
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Graph Embedding for Retrieval

Chi Thang DUONG

Thèse n° 8046

2022

Présentée le 11 mars 2022

Prof. J.-Y. Le Boudec, président du jury
Prof. K. Aberer, directeur de thèse
Prof. B. Yang, rapporteur
Prof. Z. Miklos, rapporteur
Prof. A.-M. Kermarrec, rapporteuse

Faculté informatique et communications
Laboratoire de systèmes d’information répartis
Programme doctoral en informatique et communications

To D.C.V

ii

Acknowledgements

First and foremost, I would like to thank my advisor Prof. Karl Aberer. He

gave me the chance to do my bachelor thesis at LSIR 10 years ago and the

rest is history. His constant support allows me to focus on doing research. I

will never forget the research freedom I have during my PhD.

A big thank to my thesis committee: Prof. Anne-Marie Kermarrec, Prof.

Bin Yang, Prof. Zoltan Miklos and Prof. Jean-Yves Le Boudec for agreeing

to be in the committee and the insightful comments and discussions.

A special thank to Chantal for your help with all the paperwork and the

administrative stuff. I will never understand how you could manage these

things in such an efficient way.

I also would like to thank three PhD students in my lab who I consider as my

good friends. Panayiotis Smeros, thank you for all your helps and discussions

in and outside our work, I now know who to call when I need to move again.

Jérémie Rappaz, thank you for introducing me to Sat and all the chats we

have and for all the French translation. Tugrulcan Elmas, I still sometimes

don’t understand you but thank you for going to the concert with me.

I was lucky to have a great mentor which is Prof. Quoc Viet Hung Nguyen.

His guidance and advices were invaluable. Without his help, my PhD would

be extremely difficult. A great gratitude to Dr. Thanh Tam Nguyen who

is an expert in Latex, EasyChair, CMT and all the conference management

systems out there.

I also would like to thank my coauthors: Prof. Hongzhi Yin, Prof. Matthias

Weidlich, Trung-Dung Hoang. Without your contributions and discussions,

I wouldn’t have a paper accepted. Thank you a lot for your help.

I would like to thank Hien Dang, Thanh Phan, Son Do, Anh Tran for being

there when we needed them the most.

During my PhD, I spent a lot of time playing Dota 2. I would like to thank

my teammates: Shiawase na Buta-chan, lola, Nikasa for all the ups and

downs, wins and losses. Without you, I would be stressed to death. Smile

because it happened.

My friends in Lausanne and elsewhere, thank you your support and the joyful

time together. Without you, my life in Lausanne would be dull and boring.

I could never be here without my family. My parents and my sister who have

always got my back and kept reminding me that I can always go home when

things get difficult. Last but not least, my wife - thank you for choosing me

and being here with me. Without you, I would be “sad to death”.

Abstract

Information retrieval (IR) systems such as search engines are important for

people to find what they need among the tremendous amount of data avail-

able in their organization or on the Internet. These IR systems enable users

to search in a large data collection by specifying queries that describe their

information needs. Traditionally, the data elements in these collections are

text documents that have no explicit relationships between them. As con-

ventional IR systems are designed to handle text documents, the queries are

limited to multisets of textual keywords. However, with the advance of social

media, the data collection has become heterogenous in terms of modality as

it has become easier for users to share not only texts but also images, audios

and videos. In addition, data collections have evolved to contain also the

relationships between data elements. For instance, in social networks, the

relationships between users are as important as the users themselves.

Given these changes in the data collection, conventional bags of keywords

queries become underwhelming as they are unimodal which cannot handle

the heterogeneity the data elements. Moreover, they ignore the relationships

between the query terms as they consider them to be independent. In this

thesis, we show how to support context-rich queries both in terms of het-

erogeneity and interconnectivity by exploiting a common underlying graph

model for the data collection. Our approach follows the vector space retrieval

model where we design graph embedding techniques to represent each data

element and each query as a vector i.e. an embedding. Our embedding model

is designed to capture both the heterogeneity and the connectivity available

in a data collection or a query in an elegant manner. As the data collection

is usually large, this leads to a very large graph model which can not be

handled by traditional graph embedding techniques. In this thesis, we also

propose an approach to make graph embedding scalable to large graphs.

Regarding heterogeneity, we propose to construct a heterogeneous informa-

tion network to capture the availability of different modalities in the same

data element as well as relations between different data elements. This en-

ables the construction of a graph embedding model to produce an embedding

for each data element. We then propose a query embedding model that in-

corporates different modalities in the query based on the constructed graph

embedding model. By taking into account different modalities available in

the data collection, our model can return more relevant results in comparison

with a unimodal model.

v

Regarding connectivity, we aim to tackle the problem of subgraph isomor-

phism search where queries are small graphs of connected query terms while

the data collection is a large data graph. We propose a graph embedding

model that captures the connection pattern of the data graph to create the

query embeddings. To speed up retrieval, we also propose a cache mechanism

based on the query and subgraph embedding to reuse past retrieval results.

Our proposed retrieval model based on embedding is significantly faster than

a structure-based approach in several orders of magnitude.

Regarding scalability, existing graph embedding techniques require a long

training time for very large graphs. To scale these techniques, we propose a

divide-and-conquer approach where a large graph is divided into smaller sub-

graphs where graph embedding is constructed independently before merging

them together. Our implementation on Spark is able to handle graphs of

billion scale while maintaining better speedup than traditional approaches.

Keywords: information retrieval, graph embedding, scalability, multimodal

retrieval, heterogeneity, subgraph retrieval, scalable graph embedding

Résumé

Les systèmes de recherche d’information, tels que les moteurs de recherche,

permettent aux gens de trouver ce dont ils ont besoin parmi l’énorme quan-

tité de données disponible au sein de leur organisation ou sur internet. Ces

systèmes permettent aux utilisateurs de rechercher dans de vastes jeux de

données en spécifiant des requêtes décrivant leurs besoins en information.

Traditionnellement, les éléments de données constituant ces collections sont

des documents textes qui n’ont pas de relations explicites entre eux. Puisque

les systèmes de recherche conventionnels sont conçus pour traiter des docu-

ments textes, les requêtes sont limitées à des mots-clés. Cependant, depuis

l’avènement des médias sociaux, les données sont devenues plus hétérogènes

en termes de modalités car il est devenu plus facile pour les utilisateurs de

partager, non seulement du texte, mais aussi des images, du son ou de la

vidéo. De plus, les jeux de données contiennent désormais les relations entre

les éléments de données. Par exemple, sur les réseaux sociaux, les relations

entre les utilisateurs sont aussi importantes que les utilisateurs eux-mêmes.

Compte tenu de ces changements dans la nature des jeux de données, les

requêtes par “sac de mots” classiques sont devenues insuffisantes car elles sont

unimodales et ne peuvent pas gérer l’hétérogénéité des éléments de données.

De plus, elles ignorent les relations entre les termes de la requête, qu’elles con-

sidèrent indépendants. Dans cette thèse, nous montrons comment prendre

en compte des requêtes riches en contexte, à la fois en termes d’hétérogénéité

et d’inter-connectivité, en exploitant un modèle de graphe. Notre approche

utilise des techniques de plongement de graphes pour représenter chaque

élément de donnée et chaque requête comme un vecteur. Notre modèle

de plongement est conçu pour capturer à la fois l’hétérogénéité et l’inter-

connectivité d’une requête ou d’un jeu de données. Les jeux de données

utilisés pour ce type de tâches sont souvent très volumineux, ce qui im-

plique des modèles de graphe très larges qui ne peuvent pas être gérés par

les techniques de plongement de graphes traditionnelles. Dans cette thèse,

nous proposons également une approche qui permet le plongement de grands

graphes.

Concernant l’hétérogénéité, nous proposons de construire un réseau d’information

hétérogène afin de capturer les différentes modalités d’un élément de donnée,

ainsi que les relations des éléments de données entre eux. Cela permet la

vii

construction d’un modèle de plongement de graphes qui produit un plonge-

ment pour chaque élément de donnée. Nous proposons ensuite un modèle de

plongement de requêtes qui intègre différentes modalités dans la requête. En

considérant les différentes modalités disponibles dans le jeu de données, notre

modèle peut renvoyer des résultats plus pertinents, comparé à un modèle uni-

modal.

En ce qui concerne l’inter-connectivité, nous visons à résoudre le problème

de la recherche d’isomorphismes de sous-graphes : les requêtes sont de pe-

tits graphes de mots-clés interconnectés qui permettent de chercher dans

un grand graphe de données. Nous proposons un modèle de plongement

de graphes qui capture la connectivité du graphe de données pour créer

un plongement des requêtes. Pour accélérer la recherche, nous proposons

également un mécanisme de cache qui enregistre les requêtes ainsi que les

plongements de sous-graphes, et réutilise les résultats des recherches passés.

Le modèle de recherche d’information proposé, basé sur le plongement, aug-

mente la vitesse de recherche de plusieurs ordres de grandeur, comparé à une

approche basée sur la structure.

En ce qui concerne l’extensibilité, les techniques de plongements de graphes

existantes nécessitent un long temps d’apprentissage pour de très grands

graphes. Pour y remédier, nous proposons une approche “diviser pour régner”,

où un grand graphe est divisé en sous-graphes, plus petits, et où les plonge-

ments de graphes sont construits indépendamment avant d’être fusionnés.

Notre implémentation, basée sur Spark, est capable de gérer des graphes com-

prenant des milliards de nœuds, tout en maintenant une meilleure accélération

d’apprentissage comparé aux approches traditionnelles.

Mots-clés : recherche d’information, plongement de graphe, extensibilité,

multi-modalité, hétérogénéité, recherche de sous-graphes

Contents

Acknowledgment iii

Abstract v

Résumé vii

Contents ix

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Motivation . 1

1.1.1 The Need for Context-rich Query 1

1.1.2 Graph for Data Model . 2

1.2 General Approach . 3

1.2.1 Vector Space Model . 3

1.2.2 Graph Embedding for Retrieval . 4

1.3 Research Questions . 5

1.4 Thesis Statement and Contribuions . 7

1.5 Selected Publications . 9

2 Background 11

2.1 Preliminaries . 11

2.2 Graph embedding . 12

ix

CONTENTS

2.2.1 Transductive models . 13

2.2.2 Inductive models . 14

2.2.3 From node to graph embedding . 17

2.3 Scalable graph embedding . 17

2.4 Information retrieval . 20

2.4.1 Multi-modal query . 22

2.4.2 Subgraph retrieval . 23

3 Heterogeneity - Graph Embedding for Heterogenous Data 27

3.1 Introduction . 28

3.2 Problem Formulation . 29

3.2.1 Motivation . 29

3.2.2 A Multi-Modal Query Model . 30

3.2.3 Problem Statement . 31

3.3 Approach Overview . 32

3.3.1 Design Principles . 32

3.3.2 Core Concepts and Representations 33

3.3.3 Multi-Modal IR based on Graph Embedding 34

3.4 Heterogeneous Graph Embedding . 35

3.4.1 HIN Construction . 35

3.4.2 HIN Embedding with Message-Passing 36

3.5 Embedding Multi-Modal Queries . 38

3.5.1 From Multi-modal Queries to Subgraph Queries 38

3.5.2 Multi-modal Query Embedding . 39

3.5.3 Parameter Learning . 40

3.6 Experimental Results . 41

3.6.1 Setup . 41

3.6.2 General Efficiency . 43

3.6.3 Effectiveness of HIN Embedding 44

3.6.4 Effectiveness of Query Embedding 45

3.6.5 End-to-end Comparison with SOTA 46

3.6.6 Ablation study . 48

3.7 Summary . 48

x

CONTENTS

4 Connectivity - Graph Embedding for Streaming Subgraph Retrieval 51

4.1 Introduction . 51

4.2 Model and Approach . 53

4.2.1 Model . 53

4.2.2 Approach . 54

4.3 Graph Indexing . 55

4.3.1 Node and Edge Embeddings . 55

4.3.2 Subgraph Embeddings . 57

4.3.3 Indexing Embeddings . 58

4.4 Query Stream Processing . 59

4.4.1 Handling Cache Misses . 59

4.4.2 Handling Cache Hits . 61

4.5 Cache Management . 62

4.5.1 General Approach . 62

4.5.2 Query Utility . 63

4.5.3 Utility-based Cache Management 64

4.5.4 Further Considerations . 65

4.6 Evaluation . 66

4.6.1 Experimental setup . 66

4.6.2 Effectiveness of Embeddings in Pruning 67

4.6.3 Evaluation of Subgraph Embeddings 68

4.6.4 Evaluation of Parameterized Subgraph Isomorphism 71

4.6.5 Effectiveness of Cache Management 73

4.6.6 Workload Evaluation . 74

4.6.7 End-to-end Comparison . 75

4.7 Summary . 76

5 Scalability - Scalable Graph Embedding 79

5.1 Introduction . 79

5.2 Problem and approach . 81

5.2.1 Problem statement . 81

5.2.2 Approach . 81

5.3 MapReduce-based Embedding . 82

xi

CONTENTS

5.3.1 Background on MapReduce . 82

5.3.2 Learned Map Function . 82

5.3.3 Landmark-based Reduce Function 83

5.4 Scalable graph decomposition . 85

5.4.1 General Approach . 85

5.4.2 Landmark-aware Partitioning . 88

5.4.3 Complement Graph Partitioning 90

5.5 Implementation & Optimisation . 90

5.5.1 System Design . 90

5.5.2 Lazy Reconciliation . 91

5.5.3 Iterative Refinement . 92

5.6 Experiments . 93

5.6.1 Experimental Setup . 93

5.6.2 Effectiveness of Graph Decomposition 94

5.6.3 Effects of MapReduce-based Embedding 94

5.6.4 End-to-end Evaluation . 95

5.6.5 Effects of Iterative Refinement . 98

5.7 Summary . 98

6 Conclusion 99

6.1 Summary of the Work . 99

6.2 Limitations and Future Directions . 100

Bibliography 103

7 Curriculum vitae 113

Curriculum Vitae 113

xii

List of Figures

1.1 Graph embedding . 3

1.2 Architecture . 4

1.3 Context-rich query . 7

2.1 Distributed representation of graphs . 12

2.2 Phases in message passing neural network. 14

2.3 An MPNN with 2 layers . 15

2.4 Two non-isomorphic graphs . 16

2.5 PBG embedding order (adapted from Figure 1 [LWS+19]) 18

2.6 All reduce approach . 19

2.7 Parameter server . 20

2.8 Late vs. early fusion . 23

3.1 An example of a multi-modal query. 31

3.2 A HIN. 33

3.3 A HIN schema. 33

3.4 The proposed approach to multi-modal information retrieval. 35

3.5 A HIN for music information retrieval (right) is created by merging shared

nodes of different subgraphs of multimodal data tuples (left). 36

3.6 From a multi-modal query to a graph model to a unified embedding. . . . 38

3.7 Training time for the model for query embedding vs. #nodes. 43

3.8 Training time of the whole framework vs. #node. 43

3.9 Effects of query size on retrieval time. 44

3.10 Effectiveness of HIN embedding. 45

xiii

LIST OF FIGURES

3.11 Visualization of the embeddings. 45

3.12 Comparison of different query embedding methods. 46

3.13 Our technique for one pass retrieval vs techniques for multi-pass retrieval

- Retrieval measure. 47

3.14 Our technique for one pass retrieval vs techniques for multi-pass retrieval

- Retrieval time. 47

4.1 Framework for streaming subgraph isomorphism. 54

4.2 Message-passing neural network (color gradients represent embeddings)

vs. Weisfeiler-Lehman algorithm (patterns illustrate symbolic represen-

tations). 55

4.3 Embedding generation process by WL. 56

4.4 Different, but isomorphic, graph yields equivalent embeddings. 57

4.5 Illustration of truncated message passing. 58

4.6 Effects of using embeddings. 68

4.7 MCS size vs. embedding distance. 69

4.8 Visualization of subgraph embeddings. 69

4.9 Search time. 69

4.10 Cache size vs hits. 70

4.11 Caching strategy vs time. 71

4.12 WL vs. MPNN (lower is better). 72

4.13 Training time. 73

4.14 Robustness. 73

4.15 Caching strategy vs hits. 74

4.16 Cache init. 75

4.17 Query overlapping . 75

4.18 Query repetition . 75

4.19 Time break-down for Yeast dataset (Left) and Wordnet (Right). 76

4.20 Effects of query size. 77

5.1 One round of computation in our framework on two compute nodes (yel-

low: operations; blue: input/output data). 81

5.2 Reconciliation of embedding spaces. 84

5.3 Maximum value computation by vertex-centric computation model 86

xiv

LIST OF FIGURES

5.4 Landmark-aware graph decomposition. 89

5.5 Reconciliation. 94

5.6 Degree vs. Random selection . 94

5.7 Scalability . 95

5.8 Subgraph size . 95

5.9 Dist. vs. Single. 95

5.10 Robustness. 97

5.11 Refinement. 97

5.12 Runtime break-down . 97

5.13 Refinement. 97

xv

LIST OF FIGURES

xvi

List of Tables

2.1 Categorization of different subgraph isomorphism techniques 23

3.1 Overview of important notations. 34

3.2 Statistics for real-world datasets. 41

3.3 Comparison with baselines in terms of nDCG. 46

3.4 Ablation study . 48

4.1 Number of subgraphs of different sizes . 61

4.2 Statistics of the datasets. 66

4.3 Pearson’s correlation coefficients. 69

4.4 Comparison on indexing time (ms). 70

4.5 Time required to compare 1000 subgraph pairs (ms). 72

4.6 Comparison of different subgraph isomorphism search techniques in terms

of overall processing time. 76

5.1 Statistics of datasets . 95

5.2 Effectiveness of graph decomposition . 96

5.3 Comparative analysis . 96

xvii

LIST OF TABLES

xviii

Chapter 1
Introduction

1.1 Motivation

The amount of data available to us is both a blessing and a curse. It is a blessing as

all the information we need are always within our reach while it is a curse as the ocean

of data makes it difficult to find where they are. Information retrieval (IR) is the field

of study that helps people to cope with this curse. It has become the dominant way of

accessing information, replacing traditional database searches where one would already

know exactly what to find [SMR08]. Given a query which is a bag of query terms, an

information retrieval system would go through all the data elements in its data collection

checking for elements relevant to the query based on the query terms before returning

them to the user.

1.1.1 The Need for Context-rich Query

Traditional IR systems are designed for document retrieval where a query contains a

multiset of keywords and the data collection is a list of textual documents [BYRN11].

While these systems are able to handle traditional textual queries extremely well, they

are tailored for queries which are bags/multisets of textual terms. These restrictions

make it difficult for users to express their information needs. As such, users would aban-

don their search or they need to reformulate the queries such that they can capture their

needs better. These additional queries would not only incur unnecessary processing but

also compromise user experience. For example, according to a Web search engine that

supports user relevance feedback, 70% of users only look at the first page of results

without further continuing the search. However, over 66% of the time, a query reformu-

lation based on user feedback would see their results improved [SMR08, BYRN11]. In

other words, if the queries are rich enough semantically that they can capture the users’

intention, fewer reformulated queries would be required. In other study, similar results

are also found such as 50% of users modify their queries in a search session at least once

while 33% of queries are modified more than 3 times [JSP05]. Moreover, in many cases,

users express the desire to specify their queries in more detail but traditional IR systems

are limited to only textual keywords [Bil00, PH97].

1

1. Introduction

In addition to better capture users’ information need, changes in the data collections

also call for context-rich queries. With the proliferation of social media and the ubiquity

of social networks such as Flickr, Facebook, Youtube and TikTok, users are able to

share not only texts but also images, audios or videos [soc, LNC+18]. This makes the

data collections to go from textual only to multimodal. As data become heterogenous,

unimodal queries become ineffective as they cannot cover users’ information needs for

other modalities. Another change in the data collection is the need to store relations

between data elements. There are several applications where the connections between

data elements in the data collection is imperative. For instance, social networks need

to not only store information about users but also their relationships. A search for a

user based on knowledge about her friends is not possible with traditional queries as

we need to specify the relationships between the search terms. Another well-known

example is information retrieval on the Web where the links between the webpages are

equally important as the contents of the webpages themselves [SRNC+00, PBMW99]. A

retrieval system that models the connections and the contents independently would lose a

lot of crucial information. In this thesis, we aim to handle these problems by supporting

context-rich queries. These queries are rich as they support multimodal query terms and

the relationships between them.

1.1.2 Graph for Data Model

We have two different settings for the data collections that we want to handle. First,

a data collection can be multimodal where its data elements are of different modalities.

Second, the data collection is interconnected where there are relationships between the

data elements. Note that these configurations are not mutually exclusive as a data

collection can both be interconnected and multimodal. In our setting, we need a common

data model that can handle both the heterogeneity and interconnectivity of the data

collections and, hence, the context-rich queries as well. Note that this covers the vanilla

case where the query is unimodal and the query terms are not connected.

To this end, we propose to use graph as the underlying data model. First, graphs

are ubiquitous as they arise naturally when there are connections among data elements

such as social networks, information networks, biological networks or even molecular

networks. In our setting, as our data collections are interconnected, graph would be a

natural choice. Second, in the heterogeneous case, a graph can combine data elements

from different modalities in an effortless way. For instance, given two data elements from

different modalities, we can always integrate them by creating an edge between them.

This connection can be based on any property that is shared between them. This is the

power of graph as new data can always be integrated with existing data by creating edges

connecting related data elements. As such, graph provides a unifying model to combine

different data elements and modalities. Third, graph is a simple but powerful data

structure as it can represent an enormous amount of data using only two fundamental

elements: nodes and edges. It is also user-friendly as it supports visualization naturally.

2

1.2 General Approach

1.2 General Approach

Before we proceed with the overview of our approach, we first describe the vector space

retrieval model which is the framework that we build our approach upon.

1.2.1 Vector Space Model

In the vector space model, data elements and queries are both represented as vectors in

the same d-dimensional vector space. The degree of similarity between a query and a

data element, which is a proxy for the relevance of the data element, is measured by the

distance between the vector representation of the query and that of the data element.

By measuring the similarity between a query and every data element in the collection,

we can return a ranked list of data elements ordered by relevancy.

The core component of the vector space model is a function to embed a data element

or a query to its vector representation. There are two important requirements for the

embedding function. First, both the query vectors and the data element vectors need to

be in the same vector space. This requirement ensures that we can measure the distance

between two vectors in a meaningful way. This requirement is usually guaranteed if

the same mapping model is used for both the queries and the data elements. Second,

the vectors need to capture the similarity between the data elements. In particular,

two vectors should be close in the vector space if the data elements they represent are

similar. This requirement makes sure that the distance in the vector space correlates

with the similarity of the data elements for the retrieval to work.

Traditionally, the vector space model is used in document retrieval where the em-

bedding function is the tf-idf vectorization [SMR08, BYRN11]. The vector dimensions

represent the words in the vocabulary and the value at a specific dimension of a vector

captures the importance of the word according to the document/query and the whole

document collection. The importance of a word is measured based on the number of times

it appears in the document and its uniqueness according to the whole data collection.

As such, the mapping function satisfies the second requirement as similar documents

should have similar word distribution, which makes their vectors to be similar as well.

BA

D

E

C

A
B

C

E

D

Graph
embedding

Figure 1.1: Graph embedding

3

1. Introduction

1.2.2 Graph Embedding for Retrieval

To apply the vector space model in our setting, we need to construct an embedding

function that satisfies the above conditions. As we use graph as the underlying data

model, we follow the graph representation learning approach to create the embedding

function. Graph embedding aims to create an embedding of every node in a graph such

that the node embeddings satisfy some predefined requirements. A common require-

ment, for instance, is that the node embeddings should capture the closeness of the

nodes in the graph. Node closeness can be defined in several ways such as based on

their neighborhood or their cooccurrence on a random walk. An illustration of a graph

embedding technique is shown in Figure 1.1. In this figure, the node embeddings are

created such that neighboring nodes have close node embeddings. In our setting, we pro-

pose two graph embedding techniques: one to handle heterogeneous graphs, the other

for connected queries. While there are several existing heterogeneous graph embedding

techniques, they are not designed for information retrieval. On the other hand, our pro-

posed techniques, which are based on the message-passing neural network, consider both

the construction of node embeddings and query embeddings in a common framework.

This enables clear reasoning of node embedding computation and extendability.

A
B

C

E

D

A
B

C
D

Q

E

A

B

C

E

D

Q

1.

2.

3.
4.

5.Tabular data

Graph data

Graph model

Interconnected query

Multimodal query

Embedding space

A

B

C

E

D

Q

Q

Q

Q

Q

Matching
Result

Graph
embedding

Pipeline 2:
Query processing

Pipeline 1:
Data collection

processing

BA

D

E

C

A
B

C

E

D

Query
embedding

Graph
modelling

Figure 1.2: Architecture

Our general framework for graph embedding for retrieval is illustrated in Figure 1.2.

There are two pipelines in our system. In the first pipeline which is usually offline, data

collections are processed into graphs where graph embedding models are built. The

second pipeline, which is an online process, involves using the graph embedding models

to construct the query embeddings. The input to this pipeline are the queries which can

be multimodal or interconnected. The first pipeline takes the data collections which can

be in tabular or graph format. In the tabular case, a graph can be created by connecting

4

1.3 Research Questions

common data elements. This graph is used to construct a graph embedding model. The

graph embedding model is built such that the embeddings of similar data elements have

close embeddings. In the second pipeline, the query embeddings are created based on a

query embedding model. This model ensures that the query embeddings and the node

embeddings in the first pipeline are in the same embedding space. When a new query

arrives, its embedding is created and matched with the node embeddings. This creates

a ranked list of results which we return as answers to the query.

1.3 Research Questions

In this thesis, we aim to design an IR system that supports context-rich queries. We

focus on two types of contextual information which are the modalities of the query terms

and the relations between them. The foundation of such IR system is an underlying

graph model that captures the connections between data elements in the data collection

and different modalities in a data element. To design such system, we need to answer

research questions in three aspects: Heterogeneity, Connectivity and Scalability as shown

in Figure 1.3.

Heterogeneity. As data become heterogenous, queries for these data need to be het-

erogenous for better retrieval result. We first aim to support queries where the query

terms can be of different modalities. We propose to use a graph to integrate different

data elements and modalities in a principled manner. In addition, as we follow the vector

space model, we need to develop graph embedding technique that can handle heteroge-

neous graphs and queries. This would allow us to create query and node embeddings for

retrieval. To achieve these goals, we need to answer the following research questions:

• How to create the heterogenous graph? There are several ways a graph can be

created from a multimodal data collection. Choices regarding what constitutes a

node, how to connect two nodes or what to include as node feature can affect the

quality of the embeddings and the training time. As a result, identifying what to

include in the graph and how to structure it is highly important. In principle, the

graph needs to capture the data elements, their modalities and their connections.

• How to construct graph embedding for retrieval on heterogenous graphs? The pres-

ence of different modalities make traditional graph embedding techniques not ap-

plicable. While several graph embedding techniques for heterogeneous graphs have

been proposed recently, they are not designed for the information retrieval setting.

We need a heterogeneous graph embedding technique that also supports the cre-

ation of a query embedding model in a structured and principled way.

• How to build query embeddings that consider all the query terms and their modal-

ities? Since our queries are multimodal as well, a query embedding mechanism

based on the above heterogenous graph embedding technique is required. This

would make the query embeddings and the node embeddings of the heterogenous

graph to be in the same embedding space for retrieval.

5

1. Introduction

Connectivity. For data collections where the relationships between data elements are

first-class citizens, queries for these data need to consider relationships between query

terms as first-class citizens as well. A query in this setting can be modelled as a small

graph where the nodes are the terms and the edges capture the term relationships.

To answer these queries, it is akin to answer subgraph query search in the subgraph

isomorphism problem. In this problem, we are given a large data graph and a small

query graph and we need to identify subgraphs in the data graph which are isomorphic

to the query graph. By constructing subgraph and query embeddings, we can answer

subgraph search based on the embeddings instead of comparing them structurally. To

solve this problem, we need to answer the following questions:

• How to leverage graph embedding to speedup traditional subgraph isomorphism

search techniques? Traditional solutions to subgraph isomorphism search involve

enumerating substructures in both the data graph and query graph. These sub-

structures are used as indices to find candidate matching regions in the data graph.

However, substructure enumeration and comparison is time-consuming. With sub-

graph and query graph embedding, we expect to speedup the comparison by com-

paring structures based on embedding distance.

• How to construct query and subgraph embeddings that support subgraph retrieval?

To compare a subgraph and a query graph based on their embeddings, we need a

model that can create close embeddings for structurally-similar subgraphs. This

model needs to learn specific patterns belonging to the data graph as the subgraph

embeddings need to capture these patterns as well. The model can then be used

to create query embeddings for retrieval following the vector space model.

• How to make subgraph retrieval fast even the problem is NP-Hard? Even with

embeddings, subgraph isomorphism search may suffer from long retrieval time.

To overcome this problem, we propose to use a cache to store past results to

answer similar queries. This requires a cache management strategy involving cache

admission and cache eviction as well as a way to compare if two queries are similar.

Scalability. The third aspect we need to consider is the scalability of our graph embed-

ding model. As the constructed heterogenous graph is built based on the data collection,

it can contain million number of nodes and billion number of edges. To make our re-

trieval system practical, we need a way to scale our embedding technique beyond single

machine. We propose to divide the graph and “conquer” each subgraph independently

before merging them together. This requires us to answer the following questions:

• How to divide the graph into subgraphs in a meaningful way? Splitting the graph

into smaller subgraphs enables independent computation of embeddings. However,

the decomposition need to be properly designed such that it can support merging

the embedding spaces created independently. This can be done by making the

subgraphs share some common nodes. The subgraphs should have similar size

6

1.4 Thesis Statement and Contribuions

as well to prevent stragglers on commodity hardware. Finally, as the graph is

large, we need a graph decomposition algorithm that can handle large graphs

while satisfying the above requirements.

• How to reconcile the embeddings learned from each subgraph? As the embeddings

are learned independently, they may belong to different embedding space. As a

result, the embeddings need to be merged into one final embedding in a common

embedding space to be used in a downstream task. The merging shall be done by

leveraging the overlapping nodes between subgraphs for reconciliation.

• How to make scaling graph embedding technique user-friendly and fault-tolerant?

Traditional techniques to scale graph embedding techniques are brittle and prone to

errors. An error occurred during training is extremely costly as the whole training

needs to restart from scratch. These techniques are also hard to use as it involves

careful monitoring from users. As such, a more robust and user-friendly framework

is required to allow any user to obtain graph embedding for large graphs.

Aspect 1: Multimodality Aspect 2: Interconnectivity

Multiset of
textual terms

Textual
data collection

Figure 1.3: Context-rich query

1.4 Thesis Statement and Contribuions

This thesis contributes to the quest of achieving better retrieval quality by supporting

richer contexts in the query.

7

1. Introduction

Thesis Statement

Traditional information retrieval systems focus on supporting queries that contain

independent query terms of textual format. To better capture users’ intention and

information needs, IR systems should support queries that are multimodal and

interconnected.

We now present the main contributions of this thesis. Each of these contributions

addresses one of the above research questions.

Heterogeneity. In Chapter 3, we solve the problem of heterogenous query retrieval.

That is, given a query specified using different modalities, we need to find the data

elements that satisfy this query. In particular:

• We propose a model to represent heterogenous data based on Heterogenous In-

formation Networks (HINs) that can capture the semantic relations between data

of different modalities. We construct a small HIN for each data element before

combining them together to obtain the HIN for the whole data collection.

• We propose a heterogenous graph embedding model based on the message passing

framework that can take into account the heterogeneity of the HINs. The message

passing framework enables easy reasoning of the node embedding computation.

This is the foundation for the construction of the query embeddings.

• We introduce a query embedding model that allow users to incorporate different

modalities in the query. As the query embedding model is based on the heteroge-

nous graph embedding model, it ensures that the query embeddings and the node

embeddings are in the same space.

Connectivity. In Chapter 4, we handle the connectivity available in the query. We

tackle the subgraph isomorphism problem based on graph embedding.

• We propose a graph embedding model to construct the embeddings of both sub-

graphs and queries. As the embedding model is constructed on the data graph, it

can capture its specific patterns. As we use this model to construct both subgraph

and query embeddings, we ensure that similar subgraphs/queries should have close

embeddings.

• We improve traditional subgraph isomorphism algorithms by leveraging embed-

dings to filter matching candidates as the graph embedding model also creates

node and edge embeddings which we can use as filtering criteria. The node and

edge embeddings are better than traditional structural indices as they are fast to

compute and compare.

• We present a cache management strategy based on embeddings that achieve higher

level of cache hits. On the other hand, our cache management strategy is made

possible by the embeddings as they enable fast comparison between a cached query

and a new subgraph query.

8

1.5 Selected Publications

Scalability. Training graph embedding models take a lot of time as the embedding

techniques are mainly designed for single machine. In Chapter 5, we solve the problem of

scaling any graph embedding technique in a distributed setting. We propose to divide the

graph into subgraphs before performing the embedding of each subgraph independently.

Finally, a reconciliation of subgraph embeddings is done to obtain the final embedding.

• We propose a node-centric graph decomposition algorithm to divide the graph into

overlapping subgraphs. The node-centric algorithm enables distributed computa-

tion which allows us to scale into large graphs. We also propose a strategy to select

shared nodes between subgraphs such that we can achieve better results.

• We propose a MapReduce-based framework to scale any graph embedding tech-

nique using Spark. Spark is a managed system which makes it easy to use for

users. This also makes our approach to scaling graph embedding user-friendly.

• We present a reconciliation technique to merge the embeddings constructed inde-

pendently. The shared nodes are considered as landmarks where the embeddings

obtained from different subgraphs can be reconciled.

• We propose several optimization strategy regarding storage, computation to speed

up the training process. We enable combination of Spark and an automatic dif-

ferentiation framework to support training graph embeddings on GPU. This helps

speedup the training process significantly.

