, I fixed bugs,
added extraction capabilities for new Rust language fragments, implemented the mutability
translation, and improved the user-facing stainless library. Chapter 4 first describes the
overall design and pipeline of the tool, then it outlines the state of the frontend before and
after this project.

• Bugfixes: By using Stainless only as a backend and with unforeseen Scala-atypical inputs,
we uncovered 14 issues in Stainless of which I solved or helped solve eight. Furthermore, I
added the freshCopy primitive to the imperative phase of Stainless.

• User Perspective: The internship at Informal Systems allowed me to test our tool on real-
world code, see subsection 5.2.2. This helped taking on a user perspective and had great
influence on the choice and priorisation of new features.

3

2 Background

This chapter offers a short introduction to the Rust language as well as the Stainless verifier.
Both parts will use a running example of a Rust program (Listing 2.25) to illustrate the involved
concepts. It may seem odd to introduce Stainless with Rust as it is built and usually used with
Scala. However, thanks to Rust-Stainless the usage of Stainless in Rust is so similar to the usage
in Scala that it is suitable to reuse the running Rust example. For a more detailed introduction to
Stainless in Scala please refer to its documentation [17].

2.1 Rust Language
Rust [25, 32] is a recent systems programming language, initially developed at Mozilla with the
goal of replacing C++ as primary application language. Its most distinguishing feature is the new
approach to memory management. Traditional languages tend to either manage memory with a
garbage collector or require the programmer to manually allocate and, more importantly, deallocate
memory. Rust deallocates memory itself without a garbage collector by using concepts of ownership
and reference lifetimes. In other words, Rust provides memory management at compile-time which
results in cost-free abstractions at runtime. Additionally, Rust guarantees memory safety properties
like the absence of dangling pointers, i.e. it is impossible to dereference a freed part of memory.

To live up to its promises, Rust introduces a flow-sensitive type checker, the borrow checker,
which is a concrete implementation of ideas that have been studied in research for years. The two
main concepts are ownership [13] and borrowing that build on the research topics of uniqueness
[11] and linearity [53, 49]. More details on the research background are in chapter 6.

2.1.1 Syntax Overview
Listing 2.1 shows a simple Rust function that returns the square of the integer x. Rust is statically
typed. Function parameter types are annotated: i32 in this case, a signed 32-bit integer. Other
integer types can be unsigned (u32) or of other bit-lengths (u128). The return type of the function
is indicated after the arrow, if omitted it defaults to (), the unit type. Note also, that the single
(and last) expression in the function block is implicitly returned. Alternatively, one may employ
the explicit return statement to return a value from any point in a function, like on line 3 of
Listing 2.2. Statements are delimited with semi-colons and produce the unit type.

fn square(x: i32) -> i32 { x * x }

Listing 2.1: A simple Rust function.

Variables

The let statement is used to create a new variable and bind the assigned value to it. Function
parameters are also variables in Rust [44]. By default, variables are immutable, that is, the compiler
rejects any attempt to reassign to an initialised variable. On the other hand, Rust accepts to
redeclare and thereby shadow a binding, which is what happens on line 5 of Listing 2.2.

CHAPTER 2. BACKGROUND 4

The compiler infers the type of most let-bindings, such that the type does not have to be
annotated like for function parameters. In Listing 2.2, all the types are inferred to be the standard
i32. This even works for bindings that shadow an earlier declaration of a different type.

1 fn f(z: i32) -> i32 {
2 let x = z * 10;
3 if x > 100 { return z; }
4 let y = z * 100;
5 let z = 3;
6 x + y + z
7 }

Listing 2.2: A Rust function doing some arithmetics.

Algebraic Data Types (ADTs)

Taking strong inspiration from C, user-defined data types in Rust are called structs and enums.
Structs are product types and come in three forms: without fields, like OnlyAMarker in Listing 2.3,
so called unit structs; the tuple form with numerically indexed fields, e.g. a.0; and the C-like
structs with field names, b.field. Enumerations are sum types and have members that are again
in either unit, tuple or C-like form. Listing 2.4 shows an enumeration type example from the
standard library, the option type. It also shows how the type parameter T is used to create a
generic data type.

1 struct OnlyAMarker;
2 struct A(i32, bool);
3 struct B {
4 field: u8
5 }

Listing 2.3: All three forms of structs.

1 enum Option<T> {
2 None,
3 Some(T),
4 }
5 let opt: Option<i32> =
6 Option::Some(123);

Listing 2.4: The standard option type as an example of
a generic enumeration.

Rust also has anonymous tuples. These behave exactly like tuple structs but don’t need to be
declared beforehand. One can simply instantiate tuples of any non-negative number of types (cf.
Listing 2.5). This is used in the first part of the running example (Listing 2.6) that is a generic
container struct with an option of a tuple as field.

let t: (i32, bool) = (123, true);

Listing 2.5: A 2-tuple in Rust.

struct Container<K, V> {
pair: Option<(K, V)>,

}

Listing 2.6: The struct for the running example.

Pattern Matching

With ADTs, especially enumerations, pattern matching comes naturally. Listing 2.7 shows how to
match on the container struct from before. Like in Scala, the underscore is the wildcard pattern
and match arms can be refined by if guards of any boolean expression. To merely check whether a
value matches a certain pattern, one can use the matches!(opt, Some(_)) macro that is expanded
to a regular pattern match which returns true if the given pattern matches and false otherwise.

CHAPTER 2. BACKGROUND 5

1 let c = Container { pair: None };
2 match c {
3 Container { pair: Some((k, v)) } if k == 123 => Some(v),
4 _ => None,
5 }

Listing 2.7: Pattern matching on a struct.

Mutability

As an imperative language, Rust also offers mutable bindings. Mutable variables have to be
explicitly declared with the mut keyword. In general, Rust is very explicit about the distinction
between mutable and immutable variables (and references). Listing 2.8 shows both a mutable
function parameter and a mutable local variable.

1 fn g(mut a: i32) -> i32 {
2 let mut b = 10;
3 a += b;
4 b = 100;
5 a * b
6 }

Listing 2.8: Mutable variable bindings.

1 let mut b = B { field: 2 };
2 b.field = 123;

Listing 2.9: Mutable field of a mutable struct.

Fields are not variables in Rust but rather a part of their corresponding struct’s variable [44].
Therefore, they inherit the mutability of their struct. For example, b.field in Listing 2.9 is
mutable because b is mutable. Thus, mutability is not part of the field type but depends on the
binding of the struct.

Implementations and Traits

Implementation blocks add methods to data types in Rust. There can be many such blocks for a
given type. Listing 2.10 adds three methods to the container struct of the running example. The
implementation block is generic in two type parameters K, V, as is the struct. Note that adding
methods only for certain instantiations of the type parameters is also possible. For example, the
first line of the block could be impl Container<bool, i32>, to only add methods to containers
of boolean keys and integer values.

1 impl<K, V> Container<K, V> {
2 pub fn new() -> Self { Container { pair: None } }
3 pub fn is_empty(&self) -> bool { matches!(self.pair, None) }
4 pub fn insert(&mut self, k: K, v: V) { self.pair = Some((k, v)) }
5 }

Listing 2.10: Methods for the running example.

The Self in the first return type stands for the type this block is adding methods to, in the
example that is Container<K, V>. The new method is a static method, it is not called on instances
of containers. In contrast, the two other methods specify a receiver type as first parameter. That
makes the methods available on instances of the container, for example c.is_empty(). In methods
with the &self receiver, the self keyword contains a reference to the instance on which the method
was called, in the example of c.is_empty(), this is equivalent to is_empty(&c). The same happens

CHAPTER 2. BACKGROUND 6

for &mut self but mutably.1 Finally, it is also possible to consume the instance by specifying self
or mut self as receiver.

Traits are used to specify interfaces in Rust. A trait X can be implemented for a data type
A with an impl X for A block, providing implementations for the abstract methods of the trait,
as in Listing 2.12. Traits can also be used to bound type parameters to types that implement a
certain trait. For example, the trait bound K: Id in Listing 2.16 states that any K admissible to
the function (or in other cases the block) needs to implement the Id trait, i.e. impl Id for K
needs to be available.

trait Id {
fn id(&self) -> isize;

}

Listing 2.11: Rust trait with one abstract method.

impl Id for String {
fn id(&self) -> isize { 123456 }

}
Listing 2.12: Non-sensical implementation of the Id
trait for strings.

Crates

Rust code is structured in modules that can be inlined in files, single files or entire folders. The
unit of compilation in Rust is called a crate which is compiled to a binary or library. To import
external code in a project, one has to import its crate, like extern crate xx;.

2.1.2 Owning and Referencing Data

Value Categories

Rust, like C but unlike Scala or any language on the Java Virtual Machine (JVM), exposes memory
management to the programmer and allows referencing stack-allocated data. Therefore, one needs
to distinguish between the different value categories of an expression. The general definitions
stemming from C are:

• lvalues are expressions that designate memory locations, for example variables, array elements
etc. They are objects that have a storage address. The term originates from the fact that
lvalues are on the left-hand side of an assignment.

• rvalues are expressions or temporary values that do not persist. They are on the right-hand
side of an assignment [57].

These two terms were replaced in Rust by place and value expressions. Value expressions
represent actual values and are defined by exclusion from place expressions. On the other hand,
place expressions evaluate to a place which is essentially a memory location [44].

[Place] expressions are paths which refer to local variables, [. . .] dereferences (*expr),
array indexing expressions (expr[expr]), field references (expr.f) [. . .].
[44, section “Expressions”]

Place expressions occur in place expression contexts like on the left-hand side of let-bindings,
as borrow operands or as field expression operands. Otherwise, if a place expression is evaluated
in a value context, e.g. on the right-hand side of a binding, it evaluates to what is stored at the
place it designates. In other words, its data is used.

1More on references in subsubsection 2.1.2.

CHAPTER 2. BACKGROUND 7

Ownership

As said previously, Rust’s distinguishing feature is its ownership system which is responsible for:

[enforcing] an ownership invariant where a variable is said to “own” the value it
contains such that no two variables can own the same value [39, page 5].

In other words, data is owned by exactly one binding and if some data is used, e.g. in an
assignment or passed to a function, it will be moved out of that binding, i.e. the ownership of the
data is transferred to the new binding. The old binding is de-initialised and can never be reused.
Moveable data behaves linearly [55], moving out can be seen as destructive read [22]. On line 4 of
Listing 2.13, data is moved out of a and its ownership is transferred to b.

From the example it is clear, why Rust’s borrow checker needs to be flow-sensitive. The move
renders a dead before it formally goes out of scope, e.g. at the end of the block. The same applies
to individual fields. A field can be moved out of its struct and become inaccessible while another
field of the same struct is still available. This is called a partial move. The struct itself also becomes
inaccessible as soon as one of its fields is moved.

1 let a = Container {
2 pair: Some(123, 456)
3 };
4 let b = a;
5 // ‘a‘ can never be used again

Listing 2.13: A struct type with move semantics.

1 let a = 123;
2 let mut b = a; // ‘a‘ is copied
3 b += 1;
4 // ‘a‘ can still be used
5 assert!(a == 123 && b == 124)

Listing 2.14: Copy semantics of the i32 type.

Move vs Copy The semantics of moveable types are called move semantics. One departure from
that are copyable types. Types that implement the std::marker::Copy trait get copy semantics.
The compiler automatically implements that trait for primitive types2 (cf. Listing 2.14) but also
for shared references and tuples of copyable types [44, section "Special types and traits"]. When
copyable data is used, it’s implicitly copied bit-by-bit by the compiler and the original binding stays
valid and independent. In contrast to shared references that are copyable, mutable references have
move semantics because they need to stay unique, as will become clear shortly. Non-copyable
types can still be explicitly copied by implementing the std::clone::Clone trait and calling the
.clone() method.

Heap Allocation Up until now, all data was stack-allocated and hence, tied to the scope of the
surrounding function. To outlive a function, data needs to be heap-allocated which is achieved in
Rust with the Box<T> type. Everything that is put into a box is directly allocated on the heap (cf.
Listing 2.15). The binding that “holds the box”, c_heap in the example, is the unique owner of
that data. Because boxes have move semantics, the ownership can be transferred to other bindings,
e.g. across function scopes.

let c_heap = Box::new(Container { pair: None });

Listing 2.15: A heap-allocated container.

References

It is possible to read and even write data one does not own in Rust through references. In other
words, references are the way to – temporarily – break away from the ownership invariant [39].

2Primitive types in Rust are booleans, characters, str, numeric types and the panic type ! [44].

CHAPTER 2. BACKGROUND 8

References are created by borrowing from a variable or field with the & or &mut operator, depending
on the desired mutability of the created reference. One can either borrow from owned data directly
or reborrow from an existing reference. Passing a reference to a function as an argument is called
pass by reference, as opposed to passing the entire designated object by value and thereby moving
or copying it. The method of Listing 2.16 receives a mutable reference to the container instance
in self and returns a reborrowed mutable reference to the second part of its tuple.

1 impl<K: Id, V> Container<K, V> {
2 pub fn get_mut_by_id(&mut self, id: usize) -> Option<&mut V> {
3 match &mut self.pair {
4 Some((k, v)) if k.id() == id => Some(v),
5 _ => None,
6 }
7 }
8 }

Listing 2.16: An implementation block with a trait bound. The method returns a mutable reference to some interior
part of the struct.

Rust’s type and borrow checking system guarantees that all references are valid when they
are used. That is, use after free errors are impossible and stack-allocated data cannot escape its
allocation scope. To achieve this, Rust infers the lifetime of each reference, i.e. the part of the
program in which the reference may still be used at a future point of any execution path [56]. A
reference or variable that is not used anymore is said to be dead. The lifetime of a reference in
Rust is constrained by the lifetime of the variable it borrows from. This is the main mechanism to
prevent use after free problems. Furthermore, references need to adhere to a strict set of rules. At
any point of a program and for any data there can either exist:

• multiple immutable, i.e. shared references, &T, that may read the referenced data,
• or a unique mutable reference, &mut T, that is allowed to read and write to the data it does

not own.

During the lifetime of a shared reference, the borrowed data can be read but not changed by
the owning binding. In contrast, the mutable reference allows to change data without owning it,
under the condition that no other references to that data exist. While the mutable reference is
live, even the owning binding is neither allowed to read nor to write to that place. In the words
of Weiss et al. [55]:

[...] we understand Rust’s borrow checking system as ultimately being a system for
statically building a proof that data in memory is either uniquely owned (and thus
able to allow unguarded mutation) or collectively shared, but not both.

In-Place Updates It is common to implement mutable data structures in Rust with methods
that alter the structure via a &mut self reference, for example insert in Listing 2.25. Such in-
place updates are simple, if the method just needs to change some struct field, like in the example.

However, methods often need to temporarily consume some part of self, in order to change it.
Imagine a method on Option that swaps a new value into a Some and returns the old option value.
The naive approach to that method in Listing 2.17 does not compile because the ownership system
does not allow moving out of a mutable reference, which happens on line 3. This makes sense
because the mutable reference needs to stay valid, hence the data cannot disappear by moving out.

CHAPTER 2. BACKGROUND 9

1 impl<T> Option<T> {
2 fn swap(&mut self, t: T) -> Self {
3 let tmp = *self;
4 *self = Option::Some(t);
5 tmp
6 }
7 }

Listing 2.17: Naive swap implementation that does not
compile.

1 impl<T> Option<T> {
2 fn swap(&mut self, t: T) -> Self {
3 std::mem::replace(
4 self,
5 Option::Some(t)
6)
7 }
8 }

Listing 2.18: Swap using the replace method.

The solution is to use the special purpose function std::mem::replace that atomically replaces
the value in a mutable reference with its second argument and returns the old value of the mutably
borrowed place. For the swap in Listing 2.18, this is already the entire method.

2.1.3 Rust Compared to Scala

Mutability

Scala has local mutable variables (var) comparable to let mut in Rust. Class fields, however, are
immutable by default. One can opt into mutability for a certain field by marking it as var at
the class declaration. Such a field is then mutable on all instances of the class and irrespective of
whether its corresponding instance is locally bound with the immutable val or the mutable var.

References

Places or lvalues are not programatically accessible in Scala, as on the JVM, there is no way to take
a reference to a place explicitly. That means, it’s impossible a priori to generalise over whether
one wants to assign to a local variable or an object field by taking a reference to that lvalue/place.

As in all JVM languages, objects in Scala are heap-allocated and function parameters are
always passed “by value”. However, for objects this value is just a reference to the object in
the heap. This is very efficient for sharing immutable objects while retaining by-value semantics.
But as a consequence, the by-value passing of references closely resembles by-reference passing for
objects, which is mainly important for mutable objects. The translation presented in chapter 3
will extensively exploit this fact.

2.2 Stainless Verifier
With a solid understanding of Rust, it is time to introduce verification. Stainless [21] is a formal
verification tool for Scala. It lets programmers add contracts or specifications to functions and
data structures. Stainless transforms the input program in multiple phases to a purely functional
language understood by its backend Inox [52] which then tries to prove or disprove that the
contracts hold by using Z3 [14] or a similar solver like CVC4 [6].

2.2.1 Specifications
The simplest example of a specification is shown in Listing 2.19. The expression in require is
called a precondition, it has to hold when the function is called; the ensuring is a postcondition that
must hold after the function if the precondition holds. Simply put, Stainless establishes just the
latter: that the postconditions hold assuming the preconditions hold. Of course, Stainless is more
sophisticated and additionally proves that the program finishes for all inputs (termination), that

CHAPTER 2. BACKGROUND 10

preconditions hold at static call sites of functions, that pattern matches are exhaustive, and that
the program does not crash at runtime (except for out-of-memory errors) [17]. If these properties
are invalid, then Stainless finds a counter-example input for the crashing or faulty function.

1 def fact(x: Int): Int = {
2 require(x >= 0 && x < 10)
3 if (x <= 0) 1
4 else fact(x - 1) * x
5 } ensuring { r => r >= 0 }

Listing 2.19: The factorial with specifications in Scala.

1 #[pre(x >= 0 && x < 10)]
2 #[post(ret >= 0)]
3 fn fact(x: i32) -> i32 {
4 if x <= 0 { 1 }
5 else { fact(x - 1) * x }
6 }

Listing 2.20: The same factorial in Rust.

As Listing 2.20 illustrates, the same function and specification is also accepted by Rust-Stainless,
which subsequently translates the program to Stainless and lets it prove its correctness. The only
difference is that specifications are added as function attributes rather than inline statements and
that postconditions in Rust automatically have a ret variable in scope that represents the return
value. Otherwise, the two are very similar which, for simplicity, allows to introduce Stainless in
the following sections only with Rust code examples. In both languages, one can put assertions
into function bodies in addition to specifications, in Rust with the assert! macro. Stainless also
proves that body assertions hold.

Up until now, this section has been imprecise about Stainless’s input language. Stainless does
not support the full Scala language but rather a functional subset called PureScala. The expressions
in specifications need to be in PureScala. However, Stainless was extended to support some form
of mutability [9] which this project relies on. Chapter 3 will go into details about mutability.

The methods of the container in the running example (fully displayed in Listing 2.25) show
how the features from above are applied to add specifications. The implies function in line 26 is
a library helper method provided by the stainless crate. Body assertions are used in the main
function to ensure that the code behaves as expected.

Another library helper is the old function. This is very useful to refer to the value of a mutable
reference before the function was executed in postconditions. For example in the postcondition of
Listing 2.21, the old(i) will return the value of i before the function and i will have the value
after the function. The helper can only be used in postconditions.

