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Abstract

Detecting people from 2D images and analyzing their motion in 3D have been long standing
computer vision problems central to numerous applications such as autonomous driving and
athletic training. Recently, with the availability of large amounts of training data and the advent of
deep learning, the performance in human segmentation, 3D human pose prediction has improved
significantly. However, these problems remain challenging due to several factors. In this thesis,
we decompose the human motion analysis into three sub-tasks; 2D human segmentation, 3D
human body pose estimation and 3D human motion forecasting. Our goal is to alleviate the
challenges in these problems using various encoder-decoder models.

While supervised detection and segmentation methods achieve impressive accuracy, they general-
ize poorly to images whose appearance significantly differs from the data they have been trained
on. To remedy this, they require overly large amounts of annotated data in domain-specific
applications. Therefore, self-supervised detection and segmentation of foreground objects in
complex scenes is gaining attention. However, existing self-supervised approaches predominantly
rely on restrictive assumptions of appearance and motion. This precludes their use in scenes
depicting highly dynamic activities or involving camera motion. To tackle this, we introduce a
self-supervised detection and segmentation approach that can work with single images captured
by a potentially moving camera. At the heart of our approach lies the observation that object
segmentation and background reconstruction are linked tasks. For structured scenes, background
regions can be re-synthesized from their surroundings, whereas regions depicting the moving
object cannot. We encode this intuition into a self-supervised loss function that we exploit to
train a proposal-based encoder-decoder segmentation network. To account for the discrete nature
of the proposals, we develop a Monte Carlo-based training strategy. This allows the algorithm
to explore the large space of object proposals. We apply our method to human detection and
segmentation in images that visually depart from those of standard benchmarks and outperform
existing self-supervised methods.

Second, we extend our work on self-supervised detection and segmentation of human in scenarios
with dynamic activities and camera motion. We propose a multi-camera framework in which
geometric constraints are embedded in the form of multi-view consistency during training. This
is achieved via coarse 3D localization in a voxel grid and fine-grained offset regression. In this
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Abstract

manner, we learn a joint distribution of proposals over multiple views. At inference time, our
method operates on single RGB images. We outperform the previous techniques both on images
depicting unusual human activities and on those of the classical Human3.6m dataset.

In 3D human pose estimation, predicting 3D pose from a 2D image is an inherently ill-posed
problem due to the loss of depth information during projection from 3D to 2D. A potential
solution to reduce the ambiguities caused by this is to exploit the dependencies between human
joints. This enables learning the structure of an articulated body more reliably, which has largely
been overlooked by earlier work. To this end, we introduce a deep learning based regression
method for structured prediction of 3D human pose from monocular images or 2D joint location
heatmaps. Our 3D pose recovery model relies on a traditional CNN to extract image features and
an autoencoder to learn a high-dimensional latent pose representation that accounts for the human
body joint dependencies. We further propose a Long Short-Term Memory (LSTM) network
to enforce temporal consistency on the 3D pose predictions. We demonstrate that our method
outperforms earlier approaches both in terms of structure preservation and prediction accuracy
on standard 3D human pose estimation benchmarks.

In 3D motion forecasting, the existing work has mostly focused on predicting the future motion
from the past sequence of poses for single humans in isolation. However, when there are multiple
people engaged in strong interactions, the current state-of-the-art approaches remain suboptimal.
Differently from the earlier work, we jointly reason about the collective behavior of the subjects
in the scene. This allows us to preserve the long-term motion dynamics in a more realistic
way and predict the unusual and faced-paced poses, such as the ones in a dance scenario. To
address this problem, we introduce a pairwise attention mechanism that explicitly takes into
account the mutual dependencies in the motion history of the subjects. When combined with
the self-attention mechanism integrated into an encoder-decoder network, our approach can
outperform the state-of-the-art single person baselines. We evaluate the proposed method on our
newly introduced dance dataset, Lindyhop600k, that comprises of strong dyadic interactions.

Keywords: Computer vision, self-supervised detection and segmentation, multi-view consistency,
3D human pose estimation, 3D motion forecasting, attention mechanism, deep learning.
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Résumé

La détection de personnes à partir d’images 2D et l’analyse de leur mouvement en 3D sont des
problèmes de vision par ordinateur de longue date qui sont au cœur de nombreuses applications
telles que la conduite autonome et l’entraînement sportif. Récemment, avec la disponibilité de
grandes quantités de données d’entraînement et l’avènement de l’apprentissage profond, les
performances de la segmentation humaine et de la prédiction de la pose humaine en 3D se sont
considérablement améliorées. Cependant, ces problèmes restent difficiles en raison de plusieurs
facteurs. Dans cette thèse, nous décomposons l’analyse du mouvement humain en trois sous-
tâches : segmentation humaine en 2D, estimation de la pose du corps humain en 3D et prévision
du mouvement humain en 3D. Notre objectif est d’alléger les défis de ces problèmes en utilisant
différents modèles d’encodeurs-décodeurs.

Bien que les méthodes de détection et de segmentation supervisées atteignent une précision
impressionnante, elles se généralisent mal aux images dont l’apparence diffère significative-
ment des données sur lesquelles elles ont été entraînées. Pour y remédier, elles nécessitent des
quantités trop importantes de données annotées dans des applications spécifiques au domaine.
C’est pourquoi la détection et la segmentation auto-supervisées d’objets de premier plan dans
des scènes complexes suscitent un intérêt croissant. Cependant, les approches auto-supervisées
existantes reposent principalement sur des hypothèses restrictives d’apparence et de mouvement.
Cela exclut leur utilisation dans des scènes représentant des activités hautement dynamiques
ou impliquant des mouvements de caméra. Pour résoudre ce problème, nous présentons une
approche auto-supervisée de détection et de segmentation qui peut fonctionner avec des images
uniques capturées par une caméra potentiellement en mouvement. Au cœur de notre approche se
trouve l’observation que la segmentation d’objets et la reconstruction du fond sont des tâches
liées. Pour les scènes structurées, les régions de l’arrière-plan peuvent être resynthétisées à partir
de leur environnement, alors que les régions représentant l’objet en mouvement ne le peuvent pas.
Nous encodons cette intuition dans une fonction de perte auto-supervisée que nous exploitons
pour entraîner un réseau de segmentation encodeur-décodeur basé sur des propositions. Pour tenir
compte de la nature discrète des propositions, nous développons une stratégie d’entraînement
basée sur la méthode de Monte Carlo. Cela permet à l’algorithme d’explorer le vaste espace
des propositions d’objets. Nous appliquons notre méthode à la détection et à la segmentation
d’humains dans des images qui s’écartent visuellement de celles des références standard et nous
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Résumé

surpassons les méthodes auto-supervisées existantes.

Deuxièmement, nous étendons notre travail sur la détection et la segmentation auto-supervisées de
l’homme dans des scénarios avec des activités dynamiques et des mouvements de caméra. Nous
proposons un cadre multi-caméras dans lequel les contraintes géométriques sont intégrées sous la
forme d’une cohérence multi-vues pendant l’apprentissage. Ceci est réalisé via une localisation
3D grossière dans une grille de voxels et une régression de décalage à grain fin. De cette manière,
nous apprenons une distribution conjointe de propositions sur plusieurs vues. Au moment de
l’inférence, notre méthode fonctionne sur des images RVB uniques. Nous obtenons de meilleurs
résultats que les techniques de pointe, tant sur les images représentant des activités humaines
inhabituelles que sur celles de la base de données classique Human3.6m.

Dans l’estimation de la pose humaine en 3D, la prédiction de la pose 3D à partir d’une image
2D est un problème intrinsèquement mal posé en raison de la perte d’informations sur la pro-
fondeur pendant la projection de la 3D vers la 2D. Une solution potentielle pour réduire les
ambiguïtés causées par ce problème consiste à exploiter les dépendances entre les articulations
humaines. Cela permet d’apprendre la structure d’un corps articulé de manière plus fiable, ce qui
a été largement négligé par les travaux antérieurs. À cette fin, nous présentons une méthode de
régression basée sur l’apprentissage profond pour la prédiction structurée de la pose humaine
3D à partir d’images monoculaires ou de cartes thermiques de localisation des articulations 2D.
Notre modèle s’appuie sur un CNN traditionnel pour extraire les caractéristiques de l’image et
sur un autoencodeur pour apprendre une représentation latente de la pose en haute dimension qui
tient compte des dépendances des articulations du corps humain. Nous proposons également un
réseau de mémoire à long terme et à court terme (LSTM) pour renforcer la cohérence temporelle
des prédictions de pose 3D. Nous démontrons que notre méthode est plus performante que les
approches précédentes en termes de préservation de la structure et de précision de prédiction sur
des repères standard d’estimation de pose humaine en 3D.

Dans le domaine de la prévision de mouvement 3D, les travaux existants se sont principale-
ment concentrés sur la prédiction du mouvement futur à partir de la séquence passée de poses
pour des humains isolés. Cependant, lorsque plusieurs personnes sont engagées dans de fortes
interactions, les approches actuelles de l’état de l’art restent sous-optimales. À la différence
des travaux précédents, nous raisonnons conjointement sur le comportement collectif des sujets
dans la scène. Cela nous permet de préserver la dynamique du mouvement à long terme d’une
manière plus réaliste et de prédire les poses inhabituelles et face-à-face, comme celles d’un
scénario de danse. Pour résoudre ce problème, nous introduisons un mécanisme d’attention
par paire qui prend explicitement en compte les dépendances mutuelles dans l’historique des
mouvements des sujets. Lorsqu’elle est combinée au mécanisme d’auto-attention intégré à un
réseau d’encodeurs-décodeurs, notre approche peut surpasser les références de l’état de l’art pour
une seule personne. Nous évaluons la méthode proposée sur notre nouvel ensemble de données
de danse, Lindyhop600k, qui comprend de fortes interactions dyadiques.
Mots-clés : Vision par ordinateur, détection et segmentation auto-supervisées, cohérence multi-
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vues, estimation de la pose humaine en 3D, prévision du mouvement en 3D, mécanisme d’atten-
tion, apprentissage profond.
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1 Introduction

The process of training computers to perceive and interpret visual information from the real world
focuses mainly on objects that stand out in everyday life. Among them, humans have been of great
importance since people are constantly exchanging information with the surrounding through
theirs actions. Therefore, the human body is key to understanding the environment around us.
It has a highly articulated structure giving it the ability to move in different ways creating large
shape and appearance variety. Identifying the body parts and modeling their movement in diverse
settings have been of particular interest to computer vision since it facilitates many applications
ranging from video surveillance to autonomous driving [68]. However, considering that humans
often interact with each other or other objects, analyzing each person in isolation is not sufficient.
The dynamics that result from complex human articulation and interactions cannot be integrated
to an automated system in a straightforward manner. Therefore, we need robust algorithms and
discriminative representations that can identify human body in various motion and model the
dependencies inherent in their actions to have a better understanding of the entire scene. In
this thesis, we analyze human motion by addressing 2D human segmentation, 3D human pose
estimation and motion forecasting.

The goal of object detection and segmentation is to produce a bounding box for each object of
interest in the scene along with their binary masks. This problem applies to a wide range of video
understanding applications, such as video surveillance, unmanned vehicle navigation, action
recognition and motion prediction. Our focus is primary object segmentation which is the task
to segment a single salient object from the background as depicted in Fig. 1.1(a). We consider
moving objects in a moving camera setting. In general, the object to segment is expected to appear
and move differently than the background and repeat frequently in a sequence of images [132].
Earlier approaches focused on background modeling in static camera scenarios [18]. Recently,
this focus has shifted from static cameras to freely moving cameras [201, 267, 159, 305]. Due
to the complex video content and the dynamic nature of the background, object segmentation
remains a challenging problem. The existing work tackles this problem by using appearance and
motion cues. Appearance based models focus on learning the color and shape distribution of the
foreground object based on RGB values without assuming any prior knowledge on its size and
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(a) Human segmentation

(b) 3D human pose estimation

Past Future

(c) 3D motion forecasting

Figure 1.1 – Human segmentation and motion analysis. Humans and their motion have been
the main interest of many computer vision applications. We focus on (a) detecting and segmenting
humans from their background, particularly in challenging scenarios such as skiing and figure
skating, (b) recovering their 3D poses from images and (c) predicting their future poses given the
past ones.

location [201]. In case of video data, optical flow based methods [268, 267, 108] have emerged
to account for the movement of the foreground object. To achieve increasing consistency of
masks across frames, models enforcing temporal coherence between neighboring frames have
been developed [148, 62, 132]. However, these methods might fail to handle difficult conditions
such as motion blur, background clutter, occlusions and unusual human motion. To remedy this,
we introduce a proposal-based method that relies on encoding and decoding the content of a
scene to learn to decompose it into a foreground and a background. To better handle occlusions
and ambiguities, we leverage multi-view consistency and investigate how this additional source
of information can constrain the learning process. In this thesis, we focus on scenarios including
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human motion. Therefore, we limit the applicability of our method to images or videos capturing
humans as the salient object.

Once the person of interest is identified in an image using the appearance and motion cues in
2D, the next step is to have a more detailed analysis of the human pose. 3D pose estimation, as
shown in Fig. 1.1(b), involves recovering the articulated 3D joint locations of a human body from
an image or video. It has a great variety of potential applications including autonomous driving,
human–computer interaction, video surveillance, sports performance analysis and virtual try-on.
Nonetheless, predicting 3D joint coordinates from 2D images remains highly challenging [68]
since it is an inherently ambiguous problem and existing datasets are not diverse enough to cover
the full range of human pose space. Earlier approaches tackle this problem by relying on body
silhouettes [3], deformable template matching [192, 193], 2D joint locations [221, 328], temporal
consistency [277, 10], multiple cameras [28, 124, 20, 207] and depth images [247, 311]. When
estimating 3D human poses from multiple views, the main challenges include the cost of having
calibrated and synchronized cameras, larger state space and cross-view ambiguities. In case of
using depth information, existing approaches might suffer from the errors in data acquisition
caused by the ambient background light, noise characteristics of depth cameras, multi-device
interference and dynamic scenery [241]. With the introduction of deep learning approaches, some
of the constraints requiring additional sources of information have been relaxed. Consequently,
the interest in estimating 3D human pose from a single monocular image has increased in recent
years. In this thesis, we propose a deep learning based monocular solution to 3D human pose
estimation that can learn discriminative latent pose representations on a wide range of datasets.
To account for the complex mapping between the image and the corresponding 3D human pose,
we train an autoencoder that disentangles the body joint dependencies in high dimensional latent
space and enforces structural constraints on the output.

Recovering the current 3D pose of the people from videos is fundamental to human motion
analysis, yet it remains limited for understanding the complex dynamics of motion. What is central
to our interaction with the outside world is predicting the upcoming motion of people and it is
done inherently as a part of our daily lives. This task becomes prominent in many sports activities.
Knowing in advance what the opponent is going to do is a skill in itself that our brains can learn
naturally while practicing. Humans are also capable of fluidly walking or driving in a crowded
environment by anticipating the movement of others. Although this type of process is easy for
us, it is extremely complex for a machine to accomplish a similar behavior. As illustrated in
Fig. 1.1(c), human pose forecasting aims to predict the future poses from the observed poses in the
past [65]. While this problem has recently received increasing attention, existing solutions focus
mainly on estimating the motion of a single person in isolation [285, 263, 65, 107, 185, 181]. In
real world scenarios, people often interact with each other and the motion of one person depends
highly on the social context [5, 238, 169]. We observe that taking such motion dependencies
explicitly into account enables us to predict long-term future more accurately [11]. In this work,
we focus on human motion forecasting for dyadic motions with strong human-human interactions.
One such motion can be observed in a lindy hop dance sequence which is comprised of energetic
moves ranging from frenzied kicks to smooth and sophisticated body movements. The dancers
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synchronize their fast-paced steps with one another and the music. They often improvise flips
and twirls which makes it hard to predict the steps that follow without observing the moves of
the partner. Therefore, there is a great interest in analyzing the motion of lindy hop dancers. To
estimate the future poses of each individual more reliably, we exploit an encoder-decoder model.
This model learns a spatio-temporal contextual representation from the mutual information
between the interacting people.

In this thesis, we propose various deep neural network based models to address the previously
introduced tasks. With the advent of deep learning, the field has taken great leaps and has
been able to surpass humans in some tasks such as object detecting and classification. One
of the driving factors behind this is the massive amount of data generated every day. In the
paradigm of supervised learning, this data has to be carefully labeled to train a model that
performs decently and an increased amount of annotated data further boosts the performance.
However, labeled data is costly to prepare and can be biased as well. In the context of object
detection and segmentation, data labeling requires providing the bounding box location and the
binary mask of the object in pixel level for every frame. In human pose estimation and motion
forecasting, the 2D and 3D location of every human body joint should be acquired, typically
through MoCap systems with multi-camera setup and special hardware. However, to capture
outdoor scenes with moving objects, the footage, camera calibration and human pose annotation
require more effort. An example to this is a ski footage that aims to film a fast moving skier
often occluded by snow on a wide slope. Despite the availability of large annotated datasets
for usual activities, the models pre-trained on these datasets usually do not generalize well to
domain-specific images [133] capturing less common activities such as skiing for which large
training databases are not available [226]. Hence, significant amounts of data should be collected
and annotated for any new domain to obtain a desired level of accuracy in a supervised setting. To
overcome the tedious work of annotation, a very recent trend aims to revisit the self-supervised
learning [197, 204, 319, 203, 70, 110, 198, 112]. We note here that the term self-supervised
learning replaced the previously used term unsupervised learning since unsupervised learning
is a misleading term that suggests that the learning uses no supervision at all. Self-supervised
learning obtains supervisory signals from the data itself, often leveraging the underlying structure
in the data. Thus, it does not rely on manual annotation. We investigate these different learning
paradigms via encoder-decoder based models throughout this thesis.

In the remainder of this chapter, we first discuss a few practical applications and present several
key challenges related to human segmentation, 3D human pose estimation and motion forecasting.
Then, we define the aforementioned tasks in detail. Finally, we summarize our main contributions
and give an outline of the thesis.

1.1 Motivation and Applications

Vision based human segmentation and motion recognition have fascinated many researchers. This
is partly due to the increasing popularity of wearable kinematic sensors and multi-view cameras
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that enabled a large amount of human mocap data to be recorded. Combined with the computing
power which has become more affordable and easily accessible, analyzing this tremendous
amount of data revolving around human activities has facilitated a fine-grained understanding of
the physical world. The knowledge we acquire by investigating the human presence and motion
in videos can be integrated into vision based automated systems. Today, we have a wide spectrum
of applications [309, 287], ranging from augmented reality to surveillance, that focus both on the
static and dynamic aspects of human body. These applications can reduce the need for human
labor and the human errors, particularly in healthcare and athletic training. In the following, we
briefly discuss potential applications that exploit human segmentation and motion analysis.

Human-Computer Interaction. The interfaces connecting human users to automated systems
are ranging from conventional devices such as screens and keyboards to smartphones, head-
mounted displays [95] and haptic technologies. To decrease the complexity of human-computer
interaction, we need well-designed interfaces that can interpret human gesture and pose. To this
end, vision based solutions rely on robust detection of the users and analysis of their body motion
in the 3D world.

Augmented Reality. Computer vision based augmented reality involves integrating virtual
elements such as images or audio over what we see in the physical world. It enables consumers
to try on clothes, visualize furniture in their homes or overlay masks on their faces. One such
application is introducing digital characters into a scene. It is important that virtual elements
and real world are combined in a seamless way and this requires accurate localization and pose
estimation of the human in the scene [252].

Autonomous Driving. For self-driving cars, it is important to detect surrounding vehicles,
pedestrians and objects to maintain security in traffic. To this end, such autonomous systems need
to understand the scene and interpret the intentions of the surrounding humans. Thus, localizing
and predicting the pose of pedestrians have great significance [141, 66].

Healthcare. Accurate tracking of human motion can be useful in clinical environments when
giving feedback on the health status of patients [36]. It can assist the medical staff in monitoring
anomalies in intensive care units. In addition to that, it can help correct the sitting posture, and
gait or sleep-related motion disorders [231]. Identifying the movement patterns during epileptic
seizures or Parkinson disease can serve as clinical decision tool for physicians. In some situations,
infants are born with muscles or joints that are not working properly and early diagnosis of such
diseases via computer vision can save many lives [92].

Athletic Training. Automated estimation of 3D poses from videos can serve as a virtual
coach to provide the athletes with detailed feedback on how they can improve their moves or
educate novices in sports such as skiing, swimming and yoga [286]. Since most of the sports
competitions leave a lot to interpretation, such systems can also help referees make decisions
more objectively and evaluate the performance of athletes in ambiguous cases. In addition to that,
motion forecasting frameworks can be used in combat or team sports to train athletes against
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(a) Occlusions (b) Cluttered background (c) Motion blur

(d) Changing background (e) Changes in appearance (f) Changes in viewpoint

Figure 1.2 – Challenges in human segmentation and motion analysis. (a) Self- and person-to-
person occlusions leading to missing image cues for certain body parts. Images are taken from
the Lindyhop600k and boxing datasets introduced in this thesis. (b) Cluttered background with
other people and objects from 3D Poses in the Wild dataset [280] (c) Motion blur caused by
fast-paced movements. Images are taken from [120]. (d) Dynamically changing background with
a different looking scenery from one frame to another. Images are taken from 3D Poses in the
Wild dataset [280]. (e) Different clothing and appearance among people exhibiting the same pose
in the Handheld190k dataset [120]. (f) Same pose captured from different viewing angles in the
Ski-PTZ dataset [226].

their opponents by predicting a combination of possible movements from observed motion.

Video Surveillance. Accurately interpreting what is happening in a footage has the potential
to enhance public security. When powered by computer vision, such surveillance systems can
provide life-saving information that can go unnoticed by a security staff. Today, such frameworks
focus on localizing and tracking the people in crowded areas [315, 54]. Thus, human detection
and pose estimation have a key role in this group of applications [246, 45].

1.2 Challenges

We discuss the main challenges in human segmentation and motion analysis below and in the
next section we provide our solutions to address them.

Occlusion and Clutter. When the human body is partially or fully occluded, as illustrated in
Fig. 1.2(a,b), segmentation and motion prediction become less robust or infeasible. A common
practice to make the estimation resilient to such cases is to augment the training data with
synthetic occlusions by hiding the content of randomly chosen regions in object segmentation or
feeding noisy poses with missing joints as input in motion prediction.

Fast Motion. When an object moves fast, it leads to unreliable optical flow estimation and motion
blur causing the object to have fuzzy boundaries in the image, as shown in Fig. 1.2(c). The blur
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induced at a particular pixel on a moving object cannot be resolved simply as it results from the
combined effects of camera motion, the object’s own independent motion during exposure and its
relative depth in the scene.

Dynamic Background. Having background regions such as the one in Fig. 1.2(d) that move
or deform poses a challenge for foreground object segmentation. Flowing water, leaves moved
by the wind, snow splashed by the skier are examples of such dynamic background that can be
detected as foreground objects, i.e. false positives.

Appearance and Viewpoint Changes. The shape, size and appearance of people vary signifi-
cantly and even for the same person, the appearance can change drastically from one frame to
another due to viewpoint or illumination changes. An example of this is depicted in Fig. 1.2(e,f).
Therefore, it is necessary that the model learns appearance invariant features to generalize to
unseen people at test time.

Lack of Annotated Data. Learning based methods, in particular deep neural networks, demand
collecting large labeled datasets for training. In human detection and segmentation, annotating
images requires pixel level localization of the object, whereas in pose estimation and motion
forecasting, the 2D and 3D location of each body joint should be provided. Such ground truth
can be obtained either from synthetic data or from annotations on real-world data. The former
introduces inevitable domain gap between the data used for training and the real-world test scene.
The latter is a costly, labor-intensive, and error-prone process. To mitigate the annotation burden,
learning discriminative pose and scene representations is a key solution. A practical and scalable
way to achieve this is to learn from the underlying structure of the data rather than the annotations.

1.3 Problem Definition

We decompose the human motion analysis into three sub-tasks; human segmentation, 3D pose
estimation and 3D motion forecasting.

We consider human segmentation as a primary object segmentation task which aims at segmenting
a single salient object from the background across all frames [309]. This involves computing
dense pixel level masks for the foreground object, and placing a bounding box surrounding
this object without having any prior knowledge on the size and location. It is closely related
to video object segmentation problem which can be roughly categorized into unsupervised
and semi-supervised protocols [108, 158, 159, 307, 309]. Unsupervised methods attempt to
extract the salient object without using any manual annotations at test time. On the other
hand, semi-supervised approaches segment the foreground object given the mask annotation
for the first frame in a video clip. Our goal is to achieve an entirely self-supervised algorithm,
which differs from the standard unsupervised strategies requiring domain-specific annotations
during training [158, 159, 307, 175]. Without any prior information on the primary object, it is
difficult to model the foreground in the scene. Therefore, we build our method on the following
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assumptions [150]: (1) Salient objects are outliers in the global scene, having distinct appearance,
smaller size and different movement patterns than their larger background. (2) The pixels that
belong to the foreground object should display coherent appearance and motion cues in space and
time. We integrate these principles into an encoder-decoder structure that decomposes an RGB
image into a foreground and a background according a segmentation mask of the foreground
object. To exploit the motion cues, we extend our method to use optical flow as intermediate
supervision. Furthermore, we build upon our single-view approach and develop a self-supervised
object detection and segmentation method that explicitly encodes multi-view geometry during
training. At test time, our method operates on single RGB images and yields a bounding box and
binary segmentation mask of the foreground object. Although our method is generic and does
not depend on any category based knowledge, we apply it in domain-specific human scenarios
such as skiing where the general purpose detectors tend to fail.

3D human pose estimation can be formulated either as a discriminative or a generative method [20,
287]. The former directly learns a mapping from the input to the human pose space, whereas the
latter models the underlying structure of the human body. We employ a discriminative method
to recover the 3D joint coordinates of the human body from a single RGB image. Based on
the type of representation, there are three commonly used human body models: skeleton-based,
contour-based and volume-based model [287]. The skeleton-based model is a kinematic model
that represents the body as a set of joint locations or relative limb orientations. In the contour-
based model, the human body is represented as the boundaries of a person’s silhouette. Finally,
volume-based models correspond to the geometric shapes or meshes. We adopt the skeleton-based
model and use a skeleton with J joints represented by a vector of dimension 3J in the Cartesian
space. We predict the 3D joint locations in the camera coordinate system relative to a root joint,
e.g. hip.