The remainder of this thesis is organized as follows. Chapter 2 provides the back-

ground and the literature related to research problems discussed in this thesis. Chapter 6

concludes our thesis and discusses some possible future works.

1.5 Selected Publications

This thesis is based on the following research papers:

• Duong, C. T., Tam Thanh Nguyen, Hongzhi Yin, Matthias Weidlich, Son Mai,

Karl Aberer, Quoc Viet Hung Nguyen, ”Efficient and Effective Multi-Modal Queries

through Heterogeneous Network Embedding.” In: TKDE (2021)

• Duong, C. T., Hongzhi Yin, Dung Hoang, Minh Hung Nguyen, Matthias Wei-

dlich, Quoc Viet Hung Nguyen, Karl Aberer, ”Graph Embeddings for One-pass

Processing of Heterogeneous Queries.” In: ICDE (2020), pp.1994-1997

• Duong, C. T., Dung Hoang, Hongzhi Yin, Matthias Weidlich, Quoc Viet Hung

Nguyen, Karl Aberer, “Efficient Streaming Subgraph Isomorphism with Graph

Neural Networks.” In: VLDB (2021) pp. 730-742

• Duong, C. T., Dung Hoang, Hongzhi Yin, Matthias Weidlich, Quoc Viet Hung

Nguyen, Karl Aberer, “Scalable Robust Graph Embeddings with Spark.” In

VLDB (2022), pp. 914 - 922

9

1. Introduction

The ideas for these research papers originated from the first author. The first author

also contributed in majority to the texts, figures and experiments. The second author

of the connectivity and scalability papers helped with running the experiments of these

papers. The remaining authors, who had advisory roles, helped with proofreading, text

editing of small parts of the above papers.

Despite the aforementioned papers, during my doctoral studies, I have also con-

tributed to the following publications:

• Huynh, T. T., Duong, C. T., Nguyen, T. T., Van Tong, V., Sattar, A., Yin, H.,

& Nguyen, Q. V. H. (2021). “Network Alignment with Holistic Embeddings”. In

TKDE (2021)

• Trung, H. T., Toan, N. T., Van Vinh, T., Dat, H. T., Duong, C. T., Hung, N. Q.

V., & Sattar, A. (2020). “A comparative study on network alignment techniques”.

Expert Systems with Applications, 140, 112883.

• Huynh, T. T., Duong, C. T., Quyet, T. H., Nguyen, Q. V. H., & Sattar, A.

(2019, August). “Network alignment by representation learning on structure and

attribute”. In PRICAI(pp. 698-711). Springer, Cham.

• Duong, C. T., Dung Hoang, Quoc Viet Hung Nguyen, Ha The Hien Dang &

Karl Aberer (2019). “Intrinsic Evaluation of Unsupervised Node Embedding”. In

NeurIPS Workshop on Graph Representation Learning, 2019.

• Duong, C. T., Thanh Dat Hoang, Ha The Hien Dang, Quoc Viet Hung Nguyen &

Karl Aberer (2019). “On Node Features for Graph Neural Networks”. In NeurIPS

Workshop on Graph Representation Learning, 2019.

• Duong, C. T., Quoc Viet Hung Nguyen & Karl Aberer (2019). “Interpretable

node embeddings with mincut loss”. In ICML Workshop on Learning and

Reasoning with Graph-Structured Representations, 2019.

• Duong, C. T., Lebret, R., & Aberer, K. (2017). “Multimodal classification for

analysing social media”. arXiv preprint arXiv:1708.02099.

• Duong, C. T., Nguyen, Q. V. H., Wang, S., & Stantic, B. (2017, September).

”Provenance-based rumor detection”. In Australasian Database Conference

(pp. 125-137). Springer, Cham.

10

Chapter 2
Background

In this chapter, we provide several background topics and notations that are going to

be used throughout this thesis. Additional background will be introduced in the later

chapters if necessary. We begin by discussing the definition of graph and embedding

in Section 2.1 before providing the background on graph embedding in Section 2.2. We

continue with a discussion on scalable graph embedding in Section 2.3 before closing this

chapter with a discussion on retrieval techniques in Section 2.4.

2.1 Preliminaries

Graph. We define a graph G = {V,E} by its set of nodes V , set of edges E ⊆ V × V .

The graph can also be attributed where each node is associated with a set of features.

For instance, if a node represents a user, its feature would be the information regarding

the user such as date of birth, age, education. In other case where a node represents

an image or an audio, the node is associated with the feature vector constructed from a

feature extractor. The node features can be represented as a feature matrix X ∈ Rn×p

where n = |V | and p is the node feature size. Mathematically, the graph structure can

be represented by its adjacency matrix A of size n × n, where each row and column

represents a node in G.

Embedding. Embeddings are vectors to represent some concepts in some numeric

space. Yet, this representation shall be such that semantically related concepts have

close representations, i.e., their geometric relation in the embedding space encodes their

semantic relation. Compared to symbolic representations that consider each concept

as independent, embeddings enable conclusions on the relation of the concepts based

on their representations. Moreover, embeddings are succinct in the sense that with a

d-dimensional embedding space (d is called the embedding size) where the domain of

each dimension has size k, kd concepts can uniquely be described. Figure 2.1 illustrates

this schematically. The embeddings of the upper three graphs are assigned vectors that

are close, while the one of the lower subgraph is more distant.

11

2. Background

.

.

.

.

d dimensions

0.6 0.6 0.5 0.8

0.4 0.6 0.4 0.7

0.6 0.8 0.3 0.8

0.8 0.2 0.8 0.3

Figure 2.1: Distributed representation of graphs

2.2 Graph embedding

A vectorized representation of the nodes in a graph may be derived by graph embedding,

which is realized by an encoder and a decoder [HYL17b]. The former is a function

hθ : V → Rd that constructs a d-dimensional vector (where d � |V |), aka embedding,

for the node. The latter is a function that maps these vectors to domain-specific quality

metrics. In case of a graph-based model, the decoder is typically a similarity metric

that reflects the proximity of two embeddings in the vector space. The accuracy of the

representation of the proximity between nodes by the similarity of their embeddings is

captured by a loss function, denoted by L. When learning an embedding model, one tries

to minimize this loss function by finding an optimal set of parameters for the encoder

and decoder. The node embeddings then can be used in various downstream tasks such

as node classification, link prediction.

The decoder and the loss function are used to incorporate our requirements for the

node embeddings. For instance, if we have labels for the nodes, we may want embeddings

of nodes of the same label to be close in the embedding space. On the other hand, if

the labels are not available, we may want to encode the node closeness on the graph in

the embedding space. There are several ways to measure node closeness either by their

shortest path distance or the number of cooccurrences on a random walk.

Categorization. There are several ways to classify graph embedding techniques. Re-

garding model inference, graph embedding can be classified into two categories [HYL17b]:

transductive and inductive models. Transductive models can only generate node embed-

dings for a node if this node has been seen during training. On the other hand, inductive

models allow to compute node embeddings even for unseen nodes.

On the other hand, if we consider model architecture, graph embedding techniques

can be classified into shallow models or deep models such as graph neural networks [ZCH+20,

HYL17b]. The difference is in how the graph structure is incorporated into the model.

12

2.2 Graph embedding

For shallow models, the graph structure is captured in the loss function while graph

neural networks consider the structure explicitly in their computation.

Deep model methods can be classified into two categories: spectral and spatial graph

neural networks [ZCH+20]. Spectral approaches extend the idea of the convolution op-

erator in CNN to graphs. By constructing the spectral representation of the graph, the

node embeddings can be learned. On the hand, spatial methods perform graph convolu-

tion directly on the graph structure. They can be modelled by a message passing frame-

work where where nodes communicate with each others to compute the node embeddings.

As such, these models are also called message passing neural network [GSR+17]. In the

following, we first discuss transductive models before turning to inductive models.

2.2.1 Transductive models

Shallow models. Shallow models [PARS14, GL16] compute for each node a unique

embedding directly. Shallow models are usually transductive as it needs to “see” a node

to create its embedding. A notable example is DeepWalk [PARS14] and its node2vec

variant [GL16]. In DeepWalk, random walks are performed on the graph from each

node with a specific walk length. Then, these random walks can be considered as sen-

tences while nodes are considered as words in a word2vec [MCCD13] model. This allows

DeepWalk to create a node embedding for every node. As a result, DeepWalk implicitly

models node proximity as two nodes are considered close if they appear in the same

random walk. Other approaches to capture the network structure consider two nodes

to be similar, if their neighbourhoods are highly overlapping [CLX15, OCP+16], which

is commonly referred to as second-order node similarity. While shallow models are typ-

ically fast to train and can be used without initial node features, they require all nodes

to be seen during training which limits their application in our setting. In our case, we

would like to create embeddings for queries that are usually unseen.

Spectral graph neural network. Spectral methods operate on the spectral domain

of graphs. A graph signal is transformed into the spectral domain based on the graph

Fourier transform. The convolution operator is applied on the transformed graph signal

in this spectral domain before they are transformed back using the inverse graph Fourier

transform. The most popular method in spectral GNN is Graph Convolutional Network

(GCN) [KW17]. In this method, the node embeddings are constructed from the node

features and adjacency matrix as follows:

H(l+1) = σ(D̂
−0.5

ÂD̂
−0.5

H(l)W (l))

where Â = A + I, D̂ is the degree matrix of Â, H is the node embeddings obtained at

the l-th layer and W is the parameter matrix at the l-th layer. As the adjacency matrix

A is required to compute the node embeddings, spectral methods such as GCN require

access to the whole graph structure. This is the main problem with transductive models

that they can not be used to generate embeddings for unseen graphs.

13

2. Background

Figure 2.2: Phases in message passing neural network.

2.2.2 Inductive models

Before discussing different inductive techniques, we discuss the Message Passing Neu-

ral Network (MPNN) framework [GSR+17], which we used as the framework for our

embedding techniques.

Message Passing Neural Network. In (MPNN) [GSR+17], a node representation is

created by combining the representation of its own properties with those of its neighbors,

through message-based interactions. A message sent from one node to its neighbors is

constructed based on the node’s current representation. Since messages are exchanged

only between nodes connected by edges, the graph structure is incorporated. Message

passing happens in several rounds, each involving three steps [DYH+20]:

Sending: A node u constructs a message in the i-th round based on its representation

z
(i)
u . The node sends the message to a set of selected neighbors using a parameterized

function f
(i)
s :

m(i)
u = f (i)

s (z(i)
u).

Receiving: Once a node v received messages from all of its neighbors, denoted by

N(v), in a round, it aggregates them using a parameterized function f
(i)
a :

z
(i)
N(v) = f (i)

a ({m(i)
u ,∀ u ∈ N(v)}).

Updating: A node updates its representation, combining its current representation

with the aggregated messages:

z(i+1)
v = f (i)

u (z
(i)
N(v), z

(i)
u)

An MPNN can be formulated as a function f(g, l), where g is a graph and l denotes

the feature of the nodes. The function f represents the combination of the above func-

tions used in the sending, receiving, and updating steps of all rounds and returns a set

of node embeddings {zu} for each node in the graph. Note that the parameters of f

need to be learned before the model can be used, though.

14

2.2 Graph embedding

B

E

C

A

D

B

C A

B D E B D CA

Message passing neural network

1st

layer

2nd

layer

Graph
Figure 2.3: An MPNN with 2 layers

Example 1. Given the graph on the left of Figure 2.3, an embedding for node B is cre-

ated using a 1-layer MPNN as: z
(1)
B = f

(0)
u (z

(0)
N(B), z

(0)
B) where z

(0)
N(B) = f

(0)
a ({f (0)

s (z
(0)
C), f

(0)
s (z

(0)
A)})

is the embedding of the neighborhood of B. In its basic form, function fs of the send-

ing step is parameterized by a matrix Ws, i.e., fs(z) = Wsz. The aggregation func-

tion in the receiving step derives the mean of the node embeddings, i.e., fa(N(v)) =

1/|N(v)|∑u∈N(v) zu. Function fu of the updating step is parameterized by a matrix Wa,

before applying a non-linearity, i.e., fu(zN(v), zv) = σ
(
(zN(v) + zv)Wa

)
. Based thereon,

the node embedding of B is computed:

z
(1)
B = fu({m(0)

u | u ∈ N(B)}, z(0)
B) = σ

(
((z

(0)
A Ws + z

(0)
C Ws)/2 + z

(0)
B)Wa

)
(2.1)

An MPNN may also be viewed from a node’s perspective. Then, the operations to

compute the embedding for a node u induce a k-layer tree, rooted at u. The embedding

of u is based on the nodes at the i-th layer of the tree, which are neighbors of u within

distance i in the graph. Information at the leaves of the tree is given by the features

of the respective nodes, which is then aggregated to the root: The i-th layer employs

the parameterized function fi to aggregate the results of the i+1-th layer. Node u

and its neighbors within distance k induce a subgraph, called the receptive field of u.

The higher the number of rounds of message passing, the larger the receptive field.

The embedding of u represents a summarization of its receptive field, in terms of both

structure (as message passing follows the graph structure) and node features (as messages

are constructed initially from node features).

Example 2. The node-centric view is illustrated in Figure 2.3. Given the graph on the

left and using a 2-layer MPNN, the embedding of node B is constructed by aggregating

the embeddings of nodes C and A in the first layer. These embeddings are, in turn,

constructed from the embeddings of their neighbors. This process is captured by a 2-layer

tree rooted at B.

Techniques. There are several GNN techniques that can be expressed by the message-

passing framework. GraphSAGE [HYL17a] is one example of traditional MPNN where

the sending, receiving and updating functions are the identity function, the mean func-

tion and the concatenation function with a linear transformation, respectively. One

15

2. Background

Figure 2.4: Two non-isomorphic graphs

drawback with traditional MPNN is that it considers all neighbors of a node to be

equally important. Graph Attention Network (GAT) [VCC+17] approaches this prob-

lem by incorporating a weighting scheme into the functions to differentiate between

neighbors of a node. The weighting scheme is embeded into the receiving function of the

MPNN.

For unsupervised graph embedding, another way to improve MPNN is by making

the loss function more expressive. Deep Graph Infomax (DGI) [VFH+18] tackles this

problem by creating node embeddings such that the mutual information between the

local node embeddings and the global graph embedding is maximized.

On the other hand, there are a lot of research aiming to make GNNs to be able to

distinguish different structures. For instance, traditional GNNs can not count triangles

in a graph which makes it difficult to apply in social network setting where such a

motif is widely present. For instance, in Figure 2.4, two non-isomorphic subgraphs

would be consider as isomorphic as traditional GNNs based on message passing can not

distinguish between them [MRF+19, BFW+21]. Several solutions for this problem have

been proposed [MRF+19, BFW+21]. The general idea of these methods is to leverage

higher-order structure such as subgraphs instead of nodes. These methods improve the

discriminative power of GNNs but they are more computationally expensive.

Recently, there are several methods aiming to adapt GNN for heterogeneous graphs.

Several techniques [WJS+19, FZMK20] are based on metapaths [SHY+11] which are

random walks following some predefined walking strategies based on node types. By

using metapaths, these techniques can essentially map heterogeneous graphs to homoge-

neous graphs where traditional approaches can be used [ZCH+20]. Our approach differs

from these techniques as we can learn node embeddings for heterogenous graphs directly

without constructing the metapaths. The metapath construction phase is usually time-

consuming as well. Techniques [ZSH+19, HDWS20, SKB+18] that do not depend on

metapaths use different weight matrices to encode embeddings from sampled neighbor

nodes. Some methods [SKB+18] leverage a type-based sampling function to select nodes

that are considered as neighbors of a vertice. Our proposed approach is similar to these

techniques as we also use different matrices for each node type. However, our method

differs from these approaches as we follow the message-passing framework. This enables

clear reasoning of the node embedding computation, which leads to better extendability.

In addition, our retrieval model based on graph embedding requires us to create query

embedding for every query. However, it is not clear how a graph embedding model con-

structed on a graph can be used to create the subgraph/query embeddings embeddings.

16

2.3 Scalable graph embedding

In this thesis, we propose truncated message passing as a framework to construct query

and subgraph embeddings based on the message-passing framework.

2.2.3 From node to graph embedding

Graph embedding techniques first and foremost are designed to create node embeddings.

From these node embeddings, a (whole) graph embedding can be created using a readout

function [XHLJ18]. This function aggregates all the node embeddings into a single

embedding for the whole graph.

Global Pooling. Global pooling is the vanilla version of graph pooling methods. From

the node embeddings, the graph embedding can be constructed by either summing or

averaging over all the node embeddings. For example, given the node embeddings {zv}
of a graph G, the graph embedding can be constructed with global mean pooling as

follows:

zG =
1

|G|
∑
v∈G

zv

While global pooling is the most common method, they consider all the nodes to be

equally important, which hinders their performance.

Differential Pooling. One method that aims to fix this problem is differential pooling

or DiffPool [YYM+18]. DiffPool follows the compositional structure of CNN where it

pools nodes into subgraphs before pooling subgraphs into graph. Given a graph with

an adjacency matrix A, DiffPool aims to learn a binary matrix S ∈ {0, 1}n×k that

combines “related” nodes into subgraphs: A′ = STAS where n is the number of nodes

in A, k is the number of subgraphs or nodes in the new graph and A′ is the adjacency

matrix of the new graph. In this new graph, each node represents a subgraph in the old

graph. As such, sequential applications of DiffPool can be used to obtain the final graph

embedding. The matrix S can be learned in an end-to-end manner from a downstream

task such as graph classification.

While pooling methods such as DiffPool can be used to create subgraph embeddings,

they are not applicable in our setting. First, which subgraphs are selected to create

subgraph embeddings are not controllable as they are learned in an end-to-end manner.

Second, the subgraph embeddings are created as the results of the learning process. It is

not possible to create subgraph embeddings without learning. In our setting, we would

like to create subgraph embeddings for subgraphs of our choice. Our proposed method

which is based on truncated message passing is able to create subgraph embeddings for

any subgraph without a separate learning process.

2.3 Scalable graph embedding

Approaches to scale graph embedding techniques to large graphs are classified as cen-

tralised or distributed. Centralised approaches, e.g., SIGN [RFC+20], Cluster-GCN [CLS+19],

SGN [WJZ+19], MILE [LGP18], rely on ‘simpler’ models to achieve scalability. The

embedding models of SGN [WJZ+19] and SIGN [RFC+20] consist of several layers of

17

2. Background

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Part. 1

Part.
1

Part.
2

Part.
3

Part. 2

Part. 3

Destination nodes

So
ur

ce
 n

od
es

1 2 5

3 4 7

6 8 9

Embedding order

Figure 2.5: PBG embedding order (adapted from Figure 1 [LWS+19])

matrix multiplication on the node features and graph adjacency matrix. In particular,

SIGN [RFC+20] constructs the node embeddings as follows:

Z = σ([XΩ0,A1XΩ1, · · · ,ArXΩr])

where Ai are modified versions of the adjacency matrix A and Ωi are the parameters of

the model. The node embeddings Z can then be fed to a node classifier such that the

whole model can be learned in an end-to-end manner. SGN [WJZ+19] approaches this

problem in a similar manner where the node embeddings can be computed as follows:

Z = S · · ·SXΩ1 · · ·Ωr

where S = D̂
− 1

2 ÂD̂
− 1

2 , Â = A + I and D̂ is the degree matrix of Â. As these models

are composition of matrix multiplication, they are scalable as these computations can be

scaled to many GPUs. On the other hand, MILE [LGP18] first abstracts the graph into

a smaller one to perform the embedding. It consists of three phases: graph coarsening,

graph embedding and embedding refining. In the graph coarsening phase, connected

nodes in the graph are merged into supernodes, which reduces the size of the graph

significantly. This phase can be done repeatedly to obtain a graph that can be handle by a

graph embedding technique. In the graph embedding phase, the supernode embeddings

of the coarsened graph is obtained by any graph embedding technique. In the final

phase, the embeddings are refined based on the matching between the supernodes and

the original nodes. As these centralised approaches use only a single machine, they are

inherently limited by the machine’s capacity.

Distributed approaches leverage a cluster of compute nodes. They are complemen-

tary in the sense that they may rely on centralised techniques for graph embedding

on each individual compute node. To date, there are two distributed graph embed-

ding frameworks, PBG [LWS+19] and DGL [ZMW+20]. PBG is tailored to scale link-

prediction-based shallow embedding techniques that use negative sampling. It has been

proposed for compute nodes with shared storage that also communicate during training.

The main idea of PBG is to partition the graph into several subgraphs such that the

18

2.3 Scalable graph embedding

Graph
embedding

model

Graph
embedding

model

Graph
embedding

model

All reduce

Figure 2.6: All reduce approach

training can be done independently in different compute nodes and each subgraph can fit

into a compute node’s memory. As shown in Figure 2.5, PBG divides the graph into sev-

eral partitions. This also divides the edges into several buckets of intra-subgraph edges

(edges between nodes in the same partition) and inter-subgraph edges (edges between

nodes in two different partitions). To make the embeddings be on the same space, the

training is actually done in a semi-sequential manner. For instance, the embeddings of

edges between partition 1 and 2 can only start if the embeddings of nodes in partition 1

have been obtained. As such, the embeddings of nodes in partition 2 have fewer degree

of freedom as they are dependent on the node embeddings of partition 1.

DGL also partitions the graph into several subgraphs such that each compute node

can handle a subgraph. The graph embedding process is done on all compute nodes in a

synchronous manner. After each training epoch, the gradients need to be synchronized

across all machines. This can be done either by a parameter server in which all compute

nodes send their gradient updates to the server. The parameter server then combines

the updates and sends the combined gradients to all compute nodes. Another method

is all-reduce where the compute nodes send the gradients to other nodes such that at

the end of this process, every compute node receives the gradient updates from all the

others.

In summary, both of these techniques require constant communication between com-

pute nodes or to the parameter server. As such, they incur a lot of communication

overhead. In addition, as these approaches are synchronous, worker nodes need to wait

for others nodes to finish computation before synchronization. This is problematic in

the presence of stragglers where all worker nodes need to wait for a long running task.

In the case of the parameter server, it becomes a critical point of failure as if the server

fails, the whole training process could be lost.

In this thesis, we propose a fully parallelization method based on the distributed

model where worker nodes work independently and embeddings are “synchronized” by

a reconciliation step. As such, our work, PBG and DGL are similar as we strive for

19

2. Background

Graph
embedding

model

Parameter server

Graph
embedding

model

Graph
embedding

model

Parameter
syncing

Figure 2.7: Parameter server

scaling embedding techniques by distributing computation across compute nodes. Yet,

there are several differences which enable our approach to have better speedup and faster

training time with less overhead. First, our focus is on a shared-nothing infrastructure,

as commonly encountered in compute clusters. Both DGL and PBG require continuous

communication between nodes, which slows down the training process. Second, PBG

performs random partitioning of the graph. DGL proposes a centralised approach to

graph partitioning, which cannot handle extremely large graphs that exceed a single

node’s capacity. Our approach includes a distributed algorithm for graph decomposi-

tion. Third, DGL and PBG are susceptible to node failure, even though the probability

of node failure increases with the cluster size. Our approach enables a fault tolerant

implementation, due to the reduced inter-node communication and the proposed check-

pointing approach.

2.4 Information retrieval

Information retrieval aims to provide users with easy access to information. Users specify

their information need in the form of queries in which is a set of query terms. The role of

an IR system is to retrieve all the relevant documents according to the query [BYRN11].

An IR system typically consists of a data collection which is usually a set of documents

indexed to speed up retrieval [SMR08, BYRN11]. When a user specifies a query, the

query could be expanded with additional information such as synonyms, spellings before

it is compared with the indexed documents to return a subset of results to the users. The

results are usually ranked according to their perceived relevance to the user’s information

need. This is usually done by comparing the query representation with the document

representation according to some ranking function [BYRN11].

Techniques in information retrieval differ in how they create the query, document rep-

resentation and the ranking function. In general, they can be classified mainly into three

categories: set-based, vector-based and probability-based [BYRN11, SMR08]. In set-based

20

2.4 Information retrieval

models, the document and the query are represented as sets of keywords. A document

is relevant to a query if the query terms are available in the document. For instance,

q = k1∧(k2∨¬k3) is a query in the set-based models in which k1, k2, k3 are the keywords.

Every document and query are then represented in their disjunctive normal form (DNF).

For instance, this query then can be converted as follows: [(1, 1, 1) ∨ (1, 1, 0) ∨ (1, 0, 0)].

By comparing the DNFs of the query and the document, we can figure out whether

a document is relevant to the query or not. As such, documents can only be relevant

or irrelevant to the query, which is one drawback of the set-based model [BYRN11].

Another drawback is that all query terms or keywords in the documents are considered

to be equivalent [BYRN11]. On the other hand, the model is simple as it allows for

combination of query terms using Boolean operators.

Vector-based models overcome these drawbacks by representing both the queries and

the documents as vectors. The ranking function is the distance between the vectors. For

textual data, the document and query vectors can be created based on the tf-idf or the

latent semantic indexing model. In the tf-idf model [SMR08], given a data collection

D and a vocabulary V , the value of a term in a document is computed based on the

frequency of the term in the document and the uniqueness of the term in the whole

collection. More precisely, the tf-idf value of a term t according to a document d is

computed as follows:

tf − idf(t, d) = nt,d × log
|D|

|{d ∈ D : t ∈ d}|

where nt,d is the number of times the term t appears in the document d, D is the

data collection. For a document, we can compute the tfidf values of every term in the

vocabulary. These values can then be used to construct the document vector.

Latent semantic indexing [SMR08, BYRN11] (LSI) approaches the problem from a

different angle. It first constructs the term-document matrix M where each element

is the frequency of the term in the document or a derivation of this frequency. This

matrix is highly sparse as a term may not be contained in all documents. LSI aims to

approximate this matrix using singular value decomposition. Let M = UΣV T be the

singular value decomposition of M . A low-rank approximation of the matrix M can

be constructed by selecting the top-k largest singular values and their corresponding

vectors. A document vector can be constructed from its corresponding singular vector

and singular value. Note that the dimensions of the vectors are considered to represent

some latent topics. The vector-based model is the most common as it is the most

robust ranking strategy as it considers keyword importance and provides a ranked list

of results [BYRN11, SMR08].

Probability-based models first need to construct languages models based on the doc-

uments in the data collection. A language model would capture how the documents are

created. Based on the language model, he relevancy of a query to a document can be

calculated based on the likelihood that both are created from the same language model.

The main drawback of probability-based models is the need to construct language models

21

2. Background

which require careful parameter tuning. In addition, probability-based models usually

have longer construction and retrieval time [BYRN11].

In our setting, we follow the vector-based retrieval approach for its robustness and

applicability [BYRN11]. However, traditional vector-based models are designed for text

retrieval where the queries and the documents are of textual modality, which is limited

when the documents become multimodal. In addition, the query terms in a query

are considered to be independent which limits the expressiveness of the query. In the

following, we first discuss techniques that support multimodal queries before turning to

techniques that consider query term relations i.e. subgraph retrieval.

2.4.1 Multi-modal query

Multi-modal IR systems can process homogeneous queries or heterogeneous queries.

While systems to support homogeneous queries are easier to implement and have been

employed in first-generation commercial applications [WYO+16, WOY+14], heteroge-

neous queries become more popular due to extending information needs of users. Yet,

systems designed for homogeneous queries cannot directly handle heterogeneous data. It

was therefore suggested to create a common representation of heterogeneous data [WYO+16,

CLW+16, DSV+18], before transforming a homogeneous query to this common space

and determining the relevant results via nearest-neighbour search. To provide more

direct support for querying heterogeneous data, cross-modal retrieval systems, such

as [DSV+18, CLWL17], have been proposed.

Moreover, systems that support queries with multiple modalities have been pro-

posed [YKY+18, DSV+18, CLWL17]. These systems answer a multi-modal query through

a combination of several uni-modal queries. There are mainly two ways to combine uni-

modal queries: late fusion and early fusion as shown in Figure 2.8. Late fusion [EHSM08,

MMM15, SSH14] combines the results obtained for each modality in isolation while early

fusion [XHS+18, BBZ17, SY17] embeds uni-modal queries based on different feature

vectors that are combined with an aggregation function. Late fusion systems [EHSM08,

MMM15, SSH14] answer queries for each modality separately and then merge the re-

spective results. For instance, in [EHSM08], results for images and texts are obtained

separately and then combined. Due to the need to pass over the data multiple times,

these systems show performance issues. Early fusion systems such as [XHS+18, BBZ17,

SY17] computes different representations for the modalities and embeds the multi-modal

queries into these vector spaces. Closest to our work is [HBZ+18] where the authors

propose a technique to construct query embeddings for multimodal queries based on

mappings between node types. However, the technique is tailored for conjunctive logical

queries on knowledge graphs while we focus on multiset of query terms on heterogeneous

information network. In general, knowledge graphs are more complex than HIN as there

can be multiple edges between two nodes while the number of node and edge types

could be higher. However, this complexity is not desirable in our setting as they can

lead to model overfitting and longer training time. Going beyond the state-of-the-art,

we process multi-modal queries with a single pass over the data, while incorporating the

22

2.4 Information retrieval

relations between modalities. This is achieved by using a heterogenous graph embedding

model that can construct the query embedding in one pass.

A

B

C
E

C

B

A
E

B

C

E
A

C

B

A
E

Retrieve

To unimodal

Combine results

Multimodal
query

Unimodal
query

Ranked
results

To unimodal

Multimodal
query

Unimodal
query

To vector rep.

Retrieve

A

B

C
E

(a) Late fusion

A

B

C
E

C

B

A
E

B

C

E
A

C

B

A
E

Retrieve

To unimodal

Combine results

Multimodal
query

Unimodal
query

Ranked
results

To unimodal

Multimodal
query

Unimodal
query

To vector rep.

Retrieve

A

B

C
E

(b) Early fusion

Figure 2.8: Late vs. early fusion

2.4.2 Subgraph retrieval

The problem of answering queries where query terms are connected is akin to the sub-

graph isomorphism problem. In this problem, a query is a small graph and the problem

is to find matching subgraphs in a larger data graph. Techniques to solve this problem

can be classified into two categories: single-query and multiple query retrieval.

#data graphs

Single graph Multiple graphs

#queries
Single query

VF2 [CFSV04], TurboISO [HLL13] TurboFlux [KSH+18]
BoostISO [RW15], WaSQ [LZ19] [ZYP07, ZQYC19]

Multiple queries MQO [RW16], Ours n/a

Table 2.1: Categorization of different subgraph isomorphism techniques

Single-query subgraph isomorphism. Many approaches have been developed to an-

swer a single subgraph isomorphism query, by leveraging structural equivalence between

the query graph and the data graph. The mapping is usually constructed iteratively,

preserving the nodes’ connectivity. Notable representatives are VF2 [CFSV04], Tur-

boISO [HLL13], BoostISO [RW15], WaSQ [LZ19], CPI [BCL+16]. VF2 [CFSV04] is the

23

2. Background

traditional search algorithm. It identifies matching candidates between the subgraph and

the data graph by comparing the node labels and the nodes’ degrees. TurboISO [HLL13]

improves the mapping construction by an additional data structure, called matching re-

gions. During the subgraph search, only nodes in these regions are considered, which

reduces the runtime significantly. BoostISO [RW15] follows a different direction to re-

duce the search time. It adapts the data graph by merging nodes that are structurally

similar, which yields a hypergraph as the basis for the search. This enables finding

hyper-mappings from the query graphs to the hypergraph, which can be expanded to

obtain normal mappings. Moreover, WaSQ [LZ19] performs rewriting of the query graph

to match structures for which partial mappings are known already. Based thereon, the

final mapping is derived from the partial one.

While our focus has been on streaming subgraph isomorphism, our approach may

also be used to answer a single query. The presented embeddings of nodes can be seen

as an additional data structure to support subgraph search. They serve a similar role as

node labels or node degrees employed by existing techniques to filter the set of candidate

nodes in the construction of a mapping.

Another way to speed up subgraph isomorphism is to identify features that are rep-

resentative of subgraphs for comparison [BFG+10, KKM11, BCL+16, KNT15]. These

features can be considered as subgraph indices similar to our subgraph embeddings.

CPI [BCL+16] constructs a data structure called compact path index, which is similar

to a spanning tree, to support subgraph search. Compact path index can be considered

as another way to compress the data graph by first considering nodes on the compact

path index, which is similar to a spanning tree. GGSX [BFG+10] considers paths with

bounded lengths as features. These paths are stored in a suffix tree to speed up the

search. In addition to paths, CTIndex [KKM11] also uses cycles to create graph finger-

prints. There are several problems with structure-based indices, though. First, they are

not efficient as identifying structure or motifs in graphs is often a subgraph isomorphism

problem in itself. Second, they often require users to identify which structures are rel-

evant to the subgraph isomorphism problem. This is a tedious task as these structures

are typically specific to a graph. Our embedding-based index avoids these issues as the

embeddings can be learned efficiently and capture the graph structure in an automatic

manner.

Multiple-query subgraph isomorphism. Recently, the problem of answering mul-

tiple subgraph isomorphism queries at the same time has attracted attention. The

multi-query setting enables the identification of common structures among the queries,

which provides an angle for optimization as exemplified for SPAQRL queries over RDF

graphs in [LKDL12]. This approach divides queries into groups based on their edge la-

bels, Jaccard similarity, and benefits for batch optimization. Then, a common subgraph

pattern is extracted per group and the queries are rewritten to comprise the pattern

and optional constraints. A query engine that supports such optional constraints is used

to answer the original queries. MQO [RW16] tackles the multi-query subgraph isomor-

phism search for general graphs. It processes queries in batches. For the queries in the

24

2.4 Information retrieval

same batch, common structures are identified. As a matching subgraph for a common

structure can be used for all queries in the batch, this reduces the set of candidate nodes.