1 #[post(*i == *old(i) + 1)]
2 fn change_int(i: &mut i32) {
3 *i = *i + 1;
4 }

Listing 2.21: The old helper for postconditions with mutable parameters.

2.2.2 Algebraic Properties
Traits are the way to specify mandatory interfaces in both Scala and Rust. Common properties like
equality and ordering are often modelled with traits. While the languages can enforce implementors
of traits to provide all abstract methods, they cannot enforce higher-level contracts. For example,
for an equality trait with eq one would assume that all implementations are reflexive, i.e. ∀x :

x eq x. However, both compilers cannot guarantee that.
As a solution, one can specify contracts on traits in Stainless. First, trait methods can have

specification attributes like regular functions. These will be proven to hold for all implementations.
Furthermore, one can attach laws to traits, i.e. algebraic properties that implementors need to
fulfil [17, section "Specifying Algebraic Properties"]. Stainless also proves the correctness of the
laws for each implementation of the trait.

CHAPTER 2. BACKGROUND 11

1 trait Rectangle {
2 #[post(ret > 0)]
3 fn width(&self) -> u32;
4 #[post(ret > 0)]
5 fn height(&self) -> u32;
6

7 fn set_width(&self, width: u32) -> Self;
8 fn set_height(&self, height: u32) -> Self;
9 #[law]

10 fn preserve_height(&self, any: u32) -> bool {
11 self.set_width(any).height() == self.height()
12 }
13 #[law]
14 fn preserve_width(&self, any: u32) -> bool {
15 self.set_height(any).width() == self.width()
16 }
17 }

Listing 2.22: Example trait with laws.

The last addition to the running example, is a law on the Id trait stating that the returned
integer needs to be positive. Of course, the toy implementation that hard-codes an id for strings
holds that contract (lines 7-8 in Listing 2.25). A more interesting example of laws in Listing 2.22
shows a violation of the Liskov Substitution principle [30]. The trait defines four methods. Two of
them have regular postconditions and the laws state that a change to the width should not change
the height and vice versa. Clearly, the implementation in Listing 2.23 conforms to these properties.
Without laws, it would be tempting to add a square implementation, as in Listing 2.24. However,
the square changes both dimensions at once – violating the laws. Stainless detects this, the square
implementation fails verification, and thereby a possible bug is caught.

1 struct Rect {
2 width: u32,
3 height: u32
4 }
5 impl Rectangle for Rect {
6 fn width(&self) -> u32 { self.width }
7 fn height(&self) -> u32 { self.height }
8 fn set_width(&self, width: u32) -> Self {
9 Rect { width, height: self.height }

10 }
11 fn set_height(&self, height: u32) -> Self {
12 Rect { width: self.width, height }
13 }
14 }

Listing 2.23: Implementation of the rectangle trait.

1 struct Square {
2 width: u32
3 }
4

5 impl Rectangle for Square {
6 fn width(&self) -> u32 { self.width }
7 fn height(&self) -> u32 { self.width }
8 fn set_width(&self, width: u32) -> Self {
9 Square { width }

10 }
11 fn set_height(&self, height: u32) -> Self {
12 Square { width: height }
13 }
14 }

Listing 2.24: Example implementation violating the laws.

This concludes the introduction to Rust and Stainless. All Rust features needed for the motivating
example (Listing 2.25) were introduced, as were the verification features of Rust-Stainless. Most
of these features were only added in the course of this project. The goal of the remaining chapters
is now to extend Rust-Stainless with all these features. In particular, chapter 3 will explain how
mutability and references are translated to Scala. Chapter 4 distinguishes between existing and
added features, then gives some implementation details.

CHAPTER 2. BACKGROUND 12

1 extern crate stainless;
2 use stainless::*;
3

4 trait Id {
5 fn id(&self) -> isize;
6

7 #[law]
8 fn law_positive(&self) -> bool { self.id() > 0 }
9 }

10 impl Id for String {
11 fn id(&self) -> isize { 123456 }
12 }
13

14 struct Container<K, V> { pair: Option<(K, V)> }
15

16 impl<K, V> Container<K, V> {
17 #[post(ret.is_empty())]
18 pub fn new() -> Self { Container { pair: None } }
19

20 pub fn is_empty(&self) -> bool { matches!(self.pair, None) }
21

22 #[post(!self.is_empty())]
23 pub fn insert(&mut self, k: K, v: V) { self.pair = Some((k, v)) }
24 }
25 impl<K: Id, V> Container<K, V> {
26 #[post((self.is_empty()).implies(matches!(ret, None)))]
27 pub fn get_mut_by_id(&mut self, id: isize) -> Option<&mut V> {
28 match &mut self.pair {
29 Some((k, v)) if k.id() == id => Some(v),
30 _ => None,
31 }
32 }
33 }
34

35 pub fn main() {
36 let mut cont = Container::new();
37 let id = 123456;
38 let key = "foo".to_string();
39 assert!(cont.is_empty());
40 assert!(matches!(cont.get_mut_by_id(id), None));
41

42 cont.insert(key.clone(), 0);
43 match cont.get_mut_by_id(id) {
44 Some(v) => *v = 1000,
45 _ => panic!("no␣value"),
46 };
47 assert!(matches!(cont, Container { pair: Some((k, 1000))} if k == key))
48 }
Listing 2.25: The full running example for chapter 2 showcasing most of the newly introduced features of Rust-
Stainless.

13

3 Mutability Translation

Although Rust introduces many ideas from functional programming into systems programming, it
nevertheless is a language for high performance and low-level programming. Therefore, idiomatic
Rust heavily uses mutability. To avoid having to rewrite Rust source code before being able to
verify it with Rust-Stainless, the tool needs to support mutability. In this chapter, I introduce
a translation of Rust’s owned types and references to Scala that preserves runtime semantics.
Further, I argue that the translation is correct and then present some changes and optimisations
that make it possible to use the translation together with the current state of the Stainless verifier
backend.

3.1 Translation for Runtime Equivalence
The translation works under the assumption that the input Rust code is from the safe subset [44,
section “Unsafety”] of the 2018 edition of Rust and that execution is single-threaded. Further,
the translation requires the absence of interior mutability [44, section “Interior Mutability”]. That
means, all types are immutable through shared references. This can be enforced by prohibiting the
use of smart pointers like the ones from std::cell. Moreover, the safe subset of Rust excludes
features like raw pointers, union, unsafe functions and blocks, as well as external code, like linked
C-code. In practice, all unsafe features are detected at extraction of the code and abort the
translation.

3.1.1 Algorithm
The goal of the translation is to bridge the gaps between Rust’s and Scala’s memory model – making
references accessible to the programmer and allowing mutability of all struct fields if needed. To
achieve the first one and bring the ability of manipulating references to Scala, I introduce a special
wrapper case class, the mutable cell:

case class MutCell[T](var value: t)

The mutable cell object is used as a layer of indirection on all Scala values and directly models
the place of a value in Rust, where the value is stored in the field (value). Note that the field is
mutable, which in principle allows changes to any place. After the translation, the mutable cell’s
field will even be the only mutable variable. All mutability in the original Rust program will be
modelled with that field.

Whenever something is (possibly) mutable, we wrap it into a mutable cell.

Local variables are wrapped into mutable cells, regardless of their mutability in Rust. This en-
ables taking references to local variables which is needed for both mutable and immutable variables.
The approach also allows to create references to data of primitive types like integers, something
that is impossible to do in Scala directly.

CHAPTER 3. MUTABILITY TRANSLATION 14

Likewise, all struct, enum, and tuple fields are mutable cells with the type of the original field
as the type argument of the cell. Thereby, the translation achieves its second goal from above –
all fields are possibly mutable. In other words, every place in the Rust program is modelled by
the introduction of a mutable cell object. Hence, all place expressions in the original program
correspond to exactly one mutable cell instance in the translation.

1 struct A<T> {
2 a: T, b: i32
3 }
4 let x = A {
5 a: "foo", b: 123
6 }
7 let mut y = 123
8 assert!(y == x.b)

Listing 3.1: Example Rust struct.

1 case class A[T](
2 a: MutCell[T], b: MutCell[Int]
3)
4 val x = MutCell(
5 A(MutCell("foo"), MutCell(123))
6)
7 val y = MutCell(123)
8 assert(y.value == x.value.b.value)

Listing 3.2: The fields of the struct are modelled with mu-
table cells as are the two let-bindings.

Tuples

As for all structs, the mutability of tuples is decided at binding time of the instance in Rust.
Contrary to Scala, where tuples are always immutable. To allow for tuple mutation in Rust, tuples
of any positive arity are translated as case classes instead of Scala tuples. The following example
shows such a class for a 2-tuple. The empty tuple corresponds to the unit type and is translated
as such.

case class Tuple2[T0, T1](_0: MutCell[T0], _1: MutCell[T1])

Using Data

If a field or a variable is read, the translation introduces an access to the value field of the
corresponding cell. The same happens for dereferencing. In other words, any place expression that
is evaluated in a value context is translated as reading the value of the corresponding mutable
cell object. This shows how the translation unifies the access of locally available bindings and
references, that may come from elsewhere.

Copy vs Moving When place expressions are used in value contexts their data is moved or
copied. For copyable types, the translation needs to ensure that the newly created copy is distinct
from the original object. This holds trivially for primitive JVM types1 as they are copied by value
on the JVM as well. The same goes for shared Rust references, where the reference is copied but
still points to the same object like on the JVM. However, tuples of copyable types, for example
tuples of numbers, are copyable as well in Rust. This is a problem for the translation, because if
it allows tuple objects to be shared by reference upon copy, the example in Listing 3.4 is incorrect
in Scala.

To avoid such problems, the translation introduces two operators in Scala: move[T](t: T): T
and copy[T](t: T): T. They can be thought of as top-level functions that perform a deep copy
of their argument. An implementation for these operators could be based on type classes for
example, but implementation details are left open here. Whenever data is used, the translation
wraps the field access of the cell’s value into one of the two operators, depending on the type
of the data. For example on line 4 of Listing 3.4, the right-hand side of the assignment becomes
MutCell(copy(x.value)). This is omitted for primitive JVM types as an optimisation.

1Numeric types, chars and booleans.

CHAPTER 3. MUTABILITY TRANSLATION 15

1 let x = (123, false);
2

3 // copies ‘x‘
4 let mut y = x;
5

6 y.0 = 456;
7 // holds:
8 assert!(x.0 == 123)

Listing 3.3: The tuple is copied on
line 4.

1 val x =
2 MutCell(Tuple2(MutCell(123), MutCell(false)))
3 // shares tuple object ‘x.value‘
4 val y = MutCell(x.value)
5 // i.e. x.value == y.value
6 y.value._0.value = 456
7 // fails:
8 assert(x.value._0.value == 123)

Listing 3.4: In Scala, the tuple object is shared not copied on line 4. The solu-
tion to that is to add a copy. Hence, line 4 becomes MutCell(copy(x.value)).

User-defined copyable types, i.e. types for which the user derives a Copy implementation with
the macro, run into the same issue as copyable tuples. The translation currently ignores these be-
cause the current state of our extraction implementation does not yet accept such types. Nonethe-
less, the solution would be to use the copy operator as well.

Referencing

A borrow in Rust creates a reference to a place and makes that reference available as a value in
the program. After translation, the place expression in Rust is equivalent to the JVM cell object.
Hence, passing around Rust references as values can be translated as passing around cell objects
in Scala. (Passing around the cells conveniently happens by reference on the JVM.)

As an example, if a Rust reference is stored in a local variable, this creates two nested cells in
the translation. The outer cell models the local variable and its field holds the other cell which
models the Rust reference.

1 let x: T = ...;
2 let r = &mut x;

Listing 3.5: Taking a mutable reference in Rust.

1 val x = MutCell[T](...)
2 val r = MutCell(x)

Listing 3.6: Mentioning the cell x suffices in the trans-
lation.

Matching

The same principles apply for pattern matching as for evaluating place expressions. If a match
happens on a value, the Scala match will be on the value field of that cell. If the scrutinee is
a reference, then the Scala scrutinee is the cell object. The patterns are adapted to include the
mutable cell wrappers of fields. Depending on whether a resulting binding of a match is a reference
or not in Rust, the Scala pattern matches the cell or only its field, see Listing 3.8.

Assigning

Mutating values in both Rust and Scala is done by assigning new rvalues to lvalues. The translation
for assignments is analogous to the one for accessing places and again unifies local variables and
references. If a place expression is assigned an rvalue, the translation assigns to the value field
of the cell, no matter whether the place expression is a local variable or a mutable reference, see
Listing 3.10.

CHAPTER 3. MUTABILITY TRANSLATION 16

1 match x {
2 A { a, .. } => ...
3 }
4 match &mut x {
5 A { a, .. } => ...
6 }
7 match x {
8 A { mut ref a, .. } => ...
9 }

Listing 3.7: In the first case, a binds the value of x.a
whereas in the other cases it is &mut x.a.

1 x.value match {
2 case A(MutCell(a), _) => ...
3 }
4 x match {
5 case MutRef(A(a, _)) => ...
6 }
7 x.value match {
8 case A(a, _) => ...
9 }

Listing 3.8: In the first case, the binding a matches
x.value.a.value of the cell, whereas in the other cases
it matches the cell object, x.value.a.

1 // ‘x‘ is of type ‘&mut i32‘
2 *x = 123;
3 let mut y = 456;
4 y = 789;

Listing 3.9: Dereferencing and assigning in Rust.

1 // ‘x‘ is of type ‘MutCell[Int]‘
2 x.value = 123
3 val y = MutCell(456)
4 y.value = 789

Listing 3.10: Assignments in Scala always go to the
value field.

Function parameters

Rust functions can take parameters by reference or by value, see Listing 3.11. By-reference param-
eters are wrapped in a mutable cell in the translation. Additionally, function parameters are also
variables and thereby places in Rust. To account for that and model the possible local mutability
of the parameters (when marked with mut), the translation again wraps the parameter in a mutable
cell, regardless of whether the parameter is mut or not. At function call sites, all arguments are
wrapped into newly created cells.

1 fn f(
2 mut i: i32,
3 x: &i32
4) { ... }
5 let r = 123;
6 f(456, &r);

Listing 3.11: i is only mutable inside the function.

1 def f(
2 i: MutCell[Int],
3 x: MutCell[MutCell[Int]]
4) = ???
5 val r = MutCell(123)
6 f(MutCell(456), MutCell(r))

Listing 3.12: This results in nested cell in Scala.

Boxes

Heap allocation, i.e. boxes, are needed in Rust to create data that can outlive the function where
it’s created. Without boxes, data is always stack-allocated and thus dropped, at the end of the
function. This distinction is not needed in Scala because, on the JVM, all objects live on the heap.
Therefore, the translation can erase the fact that data is in a box, because it wraps the data in
a mutable cell anyway to model the variable that “holds the box”. Thus, the data is modelled on
the heap which corresponds to what happens in Rust and thanks to the cell object all of this also
works for primitive types.

CHAPTER 3. MUTABILITY TRANSLATION 17

1 fn f(a: &mut A) -> A {
2 std::mem::replace(
3 a,
4 A { a: "bar", b: 0 }
5)
6 }

Listing 3.13: Replacing a mutable reference’s
value.

1 def f(a: MutCell[A]): A = {
2 val res = move(a.value)
3 a.value = A(MutCell("bar"), MutCell(0))
4 res
5 }

Listing 3.14: The translation of the replace function.

Memory Replace

To allow for in-place updates of mutable references, the translation supports the Rust function
std::mem::replace. With all the machinery introduced so far, the function can be translated as
a simple feature on top of the move and copy operators, as shown in Listing 3.14. Interestingly,
the translation corresponds closely to the implementation of the function – in unsafe Rust – from
the standard library.2

3.1.2 Correctness

Under the assumption that the original Rust program type and borrow checks, I
argue that the translation of mutable Rust references and owned types to mutable
cells in Scala is equivalent in runtime semantics, i.e. when run the Scala translation
yields the same result as the Rust program.

The Rust borrow checker ensures that there is no aliased mutable data in the original program. This
may seem like an unnecessarily strict assumption, but Rust’s ownership system is so fundamental
to the language that it is impossible to define Rust’s semantics without borrow checking [54].
Consider Listing 3.15, because y moves out x on line 2, x can never be reused and its value is
undefined, even if some code could illegally read it again. Therefore, the borrow check assumption
is necessary to reason about the semantics of the original program.

1 let x = A { a: "foo", b: 123 };
2 let mut y = x; // ‘x‘ is moved to ‘y‘
3 y.b = 456;
4 assert!(x.b == 123) // ERROR, can’t reuse ‘x‘

Listing 3.15: This code does not compile due to the use of x on line 4, after the move.

The translation introduces a bijection between Rust places and mutable cell objects. As seen
before, places can be variables or fields. The translation wraps each local variable, each function
parameter and each field into a mutable cell, hence, each of these places corresponds to exactly
one cell. Arrays would differ from that but they are not yet supported.

As seen above, the translation unifies the access to values. Dereferencing and using local
variables are both done through the cell object’s field. One could say, the translation lifts everything
into references; even local variables are accessed through the single gateway to the value that is
the cell object. Furthermore, the cell’s field is the only location where program data can reside.
This corresponds to Rust’s principle that data is always owned uniquely (by a cell) and otherwise
referenced (through a cell).

2https://doc.rust-lang.org/src/core/mem/mod.rs.html#815

CHAPTER 3. MUTABILITY TRANSLATION 18

More formally, I examine in the following the two ways in which data can be accessed in Rust,
by value or by reference, to argue that the translation results in correct Scala runtime semantics.

By value

If data is used by value, it grants ownership to the new binding. This holds for both moveable
and copyable types. Only for the latter, the original binding and data stay intact, whereas for
moveable types, the original owner is invalidated and the data is conceptually de-initialised (the
compiler may invisibly optimise that away). In both cases, changes will not appear on the original
binding if the used data is later mutated. Therefore, the translation is correct in inserting the move
or copy operator – which for this argument can be taken as deep copies – around by-value reads
of a cell’s data.

Performing a deep copy for moveable types is correct because the original binding can never be
reused. Thus, one can think of moving as performing a deep copy of the original object, assigning
it to a new binding and then destroying the original object. Importantly, the changes made to the
new, moved object never propagate back to the original.

For copyable types, the translation distinguishes between aggregate types and primitive types.
Primitive JVM types are handled like in Rust and need no further examination. Aggregate types
like tuples of numbers are translated to Scala objects with mutable cells as fields. Therefore, I need
to show that the deep object copy the copy operator performs is equivalent to the implicit bitwise
copy of the struct in Rust. Indeed, a bitwise copy for an aggregate type is trivially the same as a
deep copy, as long as all contained types are present by value. That means, all contained data is
embedded in the bits of the aggregate structure and is simply copied deeply (bitwise) as well. It
gets more complicated for shared references (mutable references are not copyable as they need to
be unique). Rust simply copies the shared reference, i.e. the pointer value, but not the referenced
object. Still, that operation is equivalent to a deep copy for a shared reference because, by the
borrow check assumption, as long as any shared reference to an object exists, that object cannot
be mutated. In other words, a shared reference will never see its referenced value change under
that assumption. Therefore, it is equivalent to copy that object deeply when needed because it
cannot change. The sharing can be viewed simply as an optimisation in Rust.

The above holds for tuples, arrays and user-defined Copy types as long as the copy operator
supports them in Scala. Other copyable types like function pointers are not supported by the
translation nor the extraction.