In human motion prediction, the standard protocol is to predict the future poses of a single person
given the past ones. An input pose sequence consists of consecutive pose vectors of length Tp ,
each of dimension 3J , and the output is also a sequence of consecutive poses of length T f , with
T f <= Tp [181]. In contrast to prior work, we investigate this problem from a novel perspective
that involves humans performing collaborative tasks and engaging in close interactions. We focus
on scenarios that include a primary subject and the interactee (second person) such as dancing
couples [11]. Our goal is to facilitate the recovery of the future poses of the primary actor by
paying attention to the interactions between the two. Therefore, the input to our pipeline is the
history of the coupled motion and we infer the future motion of the primary person. Existing
single person based solutions [183, 181, 145, 167] use ground truth poses as the history of motion.
In practice, we do not have access to these ground truth poses corresponding to the observed part
of a video clip. A more realistic solution is to first extract the pose vectors from a sequence of
images via a 3D pose estimation pipeline and feed them to the motion forecasting framework. To
this end, we design two different models; one that learns from ground truth past motion and the
other that operates on a sequence of consecutive images. The latter yields noisy predictions for the
motion history. This enables the model to be resilient to erroneous past motion when predicting
the future. The performance is validated on dance sequences with short-term (< 500ms) and
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long-term (< 1000ms) forecast times.

1.4 Contributions

In this thesis, we consider three tasks related to human motion analysis, namely self-supervised
human segmentation, 3D human pose estimation and 3D human motion forecasting. Our goal
is to develop algorithms that learn robust latent representations via different encoder-decoder
models. We explore various input modalities such as single RGB images in studio environment
for 3D pose recovery, single and multi-view outdoor image sequences captured by hand-held
moving cameras and optical flow data for human segmentation. In future motion prediction, we
use human body pose vectors. We show that our contributions apply to a wide range of datasets
and the proposed methods outperform the prior work in the corresponding fields. We describe
below the main contributions of this thesis.

Self-supervised Human Detection and Segmentation via Background Inpainting. We present
a self-supervised method for object detection and segmentation from single RGB and optical
flow images that outperform general purpose detectors in domain-specific applications [120].
Our core contributions are the Monte Carlo-based optimization of proposal-based detection, new
foreground and background objectives, and their joint training on unlabeled videos captured by
static, rotating and handheld cameras. We introduce a new dataset captured by moving cameras
in an outdoor environment depicting daily human activities such as the ones in Human3.6m [102]
and release it for public use.

Human Detection and Segmentation via Multi-view Consensus. We propose a self-supervised
end-to-end trainable object detection and segmentation approach that explicitly leverages 3D
multi-view geometry during training [121]. In contrast to most recent works that relies on single
view or multi-view images acquired using static cameras, our approach can handle moving
background while enforcing consistency across views. To this end, our model comprises a 3D
object proposal framework that enables an efficient multi-view voting scheme without having to
introduce additional loss terms.

Learning Latent Representations of 3D Human Pose with Deep Neural Networks. We
introduce one of the first deep learning frameworks for 3D pose estimation that takes into
account the human body joint dependencies [122]. While prior work tackled this problem by
directly regressing the 3D coordinates of joints from single RGB images, we propose to map
the input image to a high dimensional latent representation learned by training an overcomplete
autoencoder. We show that the embedding we obtain from the pose data itself can encode
and preserve the implicit structure of human body pose more accurately than a standard CNN.
Furthermore, to enforce temporal consistency, we propose the first LSTM based pose recovery
model that takes as input the initial 3D pose predictions and refines them.

Exploiting Interactions in Human Motion Prediction. We propose an approach that addresses
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the challenges of human motion forecasting for dyadic motions with strong human-human
interactions. We propose the first attention based 3D motion forecasting model that exploits
the motion dependencies among socially interacting people. Furthermore, we introduce a new
dance dataset, Lindyhop600k, which consists of videos and 3D human body poses of dancers
performing diverse swing motions. We release it for research use.

1.5 Outline

The remainder of this thesis is organized as follows. In Chapter 2, we discuss the related work
on object segmentation, 3D human pose estimation and motion prediction. In Chapter 3, we
introduce a self-supervised proposal-based human detection and segmentation method. We
develop an inpainting based model to tackle moving background and a Monte-Carlo based
sampling strategy to handle the discrete nature of proposals. We show the effectiveness of our
method on domain-specific human activities. In Chapter 4, we provide the multi-view extension
of the method presented in Chapter 3. To this end, we introduce a self-supervised object detection
and segmentation approach that explicitly leverages 3D multi-view geometry during training to
enforce consistency across the views. In Chapter 5, we present our work on supervised structured
prediction of 3D human pose from single images. We demonstrate that a high dimensional latent
representation learned via an autoencoder based model can account for the joint dependencies
more reliably than directly regressing the joint locations from an RGB image. In Chapter 6, we
propose a 3D motion forecasting model that exploits person-to-person interactions to recover
the long-term motion dynamics more reliably. We build a new dance dataset Lindyhop600k that
comprises of strong interactions and evaluate our method on this dance scenario. Finally, in
Chapter 7, we conclude this thesis with a summary of our findings and ideas for future work.
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2 Related Work

In this thesis, we different computer vision problems ranging from human segmentation in 2D
to 3D human motion analysis. We start this chapter by reviewing the previous methods in 2D
video object segmentation and discuss in more detail the self-supervised techniques that are the
most relevant to our single-view human segmentation approach. We then give a brief overview of
methods using multiple cameras to detect and segment objects. In 3D human pose estimation, the
literature is very diverse and therefore, we limit our discussion mostly to monocular approaches.
Although we focus on the work prior to ours, we also include the recent state-of-the-art approaches
to give a general idea about how the field has evolved. Finally, we discuss the related work in 3D
motion forecasting.

2.1 Self-supervised Human Segmentation From Single Images

Most salient object detection and segmentation algorithms are fully-supervised [41, 88, 222, 253,
22, 162, 174, 243, 244, 308] and require large annotated datasets with paired images and labels.
Our goal in Chapter 3 and 4 is to train a purely self-supervised method without either segmentation
or object bounding box annotations. Note that this differs from the so-called unsupervised object
segmentation methods [213, 98, 108, 158, 159, 175, 284, 307, 291, 318, 322], that require
domain-specific annotations during training but not at test time, or the label of the first frame
at inference time [292]. We focus our discussion on self- and weakly-supervised methods with
regard to the type of training data used and refer to [132] for a complete discussion of methods
using hand-crafted optimization.

2.1.1 Weakly-supervised methods.

An early weakly-supervised method is the Hough Matching algorithm [43]. It uses an object
classification dataset and identifies foreground as the image regions that have re-occurring
Hough features within images of the same class. Similar principles have been followed to train
deep networks for object detection [108, 296], optical flow estimation [267, 268], and object
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saliency [158]. These methods make the implicit assumption that the background varies across
the examples and can therefore be excluded as noise. This assumption is violated when training
on domain-specific images, where foreground and background are similar across the examples.

2.1.2 Motion-based methods.

Conventional methods [148, 201, 62, 125, 290, 83, 132, 254, 305] explore the motion information
mainly by resorting to hand-crafted features. [290] proposes a spatial-temporal energy function
applied to optical flow field to obtain spatiotemporally consistent saliency maps that are further
improved by using global appearance and location models. Similarly, [201] computes the optical
flow to detect motion boundaries and refines them through ray-casting strategy. An alternative
temporal solution [132] relies on the recurrence property of the primary object in a video. It
finds the recurring candidate regions in the entire sequence by extracting color and motion cues
through ultrametric contour maps. Identifying the matching segment tracks in different frames is
done by minimizing a chi-square distance temporally in the feature space. Given video sequences,
the temporal information can be exploited by assuming that the background changes slowly [18]
or linearly [254]. However, even a static scene induces non-homogeneous deformations under
camera translation, and it can be difficult to handle all types of camera motion within a single
video, and to distinguish articulated human motion from background motion [235]. Some of
the resulting errors can be corrected by iteratively refining the crude background subtraction
results of [254] with an ensemble of student and teacher networks [50]. This, however, induces a
strong dependence on the teacher used for bootstrapping. Recently, [176] showed that leveraging
the temporal information at different granularities through forward-backward patch tracking
and cross-frame semantic matching can be used to learn video object patterns from unlabeled
videos. Note that these methods can only operate on video streams and exploit a strong temporal
dependency, which our model does not require.

Our self-supervised detection and segmentation approach is conceptually related to VideoPCA [254],
which models the background as the part of the scene that can be explained by a low-dimensional
linear basis. This implicitly assumes that the foreground is harder to model than the background
and can therefore be separated as the non-linear residual. In Chapter 3, in addition to using motion
cues, we propose to rely on the predictability of image patches from their spatial neighborhood
using deep neural networks. This gives us an advantage over VideoPCA, which only works
with videos and comparably little background motion and complexity. Another closely related
work [305] employs a similar inpainting network to ours on flow fields. It relies on an adversarial
model that tries to hallucinate the optical flow from its surrounding while generating the mask of
a supposedly moving object in the region where the inpainting network yields poor reconstruction.
[305] is based on the PWC network [257] that is trained with supervision on a large object
database to predict flow with clear object boundaries. In that sense, as the methods based on
deep optical flow, it is not strictly self-supervised and can suffer from degenerate cases when
applied to still images with no or little movement. We will nonetheless show that our single-view
human segmentation approach can also benefit from such optical flow prediction if available,
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2.2. Multi-view Human Segmentation

outperforming the other methods that use this information.

2.1.3 Self-supervised methods.

Most similar to our single-view human detection and segmentation approach are the self-
supervised ones to object detection [24, 49, 61, 224] that complement autoencoder networks
by an attention mechanism. They first detect one or several bounding boxes, whose content is
extracted using a spatial transformer [105]. This content is then passed through an autoencoder
and re-composited with a background. In [224], the background is assumed to be static and
in [49, 61] even single colored, a severe restriction in practice. [49] uses a proposal-based network
similar to ours, but resorts to approximating the proposal distribution with a continuous one to
make the model differentiable. In Chapter 3, we demonstrate that much simpler importance
sampling is sufficient. In [203] a noisy segmentation masks is predicted by an unsupervised
version [62] used as a pseudo label to train a ConvNet to segment moving objects from single
images. [24] uses a generative model relying on the assumption that the image region strictly
covering the salient object can be subject to random shifts without affecting the realism of the
scene. Similarly, the method of [37] relies on an adversarial network whose generator extracts
the object mask and redraws the object by assigning different color or texture features to that
region. This is very different from our human detection and segmentation approach that aims to
reconstruct the scene from its background. Along similar lines, the algorithm of [13] searches
for the foreground object by compositing it into another image so that the discriminator fails to
classify the resulting image as fake. These methods can be easily deceived by other background
objects whose random displacement or texture change can still yield realistic images. In contrast
to these GAN-based techniques, our self-supervised single-view approach works with images
acquired using a moving camera and with an arbitrary background.

In addition to object detection, the algorithm of [224] also returns instance segmentation masks
by reasoning about the extent and depth ordering of multiple people in a multi-camera scene.
However, this requires multiple static cameras and a static background at training time, as does
the approach of [17] that performs instance segmentation in crowded scenes.

2.2 Multi-view Human Segmentation

In this section, we discuss the multi-view object detection and segmentation approaches relevant
to our self-supervised human segmentation technique that leverages multi-view consistency in
Chapter 4.

2.2.1 Multi-View Self-Supervised Approaches.

Earlier works include the generative unsupervised multi-person detection and tracking methods
proposed in [64, 17]. The former localizes and matches persons across several cameras with
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overlapping fields of view using a grid of candidate positions on the ground plane. The latter uses
a joint CNN-CRF architecture and Mean-Field inference to produce a Probabilistic Occupancy
Map (POM) as in [64] but leverages discriminative features extracted by a CNN. Both require
background subtraction images as input and can therefore only work with static cameras. Fur-
thermore, they exploit multiple views at inference time, whereas we aim to perform monocular
person segmentation.

2.2.2 Multi-View Self-Supervised Training for Single View Inference.

Our work using multi-view information for 2D detection and segmentation during training is
closely related to [225, 224] in that we do not use any segmentation annotation to learn the
foreground region. In [225, 224], novel view synthesis is used in conjunction with multi-view
synchronized videos of human motions captured by calibrated cameras to learn a geometry-aware
embedding. In contrast to our approach, it requires a known background to decompose the scene
into foreground and background regions. Hence, it cannot handle scenes filmed by moving
cameras. In Chapter 4, we introduce a method that works with a changing background. To this
end, we do not rely on novel view synthesis but instead exploit multi-view consistency by relating
the 2D detections of the multiple views to a common 3D capture volume.

2.3 3D Human Pose Estimation

3D human body pose estimation can be roughly classified into two categories; traditional marker-
based motion capture systems and image-based 3D human pose estimation techniques. In this
thesis, we focus on the latter and discuss different input modalities along with various pose
representations used in this problem.

Pose Representations. The most common human body models are either based on the skeleton or
the shape parametrization. In the skeleton-based model, the body is represented as 3D keypoints
connected through a tree structure. The 3D location of a keypoint can be defined as the 3D
position relative to the camera center or a root joint such as the pelvis. Many existing approaches
estimate the 3D Cartesian joint coordinates y = [pT

1 ,pT
2 , ...,pT

N ]T where pi is the 3D location
of the i-th joint in a skeleton with N joints. An alternative is to use 3D-joint rotations which
are then integrated via forward kinematics. The 3D rotations can be defined using 3D or 4D
representations such as exponential map, Euler angles or quaternions. In case of using exponential
map, the pose is represented as y= [pT

g ,θT
g ,θT

1 ,θT
2 , ...,θT

N−1] where pT
g is the global translation

and θT
g is the global orientation of the root joint. For other joints, the joint angles θT

i are relative
to their parent joint.

In the shape-based model, recent works use the skinned multi-person linear (SMPL) model [173,
27, 144, 208, 118, 129] represented as a triangulated mesh. The methods employing this repre-
sentation estimate the shape parameters that are used to model the body proportions and the pose
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parameters that determine how the body is deformed.

2.3.1 Single-Image Methods

3D human body pose can be recovered from monocular images either through direct map-
ping [156, 160, 122, 327, 206, 258, 177] or lifting the corresponding 2D pose [202, 186, 265,
271, 191, 188, 259, 205, 82].

Methods Preceding Our Work in 3D Human Pose Estimation. The first group of methods
relies on an end-to-end network that predicts the 3D coordinates of joints in a straightforward
manner. [156] designs a deep neural network within a multi-task learning framework that jointly
learns to detect the 2D joints and regress their 3D locations. [160] proposes a structured learning
within a deep neural network framework and encodes the joint dependencies by extending the
structured SVM model for 3D human pose estimation. It learns a similarity score between
feature embeddings of the input image and the 3D pose. This process, however, comes at a
high computational cost at test time, since, given an input image, the algorithm needs to search
for the highest-scoring pose. Our structured prediction of the 3D human pose [122] fits in
that line research, which involves combining autoencoders with CNNs that account for the
dependencies between body articulations. Earlier approaches [101, 102] achieve this through
kernel dependency estimation (KDE) and encode complex dependencies between human joints
in a lower dimensional space. However, given the highly complex structure of human body, we
show that dimensionality reduction is not the most effective way of achieving this. The key to
our approach is mapping 3D human pose to a higher dimensional latent representation via an
autoencoder to disentangle the inherent dependencies. In Chapter 5, we explain the methods that
are the most relevant to our approach in more detail. In the remainder of this section, we discuss
the more recent single-image methods and other deep neural network based strategies that are
employed following our work.

Methods Following Our Work in 3D Human Pose Estimation. In contrast to the previous
regression methods, [177] combines the 2D and 3D pose estimation tasks with human action
recognition. To preserve the geometric structure of human body [327] introduces a kinematic
object model consisting of bones that have a fixed length and [258] uses bone representation to
enforce geometric constraints. [206] proposes a volumetric approach and discretizes the 3D space
around the subject to train a network for predicting per voxel likelihoods for each joint.

To alleviate the ambiguities in 3D pose estimation in-the-wild, many recent works have leveraged
joint heatmaps or 2D pose results. [202] combines 2D pose estimation results with image features
to recover the 3D position relative to multiple joints. [186] proposes a simple baseline pioneering
the research on lifting 2D poses to 3D. [265] fuses 2D joint heatmaps and 3D image cues in a
trainable scheme. [271] employs a multi-stage pipeline to jointly estimate 2D and 3D body poses
in an iterative manner by predicting belief maps for the location of the 2D landmarks and lifting
them to 3D. [196] predicts the depth of human joints based on 2D human joint locations through a
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LSTM network. Similarly, [82, 323] use both the 2D joint heatmaps and depth features to estimate
3D pose. Differently from the previous methods, [191] formulates this problem as a regression
between matrices encoding 2D and 3D joint distances, preserving the structure of the human
body more accurately than the standard Cartesian representation. To improve the in-the-wild
performance, [188] explores transfer learning from features learned for 2D pose estimation. [259]
unifies the heatmap and regression based approaches by transforming the heatmaps into joint
location coordinates in a differentiable way. For predicting egocentric 3D human pose, [270, 269]
first trains a model to extract the 2D heatmaps of the body joints and then regresses the 3D
pose via an autoencoder with a dual branch decoder. Due to the cost of annotating 3D pose,
weakly supervised methods have emerged to limit the requirement for labeled data. [325] adapts
transfer learning that mixes 2D and 3D labels from different datasets in a unified deep neutral
network. To reduce the need for accurate 3D ground truth, [205] predicts only the depths of the
human joints and augments 2D keypoint annotations with the ordinal relations to predict the
3D pose coordinates. A recent self-supervised approach [289] predicts geometrically coherent
3D human poses from monocular images without needing additional 3D pose annotations. As
an intermediate supervision, [289] relies on 2D-to-3D pose transformation and 3D-to-2D pose
projection. To cope with the limited training data, [157, 74] propose to augment the existing
datasets with novel valid 3D skeletons. With the success of graph convolutional neural networks
(GCNs), recent methods revisit structured 3D pose estimation. [321, 44] encode the patterns in the
spatial configuration of the human joints through a GCN. However, the standard way of defining
the graph according to the human skeleton can be suboptimal since the motion patterns might not
follow the natural connections of body joints. To this end, [330] uses weight modulation to enable
the GCN to learn diverse relational patterns between different body joints. To produce more
realistic 3D human poses, generative adversarial networks (GANs) are often used. [276, 304, 281]
integrate 2D pose information and camera parameters into an adversarial training scheme to
discriminate whether a 3D pose generated by the network is plausible. Inspired by normalizing
flows, [294] generates a diverse set of feasible 3D pose hypotheses by utilizing the known 3D to
2D projection during training.

2.3.2 Multi-View Images.

Early work [9, 28, 20] use 2D pose estimations obtained from calibrated cameras to produce
3D pose by triangulation or pictorial structures model. Recently, given a multi-view camera
setup, [207] achieves this by combining 2D joint heatmap predictions from each view through
3D pictorial structure. [226, 225] integrates a loss function that adds view-consistency terms
to a standard supervised loss evaluated on a small amount of labeled data. In contrast to the
earlier methods, [131] investigates the epipolar geometry to recover the 3D pose from the 2D
poses in a multi-view setting without requiring 3D pose annotations. [272] uses a multi-stage
multi-view approach in which the 2D predictions from all views are used to reconstruct a
single 3D pose, consistent with all camera views. However, in [272] there is no gradient flow
from the 3D predictions to 2D heatmaps to correct the prediction in 3D. By contrast, [104]
learnable triangulation methods that combine 3D information from multiple 2D views in a 3D
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grid. To demonstrate that the expense of using a 3D grid is not required [223] learns a unified
view-independent representation of the 3D pose disentangled from camera view-points. [220]
introduces a cross-view fusion scheme to incorporate multi-view geometric priors. In case of
wearable sensors, [320] employs a fuses heatmap predictions across views with the help of the
orientations of IMUs. [275] relies on a proposal based architecture to aggregate features in all
camera views in the 3D voxel space. An alternative way to enforce geometry consistency is
novel view synthesis. In [39, 224] a view synthesis framework is proposed to learn the shared
3D representation between different views by generating the human pose from one viewpoint
to another. Similarly, [143] learns disentangled representations from image pairs in wild videos
without labels and yields pose and part segmentations in a novel image synthesis scheme. An
alternative strategy is devised by [111] that casts this problem as a self-supervised learning task
classifying whether two images depict two views of the same scene up to a rigid transformation.
To address the challenges in acquisition of labeled data, [103] adopts an end-to-end approach
using unlabeled multi-view data along with an independent collection of images with 2D pose
annotations. However, [103] tends to overfit to a specific dataset and uses a loss term computed
from the ground truth 3D poses of the Human3.6m. To overcome these limitations, [30] benefits
from a self-supervised approach to estimate the 3D pose from a single image by training on
unlabeled multi-view images and mixing poses across views.

2.3.3 Depth-based Methods

The availability of high-speed depth sensors and the launch of the Microsoft Kinect camera has
paved the way for pose and shape estimation for articulated objects using one single depth camera,
with the goal of removing ambiguities in 3D pose estimation. The work in this field either follows
a generative [77, 311, 67, 312] or a discriminative model [217, 248, 218, 116, 84, 190]. [311] uses
motion exemplars and matches the observed point cloud to them. [67] employs a MAP inference
in a probabilistic temporal model and extends the iterative closest points (ICP) objective by
modeling the constraints on movement of the subject. [312] combines the articulated deformation
model with the probabilistic framework and uses a Gaussian Mixture Model to explain the
observed point cloud. [248] demonstrates that Random Forest based approach can accurately
predict the 3D locations of body joints along with the body parts from single depth images.
While [248] assumes a uni-modal Gaussian for pixel-to-joint distribution, [218] uses kernel
density estimation (KDE) and introduces Metric Space Information Gain (MSIG), a new decision
forest training objective. [116] adopts offset regression and estimates the precise locations of
the joints by regressing K closest joints from every pixel with the use of a random tree. More
recently, [84] employs a CNN and RNN to predict partial poses in the presence of noise and
occlusion. [190] encodes a single depth map in a 3D voxelized grid and estimates the per-voxel
likelihood for each keypoint.
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2.3.4 Temporal Methods

One way to mitigate ambiguities in pose estimation is to use monocular video as input to enforce
consistency across frames. [58] relies on a dual-stream network and height maps to first predict 2D
poses and then recover 3D poses based on body length, projection and continuity constraints. [266]
directly regresses the 3D pose from a spatio-temporal volume of bounding boxes centered on the
target frame. [328] represents a 3D pose as a linear combination of predefined basis poses and
first predicts the 2D joint heatmaps that are fed into an Expectation-Maximization framework to
recover the 3D pose sequence. [189] introduces the first real-time method based on model-based
kinematic skeleton fitting against the 2D/3D pose predictions to produce temporally stable joint
angles. Following our approach, [164, 48, 146, 97] propose to use LSTMs for exploiting temporal
correlations. Differently from the other LSTM based methods [146] connects several LSTMs to
extract depth information from 2D pose predictions. [97] designs a sequence-to-sequence model
with LSTM units to estimate a sequence of 3D poses from 2D joint locations. [53] integrates
weak supervision into a temporal framework by jointly learning from large-scale in-the-wild 2D
and synthetic 3D data. [209] is the first work that shows using dilated temporal convolutions on
2D keypoint sequences can be more efficient than RNN-based models to estimate 3D poses in a
video. [168] combines temporal convolutional network with an attention mechanism to capture
long-range temporal relationships across frames.

2.3.5 Body Mesh Reconstruction

A closely related line of research that provides a richer information on human pose is 3D
mesh reconstruction of a human body. It uses a mesh representation that is parameterized
by shape and 3D joint angles. Early work [12] uses SCAPE body model for partial view
completion and 3D animation of a moving person from marker motion capture data. Recent
work [173] uses SMPL body model based on vertex-based skinning approach and learns the
body parameters by minimizing vertex reconstruction error on large amounts of data. [27]
estimates the 2D joint locations via CNN, and then fits a 3D SMPL body model to these
joints while [144, 208] improve upon this work by matching the image silhouette and the
silhouette projected from the SMPL model. In contrast to the previous methods, [119] employs
an adversarial training in addition to minimizing the reprojection error. [200] first predicts a
semantic body part segmentation and learns to map them to SMPL body model parameters. To
address the weaknesses of previously introduced optimization and regression methods, [135]
proposes an iterative optimization routine to fit the body model to 2D joints within the training
loop, and the optimized body parameters are used to supervise the regression network. [86]
formulates the problem differently and exploits the human-world interaction constraints to better
estimate the human pose from monocular images. [301] is the first work using pixel-to-surface
correspondence maps [79] to regress parametric pose and shape. To generate more realistic
and temporally consistent body shapes, [129] relies on a temporal encoder and body parameter
regressor as well as a motion discriminator. [130] extracts 2D and 3D body part features and
fuses them via a part attention module to regress the SMPL shape and pose parameters.
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2.4 3D Human Motion Forecasting

2.4.1 Motion prediction using RNN, GAN and GCN.

In human motion prediction, deep learning approaches have outperformed conventional meth-
ods based on Hidden Markov Models [91], Gaussian Processes for time-series analysis [285],
conditional restricted Boltzmann machine [263] and dynamic random forest [149]. The inherent
similarity of motion forecasting and sequence-to-sequence prediction tasks [260, 261, 16, 59, 14]
have driven the research in this field towards encoder-decoder models. Pioneered by the Encoder-
Recurrent-Decoder (ERD) model [65], RNNs have become the standard in sequential human
motion analysis. Following [65], [107] introduces Structural-RNN (S-RNN) based on a spatio-
temporal graph that encapsulates the dependencies among body joints over time. As an alternative
to this, [69] leverages de-noising autoencoders to learn the spatial structure of the human skele-
ton by randomly removing information about joints during training. [185] designs a residual
architecture that predicts velocities instead of poses. Similarly, [75] integrates motion derivatives
and [326] feeds the network output back into itself to model long-term motion trajectories. In
contrast to [185], [42] uses velocities as both inputs and outputs to encode different hierarchies
in human dynamics at various timescales. Nevertheless, the predictions produced by RNNs still
suffer from discontinuities at the transition between the last observed and the first predicted poses.
Another drawback is that they often predict the mean ground truth pose in the long term.

To address these limitations, [78] integrates adversarial training to enforce frame-wise geometric
plausibility and sequence-wise coherence for the pose predictions. [234] presents a GAN with
several discriminators that operates on input sequences with masked joints and learns to inpaint
the missing information. Similarly, [52] introduces a GAN based on multiple discriminators
and spectral normalization to apply temporal attention. By contrast, [282] formulates this
problem as reinforcement learning and generative adversarial imitation learning to focus on
shorter sequences by breaking long ones into smaller chunks. Stochastic motion prediction
methods [19, 303, 142, 314, 8, 7, 182] rely on generative models, such as VAEs and GANs,
to predict multiple diverse motion sequences in the future from a single input sequence. [8, 7]
achieve this through conditional variational autoencoder (CVAE) while [182] generates the
motion of different body parts sequentially. [314] proposes a novel sampling strategy to produce
diverse samples from a pretrained generative model. [32, 288] generate multiple trajectory and
pose predictions conditioned on the scene context.