However, MQO organizes them in a containment tree, called pattern containment map

(PCM), in which a directed edge connects queries, where one is a subgraph of the other.

Queries are then answered in a top-down manner with respect to the PCM. This allows

MQO to use mappings of parent queries to derive answers for their child queries. While

MQO is close to our work in terms of striving for reuse in subgraph isomorphism search,

there are several important differences. First, MQO is cache-oblivious, whereas our ap-

proach heavily relies on caching. Caching makes it possible to reuse not only immediate

results (e.g., in the same batch of queries), but the results from all past queries can,

potentially, be reused. Second, MQO is a batch processing algorithm that processes one

set of queries after another one. We presented a proper stream processing algorithm.

Applying MQO over streams would require to partition the stream into batches, which

is not practical. Third, MQO exploits the structure of query graphs in the same batch

to identify similar queries, which is inefficient time-consuming. By leveraging subgraph

embeddings, our approach handles query graphs much more efficiently.

Orthogonal to our work is TurboFlux, a subgraph isomorphism system for handling

a streaming data graph [KSH+18]. Here, a standing query is posed against a data

graph for which the structure changes over time. This is the mirrored case of our

setting, in which the data graph is static and a continuous stream of queries needs

to be evaluated. Another related problem is multi-data-graph subgraph isomorphism

search [ZYP07, ZQYC19]. This problem is about finding mappings of a query, not for

one, but several data graphs. We foresee that our approach can be extended to this

setting by learning an embedding for each data graph.

25

2. Background

26

Chapter 3
Heterogeneity - Graph Embedding for
Heterogenous Data

Graph Embeddings for One-pass
Processing of Heterogeneous
Queries

ICDE 2020

Efficient and Effective
Multi-Modal Queries through
Heterogeneous Network
Embedding

TKDE 2021

The heterogeneity of today’s Web sources requires information retrieval (IR) systems

to handle multi-modal queries. Such queries define a user’s information needs by different

data modalities, such as keywords, hashtags, user profiles, and other media. Recent IR

systems answer such a multi-modal query by considering it as a set of separate uni-

modal queries. However, depending on the chosen operationalisation, such an approach

is inefficient or ineffective. It either requires multiple passes over the data or leads to

inaccuracies since the relations between data modalities are neglected in the relevance

assessment. To mitigate these challenges, we present an IR system that has been designed

to answer genuine multi-modal queries. It relies on a heterogeneous network embedding,

so that features from diverse modalities can be incorporated when representing both,

a query and the data over which it shall be evaluated. By embedding a query and

the data in the same vector space, the relations across modalities are made explicit and

exploited for more accurate query evaluation. At the same time, multi-modal queries are

answered with a single pass over the data. An experimental evaluation using diverse real-

world and synthetic datasets illustrates that our approach returns twice the amount of

relevant information compared to baseline techniques, while scaling to large multi-modal

databases.

27

3. Heterogeneity - Graph Embedding for Heterogenous Data

3.1 Introduction

The Web is built from heterogeneous representations of information, including texts,

images, and videos. Recently, the rise of social media led to further rich and complex

data modalities gaining increasing importance, among them user profiles, hashtags, and

keywords. Given the rich semantics of heterogeneous data and the large data volumes

faced in practice, retrieval of relevant information remains a challenging task for data

on the Web [WOY+14].

A multi-modal information retrieval (IR) system takes as input a set of multi-modal

queries and returns a ranked list of elements selected from a corpus of multi-modal

data. It generalizes the model for uni-modal queries over textual corpora of web-

pages and documents, which has been the primary concern of IR systems for several

decades [WYO+16]. Various systems that support non-textual retrieval have been pro-

posed recently [WYO+16, DSV+18]. Here, a user searches for information represented

as images or audio based on queries that include several modalities beyond textual key-

words.

Existing IR systems deal with heterogeneity of the queried data by constructing a

vectorized representation of it. However, these systems lack support for multi-modal

queries and focus on textual queries. This has negative implications on the retrieval

accuracy due to the inherent textual ambiguity. In addition, textual queries limit users

in effectively formulating their information needs [SY18]. Consider a scenario in which a

user searches for a song in a music library. Instead of relying only on keywords without

any semantics, a multi-modal query supports the explicit specification of a composer or

album of the song. By incorporating these modalities, retrieval becomes more effective.

Multi-modal queries as outlined above are different from faceted search. The latter

classifies data into semantic categories (facets) to filter results after retrieval [VAFK17].

Multi-modal queries, in turn, incorporate modalities in the identification of the relevant

results that shall be retrieved.

Recently, first IR systems started to support the specification of multi-modal queries

[DSV+18, CLWL17]. Yet, they do not genuinely evaluate multi-modal queries, but

consider them as a combination of several uni-modal queries, each of which covering a

different modality. Then, the retrieval results are constructed by combining the answers

to different uni-modal queries via fusion. To this end, late fusion [EHSM08, MMM15,

SSH14] combines the results obtained for each modality in isolation, which is inefficient as

it requires several passes over the data. Another approach is using early fusion [XHS+18,

BBZ17, SY17], which embeds uni-modal queries based on different feature vectors that

are combined with an aggregation function. While such an approach requires only a

single pass over the data, it ignores the relations between modalities. Hence, it breaks

the semantic structure of the data, so that features of retrieved elements may not belong

to the same data entity.

In this chapter, we provide a novel angle for multi-modal IR based on a vectorized

representation of a heterogeneous information network (HIN). The HIN model captures

28

3.2 Problem Formulation

the rich semantics of both, multi-modal data and queries. Our contributions are sum-

marized as follows.

• A model for heterogeneous data: We introduce a representation of heterogeneous

data based on HINs to capture the semantic relations between data of different

modalities of the same entity [SH13, SLZ+16]. This includes a graph/network

embedding model to produce a feature vector for each node in the HIN based on

its modality.

• Multi-modal query model: We propose a query model that enables users to incor-

porate different modalities. We construct a query embedding based on the HIN

embedding of the queried data through novel mapping and combination operators.

This way, we ensure that query and data embeddings are defined over the same

space, which facilitates an accurate relevance assessment.

We evaluated the proposed approach with a set of diverse real-world and synthetic

datasets. Our techniques turn out to be both efficient, scaling linearly to hundreds of

thousands of data elements, and effective, retrieving twice the amount of relevant tuples

compared to baseline techniques. The remainder of the chapter is organized as follows.

Next, we motivate and formulate the addressed problem in Section 3.2. Then, Section 3.3

gives an overview of our approach. The embedding of HINs is discussed in Section 3.4,

while query embedding is explained in Section 3.5. Experimental results are presented

in Section 3.6. We conclude in Section 3.7.

3.2 Problem Formulation

Below, we first present a motivating example (Section 3.2.1) and a formal model (Sec-

tion 3.2.2), before we formulate the problem addressed in this work (Section 3.2.3).

3.2.1 Motivation

Running example. Let us consider the following setting, in which a user searches for

a song.

Example 3. A user searches for the song ‘Jenny of Oldstones’, but does not remember

its title. The user recalls that it is a song from the soundtrack of ‘Game of Thrones’.

Yet, using this as a keyword is not effective, since the retrieved results are mostly related

to the movie itself. Specifying a query that explicitly includes a modality ‘music album’

with the value being ‘Game of Thrones’ is more precise, but still leads to many songs

that have been included in the soundtrack. A user may then try to identify the song by

querying for other modalities. For instance, the user may recall some terms of the lyrics,

such as ‘winter’ or provide a small audio sample of the song. Also, the user may search

for songs of specific singers, e.g., ‘Florence’, or composers, such as ’Dan Weiss’. Yet,

considering each of these queries in isolation, long lists of songs will be returned, as each

modality on its own does not enable a precise identification of a specific song.

29

3. Heterogeneity - Graph Embedding for Heterogenous Data

The above is a common example of a retrieval task in which a user needs to specify

multiple queries in several modalities. In the end, a user has to identify the relevant

results in large collections of retrieved elements, with the risk of not finding the requested

element at all. Note that we use a music database as an example for multi-modal

information retrieval. Yet, our techniques are independent of a specific domain since

they adopt a generic graph-based representation of heterogeneous data.

Limitations of traditional approaches. Traditional IR systems fail to satisfy infor-

mation requirements such as illustrated above, as they support search over one modality

only. Consequently, they potentially miss out on important semantics. The limitation

is not bound to modalities that are textual, but is also observed for other types of data,

such as videos and images. Again, limiting a user to formulate a single, unimodal query

may make it impossible to capture the users’ true intention. In practice, this limitation

is often addressed by incremental algorithms, such as query refinement and user feed-

back [JFLW17]. Since the user intent cannot be specific precisely, multiple passes over

the data are needed to refine a search result.

Against this background, it was suggested to combine the results of several uni-

modal queries [Abb09]. Yet, fusing search results of different queries neglects that the

relevance ranking obtained for different modalities might be incompatible. In addition,

such an approach does not scale well to large data, since it requires multiple passes over

the data to answer the uni-modal queries. A different angle is followed by IR systems

with ‘querying by example’ functionality over multimedia databases. Here, a user may

conduct retrieval by specifying a data sample [MTX13]. Yet, the respective systems are

highly domain-specific and are not applicable in the absence of such a sample, as in

Example 3.

3.2.2 A Multi-Modal Query Model

We design a model for multi-modal queries as follows.

Data model. We capture heterogeneous data by a set of tuples D = {d1, . . . , dn} and

a set of attributes A = {A1, . . . , Am}. Each attribute is considered as a modality, which

defines a set of possible attribute values Ai = {ti1, ti2, . . .}. Each tuple is defined as a

vector d = (a1, . . . , am) where ai is a subset of Ai. This model is generic and applicable

for various types of data [LGZ+18]. For instance, a set of relational tables can be flatten

into a single table and domain-specific features, such as the audio embedding of a song,

may also be represented through a concatenation of features in the tuple vector [JSN+17].

Example 4. A song is modelled as a tuple of (title, album, lyrics, singer, composer,

audio). The song described in Example 3 is then represented as ({Jenny of Oldstones},
{Game of Thrones}, {winter, etc.}, {Florence}, {Dan Weiss, etc.}, {wav-file}).

Query model. A user’s query over multi-modal data is captured by a set of uni-

modal queries Q = {Q1, . . . , Qm}. Each of them relates to a different modality and

specifies a subset of its domain, Qi ⊆ Ai. With all queries except one being empty, the

30

3.2 Problem Formulation

album=GoT, lyrics={winter}, = , etc.

Figure 3.1: An example of a multi-modal query.

model captures the setting of traditional uni-modal information retrieval. Multi-modal

information retrieval happens, if Q contains at least two non-empty queries. We denote

the set of all values of all modalities as Ω = ∪A∈A A. Similarly, the set of all queried

values is q = ∪Q∈Q Q, which is a subset of Ω.

Note that, in addition to user-specified queries, this model also supports the paradigm

of ‘querying by example’. In that case, the queried values are derived directly from a

selected sample of the database.

Example 5. The user’s information need in Example 3 can be captured by a multi-

modal query that comprises several uni-modal queries: Qlyrics = {winter}, Qalbum =

{Game of Thrones}, Qsinger = {Florence}, and Qcomposer = {Dan Weiss}. A user

could even provide an audio sample, so that query Qaudio = {wav-file} would point to

an audio file, if available. Figure 3.1 illustrates an example of a multi-modal query.

3.2.3 Problem Statement

Given the above model, we consider the problem of identifying tuples that are most

relevant for a multi-modal query. Formally, we capture the underlying notion of relevance

by a function f∗ : D × Ω → R that assigns a relevance score to each tuple r ∈ D and

the set of queried values q. Based thereon, the top-k tuples may be identified in terms

of their relevance to the given query (i.e., the set of queried values).

Let R = (r1, . . . , rk) be a relevance-ordered sequence of k-tuples, i.e., it holds that

ri ∈ D and i < j implies that f∗(ri, q) ≤ f∗(rj , q). The sequence is referred to as a

top-k result, denoted by R∗ = (r∗1, . . . , r
∗
k), if for any other relevance-ordered sequence

of k-tuples R′ = (r′1, . . . , r
′
k) it holds that

∑k
i=1 f

∗(r′i, q) ≤
∑k

i=1 f
∗(r∗i , q). We phrase

the problem of identifying a top-k result as follows:

Problem 1 (Multi-Modal Information Retrieval). Given a multi-modal query Q and a

set of tuples D, the problem of multi-modal information retrieval is to retrieve a top-k

result, i.e., a relevance-ordered sequence of k-tuples R∗ = (r∗1, . . . , r
∗
k).

The relevance function f∗ is commonly unknown. Hence, any IR system will employ

its own relevance function f that aims to approximate f∗. The quality of the employed

relevance assessment may then be quantified based on some ground truth information,

i.e., a top-k result for a specific multi-modal query. To this end, let R = (r1, . . . , rk) be a

relevance-ordered sequence of k-tuples returned for a multi-modal query by an IR system

that employs a relevance function f . Then, we assess the quality of the result retrieved

31

3. Heterogeneity - Graph Embedding for Heterogenous Data

through this relevance function by the normalised discounted cumulative gain [JK02]:

nDCG(f) =

∑k
i=1

f(ri,q)
log2(i+1)∑k

i=1
f(r∗i ,q)

log2(i+1)

. (3.1)

Note that nDCG(.) ∈ [0, 1], while a value of 1.0 indicates perfect result quality. Note

that while we chose nDCG to measure the retrieval quality, our system is not limited

to this metric. Other common retrieval metrics such as MRR, Precision@k, MAP can

be used in our system as well. In the experiments, we evaluate our framework on both

nDCG and Precision@k.

3.3 Approach Overview

In this work, we propose an approach for multi-modal information retrieval that is

generally applicable in diverse domains. In Section 3.3.1, we first explain the design

principles for our approach. Then, in Section 3.3.2, we discuss several core concepts and

representations, before Section 3.3.3 summarises our overall approach to multi-modal

information retrieval.

3.3.1 Design Principles

A generic approach to multi-modal information retrieval shall respect the following prin-

ciples:

(DP1) Domain-independence: An IR approach should unify the relevance computation

of tuples regardless of the modalities that are considered in a particular domain.

Traditional systems for uni-modal IR learn an embedding for one modality and

define relevance based on a distance between the resulting embeddings [JSN+17].

However, the respective embedding model is not applicable for another modality

and the choice of a distance function also depends on the application in question.

(DP2) Fusion-independence: State-of-the-art approaches for multi-modal IR treat each

modality separately, which requires several passes over the data. Moreover, the

final step of fusing the results of several uni-modal queries is challenging since the

rankings obtained for different modalities are incomparable [SY18]. Multi-modal

IR should, therefore, avoid any dependency implied by the need to fuse the results

of different modalities.

(DP3) Embedding-independence: Vectorization of diverse modalities leads to different

embedding spaces, so that additional reconciliation of vector-spaces is needed [WLLZ18].

This, however, introduces a potential source of errors, so that multi-modal IR

should not depend on such reconciliation. Moreover, the chosen embedding tech-

nique shall be invariant to certain transformations of heterogeneous data, such as

rotation and illumination for images or watermarking and time-scale modification

for audio and video data [Abb09, Abb07, LWSP14].

32

3.3 Approach Overview

3.3.2 Core Concepts and Representations

Our approach to multi-modal IR is based on the notion of a heterogeneous information

network, which we summarize below before turning to the definition of its schema and

its vectorized representation.

Heterogeneous Information Networks (HIN). A HIN is a undirected graph G =

(V,E) with typed nodes V and edges E ⊆ [V]2 between them [SHY+11], where [V]2 are

all subsets of V of size two. A type function φ : V → A maps each node to a modality

φ(v). A node represents a value of its assigned type. Specifically, the value may be a

vector of features of its modality (aka intrinsic characteristics of the node), such as the

audio representation of a song.

Subgraph

Multimodal data

Figure 3.2: A HIN.

Song

Lyric

Singer

Composer

Figure 3.3: A HIN schema.

Example 6. The construction of a HIN from a multi-modal tuple is illustrated in Fig-

ure 3.2. Here, node types include a title, a singer, lyrics, and an audio representation

of a song. The edges capture the relations between the nodes. For instance, an edge

represents the fact that the respective singer has recorded the song.

HIN schema. To capture the characteristics of the entities represented by nodes types

in a HIN, a HIN schema specifies multi-modal constraints by restricting the types of

nodes that can be connected by edges. A HIN schema is a graph G = (V,E) where

V ⊆ A are modalities and E ⊆ [V]2 are edges between them. A HIN G = (V,E) is an

instance of the HIN schema G, if for all nodes node v ∈ V it holds that φ(v) ∈ V and for

all edges {v1, v2} ∈ E it holds that {φ(v1), φ(v2)} ∈ E. The definition of a HIN schema

is akin to the indexing of database attributes in IR frameworks [SLZ+16].

Example 7. For our running example, a HIN schema as shown in Figure 3.3. It

comprises four modalities, singer, song, composer, and lyric. The previous HIN in

Figure 3.2 is an instance of this schema.

Table 3.1 gives an overview of the most important notations used throughout the

chapter.

33

3. Heterogeneity - Graph Embedding for Heterogenous Data

Table 3.1: Overview of important notations.

Notation Explanation

D = {d1, . . . , dn} A multi-modal database of tuples
A = {A1, . . . , Am} A set of modalities
Q = {Q1, . . . , Qm} A multi-modal query: A set of uni-modal queries
Ω = ∪A∈AA All possible values of modalities
q = ∪Q∈QQ The set of queried values
G = (V,E) A heterogeneous information network (HIN)
G = (V,E) A HIN schema

3.3.3 Multi-Modal IR based on Graph Embedding

Using the above concepts and representations, the problem of multi-modal information

retrieval as phrased in Problem 1 is lifted to HINs. That is, retrieval aims at the

extraction of a top-k result, but not in terms of tuples, but in terms of nodes of a target

modality:

Problem 2 (HIN Information Retrieval). Given a multi-modal query Q and a HIN

G, the problem of HIN information retrieval with target modality A is to retrieve a

relevance-ordered sequence of k nodes R∗v = (v∗1, . . . , v
∗
k) with φ(vi) = A.

Once the respective nodes have been retrieved by solving Problem 2, the result for

Problem 1 can be derived: For each retrieved node, a tuple is constructed by concate-

nating its value with those of neighbouring nodes in the HIN.

Following the idea to solve the problem of multi-modal IR through HIN IR, Figure 3.4

gives an overview of our approach. In the first step, tuples are transformed into a single

HIN to represent their relations and modalities. Based thereon, a graph embedding

is constructed for each node of the HIN. This embedding captures both the intrinsic

characteristics of the nodes as well as their relations in the HIN. This construction,

detailed in Section 3.4, is done once and the results are indexed to speed up retrieval.

Given the queried values of a multi-modal query, we construct a query embedding

in the same space. Such integration of different modalities at the query level enables

query processing with a single pass over the data. The embedding of the queried values

is explained in Section 3.5.

The retrieval of tuples that are relevant to the query is then grounded in the respective

embeddings. Given the embedding of the query, zq, and the set of embeddings of nodes

of the HIN, Z, we identify the k nodes of the HIN that have embeddings zv ∈ Z closest

to zq, according to some similarity function s(zq, zv) (e.g., Euclidean similarity).

Turning to the design principles of Section 3.3.1, the universal nature of the HIN

model enables us to achieve the required independence properties: Relevance compu-

tation becomes independent of the modalities and similarity measures employed in a

specific domain (DP1). Moreover, our approach does not depend on fusion of retrieval

34

3.4 Heterogeneous Graph Embedding

: Query
embedding

Multi-modal Query

Subgraph
Query

Result Point

Heterogeneous Information Network

Multi-modal Database

Query Point

Network
embedding

Multi-modal Vector Space

On
lin

e
Of
fli
ne

Figure 3.4: The proposed approach to multi-modal information retrieval.

results obtained for separate modalities (DP2). Finally, by constructing query embed-

dings in the embedding space of the data, we avoid the need for potentially erroneous

reconciliation (DP3).

3.4 Heterogeneous Graph Embedding

This section introduces our process of embedding a multi-modal database. We first show

how to construct a HIN from the database (Section 3.4.1). Then, we propose a novel

model for graph heterogeneous embedding based on message-passing (Section 3.4.2).

The notion of a HIN was first proposed in [SHY+11], for the setting of similarity

search. Since then, HINs have been used in various applications [SH13, SLZ+16], such

as clustering [SYH09, LPW14], link prediction [CKP14], or recommendation [SZK+12].

Our approach is the first to apply a HIN in an information retrieval setting [SLZ+16].

Unlike the aforementioned techniques that are based on an assessment of meta-paths, we

follow the paradigm of representation learning. That is, we represent the nodes of a HIN

as embeddings in order to facilitate retrieval. The universal nature of our HIN model

enables us to apply it for diverse retrieval settings that involve multiple modalities.

3.4.1 HIN Construction

Given a HIN schema, the construction of HIN for a multi-modal database D is done in

a bottom-up manner. First, for each tuple d ∈ D, we construct a subgraph. The nodes

are the respective attribute values of the tuple, i.e., Vd = {ai ∈ d}, and while edges are

defined between all pairs of values for which the HIN schema defines an edge between the

respective attributes. Figure 3.2 illustrates this construction. The subgraphs created for

all tuples are then connected through their shared nodes (of the same type) to construct

the final HIN. Figure 3.5 gives an example where three subgraphs are connected through

nodes that represent the same singer and the same composer.

35

3. Heterogeneity - Graph Embedding for Heterogenous Data

Figure 3.5: A HIN for music information retrieval (right) is created by merging shared
nodes of different subgraphs of multimodal data tuples (left).

Example 8. Consider two tuples representing songs: ‘Paint it, Black’ and ‘Sympathy

for the Devil’. To construct a HIN, we derive a subgraph for the first tuple with the

respective song node; a singer node ‘The Rolling Stones’; composer nodes ‘Mick Jagger’

and ‘Keith Richards’; and a lyrics node. The nodes are connected according to the HIN

schema in Figure 3.3. Given the subgraph for the second tuple, the two subgraphs are

connected since they share the composer nodes for ‘Mick Jagger’ and ‘Keith Richards’.

3.4.2 HIN Embedding with Message-Passing

Requirements. A model for graph embedding that shall be applied for HINs should

capture the following aspects:

1. Connectivity : Embeddings for nodes shall capture their relations. Following the

homophily principle, the distance of nodes in the graph should be reflected by the

distance of their embeddings in the embedding space.

2. Node types: The different types of nodes shall be incorporated in the embeddings.

3. Node values: The values of nodes, potentially involving multiple features that

capture the nodes’ characteristics, shall be represented in the embeddings.

Based on these requirements, we propose heterogenous GNN, or h-GNN for short.

h-GNN is an instantiation of the message-passing neural network discussed in Chapter 2

that can take the node types into account.

h-GNN. The model adapts the message-passing procedure and incorporates node types

(i.e., the modalities of the HIN) in the sending and receiving phases.

Sending: The sent message now depends on the type s = φ(v) of the sending node v

and the type t = φ(u) of the receiving node u:

m(l)
v→u = M

(l)
s,t z

(l)
v (3.2)

36

3.4 Heterogeneous Graph Embedding

where M
(l)
s,t is a separate matrix for each pair of types (s, t).

Receiving: Instead of using the maximum as an aggregation function, we sum up the

messages from neighbours of a node v to avoid the loss of modality information.

aggl({m(l)
u→v, ∀u ∈ N(v)}) =

∑
u∈N(v)

σ(W (l)
aggm

(l)
u→v + b(l)) (3.3)

The idea being that neighbouring nodes potentially belong to different modalities, so that

the sum retains information about all of them. An aggregation based on the maximum,

as in a traditional GNN, in turn, would only keep the information of one modality.

Moreover, it is known that an aggregation based on the maximum, in some cases, cannot

distinguish between two different neighbourhoods [XHLJ18].

Algorithm. We describe the procedure to embed a HIN with a h-GNN in Algorithm 3.1.

The algorithm corresponds to the forward pass in a deep learning setting, in which the

parameters of the h-GNN (M
(l)
s,t ,W

(l)
agg , b(l),W

(l)
concat) have already been derived. Initially,

these parameters are assigned randomly, while, later, they are learned gradually using

Stochastic Gradient Descent (SGD), taking into account a loss function.

Algorithm 3.1: HIN embedding with h-GNN.

input : HIN G = (V,E); input features {xv, ∀ v ∈ V };
number of iteration L; weights M

(l)
s,t ,W

(l)
agg , b(l),W

(l)
concat

output: Embedding zv for all nodes v ∈ V
1 z0

v ← xv, ∀ v ∈ V ;
2 for l = 1 . . . L do
3 for v ∈ V do

// Sending

4 for u ∈ N(v) do m
(l)
v→u = M

(l)
φ(v),φ(u)z

(l)
v ;

// Receiving

5 I
(l)
v = {m(l)

u→v, ∀u ∈ N(v)};
6 z

(l)
N(v) =

∑
m

(l)
u→v∈I

(l)
v
σ(W

(l)
aggm

(l)
u→v + b(l));

// Updating

7 z
(l+1)
v = σ(W

(l)
concatconcat(z

(l)
N(v), z

(l)
v));

8 return {zLv ,∀ v ∈ V }

Algorithm 3.1 starts by assigning an embedding to each node based on the node’s

features. Then, in each iteration l, the following steps are performed for each node:

sending, receiving, and updating. For each node v in the HIN, a message is sent to its

neighbour u (line 4). The message is constructed based on the node types φ(v) and φ(u).

In the receiving step, given the messages that a node v received from its neighbours I
(l)
v ,

the function aggl is applied to obtain the community embedding of node v, i.e., z
(l)
N(v)

(lines 5-6). In the updating step, the new embedding of v at iteration l+1 is obtained by

applying the function combinel to the community embedding z
(l)
N(v) and its embedding of

37

3. Heterogeneity - Graph Embedding for Heterogenous Data

Figure 3.6: From a multi-modal query to a graph model to a unified embedding.

the previous iteration z
(l)
v . Finally, after L iterations, we return the obtained embeddings

(line 8).

Parameter Learning. We learn the model parameters, i.e., the message matrix M and

parameters of functions agg and combine, using SGD over the following loss function:

L(zv) = − log(σ(zTv zu))−Q.Eun∼Pn(v) log(σ(−zTv zun)) (3.4)

This loss function minimizes (maximizes) the distance between embeddings of nodes
that are close (distant) in the original HIN. Here, the exact definition of which nodes
are deemed close and distant depends on a chosen notion of proximity (e.g., 1-hop or 2-
hop). That is, Pn(v) is a sampling function to select distant nodes (since their number is
commonly much larger than the number of close nodes) and Q is the number of samples.

3.5 Embedding Multi-Modal Queries

In this section, we show how to embed a multi-modal query, in the same space as the
embedding of the HIN. Below, we first discuss how to transform a multi-modal query
into a subgraph query (Section 3.5.1), before turning to its embedding (Section 3.5.2)
and the question of how to learn the parameters for the embedding model (Section 3.5.3).

3.5.1 From Multi-modal Queries to Subgraph Queries

Recall that a multi-modal query is represented by a set of queried values q ⊆ Ω (see
Section 3.2.2). Since a database is modelled using a HIN G = {V,E}, a query q corre-
sponds to a subgraph of G with a set of nodes q ⊂ V . Also, according to Problem 2,
each query q is associated with a modality (type) of interest t ∈ A, denoted by a query
subscript, qt. Hence, the result for a query qt is a set of nodes of type t.

Example 9. Figure 3.6 illustrates a query of a user looking for a song by specifying two
singers, keywords in the lyrics, and a composer. In a first step, this query is converted
into a subgraph.

38

3.5 Embedding Multi-Modal Queries

3.5.2 Multi-modal Query Embedding

To facilitate retrieval, an embedding of a query q needs to be in the same space as the
embedding of the database, i.e., the HIN. In addition, the query embedding must be
constructed based on all information available. Since q is a set of queried values and
each value is captured by a node (q ⊂ V) for which an embedding is available already,
the problem becomes the combination of embeddings of queried values to represent the
whole query.

A straight-forward approach to query embedding is to take the average over the
respective embeddings of nodes. That is, the embedding of q, denoted by zq, is computed
as zq = (1/|{v ∈ q}|)∑v∈q zv. By computing a linear combination of node embeddings,
the resulting query embedding is in the same space as the HIN embedding. However,
this approach neglects the multi-modal nature of the query, since the types of queried
values are not distinguished. Below, we address this shortcoming.

Multi-modal space mapping. To incorporate the different types of queried values,
we adopt the following view when constructing a query embedding: The nodes of each
type are mapped into an embedding space that is specific to that type. For instance, we
cannot expect the representation of a singer to be in the same space as the representation
of a song title. However, the embeddings of a set of singers will be in the same space.

Adopting this view, we construct the embedding for a query qt by mapping the
embeddings of the queried values (and, thus nodes) of all types to the embedding space
of t, the type of interest. Subsequently, the mapped embeddings are combined to obtain
the unified embedding for the whole query. To this end, we define two embedding
operators, which, following [HBZ+18], are referred to as mapping P and combination
C of the embeddings of nodes in the query. While operator P maps an embedding
from one space for a type to another one, operator C combines information from several
embeddings in the space of a single type.

Mapping operator: The mapping operator P takes as input an embedding zv of a node
v of type s and a destination type t. It returns a new embedding z′v, i.e., z′v = P (zv, s, t).
The new embedding z′v can be considered as the embedding of v in the space of type t.
Formally, P is defined as:

z′ = M(z, s, t) = Ms,tz (3.5)

where Ms,t ∈ Rd×d is a mapping matrix from type s to t. The matrix Ms,t needs to be
learned during a training phase.

Combination operator: This operator combines different embeddings in the same
space. As there is no ordering of the queried values (i.e., the nodes) in query qt, the
operator shall be invariant to input permutation. For a set of embeddings Z = z1, . . . , zm
of type t, it returns an embedding z′:

z′ = C({z1, . . . , zm}) = Mtσ(φ(Z)) (3.6)

where σ is a non-linear function, such as the Rectified Linear Unit (ReLU), φ is a
permutation-invariant function that can be applied on set, and Mt is a matrix that
is trained for type t. In its simplest form, the operator is defined with φ being the
summation and Mt as the identity matrix:

z′ = σ(
∑
i

zi).

Algorithm. Given the operators P and C, Algorithm 3.2 captures the process of
constructing an embedding for a query qt.

39

3. Heterogeneity - Graph Embedding for Heterogenous Data

Algorithm 3.2: Construction of a query embedding.

input : node embeddings {zv}; query qt = {v};
mapping operator M ; combination operator C;

output: embedding for qt : zq

1 Q = ∅;
2 for v ∈ qt do // 1. Mapping step

3 z′i ←M(zv, φ(v), t);
4 Q← Q ∪ {z′i};
5 zq ← C(Q) ; // 2. Combination step

6 return zq;

The algorithm starts with the embedding of each node v of query qt. It converts
the embedding of each node to the space of type t using the mapping operator (line 3),
which yields a set of mapped embeddings Q (line 4). Finally, we apply the combination
operator C to the set Q to obtain the query embedding zq (line 5).

Example 10. Taking up Example 9, after obtaining the graph of the query, the mapping
operator converts the singer, lyric, and composer embeddings to the embedding space of
a song, see Figure 3.6. Note that the respective embeddings of the singers, lyric, and
composer are available from the construction of an embedding for the HIN. Then, the
mapped embeddings are combined to obtain the query embedding.

A major advantage of our framework is its flexibility, as the training of the query em-
bedding process is independent of the HIN embedding. Hence, we learn the parameters
of operators P and C using the available HIN embedding.

3.5.3 Parameter Learning

To learn the parameters of the operators for the query embedding process, we need to
define (i) a loss function that captures our objective, and (ii) training samples used to
optimize the parameters. From Problem 1, we derive that training data shall contain
pairs of a query and a top-k result, (q,R∗). This would allow to optimize the parameters
to obtain a retrieval result R for query q, such that R approximates R∗. However, such
training data is commonly not available and their manual construction is infeasible, as
a large amount of queries would be required.

Generate sample queries. Against this background, we follow a training approach
that employs top-1 queries. Such an approach has the advantage that training is efficient,
since the result for each query is a single node. The generated sample queries are then
used to define our loss function.

Given a type t, we define a training set of top-1 queries that have as a result a single
node of type t. We consider queries of varying levels of precision based on the number
of neighbouring nodes of the result node that are part of the query. The most precise
queries are defined as follows:

Q
(1)
t = {(q,R)} = {(N(v), (v)), ∀ v ∈ V : φ(v) = t}.

That is, if the query contains all neighbours of a node v, v is the best retrieval result.
We generalize this idea to the set of queries with ρ-precision. It includes all queries that

40

3.6 Experimental Results

remove at most ρ-1 neighbours of a node v, when querying for v. The set of respective
queries is defined recursively:

Q
ρ
t = Q

(ρ−1)
t ∪ {(N ′, (v)), ∀ v ∈ V,N ′ ⊂ N(v) : φ(v) = t ∧ |N(v) \ N ′| = ρ − 1}.

Note that, with larger ρ, queries become less precise and may not have a unique answer
any more. As such, relatively small values should be used for parameter ρ.

Loss function. In our setting of vector-based retrieval, a query embedding shall be
close to the embeddings of the queries constructed above. That is, given the training
queries, we expect dist(zq, zv) to be small where q and v is a pair of a training query and
a node of the result of a top-1 query with ρ-precision, whereas the distance shall be large
for all other nodes. We therefore define a loss function based on triplet loss [SKP15] as
follows:

L(zq, z
+, z−) =

1

2
max(0,m+ dist(zq, z

+)− dist(zq, z−)) (3.7)

where zq, z
+, z− are the embeddings of the query, a node of the query result (i.e., a

positive sample), and node that is not part of the query result (i.e., a negative sam-
ple), respectively, and m is a margin. This function is minimal, when dist(zq, z

−) −
dist(zq, z

+) > m, i.e., when the distance between embeddings of the positive sample
and the query is small, and the distance between the query embedding and the negative
sample is large.