By reference

The counterpart of using data and transferring its ownership is taking references to places. The
translation handles that by using the place’s cell object which is defined and unique, as shown
earlier. Thanks to the cells, it becomes possible to reference places on the JVM; it suffices to
mention, i.e. to use, the correct cell object whenever a reference is needed. Cells are JVM objects,
hence, they can simply be used in a by-value manner and reference handling is done by the JVM.
In particular, when a cell is used in multiple locations it will not be cloned but all the locations will
point to the same cell object. This exactly corresponds to the semantics of shared Rust references
that are model by the cells and is thus correct.

For mutable references, the mechanism is entirely the same. Any changes made on a cell’s value
will be visible to all readers, because they share the cell object. This sounds dangerous but the
borrow check assumption guarantees that no illegal sharing or aliasing can occur. For example, it
is guaranteed that all shared references to an object end their lifetime before the object is mutated.
Thus, in the translation, a shared reference, in the form of a reference to a cell object, might still
exist somewhere on the JVM when the cell is mutated and before the garbage collector passes,
but it will never be read, thanks to the borrow checking. Therefore, the translation is correct for
mutable references as well.

CHAPTER 3. MUTABILITY TRANSLATION 19

3.2 Translation for Stainless
The translation presented so far results in correct Scala runtime semantics, but the motivation
was to ultimately use the translation to verify the Scala program with Stainless. Intuitively, the
translated program can just be submitted to Stainless to get a verification result and deduce
verification properties for the Rust program. That approach is correct because both programs
exhibit the same runtime semantics. However, Stainless has some limitations concerning its support
for mutability. Therefore, I adapt the general translation step-by-step to yield Scala programs that
are accepted by Stainless.

This section presents the changes made to the translation to be compatible with Stainless at
a theoretical level. Like before, I will argue that all the deviations from the general translation
uphold the overall correctness. For more low-level implementation details and an overview of the
entire system please refer to chapter 4.

3.2.1 Avoiding Aliasing
The main difference between full Scala and the imperative fragment supported by Stainless [17,
section “Imperative”] is that Stainless imposes aliasing restrictions on the program. The restrictions
permit a simple but strict aliasing invariant:

[For] each object in the system, each path of pointers reaches a distinct area of the
heap. [9, p. 59]

Concretely, the following restrictions apply to mutable types, i.e. types that may contain var
fields or type parameters marked with @mutable:

• For a function call, no mutable arguments of the call can share any part of their memory.
E.g. it is not allowed to give an object as one argument of a function call and a field of the
same object as another argument.

• More generally, “it is forbidden to assign a mutable variable to a new identifier”,
• and lastly, “a function cannot return an object that shares memory locations with one of its

parameters” [9, p. 59].

As the translation uses mutable cells everywhere, virtually all resulting Scala types are mutable
and fall under these restrictions. On the other hand, the motivation of Stainless’s aliasing restric-
tions is to make its imperative code elimination phase work [9]. That transformation relies on the
fact, that there is a single path to a mutable object. However, the restrictions are quite severe and
there are plenty of cases where an alias is safe but is not allowed by these rules.3

In Rust, the borrow checker ensures a very similar property: there is a unique mutable refer-
ence to a place or otherwise it is safe to have multiple immutable references. The borrow check
assumption guarantees that the program does not have illegal aliasing of mutable state, but the
translation needs to convince Stainless of that fact. It does so with the move and copy operators.
The translation already introduces move and copy when data is used by value, as can be seen
in Listing 3.4 and Listing 3.14. To work around Stainless’s aliasing restrictions, it additionally
introduces copy for function arguments that are shared references and lastly, it adds move or copy
to the return values of functions and inner blocks, unless the values contain mutable references.
The correctness of that approach follows from the same argument as the correctness of using move
and copy for using data by value (see subsubsection 3.1.2).

To summarise, all types are move’d or copy’d when they could create an alias except for types
that are or contain mutable references. The borrow checker has made sure that the latter are

3For example, shared references, i.e. aliases, of a mutable object but the object is never changed.

CHAPTER 3. MUTABILITY TRANSLATION 20

not aliased. Hence, the resulting program contains no aliasing of mutable types but still preserves
correct runtime semantics.

move is the Identity

This subsection shows that the move operator – though very useful to work with Stainless – is not
necessary to the semantic correctness of the translation and may be omitted by implementations
that do not need to comply with Stainless’s aliasing restrictions.

Under the assumption that the original Rust program type and borrow checks, the
move operator is semantically equivalent to the identity and simply serves as a way
to make verification work with a simple aliasing analysis.

As seen before, one can think of moving as performing a deep copy and invalidating the original.
The copying during a move avoids creating an alias to the source cell. But, the borrow checker
guarantees that a moved out value is never used again, hence the original will never be read again
and its value does not matter for the correctness of the program, it might as well change.

It is easier to see the argument in the example of Listing 3.15. On line 2, the struct is moved
out of x into y. That is, without the move operator, an alias of x’s cell would be created, but
the binding of x will never be used again. Hence, x can be changed without problems and the
inserted move only serves to communicate this fact to the simple aliasing analysis of Stainless. The
same holds for function arguments and return values. Thus, in order to only achieve correct Scala
runtime semantics, the move can be omitted because it is equivalent to the identity.

copy is the Functional Identity

The second claim only concerns completely functional programs, that is, programs that do not
mutate any data.

Under the assumption that the original Rust program type and borrow checks, and
in the absence of all mutation, the copy operator is semantically equivalent to the
identity and simply serves as a way to make verification work with a simple aliasing
analysis.

Consider Listing 3.4, the introduced aliasing of the tuple object on line 4 is fixed by adding the
copy operator, but the aliasing only poses a problem because the tuple is later modified. If the
tuple wasn’t modified, sharing would be safe and the program correct.

More generally, in the absence of mutation, there are only shared references and immutable
by-value bindings. If data needs to be copied according to Rust semantics but is immutable, then
it is safe to share the cell object in the translation because the data cannot be changed at any
time. The same holds for shared references. Remember that a shared reference can never see its
referenced data change, therefore it is safe to deeply copy the referenced object. But again, if that
data cannot change at all, one may as well share the objects. This shows that the copy operator
is equivalent to the identity in programs without mutation.

Cloning is Copying

Unlike the built-in implicit copy that occurs for copyable Rust types, a clone always happens
explicitly by calling clone(). Programmers can define their own implementation of the Clone
trait or they can let the derive macro generate one.

CHAPTER 3. MUTABILITY TRANSLATION 21

Under the assumption that all Clone implementations in a program are derived by
the macro, clone is equivalent to a deep copy and can be translated with the copy
operator.

Derived Clone implementations for struct types recursively call clone on all the fields and
return a new struct with the cloned fields. For copyable types, especially primitive types, the clone
is trivially a bitwise copy like for Copy.4 For shared references, subsubsection 3.1.2 shows that
copying is equivalent to a deep copy of the referenced object.

By a simple inductive argument, if the Clone implementations of all the fields are equivalent to
deep copies, then so is the struct’s Clone implementation. Hence, as long as all component types
recursively are copyable types or have derived Clone implementations, the top-level implementation
is equivalent to a deep copy. The translation can therefore check that assumption and if it holds,
translate calls to clone with the copy operator in Scala, which is equivalent to the identity in
completely functional programs or performs a deep copy otherwise.

3.2.2 Optimisations
Even if the translation presented here serves to add mutability features to Rust-Stainless, it should
preserve the well-functioning parts of the frontend that deal with immutable Rust. To that end, the
translation that is implemented in software contains some optimisations that increase the usability
of Rust-Stainless for functional Rust code. The following subsection presents these optimisations
and argues that they uphold the overall correctness.

Immutable Bindings and References

The most important optimisation is that immutable bindings (local variables, function parame-
ters) are not wrapped in mutable cells. Moreover, shared references are erased, like boxes, and
their values are used directly. This optimisation is possible thanks to excellent support of the
Rust compiler which provides type information for every expression. With that, it is possible to
distinguish immutable values and shared references at all times from possibly mutable ones that
are still wrapped in cells.

To convince the reader of the correctness of this optimisation, first note that only mutable data
can be borrowed mutably. In other words, only for mutable data do we need the reference sharing
in the translation, to propagate changes back to the original object. Data declared without mut
is immutable and cannot change in the first place. Secondly, it is safe to directly use immutable
values instead of references, even if the values get copied at some points, which again follows from
the argument that one may deeply copy shared references (cf. subsubsection 3.1.2). Therefore, it
is correct to erase shared references and use their referred values directly.

Preventing Aliasing

Previous sections showed how move and copy are used to emit code that complies with Stainless’s
aliasing restrictions. They also argued that copy must perform a semantic deep copy, while move
may do a deep copy but might also be the identity. Our Stainless-backed implementation uses a
newly added Stainless primitive to emulate both operators: freshCopy[T](t: T): T semantically
performs a deep copy of its argument. It does not matter that many deep copies are introduced
in the program in that way. The program is never run with these deep copies, they only serve for
verification.

The implementation decides for each location where data is used by value whether to insert a
freshCopy or not based on the type of the data. Types that are or contain mutable references,

4https://doc.rust-lang.org/std/clone/trait.Clone.html

https://doc.rust-lang.org/std/clone/trait.Clone.html

CHAPTER 3. MUTABILITY TRANSLATION 22

1 let mut a = 123;
2 let mut b = 456;
3 let mut x = &mut a;
4

5 x = &mut b;
Listing 3.16: A mutable reference in a
mutable variable.

1 val a: MutCell[Int] = MutCell[Int](123)
2 val b: MutCell[Int] = MutCell[Int](456)
3 val x: MutCell[MutCell[Int]] =
4 MutCell[MutCell[Int]](a)
5 x.value = MutCell[Int](b)

Listing 3.17: Translation with nested mutable cells.

like Option<&mut T>, are not freshCopy’d and the copy is also omitted for primitive JVM types.
Additionally, the translation avoids freshCopy around some control structures for which it is clear
by design that a freshCopy will be inserted inside the structure. For example in a match expression,
the resulting value of each arm will be copied and therefore the entire match expression doesn’t
need to be wrapped in an additional freshCopy.

The same procedure is applied for cloning. Conveniently, the Rust compiler does not derive
Clone implementations for types that are or contain mutable references.5 Therefore, it is sufficient
to check that all Clone implementations are derived (cf. subsubsection 3.2.1) to ensure that all
types for which clone is translated will be freshCopy’d.

To summarise, the implementation deeply copies some of the moves and all the copies that
happen in Rust to prevent aliasing in the resulting code. But, it never copies mutable references
because for those, the Rust compiler has made sure that there are no aliases. Lastly, the same
happens for cloning because, by the check, only clone operations are extracted for which these
semantics are correct.

3.2.3 Limitations
So far, mutable cells together with the freshCopy primitive solved all cases of aliasing restriction
problems. However, there are patterns where that solution is not applicable and these constitute
the theoretical limits of this translation with the current aliasing restrictions of Stainless – the
runtime equivalence in full Scala is still valid.

The unsupported patterns occur when mutable references are used in locations where they can-
not be freshCopy’d to keep the semantics correct. For example, a mutable binding of a mutable ref-
erence: mut x: &mut T. The variable x can be dereferenced and assigned *x = ..., which changes
the referred object, but it can also be reassigned with another mutable reference x = &mut
To correctly model both of these cases, the translation gives the type MutCell[MutCell[T]] to
x, like in Listing 3.17. Note that the example runs correctly in Scala. Unfortunately, the same
cannot be said about Stainless. The assignment on line 5 creates an alias of b in x.value, which
Stainless does not permit. This can occur for local variables as in the example but also for mut
function parameters of mutable reference type.

The other case of mutable references, i.e. mutable cells, that cannot be freshCopy’d occurs in
function return values. In the running example of Listing 2.25, get_mut_by_id returns a mutable
reference. This is correctly translated and also verified. However, Stainless does not allow the
same for recursive functions, because of the third aliasing rule in subsection 3.2.1. Thus, the same
get_mut method for a list which is recursive, shown in Listing 3.18, is rejected by Stainless.

5https://doc.rust-lang.org/std/clone/trait.Clone.html#impl-Clone-121

CHAPTER 3. MUTABILITY TRANSLATION 23

1 impl<V> List<(u128, V)> {
2 pub fn get_mut(&mut self, key: &u128) -> Option<&mut V> {
3 match self {
4 List::Nil => None,
5 List::Cons(head, _) if head.0 == *key => Some(&mut head.1),
6 List::Cons(_, tail) => tail.get_mut(key),
7 }
8 }
9 }

Listing 3.18: A recursive method returning a mutable reference.

This chapter presented a translation for mutability from Rust to Scala and refined it in several
steps to make it useable with the current imperative phase of Stainless. The general translation
is quite powerful and results in equivalent runtime semantics in Scala for mutability features of
Rust. For each version of the translation, I argued that the runtime equivalence is upheld. The last
section discussed the theoretical limitation of the approach. Further limitations more associated
with the implementation of this translation are discussed in section 4.4. More generally, the next
chapter sheds light on the engineering of Rust-Stainless and other new features than mutability.

24

4 Implementation

Rust-Stainless is developed as an open source software project.1 It was created by Georg Schmid
to explore a new frontend to Stainless for the Rust language. Upon completion of this thesis
project, the tool is implemented in approximately 12K lines of Rust code. Most features described
here are available on the master branch, except for the mutability translation that lives on the
mutable-cells branch.2

Before presenting the tool’s design and implementation details, the next section provides some
background on the Rust compiler needed to understand the inner workings of the tool. The sub-
sequent sections distinguish between language features the tool was already capable of extracting
before this project and new features that have been introduced. The final section discusses limita-
tions of the current implementation.

4.1 Background

4.1.1 Rust Compiler
To translate Rust without too much busy-work, Rust-Stainless leverages the heavy lifting done by
the Rust compiler [43], rustc. The compiler takes Rust source code as input and produces an
executable binary. This process involves multiple phases that each transform or lower a higher-
level input to a lower-level representation. The following paragraphs give a brief overview of the
compilation process and the leftmost column of Figure 4.1 illustrates the different phases.

The Rust compiler always operates on a single crate. That is, each crate is compiled separately
and only afterwards linked to potential other crates. This means that the intermediate represen-
tations (IRs) described hereafter are only available for items of the currently compiled crate with
some exceptions for metadata of public items, like function signatures that need to be accessible
across crates.

The first two compilation phases transform the input text into a token stream – lexing – and
then into an abstract syntax tree (AST) – parsing. First syntactical validations, name resolutions
and the macro expansion are performed on the AST. While the AST is already a representation
of the program, it still maps directly to the source code and can be seen as a data structure
representation of the source text.

The first intermediate representation constructed from the AST is the high-level IR (HIR). It
contains less high-level features than surface Rust, because many have been desugared. The HIR
is used to type check the program. In that process another IR is created, the typed HIR (THIR).
Still in the form of a syntax tree, the THIR contains fully explicit type information.

The THIR is used to construct the mid-level IR (MIR) that has the form of a control-flow graph
(CFG). Such a graph is a diagram that consists of basic blocks of code and arrows between them

1https://github.com/epfl-lara/rust-stainless/
2The commits on the two branches corresponding to the state at the end of this project are:

master: https://github.com/epfl-lara/rust-stainless/commit/1e16201c0b63fcc7f8871f0f9e9974b663e0e3eb,
mutable-cells: https://github.com/epfl-lara/rust-stainless/commit/1df1d28d6100a2306a8cd5ed1b4445c60512d9b2,
PR of the mutability translation: https://github.com/epfl-lara/rust-stainless/pull/164.

https://github.com/epfl-lara/rust-stainless/
https://github.com/epfl-lara/rust-stainless/commit/1e16201c0b63fcc7f8871f0f9e9974b663e0e3eb
https://github.com/epfl-lara/rust-stainless/commit/1df1d28d6100a2306a8cd5ed1b4445c60512d9b2
https://github.com/epfl-lara/rust-stainless/pull/164

CHAPTER 4. IMPLEMENTATION 25

rustc Rust-Stainless Stainless (JVM)

Source

AST

HIR

THIR

MIR

LLVM-IR

ASM (Target)

Stainless AST (Rust)

Binary

Verification Result (Rust)

Stainless AST (Scala)

Verification Result (Scala)

JSON
Extraction &
Translation

Temporary
File

Standard I/O

Figure 4.1: The Rust-Stainless pipeline represented by all intermediate representations of the program. The left
column on its own shows the normal compilation pipeline of Rust. The grey parts are not executed in Rust-Stainless.

that represent all the possible paths the control flow can take. The MIR still has generic types but
because it is a CFG, it is much more convenient for processes like liveness analysis, optimisations,
and most importantly, the borrow check of the program.

The last compilation phase is code generation. Generic code is monomorphised, i.e. copied and
specialised for each type it is instantiated with. Then, a special IR for LLVM [28] is generated.
LLVM is a general purpose compiler backend, also used by C++. It will perform many more
performance optimisations and finally generate the assembly code for the target architecture.

4.2 System Overview

4.2.1 Design
Our tool consists of multiple components, most of which are implemented as their own crate.
Rust-Stainless has itself a frontend and a backend. stainless_frontend contains two executables
that start the tool and deal with command line arguments. The subcommand for the Cargo build
tool, cargo stainless, is the most common way of running Rust-Stainless. Internally, it calls the
second stand-alone binary, rustc_to_stainless, which runs the actual frontend.

The programmer also sees another interface of Rust-Stainless, its library libstainless. The
library needs to be imported as extern crate stainless; in all code to be verified. It provides
the user-facing parts of Rust-Stainless like the specification macros and some built-in Stainless
types useful for specification.

The principal translation is performed by the stainless_extraction crate. The frontend
calls the method extract_crate which retrieves the HIR from the compiler and translates it to
Stainless AST with the help of another crate, stainless_data. The latter contains auto-generated
Rust definitions of the Stainless AST types as well as code to serialise them.

Finally, stainless_backend is responsible for spawning and interacting with a JVM subprocess
of the Stainless executable. The executable consist of the normal Stainless verification pipeline

CHAPTER 4. IMPLEMENTATION 26

but with a custom entry-point called Noxt-Frontend. “Noxt” stands for no extraction; it takes
serialised trees as input instead of extracting trees from the Scala compiler.

4.2.2 Pipeline
Having introduced the system’s components, the next section traces the path of an exemplary
program through the pipeline in more detail. The path can also be followed in Figure 4.1. Gaining
insight into the pipeline will increase the understanding of the design choices made.

In Listing 4.1, the Stainless library is imported such that the postcondition specification at-
tribute #[post(...)] is available. The attribute is implemented as a procedural macro3 and
will be expanded to a closure inside the function (Listing 4.2). More details on the specification
encoding follow in subsubsection 4.3.2.

1 extern crate stainless;
2 use stainless::*;
3

4 struct A(i32);
5

6 #[post(ret.0 >= 0)]
7 fn f(a: A) -> A {
8 A(a.0 * a.0)
9 }

Listing 4.1: Rust program with a postcondition.

1 fn f(a: A) -> A {
2 #[clippy::stainless::post]
3 |a: A, ret: A| -> bool { ret.0 >= 0 };
4 A(a.0 * a.0)
5 }

Listing 4.2: Desugared postcondition.

The stainless_frontend invokes the compiler via the rustc_driver library and lets it run
until all analyses are completed and have passed, otherwise the tool fails with the error returned
by rustc. In particular, the compiler does the lexing, parsing, macro expansion, and IR construc-
tion. Secondly, it type and borrow checks the program. This is how the strong assumption from
subsection 3.1.2 is achieved. Once analysis is complete, the extraction module is invoked on the
HIR. As the HIR is only ever constructed for the current crate, Rust-Stainless also only translates
the current crate. This limitation of the tool is discussed in section 4.4.