Recently, graph convolutional network (GCN) has been widely used to learn dynamic relations
among pose joints. [183] encodes the spatio-temporal relationship among joints via a GCN that
adaptively learns the body connectivity unlike S-RNN [107] with a fixed structure. [145] also
relies on a GCN and processes the past sequence at different lengths. Recently, [167] proposes to
predict the poses first at a coarse level, and then at finer levels using a multi-scale residual GCN.
Similarly, [155] employs a multi-scale GCN that jointly learns action categories and motion
dynamics at different granularities.
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2.4.2 Attention-based human motion prediction.

Attention mechanism has been proven to be effective in machine translation and image caption
generation [16, 300, 14] but has not reached its full potential in motion prediction. [262] proposes
an attention mechanism to focus on the moving joints of the human body for motion forecasting.
A similar idea is employed in [249] to learn the spatial coherence and temporal evolution of
joints via a co-attention mechanism. Built on [183], [181] combines GCN with an attention
module to learn the repetitive motion patterns in the past. Instead of modeling attention on the
full body alone, as in [181], [184] fuses the predictions from three attention modules that process
motion at different levels; full body, body parts, and individual joints. Differently from the
previous approaches, [178] trains a computationally less intensive Transformer [14] to infer the
future poses in parallel. This is achieved by a non-autoregressive strategy that comes at a cost of
performance degradation.

2.4.3 Social interactions in motion prediction.

Modeling human-to-human interactions is a long studied problem focusing on social dynamics in
a group of people [90] to learn human navigation. Early approaches use hand-crafted features
such as Social Affinity Map (SAM) obtained by a Gaussian Mixture Model. Alternatively, [6]
predicts the trajectories of pedestrians via a Markov-chain model. Based on the social forces
introduced in [90], [187] models the motion of pedestrians using optical flow and [210, 302, 229]
formulate the task an energy minimization problem.

Recently, the attention shifted from hand-crafted energy potentials to learning human-to-human
and human-to-object interactions in a data-driven way using RNNs. [5, 239, 55, 255, 256, 1]
propose social pooling layers to reason about the collective behavior of people or trajectories
of vehicles. [81, 236, 138] introduce a GAN based model to predict multiple plausible future
trajectories of all people in the scene simultaneously. In contrast to the previous approaches, [170]
uses a contrastive method for learning socially-aware motion representations. [147] formulates
this problem as a driving scenario with multiple agents and solves it via an inverse reinforcement
learning strategy. [99, 35, 317] capture the dynamics in the scene via graph neural network (GNN).
Recently, attention mechanisms have been adopted to learn the spatial-temporal dependencies of
elements in the scene [153, 154, 171, 245].

3D multi-person pose estimation has greatly benefited from contextual information. [316, 86, 113]
integrate scene constraints through loss terms, such as penalizing inter-penetration of bodies, that
jointly optimize the 3D pose of multiple people. [46, 80] encode social context information by
passing the hidden representation of all individual poses through an attention layer. [283] encodes
interaction information in a hierarchical way as instance, part and joint levels. [195] takes on a
different path and casts the human interaction modeling as a 3D ego-pose prediction. It predicts
the body pose of a camera wearer using the pose of the observed second person.

Existing work focus on either motion forecasting for single human in isolation or multiple weakly
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interacting people in the scene. However, for modeling strong motion dependencies in a small
group, these methods remain suboptimal. In this work, we address the novel task of predicting
the future motion of people engaged in dyadic interactions.

21





3 Self-supervised Human Detection
and Segmentation via Background
Inpainting

Robust detection and segmentation of moving objects can now be achieved reliably in scenarios
for which large amounts of annotated data are available [88]. However, for less common activities,
such as skiing, it remains challenging, because the required training databases do not exist, as
shown in Fig. 3.1. Self-supervised approaches [61, 132, 24, 37, 139, 49, 50, 224, 305, 166, 21,
176] promise to address this problem. However, some can only operate on video streams as
opposed to single images [132, 50, 305, 176] while most others depend on strong constraints
being satisfied, such as the target objects being seen against a static background.

(a) YOLOv3 (b) Ours (c) MaskRCNN (d) Ours

Figure 3.1 – Domain specific detection and segmentation. Our self-supervised method detects
the skier well, while YOLO trained on a general dataset does not generalize to this challenging
domain. Similarly, MaskRCNN trained on a general dataset sometimes misses body parts such as
the upper body of the skier in (c).

To develop a more generic approach, we start from the observation that in most images the
background forms a consistent, natural scene. Therefore, the appearance of any background patch
can be predicted from its surroundings. By contrast, a moving person’s appearance is unpre-
dictable from the neighboring scene content and can be expected to be very different from what
an inpainting algorithm would produce. We incorporate this insight into a proposal-generating
deep network whose architecture is inspired by those of YOLO [222] and MaskRCNN [88] but
does not require explicit supervision.
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Specifically, for each proposal, we synthesize a background image by masking out the corre-
sponding region and inpainting it from the rest of the image. The loss function we minimize
favors the largest possible distance between this reconstructed background and the input image.
This encourages the network to select regions that cannot be explained from their surrounding
and are therefore salient. To handle the discrete nature of the proposals, we develop a Monte
Carlo-based strategy to train our network. It operates on a discrete distribution, is unbiased,
exhibits low variance, and is end-to-end trainable.

Our approach [120] overcomes limitations in existing self-supervised human pose estimation
methods requiring static cameras [224] or monochromatic background [139, 49]. We propose
a self-supervised method that operates on single images and demonstrate its effectiveness on
several human motion datasets captured with cameras that are static, pan-tilt-zoom, or hand-held.
We can handle large camera motions and do not require any manual annotation. We focus on
images acquired in realistic conditions such as Ski-PTZ dataset of [226], daily human motion
Handheld190k in outdoor scene and figure skating FS-Singles as well as those of the standard
Human3.6m benchmark [102]. Fig. 3.1 depicts such a scenario in which our approach outperforms
a state-of-the-art detection and instance segmentation method [88] trained on large annotated
dataset [165]. It also outperforms existing self-supervised segmentation techniques [254, 132,
37, 50, 305]. Following standard practice in the self-supervision literature [132, 305, 224], we
start from pre-trained network weights, which we fine-tune without any additional supervision in
our target domain. However, we can also train from scratch with only a small performance loss.
Finally, even though we focus on people, we show that our approach also applies to other kinds
of target objects.

3.1 Approach

Our goal is to learn a salient person detector and segmentor from unlabeled videos acquired in as
practical a setup as possible. We therefore only use raw videos or images as input and do not
constrain the frame-to-frame camera motion.

3.1.1 Outline

Our basic intuition is that when people move with respect to the background, the area they
occupy often looks quite different from the background. More specifically, we operate under the
following two assumptions.

• A1: The foreground and background are distinguishable by color or texture as explained
in detail by [150]. As discussed in Section 3.1.5, this can be relaxed by using optical flow.

• A2: Every part of the background must be uncovered more often than covered. This
assumption is almost always valid in long videos depicting moving people, unlike the
assumptions made in related approaches [267, 268, 132, 98, 305] that require people to
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0.0
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Figure 3.2 – Our self-supervised detection and segmentation architecture. Our model F
passes the input image I to a detector D that proposes potential bounding boxes. One of them
is passed to a spatial transformer T that crops I and the result is fed to a segmentation network
S that outputs a segmentation mask S and the corresponding foreground image Î. In a separate
branch, an inpainting network I fills the content of the bounding box to generate a background
image Ī. Finally, the inverse transformer T −1 is used to combine Î, masked by S, and Ī into an
image that should be similar to the original one.

move in every frame.

Hence, we cast the foreground segmentation task as one of finding an area that, when inpainted
using information from the background, yields an image that is as different as possible from the
true one. This makes sense under assumption A1 that people look different from the background.
Assumption A2 is required to be able to train the inpainting network in a self-supervised manner.
In the remainder of this section, we first present the architecture of the network we use for this
purpose and then explain how we train it.

3.1.2 Network Architecture

We use the model F depicted by Fig. 3.2. It takes a single image I ∈ RW ×H×3 as input. It
then resynthesizes it by sampling a candidate bounding box, cropping the corresponding image
patch, and, in parallel, predicting a foreground image Î ∈ R128×128×3 and a segmentation mask
S ∈R128×128 from the crop, while inpainting the cropped region to generate a background image
Ī ∈RW ×H×3. Finally, the foreground crop and the background image are re-composed according
to the segmentation mask. Formally, this can be written as

F (I) =T −1(Î◦S)+ Ī◦ (1−T −1(S)), (3.1)

where T is the spatial transformer corresponding to the selected bounding box, and ◦ is the
element-wise multiplication.
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To generate the segmentation mask S, F relies on a detection network D inspired by the YOLO
architecture [222]. It divides the image into a grid and computes for each cell c a probability pc

of a detection expressed in terms of a bounding box bc ∈R4 that defines a center and offset from
the grid center. Hence, it outputs a set of C candidate bounding boxes {bc }C

c=1 and corresponding
probabilities {pc }C

c=1 out of which one bounding box bc is sampled according to its probability
pc . A segmentation network S then encodes and decodes the content of bc into a segmentation
mask S and the corresponding foreground image Î.

In a separate branch, an inpainting network I generates the background image Ī. Since off-the-
shelf inpainting networks [204, 313] trained on large and generic datasets tend to hallucinate
objects, we rely instead on a U-Net architecture [232] to implement I , which we pre-train without
using any labels and for each dataset, as discussed below. When the background B is known a
priori, for example because we use a static-camera, we can simplify our architecture by removing
the inpainting branch and replacing Ī by B. This specific case has been addressed in [49, 224] but
we will show that our approach yields better results.

Algorithm 1: Our training and test procedures
input :I ∈RW ×H×3

output :I
′ ∈RW ×H×3 // Resynthesized image

for In in {In}N
1 do

{(bc ), (pc )}C
c=1 ←[D(In) // Bounding box prediction

if training then
m ←[ sample_2D_cell(pc );

else
m ←[ argmaxc pc ;

end
if exists(B) then

Īn ←[ B
else

Ibg
n ←[ In

Ibg
n [bm] ←[ 0

Īn ←[ I(Ibg
n ) // Background inpainting

end
Icr op

n ←[ T (In ,bm)
În ,Sn ←[S(Icr op

n )
I
′
n ←[ T −1(În ◦Sn)+ Īn ◦ (1−T −1(Sn)) // Resynthesis

end

At inference time, we simply run the trained model on the test image and pick the 2D grid cell
with the highest occupancy probability c∗ = argmaxc pc . Its bounding box parameter estimates
are fed into the spatial transformer T to crop the region of interest, which is then segmented
by the segmentation network S, as described above. The corresponding pseudo-code is given
in Algorithm 1. Re-composing the image and background inpainting are only essential to train
our model. They can be omitted at inference time for bounding box and segmentation mask
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prediction.

3.1.3 Training Losses

Given a set of unlabeled training images {I1, . . . ,IN }, we first train I and then F , and therefore D
and S, in a self-supervised manner.

To train I, we randomly remove image regions from the training images and inpaint them from
their immediate surrounding. We compare the result to the original image using an L2 pixel-wise
loss augmented by a perceptual loss, which we minimize. This works well as long as assumption
A2 introduced in Section 3.1.1 holds.

Foreground vs Background

To learn the weights of F , we minimize a weighted sum of a foreground loss Lfg and a background
loss Lbg. Given the probabilistic nature of the detections generated by the detector network D,
we take them to be expected values. We write

Lfg(I) =
C∑

c=1
pc L2 (Fc (I),I) , (3.2)

Lbg(I) =−
C∑

c=1
pc

L2(Īc ,I)

area(bc )
(3.3)

where L2 is the pixel-wise mean square loss and pc is the probability associated to bounding box
bc by the detector network. Fc (I) indicates the resynthesized image and Īc is the background
image generated by inpainting based on the sampled cell c, as discussed in Section 3.1.2.
Minimizing Lfg encourages Fc (I) to be as similar as possible to I, for all training images, but
does not preclude the generation of bounding boxes on background objects. That is the role of
Lbg. Because of the minus sign in front of the summation, minimizing it favors bounding boxes
for which the inpainting generates an image that is different from the original one, which denotes
an image location that cannot be reliably reconstructed from surrounding pixels by inpainting.
Note that we normalize by dividing by area(bc ), which is the maximum number of pixels that
may be different in Īc and I. This makes Lbg insensitive to the size of the bounding box. Without
this division, Lbg would favor large regions, whether they contain an object or not. Nevertheless,
minimizing Lbg by itself can favor bounding boxes with high-error density, whether or not they
cover the whole person, as we will demonstrate in the ablation study of the results section.
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Disentangled Training Strategy

In short, minimizing Lbg does not guarantee bounding boxes that fit to the person completely
or precisely. By contrast, minimizing Lfg favors a tight fit of the segmentation mask S when
the bounding box bc is correctly located because the rest of F (I) is resynthesized using only
background information, which is not relevant to the person’s appearance. However, it can also
yield meaningless solutions in which bc is located in the background. To get the best of both
world, we must therefore minimize Lfg and Lbg jointly.

Unfortunately, finding a balance between these two competing objectives by relative weighting
alone has proved difficult, if not impossible. Instead, we designed a disentangled training strategy
in which we isolate their conflicting influence on the individual network components to stabilize
the training when their contributions are weighted.

Specifically, the probabilities pc are only optimized according to Lbg so that Lfg cannot bias them
towards the background regions, where it has a trivial solution. Conversely, bc is optimized only
according to Lfg to favor a tight fit without the opposite bias from Lbg towards high error density
bc with only partial coverage of the person. Similarly, S is optimized solely according to Lfg to
yield the best possible reconstruction, instead of the largest distance to the background as induced
by Lbg. This can all be computed in a single forward-backward pass by treating the excluded
variables as constants in the respective objectives, that is, by cutting their gradient flow.

Full Training Loss

To speed up the convergence and to make the segmentation crisper, we introduce a perceptual
loss and regularization terms in addition to Lfg and Lbg.

Perceptual Loss. We take it to be

Lφ =
C∑

c=1
pc L2

(
φ(Fc (I)),φ(I

)
) , (3.4)

where φ(.) denotes the low level features obtained by passing its input to a pre-trained ResNet18
network.

Probability Regularizer. We take it to be the L1 loss

Lp =
C∑

c=1
|pc | (3.5)

that promotes sparsity of the non-zero probabilities.

Segmentation Mask Regularizer. We take it to be a v-shaped prior that operates on S and
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stabilizes the early training iterations by encouraging the average value of the segmentation mask
to be larger than a threshold value λ yet sparse and less noisy when exceeding this threshold. We
write

Lv =
∣∣∣∣∣
(

1

W H

W∑
x

H∑
y
T −1(S)x y

)
−λ

∣∣∣∣∣+λ , (3.6)

where W and H are the image width and height, respectively, and λ is set to 0.005. Note that this
threshold does not control the size of the segmentation. The small value is exceeded quickly and
makes Lv an L1 prior for subsequent training iterations.

Joint Loss. In practice, we use a weighted combination of these losses, given by

Ljoint =αLbg +βLfg +γLφ+ηLv +ζLp (3.7)

applied to N unlabeled images within a batch, where α= 0.1,β= 1,γ= 2,η= 0.25 and ζ= 0.1.

3.1.4 Monte Carlo and Importance Sampling

Computing the losses of Eqs. 3.2, 3.3, and 3.4 involves summing over the C bounding boxes
proposed by the detection network D and their corresponding probabilities. In practice, we use
C = 64 and back-propagating through all 64 possibilities at each training iteration makes the
computation expensive. Hence, for practical purposes, it has proved necessary to reduce this cost.

Since all three losses are of the form L =∑C
c=1 pc f (I,bc ), where f is a differentiable function, the

simplest way to speed up the computation would be to randomly sample a small subset of the C

bounding boxes and write
L ≈ Ec

[
f (I,bc )

]
with c ∼ p , (3.8)

where Ec denotes the expectation over c drawn from the categorical proposal distribution p =
{p1, . . . , pC } output by the network D. Unfortunately, the resulting loss estimate would then not
be differentiable with respect to the network weights, thus precluding end-to-end gradient-based
optimization.

Instead, we use Monte Carlo sampling to evaluate all three losses and introduce an auxiliary
distribution q to rewrite Eq. 3.8 as

L ≈ Ec

[
pc

qc
f (I,bc )

]
with c ∼ q . (3.9)

This approximation holds for any two probability distributions and drawing the samples according
to q instead of p does not depend on the network weights, thus provides differentiability [233].
However, this Monte Carlo sampling comes at the cost of a potentially high approximation
error when using only a few samples. For instance, by choosing q to be the uniform sampling
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distribution U , most of the uniformly drawn samples will have a low probability p and, therefore,
negligible influence. To reduce this error, we rely on importance sampling [117, 134] to provide
a low-variance unbiased estimator by taking the sampling distribution q to be similar to p. Then
pc /qc ≈ 1 and the fraction does not influence the result much. However, the derivatives can still
be computed because qc is a constant and the gradient of Eq. 3.9 is the same as in the likelihood
ratio method [73] used in the REINFORCE algorithm [298]. We provide the details of the change
of distribution and importance sampling variance in Appendix A.2.

In practice, to prevent division by very small values that could lead to numerical instability, we
take the q probabilities to be

qc = pc (1−Cε)+ε . (3.10)

As a side effect, ε controls the probability that an unlikely case is chosen, which induces a form
of exploration that is helpful in the early training stages of the network.

When approximating the expectation with a single sample, we can rewrite the losses introduced
in Sections 3.1.3 and 3.1.3 as

Lbg(I) =−pc

qc

L2(Īc ,I)

area(bc )
, (3.11)

Lfg(I) = pc

qc
L2 (Fc (I),I) , (3.12)

Lφ(I) = pc

qc
L2

(
φ(Fc (I)),φ(I

)
) , (3.13)

with c ∼ q and inject these new definitions into that of the joint loss Ljoint of Eq. 3.7.

3.1.5 Exploiting Optical Flow for Training Purposes

When video sequences are available at training time, we can exploit optical flow to help detect
the foreground subject. To this end, we use optical flow images obtained by running FlowNet
2.0 [100] on pairs of consecutive frames stabilized by computing a homography using SIFT
keypoints to warp one onto the other. We use the resulting optical flow image I f as an intermediate
supervision to our model. To this end, we train a second inpainting network I f (I f ,bc ) to
reconstruct flow images instead of regular ones. We then introduce an additional flow background
objective Lbg(I f ), with the same weight as Lbg(I), into Ljoint of Eq. 3.7 that favors the bcs with
higher inpainting loss on the flow images. This objective regulates bounding box detection by
assigning higher confidence to foreground regions where the motion is clearly different from
that of the background. As shown in Fig. 3.3, this lets us ignore the background motion due to a
moving camera. Because we only use flow images for intermediate supervision, our model still
operates at test time with single images. FlowNet is pretrained on the synthetic MPI Sintel Flow
Dataset [29] and, when included, makes our approach superior to other approaches using this
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(a) (b) (c)

Figure 3.3 – Optical flow image generation on Ski-PTZ and Handheld190k. We use a ho-
mography based on SIFT keypoints to compute rectified images that are provided as input to
FlowNet 2.0. (a) Source image warped to the target scene; (b) Target image; (c) Optical flow
image highlighting the moving foreground region between the source image and the target image
after the background motion is eliminated. In Ski-PTZ, the optical flow images provide strong
cues about the foreground object as the scene was captured by rotating cameras, making ho-
mography estimation effective. In Handheld190k, because the camera undergoes translations,
the homography and optical flow estimates are less accurate, but can nonetheless improve our
segmentation performance.

level of supervision.

3.1.6 Implementation Details

Overall Training. All training stages are performed on a single NVIDIA V100 32GB GPU
using Adam with a learning rate of 1e-3 and batch size 16. First, the inpainting network is
optimized for 200k iterations and subsequently the complete network for an additional 100k
iterations. The decoding part of the synthesis network S uses a reduced learning rate of 1e-4, to
prevent occasional diverging behavior. We use an input image resolution of 640px×360px for the
Ski-PTZ, Handheld190k and FS-Singles datasets, and 500px×500px for Human3.6m.

We typically use ImageNet-trained weights to initialize our encoder components but can also
train them from scratch. We rely on the Focal Spatial Transformers (FST) of [224] to speed up
convergence, and expand the erased region in I in both dimensions by 15% of the size of that
predicted by D to increase the chances of covering the object. Moreover, we discard location
offsets outside the image and limit the offset to 1.5 times the bounding box width, as larger ones
are already fully covered by the neighboring bounding boxes. We performed a grid search on the
relative weights of the loss terms, the offset limits, and λ.

Detection Network. We predict one candidate bounding box relative to each grid cell in a regular
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grid using a fully-convolutional architecture similar to that of YOLO [222]. We use a ResNet-18
backbone [89], which reduces the input dimensionality by a factor 16, from 128×128 to 8×8.
The feature size is set to five, two for the bounding box location offset, two for scale, and one
for the probability. Each feature output represents the bounding box parameters predicted by
one grid cell and the offset is relative to the cell center, as shown in Fig. 3.2. The estimated
probabilities pc are forced to be positive and to sum to one by using a soft-max activation unit.
To prevent this network from constantly predicting bounding boxes at the borders of the image,
where the inpainting error would be high, we zero out the outer cell probabilities.

Synthesis Network. S is a bottleneck autoencoder based on the publicly available implementa-
tion of [225]. The encoding part is a 50-layer residual network, and the weights are initialized
with ones trained on ImageNet classification. The hidden layer is 856 dimensional, split into a
600 dimensional space and a 256 dimensional space that is replicated spatially to a 512×8×8

feature map to encode spatially invariant features. The decoding is done with the second half of a
U-Net [232] architecture with 64, 128, 256, 512 feature channels in each stage, respectively. The
final network layer outputs four feature maps, three to predict the color image Î and one for the
segmentation mask S.

Inpainting Network. In principle, any off-the-shelf inpainting network trained on large and
generic background datasets could be used. For instance, those of [204, 313] can produce very
plausible results. However, in domain-specific images, they tend to hallucinate objects, as shown
in Fig. 3.4, and are therefore ill-suited for our purpose. Instead, we train I from scratch, by
reconstructing randomly removed rectangular image regions. Note that it is acceptable for I not
to generalize well to new scenes as it is not needed at test time. We implement it using a 6 layer
U-Net model [232] with 8, 16, 32, 64, 128, 256 feature channels in each stage. It takes as input
an image from which a selected bounding box region is removed and outputs the entire image
with the initially removed patch re-synthesized. It is trained independently from the rest of the
pipeline and separately for each dataset by feeding images with randomly occluded regions of
varying sizes. In our full pipeline, the weights of the inpainting network are frozen and to remove
the image evidence corresponding to the foreground person, the hidden patch in the input image
to the inpainting network is selected to be the predicted bounding box expanded by 15% in both
dimensions.

Importance sampling. For the importance sampling function q , we use ε= 0.001, which makes
the method numerically stable while the probability of choosing a random bounding box stays
low, i.e., 6.4% for 64 cells.

Following common practice in the self-supervised segmentation literature [158, 159, 305], the
final segmentation masks are generated by a CRF [140] post-processing step that uses both unary
and pairwise bilateral potential terms. This CRF post-processing does not involve any training;
the unary potentials are taken to be the thresholded segmentation masks predicted by our method,
and we use the default values of [140] for the pairwise potentials.
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(a) (b) (c) (d)

Figure 3.4 – Off-the-shelf inpainting results on Ski-PTZ. (a) Input image with the middle part
hidden. We show the inpainting results of (b) [204], (c) [313] trained on ImageNet and (d) [313]
on Places2.

3.2 Experiments

In this section, we first demonstrate the effectiveness of our approach at dealing with unusual
motions acquired with PTZ cameras using the Ski-PTZ dataset of [226]. We then introduce a
novel Handheld190k dataset depicting people performing 14 everyday activities and a figure
skating FS-Singles dataset with different step, spin and jump combinations to demonstrate that
our method can handle general moving cameras. For evaluation purposes, we provide ground
truth segmentations for both. Finally, we present the experiments with different loss functions and
hyper-parameter study on the Ski-PTZ dataset and analyze the influence of different aspects of
our approach on the well-known Human3.6m dataset [102]. Altogether our results show that our
approach outperforms the existing self-supervised segmentation techniques, including the ones
that exploit temporal cues at inference time [132, 305], approaches the accuracy of supervised
methods on objects they have been trained for but seen in different conditions, and outperforms
them on previously-unseen objects.

3.2.1 Unusual Activity Filmed Using PTZ-Cameras

Let us first consider the Ski-PTZ dataset of [226] featuring six skiers on a slalom course. We
split the videos of six skiers as four/one/one to form training, validation, and test sets, with,
respectively, 7800, 1818 and 1908 frames. The intrinsic and extrinsic parameters of the pan-tilt-
zoom cameras are constantly adjusted to follow the skier. As a result, nothing is static in the
images, the background changes quickly, and there are additional people standing as part of the
background. We use the full image as input, evaluate detection accuracy using the available 2D
pose annotations and segmentation accuracy by manually segmenting 16 frames from each of the
six cameras, which add up to 192 frames in two test sequences. To determine the hyperparameter
values, we use 3 manually segmented frames from each of the six cameras, for a total 36 frames
in two validation sequences.

In Table 3.1(left), we compare our approach to several self-supervised segmentation baselines in
terms of the J- and F-measures of [212]. The former is defined as the intersection-over-union
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Method Uses Optical Flow

ReDO [37] 7
VideoPCA [254] 3
ARP [132] 3
Unsup-DilateU-Net [50] 3
Unsup-Mov-Obj w/o CRF [305] 3
Unsup-Mov-Obj [305] 3
Ours-SV w/o optical flow 7
Ours-SV w/ optical flow 3
Ours-SV w/ optical flow + CRF 3

Ski-PTZ

J Measure F Measure

0.43 0.49
0.54 0.61
0.72 0.82
0.63 0.73
0.61 0.71
0.66 0.76
0.62 0.69
0.70 0.77
0.73 0.83

Handheld190k

J measure F measure

0.33 0.38
0.47 0.49
0.60 0.68
0.67 0.75
0.60 0.68
0.75 0.83
0.75 0.87
0.70 0.79
0.76 0.85

FS-Singles

J measure F measure

0.68 0.77
0.55 0.69
0.56 0.69
0.53 0.53
0.53 0.73
0.68 0.85
0.66 0.72
0.69 0.80
0.71 0.86

Table 3.1 – Segmentation results on the Ski-PTZ, Handheld190k and FS-Singles datasets.
Our method with optical flow consistently outperforms the other self-supervised methods, and
ours without flow exceeds or is on par with the other baselines on all three datasets. The best
results in each column are shown in bold.

between the ground truth segmentation mask and the prediction, while the latter is the harmonic
average between the precision and the recall at the mask boundaries. To be fair, we compensate
for different segmentation masks quantification levels by a grid search (at 0.05 intervals) to select
the best J-measure threshold for each method. Our approach with optical flow outperforms all the
baselines in terms of both J- and F-measure. When not using optical flow for training purposes,
our approach remains on par with other self-supervised methods despite their use of explicit
temporal dependencies. In particular, the comparison to [305] without CRF post-processing
shows that our method can achieve the same performance against an optical flow based method
without needing a flow-based intermediate supervision. Note that all the baselines are trained
on our datasets from scratch using same amount of data, except for [50] that additionally uses a
segmentation mask discriminator trained on the combination of the ImageNet VID and YouTube
Objects datasets. In other words, while this method is trained in a self-supervised fashion, it
relies on a significantly larger amount of data than ours.