3.6 Experimental Results

This section reports on an experimental evaluation of the proposed framework using a
diverse set of real-world and synthetic datasets. Our experimental setup is discussed in
(Section 3.6.1), before the following aspects are evaluated:

• The general efficiency of our approach (Section 3.6.2).
• The effectiveness of HIN embedding (Section 3.6.3).
• The effectiveness of query embedding (Section 3.6.4).
• The efficiency and effectiveness of information retrieval in comparison to baseline

techniques (Section 3.6.5).

3.6.1 Setup

Datasets. We use 4 real-world datasets as in Table 3.2.

Table 3.2: Statistics for real-world datasets.

Dataset flickr dbis fma citation

#Nodes 19’471 150’858 244’360 1’511’035
#Edges 105’425 708’502 426’296 2’084’019

Real-world datasets: The flickr dataset includes several modalities, including images,
image groups, terms, and users [SHY+11]. Relations link images and users, images and
terms, and images and groups. The dbis dataset [DCS17] includes modalities such as
papers, authors, venues, and terms in the research domain of databases and information

41

3. Heterogeneity - Graph Embedding for Heterogenous Data

systems. Relations link papers and authors, papers and venues, and papers and terms.
The fma dataset [DBVB17] contains songs and related information such as short audio
segments, albums, artists, and genres. We enrich the fma dataset with album arts,
further increasing its heterogeneity. Relations link songs with the other types, except
album arts, which are linked to albums.

For each of these datasets, we generate 100 multi-modal queries of varying sizes,
ranging from 1 to 10. The values for a query are selected using truncated random
walks around a node in the respective HIN. This way, we ensure that the queries are
semantically meaningful. For each set of queries of the same size, we ensure that the
query contains different modalities (1-3 for flickr/dbis and 2-4 for fma). The retrieved
result is judged by three hired experts, who score the relevance of top-20 results on a
scale of 0 to 5.

Synthetic datasets: In addition to the real-world datasets, we also rely on synthetic
data for sensitivity analysis. In particular, we study the effects of dataset size and the
number of modalities, which includes several control parameters: m, the number of
tuples; α, the HIN density (#tuples/#nodes); n, the number of nodes; H, the structure
of the HIN schema; l, the heterogeneity degree (#attributes); and δ, the distribution
controlling how many attributes are HIN nodes. We first generate n nodes and then
divide the nodes into l clusters according to δ. Then, we construct m tuples by selecting
from each attribute a set of nodes according to a HIN schema. Given the tuples and the
schema H, we can construct the HIN following the process described in Section 3.4. If not
stated otherwise, we use the following parameter configurations: n = 1M , m = 500K,
l = 5, δ is a uniform distribution for l-1 attributes while the last attribute contains m
nodes, and H is a star schema.

Evaluation Metrics. Four main metrics are used:

Runtime: We evaluate efficiency in terms of the retrieval time needed to answer a
multi-modal query, and the training time required to construct embeddings.

Normalized Discounted Cumulative Gain (nDCG): The effectiveness is evaluated us-
ing nDCG (see also Section 3.2.3), a state-of-the-art IR metric that incorporates the
relevance and ranking position of results.

Precision@k: Another common metric for evaluating retrieval result is Precision@k
which is the precision of the result considering only the top-k answers.

Hyperparameters. Unless stated otherwise, we use the parameters suggested in [HYL17a]
for graph embedding. The learning rate is set to 0.0001 for all experiments. The batch
size for experiments with real-world data is 256, and 16 for the synthetic data. As for
the loss function (Equation 3.4), for each node, we use 50 random walks with a length
of 5. All models use a Rectified Linear Unit as a non-linear function.

Regarding the GNN, we found that by training the node embeddings at iteration 0
together with the model, we achieve better results. Following [HYL17a], for the aggrega-
tion and combine functions, we use max and concat, respectively. Regarding the query
embedding, the margin for the loss function in Equation 5.1 is set to 0.1, as suggested
in [SKP15].

Environment. All experiments have been obtained on an Intel Core i7-6700K server
with a NVIDIA GTX 1080Ti and 32GB RAM. For k-NN search, we leverage nmslib for
indexing, which facilitates fast retrieval.

42

3.6 Experimental Results

3.6.2 General Efficiency

We analyse the general efficiency of our approach in terms of its runtime, using the
synthetic dataset.

Model for query embedding. We assess the training time needed to learn the param-
eters for query embedding (see Section 3.5.3), relative to the HIN’s density level and its
number of nodes. Figure 3.7 depicts the runtime (in minutes) for different configurations.

1 2 3 4 5 6 7 8 9 10
#nodes (hundred thousands)

0

20

40

60

80

100

T
im

e
 (

m
in

u
te

s)

Density level α=0.1

d = 32 d = 64 d = 128

1 2 3 4 5 6 7 8 9 10
#nodes (hundred thousands)

0
20
40
60
80

100
120

T
im

e
 (

m
in

u
te

s)

Density level α=0.2

d = 32 d = 64 d = 128

Figure 3.7: Training time for the model for query embedding vs. #nodes.

In general, the training time increases linearly with the number of nodes in the HIN.
This is expected as the number of training queries increases linearly w.r.t the number
of nodes. For example, the training time is 3min when the network size is 100k, but
increases to 79min when the network size is 1M. On the other hand, the embedding size
has little effect on the training time.

0 1 2 3 4 5 6 7 8 9 10
#nodes (hundred thousands)

0

2

4

6

8

Ti
m

e
(h

ou
rs

)

Density level = 0.1
d = 32
d = 64
d = 128

0 1 2 3 4 5 6 7 8 9 10
#nodes (hundred thousands)

0

2

4

6

8

Ti
m

e
(h

ou
rs

)

Density level = 0.2
d = 32
d = 64
d = 128

Figure 3.8: Training time of the whole framework vs. #node.

End-to-end embedding co-training. We further analyse the training time of the
end-to-end process, incorporating both models for query and graph embedding, see Fig-
ure 3.8. The measured training time is higher than solely for the model for query embed-
ding (Figure 3.7), due to a higher overall number of parameters. Yet, it is significantly
lower than the sum of training times if the models for query and graph embedding are
learned separately. For instance, for a graph with 500k nodes, the end-to-end process for
co-training takes ∼2h, whereas isolated training would require 3h for graph embedding
and 0.5h for query embedding.

Retrieval time. Finally, we evaluate the time required to answer a query using our
proposed approach, relative to the query size and the number of nodes in the HIN. Fig-
ure 3.9 illustrates that, unlike training times, retrieval times are extremely short. For

43

3. Heterogeneity - Graph Embedding for Heterogenous Data

instance, for a query of size nine and a network with 1M nodes, retrieval is done in 23ms.
Also, the query size has little effect on the retrieval time. Also, for common queries of
rather small size, there is virtually no difference in retrieval time. For example, increas-
ing the query size from three to nine, for a network of 200k nodes, the retrieval time
remains stable at 4ms. This comes from the fact that the query embedding computa-
tion involves mostly matrix multiplication which can be extremely fast given leveraging
GPU. However, we expect the query size to have effects on retrieval time for a query
with large amount of query terms, which is an unrealistic setting.

1 2 3 4 5 6 7 8 9 10
#nodes (hundred thousands)

0
5

10
15
20
25

T
im

e
 (

m
s)

Query size: 3

d = 32 d = 64 d = 128

1 2 3 4 5 6 7 8 9 10
#nodes (hundred thousands)

0
5

10
15
20
25

T
im

e
 (

m
s)

Query size: 9

d = 32 d = 64 d = 128

Figure 3.9: Effects of query size on retrieval time.

A key observation is that the embedding size does not affect the retrieval time. This
is explained by the fact that we need to consider solely the relative difference between
the embeddings. By indexing these differences beforehand, we remove any effect of the
embedding size on retrieval time. Another observation is that the retrieval time scales
linearly with the graph size. We observe increment (from 2ms to 22ms) as we increase
the graph size from 100k to 1M nodes with an embedding size of 64. This is expected
as increasing the graph size also increases the retrieval space. We can reduce retrieval
time further by streaming IR, but is left as future work.

3.6.3 Effectiveness of HIN Embedding

Quantitative evaluation. This experiment compares our embedding model, h-GNN
as presented in Section 3.4.2, against two baselines, i.e., traditional GNN [HYL17a]
and node2vec, in terms of the normalized Discounted Cumulative Gain (nDCG). The
embedding of a query is generated by averaging the embeddings of all nodes in the query.
Moreover, we employ the loss function defined in Equation 3.4.

0 1 2 3 4 5 6 7 8 9 10
Query size

0.1

0.2

0.3

0.4

0.5

nD
CG

flickr dataset
GCN
h-GCN
node2vec

0 1 2 3 4 5 6 7 8 9 10
Query size

0.0

0.2

0.4

nD
CG

dbis dataset
GCN
h-GCN
node2vec

Figure 3.10 shows the nDCG (the higher, the better) related to the query size. Our
model outperforms all baselines by a large margin. For example, in dbis dataset, h-
GNN achieves an nDCG of 0.184, which is 11.5× better than the best baseline, when

44

3.6 Experimental Results

0 1 2 3 4 5 6 7 8 9 10
Query size

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pr
ec

isi
on

@
20

flickr dataset
GCN
h-GCN
node2vec

0 1 2 3 4 5 6 7 8 9 10
Query size

0.0

0.2

0.4

0.6

0.8

Pr
ec

isi
on

@
20

dbis dataset
GCN
h-GCN
node2vec

Figure 3.10: Effectiveness of HIN embedding.

the query size is 5. The worst results are obtained with node2vec, since it neglects
intrinsic characteristics of nodes. We observe the same trend with Precision@20 where
our method outperforms the baselines significantly.

Figure 3.11: Visualization of the embeddings.

Qualitative evaluation. Figure 3.11 shows the t-SNE visualization of node embed-
dings for the flickr dataset. It illustrates three clusters: terms (red), images (blue) and
users (light blue). This confirms our hypothesis that the terms, images, users belong to
different embedding spaces.

3.6.4 Effectiveness of Query Embedding

To evaluate the effectiveness of our approach to query embedding, we first construct the
graph embedding for the HIN using traditional GCN. Based on the node embeddings,
we then learn the query embedding following Algorithm 3.2. Our model is compared
with a baseline which computes the query embedding by averaging the query nodes. The
comparison is performed with different query sizes.

Figure 3.12 illustrates that the approach proposed in this thesis outperforms the
baseline technique. For the flickr dataset, the nDCG values are 0.3 and 0.22, respectively,
when the query size is six. Our approach achieves this improvement by incorporating

45

3. Heterogeneity - Graph Embedding for Heterogenous Data

0 1 2 3 4 5 6 7 8 9 10
Query size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

nD
CG

flickr dataset
average
ours

0 1 2 3 4 5 6 7 8 9 10
Query size

0.0

0.2

0.4

0.6

nD
CG

dbis dataset
average
ours

0 1 2 3 4 5 6 7 8 9 10
Query size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ec

isi
on

@
10

flickr dataset
average
ours

0 1 2 3 4 5 6 7 8 9 10
Query size

0.0

0.2

0.4

Pr
ec

isi
on

@
10

dbis dataset
average
ours

Figure 3.12: Comparison of different query embedding methods.

the heterogeneous information available in the query to retrieve more relevant results.
Regarding the precision metric, we observe the same situation where our method is
better than the baseline across different query size. This clearly shows the effectiveness
of our query embedding approach.

3.6.5 End-to-end Comparison with SOTA

Comparison with single-pass baselines. We compare our approach with several
traditional retrieval methods, such as tfidf [LRU14], CCA [DSV+18], MSAE [WOY+14].
To make tfidf work in a multi-modal setting, we represent other modalities by their
respective textual descriptions. For CCA and MSAE, which are cross-modal retrieval
methods, we compare the obtained results with our method by performing retrieval from
text to image on the flickr dataset and text to audio on the fma dataset. For the dbis
dataset, CCA is ignored as it does not support text-to-text retrieval. We further vary
the query heterogeneity, i.e., the number of considered modalities.

Table 3.3: Comparison with baselines in terms of nDCG.

Dataset flickr dbis fma

Heterogeneity 1 2 3 1 2 3 2 3 4

tfidf 0.36 0.37 0.35 0.47 0.45 0.49 0.42 0.47 0.52
cca 0.42 0.45 0.44 N/A N/A N/A 0.52 0.54 0.57
msae 0.52 0.51 0.55 0.36 0.37 0.33 0.57 0.62 N/A
Ours 0.55 0.63 0.87 0.41 0.77 0.93 0.83 0.84 0.87

46

3.6 Experimental Results

Table 3.3 shows that our method generally outperforms the baseline techniques.
It achieves an nDCG value of 0.63, whereas CCA reaches 0.45, MSAE reaches 0.31,
and tf-idf reaches 0.37 on the flickr dataset with a query heterogeneity of two. Our
technique yields better results than CCA and MSAE, since these techniques handle
image/audio/text as separate modalities. Both of them try to map different modalities
to a pair of embeddings that are close. Yet, the embeddings for different modalities are
learned separately, so that relations between them are not directly captured.

Also, as the query becomes more heterogeneous, the differences between our approach
and the baseline techniques becomes larger. This is due to the baselines not leveraging
the query heterogeneity in their models.

Moreover, tfidf yields the best results for the dbis dataset with a query heterogeneity
of one, since tfidf is optimized for text-to-text retrieval. Yet, our method performs better
than tfidf when the query becomes more heterogeneous.

1 2 3
Query heterogeneity

0.0

0.2

0.4

0.6

0.8

1.0

nD
CG

flickr dataset
ours early late

1 2 3
Query heterogeneity

0.0

0.2

0.4

0.6

0.8

1.0
nD

CG
dbis dataset

ours early late

Figure 3.13: Our technique for one pass retrieval vs techniques for multi-pass retrieval -
Retrieval measure.

1 2 3
Query heterogeneity

0

2

4

6

8

Ti
m

e
(m

s)

flickr dataset
ours early late

1 2 3
Query heterogeneity

0

2

4

6

8

Ti
m

e
(m

s)

dbis dataset
ours early late

Figure 3.14: Our technique for one pass retrieval vs techniques for multi-pass retrieval -
Retrieval time.

Comparison with multi-pass baselines. Next, we compare our approach that re-
quires only a single pass over the data with baseline techniques that combine the results
from several passes over the data, one per queried modality. Specifically, we use the tfidf
baseline to retrieve results using each attribute separately and then combine their rank-
ings. We also construct another baseline based on tfidf, which computes the representa-
tion for each attribute separately and generates the query embedding by averaging the
attribute representations. The two baselines represent early and late fusion approaches
in heterogeneous retrieval [XHS+18, MMM15], respectively.

47

3. Heterogeneity - Graph Embedding for Heterogenous Data

The effectiveness and efficiency of the considered approaches is visualised in Fig-
ure 3.14. Here, our technique clearly dominates in terms of retrieval quality. While all
techniques have a similar retrieval time for a query heterogeneity of one, our technique is
able to retrieve answers faster than fusion-based approaches for heterogeneous queries.
This trend stems from late fusion requiring several passes over the data, while early
fusion requires several passes over the query to construct the embedding.

3.6.6 Ablation study

We analyze the effectiveness of different components of our framework in this experi-
ment. As our framework involves 2 components: HIN embedding and query embedding,
we vary the methods in each components to demonstrate the benefits of our proposed
approaches. For HIN embedding, we analyze two baselines which are GNN and node2vec
in comparison with our h-GNN approach. For query embedding, we compare our query
embedding approach using message passing (MP) with a baseline using averaging of
node embeddings. We evaluate the components using both nDCG and Prec@10 metrics.

Table 3.4: Ablation study

flickr dbis

nDCG Prec@10 nDCG Prec@10

HIN
embedding

node2vec 0.156 0.26 0.01 0.05
GNN 0.227 0.36 0.03 0.12
h-GNN 0.332 0.63 0.19 0.2

Query
embedding

Avg. 0.227 0.23 0.031 0.09
MP 0.277 0.35 0.116 0.19

hGNN + MP (Ours) 0.43 0.73 0.24 0.37

The experimental results shown in Table 3.4 confirm the benefits of our proposed
approaches. Our h-GNN HIN embedding achieves better nDCG and Prec@10 for both
datasets in comparison with the baselines. Note that for analyzing the effects of HIN
embeddings, we fix the query embedding to be averaging. Therefore, the difference in
results can only be explained by better model. We obtain similar results for our proposed
query embedding approach. Our approach of constructing the query embedding by
passing messages on the query graph retrieve more relevant results in comparison with
averaging. Finally, we observe that by combining hGNN for HIN embedding and MP for
query embedding, we achieve better results than all combinations. This clearly shows
the effectiveness of our components and their combination.

3.7 Summary

In this chapter, we presented a new direction for multi-modal IR that relies on an
embedding of a heterogeneous information network. Such a HIN enables us to capture
the rich semantics of both, multi-modal data and queries. Based thereon, we proposed
a novel graph embedding model to obtain a vectorized representation of a HIN and a
technique to construct a query embedding based on the HIN embedding through mapping
and combination operators. As a result, we obtain embeddings that are defined over the

48

3.7 Summary

same space to achieve accurate relevance assessment. Our experimental results for real-
world and synthetic datasets illustrate the efficiency and effectiveness of our approach.
In future work, we will explore the dynamic evolution of a network to enable the retrieval
of data that has not been considered in the training phase. This way, we can support
applications based on streaming data.

49

3. Heterogeneity - Graph Embedding for Heterogenous Data

50

Chapter 4
Connectivity - Graph Embedding for
Streaming Subgraph Retrieval

Efficient Streaming Subgraph
Isomorphism with Graph Neural
Networks

VLDB 2021

Queries to detect isomorphic subgraphs are important in graph-based data manage-
ment. While the problem of subgraph isomorphism search has received considerable
attention for the static setting of a single query, or a batch thereof, existing approaches
do not scale to a dynamic setting of a continuous stream of queries. In this chapter, we
address the scalability challenges induced by a stream of subgraph isomorphism queries
by caching and re-use of previous results. We first present a novel subgraph index based
on graph embeddings that serves as the foundation for efficient stream processing. It
enables not only effective caching and re-use of results, but also speeds-up traditional
algorithms for subgraph isomorphism in case of cache misses. Moreover, we propose
cache management policies that incorporate notions of reusability of query results. Ex-
periments using real-world datasets demonstrate the effectiveness of our approach in
handling isomorphic subgraph search for streams of queries.

4.1 Introduction

Graphs are a natural representation of relations between entities in complex systems,
such as social networks, chemical compounds, or biological structures [TVVT+20, DYH+20,
TTVV+20, HDQ+19, DHD+19]. Hence, efficient management of graph-structured data
is of crucial importance in diverse domains and subgraph isomorphism queries are an
important means to detect patterns in larger graphs [RW16, Ull76, ZLY09]. Specifically,
given a query graph q (i.e., the pattern) and a data graph g, such a query returns all
mappings of nodes of q to nodes of g that preserve the respective edges. Answering
subgraph isomorphism queries is useful, for instance, to analyze propagation patterns in
social networks or to query protein connections in protein interaction networks.

Since the problem of subgraph isomorphism search is NP-Hard, various heuristics
to speed up the search have been proposed [CFSV04, ZLY09, HLL13, Ull76]. These
algorithms have in common that they are based on measures of node similarity and

51

4. Connectivity - Graph Embedding for Streaming Subgraph Retrieval

subgraph similarity. The former enables conclusions on nodes of the data graph that
cannot be mapped to nodes of the query graph and are, therefore, filtered. Measuring
subgraph similarity, in turn, is the first step of verifying whether a subgraph of the data
graph is isomorphic to the query graph.

In domains such as social networks, chemistry, or biology, subgraph isomorphism
queries occur frequently. They are issued concurrently by many users and systems. For
instance, ChemSpider is a search engine with an API that answers subgraph isomorphism
queries for molecular structures in a database of more than 77 million molecules [?
]. Once a stream of queries is considered, the aforementioned algorithms to subgraph
isomorphism search become infeasible. They employ notions of similarity for nodes and
subgraphs that are based on the actual structure of the graphs. Since the respective
structural comparison has a worst-case runtime complexity of O(N ! ·N2) in the size of
the graphs [CFSV04] for large query graphs, or O(Nk) for small query graphs with k
nodes [MlP14], traditional approaches do not scale to a streaming setting.

For other data models, techniques to process a continuous stream of queries are
commonly addressed using caching strategies. Caching is possible in these cases as the
queries show a large overlap, which enables re-use of previous results. Examples include
techniques to evaluate queries in web search engines [AAB+19, OAU11, LGZ04] and
to answer resource requests in web applications [GMA+08, APTP03, GY13]. In either
case, cached query results are re-used when answering subsequent queries. However,
this principle cannot be adopted directly for subgraph isomorphism queries, since it
was shown empirically that most existing techniques for structural indexing have an
exponential runtime [KNT15]. Hence, it is infeasible to index the data graph, or parts
thereof, as it would be required for efficient caching and re-use of query results.

In this chapter, we propose to use embeddings as a foundation for the evaluation of
subgraph isomorphism queries. An embedding maps a graph to a numerical space, such
that structurally-similar nodes and subgraphs are close to each other [NCC+16, PARS14,
HYL17a]. Embeddings support indexing naturally. Nodes and subgraphs are points in a
high-dimensional space, so that indices for space partitioning, e.g., R-tree [Gut84] or kd-
tree [DBCVKO08], may be leveraged. Based thereon, similarity computation or nearest
neighbor search are realized efficiently.

Using embeddings as the basis for subgraph isomorphism further has the advantage
that it enables cache management based on diversity considerations. A diversified cache
is more effective since query graphs in a stream are more likely to be similar to those
cached already. However, diversity-based caching for subgraph isomorphism is infeasible
for traditional structural indexing due to the computational overhead induced by a
structural comparison of query graphs and cached graphs. Yet, using embeddings, the
graph comparisons becomes fast and accurate, so that our work is the first to propose
such diversity-based cache management for subgraph isomorphism.

To realize the above vision, we define the problem of streaming subgraph isomorphism
and propose a framework to solve it (Section 4.2). We then instantiate this framework,
making the following contributions:

• Graph indexing using embeddings (Section 4.3). As the basis for our work, we
propose an indexing mechanism based on node, edge, and subgraph embeddings.
While we incorporate state-of-the-art techniques for graph representation learn-
ing, we provide a theoretical justification for our mechanism by showing that the
embedding process is similar to Weisfeiler-Lehman isomorphism testing [MRF+19].

• Query stream processing with a cache (Section 4.4). Using the indices, we show
how to answer a stream of subgraph isomorphism queries while exploiting cached

52

4.2 Model and Approach

results. Specifically, upon the arrival of a query, similar past queries are identi-
fied to re-used their results. In the case of a cache miss, subgraph embeddings
are exploited to speed up traditional algorithms for subgraph isomorphism (e.g.,
TurboISO [HLL13]). In case of a cache hit, we assess the overlap of the current
query with the cached ones and derive an answer from the cached results.

• Cache management (Section 4.5). As the size of a cache is limited, we need to
control cache admission and eviction. To this end, we propose a policy that mini-
mizes the number of cache misses. Compared to traditional policies (LRU [You08]
or GreedyDual [You08]), it assesses the utility of a query result not only based on
processing time, but includes a notion of diversity.

We evaluate our approach using several real-world datasets in Section 4.6. We show that
our embedding-based index outperforms structural indices by two orders of magnitude.
When answering subgraph isomorphism queries, our approach based on caching and
re-use of results leads to runtime improvements of at least 100% over state-of-the-art
algorithms such as MQO [RW16] and TurboISO [HLL13]. We conclude in Section 4.7.

4.2 Model and Approach

4.2.1 Model

We target the problem of subgraph isomorphism search for undirected, labelled graphs.
Let g = (V,E) be a graph with a set of nodes V and a set of edges E ⊆ V × V . It is
associated with a labeling function l : V → Σ that captures intrinsic properties of its
nodes. If the alphabet of labels Σ is defined as Rk, i.e., labels are k-dimensional real
vectors, we refer to (g, l) as an attributed graph.

Two attributed graphs (g1, l1) and (g2, l2) are isomorphic, if there exists an edge-
preserving bijective function f : V1 → V2 such that:

(1) ∀ v ∈ V1 : l1(v) = l2(f(v)), and
(2) ∀ (v1, v2) ∈ E1 : (f(v1), f(v2)) ∈ E2.

If g1 is isomorphic to an induced subgraph g′2 of g2, g1 is subgraph isomorphic to
g2, written as g1 � g2. We call the bijection between g1 and g′2 a mapping, and g1

is said to have a mapping in g2. There may be several mappings of g1 in g2. We
write F (g1, g2) = {f1, f2, . . . , fk} for the set of all mappings. The subgraph isomorphism
problem is to find all mappings F (g1, g2) for a given pair of graphs.

In graph-based data management, a subgraph isomorphism query is defined through
a query graph q = (V ′, E′) for which the subgraph isomorphism problem shall be solved
regarding a data graph g = (V,E). We target scenarios in which queries arrive contin-
uously. We therefore define a query stream as a sequence of queries, Q = 〈q1, q2, . . .〉,
arriving one after another. Each query arrives at a particular point in time, denoted by
qi.t, and the stream is totally ordered by these time points, i.e., for any two queries qi
and qj of the stream, if i < j then qi.t < qj .t. We denote the finite prefix of stream Q
until index k as Q[k] = 〈q1, . . . , qk〉. In our setting, the queries in the stream may overlap
or repeat, so that results stored for previous queries may be re-used.

Query processing incurs a latency, i.e., the time between the arrival of a query and the
time it is answered. Based thereon, we capture the problem addressed in this chapter,
as follows:

Problem 3 (Streaming Subgraph Isomorphism).
Given a data graph, the problem of streaming subgraph isomorphism is to solve the

53

4. Connectivity - Graph Embedding for Streaming Subgraph Retrieval

Figure 4.1: Framework for streaming subgraph isomorphism.

subgraph isomorphism problem for all queries of a query stream, while minimizing the
processing latency.

In this problem, we consider the processing latency for the whole data stream.

4.2.2 Approach

To address the problem of streaming subgraph isomorphism, we propose a framework
that exploits caching strategies. Our idea is to re-use query results for a large number of
the queries in the query stream, thereby minimizing the processing latency. However, a
realization of this idea raises several research questions: (Q1) how to index nodes, edges,
and subgraphs for efficient caching and re-use of query results? (Q2) how to answer
queries based on cached results? (Q3) how to manage the result cache? The interplay
of these questions is shown in the illustration of our framework in Figure 4.1. Below, we
summarize our techniques to instantiate this framework.

We present a novel method for graph indexing, which speeds up the search for iso-
morphic subgraphs. The index is based on embeddings of nodes, edges, and subgraphs,
in which similar nodes, edges, and subgraphs have similar index values. While the sub-
graph index enables us to identify re-usable query results in a swift manner, the node
and edge indices accelerate traditional algorithms for subgraph isomorphism by pruning
the search space.

Our indices serve as a foundation for a novel evaluation algorithm for streaming
subgraph isomorphism. It exploits cached results whenever possible. In case of a cache
miss, our node and edge indices speed up any existing branch-and-bound algorithm used
to solve the subgraph isomorphism problem.

In the light of a limited cache size, we further present policies for cache management.

54

4.3 Graph Indexing

B

E

C

A

D

B

C A

B D E B D CA

1st

iteration

2nd

iteration

Weisfeiler-Lehman algorithm

B

C A

B D E B D CA

Message passing neural network

1st

layer

2nd

layer

Graph

Figure 4.2: Message-passing neural network (color gradients represent embeddings) vs.
Weisfeiler-Lehman algorithm (patterns illustrate symbolic representations).

Specifically, we propose to store only a fixed amount of results per query to enable uni-
form retrieval. To guide cache admission and eviction, we adapt the Landlord algorithm
to the setting of streams of subgraph isomorphism queries, which results in a high ratio
of cache hits.

4.3 Graph Indexing

This section introduces indices for nodes, edges, and subgraphs based on graph embed-
dings. We first introduce approaches to learn node and edge embeddings (Section 4.3.1)
and subgraph embeddings (Section 4.3.2). Based there, we define the respective indices
(Section 4.3.3).

4.3.1 Node and Edge Embeddings

When computing embeddings for nodes, there are two kinds of semantic information to
consider: The labels assigned to nodes and their connections to other nodes in the graph.
Assuming that semantically similar nodes are assigned similar labels, the respective
representation can be incorporated directly in a node embedding. Yet, labels commonly
capture external knowledge, not the graph structure. Therefore, we propose to follow
the idea of message passing neural networks (MPNN) to enrich the node embeddings
with structural information.

Note that we use the embeddings as a means to index nodes, edges, and subgraphs.
This is different from traditional graph indexing [BFG+10, KKM11] that relies on sub-
graphs such as paths, triangles, and cliques as reference points in graph comparison. Our
approach avoids the need to detect such subgraphs to construct the respective indices.

MPNN and isomorphism testing. The use of MPNN in our setting is theoretically
well-grounded, as it is related to the Weisfeiler-Lehman (WL) isomorphism test [MRF+19].
The WL algorithm also proceeds in rounds and, in the k-th iteration, constructs a node
labeling lk : V → Σ by considering the labels assigned to nodes and their neighbors in
the previous iteration. That is, the label of a node v at the k-th iteration is derived as:

l(k)
v = h

(
{l(k−1)
u | u ∈ N(v)}, l(k−1)

v

)
(4.1)

where h is a hash function that maps to a new label, not used in previous iterations.
Running the above procedure on two graphs simultaneously, we can test if they are
isomorphic: If in any iteration, the constructed node labels differs, the graphs are not
isomorphic [MRF+19]. This process is illustrated in Figure 4.2.

Example 11. In Figure 4.2, right side, labels are visualized by a pattern. In the first
iteration, we construct the label of node C by hashing the set containing its own label
and the labels of its neighbors. The same is done for node A. The results are used in
the 2nd iteration to derive the label for node B.

55

4. Connectivity - Graph Embedding for Streaming Subgraph Retrieval

Figure 4.3: Embedding generation process by WL.

The formulations of the MPNN in Equation 2.1 and the WL algorithm in Equa-
tion 4.1 are similar. Their relationship is formalized as follows.

Theorem 1 (Weisfeiler-Lehman Testing & MPNN). Given a labeled graph (g, l), let l(k)

be the node labeling obtained using the WL algorithm after k iterations and z(k) be the
embeddings obtained by a k-layer MPNN. Then, with suitable initial embeddings z(0) and
parameterized functions of the MPNN, for all nodes u, v of g, if l(k)(u) = l(k)(v) then
z(k)(u) = z(k)(v).

The above result follows directly from Theorem 1 in [MRF+19]. It shows that the
MPNN-based formulation is as strong as the WL isomorphism test, which provides a
theoretical basis for applying MPNN in our framework for streaming subgraph isomor-
phism. However, the WL algorithm and the MPNN differ in how they represent node
labels. The labels derived with the WL algorithm are symbolic representations, i.e., un-
related symbols. The embeddings obtained with the MPNN capture semantic relations,
so that an assessment of their similarity is meaningful. In Figure 4.2, we distinguish
between both representation by color gradients and patterns, respectively.

WL vs. MPNN. Theorem 1 shows that WL and the MPNN have the same strength to
detect graph isomorphism. However, WL requires defining a hash function to compress
a multiset to a label as shown in Figure 4.3. This is problematic, once isomorphism
shall be detected for graphs with unseen properties. Consider Figure 4.3, where a query
graph comprises two multisets (1,23) and (3,12) that have not yet been encountered. WL
cannot compress the label and, hence, cannot conduct the isomorphism test effectively.
This issue could be addressed in three ways: 1) assuming knowledge of all graphs, a
multi-graph WL algorithm is employed to construct all required hash functions; 2) new
labels are assigned to new multisets, which are then added in the featurization; or 3)
hash functions are removed and the comparison is performed directly on the multiset.
While the first solution is not realistic, the second one incurs many zero values in the
embeddings, so that comparison becomes imprecise. The third solution incurs significant
overhead in terms of processing time to measure the similarity of multisets. The MPNN,
in turn, can handle new query graphs seamlessly. Intuitively, it compares multisets, but
relies on the embeddings as succinct representations of fixed size, which renders this
comparison more efficient. We later confirm empirically that WL is computationally
more expensive than the MPNN regarding new queries.

Parameter learning. To learn the parameters of the MPNN, a loss function needs to

56

4.3 Graph Indexing

F

G

HK

I

G

FH

K I GG I F H

Model

.

Figure 4.4: Different, but isomorphic, graph yields equivalent embeddings.

be defined. As mentioned, a node embedding represents a summarization of its receptive
field. Hence, we define a loss function that rewards if similar embeddings are assigned
to similar nodes, i.e., those that are close in the graph:

L(zv) = −log(σ(zTv zu))−QEun∼Pn(v)log(σ(−zTv zun))

where v is called a positive sample such as u’s neighbor, un is a negative sample obtained
from a negative sampling distribution Pn, and Q is the number of negative samples. The
above function strives for similar representations for similar nodes u, v by maximizing
zTv zu, while minimizing zTv zun fosters different representations for dissimilar nodes v, un.
We observe that adding a supervised loss function to reconstruct the node labels to the
unsupervised loss can also improve the model’s performance.

Edge embeddings. As usual, we construct edge embeddings by averaging the embed-
dings of the adjacent nodes. We later show that edge embeddings are more discrimi-
native than node embeddings as they enable better pruning of candidates for subgraph
isomorphism.

4.3.2 Subgraph Embeddings

For subgraph embeddings to be meaningful, similar subgraphs shall have close embed-
dings and the labels of nodes shall be incorporated. Moreover, when considering the
problem of streaming subgraph isomorphism, we need to cater for large differences in
the sizes of the assessed graphs. Given a small query graph, there are potentially very
many isomorphic subgraphs in a large data graph [RW16]. An embedding shall support
a test for isomorphism that is independent of the specific locations of these subgraphs.