The extraction traverses all the items of the crate, that is, top-level functions, structs, enums,
impl blocks with methods, as well as traits. For ADTs, the extraction directly constructs Stainless
definitions. For function bodies, it uses the THIR, which is guaranteed to exist because the
type check passed. For illustration, Listing A.1 shows the THIR for the body of the function in
Listing 4.1.

1 sealed case class A(_0: MutCell[Int])
2 @synthetic sealed case class MutCell[T @mutable]((value: T @mutable) @var)
3

4 @pure
5 def f(a: A): A = {
6 freshCopy(A(MutCell[Int](a._0.value * a._0.value)))
7 } ensuring {
8 (ret: A) => ret._0.value >= 0
9 }

Listing 4.3: Extracted Stainless ADTs and functions, printed as code.

3Procedural macros invoke user-provided code at compilation-time and thus allow for more complex transforma-
tions of the AST inside a macro [44, section “Procedural Macros”].

CHAPTER 4. IMPLEMENTATION 27

If all the THIR bodies are translated to Stainless AST without errors, i.e. there are no un-
supported features in the program, the Stainless AST is serialised to a custom binary format
understood by Stainless. At this point, the program is represented by a list of functions, a list of
ADTs and a list of classes (Listing 4.3).

If the user specified to export the AST with --export, the binary format is simply written to
a file. Otherwise, Rust-Stainless spawns a subprocess with the NoxtFrontend of Stainless. The
subprocess reads the binary format from a temporary file, performs minor transformations and
passes it to the verification pipeline. In the end, it reports back the results in JSON format via
standard output such that Rust-Stainless can print them. In this example, Stainless returns a
problem, see Listing 4.4: the integer multiplication on line 6 of Listing 4.3 could overflow and
therefore, the postcondition does not hold.

$ cargo stainless --example ex
cargo-stainless: Found example target ’ex’.

=== Analysing crate ’ex’ ===

[Discovering local definitions]
- ADT A
- Fun main
- Fun f

[Extracted items]
- ADT A$0
- ADT MutCell$2
- Function main$5
- Function f$6

note: Verified 2 items.
warning: Failed to prove 1 VCs:
- f postcondition 0.3 Invalid

warning: 1 warning emitted

Listing 4.4: Console output of cargo stainless for the code of Listing 4.1.

4.3 Extraction

4.3.1 Supported Rust Features

Existing Features

The fragment of Rust that the tool could extract and translate before this project underlay strict
restrictions: all code needed to be functional, immutable, and the only allowed side-effect was
panic!. References, heap allocation and with it recursive data types were unsupported. Apart
from that, a large part of the language was already supported, i.e. most of the control-flow syntax,
top-level functions with bodies, integer and boolean expressions, string literals, pattern matching,
ADTs, including tuples (without their pattern matching), and generics. Function specifications
(specs), that is pre- and postconditions, could be stated with the pre and post attributes from
the stainless crate.

The expression in a spec is a regular Rust expression that must have no effect on any variables
of the function body. This posed a problem in the absence of references because oftentimes, the

CHAPTER 4. IMPLEMENTATION 28

1 pub fn i32_ops(x: i32, y: i32) {
2 assert!(x + y == 2 * x);
3 if x >= 0 && x < 1<<30 {
4 assert!(x == (x + x) / 2);
5 }
6 }
7 enum Maybe<T> {
8 Nothing,
9 Just { value: T }

10 }
11 fn get_or<T>(maybe: Maybe<T>, default: T) -> T {
12 match maybe {
13 Maybe::Nothing => default,
14 Maybe::Just { value } => value,
15 }
16 }
17 #[pre(x >= 0)]
18 #[pre(x < 10)]
19 #[post(ret >= 0)]
20 pub fn fact(x: i32) -> i32 {
21 if x <= 0 { 1 }
22 else { fact(x - 1) * x }
23 }

Listing 4.5: Example of existing features in Rust-Stainless.

expression would consume a function parameter of moveable type multiple times, which does not
borrow check. As a work-around, one could add multiple specs of the same kind to a function,
which is equivalent to multiple &&-concatenated expressions. With all of the above, an example of
supported and verified Rust code before this project is Listing 4.5.

New Features

This section gives an overview of all the Rust language features that were added to the extraction of
Rust-Stainless in the course of this project except for the mutability translation which has already
been introduced in chapter 3. The features described here are available on the master branch of
the project.

Syntactical and Notational Improvements Support was added for:

• else if expressions,

• let bindings with user-specified type annotation,

let t: u16 = 1;

• pattern matching on tuples,

• accessing tuple struct fields by their numerical identifier, A(2, 3).0,

• the return keyword at most points of a function (but not in if conditions and guards),

• usize and isize integer types that have the bit-length of a pointer on the target platform,

CHAPTER 4. IMPLEMENTATION 29

• struct update syntax, a short-hand notation for creating a struct from an existing one,

struct A { a: i32, b: bool, c: char }
let x: A = A { a: 123, b: true, c: ’c’ };
let y: A = A { b: false, ..x }; // copies ‘x.b‘, ‘x.c‘

• crate-local modules and imports, which enables splitting up a crate into multiple files, and
finally,

• panics in expression locations like in a pattern match arm.

match Option::Some(123) {
Option::Some(x) => x,
Option::None => panic!("no␣value"),

}

Immutable References and Heap Allocation It is now possible to immutably borrow places,
pass immutable references as values, and allocate data on the heap with boxes. Although already
presented in chapter 3, the feature is mentioned here because it exists independently of the muta-
bility translation.

The above enables recursive data types like the typical, functional linked-list (see below). Ad-
ditionally, it eases the problem of borrow checking spec expressions because expressions that only
read data, like most specifications do, can now take a reference instead of consuming the data.

pub enum List<T> {
Nil,
Cons(T, Box<List<T>>),

}

Measure Attribute Inductive proofs in Stainless often require the programmer to state the
induction variable with a decreases call in Scala. This helps Stainless infer the so called measure
of the proof, with which it checks termination. The same feature was introduced in Rust as a new
spec attribute that enables verification of recursive functions, like Listing 4.6.

1 #[measure(l)]
2 fn size<T>(l: &List<T>) -> u32 {
3 match l {
4 List::Nil => 0,
5 List::Cons(_, tail) => 1 + size(tail),
6 }
7 }

Listing 4.6: Measure attribute.

Stainless Library The stainless crate is exposed to the programmer and contains helpers for
specifying proofs and conditions. This is the equivalent of the stainless package in Scala. In addi-
tion to the spec attributes, libstainless now offers an immutable, infinite set stainless::Set<T>
and map stainless::Map<K, V>, see Listing 4.7.

In extraction, both types are translated to Stainless’s built-in infinite set and map type. Hence,
they are backed and well-understood by Stainless which enables their proof utility. At runtime,
the collections are backed by a runnable implementation that relies on the im4 crate. The Rust

CHAPTER 4. IMPLEMENTATION 30

1 Set<T> {
2 fn new() -> Self;
3 fn singleton(t: T) -> Self;
4 fn insert(&self, t: T) -> Self;
5 fn contains(&self, t: &T) -> bool;
6 fn union(self, other: Set<T>) -> Self;
7 fn intersection(self, other: Set<T>) -> Self;
8 fn difference(self, other: Set<T>) -> Self;
9 fn is_subset(&self, other: &Set<T>) -> bool;

10 }
11 Map<K, V> {
12 fn new() -> Self;
13 fn get(&self, key: &K) -> Option<&V>;
14 fn get_or<’a>(&’a self, key: &K, elze: &’a V);
15 /// Panics if the key is not in the map.
16 fn index(&self, key: &K) -> &V;
17 fn contains_key(&self, key: &K) -> bool;
18 fn insert(&self, key: K, val: V) -> Self;
19 fn remove(&self, key: &K) -> Self;
20 }

Listing 4.7: The interface of the Stainless collections in Rust.

interface of the collections was designed to resemble the std::collections::HashSet and HashMap
as closely as possible.

Furthermore, the library provides a helper function implies that lets one write the logical
implication p =⇒ q ≡ ¬p ∧ q over boolean expressions. The library also offers the old helper for
postconditions that returns the value a mutable variable had before the function.

External and Synthesised ADTs Internally, the Map<K, V> of the Stainless crate relies on
the MutableMap of Scala Stainless with values of type Option[V]. To perform that translation,
the extraction needs to create trees of the Option type, even if the std::option::Option doesn’t
occur in the program. Therefore, Rust-Stainless can now synthesise values and types for certain
specific ADTs: Option, tuples and mutable cells as described in section 3.1.

The frontend also supports extraction of crate-external ADTs like std::result::Result. That
means, the programmer can use the standard structures and they are correctly translated, provided
that no methods of these types are used. This is the one-crate-limitation, discussed in section 4.4.

Implementation Blocks, Traits and Laws The largest addition, other than mutability, of this
project is support for implementation blocks, methods, and traits with contracts, as introduced in
subsection 2.2.2. This includes solving some intricate problems. For example, the Rust compiler
automatically and implicitly resolves which trait implementation to use for any given trait method
call. If no suitable implementation is in scope, it signals an error. A similar mechanism can be
achieved in Scala by means of type classes. The resolution of type class methods and instances is
done through the implicits mechanism in regular Scala. In Stainless however, this resolution has
to be done manually. Therefore, Rust-Stainless not only extracts type classes from Rust traits but
also infers which type class instance to call at each method call site.

Furthermore, our tool is capable of extracting laws and specifications of traits and their im-
plementations, including specification attributes on abstract methods. Lastly, it can extract trait

4https://docs.rs/im/15.0.0/im/

https://docs.rs/im/15.0.0/im/

CHAPTER 4. IMPLEMENTATION 31

bounds like T: Equals from top-level functions and implementation blocks, and transform them
to the equivalent Scala pattern of evidence parameters. More details on that translation follow in
the next section.

4.3.2 Implementation Details

Extraction Overview

As seen in subsection 4.2.2, the majority of the work of Rust-Stainless happens in the extraction
of the HIR to Stainless AST. This subsection takes a more detailed look at the most interesting
phase of our tool, implemented in the stainless_extraction crate.

Before dealing with user code, the extraction needs to register some specially treated items,
called standard items. These are Rust language features like panic, standard library items like
Box<T> and Option<T>, but also all items of libstainless like Set<T> and implies. Extraction
needs to know the identifiers (the DefIds) of those items in order to recognise them in user code and
trigger their specialised treatment. Unfortunately, these DefIds are not stable across compilation
runs and therefore, the detection needs to happen at each run of the tool.

Initially, only the definition paths of the items to detect are known,5 but that does not suffice
because rustc does not have an API to query items from other crates by path at the time of writing.
All the lookups are done by DefId. Therefore, the implementation has to enumerate all DefIds
from the std and stainless crate, compare them by name to the desired items, and register the
required ones. This approach is clearly a brute-force work-around to the lack of by-path lookups
in rustc, but as the number of crates to take into consideration is fixed and low, the lookup time
is constant and relatively low (cf. chapter 5).

After standard item detection, the tool can turn to user code. The main procedure of the
extraction enumerates all top-level items6 of the crate. For enums and structs, the phase directly
translates the HIR definition to a Stainless ADT definition. Because the enumeration order is
undefined, all the top-level methods of the extraction follow the same idea: get_or_extract.
That is, the first time an item is visited, it is extracted and its definition is stored in state, then
on subsequent encounters, the definition is simply retrieved.

For functions, the extraction distinguishes between external, abstract, and local functions, but
not between methods and functions because in the HIR the two are the same (with the first
parameter of methods being the receiver). External and abstract functions are only extracted
from the HIR as they only have a signature. For local functions, the body expression is queried
from the THIR and extracted by the expr module which takes a rustc_mir_build::thir::Expr
and returns a stainless_data::ast::Expr, i.e. it performs the translation.

Synthesis

Multiple translations in Rust-Stainless rely on the ability to synthesise expressions of certain ADT
types. For it creates tuple ADTs, e.g. Tuple3(x, y, z). Moreover, the fields of these ADTs also
need to be available: tuple._2.

The synthesis module benefits from the get_or_extract pattern. For example, when a transla-
tion needs the option type, it triggers its synthesis. But, all synthesis methods internally implement
a get_or_create logic, i.e. if the option type has already been either extracted from user code or
synthesised by a former synthesis call, it is simply reused and the demanded ADT expression is
built with the existing definition. That way, ADTs are only synthesised on demand and there is
no risk of synthesising a definition that has already been extracted.

5For example: stainless::Set::<T>::new.
6https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir/enum.ItemKind.html

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir/enum.ItemKind.html

CHAPTER 4. IMPLEMENTATION 32

1 trait Equals {
2 fn equals(&self, x: &Self) -> bool;
3

4 fn not_equals(&self, x: &Self)
5 -> bool {
6 !self.equals(x)
7 }
8 }
9 trait Other<X, Y> { ... }

10

11 impl Equals for i32 { ... }
12

13

14 impl<T: Equals> Equals for List<T>
15 { ... }
16

17 let list: List<i32> = List::Cons(
18 123, Box::new(List::Nil)
19);
20 list.equals(&List::Nil)

Listing 4.8: Examples of traits and implementations with
and without trait bounds.

1 abstract class Equals[Self] {
2 def equals(self: T, x: T): Boolean
3

4 def notEquals(
5 self: T, x: T
6): Boolean =
7 !this.equals(self, x)
8 }
9 abstract class Other[Self, X, Y]

10 { ... }
11 case object i32asEquals
12 extends Equals[Int] { ... }
13

14 case class ListasEquals[T](
15 ev0: Equals[T]
16) extends Equals[List[T]] { ... }
17

18 val list = Cons(123, Nil())
19 ListasEquals[i32](i32asEquals)
20 .equals(list, Nil())

Listing 4.9: Translation as type classes (abstract) and
implementations. Trait bounds are translated as evi-
dence parameters.

Trait to Type Class Translation

Rust-Stainless extracts Rust traits and models them as type classes in Scala. This introduces a
distinction between regular impl blocks for which it suffices to extract the methods as top-level
functions, and impl TraitX for TypeA blocks that need to be extracted as type class implemen-
tations, i.e. case classes or case objects. Traits themselves are extracted as abstract classes, see
Listing 4.8.

Internally, Rust represents impl TraitX for TypeA blocks with a trait bound on the block,
i.e. Self: TraitX, while Scala uses inheritance (extends). Furthermore, Rust traits are imple-
mented on the implicit Self type parameter, whereas Scala type classes always have at least one
type parameter representing the type for which the class is implemented. Fortunately, the Rust
compiler internally treats the Self like a regular type parameter, hence it is internally already in
the Scala form.

As Listing 4.9 shows, the trait bounds on type parameters are converted to evidence parameters
in Scala, like ev0: Equals[T]. Evidence parameters force the caller to prove that the instantiated
type satisfies the bound by providing an instance of the corresponding type class. This is equivalent
to Rust’s compiler ensuring that impl Equals for T is in scope. If an implementation has no type
parameter, it can be extracted as a ground case object.

If there are classes, it is also necessary to distinguish function calls from method calls. This
distinction is mostly achieved by adding flags like @abstract and @methodOf(i32asEquals) to
methods. The challenge of method calls is to resolve the receiver instance they are called on. For
example, Listing 4.9 shows a call to this.equals inside the type class. In Rust, the call happens
on the first parameter of the function which is also the receiver. This is implicitly resolved by the
compiler. In Stainless, the call needs to happen on the type class instance and because our type
class instances are only created in the extraction, the tool has to resolve the receivers itself.

CHAPTER 4. IMPLEMENTATION 33

Instance resolution takes a triple of type class identifier, receiver type, and type parameters,
as well as the current surrounding class to resolve the receiver instance. For example, inside a
type class, the this instance is accessible, inside classes with evidence parameters, the evidence
instances are available (e.g. ev0.equals(a, b) in ListasEquals[T]) and ground case objects are
always in scope. As a last resort, the instance resolution recursively checks whether it can create a
new type class instance by providing it the required evidence arguments. This happens for example
for the call on line 20 of Listing 4.8. It gets translated to a new instance of ListasEquals that is
created with the ground object i32asEquals.

Encoding of Specifications

Listing 4.2 highlighted how specification attributes are desugared by the procedural macro of
libstainless into an annotated closure nested inside the function. The extraction recognises the
closures by their annotation and translates them to Scala’s require, ensures and decreases.
Stainless later checks that the specifications do not have any effects.

The encoding with nested closures is the third spec encoding that I explored and implemented.
It unifies the advantages of the two previous designs: it works for all kinds of functions, be they
top-level, implementation methods, or abstract trait methods; and it can use type parameters of
the original function.

The first encoding desugared closures to nested functions in the original function. This served
mainly to circumvent the borrow checker. The nested functions duplicated the parameters of
their parent. That way, new bindings were created without borrow interference with the actual
parameters but with the same types and identifiers. The problem was that this encoding was neither
able to use type parameters of the surrounding function, nor the self parameter of methods,
because neither are available to inner functions in Rust.

Therefore, the second encoding was created only for methods in impl blocks. Specs were
desugared to sibling functions with a special name such that they could declare a self parame-
ter. However, there were now two different encodings in use simultaneously and even the sibling
functions couldn’t provide spec attributes on trait methods. Rust does not allow additional items
other than the specified methods in trait implementations.

To support specs on trait methods, the current encoding therefore uses nested closures. Closures
can use surrounding type parameters, at the cost of not having a self parameter. To solve that,
the encoding replaces self with a _self: Self parameter on the closure. Later, the extraction
will again substitute this parameter with the correct receiver.

Finally, abstract trait methods do not have a body in which one can nest a closure. A simple
solution is to add a body with the spec closure and an unimplemented! panic. Yet, that makes
the method a default method which prevents the compiler from enforcing its implementation
by all implementors of the trait. The solution to that last problem is conditional compilation.
The inserted bodies are annotated with #[cfg(stainless)] which makes them vanish in normal
compilation, hence, the compiler enforces that the methods are implemented, but the bodies are
kept when the compiler is run with the stainless flag, which happens at verification.

4.4 Limitations

4.4.1 Unsupported Rust Features
In general, language features not mentioned in subsection 4.3.1 are not yet supported. However,
there are mainly two features that are still mandatory to reach the goal of verifying idiomatic
Rust: closures and sequences. Other missing features prevent the programmer less from writing
normal code, for example, unsafe Rust is not supported. This is a conscious decision as many
translations rely on the assumption that only safe Rust is used. User-annotated reference lifetimes

CHAPTER 4. IMPLEMENTATION 34

are another example. Although, the borrow checking assumption enables the translation to ignore
exact lifetimes, the tool currently does not extract explicit lifetimes. Further missing but less
complex to add features are supertraits, i.e. type class inheritance in Scala, top-level constants,
and Stainless invariants on ADTs.

For closures, most of the infrastructure is already in place as they are represented like functions
in the compiler. There are some difficulties nonetheless. Closures can capture variables from the
surrounding scope. That includes moving variables from the surrounding scope into the closure.
This becomes difficult to manage for Stainless if these variables are mutable [9, section 3.4.3].
The second problem arises with higher-order functions that take closures as parameters. In Rust,
the function parameter type for a closure type must be a type parameter with a trait bound like
F: Fn(i32) -> i32, because the exact shape of the closure is not clear in advance. This poly-
morphism is harder to translate than directly specified lambda types, like in Scala: Int => Int.

By sequences, I mean vectors, arrays, iterators, but also loops. Implementing loops and even
arrays should be feasible as these are already supported in Stainless [17, section “Imperative”]. On
the other hand, iterators and vectors are very difficult to translate because they are not inherent
language features but rather important and complex items of the standard library.