In Fig. 3.5, we compare our method qualitatively to a recent self-supervised method [24]. Note
that their generative model fails to segment the foreground object alone and instead segments
background objects and sometimes even the ground. Therefore, we couldn’t obtain any reasonable
quantitative results for [24]. This method relies on the property that foreground regions can
undergo random perturbations without altering the realism of the scene. However, in the Ski-PTZ
dataset, some background objects, such as poles, also satisfy this property, and the generator can
choose to keep these regions. We also trained [13], another recent self-supervised method that
discovers object masks by copying the selected region of the image onto another image with the
goal of obtaining a realistic scene, on the Ski-PTZ dataset and obtained implausible masks for the
same reason. Since these methods performed poorly on the training samples, we do not provide
their quantitative results on the test data.

We provide qualitative results in Fig. 3.6. The probability distribution, visualized as blue
dots whose magnitude reflect the predicted likelihood, shows clear peaks on the persons. The
limitations include occasional false positives, such as the gates on the slope in close proximity to

34



3.2. Experiments

(a) Input (b) Ours-SV (c) P-GAN [24]

Figure 3.5 – Soft segmentation masks generated by our method and PerturbedGAN (P-
GAN) [24] on training examples. Top row: P-GAN mask generated on the Ski-PTZ dataset,
the poles and snow patches are segmented as foreground. Bottom row: P-GAN mask generated
on the Handheld190k dataset contains the foreground subject together with the ground they are
standing on.

(a) Inp/Ours detection (b) [50] (c) [305] (d) [132] (e) Ours-SV w/ flow (f) Ground truth

Figure 3.6 – Qualitative results on the Ski-PTZ. Example results on the test images. (a) The
detection results show the predicted bounding box with red dashed lines, the relative confidence
of the grid cells with blue dots and the bounding box center offset with green lines (better viewed
on screen). (b) Segmentation mask prediction of [50]. (c)Segmentation mask prediction of [305].
(d) Segmentation mask prediction of [132]. (e) Our segmentation mask prediction. (f) Ground
truth segmentation mask. Note that in the third row even though the skier is mostly occluded
by snow, our method can detect and segment the visible part of the body. Our method is more
accurate than [50] in terms of background removal and outperforms [305] in terms of correctness
of the object boundary. Note that in contrast to our method, [132] uses explicit temporal cues at
inference time.
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the skier, reducing precision. Additional qualitative results can be found in Appendix A.1.

3.2.2 Activities Captured Using Moving Cameras

To demonstrate the effectiveness of our approach in the presence of general moving cameras, we
introduce a new Handheld190k dataset captured by hand-held cameras. It features three training,
one validation and one test sequences, comprising 120855, 23076 and 46326 images, respectively,
with a single actor performing actions mimicking those in Human3.6m. We manually annotated
112 frames in the validation and 240 frames in the test sequence to provide ground truth segmen-
tation masks, which we believe will be useful for evaluating other self- and weakly-supervised
methods. The camera operators moved laterally, to test robustness to camera translation and
hand-held rotation. We provide examples of our detection and segmentation results in Fig. 3.7.
Our method is robust to the undirected camera motion and to dynamic background motion, such
as branches swinging in the wind and clouds moving, and to salient textures in the background,
such as that of the house facade. Additional qualitative results can be found in Appendix A.1.

To perform a quantitative comparison, we use the 240 manually-segmented test images taken
from different motion classes with the subject in many different poses. In Table 3.1(middle),
we compare the results of our approach with those of the same methods as for the ski dataset.
Our approach, both with and without optical flow, outperforms all the self-supervised baselines.
This is even true for [50] despite its use of a much larger dataset to train a discriminator in an
unsupervised fashion and also for [132] that exploits strong temporal dependencies.

We also evaluate our method on a new FS-Singles dataset composed of single men’s figure
skating videos collected from YouTube. The videos are captured by general moving cameras and
these cameras are usually adjusted fast enough to follow the movements of the skater to keep
the subject in the footage. The FS-Singles dataset contains 18 training, 2 validation and 3 test
sequences with 10613, 684 and 1656 frames and 6, 2 and 1 skaters, respectively.

The quantitative experiments on this dataset are conducted using 50 manually-segmented test
images including diverse and extreme figure skating motions such as axel jump, sit spin and camel
spin. In Table 3.1(right), we compare our approach to the self-supervised baselines. Our approach
with optical flow outperforms all of them. The overall lower scores of the self-supervised methods
on this dataset are due to the motion blur caused by the fast movements of the skaters, the low
contrast between the ice and certain body parts and the audience in the background. In Fig. 3.8,
we compare the segmentation results of our method to those of the second, third and fourth
best-performing methods. Note that our method can accurately detect the skater, even when
the scene is cluttered with the audience in the background. The failure cases of our method are
mainly due to the low contrast between the ice and the hands and feet of the skater, particularly
in extreme spinning poses. Furthermore, the appearance of the skater occasionally matches that
of the background people, making it difficult to detect the foreground subject precisely.

Overall, our method that relies on a single image at test time consistently yields the highest scores
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on all three datasets against other self-supervised methods that operate on single images [13, 24,
37, 50] as well as the ones that require video and use temporal cues at inference time [254, 132,
305].

(a) Inp/Ours detection (b) [50] (c) [305] (d) [132] (e) Ours-SV w/ flow (f) Ground truth

Figure 3.7 – Qualitative results on the Handheld190k. (a) Our detection result. The blue dots
coincide with the grid cell centers and their size indicates the confidence of the bounding box
proposals. The selected bounding box is illustrated with a red dashed line and the center of
the grid cell yielding this proposal is connected to the center of the red box through the green
line. (b) Segmentation mask prediction of [50]. (c)Segmentation mask prediction of [305].
(d)Segmentation mask prediction of [132]. (e) Our segmentation mask prediction. (f) Ground
truth segmentation mask. Our method can segment the full body of the actor more accurately
than [50, 305, 132] despite the other moving objects in the scene such as the clouds and occa-
sionally appearing cars and pedestrians. In some frames, the shadow is also segmented since it
moves with the primary object.

(a) Inp/Ours detection (b) [132] (c) [37] (d) [305] (e) Ours-SV w/ flow (f) Ground truth

Figure 3.8 – Qualitative results on the FS-Singles. (a) Our detection result. (b) Segmentation
mask prediction of [132]. (c) Segmentation mask prediction of [37]. (d) Segmentation mask
prediction of [305]. (e) Our segmentation result. (f) Ground truth segmentation mask. Our
method is more accurate than [132] and [305] in terms of removing the background regions.
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Ski-PTZ

Method J Measure F Measure

MaskRCNN [88] 0.73 0.77
ARP [132] 0.72 0.82
Unsup-Mov-Obj [305] 0.66 0.76
Ours-SV w/ flow + CRF 0.73 0.83

Handheld190k

J measure F measure

0.83 0.95
0.60 0.68
0.75 0.83
0.76 0.85

FS-Singles

J measure F measure

0.87 0.96
0.56 0.69
0.68 0.85
0.71 0.86

Table 3.2 – MaskRCNN segmentation results on the Ski-PTZ, Handheld190k and FS-
Singles datasets. The direct application of off-the-shelf MaskRCNN on Handheld190k and
FS-Singles datasets outperforms the self-supervised methods in Table 4.1 whereas on Ski-PTZ
dataset with unusual motions, our method reaches the maximum F score and is on par with
MaskRCNN in J score. This outcome is expected since MaskRCNN is trained on MS-COCO
dataset that includes person class as one of the training categories.

3.2.3 Comparison to Supervised Models

In this section we compare our method to MaskRCNN applied in an off-the-shelf manner.
Table 3.2 reports the results of MaskRCNN trained on the MS-COCO dataset [165], which
contains the person class in various sports and daily life scenarios, including skiing and skating.
On the Ski-PTZ dataset, our method outperforms MaskRCNN. This demonstrates the benefits of
self-supervised learning to handle unusual scenarios, where the data differs significantly from that
in the publicly-available datasets. On the Handheld190k and FS-Singles datasets, MaskRCNN
yields the highest scores, which is not surprising as the test sequences look similar to those in the
MS-COCO training set. However, many other object categories are not present in the MS-COCO
dataset. In those cases, simply exploiting MaskRCNN becomes non-trivial, because it provides
class-specific segmentations, and thus cannot directly handle unknown objects.

To nonetheless evaluate the performance of MaskRCNN in this challenging scenario, we captured
an indoor scene featuring many static objects and a moving robot that we aim to segment
with a hand-held camera. Fig. 3.9 compares the detections and segmentation masks output by
MaskRCNN for all MS-COCO classes with those obtained with our method. Because the custom
robot cannot be associated with any existing MS-COCO category, MaskRCNN tends to split it
into multiple objects. Obtaining a consistent mask of the robot would then require parsing these
multiple detections. By contrast, our self-supervised approach naturally generalizes to such a
previously-unseen object.

3.2.4 Ablation Study

In Table 3.3, we investigate the effectiveness of different mask priors introduced in Section 3.1.3
and ImageNet pre-training on the validation part of the Ski-PTZ dataset. Although L1 yields
better segmentation masks than L2, it tends to suppress the mask values too strictly, which causes
convergence problems. This is mitigated by our Lv prior, which achieves the highest scores in
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(a)Input (b)MaskRCNN (c)MaskRCNN (d)Ours-SV (e)Ours-SV

Figure 3.9 – Qualitative results of MaskRCNN on a moving robot sequence captured with
a handheld camera. MaskRCNN generally fails to detect the moving robot as a single object
and does not yield a segmentation mask with high confidence.

Ski-PTZ

Setting J Measure F Measure

Ours-SV w/o optical flow w/o prior 0.51 0.53
Ours-SV w/o optical flow w/ L2 prior 0.61 0.69
Ours-SV w/o optical flow w/ L1 prior 0.62 0.69
Ours-SV w/o optical flow w/ Lv prior 0.67 0.73

No ImageNet pre-training, Lv prior 0.60 0.63
Unsupervised pre-training [299], Lv prior 0.62 0.68

Table 3.3 – Analysis of the mask prior effect and ImageNet pre-training on the Ski-PTZ
validation sequences. We demonstrate the influence of using mask priors to supress the noise
surrounding the foreground object and have clear-cut masks. At the bottom part of the table we
show the results of using random weights and features from [299] instead of using weights from
ImageNet pre-training.

all measures, with consistently reliable results. This demonstrates that imposing regularization
on the segmentation masks allows us to obtain sharper masks, removing the noise around the
foreground object. We repeated the Ski-PTZ experiment without optical flow extension four
times with the best-performing configuration and computed the mean and std on the validation
sequences; the J- and F-measure are consistent, respectively, 0.67±0.004,0.73±0.006.

Table 3.3 also shows the comparison of using ImageNet or self-supervised weights for network
initialization, with only a small performance drop for the latter.

Furthermore, Table 3.4 compares the performance of our method for different values of hyper-
parameters, where the subscript of b corresponds to the minimum and maximum size of the
bounding box and λ used in our Lv prior is the percentage of the pixels that should be activated
in the segmentation mask.
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Ski-PTZ

Setting J Measure F Measure

b[0.1,0.5], Lv,λ=0.0005 0.55 0.55
b[0.1,0.5], Lv,λ=0.001 0.57 0.62
b[0.1,0.5], Lv,λ=0.005 0.54 0.56

b[0.20,0.5], Lv,λ=0.0005 0.61 0.70
b[0.20,0.5], Lv,λ=0.001 0.60 0.65
b[0.20,0.5], Lv,λ=0.005 0.61 0.67

b[0.30,0.5], Lv,λ=0.0005 0.57 0.64
b[0.30,0.5], Lv,λ=0.001 0.57 0.64
b[0.30,0.5], Lv,λ=0.005 0.57 0.63

b[0.20,0.60], Lv,λ=0.0005 0.61 0.69
b[0.20,0.60], Lv,λ=0.001 0.61 0.68
b[0.20,0.60], Lv,λ=0.005 0.62 0.68

b[0.20,0.70], Lv,λ=0.0005 0.62 0.67
b[0.20,0.70], Lv,λ=0.001 0.59 0.66
b[0.20,0.70], Lv,λ=0.005 0.62 0.65

b[0.20,0.80], Lv,λ=0.0005 0.61 0.68
b[0.20,0.80], Lv,λ=0.001 0.67 0.73
b[0.20,0.80], Lv,λ=0.005 0.61 0.66

Table 3.4 – Hyper-parameter study on the Ski-PTZ validation sequences. In this table we
analyze the effectiveness of our hyper-parameter choice for the minimum and maximum bounding
box sizes (given in square brackets as b[scalemi n ,scalemax ]) as well as the threshold λ for the Lv

loss. We conduct these experiments using our approach without optical flow.
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Figure 3.10 – Impact of the segmentation mask regularizer of Eq. 3.6. Early in the training, a
high percentage of masks have a mean value lower than λ. When the model converges, all masks
have a mean value above this threshold.

Fig. 3.10 depicts the influence of the segmentation mask regularizer of Eq. 3.6. It shows the
percentage of segmentation masks that have lower and higher mean values than λ at different
training stages. At convergence, the mean segmentation mask value is always higher than λ.
Without this regularizer, the mean value of the segmentation mask would grow even larger,
causing the mask to incorporate noise and fuzzy regions around the person. Since λ doesn’t have
to match the exact size of the object, setting it to a small value suffices to trigger the generation
of masks early on. We use the same value λ= 0.005 in all our experiments.

People in a Controlled Environment. We evaluate different aspects of our approach using
the Human3.6m dataset [102] that comprises 3.6 million frames and 15 motion classes. It
features 5 subjects for training and 2 for validation, seen from different viewpoints against a static
background and with good illumination.

On this dataset, we first study the importance of our model choices for training and probabilistic
inference. As shown in Fig. 3.11(a), using uniform sampling instead of importance sampling
does not converge. Fig. 3.11(b) illustrates that joint training of D with Lfg and Lbg, instead of
our disentangled one, produces bounding boxes that are too large. Fig. 3.11(c) shows that using
only the background objective leads to small detections that miss the subject and (d) that direct
regression without multiple candidates diverges. These failure cases are representative of the
behavior on the whole dataset. To explore an alternative strategy to Monte Carlo-based sampling,
we replaced the importance sampling in our method with the categorical reparameterization
used in [49]. Since both strategies approximate the same objective, they had similar outcomes
with a difference in the convergence speed and detection performance. To this end, we tried
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(a) (b) (c)

(d) (e) (f)

Figure 3.11 – Ablation study on Human3.6m. (a) Uniform sampling does not converge. (b)
Joint training of Lfg and Lbg (c) only Lbg (d) direct regression of a single bounding box using Lfg

and Lbg (e) Gumbel-Softmax (f) Ours-SV.

Gumbel-Softmax distribution [109]. We found out that setting the temperature to 0.1 yielded
the best results. Increasing this value has a similar effect as increasing the ε in Eq. 3.10 and
approaches uniform sampling. Our experiments show that Gumbel-Softmax based categorical
reparameterization did not lead to faster convergence and in fact degraded the detection perfor-
mance as shown in Fig. 3.11(e). Our method delivers a mAP0.5 score of 0.58 which is significantly
higher than the mAP0.5 score of 0.30 obtained by using Gumbel-Softmax as our sampling strategy.
Furthermore, our importance sampling approach is simpler than [49] and is an unbiased estimator.
It does not need custom layers that behave differently in the forward and backwards passes during
optimization, which is the case for the Gumbel-Softmax categorical reparameterization. Please
note that direct comparison to [49] is not possible since it requires monochromatic backgrounds.
Therefore, it does not apply to the Ski-PTZ, Handheld190k and FS-Singles datasets and was
demonstrated only on simple synthetic cases, such as MNIST and Atari games, with multiple
objects that go beyond the scope of our approach. Finally, Fig. 3.11(f) demonstrates that our full
model using the disentangled training strategy and importance sampling can accurately detect the
person and estimate tighter bounding boxes.

In Table 3.5, we evaluate detection accuracy on Human3.6m and Ski-PTZ. Note that our method
delivers an mAP0.5 score that is significantly better than that of the general YOLO [222] detector
trained on MS-COCO dataset. On the left side of Table 3.5, we compare our detection accuracy
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to that of a very recent self-supervised deep learning method [224]. Our slightly lower accuracy
stems from not explicitly assuming a static background, which [224] does. While valid in a lab,
this assumption results in total failure in outdoor scenes with moving backgrounds. Notably, our
method is robust to undirected camera motion and to dynamic background motion, and works
equally well for the very different domains of skiing and every-day activities.

Human3.6m dataset

Method mAP0.5

NSD [224] 0.710
Ours-SV 0.580

Ski-PTZ

Method mAP0.5

YOLOv3 [222] 0.155
Ours-SV 0.520

Table 3.5 – Detection results on the Human3.6m and Ski-PTZ datasets.

3.2.5 Discussion

Optical flow. As noted in [305], the motion-based segmentation methods that require computing
the optical flow between consecutive images can be error-prone due to the irregular or insufficient
movement of the object. This gives us leverage against approaches that rely only on optical flow
since our method can reliably detect the foreground object from single RGB images and uses
optical flow only as an extension during training time. In Fig. 3.12, we present possible failure
cases that can occur when the optical flow partially covers the object due to its static parts. Since
the inpainting module in [305] tries to reconstruct the masked optical flow, it is prone to errors
whenever the optical flow image is unreliable. It can be seen that our method can accurately
segment the object in this case. Hence, based on our experimental evidence in Table 3.1, optical
flow should always be used if available and in combination with the RGB image.

Multiple people. Although our focus is on handling single objects or persons, our probabilistic
framework can handle several at test time by sampling more than once. Fig. 3.13 shows the
predicted cell probability as blue dots whose size is proportional to the probability. The fully-
convolutional architecture operates locally and thereby predicts a high person probability close to
both subjects. As a result, both the detection and segmentation results remain accurate as long as
the individuals are sufficiently separated. Note that the model used for this experiment was still
trained on single subjects. In future work, we will attempt self-supervised training of multiple
interacting people, which has so far only been established in controlled environments.

Other object categories. In this section, we investigate the applicability of our method to stan-
dard benchmarks with other object categories. The existing object detection datasets SegTrackV2
and FBMS59 comprise multiple objects, which we do not support. Therefore, we demonstrate the
qualitative performance of our method on the standard DAVIS2016 [212] benchmark that consists
of various object categories such as car, cow and goat. DAVIS2016 contains 30 training and 20
testing sequences, which are very short compared to other benchmarks suitable for deep-learning
based methods. We follow the standard procedure and use the validation sequences for evaluation.
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(a)Input (b)Optical flow (c) [305] (d)Ours-SV (e)Ours-SV w/ flow

Figure 3.12 – Optical flow failure. When the optical flow image cannot be used to find the
complete outline of the subject, for example because some part of their body is static, our method
can still segment the moving object from a single RGB image, whereas [305] tends to yield poor
results. To highlight the effect of using optical flow, we present the raw segmentation predictions
of [305] and ours, before the post-processing step.

(a) Input (b) Detection (c) Segmentation

Figure 3.13 – Multi-person detection and segmentation results, generated by sampling our
model multiple times. As the model is trained on single persons this only works for non-
intersecting cases.
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(a)Input/Ours (b)Inpainting result (c)Segmentation

Figure 3.14 – Examples of qualitative results on DAVIS2016 [212] validation sequences. Top
row: successful segmentation of the moving object. Middle row: partially successful case in
which the background scene carries information about the moving object’s location. Bottom row:
poor segmentation result that occurs when our inpainting network can resonstruct certain parts of
the moving object due to its slow motion.

Since our method does not require any annotations, we train and test on the validation sequences
with an average of 70 frames per video. So far, we have evaluated our method on datasets with
human subjects. Therefore we pick non-human object categories in the DAVIS2016 validation
dataset to show that our method is not specific to a particular object type. As shown in Fig. 3.14,
our performance on DAVIS2016 varies, depending on the length and footage of the sequence.
However, we do not expect our method to compete with approaches tuned for short video snippets.
Many of these short sequences include objects that move slowly, remaining mostly in the same
image region. This makes them easy to inpaint, thus violating our assumptions A1 and A2
(Section 3.1.1). Fig. 3.14(top) shows a successful segmentation result on a longer sequence with
a moving object. Fig. 3.14(middle) illustrates a partially successful case that occurs when the
location of the object changes with the background elements and the content of the scene in a
short video clip provides significant clue about the reconstruction of the foreground object. In
Fig. 3.14(bottom), we present a failure case that occurs when our method is applied to very short
videos with negligible object displacement. In this case, our inpainting network can reconstruct
the foreground object together with the background region, which causes holes in the regions of
the segmentation mask that are already reconstructed by the inpainting network.

In short, DAVIS2016 features only few videos per category, with each video being short, making
them ill-suited to deep-learning based self-supervised approaches that exploit large unlabeled
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video collections. By contrast, we contribute new benchmarks with manual annotations for
quantitative evaluation and three very different settings with significantly more and longer training
videos that can be used to evaluate future self-supervised deep learning-based segmentation
methods.

3.3 Conclusion

We have proposed a self-supervised method for object detection and segmentation that lends itself
for application in domains where general purpose detectors fail. Our core contributions are the
Monte Carlo-based optimization of proposal-based detection, new foreground and background
objectives, and their joint training on unlabeled videos captured by static, rotating and handheld
cameras. Our experiments demonstrate that, even if trained only on single persons, our approach
generalizes to multi-person detection, as long as the persons are sufficiently separated. In contrast
to many existing solutions [18, 235, 254, 132], our approach does not exploit temporal cues at
test time. In the future, we will integrate temporal dependencies explicitly, which will facilitate
addressing the scenario where multiple people interact closely, by incorporating physics-inspired
constraints enforcing plausible motion.
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4 Human Detection and Segmentation
via Multi-view Consensus

Robust detection and segmentation of moving people can now be achieved reliably in scenarios
for which large amounts of annotated data are available. However, for less common activities,
such as skiing, it remains challenging, because the required training databases do not exist. Self-
supervised approaches [61, 132, 24, 37, 49, 50, 224, 305, 166, 21, 176] promise to address this
problem. However, most of them depend on strong constraints, such as the target objects being
seen against a static background, or rely on object localization and object-boundary detection
networks pre-trained with supervision, which limits their applicability.

In this chapter, we propose to remove these limitations by using a multi-camera setup for training
purposes and explicitly encoding the 3D geometry of the scene. At inference time, our trained
network can then handle single images and outperforms earlier techniques, as shown in Fig. 4.1.
Our algorithm [121] can be applied to any object as long as the two assumptions from [150] hold:
foreground and background are distinguishable by color or texture; every part of the background
must be visible more often than not.

Using several cameras complicates data acquisition but only in a limited way because both
synchronization and calibration are well understood tasks for which off-the-shelf solutions exist.
In practice, for static cameras, this has to be dealt with only once before a filming session using
well-known techniques [85, 63] and requires far less effort than manually annotating images. For
moving cameras, SLAM methods are now robust enough to perform the calibration automatically
and fast in the wild [329, 293]. Hence, there are many applications in which training with multiple
cameras makes perfect sense, especially those with unusual activities for which large training
databases are not available.

To leverage multi-view training data as weak supervision, we introduce the object proposal
strategy depicted by Fig. 4.2. Candidate 2D bounding boxes are produced by a network that
can be trained in an unsupervised fashion. They are used to vote into a 3D proposal grid, and
multi-view geometry constraints are then imposed to align proposals from different views in a
differentiable manner. To train the resulting network, we sample a 3D proposal, deconstruct and
reconstruct the image in each view using the corresponding 2D bounding box, and compare the
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Koh et al. [132] Yang et al. [305] Katircioglu et al. [120] [224] + [120] Ours

Figure 4.1 – Leveraging multi-view consistency at training time to segment the salient object
from single images at inference time and to outperform baselines exploiting temporal consis-
tency [132], optical flow [305, 120] and novel view synthesis [224].

resulting resynthesized images to the original ones.

While our self-supervised learning strategy leverages multiple views during training, the resulting
model can be used for detection and segmentation in monocular images acquired by moving
cameras and featuring unknown backgrounds. Our contributions can be summarized as follows.

• We introduce a self-supervised end-to-end trainable object detection and segmentation
approach that explicitly leverages 3D multi-view geometry as weak supervision during
training.

• It comprises a 3D object proposal framework that enables to enforce prediction consistency
across views without having to introduce additional loss terms.

To show that our approach can handle unusual activities and fast motion, we demonstrate it on
the skiing dataset depicted by Fig. 4.1, captured by moving cameras, on a small dataset acquired
using hand-held cameras, as well as on the more standard Human3.6m dataset [102] acquired
using fixed cameras. Note that our multi-view supervision differs from weak supervision in
video object segmentation as it does not require any segmentation annotation. Hence, our method
relates to self-supervised approaches. We show that the proposed multi-view training increases
single-image accuracy performance at inference time, which allows us to outperform the previous
single-view [132, 305, 50, 176, 120] and multi-view [224] approaches.

4.1 Approach

Our goal is to develop a self-supervised algorithm that generates a bounding box and the corre-
sponding segmentation mask from a single image. However, whereas earlier methods use videos
from a single camera for training purposes, we want to demonstrate that using calibrated and
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Figure 4.2 – 3D Proposal Grid. The consensus between individual views is found on a 3D voxel
grid (black) as a combination of 2D probabilities projected on the voxels (rainbow colors). Once
a coarse grid location is found, a fine offset is found via offset prediction and 3D triangulation
(purple lines).

synchronized cameras for training purposes increases performance. Therefore, let us assume that
we have videos acquired by Z > 1 calibrated and synchronized projective cameras. For each z

between 1 and Z , camera z captures image Iz and its behavior is modeled by a 3×4 projection
matrix Pz .

4.1.1 Multi-View Self-Supervised Training

Let us now turn to the task of exploiting such multi-view data to train our detection and segmenta-
tion network. Because we ultimately aim to perform single-view 2D detection and segmentation,
our approach produces bounding boxes and segmentation masks for each individual view. Nev-
ertheless, we exploit multi-view geometry to better constrain the training process and enforce
consistency across the views. Furthermore, we do this without requiring additional loss terms
that would make the process more complex and force us to carefully weigh these additional terms
against the original ones. To this end, our training algorithm goes through the following steps

1. We use a network F to compute a probability map for 2D bounding boxes over an image
grid for each view c. These probability maps are used to vote in a 3D grid for potential 3D
locations of these bounding boxes.
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Figure 4.3 – Overview of the underlying single-view self-supervised segmentation pipeline.
This figure summarizes our starting point, the single view approach. It predicts 2D occupancy
probabilities, an associated bounding box, and a foreground mask within this window. It is
trained to reconstruct the input image by pasting the foreground region underneath the mask on a
background image obtained by inpainting the predicted bounding box.