Truncated message-passing for subgraph embedding. Our approach to embed
subgraphs of a labeled graph (g, l) (the data graph, in our setting) builds on the function
Z = f(g, l) that returns embeddings for all nodes in g. This model, learned on the whole
graph, captures the graph’s structure in a comprehensive manner. Hence, for a labeled
subgraph (s, l′), we can project the model on the respective nodes and their labels,
which yields an embedding Z ′ = f(s, l′). Such a projection is akin to truncated message
passing, in which solely the nodes in s send messages to neighboring nodes that are also
in s. Note though that the parameters of the functions used for sending, receiving, and
updating are taken from the MPNN learned to embed the individual nodes.

Example 12. Figure 4.5 illustrates truncated message passing for a graph of four nodes,
A-D, which is a subgraph of the one in Figure 4.2. Messages are exchanged only within
the subgraph, but not with node E. Hence, the tree of operations, rooted at B, does not
include E.

57

4. Connectivity - Graph Embedding for Streaming Subgraph Retrieval

B

ECA

D

B

C A

B D B D CA

Figure 4.5: Illustration of truncated message passing.

The above process yields embeddings for all nodes in a subgraph. Since each em-
bedding summarizes the node’s receptive field, i.e., the subgraph, it is a candidate to
represent the whole subgraph. Against this background, we follow a compositional ap-
proach and average the node embeddings to represent the subgraph.

In addition, we propose an approach to construct subgraph embeddings from the edge
embeddings. Again, a compositional approach is adopted that averages the edge embed-
dings to represent the subgraph. This is equivalent to a degree-weighted combination of
the node embeddings as shown in the following formula:

zs =
1

|Es|
∑

(u,v)∈Es

z(u,v) =
2∑

u∈Vs deg(u)

∑
(u,v)∈Es

zu + zv
2

=
2∑

u∈Vs deg(u)

∑
u∈Vs

deg(u)zu =

∑
u∈Vs deg(u)zu∑
u∈Vs deg(u)

(4.2)

We later show empirically that edge embeddings lead to better subgraph embeddings,
as cache management becomes more effective.

Transferring models. The model learned to embed the nodes (and, hence, subgraphs)
of one graph, may also be transferred to another graph. In our context, it enables us to
apply the model learned for the data graph g also to a query graph q. Specifically, we
derive the node embeddings Zq = f(q, Lq) of the query graph, which are then aggregated
to obtain an embedding for the whole query graph using the above process. This way,
subgraph embeddings of the data graph and the embedding of the query graph are con-
structed using the same model. Hence, a subgraph of the data graph that is isomorphic
to the query graph has an equivalent embedding.

Example 13. Figure 4.4 illustrates the application of the earlier model to a new graph.
Intuitively, the model defines ‘rules’ to combine embeddings at different layers. Applying
the model to isomorphic graphs, see Figure 4.2 and 4.4, yields equivalent embeddings.

4.3.3 Indexing Embeddings

Similarity computation. To assess the structural similarity of two nodes, or sub-
graphs, we compute the cosine similarity of their embeddings. This choice is motivated
by the locality property of the cosine similarity: It emphasizes the immediate neighbor-
hood of the nodes, independent of their global location in the graph [CLG18].

Indexing high-dimensional embeddings. In our context, the relative similarity of
embeddings is more important than their absolute similarity. When answering streams
of subgraph isomorphism queries, it is important to find nearest neighbors in the high-
dimensional embedding space. Since we approach the problem of subgraph isomorphism

58

4.4 Query Stream Processing

based on embeddings, we can rely on a large body of work on indexing for fast nearest
neighbor search in numeric spaces. Specific examples include R-trees [Gut84] and kd-
trees [DBCVKO08], which have been shown to be efficient and scalable.

Note that these indexing techniques can be applied to cosine similarity by normalizing
each embedding to have a length of one. In this case, the cosine similarity corresponds
to the dot product between two embeddings, which is negatively correlated with their
Euclidean distance. Moreover, several variants of R-trees and kd-trees that can handle
high-dimensional embeddings have been proposed [SAH08, ML09, KS97]. In our experi-
ments, we later adopt an improved version of the kd-tree [SAH08] and also observe that
a relatively small embedding size is sufficient to achieve good performance.

4.4 Query Stream Processing

This section introduces our approach to answer a stream of subgraph isomorphism
queries. Our idea is to cache and re-use the results of past queries to derive a full
or a partial answer to the current query. To identify suitable past queries, we leverage
the subgraph indices introduced above. Specifically, for each answered query w, the
embedding zw is indexed. Given a new query q with embedding zq, identify those past
queries w, for which the distance between the embeddings zw and zq is below a threshold
τ . Depending on whether at least one such query w is identified, we refer to the situation
as a cache miss or a cache hit, respectively. For either case, we describe our approach in
the remainder of this section.

4.4.1 Handling Cache Misses

In case of a cache miss, we resort to traditional algorithms for subgraph isomorphism.
These algorithms follow a backtracking strategy, which explores solutions incrementally,
abandoning those that turn out to be invalid. Algorithm 4.1 illustrates this generic
process for a given query graph q and a data graph g. Here, a crucial step is to filter
candidate structures to map to those of the query graph (line 5). In the worst case,
filtering is invoked an exponential number of times, in the size of the data graph, since
it relies on the current partial mapping. Hence, the filter step needs to be efficient.

Common subgraph isomorphism algorithms match a query graph and a data graph
based on their nodes. In that case, Ω in line 2 contains the nodes of the data graph
and s′ is the data graph node that matches the query graph node s according to the
filter strategy in line 5. Depending on the specific algorithm, the filter leverages a node’s
label and degree (Ullmann’s algorithm [Ull76]) or its connections (VF2 [CFSV04] and
QuickSI [SZLY08]). Yet, simple, efficient strategies based on a node’s label or degree,
tend to be of limited effectiveness.

Advanced strategies to filter candidates for subgraph isomorphism work on the level
of subgraphs, not on the level of nodes. While they are commonly very selective, they also
suffer from a high computational overhead. For instance, QuickSI [SZLY08] constructs
minimum spanning trees and GADDI [ZLY09] is based on shortest path computation.
These algorithms need to enumerate particular structures in both, the query and the
data graph, which are then used for similarity computation [SZLY08, ZLY09]. This
enumeration is expensive, as it essentially solves another graph isomorphism problem.

Embedding-based pruning. We propose to filter candidate structures using their
embeddings. Specifically, using the model f , subgraph embeddings of structures of

59

4. Connectivity - Graph Embedding for Streaming Subgraph Retrieval

Algorithm 4.1: Generic search for subgraph isomorphism.

Input : Query graph q; data graph g.
Output: All isomorphic subgraphs of q in g.

1 M = ∅;
2 Ω = EnumerateStructures(g);
3 while |M | <> |q| do
4 s← GetNextStructure(q);
5 for s′ ∈ FilterCandidates(s,M,Ω) do
6 M ← Combine(M, s′);
7 if M is valid then R← R ∪ {M};
8 M ← Backtrack();

9 return R

Algorithm 4.2: Embedding-based candidate filtering.

Input : Query graph q; data graph structures Ω; model f ; threshold k.
Output: Matching candidates for every structure in q.

1 for s′ ∈ Ω do
2 zs′ ← f(s′, L) ; // Conducted offline

3 Z ← Z ∪ {zs′} ;

4 C← ∅;
5 for s← GetNextStructure(q) do
6 zs ← f(s, L′); // Conducted online

7 Cs ← kNNSearch(zs, Z, k);
8 C← C ∪ {Cs}
9 return C

interest in the data graph are created (Ω in Algorithm 4.2-line 2). Note that these
embeddings are computed offline. For each structure s identified in the query graph
(Algorithm 4.2-line 4), we also construct an embedding. Based thereon, we identify
candidate structures in g for s by extracting k nearest neighbors of zs. Algorithm 4.2
summarizes this idea. First, subgraph embeddings of g are computed offline (line 1-
line 3). Then, for each structure of interest in q (line 5), the embedding zs is computed
online (line 6). It is used for a k-nearest neighbor search over the embeddings Z of
subgraphs of g (line 7) to obtain candidate structures.

Selecting subgraphs. When searching for isomorphic subgraphs, pruning of candi-
date structures may be based on different kinds of subgraphs, e.g., nodes [CFSV04],
trees [SZLY08], or paths [ZLY09]. Smaller and simpler subgraphs are easier to enu-
merate, whereas they are less selective. In our setting, we use 2-node subgraphs (i.e.,
edges) as the basis for a pruning strategy. Edges are easy to enumerate while being more
discriminative than nodes. Although it is possible to use 3- or 4-node subgraphs, the
exponential growth of the respective subgraphs, illustrated in Table 4.1 for the datasets
later used in our experiments, induces severe computational challenges.

The above strategy based on embeddings is orthogonal to other filter mechanisms.
Note that, we later show experimentally that, this way, adding our strategy to any sub-
graph isomorphism algorithm reduces the number of candidates to consider significantly.

60

4.4 Query Stream Processing

Table 4.1: Number of subgraphs of different sizes

1-node 2-node 3-node 4-node

yeast 3’101 12’519 487’696 34’508’857
human 4’674 86’282 7’106’210 >154’376’187
cora 2’708 5’278 59’707 2’270’091
citeseer 3’327 4’600 29’930 643’980
pubmed 19’717 44’324 818’753 28’779’383
wordnet 82’670 127’124 3’260’142 >155’289’760

Algorithm 4.3: Approach to query stream processing.

Input : Data graph g; query graph q = (Vq, Eq) with embedding zq; cached
query embeddings Z; neighbors threshold k; overlap threshold ω.

Output: Node mapping M for g and q.

1 R← kNNSearch(zq, Z, k);
2 bestW , bestMap ← ∅;
3 for w ∈ R do
4 map ← mcs(w, q) ; // Max common subgraph

5 if |map| = |Vq| = |w| then // Case 1

6 return projectMapping(q, w,map, g);

7 if |map| > |bestMap| then
8 bestW ← w;
9 bestMap ← map;

10 if |bestMap| = |Vq| < |w|) then // Case 2

11 return projectMapping(q, w, bestMap, g);

12 if |bestMap| ≥ |Vq| − ω then // Case 3

13 M ← projectMapping(q, bestW , bestMap, g);
14 return subgraphIsomorphismInitMap(q, g,M)

15 else return subgraphIsomorphism(q, g) ; // Case 4

4.4.2 Handling Cache Hits

Whether the cached results of a past query can be reused for the current query depends
on their overlap. Traditionally, the overlap between the query graph q and a cached
query graph w is determined by their maximum common subgraph (MCS). The larger
the MCS, the better can the results of w be reused for q [LZ19]. Yet, MCS algorithms
run in exponential time in the size of the graphs [HLJ06]. Hence, the computation
of the MCS of the query graph q with every cached query graph induces a significant
performance penalty.

To speed up this process, we propose to limit the MCS computation to promising
cached queries w, i.e., those that are structurally similar to q. To this end, we use the
subgraph indices introduced in Section 4.3. Specifically, we employ the embeddings of
the query graph q and the cached query graphs to find the k nearest neighbors to q.
While the kNN search can be done efficiently using our index, the MCS problem needs
to be solved solely for k pairs of graphs.

61

4. Connectivity - Graph Embedding for Streaming Subgraph Retrieval

The above steps are the first ones in our general approach to query stream processing,
as formalized in Algorithm 4.3. Once promising cached queries have been identified by
kNN search (line 1), the MCS is computed for each of them and the query graph (line 4).
Based on the MCS node mapping, we then assess the level of reusability of the cached
results in terms of four cases:

Case 1: When there is an exact match of q and a cached query w, we return the
mapping cached for w after projecting it from q to w and w to g, to obtain a mapping
from q to g (line 5).

Case 2: If q is isomorphic with a subgraph of a cached query w (line 10), we proceed
similarly to the first case and construct the result through projection of the cached
mapping.

Case 3: A cached query w is said to have some overlap with the query q = (Vq, Eq),
if their MCS has at least size |Vq| − ω, where ω is an overlap threshold (line 12). The
threshold avoids the re-use of results with a very small overlap, which would not pay-off
due to the implied overhead. If the overlap is sufficiently large, the cached mapping,
after it has been projected from q to w and w to g, is only a subset of the mapping
between q and g. However, this partial mapping is useful in the construction of the
actual result. Since common algorithms for subgraph isomorphism construct a mapping
by establishing correspondence between nodes, one at a time, they can incorporate the
partial mapping derived from the cached result as a starting point for the search.

Case 4: If no promising cached queries can be identified (line 15), we observe a
cache miss and resort to the procedure described in Section 4.4.1, i.e., Algorithm 4.1
with embedding-based filtering (Algorithm 4.2).

In our experiments, we observe that a small value of ω leads to minor differences
between a cached query and the current query. In some cases, the difference is a single
node, which is not meaningful. A large ω reduces the size of the overlap, which increases
the time to detect subgraph isomorphism. In our experiments, we observed that setting
ω to be 10% of |Vq| strikes a good balance of this trade-off.

4.5 Cache Management

Since a cache has limited size, cache admission and eviction shall be managed such
that the number of cache misses is reduced and there is a large overlap between the
current and past queries. In this section, we first discuss our general approach to cache
management, before we turn to the specific policy.

4.5.1 General Approach

Cache management in our context resembles the problem of online file caching [You08],
defined by a cache of fixed size and a sequence of requests to files with assigned retrieval
costs. If a file is not in the cache, it is retrieved for the assigned cost, while other files are
evicted to make space for it. While such an approach seems useful also for the problem of
streaming subgraph isomorphism, there are additional requirements that render existing
solutions for online caching to perform poorly in our context.

Cache requirements for streaming subgraph isomorphism. Traditional online
caching assumes that every request needs to be answered. However, we may shed queries
from cache management, if the incurred delay becomes too large. This provides an
additional degree of freedom for a caching policy. Also, in our context, a query may be

62

4.5 Cache Management

answered partially by a cached result, see Section 4.4.2. Hence, a cache management
policy shall consider partial cache hits.

Existing online caching algorithms. While various algorithms for online caching
have been proposed in the literature, most of which can be described in the framework
of the Landlord algorithm [PIC19]. The algorithm assigns a credit to each query to
denote the cost of answering it. Keeping the query in the cache, this answer cost is
saved. Upon the arrival of a new query that does not match any query in the cache,
the credit is decreased for all cached queries. Queries without any remaining credit are
evicted. On the other hand, when a query is reused, its credit is increased.

The Landlord algorithm does not satisfy the above requirements: It requires every
query to be put into cache and incorporates solely complete cache hits. Online caching
algorithms such as Greedy-Dual and LRU are instances of the Landlord algorithm, so
that they suffer from the same shortcomings [PIC19].

4.5.2 Query Utility

The above requirements motivate our design of a new policy for cache management,
which we coin the Screening Landlord (SL) strategy. It adapts the Landlord algorithm
and relies on the utility of queries to decide on cache admission or eviction. Here, the
utility is both, time-based, to incorporate the effort to answer the query, and diversity-
based, to reflect the query re-usability.

Time-based utility. Three aspects influence the time saved by keeping a query in the
cache. First, the answer time is the time needed to answer the query and add its results
to the cache, which corresponds to runtime for the fourth case in Algorithm 4.2. The
answer time for a query q, denoted by a(q), is saved in case of cache hit.

Second, the reuse time is the time needed to access and reuse the cached result for a
query w to answer a query q. It is denoted by r(q, w) and captures the overhead induced
by the cache, i.e., the runtime of the first three cases in Algorithm 4.2. Note that the
reuse time varies depending on the size of the overlap of the current query and a cached
query. The larger the overlap, the smaller the reuse time.

Given a query stream Q, the answer time and reuse time are aggregated per cached
query w as follows:

µt(w) =
∑

q∈Q,mcs(q,w)≥|Vq |−ω

(a(q)− r(q, w)) (4.3)

Here, the condition mcs(q, w) ≥ |Vq| − ω ensures that only the first three cases of
Algorithm 4.2 are considered.

Diversity-based utility. Traditional instances of the Landlord algorithm such as LRU
or Recache consider only time and frequency when determining the utility of cached
results [You08, PIC19]. However, we strive for caching results of queries that can be
reused for many other queries, so that we propose to incorporate a notion of reusability.
Intuitively, it is not useful to have many ‘similar’ queries in the cache, as a diverse set
of queries increases the chance that results may be reused for a new query. Therefore,
we define a notion of diversity-based utility based on the average embedding distance
between a query w and a set C of cached queries:

µd(q) =
1

|C|
∑
w∈C

dist(z,zw) (4.4)

63

4. Connectivity - Graph Embedding for Streaming Subgraph Retrieval

The above notion of utility, for the first time, incorporates the diversity of query
graphs in cache management. Such an approach would be extremely hard to realize for
traditional, structure-based indexing: Measuring dis/similarity between query graphs
based on structural properties is computationally expensive and hence, not suited for
cache management. Only once embeddings are used, cache management that is guided
by the diversity considerations becomes feasible. We later demonstrate empirically that
cache diversity is indeed beneficial. It increases the number of cache hits and reduces
the answering time significantly.

Combined utility. We combine the above notions to define the overall utility of a
query. While both aspects of utility are important, we have to acknowledge that they
differ in their normalization factors. Hence, to obtain a meaningful combination, the
overall utility is defined by their product, µ(q) = µt(q)µd(q).

4.5.3 Utility-based Cache Management

Using the above notions, we present the Screening Landlord algorithm for cache manage-
ment. Unlike the traditional Landlord algorithm, it includes screening step that employs
two bounds to decide whether a new query q shall be admitted to the cache.

First, in our proposed method, a user can specify a time upper bound. If processing
q takes longer than this threshold, the query is not considered for admission to the cache.
This way, the overhead of caching is limited for challenging queries.

Second, there is also a lower bound for the time to process q. It is derived dynamically
from the minimum overall utility of cached queries and the distance-based utility of q.
Specifically, the bound is the ratio of these values. Intuitively, it defines after which
answer time of q, there is a break-even point, i.e., the overall utility of q is higher than
the minimum utility of a query currently in the cache.

Having discussed the general intuition, Algorithm 4.4 formalizes our Screening Land-
lord algorithm. For a new query q, we compute its distance-based utility µd(q) based on
the subgraph embeddings of q and the queries in the cache C (line 2). We then extract
the minimum utility of cached queries (line 3), before determining the lower bound for
the answer time of q (line 4). That is, the lower bound τ is set based on the incoming
queries and the current cache. Next, query q is processed using Algorithm 4.3, while
monitoring the runtime and aborting cache management based on a user-defined thresh-
old (lines 5-8). If query processing finishes before the timeout, the query is admitted to
the cache (line 10). This ensures that the lowest utility in the cache does not decrease
as we process more queries.

When a query shall be added to the cache, space may need to be made by evicting
the cached query with minimum utility (line 13). Following the Landlord algorithm,
once a query is evicted, we decrease the utility of every cached query by the minimum
utility value (line 14). This way, we ensure that the cache is not saturated. Without this
mechanism, the utility would never decrease, which would prevent any new admission
to the cache.

While processing the query q with Algorithm 4.3, we may reuse the result of a cached
query w. In this case, we update the utility of w according to Equation 4.3 (line 17). To
obtain the reuse cost of a cached query w regarding a query q, we measure the runtime
to handle cached results, i.e., the first three cases (lines 4-15) of Algorithm 4.3.

64

4.5 Cache Management

Algorithm 4.4: The Screening Landlord algorithm.

1 Proc screeningLandlord(query q, cache C, threshold t):
2 µd(q)← 1

|C|
∑

w∈C dist(zq, zw);

3 ∆← minw∈C µ(w);

4 τ ← ∆
µd(q) ;

5 Try:
6 s← current time;
7 process q using Algorithm 4.3;
8 a(q)← current time − s;

9 Catch current time − s ≥ t: return ;
10 if a(q) ≥ τ then Add q to cache ;

11 Proc OnInsert(query q):
12 if Cache is full then
13 Evict w with minimum utility;
14 for w ∈ C do µ(w)← µ(w)−∆ ;

15 Add q to cache with utility µ(q);

16 Proc OnCacheHit(cached query w, query q):
17 µ(w)← µ(w) + a(w)− r(q, w)

4.5.4 Further Considerations

Handling cache cold start. Initially, as the cache is empty, no results can be reused
and query processing is slow due to the subgraph isomorphism search over the complete
data graph. Therefore, we propose to populate the cache pro-actively in an offline phase
with results from random subgraphs. That is, we randomly select k diverse nodes in the
data graph that are far from each other. Starting with each of these node, we construct
an ego-network which serves as a subgraph query for which the results are added to the
cache. As the actual query stream is processed, we expect these surrogate queries to be
evicted from the cache. We confirm the benefits of populating the cache in this manner
with a dedicated experiment.

Minimizing distance computation overhead. To compute the distance from the
new query to the cached queries (line 2 in Algorithm 4.4), all cached queries need to be
traversed. To reduce the induced overhead, we limit this computation to the k nearest
neighbors of the query. While this yields solely an approximation of the cache diversity,
in practice, the estimates are sufficiently accurate to make correct decisions about cache
eviction and admission.

Result cardinality. Since each query may have a different number of matching sub-
graphs, the time to store the query results varies between queries. We therefore propose
to store solely the first k matching subgraphs, which is akin to displaying the first k
results in information retrieval systems. After examining these initial results, a users
may decide whether the complete query answer shall be derived. If so, the former results
are leveraged, similar to the third case of our approach to query stream processing in
Algorithm 4.3.

65

4. Connectivity - Graph Embedding for Streaming Subgraph Retrieval

Table 4.2: Statistics of the datasets.

Dataset |V | |E| #Labels Avg. degree

Yeast 3’101 12’519 71 8.07
Human 4’674 86’282 90 36.92

Wordnet 82’670 127’124 5 3.08
Cora 2’708 5’278 7 3.90

Citeseer 3’327 4’600 6 2.77
Pubmed 19’717 44’324 3 4.5

4.6 Evaluation

In this section, we report on comprehensive evaluation experiments. We first clarify
the experimental setup (Section 4.6.1), before turning to our approaches to construct
embeddings for individual nodes (Section 4.6.2) and complete subgraphs (Section 4.6.3).
We then evaluate the effectiveness of our policy for cache management (Section 4.6.5),
before we close with an end-to-end comparison of our approach (Section 4.6.7).

4.6.1 Experimental setup

Datasets. We used six standard real-world benchmark datasets for subgraph isomor-
phism: Yeast, Human, Wordnet, Cora, Citeseer, and Pubmed. The first three datasets
originate from [RW16, LHKL12]. Yeast is a protein-protein-interaction (PPI) network
with a small average degree, but a large number of labels. Human is also a PPI network,
but with a large node degree. Wordnet is a graph capturing relations between English
words. It has a small number of labels and a small node degree. The last three datasets
were used in [KW17, VFH+18] and denote citation networks. Nodes of these datasets
are attributed. However, using the attributes alone is not enough to search for subgraph
isomorphism. Statistics of the datasets are given in Table 4.2.

Baselines. We compare our approach against several baselines.

VF2[CFSV04]: is the traditional subgraph isomorphism search algorithm. It is an
instance of the generic candidate filtering in Algorithm 4.1, using only labels and the
nodes’ degrees as filtering criteria.

TurboISO[HLL13]: is the state-of-the-art technique for single-query subgraph iso-
morphism search. It performs candidate search by constructing candidate regions which
can be match with the query graphs. During the subgraph search, only candidates in
the regions are considered, which reduces the running time significantly.

MQO[RW16]: is a state-of-the-art technique for multi-query subgraph isomorphism
search. It processes queries in batches. For the queries in the same batch, common
structures are identified. As a matching subgraph for a common structure can be used
for all queries in the batch, this reduces the set of candidate nodes.

For graph indexing, we compare our embedding-based approach with structure-
based indices such as GGSX [BFG+10] and CTIndex [KKM11]. GGSX uses paths with
bounded length as features to compare subgraphs. CTIndex identifies both paths and
cycles of interest to create graph fingerprints. Both methods can be seen as manual fea-
ture engineering based on the graph structure, whereas our embedding-based approach
derives features automatically.

For cache management, we compare our policy with LRU [You08] and Recache [AKA17],

66

4.6 Evaluation

which are both instances of the Landlord algorithm. Recache manages a cache based on
processing times, while LRU incorporates the last access time.

Query streams. Our setting of streaming subgraph isomorphism belongs to the class of
multi-query subgraph problems. For such problems, it is a common evaluation strategy
to generate queries randomly with parameters that control their overlap and repetition.
Specifically, to generate query streams, we follow the generation process from [LHKL12,
RW16]. Given a number of subgraph families m, we randomly select m nodes from
the data graph of each dataset. For each node, a core subgraph containing n nodes
is derived by a random walk. Note that our generation process creates larger queries
than those reported in [LHKL12, RW16], as this process measured the graph size by
the number of edges. Hence, we derive a more challenging query workload. We then
create query streams by inserting, in each of them, a core subgraph, before iteratively
adding other subgraphs. With probabilities a, b, c, we add a subgraph previously seen
in the stream, in its original form (a), with nodes added (b), or with nodes removed (c).
With probability d, we add a new core subgraph. This way, we simulate query streams
of different characteristics.

Metrics. As our main metric, we measure the average processing time over the whole
query stream. To compare approaches to cache management, we also assess the average
hit rate. This metric is used to compare the performance of our cache management
strategy.

Implementation and environment. We implemented our model for graph index-
ing in Python and used Pytorch for offline training. The online query evaluation was
implemented in C++.

Our experiments were conducted on a workstation with a 2.4GHz CPU and 24GB
RAM. We report average results over 20 experimental runs. Unless stated otherwise, we
use a default setting of a query size of 10, a cache size of 20, a timeout of 100ms, a query
stream of 1000 queries and an embedding size of eight.

In the following, we first analyze the effects of using embeddings in different com-
ponents of our framework independently. In Section 4.6.2, we analyze the effects of
embeddings in filtering candidate nodes and edges for subgraph isomorphism as dis-
cussed in Algorithm 4.2. Next, Section 4.6.3 aims to validate the correctness of our
subgraph embeddings in different aspects. In Section 4.6.4, we focus on analyzing the
effectiveness of the learned embedding function and its training process. Section 4.6.5
is dedicated to the cache management in isolation, while 4.6.7 compares our framework
with other baselines in an end-to-end manner.

4.6.2 Effectiveness of Embeddings in Pruning

To evaluate the benefit of using embeddings in pruning matching candidates for subgraph
isomorphism, we construct a subgraph of size 20 for every node in the data graph.
Hence, for every node and edge of a subgraph, we know their correct mappings. Then,
we construct embeddings for all the nodes and rank the nodes of the data graph by
their distance to each node of the subgraph. We repeat the same process for the edges.
We measure the percentage of the reduction of candidate nodes and edges achieved by
filtering based on embeddings. Figure 4.6-A shows that using the embeddings, we are
able to filter more than 70% of node candidates and 99% of edge candidates, which
highlights the suitability of embeddings in this context. We also observe that edge
embeddings are more discriminative than node embeddings, which shows the benefit of
using subgraphs (even with only 2 nodes) as pruning criteria.

67

4. Connectivity - Graph Embedding for Streaming Subgraph Retrieval

yeast humanword. cora cite. pubmed
0

20

40

60

80

100
%
 o
f e
xc
lu
de
d
no
de
s node emb. edge emb.

yeast humanword. cora cite. pubmed
0

100

200

300

Ti
m
e
(m
s)

w/o emb.
w/ node emb.
w/ edge emb.

Figure 4.6: Effects of using embeddings.

We further enhance TurboISO with node and edge embeddings as a candidate filter-
ing strategy (see Algorithm 4.1). In Algorithm 4.1, the more candidate structures are
identified for each structure in the query graph, the more branches need to be considered
in the search. We therefore evaluate the effectiveness of using embeddings by the total
time required to find the matching subgraph in the data graph. Figure 4.6-B shows that
by adding embeddings as a filter strategy, we reduce the answering time for all datasets,
e.g., from 219ms to 178ms to 157ms for the Wordnet dataset by using node and edge em-
beddings respectively. The observed benefits are relatively small for the Human dataset.
The reason being the high label diversity of the dataset. If filtering based on labels is
already very effective, further filtering with embeddings becomes negligible. Given the
effectiveness of edge embeddings, in the following experiments, we construct subgraph
embeddings using edge embeddings.

4.6.3 Evaluation of Subgraph Embeddings

In this set of experiments, we evaluate the correctness of our subgraph embeddings.

Subgraph similarity vs. embedding distance. Next, we aim to evaluate whether
the embeddings of structurally-similar subgraphs are indeed close in the embedding
space. To measure subgraph similarity, we use two metrics which are the size of the
maximum common subgraph (MCS) and the subgraph edit distance. We create a pair
of subgraphs with edit distance k by first constructing a two-hop ego graph g from a
randomly-selected node in the data graph. We then remove 1 ≤ k ≤ 7 edges randomly,
so that the subgraph is still connected, to obtain a subgraph g′. As for the size of the
MCS, for each dataset, we randomly extract subgraphs of size 15 from the data graph.
We then select 5000 pairs of subgraphs randomly and compute the size of its maximum
common subgraph. For each pair, we then construct their subgraph embeddings to
measure their embedding distance. Our hypothesis is that there is a correlation between
the MCS size and edit distances and the embedding distances.

Figure 4.7 confirms this hypothesis. When the MCS size increases, the subgraph
embedding distance increases as well. This observation is consistent over all datasets. We
observe a clear linear increase for subgraph pairs with MCS larger than 4. The Pearson’s
correlation values in Table 4.3 confirm that there is a strong correlation between the MCS
size and edit distances and the embedding distances. Hence, the subgraph embeddings
indeed reflect the structural similarity.

Subgraph embedding visualization. To analyze the subgraph embeddings quali-
tatively, we extract subgraphs from the data graph of the Human dataset, such that

68

4.6 Evaluation

2 4 6 8
Maximum common subgraph size

0

0.2

0.4

0.6

0.8

1

N
or
m
al
is
ed

 e
m
b.
 d
is
ta
nc
e

Yeast
Citeseer

Human
Pubmed

Cora
Wordnet

Figure 4.7: MCS size vs. embedding dis-
tance.

Figure 4.8: Visualization of subgraph em-
beddings.

Table 4.3: Pearson’s correlation coefficients.

Yeast Human Wordnet Cora Citeseer Pubmed

MCS size -0.95 -0.93 -0.96 -0.88 -0.87 -0.95
Edit distance 0.99 0.98 0.97 0.99 0.99 0.98

subgraphs belong to 10 families. Then, we construct the embeddings of these subgraphs
and map them to two dimensions for visualization using PCA. Figure 4.8 shows the
subgraph embeddings with color-coded families, highlighting a clear clustering into the
families. This highlights that the structural similarities of graphs in a family is captured
well by the embeddings.

Search performance. To analyze the benefits of using subgraph embeddings for search-
ing similar subgraphs, for each data graph, we create 20 random families of 50 subgraphs.
Then, for each query, we use one subgraph to search for the others. We compare our
approach of using subgraph embeddings with a traditional approach to search for similar
subgraphs based on the graph structure.

Figure 4.9 shows a large difference in the observed search times. There is a consistent

yeast humanword. cora cite. pubmed
0

5

10

15

20

25

Ti
m
e
(m

s)

with emb.
w/o emb.

Figure 4.9: Search time.

69

4. Connectivity - Graph Embedding for Streaming Subgraph Retrieval

10 30 50
0

250

500

750

#c
ac
he

 h
its

10 30 50
0

250

500

750

10 30 50
Cache size

0

200

400

600

10 30 50
0

200

400

600

LRU Recache Ours

Figure 4.10: Cache size vs hits.

improvement, over all datasets, when using embeddings, with the difference being at
least 8ms. For instance, with subgraph embeddings, we can achieve a speedup of up to
25× on the Wordnet dataset. The reason being that searching for similar subgraphs is
significantly faster in the embedding space. Structure-based approaches, in turn, require
a costly exploration of the actual graph structure. Note that caching was not used in
this experiment.

Effectiveness of indexing. We also compare our embedding-based index to structural
indices, such as CTIndex or GGSX in terms of time required to create an index for a
subgraph. Note that for our approach, this is the time required to construct a sub-
graph embedding after we already train the model (training time will be investigated
in Section 4.6.4). In this experiment, we set the subgraph size to 15. The experimen-
tal results are shown in Table 4.4. There is a remarkable difference in the efficiency
of structure-based approaches and our embedding-based index. CTIndex requires at

Table 4.4: Comparison on indexing time (ms).

Yeast Human Wordnet Cora Citeseer Pubmed

CTIndex (0.5kB) 86.63 1235.45 17.48 59.45 76.68 48.5

GGSX
Time 3.085 528.44 0.395 1.867 3.307 1.142
Space 14.01 232.8 0.25 1.18 1.46 0.57

Ours (0.5kB) 0.021 0.0195 0.0219 0.022 0.022 0.023

70

4.6 Evaluation

0 500 1000
0

2000
4000
6000
8000
10000

C
um

m
ul
at
iv
e
an

sw
er
in
g
tim

e
(s
)

Yeast

0 500 1000
0

5000
10000
15000
20000
25000 Human

0 500 1000
Query sequence

0
3000
6000
9000
12000 Cora

0 500 1000
0

3000

6000

9000

12000
Citeseer

Ours Recache LRU W/o cache

Figure 4.11: Caching strategy vs time.

least 17ms to create an index and on large datasets, such as Human, it would take 1.2s.
GGSX performs significantly better than CTIndex with the indexing time staying be-
low 4ms for most datasets. However, our method is an order of magnitude faster and
constructs an index in around 0.02ms. These performance results illustrate another ben-
efit of using embeddings in our context. Note that in this experiment, we evaluate the
indexing component in isolation, without any caching. Hence, the observed differences
stem exclusively from the use of embeddings.