One Crate Limitation For standard library items, Rust-Stainless runs into the limitation im-
posed by the one-crate-a-time compilation model of rustc. The tool is currently unable to extract
code of standard library items because they are not part of the user crate, hence, no HIR is avail-
able. This is currently the biggest engineering limitation of Rust-Stainless. Various approaches
could be explored to solve it:

• If Rust-Stainless could read its binary output format and work with that, the tool could
translate a crate, serialise the representation and read it again when working on the next
crate. This way, the relevant items from the standard library could be extracted and later
imported, when translating the user crate. The problem of that approach is that many of the
widely used standard library items like vectors are implemented with very advanced features
like unsafe Rust. Extracting code of that complexity is currently out of scope.

• The contrary approach would be to provide completely synthetic definitions of standard
items. That is, the tool would detect items like vectors and synthesise some implementation
for them, like it currently does for the Stainless set and map. While this approach would
be technically feasible, it would be an unstable and labour-intensive endeavour because the
synthetic shadow implementation would need to stay in sync with the standard library.
Moreover, Rust’s standard library is large and it would be difficult to choose which features
to support.

• The most promising way of dealing with crate-external items is to extract contracts for them
that emulate the items. Indeed, this is the approach other tools take [1, 51]. The given
contracts will be assumed to be correct and used to verify the user code. The library could
also provide contracts for the most frequently used standard items, which is what MIRAI
[51] does. Keeping such contracts up-to-date still requires less work than providing synthetic
shadow implementations. The only disadvantage of this approach is that the user can state
false contracts for external items, leading to incorrect results.

4.4.2 Stainless Backend Limitations

Type Classes

Traits are omnipresent in Rust. For example, Rust does not have an equality operation on all
types by default, like Scala does. Rather, comparison operators are only defined in the language
for primitive types. For other types, for example the == operator is desugared to a call to the trait

CHAPTER 4. IMPLEMENTATION 35

method PartialEq::eq of the standard library. Most types then provide a derived implementation
of PartialEq that performs structural comparison. For other operators it works the same.

On one hand, this shows how important our translation of traits to type classes is. On the other
hand, it poses a problem for Stainless because structural equality exists on all types in Scala. To
deal with trait methods, the frontend needs to extract the trait implementations of PartialEq with
its type class mechanism. This either forces the user to provide an implementation for equality, or
it requires the solution of the crate-external items problem, discussed in the previous section.

The second problem with type classes is that they are expensive in verification with the current
Stainless pipeline. Functions that rely on type class instances are transformed by multiple phases
of the Stainless pipeline, especially the refinement lifting [52], in such a way that verification may
become untraceable in extreme cases.

A radical solution to the problem would be to erase and replace calls to PartialEq::eq by ==
in Scala. With a similar safety check as for the erasure of Clone to freshCopy, one can argue that
derived instances of PartialEq can be safely replaced by the structural == operator of Scala.

Mutability

As subsection 3.2.1 described, the general mutability translation can be tailored around the specific
aliasing restrictions of the Stainless backend. This is by itself a limitation; if Stainless worked for the
entire language, one could simply use the general translation. Nonetheless, thanks to the borrow
checking guarantees, the translation can be adapted rather well to the restrictions although some
limitations remain, as subsection 3.2.3 discusses.

From an implementation point of view, the imperative phase of Stainless is not the most stable
part of the pipeline and is also still under development. Rust-Stainless targets that phase as a new
frontend in unforeseen ways and thereby found multiple bugs. Most of the bugs have already been
solved.7 However, for code using mutability in complex ways, it is still possible to find new bugs
in the backend.

As discussed in the previous section, refinement lifting makes examples using type classes more
expensive to verify. In combination with the mutable cell encoding and recursive types like the
linked-list, this unfortunately leads two larger benchmarks of the test suite to time out.8 Luckily,
the refinement lifting phase is set to be removed from the pipeline in the future which may solve
the issue.

Other Approaches To overcome the limitations of Stainless’s imperative phase, a new full im-
perative phase using a heap encoding has been proposed [45]. That phase has explicit support for
mutable references, AnyHeapRef, which represent parts of the heap. Furthermore, it uses annota-
tions on functions to state which references are read (reads) and which are written (modifies)
by the function. These two features are very promising to target from Rust-Stainless because they
resemble things that are already in the mutability translation. AnyHeapRef is similar to mutable
cells and it might be possible to infer the information needed for the read and write annotations
from the mutability of the function parameters (which is explicit in Rust).

A radically different approach for dealing with mutability would be to extract the Rust program
not from the THIR but the lower-level MIR. The next subsection is dedicated to that discussion.

4.4.3 Design Limitation
The most important design choice of Rust-Stainless is to use the THIR instead of the MIR. The
THIR is well suited for translation to Stainless AST because it is still in the form of an AST but
all the type information is explicit and implicit features, like method calls and dereferences, have

7For example an incorrect constant propagation: https://github.com/epfl-lara/stainless/issues/1090.
8https://github.com/epfl-lara/stainless/issues/1093

https://github.com/epfl-lara/stainless/issues/1090
https://github.com/epfl-lara/stainless/issues/1093

CHAPTER 4. IMPLEMENTATION 36

been resolved or desugared. In that sense, the THIR is the closest representation to Stainless
AST and errors, counter-examples, or insights coming from Stainless are easily mapped back and
forth between the two. On the downside, the THIR still has many features that all need to be
understood by our translation, which becomes more complex. More importantly, the THIR does
not have any information about liveness and reference lifetimes because these analyses are only
performed later, on the MIR. This is the fundamental limitation of translating from the THIR.

The advantage of the MIR would be that the representation is even more explicit, there are
less features to translate, and lifetimes have been resolved. That means, it would be possible to
manually propagate changes back to borrowed variables at the lifetime end of mutable borrows.
On the other hand, the MIR is in CFG form and it would be challenging to transform that graph
back to a syntax tree for Stainless AST. It would also be nearly impossible to combine the THIR
and the MIR because they do not use the same identifiers for variables.

With this chapter, the entire Rust-Stainless system has been introduced and explained. Design
choices and accompanying limitations were discussed in the last section. Theoretical limitations of
the mutability translation have already been discussed in subsection 3.2.3. It may be interesting
to compare this system to other approaches, listed in chapter 6. The next chapter evaluates our
tool under different perspectives.

37

5 Evaluation

This chapter presents how Rust-Stainless is tested and gives some examples of code that the tool
can verify. Furthermore, it will decompose the running time of a typical execution into its subparts
and finish by presenting a code example related to distributed systems implemented by Informal
Systems and verified with Rust-Stainless.

5.1 Benchmarks
The Rust-Stainless repository contains a test suite of 67 passing (positive) and 12 failing (negative)
test code examples of approximately 3000 lines in total.1 The suite is run for every pull request
and every commit to the master branch.

To quantitatively evaluate Rust-Stainless, I collected some statistics of all the positive test
examples, displayed in Table 5.1. Only the positive examples were used for the measurements
because the negative examples may fail at different stages of the extraction or verification pipeline.
Thus, the time measurement is only representative for the positive examples which complete the
verification pipeline. The used benchmarks amount to 2214 lines of Rust code (LoC), Stainless
generates in total 475 verification conditions (VCs) and the accumulated running time is 5.1 minutes
(Total). Note that the test suite normally (when run with cargo test) runs multiple tests in
parallel and thus, completes in less than 2 minutes on the same machine.2

It is instructive to decompose the running time into its different parts. As described in subsub-
section 4.3.2, the frontend first needs to detect some standard library items before it can translate
the user crate. On average, detection takes 0.17± 0.01 s or equivalently 4 % of the running time.
The actual translation is very fast, especially for the rather short examples that account for the
majority of the test suite. It takes only 0.4 ms or less than 0.01 % of the running time on average.
By far the largest part of the running time is not spent in the frontend itself but rather in the
JVM backend. Verification time accounts for on average 95 % of the total time. The rest is made
up of starting, serialising and reporting. This shows that the translation time is inferior to the
verification time by multiple orders of magnitude which is not surprising, given that verification is
much more complex than translation.

5.2 Code Examples
After having quantitatively measured our tool, it is time to qualitatively evaluate what it is capable
of and to that end present some code examples. The first three examples stem from the test suite
of Rust-Stainless and are included in the measurements from above. The fourth example is the
running example from chapter 2 and the last one is an implementation by Informal Systems used
in the tendermint-rs repository.

1Found under stainless_frontend/tests/[pass|fail] on the mutable-cells branch.
2All the tests were run on a MacBook Pro with a 2.8 GHz Quad-Core Intel Core i7 and 16 GB of RAM.

CHAPTER 5. EVALUATION 38

Table 5.1: Time measurements for all passing test examples of the Rust-Stainless test suite. The presented times
are means and standard errors from 5 runs. The tests were performed on the mutable-cells branch, except for the
two tests marked with * which are from master. All times are in milliseconds.

Name LoC VCs Std Item Detection Translation Verification Total

AdtUseBeforeDeclare 13 0 170.3 ± 7.9 0.3 ± 0.0 3318.5 ± 98.9 3535.3 ± 106.7

Adts 90 3 169.0 ± 3.6 0.5 ± 0.1 4142.0 ± 95.8 4361.7 ± 101.2

Blocks 27 2 177.7 ± 2.6 0.4 ± 0.1 3696.6 ± 302.0 3907.0 ± 304.2

Boxes 9 1 163.8 ± 9.5 0.3 ± 0.0 3502.3 ± 206.8 3723.5 ± 218.2

CastCorrectness 43 13 160.6 ± 3.8 0.6 ± 0.0 4683.2 ± 253.6 4926.3 ± 257.9

Clone 37 1 158.6 ± 6.3 0.4 ± 0.1 3872.3 ± 238.8 4106.7 ± 246.9

DoubleRefParam 24 5 170.6 ± 7.0 0.4 ± 0.0 3930.9 ± 146.8 4152.4 ± 150.9

ExternalFn 22 2 177.4 ± 6.1 0.4 ± 0.1 3768.7 ± 181.8 3981.8 ± 188.4

Fact 14 3 181.2 ± 5.0 0.3 ± 0.0 4415.8 ± 238.8 4633.4 ± 243.4

FnRefParam 24 5 169.8 ± 7.2 0.4 ± 0.0 3937.2 ± 189.8 4158.4 ± 198.2

GenericId 9 0 178.4 ± 3.8 0.3 ± 0.0 3238.7 ± 157.9 3441.6 ± 161.4

GenericOption 37 10 178.0 ± 3.6 0.5 ± 0.0 4130.9 ± 237.2 4339.8 ± 241.2

GenericResult 31 8 169.3 ± 8.8 0.4 ± 0.0 4108.2 ± 158.0 4333.3 ± 168.1

ImplFns 37 5 170.9 ± 6.7 0.5 ± 0.0 3973.6 ± 169.2 4205.7 ± 175.1

ImplMutSpec 19 1 176.3 ± 4.3 0.4 ± 0.0 3878.1 ± 277.6 4089.3 ± 282.4

Implies 9 1 177.4 ± 4.8 0.3 ± 0.0 3515.5 ± 142.5 3724.0 ± 147.6

InsertionSort 111 42 157.2 ± 5.7 0.9 ± 0.1 5961.8 ± 218.3 6236.6 ± 225.8

IntOperators 189 70 175.1 ± 5.7 0.9 ± 0.1 10136.4 ± 380.2 10384.3 ± 385.4

IntOption 30 1 167.4 ± 2.9 0.4 ± 0.0 3756.4 ± 118.2 3973.1 ± 121.9

LetType 19 2 157.5 ± 3.8 0.4 ± 0.1 3782.8 ± 157.2 4002.8 ± 161.9

ListBinarySearch 93 23 156.0 ± 3.7 0.8 ± 0.0 6651.8 ± 211.2 6899.7 ± 215.8

MapOps 40 31 159.2 ± 4.0 0.6 ± 0.0 5129.7 ± 129.9 5391.5 ± 134.8

Monoid 49 9 179.1 ± 5.9 0.5 ± 0.0 6637.3 ± 335.7 6849.5 ± 341.3

MutClone 11 1 155.4 ± 2.4 0.3 ± 0.0 3657.1 ± 120.1 3882.0 ± 123.3

MutLocalFields 55 6 177.2 ± 6.7 0.5 ± 0.0 4352.0 ± 224.4 4563.7 ± 230.5

MutLocalLets 29 2 156.6 ± 4.2 0.4 ± 0.0 3848.8 ± 177.4 4073.3 ± 183.0

MutLocalParams 26 3 176.7 ± 7.4 0.4 ± 0.0 3851.8 ± 145.1 4075.6 ± 152.6

MutMemReplace 60 26 156.6 ± 3.9 0.6 ± 0.1 5905.2 ± 194.0 6147.5 ± 200.6

MutOld 20 3 168.8 ± 4.6 0.4 ± 0.0 4006.1 ± 161.7 4232.7 ± 165.6

MutParams 8 0 177.2 ± 4.2 0.3 ± 0.0 3293.8 ± 82.9 3496.8 ± 87.0

MutRefBorrow0 11 2 176.7 ± 9.2 0.2 ± 0.0 3659.6 ± 151.0 3876.8 ± 160.7

MutRefBorrow1 12 1 170.1 ± 6.2 0.3 ± 0.0 3696.8 ± 127.2 3918.7 ± 135.0

MutRefBorrow10 10 3 166.0 ± 6.0 0.4 ± 0.0 3853.8 ± 175.7 4061.7 ± 181.3

MutRefBorrow11 16 3 166.3 ± 4.4 0.4 ± 0.0 3980.5 ± 113.2 4189.8 ± 118.3

MutRefBorrow12 51 27 160.2 ± 5.6 0.7 ± 0.1 5617.2 ± 159.7 5844.9 ± 166.5

MutRefBorrow2 13 1 168.7 ± 6.1 0.3 ± 0.0 3710.1 ± 141.0 3928.4 ± 147.8

MutRefBorrow3 14 1 173.5 ± 18.3 0.4 ± 0.0 3771.0 ± 219.6 3995.9 ± 238.8

MutRefBorrow5 23 3 170.1 ± 5.1 0.4 ± 0.0 3995.0 ± 171.1 4222.1 ± 175.3

MutRefBorrow6 26 0 165.8 ± 5.4 0.4 ± 0.0 3504.3 ± 129.3 3712.2 ± 134.0

MutRefBorrow7 31 3 162.6 ± 4.3 0.5 ± 0.0 4108.6 ± 98.1 4337.1 ± 104.6

MutRefBorrow8 18 3 175.6 ± 7.9 0.3 ± 0.0 3896.0 ± 122.6 4111.9 ± 131.4

MutRefBorrow9 17 3 174.9 ± 7.6 0.3 ± 0.0 4094.6 ± 544.4 4311.0 ± 552.8

MutRefClone 12 1 157.0 ± 5.2 0.3 ± 0.0 3685.4 ± 167.3 3912.6 ± 174.5

MutRefImmutBorrow 33 5 169.6 ± 6.3 0.3 ± 0.0 3955.2 ± 184.3 4175.5 ± 191.7

MutRefTuple 9 1 175.1 ± 4.8 0.3 ± 0.0 3749.6 ± 178.5 3965.2 ± 183.8

MutReturn 51 14 157.7 ± 5.3 0.6 ± 0.0 4485.3 ± 192.3 4708.7 ± 199.1

MutTuple 8 1 179.8 ± 5.5 0.3 ± 0.0 3712.1 ± 113.4 3917.6 ± 118.7

NestedSpec 16 2 179.2 ± 5.7 0.3 ± 0.0 3652.8 ± 134.4 3864.9 ± 140.1

NestedSpecImpl 20 2 172.1 ± 11.2 0.4 ± 0.0 3748.0 ± 245.4 3976.8 ± 259.6

PanicType 33 15 159.0 ± 9.0 0.5 ± 0.1 4415.7 ± 201.3 4651.8 ± 211.1

PhantomData 22 2 158.2 ± 6.2 0.4 ± 0.0 3747.4 ± 181.1 3967.0 ± 187.3

ReturnStmt 65 17 165.9 ± 6.9 0.5 ± 0.0 6032.1 ± 149.9 6269.0 ± 158.2

SetOps 20 2 158.3 ± 5.6 0.3 ± 0.0 3577.1 ± 81.1 3815.8 ± 87.5

SpecOnTraitImpl 22 3 180.2 ± 7.9 0.4 ± 0.0 4434.1 ± 172.8 4650.9 ± 180.2

Strings 39 4 164.1 ± 9.3 0.5 ± 0.0 3861.3 ± 180.7 4076.7 ± 191.5

StructUpdate 23 1 177.7 ± 7.7 0.3 ± 0.0 3766.9 ± 204.1 3974.8 ± 212.6

TraitBounds* 106 14 159.7 ± 5.8 0.7 ± 0.0 6090.8 ± 55.6 6335.7 ± 58.7

TupleMatch 12 2 174.7 ± 5.7 0.3 ± 0.1 3752.7 ± 21.8 3969.1 ± 28.7

TupleResult 9 4 162.7 ± 1.9 0.4 ± 0.1 3822.3 ± 20.4 4027.1 ± 20.3

Tuples 44 5 174.2 ± 2.9 0.5 ± 0.1 4054.1 ± 33.8 4281.5 ± 33.4

TypeClass* 83 28 157.1 ± 4.4 0.7 ± 0.0 11584.7 ± 80.2 11815.9 ± 82.0

TypeClassCallSpecs 18 2 176.5 ± 1.9 0.4 ± 0.0 3757.2 ± 9.2 3964.7 ± 10.4

TypeClassMultiLookup 59 8 166.6 ± 1.8 0.6 ± 0.0 5055.9 ± 21.8 5280.2 ± 20.5

TypeClassSpecs 28 5 177.8 ± 1.8 0.5 ± 0.1 4450.4 ± 12.1 4663.8 ± 11.2

TypeClassWithoutEvidence 27 2 166.6 ± 3.2 0.4 ± 0.0 4409.6 ± 27.3 4626.6 ± 29.5

UseLocal 19 6 177.2 ± 2.0 0.5 ± 0.0 4736.6 ± 43.2 4954.7 ± 42.1

UseStd 9 0 176.1 ± 2.7 0.2 ± 0.0 3086.8 ± 17.7 3286.5 ± 19.4

CHAPTER 5. EVALUATION 39

5.2.1 Test Suite Examples
Insertion Sort The first example is Listing A.2, an implementation of insertion sort on the
already mentioned functional linked-list. The recursive data type is made possible by the support
for boxes. This example was translated from an equivalent Scala example in Stainless’s test suite,
therefore it shows a functional way of writing Rust; there is no mutation in the entire example.
In idiomatic Rust, one would probably use a vector instead of a linked-list. The example further
showcases the use of implementation blocks and specs on methods. For proving termination of
the recursive implementation it is crucial to add the new measure attribute. Also note that the
Option type is the one from the standard library.

Because the example is completely functional, it serves perfectly to evaluate whether the mu-
tability translation preserves functional code – despite the mutable cell encoding. To test that,
consider the sorted_insert method, displayed in Listing 5.1, and its translation as it is submitted
to Stainless, shown in Listing 5.2. The translation is almost identical. The only changes are the
mutable cell patterns in the match, the freshCopy around the return values, and the erasure of
the boxes. This is thanks to the optimisations of subsection 3.2.2. For example, the function
arguments are not wrapped in cells because they’re immutable.