2. We sample individual 3D voxels in that 3D grid according to the resulting probability
density. This corresponds to one 2D bounding box for each view.

3. We compute the 3D center and object height that best agree with these 2D bounding boxes
in a least-square sense.

4. We project the resulting 3D center and height in each view to define new 2D bounding
boxes, keeping the original width of the sampled boxes.

5. These boxes are then used to evaluate the loss function associated to F in each image.

Multi-view consistency is achieved both by sampling the 3D proposal grid and adjusting the
2D bounding boxes. Hence, we do not require additional losses to enforce consistency. This is
a central element of our approach because, as observed in [226], such loss terms tend to favor
degenerate solutions that are consistent but wrong. This is something our ablation study confirms.
In the remainder of this section, we describe these steps in more detail.

Bounding Boxes in Individual Views

Let us consider the network F of [120], which we use as the backbone of our approach. It takes
an image I ∈RW ×H×3 as input and resynthesizes it. In the process, it produces a probability map
over a grid, encoding for each cell i the probability pi that a bounding box bi at this location
contains a person. As depicted by Fig. 4.3, resynthesis is achieved by sampling a candidate
bounding box, cropping the corresponding image patch, and, in parallel, predicting a foreground
image Î ∈R128×128×3 and a segmentation mask S ∈R128×128 from the crop, while inpainting the
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cropped region to generate a background image Ī ∈RW ×H×3. We then re-compose the foreground
crop and the background image according to the segmentation mask. Formally, this can be written
as

F (I) =T −1(Î◦S)+ Ī◦ (1−T −1(S)), (4.1)

where T is the spatial transformer corresponding to the selected bounding box, and ◦ is the
element-wise multiplication. This allows one to train F in a self-supervised fashion, by comparing
the reconstructed image to the input one.

Consistent Sampling using a 3D Proposal Grid

To link 2D detections across views, we construct a 3D proposal grid with V voxels centered at the
point nearest to the optical axes of all cameras in the 3D world coordinate system, as shown in
Fig. 4.2. For each voxel j of that grid, we compute its center v j ∈R3, together with a probability
of occupancy q j , discussed below.

Since we know the camera matrix Pz for each image Iz , we can project the center v j of each 3D
voxel into it. The projected center will fall into image grid cell i z ( j ) to which F has associated a
probability pz

i z ( j ), as discussed at the beginning of Section 4.1.1. We repeat this operation over all
images and all voxels and sum the resulting log probabilities for each voxel. We then normalize
the resulting probability density over the 3D grid so that it integrates to one. Formally, this can
be written as

q j = 1

G
exp

(∑
z

log(pz
i z ( j ))

)
, (4.2)

where G is a normalization constant easily computed on a discrete grid of finite dimensions.

To train our network in a self-supervised fashion, we then sample one voxel location j according
to the distribution in Eq. 4.2. The sampled voxel then corresponds to one bounding box candidate
in each view, inherently encouraging consistency across the views as illustrated in Fig. 4.4(a).
This consistency, however, is only a partial one because each view still predicts the precise
location and dimensions of its own bounding box. Hence, the final bounding boxes may still
disagree. To prevent this, we explicitly enforce geometric consistency as discussed below.

Enforcing Geometric Bounding Box Consistency

To enforce geometric consistency between the bounding boxes from different views, we want to
ensure that their 2D centers all match the same point in 3D and that their 2D heights correspond
to the same 3D size. In other words, we want to modify the bounding box locations so that
the new ones have consistent 2D centers and heights and we want to achieve this with as little
displacement as possible. Since the cameras are often set in a rough circle pointing at the
subject, enforcing height consistency makes sense because the camera up directions are aligned.
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(a) Multi-view voting.

(b) Making the bounding box centers consistent.

(c) Making the bounding box heights consistent.

Figure 4.4 – Finding bounding boxes that are view consistent. (a) The blue dots overlaid on
each view represent the initial 2D probabilities and vote in the 3D grid along their respective
lines of sight. As a result, the yellow 3D voxel becomes very likely to be sampled. (b) The
red bounding box drawn in each view is the initial prediction and the purple line of sight is
going through the bounding box center. The 3D center is the point closest to all these lines
and its re-projection in the images becomes the center of the new bounding boxes, shown in
green. (c) The red bounding boxes represent the initial prediction and the purple and orange lines
indicate the line of sight going through the bounding box top and bottom points. The 3D top and
bottom locations are taken to be the point closest to purple and orange lines respectively. Their
re-projection in the images become the top and bottom middle points of the new bounding boxes,
shown in green.
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Only when the camera angle varies, as in drone footage taken from arbitrary angles, should the
height constraint be replaced. We do not constrain the bounding-box width because the left-right
direction of cameras is not aligned unless the cameras are parallel. This makes the width view
dependent, as in Fig. 4.1 where the skier’s projection is wider in some views.

In essence, we seek to project the bounding boxes to new ones that satisfy the center and height
constraints and that will be used by the network to evaluate its objective function during its
forward pass. It is therefore essential that this projection be differentiable such that the backward
pass can be carried out during training.

Adjusting Bounding Box Centers.

As shown in Fig. 4.4(b), we use the lines of sights defined by the 2D centers of the bounding
boxes, find the 3D point closest to all of them, and use its re-projection into the images as the
modified center for the bounding boxes. For each view z, the line of sight lz in image Iz can be
expressed as

lz = M−1
z [uz , vz ,1]T , (4.3)

where Mz is the 3×3 matrix formed by the first 3 columns of Pz and uz , vz are the 2D pixel
coordinates of the bounding box center in Iz . Hence, finding the point closest to all the lz amounts
to solving a least-squares problem, which can itself be achieved by solving a linear system
of equations and is therefore differentiable. In practice, we use a differentiable least-squares
implementation for this purpose and provide its details in Appendix B.1.

Adjusting Bounding Box Heights.

As shown in Fig. 4.4(c), we similarly use the midpoints of the top and bottom parts of the
bounding boxes in each view to predict two new intersection points, one for the top and one
for the bottom of the bounding box in 3D. We then take the distance between the re-projections
of these points into the image to be the new height of the bounding boxes. As before, this is a
differentiable operation.

Training

Because our 2D bounding boxes are made to be consistent, we can train our network by mini-
mizing the same loss as in the single view approach of [120], except for the fact that we jointly
compute it over several images, and do not require to introduce an additional loss to enforce
consistency.

More specifically, we minimize the weighted sum of two loss functions Lbg(I1, . . . ,IZ ) and
Lfg(I1, . . . ,IZ ). Lbg accounts for the fact that a region containing a moving foreground object is
unlikely to be well re-synthesized by the inpainter and is critical to train the network to place
the bounding box at the right location in each image. Lfg gauges how well F resynthesizes the
complete original images and is minimized when the segmentation mask fits the salient object as
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well as possible within the sampled bounding box. In practice, they are taken to be

Lbg(I1, . . . ,IZ ) =−
Z∑

z=1
r j

‖Īz − Iz‖2

ar ea(bz
i z ( j ))

, (4.4)

Lfg(I1, . . . ,IZ ) =
Z∑

z=1
r j‖F (Iz )− Iz‖2 , (4.5)

where ar ea(bz
i z ( j )) ∈ N0 is the area of the bounding box obtained by sampling voxel j and

enforcing geometric consistency. As in [120], the sampled voxel is obtained by importance
sampling, and r j is the ratio of the probability q j , from Eq. 4.2, by its importance sampling
probability. In addition to these loss terms, as [120], we use an L1 prior on S to favor a crisp
segmentation, and compute Eq. 4.5 not only on pixel color but also on learned features. Additional
details on the sampling, hyper-parameters, training and network architectures are provided in
Appendix B.1.

4.1.2 Single-View Inference

Once trained using multiple views, our model can detect and segment the salient object from
single RGB images at inference time without any further changes. We run our network on the
image and simply choose the 2D grid cell with the highest occupancy probability. Its bounding
box parameter estimations are fed into the spatial transformer T to crop the region of interest,
which is encoded into the corresponding segmentation mask and foreground, and decoded into
the reconstructed image as illustrated in Fig. 4.3.

4.2 Experiments

Unlike that of [224], our self-supervised approach is designed to work using multiple-cameras that
can move. In this section, we show that it does, yet outperforms [224] even when the background
is static. Furthermore, we show that using multiple cameras for training purposes delivers the
hoped-for performance boost over the previous monocular approaches [132, 305, 50, 176, 120].

4.2.1 Images and Metrics

We first describe the image datasets we work with and then the metrics we use for comparison
purposes.

Images acquired using moving cameras.

The Ski-PTZ dataset of [226] features six skiers on a slalom course. We use the official train-
ing/validation/test sets that split the 12 videos of six skiers as four/one/one, with, respectively,
7800, 1818 and 1908 frames. The pan-tilt-zoom cameras constantly adjust to follow the skier.
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Nothing remains static, the background changes quickly, and there are additional people standing
in the background. The cameras were calibrated using static scene markers without any markers
or keypoints on the skier’s body. We use the full image as input and evaluate detection accuracy
using the available 2D pose annotations and segmentation accuracy of the 300 labeled frames in
the test sequences. To pick the hyperparameters, we use 36 labeled validation frames (3 frames
each from six cameras and two sequences). Due to the large distance between cameras and
subject, the 3D proposal grid has 163 voxels with cuboid side length of 8 meters.

To demonstrate the applicability of our method to scenes without an initial camera calibration,
we use the Handheld190k dataset [120] captured by three hand-held cameras that translate and
rotate in an unscripted fashion. It comprises three training, one validation, and one test sequences.
They all feature one person performing actions mimicking the human motions in an outdoor
environment with a changing background. We used OpenSFM 1 to calibrate 4200 frames from
the training set using and tested on the same images as [120]. The 3D proposal grid has 163

voxels with cuboid side length of 12 meters.

Images acquired using Static Cameras.

To compare against algorithms requiring a static background, we evaluate our approach in the
more controlled environment of the Human3.6m dataset [102]. It was acquired using four static
cameras and comprises 3.6 million frames and 15 motion classes. It features 5 subjects for
training and 2 for validation, seen from different viewpoints against a static background and with
good illumination. The 3D proposal grid consists of 103 voxels, with cuboid side length of 4
meters.

Metrics. We report our segmentation scores in J- and F-measure as defined in [212]. The
former is defined as the intersection-over-union (IoU) between the ground truth segmentation
mask and the prediction, while the latter is the harmonic average between the precision and
the recall at the mask boundaries. The detection scores are calculated in terms of mAP0.5, the
mean probability of having an IoU of more than 50%. Different segmentation algorithms set the
foreground-background threshold differently. Hence, to allow a fair comparison, we perform a
line search from 0 to 1 with a step-size of 0.05, selecting the optimal value for all baselines and
variants for each individual dataset.

4.2.2 Comparative Results with Moving Cameras

Fig. 4.5 depicts qualitative results on the Ski-PTZ dataset and we report the corresponding
quantitative results using 4 cameras in Table 4.1, in which we use the scores reported in [120] for
the baselines. 2

We outperform all existing single-view self-supervised segmentation approaches [132, 305, 50,

1https://www.opensfm.org/
2The implementation of [176] was provided by the authors.
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Ski-PTZ

Method J Score F Score Run-time (sec)

Chen et al. [37] 0.37 0.42 0.11
Stretcu et al. [254] 0.51 0.56 0.02
Lu et al. [176] 0.51 0.60 0.60
Katircioglu et al. [120] 0.61 0.67 0.24
Rhodin et al. [224] + [120] 0.61 0.70 0.23
Croitoru et al. [50] 0.62 0.72 0.15
Yang et al. [305] w/o CRF 0.61 0.71 0.32
Yang et al. [305] 0.67 0.77 1.12
Katircioglu et al. [120] w/ flow 0.69 0.79 0.24
Koh et al. [132] 0.70 0.80 107.4
Ours-MVC 0.71 0.83 0.17

Table 4.1 – Multi-view consistency segmentation results on the Ski-PTZ. We compare against
the single-view approaches and a modified version of the multi-view approach of [224].

(a)Inp/Ours detection (b) [305] (c) [132] (d) [120] (e) Ours-MVC (f) GT

Figure 4.5 – Multi-view consistency qualitative results on the Ski-PTZ dataset. (a) Input
images with our predicted bounding box overlaid in red. (b,c,d) Segmentation masks predicted by
three of our baselines. (e) Our segmentation mask prediction. (f) Ground truth segmentation mask.
Note the quality of our predicted masks even though, unlike the methods of [132] and [305], we
do not use explicit temporal cues at inference time.

120, 254, 37, 176] while being comparatively fast. For completeness, we also report results
for [305] without CRF post-processing. This shows that a great deal of the method’s performance
comes from such post-processing, which we do not require. Note that, in contrast to [120] with
flow and [132], our approach does not require computing optical flow. Unlike DAVIS2016 [212],
our datasets feature large camera motions with quick background changes, which causes methods
such as [176] to often merge portions of the background and the human.

The only other self-supervised multi-view approach for which a public implementation is available
is that of [224]. Unfortunately, it requires background images as an input, which are not given
in this case and are not trivial to create because the cameras rotate and zoom. To do so anyway,
we use the single-view approach of [120] to produce background images that we can feed to
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(a) Katircioglu et al. [120] (b) Ours-MVC (c) GT

Figure 4.6 – Multi-view consistency qualitative results on the Handheld190k dataset. (a)
The detection and segmentation mask results of [120] trained and tested on single images. (b)
The predictions of our model trained using 3-camera multi-view consistency and tested on single
images. (c) Ground truth. Our results are generally more accurate, which justifies the effort
invested in calibrating the cameras.

the network of [224] for multi-view training. As can be seen in Table 4.1, this modified version
of [224] does slightly better than [120] in F score terms but remains far behind our method. The
method that comes closest to ours is that of [132], which operates on the whole sequence and is
therefore prohibitively slow as discussed below. By contrast our approach operates on a single
image and does not require motion information.

The inference times for each method are shown in the last column of Table 4.1 and computed
using code that is either publicly available or that the authors made available to us privately.
All except those of [254, 132] were obtained using a single NVIDIA TITAN X Pascal GPU.
Since [254, 132] are designed to run on CPU, the inference for them is computed on Intel(R)
Xeon(R) Gold 6240 CPUs. The tailored optimization approach of [132] that comes closest
to our results is three orders of magnitude slower than our approach because it tracks several
patches over time. Unlike [305], our method does not require optical flow computation or CRF
post-processing which brings a five-fold speedup. Our computational complexity is similar to
that of [120, 224] since the triangulation time is negligible. The training time of our model on
the Ski-PTZ is approximately 8 hours whereas that of [224] and [120] are 14 and 7.5 hours,
respectively.

We also evaluate our method on Handheld190k trained using 4200 images from multiple views
and compare against the network of [120] trained using the same 4200 images. We obtain a J-
score of 0.66 instead of 0.64 and an F-score of 0.77 instead of 0.71, again showing the importance
of multi-view consistency. Our method benefits from multi-view information obtained in an
automated off-the-shelf manner, particularly in tightly fitting to the subject, as shown in Fig. 4.6.
In short, the improvement demonstrated here highlights the previously untapped potential of
multi-view constraints for self-supervised segmentation.

57



Chapter 4. Human Detection and Segmentation via Multi-view Consensus

Human3.6m

Method Training Type Background Assumption mAP

Katircioglu et al. [120] single-view dynamic 0.57
Rhodin et al. [224] multi-view static 0.71
Ours-MVC multi-view dynamic 0.85

Table 4.2 – Multi-view consistency comparative results on the Human3.6m dataset. Our
detection accuracy improves in terms of mAP0.5.

(a) Katircioglu et al. [120] (b) Rhodin et al. [224] (c) Ours-MVC (d) GT

Figure 4.7 – Multi-view consistency qualitative results on the Human3.6m dataset. (a) The
detection and segmentation results of [120] trained and tested on single images. (b) The results
of [224] trained with a pair of camera views and tested on single images. (c) Our predictions
obtained from the model trained with the 4-cam multi-view consistency and tested on single
images. (d) Ground truth. Our method consistently detects the person whereas [120, 224]
occasionally produce inconsistent results, such as the failed detections in the last row.

4.2.3 Comparative Results with Static Cameras

In the previous example, we had to modify the multi-view self-supervised algorithm of [224] to
make it work on images with a moving background. To evaluate the original version instead, we
compare on the Human3.6m dataset and report the results using again 4 cameras in Table 4.2.
As in the Ski-PTZ case, we outperform it and, this time, the difference cannot be caused by any
background modification we made. This is somewhat surprising because the method of [224]
assumes a constant static background, which is the case here, whereas ours is learned without
any such constraint. We attribute this result to the explicit consistency of bounding box positions
in 3D and the background inpainting constraint. The latter triggers when part of the subject is
outside the bounding box leading to correctly segmented legs while the method of [224] has
trouble distinguishing the skin and floor color when in shadow, as depicted in Fig. 4.7. See
additional qualitative results in Appendix B.2.

In Table 4.2, we also report the result of [120], that is, our backbone network run on single views.

58



4.2. Experiments

# Cam Ours w/o VC Ours w/o HC Ours w/ TC Ours w/ WC Ours-MVC

2 0.66 0.67 0.66 0.61 0.66
3 0.68 0.70 0.68 0.68 0.71
4 0.68 0.70 0.67 0.68 0.71

J
Sc

or
e

5 0.67 0.67 0.67 0.68 0.69
6 0.66 0.70 0.67 0.67 0.68

2 0.73 0.73 0.73 0.65 0.75
3 0.75 0.77 0.75 0.74 0.81
4 0.75 0.79 0.75 0.77 0.83

F
Sc

or
e

5 0.74 0.74 0.74 0.75 0.78
6 0.73 0.78 0.73 0.74 0.76

Table 4.3 – Multi-view consistency ablation study on the Ski-PTZ. We test variants of our
approach while using varying numbers of cameras.

# Cam Ours w/o VC Ours w/o HC Ours w/ TC Ours w/ WC Ours-MVC

2 0.73 0.74 0.74 0.73 0.75
3 0.78 0.80 0.79 0.79 0.82

m
A

P

4 0.79 0.83 0.82 0.84 0.85

Table 4.4 – Multi-view consistency ablation study on the Human3.6m dataset. We test
variants of our approach while using varying numbers of cameras.

The performance drops, which once again highlights the usefulness to exploit multiple views for
training when they are available.

4.2.4 Ablation Study

We compare the following variants of the multi-view constraints of Section 4.1.1: Ours-MVC
denotes the full model that employs all the steps shown in Fig. 4.4. Ours w/o HC excludes the
bounding box height consistency depicted by Fig. 4.4 (c). Ours w/o VC leaves out both the center
and height adjustment of Fig. 4.4 (b,c) and enforces only consistent sampling. Ours w/ WC
imposes a bounding box width consistency in addition to the full model. Finally, Ours w/ TC is
a baseline that replaces the view consistency with a triangulation loss minimizing the distance
between the lines joining the centers of the camera and predicted 2D bounding box.

In Table 4.3 and Table 4.4 we report results as a function of the number of cameras we used. We
can use only 2 cameras but the best results are obtained for 3 or 4. Beyond that, additional cameras
add little new information while taking more space in the training batches, resulting in less diverse
batches and lower performance. The numbers for the different variants in Fig. 4.4 show that all
the elements we have incorporated into our approach contribute positively and that the one we
have purposely ignored—constraining the width—would degrade performance. Crucially Ours
w/ TC also performs worse, hence substantiating our claim that imposing consistency constraints
using the projection mechanism of Section 4.1.1 is crucial to our success.
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3D Grid Size Ski-PTZ J-Score

[10×10×10] 0.64
[16×16×16] 0.68
[24×24×24] 0.66

3D Grid Size Human3.6m mAP0.5

[6×6×6] 0.76
[10×10×10] 0.79
[16×16×16] 0.76

Table 4.5 – Influence of voxel resolution. The numbers in square brackets indicate the number
of voxels in the 3D proposal grid and we use 4 cameras.

We also analyzed the influence of the voxel resolution on the reconstruction accuracy. Table 4.5
shows that a 103 cube is more accurate than a 63 cube while going to a 163 does not bring further
improvements in Human3.6m dataset. The 0.01 lower mAP may indicate that learning a discrete
distribution on the 3D grid may be less efficient on larger spaces. However, as the ski footage
covers a wider area, a 163 cube yields the best performance on the Ski-PTZ.

4.3 Conclusion

We have presented a self-supervised detection and segmentation technique that exploits multi-
view geometry during training to accurately separate foreground from background in single
RGB images at inference time. It outperforms the earlier work on the challenging Ski-PTZ,
depicting unusual activities captured with moving cameras, and on Human3.6m, acquired with
static cameras. We have focused on scenes with a single salient object. However, our method has
the potential to handle multiple objects by sampling more than one proposal as long as they are
not overlapping. Our future work will be in this direction.
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5 Learning Latent Representations of
3D Human Pose with Deep Neural
Networks

In spite of much recent progress, estimating 3D human pose from a single ordinary image remains
challenging because of the many ambiguities inherent to monocular 3D reconstruction. They
include occlusions, complex backgrounds, and, more generally, the loss of depth information
resulting from the projection from 3D to 2D.

Recent regression-based methods can directly and efficiently predict the 3D pose given the input
image [156] or images [266] but often ignore the underlying body structure and resulting joint
dependencies, which makes them vulnerable to ambiguities. Several methods have recently been
proposed to account for these dependencies [237, 102, 160]. In particular, by leveraging the
power of Deep Learning, the method of [160] achieves high accuracy. However, it involves a
computationally expensive search procedure to estimate the 3D pose.

Since pose estimation is much better-posed in 2D than in 3D, an alternative way to handle
ambiguities is to use discriminative 2D pose regressors [34, 40, 57, 71, 106, 194, 214, 216, 274,
295, 306] to extract the 2D pose and then infer a 3D one from it [27, 60, 310, 328]. This however
also involves fitting a 3D model in a separate optimization step, and is thus more expensive than
direct regression.

In this chapter, we demonstrate that we can account for the human pose structure within a
deep learning regression framework. To this end, we propose to first train an overcomplete
autoencoder that projects body joint positions to a high dimensional space represented by its
middle layer, as depicted by Fig. 5.1(a). We then learn a CNN-based mapping from the image
to this high-dimensional pose representation as shown in Fig. 5.1(b). Finally, as illustrated in
Fig. 5.1(c), we connect the decoding layers of the autoencoder to the CNN, and fine-tune the
whole model for pose estimation. This procedure is inspired by Kernel Dependency Estimation
(KDE) in that it can be understood as replacing the high-dimensional feature maps in kernel space
by autoencoder layers that represent the pose in a high-dimensional space encoding complex
dependencies between the different body parts. However, our approach has the advantage over
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(a) (b) (c)

Figure 5.1 – Overview of our approach. (a) An autoencoder whose hidden layers have a larger
dimension than both its input and output layers is pretrained. In practice we use either this one or
more sophisticated versions that are described in more detail in Section 5.1.1 (b) A CNN maps
either a monocular image or a 2D joint location heatmap to the latent representation learned by
the autoencoder. (c) The latent representation is mapped back to the original pose space using the
decoder.

KDE of directly providing us with a mapping back to the pose space, thus avoiding the need for a
computationally expensive optimization at test time. Altogether, and as will be demonstrated by
our experiments, our framework [122] enforces implicit constraints on the human pose, preserves
the human body statistics, and improves prediction accuracy.

With the growing availability of large training datasets, 2D pose estimation algorithms have
achieved tremendous success [194, 216, 295] by relying on Deep Learning. They exploit the fact
that finding 2D joint locations in a color image is easier than direct 3D pose prediction, which is
fraught with depth ambiguities. To leverage the well-posedness of the 2D localization problem,
we therefore use the reliable 2D joint location heatmaps produced by [194] as input to our
autoencoder-based regression architecture. We show that this improves 3D pose accuracy upon
direct regression from an RGB image. We further show that our autoencoder-based regression
approach scales to very deep architectures and achieves competitive performance when used with
ResNet architecture [89].

Because we can perform 3D pose-estimation using a single CNN, our approach can easily be
extended to handling sequences of images instead of single ones. To this end, we introduce two
LSTM-based architectures: one that acts on the pose predictions in consecutive images, and one
that models temporal information directly at the feature level. Our experiments evidence the
additional benefits of modeling this temporal information over our single-frame approach.

In short, our contribution is to show that combining traditional CNNs for supervised learning
with autoencoders for structured learning preserves the power of CNNs while also accounting
for dependencies, resulting in increased performance. In the remainder of the chapter, we first
briefly discuss earlier approaches. We then present our structured prediction framework in
more detail, introduce our LSTM-based architectures and finally demonstrate that our approach
achieves competitive performance with the earlier methods on standard 3D human pose estimation
benchmarks.
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Previous work. Following recent trends in Computer Vision, human pose estimation is now usu-
ally formulated within a Deep Learning framework. The switch away from earlier representations
started with 2D pose estimation by learning a regressor from an input image either directly to pose
vectors [274] or to heatmaps encoding 2D joint locations [106, 214, 273]. This has been exploited
very effectively to infer 3D poses by fitting a 3D model to the 2D predictions [27, 60, 310, 328].
These approaches involve a separate, typically expensive model-fitting stage, outside of the Deep
Learning framework.

In parallel, there has been a trend towards performing direct 3D pose estimation [102, 156],
formulated as a regression problem. In other words, the algorithms output continuous 3D joint
locations, because discretizing the 3D space is more challenging than the 2D one.

Our work fits in that line research, which involves dealing with the ambiguities inherent to
inferring a 3D pose from a 2D input. To resolve them, recent algorithms have sought to encode
the dependencies between the different joints within Deep Learning approaches, thus effectively
achieving structured prediction. In particular, [96] uses autoencoders to learn a shared represen-
tation for 2D silhouettes and 3D poses. This approach, however, relies on accurate foreground
masks and exploits handcrafted features, which mitigates the benefits of Deep Learning. In the
context of hand pose estimation, [199] introduces a bottleneck, low dimensional layer that aims
at accounting for joint dependencies. This layer, however, is obtained directly via PCA, which
limits the range of dependencies it can model.

The work of [160] constitutes an effective approach to encoding dependencies within a Deep
Learning framework for 3D human pose estimation. This approach extends the structured SVM
model to the Deep Learning setting by learning a similarity score between feature embeddings of
the input image and the 3D pose. This process, however, comes at a high computational cost at
test time, since, given an input image, the algorithm needs to search for the highest-scoring pose.
Furthermore, the final results are obtained by averaging over multiple high-scoring ground truth
training poses, which might not generalize well to unseen data since the prediction can thus only
be in the convex hull of the ground truth training poses.