Turning to space requirements, we first note that we used a fixed embedding size for
both CTIndex and our embeddings with a similar index size for a fair comparison. As
such, CTIndex and our index both require 0.5kB space. The index size of GGSX, in
turn, depends on the data graph, see Table 4.4, and ranges from 0.25kB to 232.8kB. We
conclude that our index has comparable size to other approaches, but can be constructed
much quicker.

4.6.4 Evaluation of Parameterized Subgraph Isomorphism

WL vs. MPNN. We compare the quality of embeddings generated by WL and our
MPNN by measuring the correlation between their embedding distance with the sub-
graph similarity. We randomly extract arbitrary subgraphs from the data graph for each
dataset. This is likely to create subgraphs that are not observed in the data graph as
these subgraphs may not be induced subgraphs. Then, for each pair from a randomly-
selected set of subgraph pairs, we measure the size of their MCS. Figure 4.12 confirms
our hypothesis that WL would perform poorly on subgraphs that are observed in the
data graph. MPNN outperforms WL for all datasets, with large differences emerging

71

4. Connectivity - Graph Embedding for Streaming Subgraph Retrieval

yeast humanword. cora cite. pubmed

−0.8

−0.6

−0.4

−0.2

0

C
or
re
la
tio
n

MPNN WL

Figure 4.12: WL vs. MPNN (lower is better).

for the Yeast and Human datasets. This is attributed to a high label diversity in both
datasets (see Table 4.2), so that the generated subgraphs are more likely to be different
from ones in the data graphs. As WL relies on statically determined hash functions,
unseen combinations of labels cannot be handled. For the other datasets, the labels are
more homogeneous, so that most of the label combinations are already available in the
data graphs. As a result, the performance of WL is only slightly worse than the one of
MPNN.

To make WL able to handle unseen subgraphs, one may ignore the hash functions and
measure subgraph similarity based on their multiset representations (see Section 4.3.1).
We measure the total time required to compare the similarity for each pair of subgraphs
generated as detailed above. Table 4.5 shows that comparing subgraphs based on MPNN
embeddings is significantly faster for all datasets, though. Another interesting observa-
tion is that comparing using the MPNN embedding is robust against changes in the
subgraph sizes. For the case of WL, larger subgraphs require more time for comparison.
The reason is that MPNN embeddings have a fixed size, whereas WL uses a symbolic
representation, in which the representation size increases as more combinations of labels
are present.

Table 4.5: Time required to compare 1000 subgraph pairs (ms).

Sub. size Yeast Human Wordnet Cora Citeseer Pubmed

WL
10 nodes 38.89 24.56 22.74 26.42 28.01 22.16
20 nodes 85.56 48.54 28.05 45.95 52.76 37.62

MPNN 1.02 1.02 1.03 1.01 1.01 1.02

Training time. To measure the training time, we report the time to train one epoch
of our model. The number of training epochs can be considered as normalized training
time independent of any infrastructure. From Figure 4.13, we observe that the training
time per epoch is very small. The longest training time is around 5s for the Wordnet
dataset. We further observed that the loss converges after around 10 epochs. This means
that the total training time to obtain a good model is at most 60s. Hence, even with
short training time, we have already obtained a high-quality embedding model.

Sensitivity to number of parameters. Exploring the effect of the number of param-
eters in our model, we vary the number of parameters by changing the embedding size,

72

4.6 Evaluation

yeast humanword. cora cite. pubmed
0

1

2

3

4

5

Ti
m
e
(s
)

Figure 4.13: Training time.

4 8 16 32 64 128
Embedding size

200

400

600

800

#c
ac
he

 h
its

yeast
citeseer

human
pubmed

cora
wordnet

Figure 4.14: Robustness.

as they are closely related. We measure the model’s performance by the number of cache
hits. Figure 4.14 illustrates that a larger embedding size tends to lead to more cache
hits. Yet, the improvement becomes small after an embedding size of 16. For instance,
increasing embedding size from 16 to 32 leads to an increase of cache hit by around 2 for
Citeseer, Wordnet and Pubmed. We conclude that our model is relatively robust against
the number of parameters, while having a small embedding size is commonly sufficient
to achieve good performance.

4.6.5 Effectiveness of Cache Management

Having evaluated the benefits of using embeddings without any caching, the next set of
experiments consider our caching policy.

Effects of cache size. We measure the number of cache hits for different policies
when varying the cache size from 10 to 50. Figure 4.10 indicates that, as the cache
size increases, all methods are able to obtain more cache hits, as expected. In general,
our cache management strategy outperforms both Recache and LRU, while Recache
tends to yield better results than LRU. For instance, using the Human dataset with a
cache size of 30, Recache improves over LRU with the difference being 200 hits, while our
technique adds further 180 cache hits. Recache performs better than LRU as it considers
differences in the queries’ answer time. We conclude that our approach of making the
cache diverse through a diversity-based notion of utility helps in achieving more cache
hits.

Effects of timeout threshold. In this experiment, we analyze our caching policy when
varying the timeout threshold for a query from 0.1 to 1 second. Similar to the above
experiment, we compare our approach with LRU and Recache and measure the number
of cache hits. The results in Figure 4.15 show that our method performs best. For
instance, we observe an improvement of 14% and 31% on the Cora dataset over Recache
and LRU, respectively. Hence, our method can outperform the baselines irrespective of
the timeout threshold and datasets. An interesting observation for the Human dataset is
that the number of cache hits remains constant as we increase the timeout threshold for
all methods. This can again be attributed to the label diversity in the Human dataset.

Evaluation for query streams. Next, we assess the effectiveness of our caching
policy when queries arrive as a stream. Figure 4.11 confirms the observations made for
the case of a single query. That is, our policy consistently outperforms the baselines

73

4. Connectivity - Graph Embedding for Streaming Subgraph Retrieval

over all datasets. Compared with using no caching at all, an LRU policy, and Recache,
our strategy leads to improvements of 74%, 42%, and 19%, respectively, on the Human
dataset at 900 queries. A key observation is that the gap between our strategy and the
baselines widens as we process more queries. Hence, using our strategy becomes more
beneficial over time, due to increasing cache effectiveness.

10 25 50 75 100
775
800
825
850
875
900
925

#c
ac
he

 h
its

Yeast

10 25 50 75 100
800
825
850
875
900
925

Human

10 25 50 75 100
Timeout (ms)

500
550
600
650
700
750
800

Cora

10 25 50 75 100
600
625
650
675
700
725 Citeseer

Ours Recahe LRU

Figure 4.15: Caching strategy vs hits.

Cache initialization. Our technique to alleviate the cold-start problem is evaluated
in Figure 4.16 for the Pubmed dataset. The cumulative answer time for the first 50
queries shows that, without using cache initialization, the answer time increases linearly.
With our initialization strategy, we are able to reduce the total answer time by at least
20%. Note that our cache initialization strategy is enabled by subgraph embeddings,
since those support fast cache search and the identification of partial matches. Cache
initialization that would rely on structural similarity search, in turn, would imply a
significant overhead, i.e., cache initialization may not pay off.

4.6.6 Workload Evaluation

The following experiments evaluate our framework with respect to different query stream
workloads. This requires changing different parameters in our query stream generation,
see Section 4.6.1. We also aim to show our simulation is flexible that it can cover
different real-world settings. Specifically, we report results on varying the query overlap
and repetition.

Effects of query overlapping. We control the overlap of queries by varying the
probability of adding subgraphs with added nodes (parameter b in Section 4.6.1). This
changes the percentage of overlapping queries in the query streams. The results in
Figure 4.18B show that, as the number of overlapping queries increases, the average
time required to answer a query decreases for all datasets. This is expected as more
overlapping queries mean higher reusability, which leads to better cache hits and reduced
answering time.

74

4.6 Evaluation

0 20 40 60
Query sequence

0

500

1000

1500

2000

C
um

m
ul
at
iv
e
an

sw
er
. t
im

e
(s
) W/o init.

With init.

Figure 4.16: Cache init.

50

75

100

An
sw

er
in
g
tim

e
(m

s)

10 20 30 40 50 60 70 80 90
Percentage of overlapping subgraphs

0

20

yeast
human
cora
citeseer
pubmed
wordnet

Figure 4.17: Query overlapping

60

80

An
sw

er
in
g
tim

e
(m

s)

102030405060708090100
#Families

0

20

yeast
human
cora
citeseer
pubmed
wordnet

Figure 4.18: Query repetition

Effects of query repetition. We further vary the number of query families in the
streams. The more families are present, the higher the diversity of the stream. Fig-
ure 4.18A shows that a query stream having more families leads to increased answer
time. However, the rate with which it increases is small among all datasets, which shows
a certain robustness of our approach to high stream diversity. Note that in this exper-
iment, the cache size is fixed at 50. By increasing the cache size, we expect our method
to perform better with more diverse streams.

4.6.7 End-to-end Comparison

After we evaluated the individual building blocks of our solution to streaming subgraph
isomorphism, we analyze its end-to-end performance, also in comparison to other tech-
niques.

Comparative analysis. We first compare our approach with traditional subgraph
isomorphism techniques. Table 4.6 lists the overall processing times observed for the
different datasets. VF2, which is the traditional approach to subgraph isomorphism,
has the worst performance. TurboISO, which employs more advanced methods to filter
candidate nodes leads to a smaller processing time. It often also performs better than
MQO, which is a batch-processing technique. However, across all datasets, our technique
leads to processing times that are significantly lower.

The results are interesting in particular in relation to MQO. The latter constructs

75

4. Connectivity - Graph Embedding for Streaming Subgraph Retrieval

Table 4.6: Comparison of different subgraph isomorphism search techniques in terms of
overall processing time.

Yeast Human Wordnet Cora Citeseer Pubmed

VF2 45.3 33.7 498.2 60.7 66.2 253.1
TurboISO 12.4 29.6 139.5 15.7 12.7 51.4
MQO 16.2 15.4 315.4 29.8 30.1 80.7

Ours 3.7 7.5 114.1 9.6 7.1 31.1

Ours MQO0

10

Ti
m

e(
m

s)

Yeast

Ours MQO0

150

300

Wordnet

Overhead Search

Figure 4.19: Time break-down for Yeast dataset (Left) and Wordnet (Right).

structural indices of queries in the same batch and conducts the search directly on the
graph structure. As such, it is similar to our technique in terms of aiming at reuse
through indexing. Yet, by relying on embeddings, our approach requires significantly
less time to process a query on average.

To provide further insights to the differences between our approach and MQO, we
measure the time required to construct the indices (i.e., the induced overhead) and the
actual time used for graph search. Figure 4.19 shows that, on a simple dataset such as
Yeast, our approach incurs more overhead compared to MQO, as the query embeddings
need to be constructed and the cache is searched. Yet, the overhead pays off, as our
approach spends less time in the actual search in comparison to MQO. For a complex
dataset such as Wordnet, both, the overhead and the search time are lower for our
approach. This is due to the inherent complexity of the structure-based approach of
MQO.

Effects of query size. Finally, we analyze the impact of the query size on techniques
for subgraph isomorphism search. We vary the query size from 10 to 25 and measure
the average processing time. Here, our method shows better answering times than the
baseline, see Figure 4.20. As expected, the response time increases as the query size
increases. However, for our method, the respective rate is smaller or on par with the
best baseline. In other words, our method is robust to changes in the query size.

4.7 Summary

In this chapter, we proposed an approach to handle subgraph isomorphism search for
streams of queries. Based on advances in subgraph representation learning, we proposed
a novel graph indexing technique. This index provides the foundation for our approach to
streaming graph isomorphism that exploits caching and reuse of query results. Moreover,
we presented a new policy for cache management that assesses the utility of a query not
only based on processing time, but incorporates a notion of reusability. Experiments with

76

4.7 Summary

10 15 20 25
0

20

40

60

Ti
m
e
(m

s)

10 15 20 25
0

20

40

60

10 15 20 25
0

20
40
60
80

10 15 20 25
0

25
50
75

100

10 15 20 25
Query size

0
100
200
300
400

10 15 20 25
0

500

1000

1500

VF2 TurboISO MQO Ours

Figure 4.20: Effects of query size.

several real-world datasets confirm the efficiency of our approach and the effectiveness
of our design choices.

77

4. Connectivity - Graph Embedding for Streaming Subgraph Retrieval

78

Chapter 5
Scalability - Scalable Graph Embedding

Scalable Robust Graph
Embedding with Spark

VLDB 2022

Graph embedding aims at learning a vector-based representation of vertices that
incorporates the structure of the graph. This representation then enables inference of
graph properties. Existing graph embedding techniques, however, do not scale well to
large graphs. While several techniques to scale graph embedding using compute clus-
ters have been proposed, they require continuous communication between the compute
nodes and cannot handle node failure. We therefore propose a framework for scalable
and robust graph embedding based on the MapReduce model, which can distribute any
existing embedding technique. Our method splits a graph into subgraphs to learn their
embeddings in isolation and subsequently reconciles the embedding spaces derived for
the subgraphs. We realize this idea through a novel distributed graph decomposition
algorithm. In addition, we show how to implement our framework in Spark to enable effi-
cient learning of effective embeddings. Experimental results illustrate that our approach
scales well, while largely maintaining the embedding quality.

5.1 Introduction

Graphs represent relations between entities in complex systems, such as social networks
or information networks. To enable inference on graphs, a graph embedding may be
learned. It comprises vertex embeddings, each being a vector-based representation of a
graph’s vertex that incorporates its relations with other vertices [HYL17b]. Note that
in this chapter, we use the term vertex for a node in a graph while we reserve the
term node for compute nodes in a compute cluster. Inference tasks, such as vertex
classification and link prediction, can then be based on the vertex embeddings rather
than the original graph. Various techniques to learn a graph embedding have been
proposed [PARS14, HYL17b, HYL17a]. Yet, aiming at high embedding quality at the
expense of computational efficiency, they often do not scale to extremely large graphs
with billions of vertices and trillions of edges [LWS+19]. Embedding a graph of such
size may take weeks, which renders it practically infeasible, and has a large memory
footprint. Keeping a graph with two billion vertices in main memory requires 1TB
RAM [LWS+19], which exceeds the capacity of commodity servers.

79

5. Scalability - Scalable Graph Embedding

Existing techniques for distributed graph embedding require continuous commu-
nication between the nodes of a compute cluster for model or gradient synchronisa-
tion [ZMW+20, LWS+19]. For instance, in DGL [ZMW+20], each compute node handles
a separate subgraph. Yet, all nodes share the same embedding model, which requires
synchronization: Each node needs to send gradient updates learned from its subgraph
to all other compute nodes. As a result, these synchronous approaches suffer from large
communication costs. In addition, they are highly susceptible to communication loss
or node failure. Upon failure of a compute node, all other nodes need to restart from
their latest checkpoint. This leads to longer training times and the need for manual
intervention in case of failures.

Against this background, in this chapter, we propose a framework for scalable and
robust graph embedding that is agnostic to the underlying technique to construct the
embeddings. Our idea is to ground the construction of graph embeddings in the MapRe-
duce model. That is, a graph is split into subgraphs, so that an embedding is learned
from each subgraph on a separate compute node (map phase). Without a need for
synchronisation between the nodes during this computation, any specific technique to
construct embeddings is improved in terms of scalability and robustness. As learning
is done independently and each compute node considers solely a subset of vertices, the
results are vectors in different embedding spaces, though. Hence, reconciliation of these
spaces is needed to obtain a meaningful graph embedding (reduce phase).

Realising the above vision is challenging, since graph partitioning is an NP-hard prob-
lem, which we need to solve in a distributed manner to handle extremely large graphs.
In addition, the obtained subgraphs must share vertices, referred to as landmarks, to
enable reconciliation of embedding spaces. This constraint calls for a new distributed
graph decomposition algorithm that carefully chooses the landmarks and considers them
in the partitioning process.

In the remainder, we first define the problem of distributed graph embedding and
outline our general approach (Section 5.2). We then present the details of our framework,
making the following contributions:

MapReduce-based graph embedding (Section 5.3): Our framework includes a map
phase, in which each node embeds a subgraph, and a reduce phase to reconcile the
embedding spaces. As such, we learn the map and reduce functions instead of defining
them upfront.

Scalable graph decomposition (Section 5.4): To facilitate MapReduce-based graph
embedding, we propose a scalable graph decomposition algorithm that incorporates
landmarks. The algorithm follows the vertex-centric programming model, which en-
ables distributed computation of graph algorithms.

Implementation in Spark (Section 5.5): We show how to implement our framework
in Spark [ZXW+16], focusing on data locality, communication optimisation, and GPU
integration. The choice of Spark is motivated by its computational model, as Spark
workers can work independently on each subgraph before merging the results. Also,
Spark provides communication and error handling, which helps in training large graphs
as the cost of restarting in case of errors during training is extremely high. We also
introduce an iterative refinement process to improve the embedding quality.

Comprehensive evaluation experiments with real-world data of billion-scale graphs
illustrate the effectiveness and efficiency of our approach (Section 5.6). We show that our
graph embedding framework is at least 2× faster than existing approaches, reduces com-
munication cost by at least an order of magnitude, and still achieves better embedding
quality than existing techniques. We conclude the chapter in Section 5.7.

80

5.2 Problem and approach

In
pu

t s
pl

its
RDD RDD

Gr
ap

h
pa

rt
iti

on
s &

 F
ea

tu
re

s RDD

Ve
rt

ex
 e

m
be

dd
in

gs

RDD

Re
co

nc
ile

d
ve

rte
x e

m
be

dd
in

gs

Node 1
Node 2

Graph
decomposition

Embed

:

:

:

:

Reconcile

+

:

:

:

:

…

…

“Rotate”…

…

EmbeddingLandmark vertex Embedding space

Figure 5.1: One round of computation in our framework on two compute nodes (yellow:
operations; blue: input/output data).

5.2 Problem and approach

Below, we first formalize the addressed problem, before outlining our general approach.

5.2.1 Problem statement

Let G = (V,E) be an undirected graph with vertices V and edges E ⊆ [V]2. A graph
embedding technique aims to learn a mapping fΘ : V → Rd from vertices V to an
embedding in a low-dimensional space (d� |V |), such that ‘similar’ vertices are mapped
to close vertex embeddings [HYL17b].

To learn embeddings for large graphs, we consider a cluster of n compute nodes.
Given a graph and an embedding technique, the problem of distributed graph embedding
is to leverage the n compute nodes for the efficient construction of the graph embedding.
Here, efficiency is largely determined by the communication cost between the compute
nodes, which shall be minimized.

5.2.2 Approach

Our approach to distributed graph embedding works in several rounds. In each round,
as illustrated in Figure 5.1, the graph is decomposed into n subgraphs, so that the
construction of embeddings can be distributed among n compute nodes. However, as
the vertex embeddings are created independently, they belong to different spaces. To
tackle this problem, embeddings from different spaces are reconciled based on vertices
that are shared among the subgraphs, called landmarks. To obtain embeddings of high
quality, the above computation is performed in several rounds, in which the models
obtained in the previous round are used for further refinement in the next round.

Our approach can be formulated in the MapReduce model [DG08]. The construction
of embeddings is akin to the map function, since a subgraph is mapped to several vertex
embeddings. The reconciliation of embedding spaces denotes a reduce phase, in which
a single reconciled embedding is derived. Following this model, our framework can be
implemented in state-of-the-art engines for distributed data processing, as demonstrated
later with Spark [ZXW+16].

We note that the decomposition of the original graph into subgraphs is a crucial
part of our approach. However, there is an exponential number of possible decompo-
sitions of a graph into n partially overlapping subgraphs, and each split has different
consequences for the quality of the final embedding. To be able to decompose the graph
in a distributed manner and chose suitable landmarks, we design a landmark-aware de-
composition algorithm based on the vertex-centric programming model [MAB+10]. Our

81

5. Scalability - Scalable Graph Embedding

algorithm is based on the Label Propagation Algorithm (LPA) [MLLS17], in which we
control the condition upon which a vertex may migrate from one partition to another.

5.3 MapReduce-based Embedding

To formulate distributed graph embedding in the MapReduce model, we first provide
background on MapReduce (Section 5.3.1), before discussing the map (Section 5.3.2)
and reduce (Section 5.3.3) functions.

5.3.1 Background on MapReduce

MapReduce [DG08] is an iterative computational model, where in each round, two types
of functions are applied: map and reduce. A map function fm is applied to a multiset of
data elements of some type τ and yields a multiset of pairs of data keys of type k and
data values of type v, i.e., fm : τ → B(k × v) with B(X) as the set of all multisets (or
bags) over some set X. A reduce function fr is applied to a multiset of key-value pairs
of the same key and combines values of type v to return another value of type v, i.e.,
fr : B(k×v)→ v. Grounding some computation in the MapReduce model enables highly
scalable and fault-tolerant execution since a large number of mappers and reducers, i.e.,
tasks to evaluate the map and reduce functions, can be executed concurrently.

5.3.2 Learned Map Function

In our framework, the map function takes a subgraph S as input and returns its vertex
embeddings F . In other words, the map function is exactly the function fΘ : V →
Rd that a graph embedding technique aims to learn. Hence, unlike traditional map
functions in MapReduce, our map function is not defined upfront. Rather, we define the
structure of the function to construct embeddings and rely on learning framework such
as Pytorch [PGM+19] to estimate its parameters by minimising a loss function. Then,
each mapper learn its own function fΘ based on the input subgraph and additional
information, such as vertex features.

There are two approaches to construct graph embeddings and, hence, two ways to
define the structure of the respective function: shallow graph embedding techniques and
graph neural networks.

Shallow graph embedding. In shallow embedding techniques, the function fΘ is just
a mapping from the vertices to the embeddings, i.e., the vertex embeddings are learned
directly. Hence, the parameters of function fΘ are the vertex embeddings. That is, the
function is defined as fΘ : u 7→ u, where {u | ∀ u ∈ V } = Θ are the parameters that we
need to learn. In other words, the vertex embeddings are the model itself.

Graph neural network. A graph neural network (GNN) is a deep embedding model,
where the final vertex embeddings are obtained by applying several transformation func-
tions consecutively on the vertex features. Put it differently, function fΘ is a composition
of several transformation functions, such that each parametrised transformation func-
tion maps from one vertex embedding to another one. The initial embeddings are given
directly by the vertex features. For instance, GCN [KW17] defines such transformation

functions as f
(k+1)
Θ (E(k), Â) = D̂

−1/2
ÂD̂

−1/2
E(k)Θ(k), each mapping an embedding

from the previous layer E(k) to the next layer using the parameters Θ(k). Here, D̂ and
Â are the normalised degree matrix and the normalised adjacency matrix, respectively.

82

5.3 MapReduce-based Embedding

Learning the parameters. The parameters of the functions to construct embeddings
are learned by minimising a loss function. The loss function represents the objective
that shall be captured by the vertex embeddings. There are two common types of loss
functions: supervised and unsupervised. With a supervised function, vertices are labelled
and the embeddings shall be able to predict these labels. In the unsupervised setting,
vertices do not carry labels and the vertex embeddings shall capture the structure of the
graph. We focus on the unsupervised setting as 1) it is more widely applicable and 2) it
imposes more severe challenges in terms of scalability.

For vertex embeddings to reflect the graph structure, they shall capture the similarity
between vertices. More precisely, ‘similar’ vertices should have close vertex embeddings,
and vice versa. Traditionally, the similarity of vertices is measured by the number of
times that they co-appear on a random walk [HYL17a, HYL17b]. Closeness of two vertex
embeddings, in turn, is commonly measured by their cosine similarity. In this case, the
loss function is defined as follows:

J(u) = −log(σ(uTv))−QEvn∼Pn(v)log(σ(−uTvn)) (5.1)

where v is a vertex that co-occurs with vertex u on a random walk and u,v,vn are the
embeddings of vertex u, v, vn respectively. Q denotes the number of negative samples,
which are obtained from a negative sample distribution Pn.

The random walks are controlled by two hyperparameters, which are the walk length
and the number of walks. The longer the walk length, the more likely that further
vertices are considered as being similar to the current one. On the other hand, with
more walks per vertex, there is a higher chance that more vertices are covered.

5.3.3 Landmark-based Reduce Function

Learned reduce function. The reduce function takes two embeddings F 1,F 0 as input
and returns a reconciled embedding F . Our idea is to reconcile embedding spaces based
on landmarks. A landmark will be associated with different embeddings in different
embedding spaces, even though it relates to the same entity, i.e., the same vertex in
the original graph. Hence, landmarks tell us how to convert an embedding space into
another one.

Figure 5.2 shows embedding spaces derived for two subgraphs, where embeddings of
three landmarks are shown as stars, triangles, and squares. By ‘rotating’ one embedding
space, such that the embeddings of landmarks in either spaces are close to each other,
we are able to align the two spaces.

We realize this idea by learning a mapping function h(F 1) that takes a source em-
bedding space as input and returns a mapped space, such that the embeddings of the
landmarks are close in F 0. In other words, we want to “rotate” the embedding space
F 1 such that their embeddings are aligned in the embedding space F 0. We call the em-
bedding space F 0 the anchor space. This approach is inspired by techniques for network
alignment [MSL+16] and cross-lingual dictionary building [CLR+18, ALA16]. However,
there is an important difference: In network alignment, the vertex correspondences are
pre-specified and used as input to train the model. In our setting, the landmarks can
be chosen explicitly, which we later exploit with a dedicated selection strategy. The
mapping function can be linear or a multilayer perceptron [RRK+90]. In any case, our
objective is captured by the following loss function:

L(h,F 1,F 0, L) =
∑
v∈L
||h(zi,v)− z0,v||F (5.2)

83

5. Scalability - Scalable Graph Embedding

Figure 5.2: Reconciliation of embedding spaces.

where ||.||F is the Frobenius norm, L is the set of landmarks, and zi,v is the embedding of
landmark v in F 1. Since it was shown that a linear function is sufficient to obtain a good
mapping [CLR+18, ALA16], we define the mapping function as h(F 1) = F 1×W where
W ∈ Rd×d and d is the embedding dimensionality. The above equation is rewritten in
its matrix form, if we denote the embedding matrices of the landmark nodes of F 1 and
F 0 as H1 and H0:

L(H1,H0,W) = ||H1W −H0||F (5.3)

Also, it is known that a better mapping is obtained when enforcing orthogonal-
ity on W [CLR+18]. Under the orthogonality constraint, the mapping matrix W
that minimises Equation 5.2 is found using singular value decomposition (SVD). Let
UΣV T = H0H

T
1 be the SVD of the matrix H0H

T
1 . Then, W is computed as

W = UV T . The matrix W can be computed as discussed above since this is its
closed form solution. In the general case, it can be found by minimzing the function in
Equation 5.3.

While we focus on mapping the landmarks, the learned mapping function is appli-
cable to the whole embedding space. Let W 1 be the mapping matrix from H1 to H0.
Then, the reconciled embedding space of F 1 is F 1W 1. Combined with F 0, we obtain
the reconciled embedding space [F 0,F 1W 1] where [. , .] is the concatenation operator.
As such, the reduce function is given as:

r(F 0,F 1) = [F 0,F 1W 1] (5.4)

Reduction order. To support the parallel execution of reducers, the reduce function
needs to be commutative and associative. In our case, these properties ensure that the
order in which we reconcile the embedding spaces does not affect the final embeddings.

First, the reduce function learned as in Equation 5.4 is commutative. While the
order of reducing would return either [F 0,F 1W 1] or [F 0W 0,F 1], both results have the
same meaning in our setting as the relative positions of the embeddings are the same in
both cases. More precisely, we consider two embedding spaces to be the same, if one can
be obtained from the other under a rotation. The above embedding spaces are similar
as [F 0,F 1W 1] = [F 0W

−1
1 ,F 1] = [F 0W 0,F 1] since W 0 = W−1

1 . The latter is derived
from the fact that in Equation 5.3, depending on the order of application, we obtain
either W 1 or W 0.

However, our reduce function is not guaranteed to be associative. For r(r(F 0,F 1),F 2)
to be equal to r(F 2, r(F 0,F 1)), [F 01,F 2W 2] needs to be equal to [F 01W 01,F 2] or

84

5.4 Scalable graph decomposition

W 01 = W−1
2 . The latter is only true, if the embedding space F 2 shares the same land-

marks with both F 1 and F 0. Put differently, for multiple applications of the reduce
function to be associative, all the embedding spaces need to share the same landmarks.

From the above observation, we derive a requirement for our graph decomposition
strategy: The subgraphs shall share a common set of landmarks. Note that further
vertices shared by a pair of subgraphs, which are not landmarks, will not affect the
resulting embedding space.

5.4 Scalable graph decomposition

This section introduces our approach to graph decomposition. We first propose a
two-step algorithm based on message-passing, a vertex-centric computational paradigm
(Section 5.4.1). We then define two decomposition strategies used by our approach,
landmark-aware partitioning (Section 5.4.2) and complement graph partitioning (Sec-
tion 5.4.3).

5.4.1 General Approach

Requirements. While graph decomposition is a well-studied problem, there are several
requirements that pertain to our setting:

(1) The decomposition shall be able to handle large graphs and operate in a distributed
setting. Centralised graph partition algorithms, such as METIS [KK95], can handle
large graphs, but have a large memory footprint and, hence, are not applicable for
compute clusters built from commodity hardware.

(2) The decomposition shall support constraints on the size of the subgraphs. This
way, subgraph sizes can be determined based on the memory available on compute
nodes, thereby enabling their optimal utilisation and preventing stragglers. Since
we assume commodity hardware, we aim to have partitions of equal size. If nodes
have the same amount of memory, the subgraph size is n−nl

k + nl, where n is the
graph size, nl is the landmark subgraph size, and k is the number of nodes.

(3) Subgraphs shall share the same set of connected landmark vertices to support rec-
onciliation of embedding spaces. As vertex embeddings are learned based on their
connectivity, connectedness ensures that landmark embeddings are meaningful, while
having important vertices as landmarks ensures that landmarks have strong connec-
tions.

(4) Subgraphs shall have minimal overlap apart from the landmarks, as these boundary
edges may be ignored, which could negatively affect the embedding quality.

Decomposition problem. We formulate the decomposition problem for a graph G =
(V,E) as follows. Let S1, S2, · · · , Sn denote n subgraphs of G, where Si = (Vi, Ei) for
1 ≤ i ≤ n. Moreover, let L = (VL, EL) denote a landmark graph, i.e., a graph that is
induced by a set of landmark vertices VL ⊆ V . For a subgraph Si, we denote by Si the
complement graph obtained from Si after excluding the landmark graph L.

Using the above notions, we define the landmark-aware graph decomposition prob-
lem. It is the decomposition of a graph G into n overlapping subgraphs S1, S2, · · · , Sn
such that

(1) the subgraphs share m landmarks VL ⊆ ∩iVi and |VL| = m;
(2) the induced landmark graph L is connected;
(3) the landmarks are important vertices, where importance is measured by a function

δ : V → N;

85

5. Scalability - Scalable Graph Embedding

5 7 3 2

7 7 3 7

7 7 7 7

7 7 7 7Superstep 3

Superstep 1

Superstep 2

Superstep 0

Active Inactive MessageEdge

Figure 5.3: Maximum value computation by vertex-centric computation model

(4) the subgraphs are of predefined sizes n1, · · · , nk, |Vi| = ni;
(5) the number of edges of the original graph that connect vertices of different comple-

ment graphs Si, Sj is minimised.

Vertex-centric computational model. The above requirements suggest to rely on
message-passing as a vertex-centric computational model [MAB+10, MLLS17]. It en-
ables the efficient and robust realization of distributed graph algorithms. Also, reasoning
about the algorithm becomes straightforward since one may focus on local operations
on vertices, while the global semantics emerge from the combination of local operations.
The model supports distribution, as there is no order of local operations as part of a
so-called superstep, while all communication happens between these supersteps.

In this model, in each superstep, a user-defined function for each vertex is executed
in a synchronous manner [MAB+10]. The model permits fourth types of operations
that a vertex can perform. First, a vertex may read messages it received in the previous
superstep. Second, a vertex may send messages to other vertices (usually its neighbours)
that they will receive in the next superstep. Third, a vertex may change its internal
state and modify its outgoing edges if necessary. Fourth, a vertex may vote to halt the
computation. Based on these four primitive operations, various graph algorithms can be
implemented, e.g., Pagerank [MAB+10], connected components [MAB+10]. Spark has
an implementation of the vertex-centric computation model called GraphX, which we
use to design our partitioning algorithm.

Figure 5.3 illustrates the computation of the maximum value of a strongly connected
graph. In the first superstep, every vertex sends its known maximum value to its neigh-
bors. Each vertex then updates its known maximum value and votes to halt. When a
vertex receives a message, it becomes active, updates the known maximum value before
sending the updated value to its neighbors again. This process ends when every node
votes to halt.

86

5.4 Scalable graph decomposition

Algorithm 5.1: Label propagation algorithm

input : Graph G = (V,E); label set L = {l1, . . . , ln}; compatibility function
comp, termination condition Ω.

output: n subgraphs S1, S2, . . . , Sn induced by the vertex labelling.