1 #[pre(self.is_sorted())]
2 #[measure(self)]
3 #[post(
4 ret.size() == self.size() + 1 &&
5 ret.is_sorted() &&
6 ret.contents().is_subset(
7 &self.contents().insert(e)
8) &&
9 self.contents().insert(e).is_subset(

10 &ret.contents()
11)
12)]
13 pub fn sorted_insert(
14 self,
15 e: i32
16)-> List<i32> {
17 match self {
18 List::Cons(head, tail)
19 if head <= e => List::Cons(
20 head,
21 Box::new(tail.sorted_insert(e))
22),
23 _ => List::Cons(e, Box::new(self)),
24 }
25 }

Listing 5.1: Completely functional method of the
List<i32> in Listing A.2.

1 @pure def sorted_insert(
2 self: List[Int],
3 e: Int
4): List[Int] = {
5 require(is_sorted(self))
6 decreases({ self })
7 self match {
8 case Cons(MutCell(head), MutCell(tail))
9 if head <= e => freshCopy(

10 Cons[Int](
11 MutCell[Int](head),
12 MutCell[List[Int]](
13 sorted_insert(tail, e)
14)
15)
16)
17 case _ => freshCopy(
18 Cons[Int](
19 MutCell[Int](e),
20 MutCell[List[Int]](self)
21)
22)
23 }
24 } ensuring { (ret: List[Int]) =>
25 size[Int](ret) == size[Int](self) + 1 &&
26 is_sorted(ret) && contents(ret).subsetOf(
27 contents(self) ++ Set(e)
28) &&
29 (contents(self) ++ Set(e)) subsetOf contents(ret)
30 }

Listing 5.2: Translation of Listing 5.1.

To go a step deeper, consider the final encoding of the function, displayed in Listing A.3.
Stainless submits this encoding to its solver, Inox, after having executed all its transformations. In
particular, after the imperative phase has transformed all mutable fields like the one of the mutable
cells to functional code. The encoding contains refinement assertions and multiple casts to use the
fields of the ADT directly, e.g. ._1, instead of using the matched bindings. Otherwise, it does not
introduce unnecessary complexity to deal with mutable cells. Thus, it can be concluded that the

CHAPTER 5. EVALUATION 40

mutability translation preserves the verifiability of functional code – at least as long as no type
classes are involved that may cause trouble with the refinement lifting.

Type Class The next example in Listing A.4 is also completely immutable and demonstrates the
use of a trait for equality (Equals) with two implementations. Note that one would usually use the
traits from the standard library (Eq and PartialEq) and let the macro derive implementations for
them. Here however, equality is implemented in the program because it serves as a good example
for contracts on traits. The trait contains three laws corresponding to the three properties of the
equivalence relation.

The implementation for i32 is trivial except that it needs to dereference the two operands. This
is to force the compiler of using the primitive comparison operator instead of PartialEq::eq. The
linked-list implementation (Listing 5.3) is a good example of a trait bound (T: Equals) and two
type class method calls that will be resolved in the translation.

1 impl<T: Equals> Equals for List<T> {
2 fn equals(&self, other: &List<T>) -> bool {
3 match (self, other) {
4 (List::Nil, List::Nil) => true,
5 (List::Cons(x, xs), List::Cons(y, ys)) => x.equals(y) && xs.equals(ys),
6 _ => false,
7 }
8 }
9 ...

10 }

Listing 5.3: Equality implemented for the linked-list.

Lastly, note that the three laws need to be reimplemented in the list implementation. This
is due to Stainless not being able to recursively prove the properties without some guidance by
the programmer. However, the same is necessary in an equivalent Scala example. Thus, this is
not a limitation of the Rust frontend but of Stainless itself. On the other hand, the law imple-
mentations show another construct that the frontend is able to translate: static method calls like
Self::law_transitive(xs, ys, zs) are translated to calls on the correct type class instance.

Local Mutability Turning to mutability, the benchmark in Listing 5.4 is available on the
mutable-cells branch. It features a struct for which the macro derives a Clone instance. In
the function, the struct is created, cloned and mutated. The assertions ensure that the cloned
instance is not changed as well by the mutation. The mutability translation will replace the clone
call with freshCopy.

Mutable References The running example (Listing 2.25) from chapter 2 is equivalent to the
most complicated mutability benchmark on the mutable-cells branch3 with the addition of a
trait. In particular, it shows how a mutable reference is matched upon and then a sub-reference is
returned. The sub-reference is later used to alter the container struct. In summary, the example
requires support for mutable borrows, pattern matching on mutable references, passing mutable
references as values, and struct mutation via references.

In the translation of get_mut_by_id (Listing 5.5), one can observe how the pattern match binds
the mutable cell object v inside the tuple ADT instead of its value. Furthermore, the evidence
argument responsible for the trait method, ev0.id on line 8, is added as parameter.

3https://github.com/epfl-lara/rust-stainless/blob/mutable-cells/stainless_frontend/tests/pass/
mut_ref_borrow_12.rs

https://github.com/epfl-lara/rust-stainless/blob/mutable-cells/stainless_frontend/tests/pass/mut_ref_borrow_12.rs
https://github.com/epfl-lara/rust-stainless/blob/mutable-cells/stainless_frontend/tests/pass/mut_ref_borrow_12.rs

CHAPTER 5. EVALUATION 41

1 #[derive(Clone)]
2 pub struct S(i32);
3

4 pub fn main() {
5 let mut a = S(1);
6 let b = a.clone();
7 a.0 = 10;
8 assert!(a.0 != b.0)
9 }

Listing 5.4: Local mutation and cloning of a simple struct.

1 def get_mut_by_id[K @mutable, V @mutable](
2 self: MutCell[Container[K, V]],
3 id: Long,
4 ev0: Id[K] @evidence
5): Option[V] = {
6 self.value.pair match {
7 case MutCell(Some(MutCell(Tuple2(k, v))))
8 if ev0.id(k.value) == id => Some[V](v)
9 case _ => None[V]()

10 }
11 } ensuring {
12 (ret: Option[V]) => is_empty[K, V](self.value) ==> ret match {
13 case None() => true
14 case _ => false
15 }
16 }

Listing 5.5: Translation of the get_mut_by_id method from Listing 2.25.

5.2.2 Peer-List Implementation
A principal motivation of this thesis project was to verify real-world code examples of Informal
Systems. The PeerList data structure seemed like the perfect benchmark because it already had
runtime-checked invariants defined by Romain Rüetschi. Thus, a primary driver of this thesis was
to verify a version of the data structure that was as close to the original code as possible.

Thanks to the mutability translation and especially in-place updates, I achieved that goal ade-
quately, found a problem in the original specification and was able to strengthen the postconditions
of some methods. The verified version of the code is in Listing A.5 and by comparing it with the
original code, one can see that there are indeed no large changes.4

The peer-list is a data structure that keeps track of different nodes in a distributed system
context. Each node has a current value, recorded in the values map, and each node is either the
primary node of the system, a trusted witness, a simple but working full-node, or considered as a
faulty node. These states are recorded with sets in the struct and the invariant method returns
true if the sets are in a valid configuration. For example, they all need to be disjoint as each node
must be in exactly one state. The two methods of interest are replace_faulty_witness and
replace_faulty_primary. Both change the state of some of the nodes.

4The original version can be found here: https : / / github . com / informalsystems / tendermint-rs / blob /
d8e18c647cd8695d16610c4292b15ec6d1b45fbc/light-client/src/peer_list.rs.

https://github.com/informalsystems/tendermint-rs/blob/d8e18c647cd8695d16610c4292b15ec6d1b45fbc/light-client/src/peer_list.rs
https://github.com/informalsystems/tendermint-rs/blob/d8e18c647cd8695d16610c4292b15ec6d1b45fbc/light-client/src/peer_list.rs

CHAPTER 5. EVALUATION 42

The only notable but crucial change from the original code is that instead of the standard
HashMap and HashSet, the verified code uses two custom implementations, ListMap and ListSet.
I implemented these two specially for the benchmark. They are in a separate module in the verified
crate (Listing A.6). The need for list-backed set and map implementations arose because some
methods get an element from the collections with .iter().next() in the original code. Neither
does Rust-Stainless support iterators, nor do the map and set from Stainless support element
retrieval. Therefore, I created the list-backed collections and added a first method. Ideally, the
two list-collections should be in the Stainless crate and be part of the library. If that was the
case, the peer-list example would only have to import the Stainless crate and change the collection
types to be verifiable. Unfortunately, the one-crate-limitation (cf. section 4.4) currently forces us
to have the collections in the user crate.

Nonetheless, verifying the peer-list implementation with cargo stainless allowed me to im-
prove its specifications. First, I found a problem: the precondition that the invariant must hold
before the two methods was not set in the code. Furthermore, I could strengthen the postconditions
of both methods to also prove that the methods perform the correct changes. For example, List-
ing 5.6 shows the improved postcondition of replace_faulty_primary. If the method succeeds
and returns an Ok result, the self not only has to satisfy the invariant but the faulty primary
given as argument also needs to be in the faulty nodes. This prevents the method from doing
nothing which would also uphold the invariant. Note also the use of the old(&self) helper to use
the value of self before the function.

1 #[post((matches!(ret, Ok(_))).implies(
2 Self::invariant(&self)
3 && old(&self).primary != self.primary
4 && self.faulty_nodes.contains(&old(&self).primary)
5 && old(&self).witnesses.contains(&self.primary)
6))]

Listing 5.6: Postcondition of the replace_faulty_primary method.

The tool is also capable of verifying another example from Informal Systems. The code stems
from an inter-blockchain communication protocol (IBC) handler implementation and was rewritten
to be immutable and self-contained because it was used on an earlier version of the tool. The current
implementation still verifies the example.5

With five different examples showcasing each their set of language features, this chapter showed
what Rust-Stainless can currently process. It became clear that no matter how complicated the
translations in the frontend are, the running time is dominated by the verification time of the
backend. For an overview of the tool’s limitations, see section 4.4. The next chapter summarises
research work in related areas like ownership systems and formal verification.

5The PR with the example can be found here: https://github.com/informalsystems/ibc-rs/pull/759.

https://github.com/informalsystems/ibc-rs/pull/759

43

6 Related Work

This chapter situates the work on the translation in the context of existing research on linearly
typed languages and similar approaches. It takes a closer look at some formalisations of Rust’s
semantics and finally compares our tool to other projects that work on verification of Rust code.

6.1 Background Topics
Rust’s type and ownership system has been heavily inspired by decades of research in the program-
ming language community. The main topics to consider are linear and unique types, ownership,
as well as region-based memory management.

Linearity was introduced by Girard [19] and Wadler [53]. Linear types must be used exactly
once, they cannot be duplicated nor discarded [2]. This presents the disadvantage that values to
be reused have to be threaded through the program, e.g. a function that reads from an array also
needs to return the array after the read to make it useable again. Unique types as described by
Minsky [34] on the other hand guarantee that they are the only reference to a certain value, i.e. the
absence of aliases. Lastly, Clarke et al. [13] introduced ownership types that follow the same goal,
the absence of inadvertent and even dangerous aliasing of (heap-allocated) objects.

Many early approaches to linear and unique types originated in functional languages and some
challenges arose when they were applied to object-oriented languages that may assign to values or
clone objects. Shallowly copying an object in a language with owned data is problematic because
it might copy unique pointers, creating illegal aliases. Deep copying would solve the problem but
there is a more efficient approach called sheep cloning. First described by Noble et al. [37], Rust
implements a version close to [29]: owned data, that is, data pointed at by unique pointers, is
deeply copied, while shared data, i.e. immutable references, can be safely aliased.

To make unique types work with assignments, values need to be moved or destroyed after a
read. This notion of destructive reads was introduced by Hogg [22], with the goal of protecting from
aliasing in object-oriented languages. Rust implements such reads for its move semantics by making
the borrow checker flow-sensitive, similar to the proposition of Boyland [11]. The flow-sensitive
borrow checker can also be seen as substructural typing [55].

Other, less practically used languages with substructural typing or similar ideas are:

• Mezzo, an ML-language by Pottier and Protzenko [40], controls aliasing and ownership by
offering duplicable types that are immutable and can be copied, and mutable types that are
linear. This is similar to Rust’s copyable and moveable types. Mezzo also uses a flow-sensitive
type checker to enforce its discipline but it does that with permissions embedded in the type
system rather than lifetimes.

• Linear Haskell by Bernardy et al. [8] tries to bring linear types to Haskell in a backwards-
compatible way, i.e. existing code compiles alongside linear types. The key difference of this
approach is that linearity is attached to functions instead of having linear and non-linear
types like Mezzo or Rust. A linear function is restricted in the way it uses its arguments:
when its result is consumed exactly once, then its argument has to be consumed exactly once.

CHAPTER 6. RELATED WORK 44

• Alms is an attempt to popularise affine types, e.g. types that can be used at most once, by
Tov and Pucella [48]. The language is similar to OCaml and its primary goal is to create
resource-aware abstractions, for solving problems like race conditions. In an Alms module,
the programmer can mark types as affine, contrary to Rust where everything is moveable,
i.e. affine, unless otherwise specified (by implementing Copy).

• Cyclone was intended as a save alternative to C and is among the languages that inspired
Rust the most. In particular, Grossman et al. [20] designed Cyclone with memory manage-
ment based on regions. That includes ideas like region subtyping and deallocation by region.
Unlike Rust, the programmer specifies whether an object should be on the heap, on the stack
or in a dynamic region. In Rust, the lifetime mechanism is applied to all references and
memory locations, ownership is used to trigger deallocation.

6.2 Rust Formalisations
Even if Rust is a rather young language, there have already been numerous attempts at formalising
its semantics of ownership, borrowing and reference lifetimes. The following list mentions three
important and recent works. Other projects are Patina [41], Rusty Types [7], and KRust [54].

• RustBelt by Jung et al. [24] is important because it bridges the gap of most other works:
it proves the safety of implementations in unsafe Rust – “securing the foundations of Rust”.
The authors develop an automated way of proving correctness for a subset of the language
and apply it to libraries that internally use unsafe features. For example, they prove that
a program using the abstractions of std::cell runs safely if it type checks. In contrast to
the following works and Rust-Stainless however, RustBelt uses a continuation-passing style
language, λRust, that is closer to the MIR than Rust itself.

• Oxide is a recent formalisation by some of Rust’s maintainers, Weiss et al. [55]. The goal
of the project is to provide formal semantics for a language close to surface Rust called
Oxide. The authors present the first syntactic proof of type safety for the borrow checking
of (the considered subset of) Rust and implement a type-checker for that language. The
interpretation of lifetimes in Oxide is already compatible with the future version of Rust’s
borrow checker called Polonius [31].

• Lightweight Formalism for Rust (FR) was developed in parallel to Oxide by Pearce [38].
Like Oxide, it draws strong inspiration from Featherweight Java (FJ) [23], hence the name
FR. The paper presents a calculus that models source-level Rust with its salient features
like borrowing, reference lifetimes and move versus copy semantics. The author proves the
soundness of the calculus but unlike Oxide, they implement the system in Java rather than
in Rust. Another difference to Oxide is that FR models boxes, i.e. heap allocation. Oxide
on the other hand is closer to the future version of the borrow checker and covers a larger
subset of Rust.

The two latter works are of particular importance to this project because these formalisations
could be used to formally prove the correctness of the translation from chapter 3.

6.3 Verification
Stainless in its current form, with the Inox solver [52], as developed by Hamza, Voirol, and Kunčak
[21] is the successor of Leon [10]. The two systems come out of a long series of works, exploring
the possibilities of verifying functional programs, mainly in Scala, with SMT solvers [5], like the
early work by Suter et al. [46]. Stainless distinguishes itself from many other verifiers in that

CHAPTER 6. RELATED WORK 45

it is counter-example complete, that is, it produces and minimises counter-examples for all failed
verification conditions.

Of particular interest to this project is the imperative phase of Stainless that was introduced by
Blanc [9] and acts as main backend to the translation presented in this thesis. The new imperative
phase by Schmid and Kunčak [45] is likely to overcome the current limitations of imperative code
in Stainless and may be the ideal target for Rust-Stainless in the future.

Rust Verification

Due to its clear design and promising safety guarantees, Rust is predestined as implementation
language for critical systems. With that arises the need to prove stronger properties on Rust
programs like functional correctness. This is the major motivation behind this project, but likewise,
numerous other projects try to build verifiers for Rust. The wide interest in the topic can be seen
from the sheer number of projects in the following list. The selection here focusses on the projects
that are closer to Rust-Stainless.1

• CRUST [47] tries to prove memory safety of Rust code using unsafe features, in the same
manner as RustBelt. The approach is to translate Rust to C, generate test sequences of
function calls, and then verify the code with the CBMC bounded model checker for C [26].

• RustHorn [33] translates Rust into constrained Horn clauses that can be solved by an
appropriate solver. The authors prove correctness of their translation for a formalised subset
of Rust including mutable references, inspired by RustBelt [24]. Contrary to Rust-Stainless,
RustHorn operates on the MIR. The tool mainly proves the absence of runtime errors and
has no features to express and verify specifications or higher-level properties.

• Seer [42] stands for symbolic execution engine for Rust. The engine takes the MIR and
executes it symbolically with Z3 [14] as a solver backend, similar to Stainless. However, as
an execution engine, the tool tries to find executions that produce errors but cannot prove
higher-level properties.

• SMACK is a verification toolchain that translates LLVM-IR to Boogie [4] and has been
extended to support Rust [3]. Like RustHorn, it is able to prove the absence of runtime
errors and correctness of assertions but no higher-level properties like laws in Rust-Stainless.

• MIRAI [51] is an abstract interpreter for MIR, developed at Facebook. It supports very
similar pre- and postconditions like Rust-Stainless that are standardised by the contracts
crate.2 The repository also contains contracts for many modules of the standard library.
Such contracts could be a solution to Rust-Stainless’s one-crate-limitation (cf. section 4.4).
Contrary to Stainless, MIRAI may produce false negatives and is unable to generate counter-
examples for failed verification conditions.

• Electrolysis [50] is probably the most similar work to Rust-Stainless. It translates Rust
to the functional language Lean which is used as an interactive theorem prover [15]. Like
Rust-Stainless, Electrolysis only works on the safe subset of Rust and one of the core topics
of the project is the translation of mutable references. The author chooses functional lenses
as representation of mutable references in Lean. This has the limitation that the translation
needs to keep track of the provenance of mutable references. Unlike Rust-Stainless, this
project operates on the MIR.

1The list of verifiers largely stems from https://alastairreid.github.io/rust-verification-tools/.
2https://docs.rs/contracts/latest/contracts/

https://alastairreid.github.io/rust-verification-tools/
https://docs.rs/contracts/latest/contracts/

CHAPTER 6. RELATED WORK 46

• Creusot [16] is similar to Electrolysis, it also translates Rust to a verification language,
WhyML [18]. Like MIRAI and Rust-Stainless, Creusot lets the programmer state specifica-
tions as pre- and postconditions. However, it uses a special language for the contracts, called
Pearlite, that is developed with the project. Creusot also works with the MIR.

• Prusti [1] is probably the most useable tool currently, as it is the only one to offer a VSCode
extension that verifies properties while the programmer is writing code. Prusti translates
MIR to Viper [35], a verification framework with frontends for various mainstream languages.
Like Rust-Stainless, pre- and postconditions are expressed in Rust itself. Prusti also has the
ability to attach contracts to crate-external items, similar to MIRAI, solving the one-crate-
limitation (cf. section 4.4). On the other hand, Prusti does not yet offer trait contract
verification like Rust-Stainless with laws.