To achieve a similar result effectively, we drew our inspiration from earlier KDE-based ap-
proaches [101, 102], which map both image and 3D pose to high-dimensional Hilbert spaces
and learn a mapping between these spaces. In this chapter, we show how to do this in a Deep
Learning context by combining CNNs and autoencoders. Not only does this allow us to leverage
the power of learned features, which have proven more effective than hand-designed ones such
as HOG [2] and 3D-HOG [297], but it yields a direct and efficient regression between the two
spaces. Furthermore, it also allows us to learn the mapping from high-dimensional space to pose
space, thus avoiding the need of KDE-based methods to solve an optimization problem at test
time.

Using autoencoders for unsupervised feature learning has proven effective in several recognition
tasks [137, 128, 279]. In particular, denoising autoencoders [278] that aim at reconstructing

63



Chapter 5. Learning Latent Representations of 3D Human Pose with Deep Neural
Networks

the perfect data from a corrupted version of it have demonstrated good generalization ability.
Similarly, contractive autoencoders have been shown to produce intermediate representations
that are robust to small variations of the input data [228]. All these methods, however, rely on
autoencoders to learn features for recognition tasks. By contrast, here, we exploit them to model
the output structure for regression purposes.

In this chapter, we further investigate the use of Recurrent Neural Networks (RNNs), and in
particular LSTMs, to model temporal information. RNNs have recently been used in many Natural
Language Processing [136, 260] and Computer Vision [163, 215] tasks, and, at the intersection
of these fields, for image captioning and video description [56, 114]. More closely related to our
work, in [65, 107], RNNs have been employed to model human dynamics. Nevertheless, these
methods do not tackle human pose estimation, but motion capture generation, video pose labeling
and forecasting for [65], and human-object interaction prediction for [107]. To the best of our
knowledge, prior to our work, [161] is the only method that exploits RNNs for 3D human pose
estimation from images. However, this approach operates on single images and makes use of
RNNs to iteratively refine the pose predictions of [160]. By contrast we leverage the power of
RNNs at modeling long term temporal dependencies across image sequences.

5.1 Approach

In this work, we aim at directly regressing from an input image or heatmap x to a 3D human
pose. As in [26, 102, 156], we represent the human pose in terms of the 3D locations y ∈R3J of J

body joints relative to a root joint. An alternative would have been to predict the joint angles and
limb lengths. However, this is a less homogeneous representation and is therefore rarely used for
regression purposes.

As discussed above, a straightforward approach to creating a regressor is to train a conventional
CNN such as the one used in [156]. However, this fails to encode dependencies between joint
locations. In [160], this limitation was overcome by introducing a substantially more complex,
deep architecture for maximum-margin structured learning. Here, we encode dependencies in a
simpler, more efficient, and, as evidenced by our experiments, more accurate way by learning a
mapping between the output of a CNN and a latent representation obtained using an overcomplete
autoencoder, as illustrated in Fig. 5.2. The autoencoder is pre-trained on human poses and
comprises a hidden layer of higher dimension than its input and output. In effect, this hidden
layer and the CNN-based representation of the image play the same role as the kernel embeddings
in KDE-based approaches [47, 101, 102], thus allowing us to account for structure within a direct
regression framework. Once the mapping between these two high-dimensional embeddings is
learned, we further fine-tune the whole network for the final pose estimation task, as depicted at
the bottom of Fig. 5.2.

In the remainder of this section, we describe the different stages of our single-frame approach.
We then extend this framework to modeling temporal consistency in Section 5.2.
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(a) Autoencoder training

(b) Regression in latent space

(c) Fine-tuning

Figure 5.2 – Our architecture for the structured prediction of the 3D human pose. (a) We
train a stacked denoising autoencoder that learns the structural information and enforces implicit
constraints about human body in its latent middle layer hL . (b) Our CNN architecture maps
the raw image or the 2D joint location heatmap predicted from the input image to the latent
representation hL learned by the autoencoder. (c) We stack the decoding layers of the autoencoder
on top of the CNN for reprojection from the latent space to the original pose space and fine-tune
the entire network by updating the parameters of all layers.

5.1.1 Structured Latent Representations via Autoencoders

We encode the dependencies between human joints by learning a mapping of 3D human pose to
a high-dimensional latent space. To this end, we use a denoising autoencoder that can have one
or more hidden layers.

Following standard practice [279], given a training set of pose vectors {yi }, we add isotropic
Gaussian noise to create noisy versions {ỹi } of these vectors. We then train our autoencoder to
take as input a noisy ỹi and return a denoised yi . The behavior of the autoencoder is controlled by
the set θae = (Wenc, j ,benc, j ,Wdec, j ,bdec, j )L

j=1 of weights and biases for L encoding and decoding
layers.

We take the middle layer to be our latent pose representation and denote it by hL = g (ỹ ,θae ), where
g (·) represents the encoding function. For example, with a single layer, the latent representation
can be expressed as

hL = g (ỹ ,Wenc ,benc ) = r (Wenc ỹ +benc ) , (5.1)
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where r (·) is the activation function. In practice, we use ReLU as the activation function of
the encoding layers. This favors a sparse hidden representation [72], which has been shown to
be effective at modeling a wide range of human poses [4, 221]. For the decoding part of the
autoencoder, we use a linear activation function to be able to predict both negative and positive
joint coordinates. To keep the number of parameters small and reduce overfitting, we use tied
weights for the encoder and the decoder, that is, Wdec, j =W T

enc, j .

To learn the parameters θae , we rely on the square loss between the reconstruction, ŷ , and the
true, noise-free pose, y , over the N training examples. To increase robustness to small pose
changes, we regularize the cost function by add-ing the squared Frobenius norm of the Jacobian
of the hidden mapping g (·), that is, J (ỹ) = ∂g

∂ỹ (ỹ). Training can thus be expressed as finding

θ∗ae = argmin
θae

N∑
i=1

||yi − f (ỹi ,θae )||22 +λ‖J (ỹi )‖2
F , (5.2)

where f (·) represents the complete autoencoder function, and λ is the regularization weight.
Unlike when using KDE, we do not need to solve a complex problem to go from the latent pose
representation to the pose itself. This mapping, which corresponds to the decoding part of our
autoencoder, is learned directly from data.

5.1.2 Regression in Latent Space

Once the autoencoder is trained, we aim to learn a mapping from the input image or heatmap to
the latent representation of the human pose. To this end, and as shown in Fig. 5.2(b), we use a
CNN to regress the image to a high-dimensional representation, which is itself mapped to the
latent pose representation.

More specifically, let θcnn be the parameters of the CNN, including the mapping to the latent
pose representation. Given an input image or heatmap x, we consider the square loss between the
representation predicted by the CNN, fcnn(x,θcnn), and the one that was previously learned by
the autoencoder, hL . Given our N training samples, learning amounts to finding

θ∗cnn = argmin
θcnn

N∑
i=1

|| fcnn(xi ,θcnn)−hL,i ||22 . (5.3)

In practice, we either rely on a standard CNN architecture shown in Fig. 5.2(b), similar to the one
of [156, 274] or a very deep network architecture, e.g. ResNet-50 [89]. In our implementation,
the input volume is a three channel image of size 128×128 or a 16 channel heatmap of size
128×128. The last fully-connected layer of the base network is mapped linearly to the latent
pose embedding. Except for this last linear layer, each layer uses a ReLU activation function.
When we use images as input, we initialize the convolutional layers of our CNN from those of a
network trained for the detection of body joints in 2D as in [156, 188].
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In the case of 3D pose prediction from 2D joint location heatmaps, we rely on the stacked
hourglass network design [194], which assigns high confidence values to most likely joint
positions in the image. In practice, we have observed a huge performance improvement in
overall 3D pose estimation accuracy when using reliable 2D joint location heatmaps produced
by stacked hourglass networks compared to directly using RGB images as input to our standard
CNN architecture in Fig. 5.2(b).

5.1.3 Fine-Tuning the Whole Network

Finally, as shown in Fig. 5.2(c), we append the decoding layers of the autoencoder to the CNN
discussed above, which maps the latent pose estimates to the original pose space. We then
fine-tune the resulting complete network for the task of human pose estimation. We take the cost
function to be the squared difference between the predicted and ground truth 3D poses, which
yields the optimization problem

θ∗f t = argmin
θ f t

N∑
i
|| f f t (xi ,θ f t )− yi ||22 , (5.4)

where θ f t are the model parameters, including θcnn and the decoding weights and biases
(Wdec, j ,bdec, j )L

j=1, and f f t is the mapping function.

At test time, a new input image or heatmap is then simply passed forward through this fine-tuned
network, which predicts the 3D pose via the learned latent representation.

5.2 Modeling Temporal Consistency

We have so far focused on predicting 3D poses from single images or heatmaps. However, it is
well known that accounting for temporal consistency increases robustness. In this section, we
show that our approach naturally allows us to use Long Short-Term Memory Units (LSTMs) to
this end. Below, we first briefly review LSTMs and then introduce two different ways to exploit
them to encode temporal information in our framework.

5.2.1 LSTMs

Recurrent Neural Networks (RNNs) have become increasingly popular to model temporal dynam-
ics. In their simplest form, they map a sequence of inputs to a sequence of hidden states, each
connected to its temporal neighbors, which are in turn mapped to a sequence of outputs. In theory,
simple memory units and backpropagation through time (BPTT) allow RNNs to capture the
temporal correlations between distant data points. However, in practice, longer sequences often
cause the gradients to either vanish or explode, thus making optimization impossible. LSTMs [94]
were introduced as a solution to this problem. Although they have four times as many parameters
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(a) (b)

Figure 5.3 – Our (B)LSTM networks to enforce temporal consistency. (a) The (B)LSTM-Pose
approach involves refining 3D human pose predictions by feeding those obtained as described in
Fig. 5.2(c) into a (B)LSTM network, which yields the final 3D poses. (b) The (B)LSTM-Feature
approach maps the features obtained from the last fully-connected layer of a CNN trained to
directly regress 3D pose from monocular images to the latent representation hL of Fig. 5.2(a) via
a (B)LSTM network. The final pose is recovered by the decoder part of the autoencoder.

as traditional RNNs, they can be trained efficiently thanks to their sharing of parameters across
time slices. An LSTM unit is defined by the recurrence equations

it =σi (Wxi xt +Whi ht−1 +bi )

ft =σ f (Wx f xt +Wh f ht−1 +b f )

ot =σo(Wxo xt +Whoht−1 +bo)

ct = ft ¯ ct−1 + it ¯σc (Wxc xt +Whc ht−1 +bc )

ht = ot ¯σh(ct ) ,

(5.5)

where xt , ct and ht are the input, hidden/cell state and output at time t , respectively, and it , ft

and ot represent gate vectors to forget/select information. σ·(·) are sigmoids and ¯ denotes the
Hadamard or element-wise product.

In practice, we use either LSTMs or Bidirectional LSTMs (BLSTMs). A BLSTM comprises
two LSTMs with information traveling in opposite temporal directions [76]. They have been
shown to boost performance when the quantity to be predicted depends on contextual information
coming from both forward and backward in time [76]. This is typically the case for human pose
estimation, where the estimate at time t is correlated to those at time t −1 and t +1.

5.2.2 Recurrent Pose Estimation

We tested two different ways to incorporate (B)LSTMs into our framework.

Constraining the Final Poses

The first is to refine the pose estimates by imposing temporal consistency on the output of the
network introduced in the previous section, as shown in Fig. 5.3(a).

More specifically, let St = [ŷt− T
2 +1, . . . , ŷt , . . . , ŷt+ T

2
] be the input sequence of T predicted poses
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centered at time t . The network prediction can be expressed as

ȳt = fp (St ,θp ) , (5.6)

where θp includes all the parameters of the network. During training, these parameters are taken
to be

θ∗p = argmin
θp

N−T /2∑
t=T /2

|| fp (St ,θp )− yt ||22 . (5.7)

We refer to this method as (B)LSTM-Pose.

Constraining the Features

An alternative would be to enforce temporal consistency not on the poses, but earlier in the
network on the features extracted from a direct CNN regressor. To this end, we made use of the
features of the penultimate layer of our base network. This, for example, corresponds to FC3
features for the network shown in Fig. 5.2(b). These features act as input to the model depicted
in Fig. 5.3(b), which stacks two BLSTM layers and maps the features to the latent representation
learned by the autoencoder of Section 5.1.1. This is followed by the decoder to finally predict 3D
poses.

Let Ft = [FCt−T /2+1, . . . ,FCt , . . . ,FCt+T /2] be the sequence of such features. Then, training this
network can be achieved by solving the problem

θ∗f = argmin
θ f

N−T /2∑
t=T /2

|| f f (Ft ,θ f )− yt ||22 , (5.8)

where f f (Ft ,θ f ) represents the complete network mapping, with parameters θ f . We refer to this
method as (B)LSTM-Feature.

5.3 Experiments

In this section, we first describe the datasets we tested our approach on. We then give implemen-
tation details and describe the evaluation protocol. Finally, we compare our results against those
of the previous methods.

5.3.1 Datasets

We evaluate our method on the Human3.6m [102], HumanEva [250], KTH Multiview Football
II [28] and Leeds Sports Pose (LSP) [115] datasets.

Human3.6m comprises 3.6 million image frames with their corresponding 2D and 3D poses. The
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subjects perform complex motion scenarios based on typical human activities such as discussion,
eating, greeting and walking. The videos were captured from 4 different camera viewpoints.
Following the standard procedure of [156], we collect the input images by extracting a square
region around the subject using the bounding box present in the dataset and the output pose is a
vector of 17 3D joint coordinates.

HumanEva-I comprises synchronized images and motion capture data and is a standard bench-
mark for 3D human pose estimation. The output pose is a vector of 15 3D joint coordinates.

KTH Multiview Football II is a recent benchmark to evaluate the performance of pose estima-
tion algorithms in unconstrained outdoor settings. The camera follows a soccer player moving
around the field. The videos are captured from 3 different camera viewpoints and the output pose
is a vector of 14 3D joint coordinates.

LSP is a standard benchmark for 2D human pose estimation and does not contain any ground
truth 3D pose data. The images are captured in unconstrained outdoor settings. 2D pose is
represented in terms of a vector of 14 joint coordinates. We report qualitative 3D pose estimation
results on this dataset.

5.3.2 Implementation Details

We trained our autoencoder using a greedy layer-wise training scheme followed by fine-tuning
as in [93, 279]. We set the regularization weight of Eq. 5.2 to λ= 0.1. We experimented with
single-layer autoencoders, as well as with 2-layer ones. The size of the layers were set to
2000 and 300-300 for the 1-layer and 2-layer cases, respectively. We corrupted the input pose
with zero-mean Gaussian noise with standard deviation of 40 for 1-layer and 40-20 for 2-layer
autoencoders. In all cases, we used the ADAM optimization procedure [127] with a learning rate
of 0.001 and a batch size of 128.

The number and individual sizes of the layers of our base architecture are given in Fig. 5.2. The
filter sizes for the convolutional layers are consecutively 9×9, 5×5 and 5×5. Each convolutional
layer is followed by a 2×2 max-pooling layer. The activation function is the ReLU in all the
layers except for the last one that uses linear activation. As for the autoencoders, we used
ADAM [127] with a learning rate of 0.001 and a batch size of 128. To prevent overfitting, we
applied dropout with a probability of 0.5 after each fully-connected layer and augmented the data
by randomly cropping 112×112 patches from the 128×128 image. When using 2D heatmaps
as input, the 64×64 outputs of stacked hourglass network of [194] were upscaled to 128×128

before processing.

To demonstrate that our approach scales to very deep architectures, we also use ResNet-50 [89]
as baseline CNN architecture. More specifically, we use it up to level 5, with the first three levels
initialized on a 2D pose estimation task as in [188] and then kept constant throughout the 3D
pose prediction process. We then use two additional convolutional layers of size 512 and 128 and
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a linear layer to regress the 3D pose from the convolutional features of level 4.

To train Ours-LSTM-Feature and Ours-BLSTM-Feature, we relied on the features extracted from
the penultimate layer of a CNN trained to directly predict 3D pose, referred to later as CNN-Direct.
We did not backpropagate the loss of our LSTM-based models through this network, but rather
kept its weights fixed. By contrast, Ours-LSTM-Pose and Ours-BLSTM-Pose take as input the
3D pose predictions obtained using the network in Fig. 5.2(c). In all cases, we cascaded two
(B)LSTM layers of size 512, whose output sequence was merged into a single fully-connected
layer of size 51. The activation function was t anh for the recurrent layers and linear for the
fully-connected layer at the end. In all architectures, we used a temporal window of length T = 5

with a stride of 5 covering 0.5 seconds for 50 fps Human3.6m videos. The first T /2−1 and the
last T /2 frames were excluded from the evaluation. We optimized the recurrent networks using
the ADAM optimization procedure [127] with a learning rate of 0.001 and a batch size of 128.

5.3.3 Evaluation Protocol

On Human3.6m, for the comparison to be fair, we used the same data partition protocol as
in earlier work [156, 160] to obtain the training and test splits. The data from 5 subjects
(S1,S5,S6,S7,S8) was used for training and the data from 2 different subjects (S9,S11) was used
for testing. We trained a single model for all actions. We evaluate the accuracy of 3D human pose
estimation in terms of average Euclidean distance between the predicted and ground truth 3D joint
positions as in [156, 160]. To compare against [27, 240], we further evaluate the pose estimation
accuracy after Procrustes transformation. The accuracy numbers are reported in milimeters for all
actions. Training and testing were carried out monocularly in all camera views for each separate
action.

On HumanEva-I, we trained our model on the Walking sequences of subjects S1, S2 and S3 as
in [251, 328] and evaluate on the validation sequences of all subjects. We pretrained our network
on the Walking sequences of Human3.6m and used only the first camera view for further training
and validation.

On KTH Multiview Football II, we trained our model on the first half of the sequence containing
Player 2 and test on the second half, as in [28]. We report accuracy using the percentage of
correctly estimated parts (PCP) score with a threshold of 0.5 for a fair comparison. Since the
training set is quite small, we pretrained our CNN model on the synthetic dataset introduced
in [38], which contains images of sports players with their corresponding 3D poses.

On LSP, in order to generalize to the unconstrained outdoor settings, we trained our regressor on
the recently released synthetic dataset of [38] and tested on the actual data from the LSP dataset.
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Method Directions Discussion Eating Greeting Phone Talk Posing Buying Sitting Sitting Down

Ionescu et al. [102] 132.71 183.55 132.37 164.39 162.12 150.61 171.31 151.57 243.03
Li & Chan [156] - 148.79 104.01 127.17 - - - - -
Li et al. [160] - 134.13 97.37 122.33 - - - - -
Li et al. [161] - 133.51 97.60 120.41 - - - - -
Zhou et al. [328] - - - - - - - - -
Rogez & Schmid [230] - - - - - - - - -
Tekin et al. [264] - 129.06 91.43 121.68 - - - - -
Park et al. [202] 100.34 116.19 89.96 116.49 115.34 117.57 106.94 137.21 190.82
Zhou et al. [327] 91.83 102.41 96.95 98.75 113.35 90.04 93.84 132.16 158.97
Tome et al. [271] 64.98 73.47 76.82 86.43 86.28 68.93 74.79 110.19 173.91
Pavlakos et al. [206] 67.38 71.95 66.70 69.07 71.95 65.03 68.30 83.66 96.51

OURS (ShallowNet-Autoencoder) 94.98 129.06 91.43 121.68 133.54 115.13 133.76 140.78 214.52
OURS (ShallowNet-Hm-Autoencoder) 69.64 93.79 69.02 96.47 103.42 83.36 85.22 116.62 147.57
OURS (ResNet-Autoencoder) 57.84 64.62 59.41 62.83 71.52 57.50 60.38 80.22 104.14

Method: Smoking Taking Photo Waiting Walking Walking Dog Walking Pair Avg. (6 Actions) Avg. (All)

Ionescu et al. [102] 162.14 205.94 170.69 96.60 177.13 127.88 159.99 162.14
Li & Chan [156] - 189.08 - 77.60 146.59 - 132.20 -
Li et al. [160] - 166.15 - 68.51 132.51 - 120.17 -
Li et al. [161] - 163.33 - 73.66 135.15 - 121.55 -
Zhou et al. [328] - - - - - - - 120.99
Rogez & Schmid [230] - - - - - - - 121.20
Tekin et al. [264] - 162.17 - 65.75 130.53 - 116.77 -
Park et al. [202] 105.78 149.55 125.12 62.64 131.90 96.18 111.12 117.34
Zhou et al. [327] 106.91 125.22 94.41 79.02 126.04 98.96 104.73 107.26
Tome et al. [271] 84.95 110.67 85.78 71.36 86.26 73.14 84.17 88.39
Pavlakos et al. [206] 71.74 76.97 65.83 59.11 74.89 63.24 69.78 71.90

OURS (ShallowNet-Autoencoder) 121.26 162.17 138.2 65.75 130.53 113.34 116.77 127.07
OURS (ShallowNet-Hm-Autoencoder) 87.17 120.50 95.31 55.87 85.69 64.66 86.89 91.62
OURS (ResNet-Autoencoder) 66.31 80.50 61.20 52.55 69.97 60.08 61.20 67.27

Table 5.1 – Comparison of our structured prediction approach with earlier work on Hu-
man3.6m. We report 3D joint position errors in mm, computed as the average Euclidean distance
between the ground truth and predicted joint positions. ‘-’ indicates that the results were not
reported for the respective action class in the original paper. Note that our method achieves the
best overall accuracy.

5.3.4 Evaluation

We first discuss our results on predicting 3D pose from a single image, and then turn to the case
where we use multiple consecutive frames as input.

Human Pose from a Single Image

Fig. 5.4 depicts selected pose estimation results on Human3.6m. In Table 5.1, we report our single-
image autoencoder-based results on this dataset along with those of the following single image-
based methods: KDE regression from HOG features to 3D poses [102], jointly training a 2D
body part detector and a 3D pose regressor [156, 202], the maximum-margin structured learning
framework of [160, 161], the deep structured prediction approach of [264], pose regression
with kinematic constraints [327], pose estimation with mocap guided data augmentation [230],
volumetric pose prediction approach of [206] and lifting 2D heatmap predictions to 3D human
pose [271]. ShallowNet-Autoencoder refers to our autoencoder-based regression approach using
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(a) Image (b) Prediction (c) GT (d) Image (e) Prediction (f) GT

Figure 5.4 – Pose estimation results on Human3.6m. (a,d) Input image. (b,e) Recovered pose.
(c,f) Ground truth. Examples are from the Walking, Eating, Taking Photo, Greeting, Discussion
and Walking Dog actions of the Human3.6m database. In each scenario, our structured prediction
approach can reliably recover the 3D pose of the subject. Best viewed in color.

Model Directions Discussion Eating Greeting Phone Talk Posing Buying Sitting

Bogo et al.[27] 62.0 60.2 67.8 76.5 92.1 73.0 75.3 100.3
Sanzari et al.[240] 48.82 56.31 95.98 84.78 96.47 66.30 107.41 116.89
OURS (ResNet-Autoencoder) 43.89 48.54 46.57 49.95 53.94 43.77 43.94 60.20

Model Sitting Down Smoking Taking Photo Waiting Walking Walking Dog Walking Pair Average

Bogo et al.[27] 137.3 83.4 77.0 77.3 86.8 79.7 81.7 82.3
Sanzari et al.[240] 129.63 97.84 105.58 65.94 92.58 130.46 102.21 93.15
OURS (ResNet-Autoencoder) 73.64 51.15 59.29 46.30 39.81 52.25 47.18 50.69

Table 5.2 – Comparison of our structured prediction approach with earlier work after
Procrustes transformation on Human3.6m. We report average Euclidean distance (in mm)
between the ground truth 3D joint locations and those predicted by competing methods [58, 27,
240] as wll as ours after Procrustes transformation.

the base architecture depicted in Fig. 5.2, and ResNet-Autoencoder to the one using the ResNet-50
architecture. For the shallow network architecture, we also evaluate the pose estimation accuracy
using the 2D joint location heatmaps of [194] as input. This is referred to as ShallowNet-Hm-
Autoencoder.

The shallow network architecture provides satisfactory pose estimation accuracy with a fast
computational runtime of 6 ms/frame, which corresponds to 166 fps real-time performance,
whereas ResNet-Autoencoder comes at the cost of a three times slower runtime. Our autoen-
coder-based regression approach using ResNet-50 as base network outperforms all the baselines.

In [27], the reconstruction error was evaluated by first aligning the estimated skeleton to the
ground truth one by Procrustes transformation, and we confirmed through personal communica-
tion that the same protocol was used in [240]. To compare our results to those of the earlier work,
we therefore also report in Table 5.2 the joint error after Procrustes transformation. Altogether,
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Model Discussion Eating Greeting Taking Photo Walking Walking Dog

CNN-Direct 135.36 105.98 133.35 177.62 77.73 153.02
OURS-Autoencoder, 1 layer no FT 134.02 96.01 127.58 158.73 68.55 146.28
OURS-Autoencoder, 2 layer no FT 129.67 98.57 124.80 162.69 73.47 146.46
OURS-Autoencoder, 1 layer with FT 130.07 94.08 121.96 158.51 65.83 135.35
OURS-Autoencoder, 2 layer with FT 129.06 91.43 121.68 162.17 65.75 130.53

(a)

Model Joint error

CNN-Direct 177.62
CNN-ExtraFC[2000] 179.29
CNN-PCA[30] 170.74
CNN-PCA[40] 167.62
CNN-PCA[51] 182.64
OURS-Autoencoder[40] 165.11
OURS-Autoencoder[2000] 158.51

(b)

Table 5.3 – Ablation studies for our structured prediction approach. We report the average
Euclidean distance (in mm) between the groundtruth 3D joint locations and those computed (a)
using either no autoencoder at all (CNN) or 1-layer and 2-layer encoders (OURS-Autoencoder),
with or without fine-tuning (FT), (b) by replacing the autoencoder by either an additional fully-
connected layer (CNN-ExtraFC) or a PCA layer (CNN-PCA) on the sequences of Taking Photo
action class. The bracketed numbers denote the various dimensions of the additional layer we
tested. Our approach again yields the most accurate predictions.

by leveraging the power of deep neural networks and accounting for the dependencies between
body parts, ResNet-Autoencoder significantly outperforms the previous methods.

We further evaluated our approach on the official test set of Human3.6m for two different actions.
We obtained a pose reconstruction error of 64.38 and 63.86 mm for the Directions and Discussion
actions, respectively. Our method currently ranks second in the leaderboard for these two actions.
Note that the first ranking method [219] relies on the knowledge of body part segmentations
whereas we do not use this additional piece of ground truth information.