// Label initialisation - Vertex program

1 for v ∈ V do label(v)← init label(v);

// Label propagation

2 while not Ω do

3 for v ∈ V do
4 best label ← {};
5 best score ← −∞;

// Compute compatibility score

6 for l ∈ L do
7 if comp(v, l) > best score then
8 best label(v)← l;
9 best score ← comp(v, l);

10

// Vertex migration

11 for v ∈ V do
12 label(v)← migrate(label(v), best label(v))

13

// Statistics to support comp calculation

14 compute statistics(G, label);

15 return S1, S2, · · · , Sn where Si = {v ∈ V ∧ label(v) = li};

Vertex program

Vertex program

Label propagation algorithm. Most algorithms using the vertex-centric compu-
tational model are instances of the Label Propagation Algorithm (LPA) [MAB+10,
MLLS17], which is illustrated in Algorithm 5.1. LPA first assigns labels to vertices
randomly (line 1). Then, it iteratively improves the results by reassigning vertex labels
(lines 2-10). A vertex v will take the label l, if it is the most compatible one according
to a compatibility function, comp(v, l). Algorithms based on LPA differ in how they
measure the compatibility between a vertex and a label. Moreover, each vertex can
then choose to ‘migrate’ from one label to another one based on information obtained
from its neighbours or itself from previous iterations (lines 11-12). After the migration,
depending on the function comp, statistics are derived to support the evaluation of func-
tion comp (line 14). For instance, if comp involves constraints on subgraph sizes, the
statistics would include the measured sizes. While both the compatibility scoring and
migration are implemented as vertex-centric programs, for readability, we present LPA
as an iterative algorithm.

Next, we show how LPA is instantiated in our setting to design an algorithm for
landmark-aware graph decomposition.

A two-step approach. A solution to our problem of landmark-aware graph decom-
position would be an algorithm based on n-way graph partitioning [KK98]. It would

87

5. Scalability - Scalable Graph Embedding

decompose a graph into n subgraphs at the same time, such that all subgraph satisfy
the above constraints. However, finding such a decomposition is difficult, as even in the
simplest case of balanced graph partitioning, the problem is already NP-hard [FF15].
This is further complicated by the usage of the vertex-centric programming model.

We therefore propose a heuristic algorithm that works in two steps, each tackling
a subset of the constraints. In the first step, we focus on constructing the connected
landmark graph of vertices of high importance. In the second step, we aim to construct
the complement graphs that satisfy the constraints on subgraph sizes and crossing edges.
The algorithm is illustrated in Algorithm 5.2 and Figure 5.4.

Algorithm 5.2: Landmark-aware graph decomposition

input : Graph G = (V,E); number of subgraphs k; number of landmarks m;
maximal subgraph sizes {n1, . . . , nk}.

output: k subgraphs S1, . . . , Sk; landmark graph L.

// Computing vertex centrality

1 δ ← centrality(G);

// Landmark-Complement graph bi-partition

2 L, S ← LPA(G, {lL, lL}, Equation 5.7);

// Complement graph partition

3 S1, · · · , Sk ← LPA(S, {l1, · · · , lk}, Equation 5.8);

4 for i ∈ [1, k] do Si ← Si + L ;

5 return S1, . . . , Sn,L;

We first measure the importance of each vertex in the graph based on a centrality
score (line 1). Next, we decompose the graph into the landmark graph and a complement
graph using the LPA with the compatibility function introduced later in Equation 5.7
(line 2).

After obtaining the landmark graph, we continue to split the complement graph
following the same procedure (line 3). We use a different compatibility function for this
step, as later introduced in Equation 5.8. For both steps, we need to enforce the size
constraints on the subgraphs. Hence, in the LPA, the aforementioned statistics (line 14
of Algorithm 5.1) include the subgraph sizes. Finally, after splitting the complement
graph into subgraphs, we merge each of them with the landmark graph to obtain the
final decomposition (line 4).

5.4.2 Landmark-aware Partitioning

Next, we provide details on the first step of our approach, i.e., the instantiation of
LPA to construct a connected landmark graph of a specific size that contains important
vertices. This requires us to define a compatibility function that takes into account the
graph size, its connectedness, and vertex importance. We first discuss how to incorporate
the importance of vertices.

Importance-based compatibility. There are several ways to measure the importance
of vertices. However, in our setting, we focus on techniques that measure vertex centrality
in a distributed manner under the vertex-centric programming model. This limits our
options to either the degree centrality or eigenvector centrality, of which PageRank is a
particular instance. Note that some popular centrality measures are not applicable in

88

5.4 Scalable graph decomposition

1. Landmark graph
partition

Landmark graph

2. Complement graph
partition

Final result

Figure 5.4: Landmark-aware graph decomposition.

our context due to the implied computational overhead. For instance, the betweenness
measure requires computing all pairs shortest paths, which is intractable for large graphs.
Spark provides several algorithms to compute vertex centrality in an efficient way.

Let δ be the function that measures the importance of each vertex. We define the
compatibility between a vertex and a label as:

d(v, l) = 1l=0

(
δ(v)

δm
− 1

)
(5.5)

where δm is a parameter which signifies the smallest level importance we can tolerate.
Here, 1l=0 ensures that we only focus on landmark vertices, i.e., the landmark graph
is assumed to have label 0. The larger a vertex importance δ(v), the more likely it
is compatible with the landmark graph. For the complement graph, we fix the
importance of a node to a constant as all nodes are equally important to the
complement graph.

Size penalty. Strictly enforcing the size constraint on the landmark graph can lead to
slow convergence and instability. In practice, by allowing for a small difference [MLLS17],
the algorithm can converge faster. To this end, we define a penalty score for each
partition as a soft constraint to incorporate in the compatibility function.

Let nl be the desired size of the partition having label l. We denote C(l) = cnl to
be the maximum capacity of the partition with label l where c > 1 is a slack parameter.
That is, we allow the partition with label l to exceed its size nl by a factor of c. Let c(l)
be the number of vertices of partition l at an iteration. We define the size-based penalty
as:

s(l) =
c(l)

C(l)
. (5.6)

When the partition size is close to its capacity, the penalty is high. For two-way parti-
tioning such as considered in this step, we need to define two penalty functions based on
the landmark graph size m and the complement graph size |V |−m. As this formulation
is not limited to 2-way partitioning, we can apply the same strategy to n-way partition-
ing by integrating several size penalties as above to the compatibility function. This is
useful for our next step of partitioning the complement graph.

89

5. Scalability - Scalable Graph Embedding

Finally, we can define the compatibility score by combining Equation 5.5 and Equa-
tion 5.6 as follows:

comp(v, l) =
∑

u∈N(v)

1label(u)=l(λ1d(v, l)− λ2s(l)) (5.7)

where N(v) is the set of neighbours of vertex v. Here, the summation condition ensures
that the landmark graph is connected as the more landmarks a vertex is connected to, the
more compatible it is to the landmark graph. Furthermore, λ1, λ2 are hyperparameters
to balance the size penalty and importance-based compatibility.

5.4.3 Complement Graph Partitioning

After the landmark-aware partitioning, we obtained a landmark graph and the comple-
ment graph. As the landmark graph is shared between subgraphs, to obtain the final de-
composition, we need to split the complement graph. The aforementioned requirements
request that subgraphs shall have particular sizes and the splits of the complement graph
shall minimise the number of edges between subgraphs. For the former conditions, we
rely on the size penalty as defined already in Equation 5.6. As for the latter, we aim
to maximise the edge locality. That is, a vertex is more compatible with a label that is
shared the most of its neighbours, which is captured as:

a(v, l) =
∑

u∈N(v)

1label(u),l

Combining the above functions, we obtain the following compatibility function for com-
plement graph partitioning:

comp(v, l) = a(v, l)− s(l). (5.8)

By applying the above function as part of LPA, we split the complement graph into
non-overlapping partitions. The subgraphs can then be combined with the landmark
graph to obtain the required subgraphs, as illustrated in Figure 5.4.

5.5 Implementation & Optimisation

Having introduced our framework to scalable and robust graph embedding, we discuss
how it is implemented in Spark [ZXW+16], a state-of-the-art engine for distributed
data processing. We outline the general system design (Section 5.5.1), before proposing
optimizations related to lazy reconciliation (Section 5.5.2) and iterative refinement of
the constructed embeddings (Section 5.5.3).

5.5.1 System Design

Data storage. Our implementation handles three types of data, i.e., graphs, vertex fea-
tures, and vertex embeddings, using a Distributed File System (DFS), the main memory,
and the local file system (LFS) of a compute node. Spark manages data using Resilient
Distributed Datasets (RDDs), multisets of data elements kept in main memory. Data
on stored on a DFS and in an RDD can be accessed by all machines, in contrast to data
stored on the LFS. However, accessing data on the LFS does not incur communication
cost. Also, has generally bigger capacity than RDDs, which are limited by the size of

90

5.5 Implementation & Optimisation

the main memory of compute nodes. Note that DataFrames and RDDs can be used
interchangeably in Spark, with largely the same performance.

Storing a graph: Initially, the input graph is stored on the DFS to provide access for
all compute nodes. The graph is then split randomly where each random subgraph is
stored as an RDD, as hinted at already in Figure 5.1. The actual graph decomposition
can then operate on these RDDs, while the subgraphs obtained by the decomposition
algorithm are stored on the LFS of compute nodes. This leverages data locality as a
mapper can directly access the partition without communicating with other nodes. As
a storage format for the DFS and the LFS, we rely on edge lists, i.e., files in which each
line represents a node and its neighbours.

Storing vertex features and embeddings: Vertex features and embeddings are stored
in a similar manner, i.e., each line in a file represents a vertex and its features or its
embeddings. As using a GNN as an embedding technique requires both vertex features
and the subgraph for training, we co-locate them together at a compute node to reduce
communication cost. The vertex embeddings obtained after the map phase and each
reduce phase are stored as RDDs, which can be read by subsequent reducers.

Training with GPU. Our implementation supports the use of GPUs to speed up the
training process. To this end, elements of an RDD are piped from Spark to an Au-
tomatic Differentiation Framework (ADF) that supports graph learning using Pytorch-
Geometric [FL19]. As the training is based on the graph and the vertex features, we
would need to pass these information, stored in RDDs, to an ADF. However, send-
ing large subgraphs with vertex features would take a lot of time and communication.
We therefore opted for storing only the path to a subgraph and its vertex features as
an element in an RDD, which are then read directly by the ADF from the DFS. After
training, the results, which are the node embeddings, are piped back to Spark and stored
as RDDs.

Note that the overhead of combining Spark with an ADF is small. First, all commu-
nication happens locally on the same worker instance. Second, there is no inter-process
communication between Pytorch and Spark during training. Hence, the overhead is only
the initial I/O, where Pytorch reads subgraphs and vertex features, and the final I/O,
where Spark reads the output from Pytorch. Since Pytorch reads the subgraphs and
features directly from the LFS, the initial I/O overhead is small. Third, there is no pre-
processing involved as the subgraphs, vertex features, and embeddings are stored in data
formats that are natively supported by Pytorch-Geometric [FL19]. In our experiments,
we have observed the total overhead to be around 30s for a graph of 1M nodes.

Fault tolerance. Spark can recover from node failure by reconstructing the input data
from the stored data linage. However, if node failure occurs while the data is being
processed, all the processed information is lost. While this problem is inherent to the
design of Spark, we are able to alleviate this problem by checkpointing the processed
data. More precisely, at specific epochs of the training process, we save the embedding
model to distributed persistent storage, i.e., the DFS. When a node fails and another
node is used to restart computation, it can continue training from the last checkpoint
by loading the model from the DFS. Note that we use checkpointing only for the map
phase as it incurs the highest processing times and, hence, the largest recovery cost.

5.5.2 Lazy Reconciliation

After learning the mapping matrix W to reconcile the embedding spaces F 0,F 1 in a
reduction step (see Section 5.3.3), we can reconcile the embedding spaces immediately

91

5. Scalability - Scalable Graph Embedding

based on Equation 5.4. The reconciled embedding space can then be stored for further
reduction step, if needed. Yet, each reduction step requires inter-node communication to
transfer all the vertex embeddings from the nodes at which they are stored to the node
evaluating the reduce function. However, we note that to learn the mapping matrix W ,
in Equation 5.3, only the embeddings of the landmarks are needed. Hence, to reduce
communication cost, at each reduction step, we only need to fetch the embeddings of
the landmarks for reconciliation. Only afterwards, when the reduction step finishes, we
apply the stored mapping matrices to reconcile also the non-landmark vertices. This
optimisation reduces the communication cost significantly, with only minor overhead
caused by the need to store the mapping matrices.

5.5.3 Iterative Refinement

As another optimization, to further improve the embedding quality, our implementation
iteratively refines the constructed embeddings. Here, our idea is to use different graph
decompositions in each round of the general process (which includes the graph decompo-
sition, the map phase, and the reduce phase) and to incorporate the embeddings learned
in one round also in the subsequent round. This way, we ensure a certain diversity of
the subgraphs used in the learning process. By combining the results obtained for these
diverse subgraphs the final embedding quality is improved.

Diversity per round. We use a different set of landmarks, and hence subgraphs, in
each round of the learning process. As a result, different sets of edges are considered, as
vertices of the same subgraph in one round, may be part of different subgraphs in another
round. Edges that are ignored in one round will be included in other rounds, so that,
ideally, all edges are eventually incorporated in the learning process. To operationalize
this idea, our landmark-aware decomposition algorithm is modified to assign multiple
labels to each vertex, which then induce multiple decomposition results.

Multi-round refinement. Once a round has completed, we store the learned models
in a model bank (on the DFS). In the next round, the models from this model bank
are used as additional input in the learning process. The intuition is that the vertex
embeddings constructed in a round should inherit the results from the previous rounds.
Also, to maintain continuity, the models obtained in one round should not be vastly
different from those of previous rounds. Depending on the graph embedding model, we
propose different ways to leverage model bank to improve the embedding quality.

For shallow graph embedding models, the vertex embeddings directly correspond to
the learned model. In the first round, the model bank is initialised with random vertex
embeddings. Then, in each round, we use the vertex embeddings available in the model
bank to initialise the embeddings. After each round, the model bank is updated with
the newly constructed vertex embeddings. Hence, unlike a traditional setup that would
initialise the vertex embeddings randomly in each round, in our proposal, the learning
process takes advantage of the results from previous rounds.

For graph neural networks, the models stored in the model bank obtained from the
previous round are further refined with different subgraphs. More precisely, the model
f (k)(Si,F i) obtained at the k-th round by training on subgraph Si and vertex features
F i will be trained on another subgraph Sj with its corresponding vertex features F j :
f (k+1) = f (k)(Sj ,F j). As part of that, we need to make sure, though, that the subgraphs
Si, Sj are different, but still share some vertices to ensure model continuity.

92

5.6 Experiments

5.6 Experiments

This section reports on an experimental evaluation of our approach to scalable robust
graph embedding. We first outline the experimental setup (Section 5.6.1). Subsequently,
we present results on the effectiveness of our algorithm to graph decomposition (Sec-
tion 5.6.2), the impact of the reconciliation of embedding spaces (Section 5.6.1), the
end-to-end performance of our approach (Section 5.6.4), and the effect of the optimisa-
tion based on iterative refinement (Section 5.6.5).

5.6.1 Experimental Setup

Datasets. We rely on five real-world standard benchmark datasets, see Table 5.1. Flickr
and Youtube are social networks with a medium number of nodes but a large number
of edges and originate from [TL09]. Note that the edge size is an important measure
of the graph size as the models are more sensitive to the number of edges. Arxiv and
Papers are two bibliographic networks connecting papers, while Products is a network
of Amazon products linked by customer purchases. The last two datasets are from the
graph benchmark [HFZ+20]; the Arxiv dataset has been introduced in [LKF07]. Also,
vertices of Products and Papers are attributed.

Baselines. We compare against DGL [ZMW+20] and PBG [LWS+19], which are two
frameworks for distributed graph embedding. While DGL is a general-purpose approach
that can be used for any embedding technique, PBG is a scalable shallow embedding
model. Both approaches are similar to our approach as they involve partitioning the
original graph to scale out the learning process.

Also, we compare our landmark-aware decomposition against graph partitionings
obtained with Spinner [MLLS17] and DGL [ZMW+20]. Spinner is a distributed graph
partitioning algorithm based on Pregel [MAB+10] which can also be considered as an
extension of the LPA. DGL uses a centralised approach that first abstracts the graph
for partitioning and then refines the coarse-grained partitions to obtain the result.

Measures. To measure the embedding quality, we train a linear classifier using the
embeddings as features. We then evaluate the classifier on a test set and measure its
accuracy to obtain a metric for the embedding quality. Efficiency is measured by the
communication cost, the data volume transferred per epoch of the training process, the
training time per epoch which is the total training time divided by the number of epochs,
and the speedup, the training time per epoch normalised by the number of compute nodes
used.

Configuration. Unless stated otherwise, we use the following hyperparameters. We
split the graph into 5 equal partitions with a landmark subgraph of size 0.01%. Due to
the high cost of these experiments, we do not perform hyperparameter tuning and use
the suggested default values. For node2vec, we use 10 walks per node with a walk length
of 10, batch size 2000, embedding size 128, and learning rate 0.01. For GraphSAGE,
we use 2 layers of GNN with 10 and 5 neighbours, respectively, a hidden size of 128, a
dropout after the first layer with probability 0.5, batch size 2000, embedding size 128, and
learning rate 0.03. We train these algorithms for 5 epochs and report the test accuracy
of the last model. We use an AWS cluster of p2.xlarge instances (4 VCPU, 61GB RAM,
1 VGPU) except for experiments involving PBG. In these cases, we use m5a.4xlarge
instances, as PBG cannot leverage a GPU. For experiments with the Papers dataset,
we use an m5a.12xlarge cluster (48 VCPU, 192 GB memory) due to DGL’s memory

93

5. Scalability - Scalable Graph Embedding

requirements. We chose these configurations to demonstrate our framework’s scalability
on commodity hardware.

5.6.2 Effectiveness of Graph Decomposition

We first explore the effectiveness of our landmark-aware graph decomposition when
splitting the graphs into give overlapping subgraphs. We set the landmark graph size
to be 0.1% of the original graph and measure the vertex importance by their degree.
The quality of the decomposition is assessed by two metrics: the average degree of a
node in the landmark graph and the normalised number of edge cuts. We expect a good
partition to have a large average degree and a small number of edge cuts.

Table 5.2 shows that our approach outperforms the baselines significantly on both
metrics, over all datasets. For instance, on the Arxiv dataset, our approach returns a
landmark graph with an average degree twice that of Spinner and 6 times that of DGL.
In addition, our approach has a significantly lower number of edge cuts in comparison
with the baselines. We also observe that only our technique, which follows a distributed
approach, is able to handle billion-scale graphs, such as the Papers dataset. This exper-
iment confirms that our approach is both scalable and effective in decomposing a graph
for the subsequent learning process.

5.6.3 Effects of MapReduce-based Embedding

Effects of Reconciliation. First, we investigate the impact of the reconciliation on
the resulting vertex embeddings. We compare the quality of vertex embeddings obtained
with and without reconciliation based on accuracy. The results shown in Figure 5.5-A
confirm that the reconciled embedding space has higher accuracy than the non-reconciled
one across all datasets. For instance, on the Arxiv dataset, the accuracy of the non-
reconciled embedding space is only 0.35 while after reconciliation, the accuracy is 0.47.

Flickr Arxiv You. Prod.Papers0

0.2

0.4

0.6

Ac
cu

ra
cy

w/o reconcile
with

Figure 5.5: Reconciliation.

Flickr Arxiv You. Prod.Papers0

0.2

0.4

0.6

Ac
cu
ra
cy

Random
Degree-based

Figure 5.6: Degree vs. Random selection

Effects of landmark selection strategy. Next, we analyse the role of landmark by
comparing of two landmark selection strategies: random and our proposed degree-based
selection. We also measure the quality by comparing the accuracy of the resulting vertex
embeddings. Figure 5.5-B shows that having important landmarks is key in improving
the quality of vertex embeddings. The improvement is consistent across all datasets with
the highest is 0.2 on Products.

Effects of landmark subgraph size. In this experiment, we vary the size of the land-
mark subgraph from 32 to 2048 to analyse the effect on the embedding quality. Figure 5.8
shows that the accuracy tends to increase as we increase the subgraph size. However,

94

5.6 Experiments

0

1

2

Sp
ee

du
p

Arxiv

0

2

4
Products

0
1
2
3
4

Youtube

0
1
2
3

Flickr

0

2

4
Papers

2 5 8
#partitions

0
100
200

C
om

m
. (
M
B)

2 5 8
#partitions

0

10k

20k

2 5 8
#partitions

0
0.8k
1.6k

2 5 8
#partitions

0
100
200

2 5 8
#partitions

0
100
200

Ours
DGL
PBG

Figure 5.7: Scalability

Table 5.1: Statistics of datasets

|V | |E| #features

Flickr 80,513 5,899,882 n/a
Arxiv 169,343 1,166,243 128
Youtube 495,957 1,936,748 n/a
Products 2,449,029 61,859,140 100
Papers 111,059,956 3,231,371,744 128

the rate of increase is small for sizes larger than 128. In general, using more landmarks
enables better reconciliation of embedding spaces, which leads to an improvement of
the embedding quality. However, increasing the number of landmarks has a diminishing
return.

32 128 512 2048
Landmark subgraph size

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu
ra
cy

Flickr
Prod.

You. Arxiv

Figure 5.8: Subgraph size

2 5 8
#partitions

−0.06

−0.04

−0.02

0

0.02

Ac
c.
 D
iff
er
en

ce

Flickr
Prod.

You. Arxiv

Figure 5.9: Dist. vs. Single.

5.6.4 End-to-end Evaluation

Having evaluated the individual parts of our solution, we turn to its end-to-end perfor-
mance in comparison to other techniques.

Comparative analysis. We first compare our approach with state-of-the-art dis-
tributed graph embedding techniques. Table 5.3 compares the performance of our
approach with state-of-the-art techniques. Here, we use GraphSAGE with the afore-
mentioned hyperparameters with m5.4xlarge instances for our approach and DGL. For
the Papers dataset, we rely on m5a.12xlarge instances. We do not leverage a GPU to
ensure a fair comparison, since PBG cannot exploit it.

95

5. Scalability - Scalable Graph Embedding

Table 5.2: Effectiveness of graph decomposition

Average degree Normalised #edge cuts

Spinner DGL Ours Spinner DGL Ours

Arxiv 674 211 1214 3.89 1.08 0.52
Products 2323 213 3331 35.23 3.77 1.92
Youtube 464 11 7822 0.46 0.203 0.09
Flickr 2383 292 2487 1.595 0.95 0.73
Papers 906 N/A 1784 9.52 N/A 11.6

Table 5.3: Comparative analysis

Time (s) Accuracy Communication (GB)

PBG DGL Ours PBG DGL Ours PBG DGL Ours

Arxiv 76 29 22 0.31 0.36 0.49 0.04 0.05 0.006
Products 649 2081 361 0.39 0.55 0.64 0.64 4.44 0.08
Youtube 312 136 107 0.13 0.21 0.201 0.6 0.14 0.04
Flickr 56 30 19 0.15 0.17 0.17 0.03 0.27 0.003
Papers N/A 3764 717 N/A 0.435 0.478 N/A 5.324 0.022

Our approach leads to better or comparable accuracy of the constructed embeddings,
while outperforming the baseline techniques in communication cost and training time.
This is expected as the only communication in our framework is from the compute
nodes to the DFS during the reduction phase. In contrast, both DGL and PBG require
continuous communication between compute nodes during training. This communication
overhead also implies higher training times per epoch. On datasets with vertex features
such as Papers, our approach is better than DGL in terms of accuracy even when the
same graph embedding algorithm is used. As our approach splits the graph and performs
graph embedding independently, it can be considered as an ensemble of independent
models, which is usually better than a single model. As each model may access only the
subgraph, but not the full graph, training relies more on vertex features. Hence, our
method performs better on graphs with vertex features. For featureless graphs, such as
Flickr or Youtube, our approach achieves comparable accuracy with DGL.

Runtime break-down. We break down the time to learn the vertex embeddings of
the Arxiv dataset in Figure 5.12-A. Similar distributions are observed for the other
datasets. Here, with more subgraphs, the decomposition takes more time. This can be
attributed to harder decomposition constraints, which makes it more difficult to find a
good partitioning. On the other hand, the map phase is shorter, as the number of vertices
per subgraph, and thus the number of vertex embeddings to be learned, is smaller.

Distributed vs. Single machine. To understand the trade-off between performance
and scalability, we measure the difference in accuracy between our distributed version
and a single machine setup. We use the node2vec embedding model (10 walks of length
5, batch size 2000, learning rate 0.01). Using this model, only the Flickr, Arxiv, Youtube
and Products datasets fit in main memory, with sizes 4.2GB, 3.9GB, 7.1GB, and 24GB,
respectively. Figure 5.9 shows that the difference in accuracy is very small, less than
0.05 in absolute terms, across all datasets. While the difference increases with the level
of parallelism, even with 8 partitions, the drop in accuracy is only 0.048 in comparison

96

5.6 Experiments

to a centralized version.

Arxiv Prod. You. Flickr Papers0

200

400

R
ec

ov
er
y
tim

e
(s
)

DGL Ours

Figure 5.10: Robustness.

Arxiv Prod. You. FlickrPapers0

0.2

0.4

0.6

Ac
cu

ra
cy

1 round 2 rounds 3 rounds

Figure 5.11: Refinement.

2 parts 5 parts 8 parts0%

20%

40%

60%

80%

100%
Decompose Map Reduce

Figure 5.12: Runtime break-down

Arxiv Prod. You. FlickrPapers0

0.2

0.4

0.6

Ac
cu

ra
cy

1 round 2 rounds 3 rounds

Figure 5.13: Refinement.

Scalability. Next, we analyse the scalability of our approach in terms of the speedup,
as we increase the number of partitions (and thus compute nodes) from two to eight.
Figure 5.7 shows the speedup as the relative improvement of training time using the
setup with two partitions as the reference. The speedup of our approach increases
with more partitions and is consistently higher than the one observed for the baseline
techniques. For instance, with eight partitions and the Products datase, our speedup is
3.8, whereas DGL and PBG achieve 0.9 and 1.1, respectively. For small datasets, such
as Flickr and Arxiv, using more compute nodes actually results in higher training times
for PBG, as the increase in I/O and communication overhead dominates the benefits of
parallelisation.

Figure 5.7 also shows that our approach maintains stable communication costs as the
number of partitions increases. For instance, on the Products dataset, there is an 26%
increase in communication, as the number of node increases from two to eight, compared
to 56% for DGL and 143% for PBG. For the Papers dataset, we achieve a speedup of
3.9 with 8 partitions and a low communication cost of around 34MB in absolute value.
Also, our method transfers only 0.08GB, whereas DGL and PBG require 10.6GB and
0.88GB respectively. We conclude that our approach turns out to show better scalability
than the baseline techniques.

Robustness. To assess the robustness to node failure, we measure the recovery cost,
i.e., the time required to get back to the same state before the node failure. This time
includes the time to load the data to the compute nodes. PBG is excluded in this
experiment due to the difficulty in measuring the data loading time, as PBG uses partial

97

5. Scalability - Scalable Graph Embedding

data loading. We simulate node failure by terminating the training process of a node at
different training rounds.

Figure 5.12 confirms the robustness of our approach, illustrating that recovery costs
are lower than those observed for DGL. The reason being that DGL requires restarting
the whole training process, since, even though it supports model checkpointing, all com-
pute nodes need to be restarted before training can continue. Also, note that both PBG
and DGL require manual intervention to restart the process, whereas our implementation
recovers automatically.

5.6.5 Effects of Iterative Refinement

Finally, we analyse the effects of our optimisation based on iterative refinement on the
quality of the embeddings. We increase the number of rounds from one to three for each
dataset, expecting an increased embedding quality. This is confirmed in Figure 5.13.
However, the improvement is largest initially, reaching a plateau after two rounds. For
instance, for the Products dataset, accuracy increases from 0.57 to 0.59, when going from
one to two rounds, while another round leads to a minor improvement of 0.01. While
we omit the results for training time and communication cost due to space constraint,
these measures turned out to increase linearly with the number of rounds.

5.7 Summary

To achieve scalable and robust graph embedding, we proposed a distributed learning
process based on the MapReduce model, which can distribute any existing embedding
technique. In essence, in the map phase, we learn vertex embeddings for subgraphs,
while the reduce phase reconciles the obtained embedding spaces. For the reconciliation
to work, we introduced a distributed graph decomposition algorithm based on a vertex-
centric computational model. We also presented an implementation of the approach in
Spark. Experiments with several real-world datasets confirm the efficiency, scalability,
and robustness of our approach.

98

Chapter 6
Conclusion

6.1 Summary of the Work

With the advance of social media and social networks, data available on the Web have
increased not only in quantity in quality. The amount of data is increasing at an un-
precedented scale, which makes it extremely difficult for a user to look for a specific
information. On the other hand, data are becoming multimodal and heterogenous as
users are able to share not only texts but also images, audios, and videos. In addition,
data are becoming more connected as relationships between different data elements are
also readily available such as in social networks. Traditional information retrieval tech-
niques aim to help users to cope with large amount of data by allowing them to search
for documents that satisfy their information need. However, given the heterogeneity of
the data, traditional IR systems cannot handle multimodal data well.

Moreover, traditional queries are limited in their capacity to capture users’ intention
since there are mismatches between supported query terms and available data. Tradi-
tional queries are combinations of independent textual query terms while data can be of
different modalities or they are connected. It is not possible for a user to describe their
information need in other modalities or specify the relationships between query terms
even they are available. As a result, there is a need for novel IR system that can support
context-rich queries in terms of multimodality and connectivity.

In this thesis, we propose to model data and queries as graphs that can capture data
elements/query terms and the relationships between them as well as their modalities.
Based thereon, a graph embedding model is applied on the data graph to obtain vertex
and subgraph embeddings. This graph embedding model is also applied on the queries
to construct the query embeddings. Given the query embeddings and vertex/subgraph
embeddings, we follow the vector space retrieval model to answer the queries. In particu-
lar, we present graph embedding techniques to support two different settings of the data
and queries including Heterogeneity and Connectivity. We also consider the Scalability
aspect of embedding techniques as they are required to handle large graphs that are
available in practice.

Heterogeneity. In Chapter 3, we propose an approach to construct a multimodal
graph/network for any tabular data collection based on Heterogeneous Information Net-
work (HIN). We present methods to construct the vertex embeddings of the HIN that
can take into account the modality of the vertices as well as their connections. Our
graph embedding model is an adapted instance of the Message-Passing Neural Network
(MPNN) for heterogenous graphs. Based on this model, we also propose a method

99

6. Conclusion

to create query embeddings for heterogenous queries. Our experiments show that our
graph embedding model is more effective than homogeneous ones while our retrieval
result based on query embeddings are more relevant than traditional baselines.

Connectivity. In Chapter 4, we propose an approach to construct query embeddings
for interconnected queries. We introduce a truncated message passing approach to cre-
ate embeddings for subgraphs and queries. These embeddings are used to speed up
traditional subgraph isomorphism search by reducing matching candidates. We further
propose a caching strategy to store past queries and their results to speed up search,
which is made possible by the availability of query embeddings. Our evaluation shows
that our embedding-based approach can reduce retrieval time significantly. In addition,
our cache management strategy enables better cache reuse with higher cache hits.

Scalability. In Chapter 5, we propose a method to scale any graph embedding tech-
nique to large graphs. It follows the MapReduce programming paradigm where we
divide the graph into small subgraphs, construct graph embedding for each of them
before merging them together. We propose a graph decomposition algorithm that can
handle large graphs while taking into account hardware availability. We implement our
MapReduce algorithm on Spark which makes our algorithm robust to failure and easy
to use for end-users. The experiments confirm the scalability of our approach as it out-
performs traditional approaches significantly in terms of communication cost, speed up
and accuracy.

6.2 Limitations and Future Directions

We realize that the proposed approaches in this dissertation still have several limitations
and they can be further improved in a number of ways.

Unstructured Data. In this thesis, we assume that the data is structured as they can
be either in tabular format or they can be represented as a graph. To handle unstructured
data, we need an information extraction step in which we convert unstructured data to
structured format. While information extraction is a well-studied problem, we need an
end-to-end approach that can extract data from texts to form a graph directly. Until
such approach is available, text-based retrieval is still required to handle textual data
which is abundant on the Web.

Dynamic Graphs. The graphs we consider in this thesis are assumed to be static.
However, this is not true in practice. For constructed HIN, as data come and go, these
changes need to be reflected in the graphs as well. On the other hand, for natural graphs,
they are usually dynamic such as social networks where friendships can be made or
removed. Graph embedding techniques need to be able to adapt to these changes without
retraining the whole graph while handling heterogenous vertices. Our MapReduce-based
approach provides a way to design such an approach as vertex embeddings for updated
vertices can be learned independently before merging with the whole graph. Other
methods [RFC+20, LGP18] are also available but they are limited in scale and do not
handle heterogenous graphs.

Featureless Graphs. For graph embedding methods such as graph neural networks
to work, a common assumption is that the node have features. In practice, this may
not be the case due to difficulty in collection node information such as privacy concerns.
While shallow methods such as node2vec [GL16] or DeepWalk [PARS14] can work with
featureless graphs, they can not be used on unseen graphs. On the other hand, existing
graph neural network methods are ad-hoc as they use structural information such as

100

6.2 Limitations and Future Directions

the node degree as node features. As such, in this setting, we need a principled and
meaningful way to construct the node features.

Search Interface. While our approach can be used to answer context-rich queries,
it first needs the users to be able to express their queries in a convenient way. The
added expressiveness should not be hindered by the difficulty of specifying a context-
rich query. There are two added contextual information in a context-rich query. First,
as our queries are multimodal, users should be able to specify different modalities such
as images, audios and videos. Second, users can specify the connections between query
terms if they are available. The search interface needs to allow users to specify different
modalities as well as connections in an efficient way. A complex query specifying process
would discourage users in trying context-rich queries even they are better than traditional
text-based queries.

Explainability. While graph embedding enables applying vector space retrieval model
in graphs, they can not explain why they come up with the retrieval result. In crit-
ical applications where explanations are required, further research into explainability
of graph embedding models is needed. There are several research directions including
what-if analysis, counterfactual analysis. In these methods, we aim to understand the
underlying model by changing the input parameters and observing their outcomes. For
instance, by adding or removing a node or an edge on a graph, we would understand its
importance in the model.