From this extensive enumeration, it is clear that Rust-Stainless is currently the only tool that
operates on an IR above the MIR – the THIR. The trade-offs involved in that decision are discussed
in subsection 4.4.3. Rust-Stainless could draw an advantage from that decision in the future and
provide counter-example generation for Rust. That and other promising paths for the future of
the tool are explored in the next and last chapter.

47

7 Conclusion

With this thesis, I presented Rust-Stainless, a formal verification tool for Rust based on the Stain-
less verifier. Building on a solid foundation of existing software and infrastructure, I added many
features to the tool and thus increased its usability and expressiveness significantly. Along with
smaller language features, the most important additions are immutable references and boxes, the
Rust trait to Scala type class translation and, first and foremost, the mutability translation. Fur-
ther, this project includes the theoretical reasoning behind the correctness of the mutability trans-
lation as well as numerous bugfixes and additions to both Rust-Stainless and Scala Stainless.

The development went hand-in-hand with testing and evaluating the tool on more and more
complex Rust examples. As an intern at Informal Systems, I had access to experienced Rust
developers who advised me on the choice of features to support. Chapter 5 shows how the tool was
evaluated against some code of Informal Systems and it also demonstrates that the translations
performed by our tool are very fast, in comparison to the time it takes to verify the code.

By combining Rust’s borrow checking with Stainless’s verification, Rust-Stainless gains an
unimagined expressiveness. Thanks to Rust features like mutability and mem::replace along with
Stainless’s new freshCopy primitive, the tool can now process code that would fail Stainless’s
aliasing restrictions in Scala but is proven memory safe by the Rust compiler. The support for in-
place updates with mutability unlocks the possibility of verifying efficient Rust code with Stainless,
like a search tree – without using duplicate functional ghost structures for verification.

Extraction There are still some indispensable language features that Rust-Stainless needs to
support before it can extract idiomatic Rust in all its facets. The primary ones are loops, arrays,
and closures. However, the biggest limitation of the tool is the one-crate-limitation inherited
from the compile model of Rust. Solving it would overcome many related problems. Instead of
supporting vectors, one could add sensible contracts for vectors and iterators. More generally, with
the ability to attach contracts to crate-external items, Rust-Stainless could finally use standard
library items like traits for equality, ordering and hashing. Additionally, it could provide real
implementations in the Stainless crate, instead of just providing bindings and replacing them with
generated implementations in the extraction. This would also enable the use of verified data
structures like the list-map.

Mutability The mutability translation presented in this thesis can theoretically translate all
Rust mutability to Scala, but the current implementation is limited by the imperative phase of
Stainless. With the current backend, this project has probably maximised the features that can
be supported. Even if the imperative phase was bug-free, there are still the two drastic limitations
of recursive functions returning mutable references and mutable references in mutable variables.

The promising solution to that problem could be the new fully imperative phase that is currently
developed for Stainless. That phase does not have aliasing restrictions but rather its own notion of
heap references. Hence, one could remove some of the Stainless specific changes to the translation,
making it simpler. Additionally, I implemented the mutable cell synthesis in such a way that it
would be easy to target the new heap reference cells instead.

CHAPTER 7. CONCLUSION 48

Counter-Examples Even if Rust-Stainless seems to be the only formal verification project for
Rust that translates from the THIR, instead of the lower-level MIR or LLVM-IR, this thesis project
demonstrates the success of that decision. Most Rust constructs can be translated in a one-to-
one fashion to Stainless AST. Even more so, Rust-Stainless could turn that decision into a virtue
by becoming the first Rust verification tool that is counter-example complete! As Stainless is
counter-example complete, it would suffice to translate the Scala counter-examples back to Rust.

New Applications The ability of verifying high-level properties on Rust code sparks numerous
ideas for new applications of Rust-Stainless. For example, if software needs to be verified and
very efficient, one can write it in Scala, verify it with Stainless and then use Stainless’s C-code-
generation feature. The generated code is memory safe but not as optimised as hand-written C.
A much simpler approach would be to use Rust-Stainless to directly verify the efficient Rust code,
given that it supports all the used language features.

Another idea is to use Rust-Stainless to verify implementations that are compiled to Web
Assembly (WASM). For example, the IBC relayer of Informal Systems reads policies that govern
its functioning from WASM. Rust-Stainless could be used to guarantee certain properties on these
policies, e.g. that no rules are in conflict with each other.

In summary, with this thesis and the implementation of the tool, Rust-Stainless, I showed that
the combination of Rust and Stainless is very powerful. While the tool has its limitations, it also
offers many promising paths for future work and it can already be used to verify real-world Rust
code, making systems more correct and safer.

49

Bibliography

[1] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers, “Leveraging rust types for modular
specification and verification,” Proc. ACM Program. Lang., vol. 3, no. OOPSLA, Oct. 2019.
[Online]. Available: https://doi.org/10.1145/3360573

[2] H. G. Baker, “"use-once" variables and linear objects: Storage management, reflection and
multi-threading,” SIGPLAN Not., vol. 30, no. 1, pp. 45 – 52, Jan. 1995. [Online]. Available:
https://doi.org/10.1145/199818.199860

[3] M. S. Baranowski, S. He, and Z. Rakamaric, “Verifying rust programs with smack,” in ATVA,
2018.

[4] M. Barnett, B.-Y. Chang, R. Deline, B. Jacobs, and K. R. M. Leino, “Boogie: A modular
reusable verifier for object-oriented programs,” 09 2006, pp. 364–387.

[5] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli, Satisfiability modulo theories, 1st ed., ser.
Frontiers in Artificial Intelligence and Applications, 2009, vol. 185, no. 1, pp. 825–885.

[6] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds, and
C. Tinelli, “Cvc4,” in Proceedings of the 23rd International Conference on Computer Aided
Verification, ser. CAV’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 171–177.

[7] S. Benitez, “Short paper: Rusty types for solid safety,” in Proceedings of the 2016 ACM
Workshop on Programming Languages and Analysis for Security, ser. PLAS ’16. New
York, NY, USA: Association for Computing Machinery, 2016, pp. 69–75. [Online]. Available:
https://doi.org/10.1145/2993600.2993604

[8] J.-P. Bernardy, M. Boespflug, R. R. Newton, S. Peyton Jones, and A. Spiwack, “Linear
haskell: Practical linearity in a higher-order polymorphic language,” Proc. ACM Program.
Lang., vol. 2, no. POPL, Dec. 2017. [Online]. Available: https://doi.org/10.1145/3158093

[9] R. Blanc, “Verification by Reduction to Functional Programs,” Ph.D. dissertation, 2017.

[10] R. Blanc, V. Kunčak, E. Kneuss, and P. Suter, “An overview of the leon verification system:
Verification by translation to recursive functions,” in Proceedings of the 4th Workshop on
Scala, ser. SCALA ’13. New York, NY, USA: ACM, 2013, pp. 1:1–1:10. [Online]. Available:
http://doi.acm.org/10.1145/2489837.2489838

[11] J. Boyland, “Alias burying: Unique variables without destructive reads,” Softw. Pract. Exper.,
vol. 31, no. 6, pp. 533–553, May 2001. [Online]. Available: https://doi.org/10.1002/spe.370

[12] V. Buterin et al., “A next-generation smart contract and decentralized application platform,”
white paper, vol. 3, no. 37, 2014.

[13] D. G. Clarke, J. M. Potter, and J. Noble, “Ownership types for flexible alias
protection,” SIGPLAN Not., vol. 33, no. 10, pp. 48–64, Oct. 1998. [Online]. Available:
https://doi.org/10.1145/286942.286947

https://doi.org/10.1145/3360573
https://doi.org/10.1145/199818.199860
https://doi.org/10.1145/2993600.2993604
https://doi.org/10.1145/3158093
http://doi.acm.org/10.1145/2489837.2489838
https://doi.org/10.1002/spe.370
https://doi.org/10.1145/286942.286947

BIBLIOGRAPHY 50

[14] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Proceedings of the Theory and
Practice of Software, 14th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, ser. TACAS’08/ETAPS’08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 337–340.

[15] L. de Moura, S. Kong, J. Avigad, F. V. Doorn, and J. von Raumer, “The lean theorem prover,”
2015.

[16] X. Denis. Creusot. Accessed: 2021-07-19. [Online]. Available: https://github.com/xldenis/
creusot

[17] Stainless documentation. EPFL IC LARA. Accessed: 2021-06-30. [Online]. Available:
https://epfl-lara.github.io/stainless/

[18] J.-C. Filliâtre and A. Paskevich, “Why3 – Where Programs Meet Provers,” in ESOP’13 22nd
European Symposium on Programming, ser. LNCS, vol. 7792. Rome, Italy: Springer, Mar.
2013. [Online]. Available: https://hal.inria.fr/hal-00789533

[19] J.-Y. Girard, “Linear logic,” Theoretical Computer Science, vol. 50, no. 1, pp. 1–101, 1987.

[20] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney, “Region-based
memory management in cyclone,” SIGPLAN Not., vol. 37, no. 5, pp. 282–293, May 2002.
[Online]. Available: https://doi.org/10.1145/543552.512563

[21] J. Hamza, N. Voirol, and V. Kunčak, “System FR: Formalized Foundations for the Stainless
Verifiers,” Proc. ACM Program. Lang., vol. 3, no. OOPSLA, Oct. 2019. [Online]. Available:
https://doi.org/10.1145/3360592

[22] J. Hogg, “Islands: Aliasing Protection in Object-Oriented Languages,” in Conference
Proceedings on Object-Oriented Programming Systems, Languages, and Applications, ser.
OOPSLA ’91. New York, NY, USA: Association for Computing Machinery, 1991, pp. 271 –
285. [Online]. Available: https://doi.org/10.1145/117954.117975

[23] A. Igarashi, B. Pierce, and P. Wadler, “Featherweight java: A minimal core calculus for
java and gj,” in Proceedings of the 14th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, ser. OOPSLA ’99. New York,
NY, USA: Association for Computing Machinery, 1999, pp. 132–146. [Online]. Available:
https://doi.org/10.1145/320384.320395

[24] R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer, “Rustbelt: Securing the foundations of
the rust programming language,” Proc. ACM Program. Lang., vol. 2, no. POPL, Dec. 2017.
[Online]. Available: https://doi.org/10.1145/3158154

[25] S. Klabnik and C. Nichols, The Rust Programming Language. USA: No Starch Press, 2018.

[26] D. Kroening and M. Tautschnig, “Cbmc – c bounded model checker,” vol. 8413, 04 2014, pp.
389–391.

[27] J. Kwon and E. Buchman, “Cosmos: A network of distributed ledgers,” 2016. [Online].
Available: https://cosmos.network/whitepaper

[28] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Program Analysis
& Transformation,” in Proceedings of the International Symposium on Code Generation and
Optimization: Feedback-Directed and Runtime Optimization, ser. CGO ’04. USA: IEEE
Computer Society, 2004, p. 75.

[29] P. Li, N. Cameron, and J. Noble, “Sheep cloning with ownership types,” in Proceedings of the
Workshop on Foundations of Object-Oriented Languages, ser. FOOL, 2012.

https://github.com/xldenis/creusot
https://github.com/xldenis/creusot
https://epfl-lara.github.io/stainless/
https://hal.inria.fr/hal-00789533
https://doi.org/10.1145/543552.512563
https://doi.org/10.1145/3360592
https://doi.org/10.1145/117954.117975
https://doi.org/10.1145/320384.320395
https://doi.org/10.1145/3158154
https://cosmos.network/whitepaper

BIBLIOGRAPHY 51

[30] B. H. Liskov and J. M. Wing, “A behavioral notion of subtyping,” ACM Trans.
Program. Lang. Syst., vol. 16, no. 6, pp. 1811–1841, Nov. 1994. [Online]. Available:
https://doi.org/10.1145/197320.197383

[31] N. D. Matsakis. (2018) An alias-based formulation of the borrow checker. Accessed:
2021-07-19. [Online]. Available: https://smallcultfollowing.com/babysteps/blog/2018/04/27/
an-alias-based-formulation-of-the-borrow-checker/

[32] N. D. Matsakis and F. S. Klock, “The rust language,” in Proceedings of the 2014 ACM
SIGAda Annual Conference on High Integrity Language Technology, ser. HILT ’14. New
York, NY, USA: Association for Computing Machinery, 2014, pp. 103–104. [Online].
Available: https://doi.org/10.1145/2663171.2663188

[33] Y. Matsushita, T. Tsukada, and N. Kobayashi, “Rusthorn: Chc-based verification for rust
programs,” Lecture Notes in Computer Science, pp. 484–514, 2020. [Online]. Available:
http://dx.doi.org/10.1007/978-3-030-44914-8_18

[34] N. H. Minsky, “Towards alias-free pointers,” in Proceedings of the 10th European Conference
on Object-Oriented Programming, ser. ECCOP ’96. Berlin, Heidelberg: Springer-Verlag,
1996, pp. 189–209.

[35] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A verification infrastructure
for permission-based reasoning,” in Proceedings of the 17th International Conference
on Verification, Model Checking, and Abstract Interpretation - Volume 9583, ser.
VMCAI 2016. Berlin, Heidelberg: Springer-Verlag, 2016, pp. 41–62. [Online]. Available:
https://doi.org/10.1007/978-3-662-49122-5_2

[36] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Cryptography Mailing list at
https://metzdowd.com, 03 2009.

[37] J. Noble, D. Clarke, and J. Potter, “Object ownership for dynamic alias protection,” 02 1999,
pp. 176 – 187.

[38] D. J. Pearce, “A lightweight formalism for reference lifetimes and borrowing in rust,”
ACM Trans. Program. Lang. Syst., vol. 43, no. 1, Apr. 2021. [Online]. Available:
https://doi.org/10.1145/3443420

[39] ——, “A lightweight formalism for reference lifetimes and borrowing in rust,”
ACM Trans. Program. Lang. Syst., vol. 43, no. 1, Apr. 2021. [Online]. Available:
https://doi.org/10.1145/3443420

[40] F. Pottier and J. Protzenko, “Programming with permissions in mezzo,” SIGPLAN Not.,
vol. 48, no. 9, pp. 173–184, Sep. 2013. [Online]. Available: https://doi.org/10.1145/2544174.
2500598

[41] E. C. Reed, “Patina : A formalization of the rust programming language,” Tech. Rep., 2015.

[42] D. Renshaw. Seer: Symbolic Execution Engine for Rust. Accessed: 2021-07-19. [Online].
Available: https://github.com/dwrensha/seer

[43] Guide to Rustc Development. The Rust Programming Language. Accessed: 2021-06-28.
[Online]. Available: https://rustc-dev-guide.rust-lang.org

[44] The Rust Reference. The Rust Programming Language. Accessed: 2021-06-22. [Online].
Available: https://doc.rust-lang.org/1.53.0/reference/

[45] G. S. Schmid and V. Kunčak, “Proving and disproving programs with shared mutable data,”
CoRR, vol. abs/2103.07699, 2021. [Online]. Available: https://arxiv.org/abs/2103.07699

https://doi.org/10.1145/197320.197383
https://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker/
https://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker/
https://doi.org/10.1145/2663171.2663188
http://dx.doi.org/10.1007/978-3-030-44914-8_18
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1145/3443420
https://doi.org/10.1145/3443420
https://doi.org/10.1145/2544174.2500598
https://doi.org/10.1145/2544174.2500598
https://github.com/dwrensha/seer
https://rustc-dev-guide.rust-lang.org
https://doc.rust-lang.org/1.53.0/reference/
https://arxiv.org/abs/2103.07699

BIBLIOGRAPHY 52

[46] P. Suter, A. S. Köksal, and V. Kunčak, “Satisfiability modulo recursive programs,”
in Proceedings of the 18th International Conference on Static Analysis, ser. SAS’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 298–315. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2041552.2041575

[47] J. Toman, S. Pernsteiner, and E. Torlak, “Crust: A Bounded Verifier for Rust (N),” in 2015
30th IEEE/ACM International Conference on Automated Software Engineering (ASE), 2015,
pp. 75–80.

[48] J. A. Tov and R. Pucella, “Practical affine types,” in Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ser. POPL ’11.
New York, NY, USA: Association for Computing Machinery, 2011, pp. 447–458. [Online].
Available: https://doi.org/10.1145/1926385.1926436

[49] D. N. Turner, P. Wadler, and C. Mossin, “Once upon a type,” in Proceedings of the Seventh
International Conference on Functional Programming Languages and Computer Architecture,
ser. FPCA ’95. New York, NY, USA: Association for Computing Machinery, 1995, pp. 1–11.
[Online]. Available: https://doi.org/10.1145/224164.224168

[50] S. Ullrich, “Simple verification of rust programs via functional purification,” Karlsruhe Insti-
tute of Technology (KIT), 2016.

[51] H. Venter. MIRAI: Rust mid-level IR Abstract Interpreter. Accessed: 2021-07-07. [Online].
Available: https://github.com/facebookexperimental/MIRAI

[52] N. C. Y. Voirol, “Verified functional programming,” p. 229, 2019. [Online]. Available:
http://infoscience.epfl.ch/record/268824

[53] P. Wadler, “Linear types can change the world!” in PROGRAMMING CONCEPTS AND
METHODS. North, 1990.

[54] F. Wang, F. Song, M. Zhang, X. Zhu, and J. Zhang, “Krust: A formal executable semantics
of rust,” in 2018 International Symposium on Theoretical Aspects of Software Engineering
(TASE), 2018, pp. 44–51.

[55] A. Weiss, D. Patterson, N. D. Matsakis, and A. Ahmed, “Oxide: The Essence of Rust,”
CoRR, vol. abs/1903.00982, 2019. [Online]. Available: http://arxiv.org/abs/1903.00982

[56] Wikipedia contributors. Live variable analysis — Wikipedia, the free encyclopedia. Accessed:
2021-06-22. [Online]. Available: https://en.wikipedia.org/wiki/Live_variable_analysis

[57] ——. Value (computer science) — Wikipedia, the free encyclopedia. Accessed: 2021-06-22.
[Online]. Available: https://en.wikipedia.org/wiki/Value_(computer_science)#lrvalue

http://dl.acm.org/citation.cfm?id=2041552.2041575
http://dl.acm.org/citation.cfm?id=2041552.2041575
https://doi.org/10.1145/1926385.1926436
https://doi.org/10.1145/224164.224168
https://github.com/facebookexperimental/MIRAI
http://infoscience.epfl.ch/record/268824
http://arxiv.org/abs/1903.00982
https://en.wikipedia.org/wiki/Live_variable_analysis
https://en.wikipedia.org/wiki/Value_(computer_science)#lrvalue

53

A Appendix

A.1 THIR Example

Listing A.1: Example of a function body in pretty-printed THIR.

1 Expr {
2 ty: A,
3 kind: Block {
4 body: Block {
5 stmts: [Stmt {
6 kind: Expr {
7 expr: Expr {
8 ty: [closure@examples/ex.rs:6:1: 6:20],
9 kind: Closure {

10 closure_id: DefId(0:10 ~ ex[b70b]::f::{closure#0}),
11 substs: Closure(
12 [i8, extern "rust-call" fn((A, A)) -> bool, ()],
13),
14 upvars: [],
15 movability: None,
16 },
17 },
18 },
19 }],
20 expr: Some(Expr {
21 ty: A,
22 kind: Adt {
23 adt_def: A,
24 variant_index: 0,
25 substs: [],
26 fields: [
27 FieldExpr {
28 name: field[0],
29 expr: Expr {
30 ty: i32,
31 kind: Binary {
32 op: Mul,
33 lhs: Expr {
34 ty: i32,
35 kind: Field {
36 lhs: Expr {
37 ty: A,

APPENDIX A. APPENDIX 54

38 kind: VarRef {
39 id: HirId {
40 owner: DefId(0:9 ~ ex[b70b]::f),
41 local_id: 2,
42 },
43 },
44 },
45 },
46 name: field[0],
47 },
48 rhs: Expr {
49 ty: i32,
50 kind: Field {
51 lhs: Expr {
52 ty: A,
53 kind: VarRef {
54 id: HirId {
55 owner: DefId(0:9 ~ ex[b70b]::f),
56 local_id: 2,
57 },
58 },
59 },
60 name: field[0],
61 },
62 },
63 },
64 },
65 },
66],
67 base: None,
68 },
69 }),
70 },
71 },
72 }

APPENDIX A. APPENDIX 55

A.2 Rust Benchmarks
These code examples are taken from the test suite of Rust-Stainless.