To validate our design choices, we report in Table 5.3, the pose estimation accuracies obtained
with various autoencoder configurations using the shallow network depicted in Fig. 5.2. The
results reported in Tables 5.1 and 5.2 were obtained using a two layer autoencoder. However,
as discussed in Section 5.1.1 our formalism applies to autoencoders of any depth. Therefore,
in Table 5.3(a), we also report results obtained using a single layer one obtained by turning
off the final fine-tuning of Section 5.1.3. For completeness, we also report results obtained by
using a CNN similar to the one of Fig. 5.2(b) to regress directly to a 51-dimensional 3D pose
vector without using an autoencoder at all. We will refer to it as CNN-Direct. We found that
both kinds of autoencoders perform similarly and better than CNN-Direct, especially for actions
such as Taking Photo and Walking Dog that involve interactions with the environment and are
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Model Directions Discussion Eating Greeting Phone Talk Posing Buying Sitting

ResNet 56.77 64.73 60.94 63.49 74.98 57.65 61.08 81.29
ResNet-Autoencoder w/o ExtraMocap 57.84 64.62 59.41 62.83 71.52 57.50 60.38 80.22
ResNet-Autoencoder w/ ExtraMoCap 55.87 63.65 59.08 62.64 72.08 56.15 58.88 80.53

Model Sitting Down Smoking Taking Photo Waiting Walking Walking Dog Walking Pair Average

ResNet 102.45 66.65 80.96 60.87 53.26 70.27 60.95 68.29
ResNet-Autoencoder w/o ExtraMoCap 104.14 66.31 80.50 61.20 52.55 69.97 60.08 67.27
ResNet-Autoencoder w/ ExtraMoCap 102.30 65.68 78.25 59.05 51.81 68.44 58.19 66.17

Table 5.4 – Evaluation of our approach with deep network architectures. We report the
average Euclidean distance (in mm) between the groundtruth and predicted 3D joint locations.
The predictions are obtained using a direct ResNet regressor, ResNet-Autoencoder trained with
only motion capture data from Human3.6m and ResNet-Autoencoder trained with motion capture
data from Human3.6m and MPI-INF-3DHP.

thus physically more constrained. This confirms that the power of our method comes from
autoencoding. Furthermore, as expected, fine-tuning consistently improves the results.

During fine-tuning, our complete network has more fully-connected layers than CNN-Direct.
One could therefore argue that the additional layers are the reason why our approach outperforms
it. To disprove this, we evaluated the baseline, CNN-ExtraFC, in which we simply add one
more fully-connected layer. We also evaluated another baseline, CNN-PCA, in which we replace
our autoencoder latent representation by a PCA-based one. In Table 5.3(b), we show that our
approach significantly outperforms these two baselines on the Taking Photo action. This suggests
that our overcomplete autoencoder yields a representation that is more discriminative than other
latent ones. Among the different PCA configurations, the one with 40 dimensions performs the
best. However, training an autoencoder with 40 dimensions outperforms it.

To learn a more powerful latent pose space, we exploit additional motion capture data from the
MPI-INF-3DHP dataset [188] for training the autoencoder. In Table 5.4, we report results with
and without this additional data. We achieve better pose estimation accuracy when we train
on a wider range of poses. As Human3.6m already includes a large variety of poses and the
marker placements between the two datasets do not exactly match each other, we only observe a
slight improvement. However, our results suggest that training an autoencoder on a larger pose
space without any dataset bias would result in an even more representative latent pose space
and, eventually, a higher pose estimation accuracy. We further compare our autoencoder-based
regression approach to a direct regression baseline. The relative contribution of the autoencoder
on very deep neural networks is smaller than that on a shallower network. However, we still
increase the accuracy by applying our autoencoder training on top of the ResNet architecture.

Following [101], we show in Fig. 5.5 the differences between the ground truth limb ratios and
the limb ratios obtained from predictions based on KDE, CNN-Direct and our autoencoder-based
approach. These results demonstrate that our predictions better preserve these limb ratios, and
thus better model the dependencies between joints.
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(a) (b)

(c) (d)

Model Lower Body Upper Body Full Body

KDE [102] 1.02 7.18 16.43
CNN 0.57 6.86 14.97
OURS-Autoencoder no FT 0.62 5.30 11.99
OURS-Autoencoder with FT 0.77 5.43 11.90

(e)

Figure 5.5 – Analysis on structure preservation ability of our 3D pose estimation approach.
We visualize the matrix of differences between estimated log of limb length ratios and those
computed from ground truth poses. The rows and columns correspond to individual limbs. For
each cell, the ratios are computed by dividing the limb length in the horizontal axis by the one
in the vertical axis as in [101] for (a) KDE [102], (b) CNN-Direct as in Table 5.3, and (c,d) our
method without and with fine-tuning. An ideal result would be one in which all cells are blue,
meaning the limb length ratios are perfectly preserved. Best viewed in color. (e) Sum of the log
of limb length ratio errors for different parts of the human body. All methods perform well on the
lower body. However, ours outperforms the others on the upper body and when considering all
ratios in the full body.

In Fig. 5.6, we visualize the latent space learned by the autoencoder after embedding it in 2D
using the t-SNE algorithm [180]. It can be seen that the upper left corner spans the downward-
facing body poses, the diagonal includes mostly the upright body poses and the lower right corner
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Figure 5.6 – Visualization of the learned latent pose space. t-SNE embedding [180] for the
latent representation of the poses from the Sitting Down category in Human3.6m.

clusters the forward-facing body poses sitting on the ground. Note that our latent representation
covers the entire low-dimensional space, thus making it well-suited to discriminate between poses
with small variations.

We further report single-image 3D pose estimation accuracy on the HumanEva-I dataset in
Table 5.5 and show qualitative pose estimation results in Fig. 5.7. We follow the protocol adopted
in the previous methods to 3D inference from 2D body part detections [251] and to 3D model-
fitting [27, 328]. Following these methods, we measure 3D pose error after aligning the prediction
to the ground truth by a rigid transformation. Note that [328] uses video instead of a single frame
for prediction. Our method outperforms the previous methods on this standard benchmark.

On the KTH Multiview Football II dataset, we compare our autoencoder-based approach
against [28], which is the only monocular single-image 3D pose estimation method publishing
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Method S1 S2 S3 Average

Simo-Serra et al. [251] 65.1 48.6 73.5 62.4
Bogo et al. [27] 73.3 59.0 99.4 77.2
Zhou et al. [328] 34.2 30.9 49.1 38.07
OURS-Autoencoder 29.32 17.94 59.51 35.59

Table 5.5 – Quantitative results of our approach on Walking sequences of the HumanEva-I
dataset [250]. S1, S2 and S3 correspond to Subject 1, 2, and 3, respectively. The accuracy is
reported in terms of average Euclidean distance (in mm) between the predicted and ground truth
3D joint positions.

(a) Image (b) Prediction (c) GT (d) Image (e) Prediction (f) GT

Figure 5.7 – Pose estimation results on HumanEva-I. (a,d) Input image. (b,e) Recovered pose.
(c,f) Ground truth. Best viewed in color.

results on this dataset so far. As can be seen in Table 5.6, we outperform the PCP accuracy of
this baseline significantly on all body parts except for the pelvis. Fig. 5.8 depicts example pose
estimation results on this dataset.

In Fig. 5.9, we provide additional qualitative results on the LSP dataset, which features challenging
poses. Our autoen-coder-based regression approach nevertheless delivers accurate 3D predictions.
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Method: Pelvis Torso Upper Arms Lower arms Upper Legs Lower Legs All parts

[28] 97 87 14 6 63 41 43
OURS-Autoencoder 66 100 66.5 16.5 83 66.5 63.1

Table 5.6 – Evaluation of our approach on KTH Multiview Football II. On this dataset, we
compare our method that uses a single image to that of [28]. We rely on the percentage of
correctly estimated parts (PCP) score to evaluate the performance as in [28]. Higher PCP score
corresponds to better 3D pose estimation accuracy.

(a) Image (b) Prediction (c) GT (d) Image (e) Prediction (f) GT

Figure 5.8 – Pose estimation results on KTH Multiview Football II. (a, d) Input images. (b,
e) Recovered pose. (c, f) Ground truth. Best viewed in color.

(a) Image (b) Prediction (c) Image (d) Prediction

Figure 5.9 – Pose estimation results on LSP. (a,c) Input images. (b,d) Recovered pose. We
trained our network on the recently released synthetic dataset of [38] and tested it on the LSP
dataset. The quality of the 3D pose predictions demonstrates the generalization of our method. In
the last row, we show failure cases in the 3D pose prediction of lower legs due to foreshortening
(left) and orientation ambiguities (right)

.

79



Chapter 5. Learning Latent Representations of 3D Human Pose with Deep Neural
Networks

Model Directions Discussion Eating Greeting Phone Talk Posing Buying Sitting
OURS (ResNet-Autoencoder) 57.84 64.62 59.41 62.83 71.52 57.50 60.38 80.22
OURS-LSTM-Pose 55.63 64.55 57.56 62.20 70.71 56.52 57.37 78.93
OURS-BLSTM-Pose 54.93 63.26 57.26 62.30 70.28 56.66 57.08 78.98
OURS-LSTM-Feature 71.34 68.88 67.12 75.87 79.36 66.19 61.49 83.28
OURS-BLSTM-Feature 70.01 68.74 64.64 75.90 78.99 64.21 60.50 83.10

Model Sitting Down Smoking Taking Photo Waiting Walking Walking Dog Walking Pair Average

OURS (ResNet-Autoencoder) 104.14 66.31 80.50 61.20 52.55 69.97 60.08 67.27
OURS-LSTM-Pose 98.47 64.43 77.18 62.32 50.12 67.50 66.77 66.02
OURS-BLSTM-Pose 97.13 64.29 77.40 61.94 49.76 67.11 62.26 65.37
OURS-LSTM-Feature 97.66 71.51 83.93 78.67 63.69 73.23 69.03 74.08
OURS-BLSTM-Feature 96.44 70.29 83.51 77.83 62.02 71.11 69.55 73.52

Table 5.7 – Analysis of our different (B)LSTM architectures. We report the average Euclidean
distance (in mm) between the ground truth 3D joint locations and the predictions obtained by our
ResNet-Autoencoder approach evaluated using different LSTM architectures on the video data.

Model Directions Discussion Eating Greeting Phone Talk Posing Buying Sitting

Du et al. [58] 85.07 112.68 104.90 122.05 139.08 105.93 166.16 117.49
Tekin et al. [266] 102.41 147.72 88.83 125.28 118.02 112.3 129.17 138.89
Zhou et al. [328] 87.36 109.31 87.05 103.16 116.18 106.88 99.78 124.52
OURS (ResNet-Autoencoder) 57.84 64.62 59.41 62.83 71.52 57.50 60.38 80.22
OURS-BLSTM-Pose 54.93 63.26 57.26 62.30 70.28 56.66 57.08 78.98

Model Sitting Down Smoking Taking Photo Waiting Walking Walking Dog Walking Pair Average

Du et al. [58] 226.04 120.02 135.91 117.65 99.26 137.36 106.54 126.47
Tekin et al. [266] 224.90 118.42 182.73 138.75 55.07 126.29 65.76 124.97
Zhou et al. [328] 199.23 107.42 143.32 118.09 79.39 114.23 97.70 113.01
OURS (ResNet-Autoencoder) 104.14 66.31 80.50 61.20 52.55 69.97 60.08 67.27
OURS-BLSTM-Pose 97.13 64.29 77.40 61.94 49.76 67.11 62.26 65.37

Table 5.8 – Comparison of our (B)LSTM-based architectures to the earlier work. We report
the average Euclidean distance in mm between the ground truth 3D joint locations and the predic-
tions obtained by our ResNet-Autoencoder approach with and without BLSTM regularization on
the output poses, compared to [58, 266, 328]

.

Human Pose from Video

In Table 5.7, we demonstrate the effectiveness of imposing temporal consistency using LSTMs
on Human3.6m, as described in Section 5.2. We compare our results with and without LSTMs
against those of [58, 266, 328], which also rely on video sequences. On average, our LSTM-based
approaches applied to the 3D pose predictions of ResNet-Autoencoder bring an improvement
over single-image results, with the one of Section 5.2.2 that enforces temporal consistency at
pose level being significantly better than the other. Using standard LSTMs instead of BLSTMs
degrades the accuracy but eliminates the latency involved in working on image-batches, which
can be a worthwhile trade-off if real-time performance is required.

As shown in Table 5.8, our LSTM units improves the pose estimation accuracy on average by
approximately 3% and our ResNet-based results are significantly more accurate than the other
methods, with an average pose estimation accuracy of 65.37 mm vs 124.97 mm for [266], 113.01
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(a) t −k (b) t (c) t +k (d) t −k (e) t (f) t +k

Figure 5.10 – Pose estimation results with LSTMs on Human3.6m. (a,d) t −k th frame. (b,e)
t th frame. (c,g) t +k th frame. k denotes the stride between consecutive frames. Top row: Input
image, Second row: Our pose estimate from the single image, Third row: Our BLSTM pose
estimate, Last row: Ground truth. Our BLSTM network can correct for the errors made by the
autoencoder by accounting for the temporal consistency. Best viewed in color.

mm for [328] and 126.47 mm for [58]. Fig. 5.10 depicts example pose estimation results of our
BLSTM approach compared to our autoencoder-based approach based on a single image.

We further compare our OURS-BLSTM-Pose model with a network where the BLSTM was
replaced by two fully-connected layers, thus giving it a similar capacity as the BLSTM one,
but not explicitly modeling temporal consistency. This model gives an average pose estimation
accuracy on all Human3.6m actions of 77.96 mm, whereas our BLSTM-based model achieves
65.37 mm. Our method significantly outperforms this baseline, thus showing that the better
performance of our LSTM-based networks does not just come from their larger number of
parameters, but truly from their ability to model temporal information.

5.3.5 Comparison Between KDE and Autoencoders

In Table 5.9, we compare two structured 3D human pose estimation methods: Our autoencoder-
based deep network approach and kernel dependency estimation (KDE) [101, 102]. In the earlier
works of [101] and [102], KDE is applied to handcrafted HOG features, whereas in our approach
we rely on deep features. In order to compare the structured regression performance of KDE to
our autoencoder-based approach, we also applied KDE to the deep features extracted from a CNN.
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Model Directions Discussion Eating Greeting Phone Talk Posing Buying Sitting

HOG + KDE [102] 132.71 183.55 132.37 164.39 162.12 150.61 171.31 151.57
Conv3 Feat. + KDE 99.13 160.84 112.10 137.32 137.97 118.16 137.13 153.79
FC3 Feat. + KDE 99.06 160.39 104.53 132.01 132.35 118.13 144.36 149.80
CNN-Direct 106.23 161.54 108.42 136.15 136.21 123.37 148.68 157.15
OURS-Autoencoder 94.98 129.06 91.43 121.68 133.54 115.13 133.76 140.78

Model Sitting Down Smoking Taking Photo Waiting Walking Walking Dog Walking Pair Average

HOG + KDE [102] 243.03 162.14 205.94 170.69 96.60 177.13 127.88 162.14
Conv3 Feat. + KDE 190.48 137.06 181.77 151.15 93.97 149.81 120.46 138.74
FC3 Feat. + KDE 206.35 133.91 169.31 150.76 86.44 144.83 113.20 136.36
CNN-Direct 217.88 136.59 169.42 157.71 88.75 149.58 115.02 140.85
OURS-Autoencoder 214.52 121.26 162.17 138.2 65.75 130.53 113.34 127.07

Table 5.9 – Comparison of our structured prediction approach to KDE [102]. We report
the average Euclidean distance (in mm) between the groundtruth 3D joint locations and those
predicted by competing methods [102] as well as ours.

Layer Configuration Greeting

[40] 129.49
[500] 123.95
[1000] 121.96
[2000] 121.96
[3000] 123.49
[250-250] 125.61
[300-300] 121.68
[250-500] 128.98
[500-1000] 126.52
[200-200-200] 126.78
[500-500-500] 127.73

Table 5.10 – Analysis on the hyperparameter choices for our structured prediction ap-
proach. We report average Euclidean distance (in mm) between the ground truth 3D joint
locations and the ones predicted by our approach. We train our model using autoencoders with
different number of layers and different number of channels per layer as indicated by the brack-
eted numbers. This validation was performed on the Greeting action and the optimal values were
used for all other actions.

We extract either the features from the last convolutional layer (Conv3) or the last fully-connected
layer (FC3) of the network depicted in Fig. 5.2(b). As can be seen in Table 5.9, we consistently
outperform all the baselines, which demonstrates the power of autoencoding.

5.3.6 Parameter Choices

In Table 5.10, we compare the results of different autoencoder configurations in terms of number
of layers and channels per layer on the Greeting action. Similarly to what we did in Table 5.3(b),
the bracketed numbers denote the dimension of the autoencoder’s hidden layers. We obtained the
best result for 1 layer with 2000 channels or 2 layers with 300-300 channels. These values are
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those we used for all the experiments described above. They were chosen for a single action and
used unchanged for all others, thus demonstrating the versatility of our approach.

5.4 Conclusion

We have introduced a novel Deep Learning regression architecture for structured prediction of
3D human pose from a monocular image or a 2D joint location heatmap. We have shown that
our approach to combining autoencoders with CNNs accounts for the dependencies between
the human body parts efficiently and significantly improves accuracy. We have also shown that
accounting for the temporal information with LSTMs further increases the accuracy of our pose
estimates. Since our framework is generic, in future work, we intend to apply it to other structured
prediction problems, such as deformable surface reconstruction.
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6 Dyadic Human Motion Prediction

Forecasting future motion from observed past 3D poses has primarily been studied in a single-
person setting [151, 183, 181, 145, 167]. A naive way to extend these approaches to the multi-
person case is to simply treat each subject independently. However, this fails to account for
interactions that condition future behavior. Only in [1] is there an attempt to capture them via the
use of social cues obtained by pooling the learned features for each individual. While effective
in the presence of weak social interactions, this approach is ill-suited to modeling the stronger
dependencies that arise from two closely-interacting individuals whose movements are highly
correlated.

In this paper, we therefore introduce an approach to dyadic, or pairwise, human motion prediction
that more strongly models interactions. To this end, we develop an encoder-decoder architecture
with both self- and pairwise attention modules. While self-attention captures the similarities
between someone’s present and past motions, pairwise attention models capture the dependencies
between the pose histories of both subjects. Then, for each subject, the decoder takes as input the
subject’s own self-attention features and the pairwise attention ones, and outputs the future 3D
pose sequence.

As there is no dyadic motion prediction benchmark with closely-interacting people, we build
the Lindyhop600k dataset. It features Lindy Hop dancers performing energetic moves, ranging
from frenzied kicks to smooth and sophisticated body motions. The dancers synchronize their
fast-paced steps with one another and the music. The standard footwork can be followed by
infrequent twirls, which make the upcoming pose prediction hard without observing the highly
correlated moves of the partner. The motion of one person gives significant clues about infrequent
or subtle motion patterns of the other that cannot be easily inferred from the isolated individual
motion.

Hence, our contributions are twofold.

• We propose the first 3D motion prediction method that models the dyadic motion depen-
dencies between two subjects.
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• We introduce a new dance dataset, Lindyhop600k, which consists of videos and 3D human
body poses of dancers performing diverse swing motions.

Our experiments on the Lindyhop600k dataset clearly demonstrate the benefits of our method. It
outperforms both the state-of-the-art single person baselines and the use of weaker social cues [1].
Our results are especially promising in terms of long-term prediction. The proposed method
models the motion dynamics much more reliably than the baselines.

6.1 Approach

Let us now introduce dyadic human motion prediction method for closely-interacting people. To
this end, we first review the single person motion prediction formalism at the heart of our method,
and then present our approach to modeling pairwise interactions to predict the future poses of
two people.

6.1.1 Single Person Baseline

Our work builds on “History Repeats Itself (HRI)" [181], which relies on an attention mechanism
and a GCN to predict the future poses of a single person based on their observed sequence of
historical poses. Intuitively, the attention mechanism aims to focus the prediction on the most
relevant parts of the motion history and the GCN decodes the resulting representation into the
future pose predictions while encoding the dependencies across the different joints.

Formally, given a sequence of Tp past 3D poses of an individual, X1:Tp = [x1,x2, ...,xTp ]T ,
single-person human motion prediction aims to estimate the T f future 3D poses XTp+1:Tp+T f =
[xTp+1,xTp+2, ...,xTp+T f ]T . Each pose xt ∈RK , where K = J×3, comprises J joints forming a skele-
ton. In HRI, the similarity between past motions and the last observed motion context is captured
by dividing the motion history X1:Tp into Tp −Tl −T f +1 sub-sequences {Xt :t+Tl+T f −1}

Tp−Tl−T f +1
t=1 ,

each containing Tl +T f consecutive poses. The attention mechanism is then built by treating
the first Tl poses of every sub-sequence as key and the entire sub-sequence {Xt :t+Tl+T f −1} as
value. In practice, the values are in fact represented in trajectory space as the Discrete Cosine
Transform (DCT) coefficients of the corresponding poses. That is, the value of each subsequence
is taken as {Vt }

Tp−Tl−T f +1
t=1 , where Vt ∈ RK×(Tl+T f ) encodes the DCT coefficients. Finally, the

query corresponds to the last observed sub-sequence XTp−Tl+1:Tp with Tl poses.

The query and keys are computed as the output of two neural networks fq and fk , respectively.
These functions map the poses to latent vectors of dimension d , that is,

q= fq (XTp−Tl+1:Tp ) , (6.1)

kt = fk (Xt :t+Tl−1) , (6.2)

where q,kt ∈ Rd and 1 ≤ t ≤ Tp −Tl −T f +1. A similarity score at is then computed for each
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Past motion Current motion

Self-attention

Decoder (GCN)

Future motion

Figure 6.1 – Single person motion forecasting baseline [181]. The baseline model aggregates
information from the history of poses (keys) by comparing them to the last observed sequence of
poses (query) through an attention mechanism. fk and fq are modeled with convolutional layers.
The weighted sum of the values are concatenated with the DCT coefficients of the last observed
poses and fed into the GCN that outputs the future pose predictions.

key-query pair, and these scores are employed to obtain a weighted combination of the values.
This is expressed as

at =
qkT

t∑Tp−Tl−T f +1
j=1 qkT

j

, U=
Tp−Tl−T f +1∑

t=1
at Vt , (6.3)

where U ∈RK×(Tl+T f ). Then, the last observed sub-sequence is extended to a sequence of length
Tl +T f by replicating the last pose and passed to the DCT module yielding D ∈ RK×(Tl+T f ).
Finally, U and D are fed into the decoder GCN module, which outputs the future pose predictions
X̂Tp+1:Tp+T f . The attention module explained in this section is depicted in Fig. 6.1, and will be
referred to as self-attention in the rest of this paper, as it computes the attention of a single person
on themselves.
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Past motion Current motion Past motion Current motion

ΔPose

Self-attention

Decoder (GCN) Decoder (GCN)

Pairwise attention Pairwise attention

Merge

Merge

Future motion

Figure 6.2 – Overview of our 3D motion forecasting model based on self- and pairwise
attention. Our model takes as input the past poses of the primary (skeleton models depicted
using green-purple) and past poses of the auxiliary (red-blue) subject relative to the primary
one depicted by ∆Pose operation. The superscript 1 is used for the primary subject whereas 2
represents the interactee. As proposed by [181], the self-attention module takes as input the key,
query and value vectors of the primary subject. We build on top of this approach by integrating a
pairwise module that takes as input the query from one subject and key-value pair from the other
subject. This module learns to put higher attention on the sub-sequences in the motion history
of the primary subject that are more relevant to the current motion of the interactee. The merge
block applies concatenation followed by a convolutional layer. The embeddings from self- and
pairwise attention are fed into two separate GCNs with shared weights. The outputs of GCNs are
projected to the future pose predictions of the primary subject via the merge block.

6.1.2 Pairwise Attention for Dyadic Interactions

Our goal is to perform motion predictions for multiple people. Formally, given the history
of poses {Xs

1:Tp
}S

s=1 for S subjects, our model predicts the future poses {Xs
Tp+1:Tp+T f

}S
s=1. In

particular, we focus on the case where S = 2 and aim to model the strong dependencies arising
from the close interaction of the two subjects. As shown in Fig. 6.2, our approach combines self-
and pairwise attention modules, and we refer to one person as the primary subject and to the
other as the auxiliary one, denoted by the superscripts 1 and 2, respectively. Our goal then is to
predict the future poses of the primary subject given the observed motions of both. Note that, to
predict the future poses of the second subject, we simply inverse the roles.

To combine self- and pairwise attention, we first compute keys k1
t and query q1 vectors for the

primary subject as in Eqs. 6.1, 6.2. The values V1
t together with k1

t and q1 are then fed into the
self-attention module, which yields U1 as in Eq. 6.3. We then design a pairwise attention module
that computes the similarity scores between the keys of the primary subject and the query of the
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auxiliary one, and vice-versa, to detect how relevant the coupled motion is at a given time in
the past. A straightforward way of incorporating pairwise attention would consist of computing
the auxiliary keys and query vectors directly from the observed motion of the auxiliary subject.
However, as we show in the experiments, using the relative motion between the primary and
auxiliary subject facilitates the modeling of interactions. Therefore, we compute the query, keys
and values for the auxiliary subject as

q2 = fq (X1
Tp−Tl+1:Tp

−X2
Tp−Tl+1:Tp

) , (6.4)

k2
t = fk (X1

t :t+Tl−1 −X2
t :t+Tl−1) , (6.5)

V2
t = DC T (X1

t :t+Tl+T f −1 −X2
t :t+Tl+T f −1) . (6.6)

We then define pairwise attention scores between the past motion of the primary subject and the
relative motion with respect to the auxiliary one as

c12
t = q2k1T

t∑Tp−Tl−T f +1
j=1 q2k1T

j

. (6.7)

This lets us compute a weighted sum of primary subject values as

U12 =
Tp−Tl−T f +1∑

t=1
c12

t V1
t . (6.8)

We also compute U21 using V2
t and the pairwise scores c21

t of q1 and k2
t . In the final stage of the

encoder, we concatenate the pairwise embeddings U12 and U21 and feed them to a convolutional
layer corresponding to the merge block in Fig. 6.2. The output is denoted as P1.

As for single-person prediction, the last observed sub-sequence of the primary subject is extended
by repeating its last observed pose and transformed into DCT coefficients denoted by D1. Our
decoder then has two GCNs with shared parameters. One takes as input the concatenated matrices
D1 and U1 and the other D1 and P1. Finally, the GCNs’ outputs are projected via a convolutional
layer to the future pose predictions of the primary subject. The same strategy is applied when
exchanging the roles to obtain the future poses of the second subject.

6.1.3 Training

The entire network is trained by minimizing the Mean Per Joint Position Error (MPJPE). The
loss for one training sequence is thus written as

L= 1

J (Tl +T f )

Tp+T f∑
t=Tp−Tl+1

J∑
j=1

||x̂t , j −xt , j ||2 , (6.9)

where x̂t ∈ R3×J encodes the estimated 3D pose for time t , xt represents the corresponding
ground-truth pose, and xt , j denotes the 3D position of the j -th joint.
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6.1.4 Implementation Details

Training Details. We train our network using the ADAM [127] optimizer with a learning rate
of 0.0005 and a batch size of 32. We use Tp = 60 poses, corresponding to 2 seconds, as motion
history and predict T f = 30 poses, corresponding to 1 second in the future. Our models are trained
for 500 epochs, and we report the results of the model with the highest validation score.