Vector Indexing. To speed up retrieval, an index on the embedding space is required.
While there are several methods on indexing vectors [Gut84, DBCVKO08], they do not
satisfy all the requirements in our setting. We need an indexing mechanism that can han-
dle high-dimensional vectors, dynamic admission or removal of embeddings, distributed
computation of similarity. These requirements in combination require a managed system
to go beyond traditional indexing techniques such as a vector database system.

101

6. Conclusion

102

Bibliography

[AAB+19] Aaron Archer, Kevin Aydin, Mohammad Hossein Bateni, Vahab Mir-
rokni, Aaron Schild, Ray Yang, and Richard Zhuang. Cache-aware load
balancing of data center applications. 12(6):709–723, 2019. 52

[Abb07] Noureddine Abbadeni. An approach based on multiple representations
and multiple queries for invariant image retrieval. In VISUAL, pages
570–579, 2007. 32

[Abb09] Noureddine Abbadeni. Information retrieval from visual databases using
multiple representations and multiple queries. In SAC, pages 1523–1527,
2009. 30, 32

[AKA17] Tahir Azim, Manos Karpathiotakis, and Anastasia Ailamaki. Recache:
Reactive caching for fast analytics over heterogeneous data. VLDB,
11(3):324–337, 2017. 66

[ALA16] Mikel Artetxe, Gorka Labaka, and Eneko Agirre. Learning principled
bilingual mappings of word embeddings while preserving monolingual in-
variance. In EMNLP, pages 2289–2294, 2016. 83, 84

[APTP03] Khalil Amiri, Sanghyun Park, Renu Tewari, and Sriram Padmanabhan.
Dbproxy: A dynamic data cache for web applications. In ICDE, pages
821–831. IEEE, 2003. 52

[BBZ17] Petra Budikova, Michal Batko, and Pavel Zezula. Fusion strategies for
large-scale multi-modal image retrieval. In TLDKS, pages 146–184. 2017.
22, 28

[BCL+16] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. Efficient
subgraph matching by postponing cartesian products. In SIGMOD, pages
1199–1214, 2016. 23, 24

[BFG+10] Vincenzo Bonnici, Alfredo Ferro, Rosalba Giugno, Alfredo Pulvirenti,
and Dennis Shasha. Enhancing graph database indexing by suffix tree
structure. In IAPR-PRIB, pages 195–203. Springer, 2010. 24, 55, 66

[BFW+21] Cristian Bodnar, Fabrizio Frasca, Yu Guang Wang, Nina Otter, Guido
Montúfar, Pietro Lio, and Michael Bronstein. Weisfeiler and lehman
go topological: Message passing simplicial networks. arXiv preprint
arXiv:2103.03212, 2021. 16

103

BIBLIOGRAPHY

[Bil00] Dania Bilal. Children’s use of the yahooligans! web search engine: I.
cognitive, physical, and affective behaviors on fact-based search tasks.
Journal of the American Society for information Science, 51(7):646–665,
2000. 1

[BYRN11] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern information
retrieval: The concepts and technology behind search, 2011. 1, 3, 20, 21,
22

[CFSV04] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A
(sub) graph isomorphism algorithm for matching large graphs. TPAMI,
26(10):1367–1372, 2004. 23, 51, 52, 59, 60, 66

[CKP14] Bokai Cao, Xiangnan Kong, and S Yu Philip. Collective prediction of
multiple types of links in heterogeneous information networks. In ICDM,
pages 50–59, 2014. 35

[CLG18] Eduar Castrillo, Elizabeth León, and Jonatan Gómez. Dynamic struc-
tural similarity on graphs. arXiv preprint arXiv:1805.01419, 2018. 58

[CLR+18] Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic De-
noyer, and Hervé Jégou. Word translation without parallel data. ICLR,
2018. 83, 84

[CLS+19] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-
Jui Hsieh. Cluster-gcn: An efficient algorithm for training deep and large
graph convolutional networks. In KDD, pages 257–266. ACM, 2019. 17

[CLW+16] Yue Cao, Mingsheng Long, Jianmin Wang, Qiang Yang, and Philip S Yu.
Deep visual-semantic hashing for cross-modal retrieval. In KDD, pages
1445–1454, 2016. 22

[CLWL17] Yue Cao, Mingsheng Long, Jianmin Wang, and Shichen Liu. Collective
deep quantization for efficient cross-modal retrieval. In AAAI, pages
3974–3980, 2017. 22, 28

[CLX15] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph
representations with global structural information. In CIKM, pages 891–
900, 2015. 13

[DBCVKO08] Mark De Berg, Otfried Cheong, Marc Van Kreveld, and Mark Overmars.
Orthogonal range searching: Querying a database. Computational Ge-
ometry, pages 95–120, 2008. 52, 59, 101

[DBVB17] Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, and Xavier Bres-
son. Fma: A dataset for music analysis. In ISMIR, pages 1–8, 2017. 42

[DCS17] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. metapath2vec:
Scalable representation learning for heterogeneous networks. In KDD,
pages 135–144, 2017. 41

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data process-
ing on large clusters. Communications of the ACM, 51(1):107–113, 2008.
81, 82

104

BIBLIOGRAPHY

[DHD+19] Chi Thang Duong, Thanh Dat Hoang, Ha The Hien Dang, Quoc
Viet Hung Nguyen, and Karl Aberer. On node features for graph neural
networks. arXiv preprint arXiv:1911.08795, 2019. 51

[DSV+18] Matthias Dorfer, Jan Schlüter, Andreu Vall, Filip Korzeniowski, and Ger-
hard Widmer. End-to-end cross-modality retrieval with cca projections
and pairwise ranking loss. IJMIR, 7(2):117–128, 2018. 22, 28, 46

[DYH+20] Chi Thang Duong, Hongzhi Yin, Dung Hoang, Minn Hung Nguyen,
Matthias Weidlich, Quoc Viet Hung Nguyen, and Karl Aberer. Graph
embeddings for one-pass processing of heterogeneous queries. In ICDE,
pages 1994–1997, 2020. 14, 51

[EHSM08] Hugo Jair Escalante, Carlos A Hérnadez, Luis Enrique Sucar, and Manuel
Montes. Late fusion of heterogeneous methods for multimedia image
retrieval. In ICMR, pages 172–179, 2008. 22, 28

[FF15] Andreas Emil Feldmann and Luca Foschini. Balanced partitions of trees
and applications. Algorithmica, 71(2):354–376, 2015. 88

[FL19] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning
with pytorch geometric. arXiv e-prints, pages arXiv–1903, 2019. 91

[FZMK20] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. Magnn: Metapath
aggregated graph neural network for heterogeneous graph embedding. In
Proceedings of The Web Conference 2020, pages 2331–2341, 2020. 16

[GL16] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In KDD, pages 855–864, 2016. 13, 100

[GMA+08] Charles Garrod, Amit Manjhi, Anastasia Ailamaki, Bruce Maggs, Todd
Mowry, Christopher Olston, and Anthony Tomasic. Scalable query result
caching for web applications. VLDB, 1(1):550–561, 2008. 52

[GSR+17] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and
George E Dahl. Neural message passing for quantum chemistry. In ICML,
pages 1263–1272, 2017. 13, 14

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial search-
ing. In SIGMOD, pages 47–57, 1984. 52, 59, 101

[GY13] Shahram Ghandeharizadeh and Jason Yap. Cache augmented database
management systems. In DBSocial, pages 31–36, 2013. 52

[HBZ+18] Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure
Leskovec. Embedding logical queries on knowledge graphs. In NIPS,
pages 2026–2037, 2018. 22, 39

[HDQ+19] Thanh Trung Huynh, Chi Thang Duong, Thang Huynh Quyet, Quoc
Viet Hung Nguyen, Abdul Sattar, et al. Network alignment by represen-
tation learning on structure and attribute. In PRICAI, pages 698–711,
2019. 51

105

BIBLIOGRAPHY

[HDWS20] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous
graph transformer. In Proceedings of The Web Conference 2020, pages
2704–2710, 2020. 16

[HFZ+20] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren,
Bowen Liu, Michele Catasta, and Jure Leskovec. Open graph benchmark:
Datasets for machine learning on graphs. In NeurIPS, 2020. 93

[HLJ06] Xiuzhen Huang, Jing Lai, and Steven F Jennings. Maximum common
subgraph: some upper bound and lower bound results. BMC bioinfor-
matics, 7(4):S6, 2006. 61

[HLL13] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. Turboiso: towards ul-
trafast and robust subgraph isomorphism search in large graph databases.
In SIGMOD, pages 337–348, 2013. 23, 24, 51, 53, 66

[HYL17a] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In NIPS, pages 1024–1034, 2017. 15, 42, 44, 52,
79, 83

[HYL17b] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learn-
ing on graphs: Methods and applications. DEBU, 2017. 12, 79, 81, 83

[JFLW17] Li Jin, Ling Feng, Gangli Liu, and Chaokun Wang. Personal web revisi-
tation by context and content keywords with relevance feedback. TKDE,
29(7):1508–1521, 2017. 30

[JK02] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation
of ir techniques. TOIS, 20(4):422–446, 2002. 32

[JSN+17] Peiguang Jing, Yuting Su, Liqiang Nie, Xu Bai, Jing Liu, and Meng
Wang. Low-rank multi-view embedding learning for micro-video popu-
larity prediction. TKDE, 30(8):1519–1532, 2017. 30, 32

[JSP05] Bernard J Jansen, Amanda Spink, and Jan Pedersen. A temporal com-
parison of altavista web searching. Journal of the American Society for
Information Science and Technology, 56(6):559–570, 2005. 1

[KK95] George Karypis and Vipin Kumar. Metis–unstructured graph partitioning
and sparse matrix ordering system, version 2.0. 1995. 85

[KK98] George Karypis and Vipin Kumar. A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices. University of Minnesota, Department of
Computer Science and Engineering, Army HPC Research Center, Min-
neapolis, MN, 1998. 87

[KKM11] Karsten Klein, Nils Kriege, and Petra Mutzel. Ct-index: Fingerprint-
based graph indexing combining cycles and trees. In ICDE, pages 1115–
1126. IEEE, 2011. 24, 55, 66

[KNT15] Foteini Katsarou, Nikos Ntarmos, and Peter Triantafillou. Performance
and scalability of indexed subgraph query processing methods. VLDB,
8(12):1566–1577, 2015. 24, 52

106

BIBLIOGRAPHY

[KS97] Norio Katayama and Shin’ichi Satoh. The sr-tree: An index structure
for high-dimensional nearest neighbor queries. ACM Sigmod Record,
26(2):369–380, 1997. 59

[KSH+18] Kyoungmin Kim, In Seo, Wook-Shin Han, Jeong-Hoon Lee, Sungpack
Hong, Hassan Chafi, Hyungyu Shin, and Geonhwa Jeong. Turboflux: A
fast continuous subgraph matching system for streaming graph data. In
SIGMOD, pages 411–426, 2018. 23, 25

[KW17] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. ICLR, 2017. 13, 66, 82

[LGP18] Jiongqian Liang, Saket Gurukar, and Srinivasan Parthasarathy. Mile:
A multi-level framework for scalable graph embedding. arXiv preprint
arXiv:1802.09612, 2018. 17, 18, 100

[LGZ04] P-A Larson, Jonathan Goldstein, and Jingren Zhou. Mtcache: Trans-
parent mid-tier database caching in sql server. In ICDE, pages 177–188.
IEEE, 2004. 52

[LGZ+18] Lailong Luo, Deke Guo, Xiang Zhao, Jie Wu, Ori Rottenstreich, and
Xueshan Luo. Near-accurate multiset reconciliation. TKDE, 31(5):952–
964, 2018. 30

[LHKL12] Jinsoo Lee, Wook-Shin Han, Romans Kasperovics, and Jeong-Hoon Lee.
An in-depth comparison of subgraph isomorphism algorithms in graph
databases. VLDB, 6(2):133–144, 2012. 66, 67

[LKDL12] Wangchao Le, Anastasios Kementsietsidis, Songyun Duan, and Feifei Li.
Scalable multi-query optimization for sparql. In ICDE, pages 666–677.
IEEE, 2012. 24

[LKF07] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution:
Densification and shrinking diameters. ACM transactions on Knowledge
Discovery from Data (TKDD), 1(1):2–es, 2007. 93

[LNC+18] Di Lu, Leonardo Neves, Vitor Carvalho, Ning Zhang, and Heng Ji. Visual
attention model for name tagging in multimodal social media. In Pro-
ceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1990–1999, 2018. 2

[LPW14] Chen Luo, Wei Pang, and Zhe Wang. Semi-supervised clustering on
heterogeneous information networks. In PAKDD, pages 548–559, 2014.
35

[LRU14] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of
massive datasets. Cambridge University Press, 2014. 46

[LWS+19] Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt,
Abhijit Bose, and Alex Peysakhovich. Pytorch-biggraph: A large-scale
graph embedding system. arXiv preprint arXiv:1903.12287, 2019. xiii,
18, 79, 80, 93

[LWSP14] Mingsheng Long, Jianmin Wang, Jiaguang Sun, and S Yu Philip. Domain
invariant transfer kernel learning. TKDE, 27(6):1519–1532, 2014. 32

107

BIBLIOGRAPHY

[LZ19] Yongjiang Liang and Peixiang Zhao. Workload-aware subgraph query
caching and processing in large graphs. In ICDE, pages 1754–1757. IEEE,
2019. 23, 24, 61

[MAB+10] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehn-
ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system
for large-scale graph processing. In SIGMOD, pages 135–146. ACM, 2010.
81, 86, 87, 93

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Effi-
cient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013. 13

[ML09] Marius Muja and David G Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. VISAPP (1), 2(331-340):2, 2009. 59

[MLLS17] Claudio Martella, Dionysios Logothetis, Andreas Loukas, and Georgos
Siganos. Spinner: Scalable graph partitioning in the cloud. In ICDE,
pages 1083–1094. Ieee, 2017. 82, 86, 87, 89, 93

[MlP14] Dániel Marx and Micha l Pilipczuk. Everything you always wanted
to know about the parameterized complexity of subgraph isomorphism.
2014. 52

[MMM15] André Mourão, Flávio Martins, and João Magalhães. Multimodal medical
information retrieval with unsupervised rank fusion. CMIG, 39:35–45,
2015. 22, 28, 47

[MRF+19] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton,
Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and le-
man go neural: Higher-order graph neural networks. In AAAI, volume 33,
pages 4602–4609, 2019. 16, 52, 55, 56

[MSL+16] Tong Man, Huawei Shen, Shenghua Liu, Xiaolong Jin, and Xueqi Cheng.
Predict anchor links across social networks via an embedding approach.
In IJCAI, pages 1823–1829, 2016. 83

[MTX13] Lei Meng, Ah-Hwee Tan, and Dong Xu. Semi-supervised heterogeneous
fusion for multimedia data co-clustering. TKDE, 26(9):2293–2306, 2013.
30

[NCC+16] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang
Liu, and Santhoshkumar Saminathan. subgraph2vec: Learning dis-
tributed representations of rooted sub-graphs from large graphs. arXiv
preprint arXiv:1606.08928, 2016. 52

[OAU11] Rifat Ozcan, Ismail Sengor Altingovde, and Özgür Ulusoy. Cost-aware
strategies for query result caching in web search engines. TWEB, 5(2):1–
25, 2011. 52

[OCP+16] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asym-
metric transitivity preserving graph embedding. In KDD, pages 1105–
1114, 2016. 13

108

BIBLIOGRAPHY

[PARS14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
learning of social representations. In KDD, pages 701–710, 2014. 13, 52,
79, 100

[PBMW99] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical report,
Stanford InfoLab, 1999. 2

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imper-
ative style, high-performance deep learning library. In NeurIPS, pages
8024–8035, 2019. 82

[PH97] Annabel Pollock and Andrew Hockley. What’s wrong with internet
searching. D-lib magazine, 3(3):1–5, 1997. 1

[PIC19] Georgios Paschos, George Iosifidis, and Giuseppe Caire. Cache optimiza-
tion models and algorithms. arXiv preprint arXiv:1912.12339, 2019. 63

[RFC+20] Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard,
Michael Bronstein, and Federico Monti. Sign: Scalable inception graph
neural networks. arXiv preprint arXiv:2004.11198, 2020. 17, 18, 100

[RRK+90] Dennis W Ruck, Steven K Rogers, Matthew Kabrisky, Mark E Oxley,
and Bruce W Suter. The multilayer perceptron as an approximation to
a bayes optimal discriminant function. IEEE Transactions on Neural
Networks, 1(4):296–298, 1990. 83

[RW15] Xuguang Ren and Junhu Wang. Exploiting vertex relationships in speed-
ing up subgraph isomorphism over large graphs. VLDB, 8(5):617–628,
2015. 23, 24

[RW16] Xuguang Ren and Junhu Wang. Multi-query optimization for subgraph
isomorphism search. VLDB, 10(3):121–132, 2016. 23, 24, 51, 53, 57, 66,
67

[SAH08] Chanop Silpa-Anan and Richard Hartley. Optimised kd-trees for fast
image descriptor matching. In CVPR, pages 1–8. IEEE, 2008. 59

[SH13] Yizhou Sun and Jiawei Han. Mining heterogeneous information networks:
a structural analysis approach. KDD Expl. News., 14(2):20–28, 2013. 29,
35

[SHY+11] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. Path-
sim: Meta path-based top-k similarity search in heterogeneous informa-
tion networks. In VLDB, pages 992–1003, 2011. 16, 33, 35, 41

[SKB+18] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van
Den Berg, Ivan Titov, and Max Welling. Modeling relational data with
graph convolutional networks. In European semantic web conference,
pages 593–607. Springer, 2018. 16

109

BIBLIOGRAPHY

[SKP15] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A
unified embedding for face recognition and clustering. In CVPR, pages
815–823, 2015. 41, 42

[SLZ+16] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and S Yu Philip. A
survey of heterogeneous information network analysis. TKDE, 29(1):17–
37, 2016. 29, 33, 35

[SMR08] Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. In-
troduction to information retrieval, volume 39. Cambridge University
Press Cambridge, 2008. 1, 3, 20, 21

[soc] 2

[SRNC+00] Ilmerio Silva, Berthier Ribeiro-Neto, Pavel Calado, Edleno Moura, and
Nivio Ziviani. Link-based and content-based evidential information in a
belief network model. In Proceedings of the 23rd annual international
ACM SIGIR conference on Research and development in information re-
trieval, pages 96–103, 2000. 2

[SSH14] Bahjat Safadi, Mathilde Sahuguet, and Benoit Huet. When textual and
visual information join forces for multimedia retrieval. In ICMR, pages
265–272, 2014. 22, 28

[SY17] Saeid Sattari and Adnan Yazici. Multimedia information retrieval using
fuzzy cluster-based model learning. In FUZZ-IEEE, pages 1–6, 2017. 22,
28

[SY18] Saeid Sattari and Adnan Yazici. Multimodal query-level fusion for effi-
cient multimedia information retrieval. IJIS, 33(10):2019–2037, 2018. 28,
32

[SYH09] Yizhou Sun, Yintao Yu, and Jiawei Han. Ranking-based clustering of
heterogeneous information networks with star network schema. In KDD,
pages 797–806, 2009. 35

[SZK+12] Chuan Shi, Chong Zhou, Xiangnan Kong, Philip S Yu, Gang Liu, and
Bai Wang. Heterecom: a semantic-based recommendation system in het-
erogeneous networks. In KDD, pages 1552–1555, 2012. 35

[SZLY08] Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. Taming
verification hardness: an efficient algorithm for testing subgraph isomor-
phism. VLDB, 1(1):364–375, 2008. 59, 60

[TL09] Lei Tang and Huan Liu. Relational learning via latent social dimensions.
In KDD, pages 817–826, 2009. 93

[TTVV+20] Huynh Thanh Trung, Nguyen Thanh Toan, Tong Van Vinh,
Hoang Thanh Dat, Duong Chi Thang, Nguyen Quoc Viet Hung, and
Abdul Sattar. A comparative study on network alignment techniques.
ESWA, 140:112883, 2020. 51

[TVVT+20] Huynh Thanh Trung, Tong Van Vinh, Nguyen Thanh Tam, Hongzhi
Yin, Matthias Weidlich, and Nguyen Quoc Viet Hung. Adaptive network

110

BIBLIOGRAPHY

alignment with unsupervised and multi-order convolutional networks. In
ICDE, pages 85–96, 2020. 51

[Ull76] Julian R Ullmann. An algorithm for subgraph isomorphism. Journal of
the ACM (JACM), 23(1):31–42, 1976. 51, 59

[VAFK17] Damir Vandic, Steven Aanen, Flavius Frasincar, and Uzay Kaymak.
Dynamic facet ordering for faceted product search engines. TKDE,
29(5):1004–1016, 2017. 28

[VCC+17] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017. 16

[VFH+18] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua
Bengio, and R Devon Hjelm. Deep graph infomax. arXiv preprint
arXiv:1809.10341, 2018. 16, 66

[WJS+19] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and
Philip S Yu. Heterogeneous graph attention network. In The World Wide
Web Conference, pages 2022–2032, 2019. 16

[WJZ+19] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu,
and Kilian Q. Weinberger. Simplifying graph convolutional networks. In
ICML, volume 97 of Proceedings of Machine Learning Research, pages
6861–6871. PMLR, 2019. 17, 18

[WLLZ18] Zhichun Wang, Qingsong Lv, Xiaohan Lan, and Yu Zhang. Cross-
lingual knowledge graph alignment via graph convolutional networks. In
EMNLP, pages 349–357, 2018. 32

[WOY+14] Wei Wang, Beng Chin Ooi, Xiaoyan Yang, Dongxiang Zhang, and Yueting
Zhuang. Effective multi-modal retrieval based on stacked auto-encoders.
In VLDB, pages 649–660, 2014. 22, 28, 46

[WYO+16] Wei Wang, Xiaoyan Yang, Beng Chin Ooi, Dongxiang Zhang, and Yueting
Zhuang. Effective deep learning-based multi-modal retrieval. VLDBJ,
25(1):79–101, 2016. 22, 28

[XHLJ18] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How pow-
erful are graph neural networks? arXiv preprint arXiv:1810.00826, 2018.
17, 37

[XHS+18] Huijuan Xu, Kun He, Leonid Sigal, Stan Sclaroff, and Kate
Saenko. Text-to-clip video retrieval with early fusion and re-captioning.
arXiv:1804.05113, 2018. 22, 28, 47

[YKY+18] Adnan Yazici, Murat Koyuncu, Turgay Yilmaz, Saeid Sattari, Mustafa
Sert, and Elvan Gulen. An intelligent multimedia information system
for multimodal content extraction and querying. MTA, 77(2):2225–2260,
2018. 22

[You08] Neal E Young. Online paging and caching. 2008. 53, 62, 63, 66

111

BIBLIOGRAPHY

[YYM+18] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L
Hamilton, and Jure Leskovec. Hierarchical graph representation learn-
ing with differentiable pooling. arXiv preprint arXiv:1806.08804, 2018.
17

[ZCH+20] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph
neural networks: A review of methods and applications. AI Open, 1:57–
81, 2020. 12, 13, 16

[ZLY09] Shijie Zhang, Shirong Li, and Jiong Yang. Gaddi: distance index based
subgraph matching in biological networks. In EDBT, pages 192–203,
2009. 51, 59, 60

[ZMW+20] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song,
Quan Gan, Zheng Zhang, and George Karypis. Distdgl: Distributed
graph neural network training for billion-scale graphs. arXiv preprint
arXiv:2010.05337, 2020. 18, 80, 93

[ZQYC19] Yuanyuan Zhu, Lu Qin, Jeffrey Xu Yu, and Hong Cheng. Answering
top-k graph similarity queries in graph databases. TKDE, 2019. 23, 25

[ZSH+19] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and
Nitesh V Chawla. Heterogeneous graph neural network. In Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 793–803, 2019. 16

[ZXW+16] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram
Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott
Shenker, and Ion Stoica. Apache spark: a unified engine for big data
processing. Commun. ACM, 59(11):56–65, 2016. 80, 81, 90

[ZYP07] Peixiang Zhao, Jeffrey Xu Yu, and S Yu Philip. Graph indexing: Tree+
delta¿= graph. In VLDB, volume 7, pages 938–949, 2007. 23, 25

112

Chapter 7
Curriculum vitae

113

THANG DUONG
Chemin du Mottey 35, 1020 Renens, Switzerland

+41 78 923 45 24 � duongchithang@gmail.com

EDUCATION

PhD of Computer Science September 2016 - now
École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
Supervisor: Prof. Karl Aberer

• Thesis: Graph Embeddings for Retrieval: Techniques and Applications

Master of Computer Science September 2012 - February 2015
École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland

• Thesis: Argument Mining via Crowdsourcing (mark 5.5/6)

• GPA: 5.34/6

Bachelor of Computer Science September 2007 - April 2012
Ho Chi Minh University of Technology (HCMUT), Vietnam

• Thesis: Probabilisitc Schema Covering (mark 9.7/10)

• Rank: 2/28 (in class), 4/268 (in faculty)

• GPA: 8.79/10.00

• Graduated with Honor

AWARDS

EPFL-EDIC PhD Fellowship, EPFL 2016 - 2017
EPFL Excellence Scholarship, EPFL 2012 - 2015
University Academic Merit Scholarship, HCMUT 2007-2012
Kitagawa Scholarship, Awarded for excellent academic results 2010
University Merit Award, Awarded for high-ranking students Fall 2009
University Entrance Examincation - top 2 out of 1.8 million students1

• First runner-up, HCMUT - Mark: 29.5/30 2007

• First runner-up, Medical University - Mark: 29.5/30 2007

StackOverflow reputation: top 3% of users

PUBLICATION

Duong, C. T., Dung Hoang, Hongzhi Yin, Matthias Weidlich, Quoc Viet Hung Nguyen, Karl Aberer, “Scalable
Robust Graph Embedding with Spark.” In submission VLDB (2022)

Duong, C. T., Dung Hoang, Hongzhi Yin, Matthias Weidlich, Quoc Viet Hung Nguyen, Karl Aberer, “Efficient
Streaming Subgraph Isomorphism with Graph Neural Networks.” In: VLDB (2021) pp. 730-742

Duong, C. T., Tam Thanh Nguyen, Hongzhi Yin, Matthias Weidlich, Son Mai, Karl Aberer, Quoc Viet Hung
Nguyen, ”Efficient and Effective Multi-Modal Queries through Heterogeneous Network Embedding.” In: TKDE
(2021)

Duong, C. T., Hongzhi Yin, Dung Hoang, Minh Hung Nguyen, Matthias Weidlich, Quoc Viet Hung Nguyen, Karl
Aberer, ”Graph Embeddings for One-pass Processing of Heterogeneous Queries.” In: ICDE (2020), pp.1994-1997

Nguyen, Q. V. H., Duong, C. T., Nguyen, T. T., Weidlich, M., Aberer, K., Yin, H., Zhou, X. “Argument
discovery via crowdsourcing.” In: VLDBJ (2017): 1-25.

1https://vnexpress.net/nua-trieu-thi-sinh-da-truot-dai-hoc-2088332.html

114 7. Curriculum vitae

Hung, N. Q. V., Duong. C. T., Tam, N. T., Weidlich, M., Aberer, K., Yin, H., Zhou, X. “Answer validation for
generic crowdsourcing tasks with minimal efforts.” In: VLDBJ (2017): 1-26.

Duong, C. T., Nguyen, Q. V. H., Wang, S., Stantic, B. . “Provenance-Based Rumor Detection”. In: Aus-
tralasian Database Conference (2017): 125-137

Nguyen, T. T., Duong, C. T., Weidlich, M., Yin, H., Nguyen, Q. V. H. “Retaining data from streams of social
platforms with minimal regret.” In: IJCAI 2017.

N. Q. V. Hung, Duong C. T., M. Weidlich, and K. Aberer. “Minimizing Efforts in Validating Crowd Answers”.
In: SIGMOD ACM. 2015, pp. 999-1014.

N. Quoc Viet Hung, Duong C. T., M. Weidlich, and K. Aberer. “ERICA: Expert Guidance in Validating Crowd
Answers”. In: SIGIR ACM. 2015, pp. 1037-1038.

Duong C. T., N. T. Tam, N. Q. V. Hung, and K. Aberer. “An Evaluation of Diversification Techniques”. In:
Database and Expert Systems Applications. (DEXA) Springer. 2015, pp. 215-231.

N. Q. V. Hung, S. Sathe, Duong C. T., and K. Aberer. “Towards enabling probabilistic databases for partici-
patory sensing”. In: CollaborateCom 2014, pp. 114-123. Best runner-up paper

WORK EXPERIENCE

Graph Management Researcher Sep 2017 - Now
LSIR, EPFL, Switzerland

• Research on efficient retrieval of nodes, subgraphs and patterns on graphs based on graph embeddings.

• Tackle scalablity problem of graph embedding methods.

Technology Monitoring and Management Researcher Mar 2019 - Now
Cyber Defense Campus, Armasuisse, Switzerland

• Developed an end-to-end framework for technology extraction, classification and retrieval.

• Collected data from all Swiss companies to identify their potential technology offerings.

Mobile Application Intern Mar 2014 - Aug 2014
Swissquote Ltd., Gland, Switzerland

• Developed an Android application FXBook for foreign exchange trading

Founder - Startup Apr 2012 - Sep 2012
Crowd.vn, Ho Chi Minh City, Vietnam

• Developed a microtask/crowdsourcing platform using Ruby on Rails

Data Integration & Visualization Intern Aug 2011 - Dec 2011
LSIR lab, EPFL - NisB project - EU 7th Framework

• Focused on probabilistic schema covering and the network of schemas.

• Implemented a visualization tool for schema covering

Security Monitoring Researcher 2009 - 2010
ASIS lab, HCMUT

• Developed techniques for security visualization on web servers.

• Implemented an application to monitor/protect web servers from malicious attacks.

Microsoft Student Partner 2009 - 2010
Microsoft - HCMUT, Vietnam

• Imparted Microsoft technology to HCMUT students

• Organize Microsoft activities (talks, events,...) in HCMUT

115

	Acknowledgment
	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.1.1 The Need for Context-rich Query
	1.1.2 Graph for Data Model

	1.2 General Approach
	1.2.1 Vector Space Model
	1.2.2 Graph Embedding for Retrieval

	1.3 Research Questions
	1.4 Thesis Statement and Contribuions
	1.5 Selected Publications

	2 Background
	2.1 Preliminaries
	2.2 Graph embedding
	2.2.1 Transductive models
	2.2.2 Inductive models
	2.2.3 From node to graph embedding

	2.3 Scalable graph embedding
	2.4 Information retrieval
	2.4.1 Multi-modal query
	2.4.2 Subgraph retrieval

	3 Heterogeneity - Graph Embedding for Heterogenous Data
	3.1 Introduction
	3.2 Problem Formulation
	3.2.1 Motivation
	3.2.2 A Multi-Modal Query Model
	3.2.3 Problem Statement

	3.3 Approach Overview
	3.3.1 Design Principles
	3.3.2 Core Concepts and Representations
	3.3.3 Multi-Modal IR based on Graph Embedding

	3.4 Heterogeneous Graph Embedding
	3.4.1 HIN Construction
	3.4.2 HIN Embedding with Message-Passing

	3.5 Embedding Multi-Modal Queries
	3.5.1 From Multi-modal Queries to Subgraph Queries
	3.5.2 Multi-modal Query Embedding
	3.5.3 Parameter Learning

	3.6 Experimental Results
	3.6.1 Setup
	3.6.2 General Efficiency
	3.6.3 Effectiveness of HIN Embedding
	3.6.4 Effectiveness of Query Embedding
	3.6.5 End-to-end Comparison with SOTA
	3.6.6 Ablation study

	3.7 Summary

	4 Connectivity - Graph Embedding for Streaming Subgraph Retrieval
	4.1 Introduction
	4.2 Model and Approach
	4.2.1 Model
	4.2.2 Approach

	4.3 Graph Indexing
	4.3.1 Node and Edge Embeddings
	4.3.2 Subgraph Embeddings
	4.3.3 Indexing Embeddings

	4.4 Query Stream Processing
	4.4.1 Handling Cache Misses
	4.4.2 Handling Cache Hits

	4.5 Cache Management
	4.5.1 General Approach
	4.5.2 Query Utility
	4.5.3 Utility-based Cache Management
	4.5.4 Further Considerations

	4.6 Evaluation
	4.6.1 Experimental setup
	4.6.2 Effectiveness of Embeddings in Pruning
	4.6.3 Evaluation of Subgraph Embeddings
	4.6.4 Evaluation of Parameterized Subgraph Isomorphism
	4.6.5 Effectiveness of Cache Management
	4.6.6 Workload Evaluation
	4.6.7 End-to-end Comparison

	4.7 Summary

	5 Scalability - Scalable Graph Embedding
	5.1 Introduction
	5.2 Problem and approach
	5.2.1 Problem statement
	5.2.2 Approach

	5.3 MapReduce-based Embedding
	5.3.1 Background on MapReduce
	5.3.2 Learned Map Function
	5.3.3 Landmark-based Reduce Function

	5.4 Scalable graph decomposition
	5.4.1 General Approach
	5.4.2 Landmark-aware Partitioning
	5.4.3 Complement Graph Partitioning

	5.5 Implementation & Optimisation
	5.5.1 System Design
	5.5.2 Lazy Reconciliation
	5.5.3 Iterative Refinement

	5.6 Experiments
	5.6.1 Experimental Setup
	5.6.2 Effectiveness of Graph Decomposition
	5.6.3 Effects of MapReduce-based Embedding
	5.6.4 End-to-end Evaluation
	5.6.5 Effects of Iterative Refinement

	5.7 Summary

	6 Conclusion
	6.1 Summary of the Work
	6.2 Limitations and Future Directions

	Bibliography
	7 Curriculum vitae
	Curriculum Vitae