Insertion Sort

Listing A.2: Insertion sort, translated from the equivalent Scala benchmark of Stainless.

1 extern crate stainless;
2 use stainless::*;
3

4 pub enum List<T> {
5 Nil,
6 Cons(T, Box<List<T>>),
7 }
8

9 impl<T> List<T> {
10 #[measure(self)]
11 pub fn size(&self) -> u32 {
12 match self {
13 List::Nil => 0,
14 List::Cons(_, tail) => 1 + tail.size(),
15 }
16 }
17 }
18

19 impl List<i32> {
20 #[measure(self)]
21 pub fn contents(&self) -> Set<i32> {
22 match self {
23 List::Nil => Set::new(),
24 List::Cons(head, tail) => tail.contents().insert(*head),
25 }
26 }
27

28 #[measure(self)]
29 pub fn is_sorted(&self) -> bool {
30 match self {
31 List::Nil => true,
32 List::Cons(x, tail) => match &**tail {
33 List::Nil => true,
34 // Deref integers to force primitive comparison operator
35 List::Cons(y, ..) => *x <= *y && tail.is_sorted(),
36 },
37 }
38 }
39

40 #[measure(self)]
41 pub fn min(&self) -> Option<i32> {
42 match self {
43 List::Nil => None,

APPENDIX A. APPENDIX 56

44 List::Cons(x, xs) => match xs.min() {
45 None => Some(*x),
46 Some(y) if *x < y => Some(*x),
47 Some(y) => Some(y),
48 },
49 }
50 }
51

52 /// Inserting element ’e’ into a sorted list ’l’ produces a sorted
53 /// list with the expected content and size
54 #[pre(self.is_sorted())]
55 #[measure(self)]
56 #[post(
57 ret.size() == self.size() + 1 &&
58 ret.is_sorted() &&
59 ret.contents().is_subset(&self.contents().insert(e)) &&
60 self.contents().insert(e).is_subset(&ret.contents())
61)]
62 pub fn sorted_insert(self, e: i32) -> List<i32> {
63 match self {
64 List::Cons(head, tail)
65 if head <= e => List::Cons(head, Box::new(tail.sorted_insert(e))),
66 _ => List::Cons(e, Box::new(self)),
67 }
68 }
69

70 /// Insertion sort yields a sorted list of same size and content
71 /// as the input list
72 #[measure(self)]
73 #[post(
74 ret.size() == self.size() &&
75 ret.is_sorted() &&
76 ret.contents().is_subset(&self.contents()) &&
77 self.contents().is_subset(&ret.contents())
78)]
79 pub fn sort(self) -> List<i32> {
80 match self {
81 List::Nil => self,
82 List::Cons(x, xs) => xs.sort().sorted_insert(x),
83 }
84 }
85 }
86

87 #[external]
88 pub fn main() {
89 let list = List::Cons(
90 5,
91 Box::new(List::Cons(
92 2,
93 Box::new(List::Cons(
94 4,

APPENDIX A. APPENDIX 57

95 Box::new(List::Cons(
96 5,
97 Box::new(List::Cons(
98 -1,
99 Box::new(List::Cons(8, Box::new(List::Nil)))

100)),
101)),
102)),
103)),
104);
105 assert!(list.sort().is_sorted())
106 }

Listing A.3: Final encoding of the sorted_insert method from Listing A.2 in fully functional Stainless AST form
that results after all Stainless transformations have passed. This is submitted to Inox.

1 def sorted_insert(self: List[Int], e: Int): List[Int] = {
2 require(is_sorted(self))
3 decreases(ListPrimitiveSize[Int](self))
4 val t: List[Int] = {
5 val t: List[Int] = self match {
6 case Cons(MutCell(head), MutCell(tail)) if head <= e =>
7 Cons[Int](MutCell[Int](head), MutCell[List[Int]](sorted_insert({
8 val x: MutCell[List[Int]] = {
9 assert({

10 assert(self.isInstanceOf[Cons], "Cast␣error")
11 self
12 }.isInstanceOf[Cons], "Cast␣error")
13 {
14 assert(self.isInstanceOf[Cons], "Cast␣error")
15 self
16 }._1
17 }
18 assert(true, "Cast␣error")
19 x
20 }.value, e)))
21 case _ =>
22 Cons[Int](MutCell[Int](e), MutCell[List[Int]](self))
23 }
24 assert(t.isInstanceOf[Cons], "Inner␣refinement␣lifting")
25 t
26 }
27 val res: List[Int] = {
28 val res: List[Int] = t
29 assert(res.isInstanceOf[Cons], "Inner␣refinement␣lifting")
30 res
31 }
32 res
33 } ensuring {
34 (ret: List[Int]) => {
35 val t: Boolean = if (size[Int](ret) == size[Int](self) + 1) {

APPENDIX A. APPENDIX 58

36 is_sorted(ret)
37 } else { false }
38 val res: Boolean = t
39 val t: Boolean = if (res) {
40 contents(ret).subsetOf(contents(self) + e)
41 } else { false }
42 val res: Boolean = t
43 val t: Boolean = if (res) {
44 contents(self) + e.subsetOf(contents(ret))
45 } else { false }
46 val res: Boolean = t
47 res
48 }
49 }

Type Class

Listing A.4: Type class example for an equality trait and two implementations.

1 extern crate stainless;
2 use stainless::*;
3

4 pub enum List<T> {
5 Nil,
6 Cons(T, Box<List<T>>),
7 }
8

9 trait Equals {
10 fn equals(&self, x: &Self) -> bool;
11 fn not_equals(&self, x: &Self) -> bool {
12 !self.equals(x)
13 }
14

15 #[law]
16 fn law_reflexive(x: &Self) -> bool {
17 x.equals(x)
18 }
19

20 #[law]
21 fn law_symmetric(x: &Self, y: &Self) -> bool {
22 x.equals(y) == y.equals(x)
23 }
24

25 #[law]
26 fn law_transitive(x: &Self, y: &Self, z: &Self) -> bool {
27 !(x.equals(y) && y.equals(z)) || x.equals(z)
28 }
29 }
30

31 impl<T: Equals> Equals for List<T> {
32 fn equals(&self, other: &List<T>) -> bool {

APPENDIX A. APPENDIX 59

33 match (self, other) {
34 (List::Nil, List::Nil) => true,
35 (List::Cons(x, xs), List::Cons(y, ys)) => x.equals(y) && xs.equals(ys),
36 _ => false,
37 }
38 }
39

40 fn law_reflexive(x: &Self) -> bool {
41 match x {
42 List::Cons(x, xs) => T::law_reflexive(x) && Self::law_reflexive(xs),
43 List::Nil => true,
44 }
45 }
46

47 fn law_symmetric(x: &Self, y: &Self) -> bool {
48 match (x, y) {
49 (List::Cons(x, xs), List::Cons(y, ys)) => {
50 T::law_symmetric(x, y) && Self::law_symmetric(xs, ys)
51 }
52 _ => true,
53 }
54 }
55

56 fn law_transitive(x: &Self, y: &Self, z: &Self) -> bool {
57 match (x, y, z) {
58 (List::Cons(x, xs), List::Cons(y, ys), List::Cons(z, zs)) => {
59 T::law_transitive(x, y, z) && Self::law_transitive(xs, ys, zs)
60 }
61 _ => true,
62 }
63 }
64 }
65

66 impl Equals for i32 {
67 fn equals(&self, y: &i32) -> bool {
68 // Deref integers to force primitive comparison operator
69 *self == *y
70 }
71 }
72

73 pub fn main() {
74 let a = 2;
75 let b = 4;
76

77 assert!(a.not_equals(&b));
78

79 let list = List::Cons(123, Box::new(List::Cons(456, Box::new(List::Nil))));
80 assert!(list.equals(&list));
81 }

APPENDIX A. APPENDIX 60

A.3 Informal Systems Code

PeerList

The verified PeerList module has two files. The data structure and a supporting list-map imple-
mentation in the second one.

Listing A.5: Verified version of the PeerList data structure. The original version can be found here: https://
github.com/informalsystems/tendermint-rs/blob/d8e18c647cd8695d16610c4292b15ec6d1b45fbc/light-client/
src/peer_list.rs.

1 extern crate stainless;
2 use stainless::*;
3

4 mod list;
5 use list::*;
6

7 /// Node IDs
8 // PeerId was replaced by a simple u128 to make hashing easier.
9

10 pub enum ErrorKind {
11 NoWitnessLeft { context: Option<Box<ErrorKind>> },
12 }
13

14 /// A generic container mapping ‘u128‘s to some type ‘T‘,
15 /// which keeps track of the primary peer, witnesses, full nodes,
16 /// and faulty nodes. Provides lifecycle methods to swap the primary,
17 /// mark witnesses as faulty, and maintains an ‘invariant‘ for
18 /// correctness.
19 #[derive(Clone)]
20 pub struct PeerList<T> {
21 values: ListMap<u128, T>,
22 primary: u128,
23 witnesses: ListSet<u128>,
24 full_nodes: ListSet<u128>,
25 faulty_nodes: ListSet<u128>,
26 }
27

28 impl<T> PeerList<T> {
29 /// Invariant maintained by a ‘PeerList‘
30 ///
31 /// ## Implements
32 /// - [LCD-INV-NODES]
33 pub fn invariant(peer_list: &PeerList<T>) -> bool {
34 peer_list.full_nodes.is_disjoint(&peer_list.witnesses)
35 && peer_list.full_nodes.is_disjoint(&peer_list.faulty_nodes)
36 && peer_list.witnesses.is_disjoint(&peer_list.faulty_nodes)
37 && !peer_list.witnesses.contains(&peer_list.primary)
38 && !peer_list.full_nodes.contains(&peer_list.primary)
39 && !peer_list.faulty_nodes.contains(&peer_list.primary)
40 && peer_list.values.contains(&peer_list.primary)
41 && peer_list.values.contains_all(&peer_list.witnesses)
42 && peer_list.values.contains_all(&peer_list.full_nodes)

https://github.com/informalsystems/tendermint-rs/blob/d8e18c647cd8695d16610c4292b15ec6d1b45fbc/light-client/src/peer_list.rs
https://github.com/informalsystems/tendermint-rs/blob/d8e18c647cd8695d16610c4292b15ec6d1b45fbc/light-client/src/peer_list.rs
https://github.com/informalsystems/tendermint-rs/blob/d8e18c647cd8695d16610c4292b15ec6d1b45fbc/light-client/src/peer_list.rs

APPENDIX A. APPENDIX 61

43 && peer_list.values.contains_all(&peer_list.faulty_nodes)
44 }
45

46 /// Get a reference to the light client instance for the given peer id.
47 pub fn get(&self, peer_id: &u128) -> Option<&T> {
48 self.values.get(peer_id)
49 }
50

51 /// Get current primary peer id.
52 pub fn primary_id(&self) -> u128 {
53 self.primary
54 }
55

56 /// Get a reference to the current primary instance.
57 pub fn primary(&self) -> &T {
58 // SAFETY: Enforced by invariant
59 self.values.get(&self.primary).unwrap()
60 }
61

62 /// Get all the witnesses peer ids
63 pub fn witnesses_ids(&self) -> &ListSet<u128> {
64 &self.witnesses
65 }
66

67 /// Get all the full nodes peer ids
68 pub fn full_nodes_ids(&self) -> &ListSet<u128> {
69 &self.full_nodes
70 }
71

72 /// Get all the faulty nodes peer ids
73 pub fn faulty_nodes_ids(&self) -> &ListSet<u128> {
74 &self.faulty_nodes
75 }
76

77 /// Remove the given peer from the list of witnesses,
78 /// and mark it as faulty. Get a new witness from
79 /// the list of full nodes, if there are any left.
80 /// Returns the new witness, if any.
81 ///
82 /// ## Precondition
83 /// - The given peer id must not be the primary peer id.
84 /// - The given peer must be in the witness list
85 #[pre(
86 Self::invariant(&self)
87 && !(faulty_witness == self.primary)
88 && self.witnesses.contains(&faulty_witness)
89)]
90 #[post(
91 Self::invariant(&self)
92 && !self.witnesses.contains(&faulty_witness)
93 && self.faulty_nodes.contains(&faulty_witness)

APPENDIX A. APPENDIX 62

94)]
95 pub fn replace_faulty_witness(
96 &mut self, faulty_witness: u128
97) -> Option<u128> {
98 let mut result = None;
99

100 self.witnesses.remove(&faulty_witness);
101

102 if let Some(new_witness) = self.full_nodes.first() {
103 self.witnesses.insert(new_witness);
104 self.full_nodes.remove(&new_witness);
105 result = Some(new_witness);
106 }
107

108 self.faulty_nodes.insert(faulty_witness);
109 result
110 }
111

112 /// Mark the primary as faulty and swap it for the next available
113 /// witness, if any. Returns the new primary on success.
114 ///
115 /// ## Errors
116 /// - If there are no witness left, returns ‘ErrorKind::NoWitnessLeft‘.
117 #[pre(Self::invariant(&self))]
118 #[post((matches!(ret, Ok(_))).implies(
119 Self::invariant(&self)
120 && old(&self).primary != self.primary
121 && self.faulty_nodes.contains(&old(&self).primary)
122 && old(&self).witnesses.contains(&self.primary)
123))]
124 pub fn replace_faulty_primary(
125 &mut self,
126 primary_error: Option<Box<ErrorKind>>,
127) -> Result<u128, Box<ErrorKind>> {
128 self.faulty_nodes.insert(self.primary);
129

130 if let Some(new_primary) = self.witnesses.first() {
131 self.primary = new_primary;
132 self.witnesses.remove(&new_primary);
133 Ok(new_primary)
134 } else if let Some(err) = primary_error {
135 Err(Box::new(ErrorKind::NoWitnessLeft { context: Some(err) }))
136 } else {
137 Err(Box::new(ErrorKind::NoWitnessLeft { context: None }))
138 }
139 }
140

141 /// Get a reference to the underlying ‘HashMap‘
142 pub fn values(&self) -> &ListMap<u128, T> {
143 &self.values
144 }

APPENDIX A. APPENDIX 63

145 /// Consume into the underlying ‘HashMap‘
146 pub fn into_values(self) -> ListMap<u128, T> {
147 self.values
148 }
149 }

Listing A.6: Supporting list-backed implementations to replace HashMap and HashSet.

1 use super::*;
2

3 #[derive(Clone)]
4 pub struct ListSet<T> {
5 list: List<T>,
6 }
7 #[derive(Clone)]
8 pub struct ListMap<K, V> {
9 list: List<(K, V)>,

10 }
11

12 #[derive(Clone)]
13 enum List<T> {
14 Nil,
15 Cons(T, Box<List<T>>),
16 }
17

18 impl ListSet<u128> {
19 pub fn empty() -> Self {
20 ListSet { list: List::Nil }
21 }
22 pub fn is_disjoint(&self, other: &ListSet<u128>) -> bool {
23 is_equal(
24 &self.list.contents().intersection(other.list.contents()),
25 &Set::new(),
26)
27 }
28 pub fn contains(&self, t: &u128) -> bool {
29 self.list.contents().contains(&t)
30 }
31

32 #[post(
33 !self.contains(&t)
34 && self.list.contents().is_subset(&old(&self).list.contents())
35)]
36 pub fn remove(&mut self, t: &u128) {
37 self.list.remove(t);
38 }
39

40 #[post(self.contains(&t))]
41 pub fn insert(&mut self, t: u128) {
42 self.list.insert(t);
43 }
44 pub fn first(&self) -> Option<u128> {

APPENDIX A. APPENDIX 64

45 match &self.list {
46 List::Cons(t, _) => Some(*t),
47 _ => None,
48 }
49 }
50 }
51

52 impl<V> ListMap<u128, V> {
53 pub fn get(&self, key: &u128) -> Option<&V> {
54 self.list.get(key)
55 }
56 pub fn contains(&self, key: &u128) -> bool {
57 self.list.key_set().contains(&key)
58 }
59 pub fn contains_all(&self, keys: &ListSet<u128>) -> bool {
60 is_equal(
61 &self.list.key_set().intersection(keys.list.contents()),
62 &keys.list.contents(),
63)
64 }
65 }
66

67 fn is_equal<’a>(s1: &Set<&’a u128>, s2: &Set<&’a u128>) -> bool {
68 s1.is_subset(s2) && s2.is_subset(s1)
69 }
70

71 impl List<u128> {
72 #[measure(self)]
73 pub fn contents(&self) -> Set<&u128> {
74 match self {
75 List::Nil => Set::new(),
76 List::Cons(head, tail) => tail.contents().insert(head),
77 }
78 }
79

80 #[post(
81 !self.contents().contains(&t)
82 && self.contents().is_subset(&old(&self).contents())
83)]
84 fn remove(&mut self, t: &u128) {
85 let list = std::mem::replace(self, List::Nil);
86 let result = match list {
87 List::Nil => List::Nil,
88 List::Cons(head, mut tail) => {
89 tail.remove(t);
90 if head == *t {
91 *tail
92 } else {
93 List::Cons(head, tail)
94 }
95 }

APPENDIX A. APPENDIX 65

96 };
97 *self = result;
98 }
99 pub fn insert(&mut self, t: u128) {

100 let list = std::mem::replace(self, List::Nil);
101 *self = List::Cons(t, Box::new(list));
102 }
103 }
104

105 impl<V> List<(u128, V)> {
106 pub fn key_set(&self) -> Set<&u128> {
107 match self {
108 List::Nil => Set::new(),
109 List::Cons(head, tail) => tail.key_set().insert(&head.0),
110 }
111 }
112 pub fn get(&self, key: &u128) -> Option<&V> {
113 match &self {
114 List::Nil => None,
115 List::Cons(head, _) if head.0 == *key => Some(&head.1),
116 List::Cons(_, tail) => tail.get(key),
117 }
118 }
119 }

	Introduction
	Background
	Rust Language
	Syntax Overview
	Owning and Referencing Data
	Rust Compared to Scala

	Stainless Verifier
	Specifications
	Algebraic Properties

	Mutability Translation
	Translation for Runtime Equivalence
	Algorithm
	Correctness

	Translation for Stainless
	Avoiding Aliasing
	Optimisations
	Limitations

	Implementation
	Background
	Rust Compiler

	System Overview
	Design
	Pipeline

	Extraction
	Supported Rust Features
	Implementation Details

	Limitations
	Unsupported Rust Features
	Stainless Backend Limitations
	Design Limitation

	Evaluation
	Benchmarks
	Code Examples
	Test Suite Examples
	Peer-List Implementation

	Related Work
	Background Topics
	Rust Formalisations
	Verification

	Conclusion
	Bibliography
	Appendix
	THIR Example
	Rust Benchmarks
	Informal Systems Code