Network Structure. The networks fq and fk in the self- and pairwise attention modules consist
of two 1D convolutional layers with kernel sizes 6 and 5, respectively, each followed by a ReLU.
The hidden dimension of the query and key vectors in Eq. 6.1 and Eq. 6.2 is 256. We use a GCN
with 12 residual blocks as in [181]. The human skeleton has J = 19 joints and our model has
approximately 3.27M parameters similar to [181] that has 3.26M parameters.

6.2 Experiments

In this section, we demonstrate the effectiveness of our approach at exploiting dyadic interactions.
To this end, we first introduce our Lindyhop600k dataset depicting couples that perform lindy
hop dance movements.

6.2.1 LindyHop600K

Lindy hop is a type of swing dance with fast-paced steps synchronized with the music. It
constitutes a good example of motions with strong mutual dependencies between the subjects,
who are engaged in close interactions. To build this dataset, we filmed three men and four
women dancers paired up in different combinations. Overall, Lindyhop600k contains nine dance
sequences, each two to three minutes long, with a maximum of eight cameras at 60 fps. We use
the shortest two sequences as validation and test sets. Table 6.1 shows the details of the dataset
organization. Our dataset displays standard lindy hop dancer positions and steps, such as the
so-called open, closed, side and behind positions. In the open and closed positions, the dancers
are facing each other with a varying distance between them. In the side position, both are facing
the same direction, and in the behind position, the leader stands directly behind the follower, both
facing the same direction. In each position, the dancers communicate through hand and shoulder
grips. To the best of our knowledge, Lindyhop600k is the first large dance dataset involving the
videos and 3D ground-truth poses of dancers.

To obtain the 3D poses of the dancers, we first extract 2D pixel locations of the visible joints
using OpenPose [33]. Because our dataset was captured with multiple cameras, this lets us obtain
the 3D joint coordinates by performing a bundle adjustment using the 2D joint locations in all
the views. However, this process comes with several problems because it requires annotating
the poses of both subjects together. The major issues encompass body part confusions, missing
2D annotations and tracking errors in the OpenPose predictions, which occur when two people
are very close to each other or wear similar garments. An example of this is shown in Fig. 6.3.
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Sequence Couple Frames Cameras Split
1 A1 10152 5 Train
2 B2 8819 8 Train
3 C3 6519 8 Validation
4 A4 7687 8 Test
5 B1 9977 8 Train
6 C2 9636 8 Train
7 A3 8930 7 Train
8 B4 9027 8 Train
9 C1 9635 8 Train

Table 6.1 – Lindyhop600k dataset structure.

To remedy this, we adopt a solution based on temporal smoothness. Specifically, we assign
manually the 2D joint locations to each dancer in the first frame of each sequence. For the
subsequent frames, the low confidence joint detections are replaced with ones interpolated using
the high confidence joints from the neighboring frames. Despite these 2D joint corrections,
the 3D locations extracted from the bundle adjustment procedure can still be very noisy. Thus,
we employ a third degree spline interpolation across 30 frames coupled with an optimization
scheme to generate the final 3D poses. Since the spline interpolation is done separately for each
dimension of each joint, the length of each limb varies from one frame to another. To tackle this
problem, we implement an optimization scheme which minimizes the squared difference between
the length of a limb c in the current frame and the average length of limb c. We combine this loss
function with additional regularizers penalizing feet from sliding on the floor, constraining the
shape of the hips and shoulders, and preventing the optimization to the initial 3D pose estimates.
For more detail, we refer the reader to the supplementary material.

6.2.2 Data Pre-processing

Each video sequence is first downsampled to 30 fps. The human body skeleton in the Lindy-
hop600k dataset originally comprises of 25 body joints. We remove some of the facial, hand
and foot joints and train our models with a skeleton of 19 joints. The 3D joint locations are
represented in the world coordinates. Since the position and orientation of the dancers change
from one frame to another, we apply a rigid transformation to the poses. We first subtract the
global position of the hip center joint from every joint coordinate in every frame. Then, for each
sequence, we take the first pose as reference and rotate it such that the unit vector from the left to
right shoulder is aligned with the x-axis and the unit vector from the center hip joint to the neck
is aligned with the z-axis. We apply the same rotation to all the other poses in the sequence.

6.2.3 Results

In this section, we evaluate our approach depicted by Fig. 6.2 on our new Lindyhop600k dataset.
We compare our method with the state-of-the-art single person approaches. They include
HRI [181], which relies on an attention mechanism and a GCN decoder [183] to predict the
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S1

S2

(a) OpenPose 2D detection failure and the optimized 3D poses

S1

S2

(b) Correct OpenPose detections and the optimized 3D poses

Figure 6.3 – Optimizing 3D poses in the Lindyhop600k dataset. (a) Example of OpenPose 2D
detection failure. The left leg of the woman is mapped to the left leg of the man. Our multi-view
footage and refinement strategy allow us to obtain accurate 3D poses of the dancers despite the
mismatch in the 2D detections. (b) Example of correct OpenPose detections and the optimized
3D ground truth poses.
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milliseconds 100 200 300 400 500 600 700 800 900 1000 Average

TIM [145] 6.06 12.39 19.83 29.35 41.80 56.91 73.17 89.23 104.31 118.20 51.13
MSR-GCN [167] 9.02 17.02 24.79 33.26 43.69 56.34 70.49 85.00 98.37 109.73 51.11
HRI-Itr [181] 2.21 4.94 9.51 17.71 30.93 49.66 72.95 98.39 122.93 144.24 50.41
HRI [181] 5.34 9.95 15.08 22.19 32.45 45.82 61.29 77.40 92.47 105.15 43.17
Ours 1.31 4.31 9.49 17.33 27.42 39.85 54.22 70.20 86.23 100.09 37.57

Table 6.2 – Comparison of our dyadic motion prediction approach with the state-of-the-art
single person methods on the Lindyhop600k dataset. We present the MPJPE for short-term
(< 500ms) and long-term (> 500ms) motion prediction in mm. Despite the fast-paced and
nonrepetitive nature of the dance moves, our method outperforms all the baselines for both
short-term and long-term prediction. The best results in each column are shown in bold.

future poses of the individuals in isolation; HRI-Itr, which uses the output of the predictor as
input and predicts the future motion recursively; TIM [145], which extends [183] by combining
it with a temporal inception layer to process the input at different subsequence lengths; and
MSR-GCN [167], the most recent method, which extracts features from the human body at
different scales by grouping the joints in close proximity. All the baselines rely on a GCN
architecture that is trained and tested according to the data split shown in Table 6.1. They take
as input a sequence of 60 poses as past motion. Except for HRI-Itr that recursively predicts 10

poses at a time, all the baselines predict 30 poses in the future.

In Table 6.2, we report the MPJPE for short-term (< 500ms) and long-term (> 500ms) motion
prediction in mm. Our method outperforms the baselines by a large margin. Fig. 6.4, 6.5, 6.6
depict qualitative results of our approach and the best performing three baselines for the Lindy-
hop600k test subjects with the corresponding follower and leader roles in the top two and bottom
two portions, respectively. In contrast to the baselines, our method accurately predicts moves that
are hard to anticipate in the long term, such as fast changing feet movements and less frequent
arm openings. Although the observed motion of the primary subject does not include sufficient
clues for such moves, the second person provides a useful prior so that our model can learn to
predict the motion complementary or symmetric to that of the auxiliary subject. Therefore, we
attribute this performance to our modeling of the motion dependencies via our pairwise attention
mechanism. Failure cases for our approach can be seen in Fig. 6.7. In some rare cases, as in other
baselines, our method fails to predict the correct rotation of the body. However, even in such
cases, our predictions are plausible in the long-term.

6.2.4 Ablation Study

We evaluate the effect of modeling interactions via different strategies:
HRI-Concat concatenates the motion history of the primary and auxiliary subject to treat them as
one person.
Ours-SumPooling, Ours-AvgPooling and Ours-MaxPooling discard the pairwise attention module,
apply self-attention on the sequences of both subjects independently and combines the individual
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Figure 6.4 – Qualitative evaluation of our results on the LindyHop600K test subjects com-
pared to the state-of-the-art methods. Black: Ground truth, green: TIM [145], blue: MSR-
GCN [167], violet: HRI [181], red: Ours-Dyadic. The examples show the predictions for dancer
with the follower role. The left side of the vertical bar in the black row depicts the sampled input
to our model and the right side shows the ground truth future poses. The colored rows correspond
to the predictions of the state-of-the-art single person approaches. The red row depicts the output
of our model. The numbers at the top indicate the timestamp in milliseconds and the green region
highlights the long-term predictions.
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Figure 6.5 – Qualitative evaluation of our results on the LindyHop600K test subjects com-
pared to the state-of-the-art methods. Black: Ground truth, green: TIM [145], blue: MSR-
GCN [167], violet: HRI [181], red: Ours-Dyadic. The examples show the predictions for dancer
with the leader role. The left side of the vertical bar in the black row depicts the sampled input to
our model and the right side shows the ground truth future poses. The colored rows correspond to
the predictions of the state-of-the-art single person approaches. The red row depicts the output of
our model. The numbers at the top indicate the timestamp in milliseconds and the green region
highlights the long-term predictions.
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Figure 6.6 – Qualitative evaluation of our results on the LindyHop600K test subjects com-
pared to the state-of-the-art methods. Black: Ground truth, green: TIM [145], blue: MSR-
GCN [167], violet: HRI [181], red: Ours-Dyadic. Top two portions show the predictions for
dancer with the follower role. Bottom two portions show the predictions for the dancer with the
leader role. The left side of the vertical bar in the black row depicts the sampled input to our
model and the right side shows the ground truth future poses. The colored rows correspond to the
predictions of the state-of-the-art single person approaches. The red row depicts the output of our
model shown in Fig. 6.2. The numbers at the top indicate the timestamp in milliseconds and the
green region highlights the long-term predictions.
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Figure 6.7 – Example failure cases on the LindyHop600K test subjects. Black: Ground truth,
green: TIM [145], blue: MSR-GCN [167], violet: HRI [181], red: Ours-Dyadic. Top two
portions show the predictions for dancer with the follower role. Bottom two portions show the
predictions for the dancer with the leader role. The left side of the vertical bar in the black row
depicts the sampled input to our model and the right side shows the ground truth future poses.
The colored rows correspond to the predictions of the state-of-the-art single person approaches.
The red row depicts the output of our model. The numbers at the top indicate the timestamp in
milliseconds and the green region highlights the long-term predictions.
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milliseconds 100 200 300 400 500 600 700 800 900 1000 Average

HRI-Concat 17.13 33.99 51.32 69.89 90.67 113.41 136.00 156.10 172.06 183.40 96.34
Ours-SumPooling 5.77 10.78 16.07 22.86 32.41 45.17 60.63 77.40 93.45 106.94 43.54
Ours-AvgPooling 5.66 10.47 15.90 23.53 34.46 48.68 65.13 82.19 97.99 111.02 45.77
Ours-MaxPooling 5.07 9.50 14.57 21.65 31.79 44.89 60.13 76.26 91.61 104.72 42.48
Ours-w/oPairwiseAtt 3.60 11.48 25.08 43.00 62.22 81.41 100.25 118.70 135.48 149.39 68.04
Ours-w/o∆Pose 3.28 8.36 16.84 23.87 36.77 52.22 68.67 85.02 100.02 112.07 46.33
Ours-EarlyMerge 4.25 8.11 12.78 19.25 28.45 40.84 56.05 73.11 90.27 105.40 40.27
Ours-w/SelfAttAux 1.30 5.04 10.47 18.12 28.95 42.41 57.89 74.52 90.47 104.09 39.76
Ours-PairwiseAttU12 1.17 4.48 9.74 17.82 28.35 41.27 56.25 72.32 88.09 101.77 38.66
Ours 1.31 4.31 9.49 17.33 27.42 39.85 54.22 70.20 86.23 100.09 37.57

Table 6.3 – Ablation study for incorporating interactions. We present the MPJPE for short-
term (< 500ms) and long-term (> 500ms) motion prediction in mm. Here, we analyze different
ways of incorporating interactions. HRI-Concat concatenates the motion history of the primary
and auxiliary subject to treat them as one person. Ours-SumPooling, Ours-AvgPooling and
Ours-MaxPooling use the social pooling layers from [1]. The remaining baselines show the
benefits of the different components in our approach. Ours, depicted in Fig. 6.2, outperforms all
other baselines and poses an effective way of handling coupled motion. The best results in each
column are shown in bold.

embeddings using the different pooling strategies proposed by [1]. The resulting vector is fed to
the GCN decoder to predict the future poses of the primary subject.
Ours-w/oPairwiseAtt excludes the pairwise attention module, applies self-attention and the GCN
decoder on the sequences of both subjects independently and merges the GCN outputs from the
two people to predict the future poses of the primary subject.
Ours-w/o∆Pose is our model which takes as input the past motion of the auxiliary subject directly
instead of their relative motion to the primary subject.
Ours-EarlyMerge merges the pairwise embeddings U12 and U21 with the self-attention embedding
of the primary subject U1 before feeding them to the GCN module.
Ours-w/SelfAttAux applies self-attention also on the sequence of the auxiliary subject and merges
the result with the pairwise embeddings U12 and U21.
Ours-PairwiseAttU12 excludes the pairwise attention that takes the keys and values from the
auxiliary and the query from the primary subject.

As can be seen in Table 6.3, our method achieves the highest MPJPE in all timestamps. The
comparison with HRI-Concat shows that the naive way of combining the motion of the subjects
is not an effective strategy to model their dependencies. The results of Ours-SumPooling,
Ours-AvgPooling and Ours-MaxPooling show that the social pooling layers proposed by [1] are
suboptimal in the presence of strong interactions. The comparison to the remaining baselines
evidence the benefits of the different components in our approach, which all contribute to the
final results.
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6.2.5 Limitations

In Fig. 6.7 and in the additional qualitative results, we observe that the lower arms and feet joints
are usually difficult to predict and deviate the most from the ground-truth positions. Although
Lindy Hop is a structured dance with highly correlated coupled motion, the dancers have their
own styles. Therefore, predicting a single future is likely not to accurately match the body
extremities which undergo the largest motion. This, however, can be overcome performing
multiple diverse motion prediction, following a similar strategy to that used in [314, 7, 182] for
single-person motion prediction.

Another limitation of our model and many other motion prediction works in general is its use of
complete sequences of ground-truth 3D poses as input. This may make our model sensitive to
missing or faulty observations. To remedy this, as future work, we aim to incorporate the 3D
poses obtained from the input images into our forecasting network and handle incomplete or
noisy sequences to predict realistic future 3D poses for the interacting people.

6.3 Conclusion

In this chapter, we have devised a novel strategy for exploiting dyadic interactions in 3D human
motion prediction. Contrary to the previous work that takes into account the motion history of
each person independently, we propose to jointly reason about the observed poses of the subjects
engaged in a coupled motion. To this end, we design an encoder-decoder model that leverages
self- and pairwise attention mechanisms to learn the mutual dependencies in the collective motion.
We introduce a new dataset, Lindyhop600k, to showcase the effectiveness of our model. To the
best of our knowledge, this dataset is the first large dance dataset that provides the videos and
3D body pose annotations of couples performing a swing dance. We outperform the current
state-of-the-art single person baselines on this dataset and demonstrate that incorporating the
interlinked motion of an interactee yields more accurate long term predictions for the primary
subject. Our future work will focus on incorporating visual context in motion forecasting, and
study not only interactions between two humans but interactions among objects as well.
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7 Concluding Remarks

In this thesis, we have presented solutions to self-supervised human detection and segmentation,
3D pose estimation and 3D human motion forecasting. All of the proposed methods benefit from
different encoder-decoder models in various ways. Below, we first summarize the contributions
of the individual chapters. Then, we discuss the remaining limitations in this field and possible
extensions for future research.

7.1 Summary

In Chapter 3, we introduce a self-supervised object detection and segmentation approach that can
work effectively on domain-specific images capturing humans. We define the foreground object
as an image region that cannot be easily reconstructed from the neighboring scene content via
an inpainting network. We integrate this intuition into a proposal-based encoder-decoder model.
To tackle the discrete nature of region proposals, we introduce an importance sampling based
strategy. Our method can handle large camera motions without requiring any manual annotations.

In Chapter 4, we introduce a self-supervised end-to-end trainable object detection and segmenta-
tion approach that explicitly leverages 3D multi-view geometry during training. We construct a
3D object proposal framework that enforces prediction consistency across views without having
to introduce additional loss terms. To impose geometric consistency between the bounding boxes
from different views, we want to ensure that their 2D centers all match the same point in 3D and
that their 2D heights correspond to the same 3D size. This is achieved by solving a least-squares
problem using the known camera matrices.

In Chapter 5, we propose to enforce implicit structural constraints on 3D human pose prediction
within a deep learning regression framework. We combine traditional CNNs for supervised
learning with autoencoders for unsupervised feature learning. The autoencoder is pre-trained
on 3D human poses and comprises of a hidden layer of higher dimension than its input and
output. The latent representation learned by the autoencoder accounts for the joint dependencies.
We refine the pose predictions by imposing temporal consistency on the output of the network
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through a LSTM-based architecture.

In Chapter 6, we devise a novel strategy for 3D human motion forecasting with dyadic interac-
tions. We present a pairwise attention mechanism that explicitly takes into account the mutual
dependencies in the motion history of the subjects. When combined with the self-attention
mechanism and integrated into an encoder-decoder network, our approach can predict long-term
future poses more reliably. To showcase the results of our method, we build a new dance dataset,
Lindyhop600k, that involves strong human-to-human interactions.

7.2 Limitations and Future Directions

In this section we discuss possible improvements to the proposed methods and potential future
directions.

Self-supervised multiple salient object segmentation. In this thesis, we have covered single
and multi-view self-supervised strategies for human detection and segmentation in videos with
large camera motion. However, in real-world scenarios, it is more common to encounter cluttered
scenes with humans interacting with objects. One possible future direction is to devise a multi-
object segmentation algorithm that does not require annotations. The current challenge [31] in
this field is to identify multiple salient objects that would capture human attention and consistently
appear throughout the video sequence. Given object proposals from an instance discrimination
network, [324] attempts to design a target-aware tracking network for associating these proposals
of the same identities over each image sequence. However, such unsupervised methods require
annotations during training and there is still room for improvement for the self-supervised
counterparts. Our proposed segmentation method is generic and can be applied to any object
category, therefore it would be quite a natural extension.

3D human shape and pose estimation from unconstrained images in the wild. In Chapter 5,
we have formulated the 3D human pose estimation as recovering the 3D joint locations of a person
via learning pose priors. Following our work, data-driven priors have been widely used in the
human motion domain. A similar idea is now achieved through a hierarchical motion variational
autoencoder [152]. Instead of learning a single latent space, [152] exploits global and local latent
spaces to capture the holistic and refined motion. Our work on 3D human pose estimation does
not involve learning the 3D body shape. However, predicting the parameters of a 3D body model
provides a useful prior over human body shape and is gaining much attention since it has potential
applications in augmented, virtual and mixed reality. This issue can be addressed by learning a
latent code on the vertices of the SMPL body model. A neural representation-based method [211]
employs novel view synthesis of dynamic humans by mapping a set of latent codes encoding
geometry and appearance into density and color fields. To this end, [211] discretizes the 3D
bounding box of the human where each voxel has a latent code. In case of having calibrated
cameras, the latent code volume can be constructed as explained in Chapter 4 and our multi-view
sampling strategy can be used to obtain the latent codes of SMPL vertices.
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Other challenges in this task involve estimating the 3D body shape and pose from a group of
images of the same human subject without any constraints on the subject’s pose, camera viewpoint
and surrounding environment. Based on this, [242] probabilistically combines predicted body
shape distributions from each image to obtain a final multi-image shape prediction. Recently, [25]
takes on a novel direction and predicts a set of plausible 3D meshes corresponding to a single
ambiguous input image of a human.

The potential extension of our work to implicit representations learned from latent human shape
codes aligns well with current objectives in the virtual reality technology. A crucial part of
this technology is based on the virtual avatars of users and requires to combine the physical
and virtual worlds in a seamless way. This can be accomplished by building animatable human
body and face models [15, 172, 23, 227, 179]. The underlying models rely on a set of latent
code encoding geometry and facial expressions. Apart from generating photorealistic avatars,
another fundamental element in a virtual environment is the social interactions. It comes with
a major challenge to generate plausible behavior for interacting avatars and this task has not
been exploited to its full potential yet. One way to tackle it is to combine our work on attention
based modeling of dyadic interactions in Chapter 6 with the existing models generating full-body
avatars.

Scene-aware 3D human shape and pose synthesis. The standard practice in computer vision
is to estimate human pose in isolation from the 3D scene. Realistic placement of 3D people
in 3D scenes while accounting for semantic interactions paves the way for new applications in
augmented reality. Recently, [87] learns how humans interact with scenes based on conditional
variational autoencoder and exploits this to enable virtual characters to do the same. Handling the
penetration between the body and scene is currently a major challenge in this task. Similarly, [288]
takes into account the interaction between the scene and the human motion. To this end, it devices
a GAN-based learning approach to enforce the compatibility between the synthesized human
motions and the surrounding scene context. An extension to this could be learning the dynamics
of a group of people conditioned on the scene.

3D human motion forecasting based on noisy or incomplete observations. The existing work
in 3D motion prediction is highly sensitive to noisy or missing observations in the motion history.
In real-world scenarios, such cases are inevitable due to the mutual occlusions of joints or
the obstacles in the scene. Even with professional MoCap devices, erroneous measurements
can appear in the raw data. Because the current state-of-the-art approaches in human motion
prediction use ground truth data as the past sequence of poses, they are limited to complete
observations. To generate more accurate and realistic poses in unconstrained settings, a possible
future direction is to employ motion infilling conditioned on corrupted past observations and
visual context. Recently, [234, 123, 51] have attempted to repair the missing information in
motion sequences.

Very long-term motion prediction over 1 second time horizon. The current state-of-the-art 3D
motion forecasting methods are limited to predicting the future poses up to 1 second. They tend to
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collapse to static predictions for longer timespans. However, for safety-critical applications such
as human-robot interaction and autonomous driving, generating plausible and realistic predictions
up to several seconds is required. Given a single scene image and 2D pose histories, [32] first
samples multiple possible future 2D destinations, and then predicts 3D human path towards
each destination within 2-3 second time span. Recently, [126] proposes to predict a few future
keyposes and approximate intermediate ones by linearly interpolating the keyposes. This enables
to predict diverse futures for long-term durations of 5 seconds.
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A Appendix for Chapter 3

In this section, we demonstrate some more qualitative results, and present a mathematical
justification for the importance sampling transformations.

A.1 Qualitative Results

The capture setup of our Handheld190k dataset is depicted in Fig. A.1. As shown in Fig. A.1, it is
an outside recording. The dataset is composed of five actors performing the same actions as those
available in the Human3.6m dataset [102], namely directions, discussion, eating, greeting, phone
talk, posing, buying, sitting, sitting down, smoking, taking photo, waiting, walking, walking dog
and walking in pair. We excluded lying on the floor actions, not to make our actors lie in the dirt.
The data from three actors compose our training set and the other two form the test set. The data
was obtained using 3 GoPro6 cameras recording FullHD videos at 30 FPS in linear lens mode.
For the entire duration, the cameras were subject to lateral movement and varying hand-held
rotation. The motion stablization of the GoPros was deactivated during the recording.

We provide additional examples of our detection and segmentation results on the Ski-PTZ,
Handheld190k and Human3.6m test datasets in Fig. A.2, Fig. A.3 and Fig. A.4 respectively.

A.2 Importance Sampling Theory

In the following, we give an explanation for the change of distribution in Section 3.1.4 when
computing an expectation. Let p, q be two discrete probability distributions and f (c) an arbitrary
function of c. Reasoning about the limit towards infinitely many samples ck drawn according to
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Figure A.1 – Capture setup of our in-house Handheld190k posing dataset. The subject is
recorded by three persons with handheld GoPro action cameras.
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where K is the number of samples drawn and 1ck=c is one if ck equals c . In the second line, we
exploit that we have a finite number of classes C . Each sample must fall into one of them and the
probability of coming from cell c is qc .

This relation provides us with a tool to change the sample distribution for expectations. Next, we
analyze the variance of such an estimator depending on the chosen sampling distribution.

Importance Sampling Variance

The variance of an estimator gives us a measure of the expected accuracy with a limited number
of samples. The variance of estimating the objective Lfg in Eq. 3.2 with a Monte Carlo sum over
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c1, . . . ,cK samples drawn independently from p is
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Here, Var[L (Fc (I),I)] is the variance over the random variable c, and we utilized the identity
Var[ax] = a2 Var[x] and the independence of samples. The variance reduces linearly with the
number of samples and is proportional to that of L(·).

Using uniform sampling q =Uc , yields a quadratic variance growth with the number of cells, i.e.,
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This lets us conclude that uniform sampling leads to a higher variance, since the remaining
Var[p(·)L(·)] term is not expected to improve on Var[L(·)].

With importance sampling according to q , the variance is
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]
. (A.4)

If q ≈ p, it is equivalent to the one of Eq. A.2. In general, q should be constructed to minimize
Eq. A.4. In our case, F depends on each individual image and cell c. As such, it is difficult
to impose assumptions to reduce the variance of L without evaluating it for each c. Therefore,
setting q ≈ p is a good choice from the perspective of variance reduction.
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(a) Inp/Ours detection (b) [305] (c) Ours w/o flow (d) Ours w/ flow (e) Ours w/ flow+CRF (f) Ground truth

Figure A.2 – Additional detection and segmentation results on the test subjects of Ski-PTZ.
(a) The detection results show the predicted bounding box with red dashed lines, the relative
confidence of the grid cells with blue dots and the bounding box center offset with green lines
(better viewed on screen). (b) Segmentation mask prediction of [305]. (c) Our segmentation
mask prediction obtained by training our method without optical flow. (d) Our segmentation
mask prediction obtained by training our method with the proposed optical flow strategy. (e) CRF
post-processing applied to our result in (d). (f) Ground truth segmentation mask.
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(a) Inp/Ours detection (b) [305] (c) Ours w/o flow (d) Ours w/ flow (e) Ours w/ flow+CRF (f) Ground truth

Figure A.3 – Additional detection and segmentation results on the test subjects of Hand-
held190k. (a) The detection results show the predicted bounding box with red dashed lines, the
relative confidence of the grid cells with blue dots and the bounding box center offset with green
lines (better viewed on screen). (b) Segmentation mask prediction of [305]. (c) Our segmentation
mask prediction obtained by training our method without optical flow. (d) Our segmentation
mask prediction obtained by training our method with the proposed optical flow strategy. (e) CRF
post-processing applied to our result in (d). (f) Ground truth segmentation mask.
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Rhodin et al. [224]

Ours

(a) Input (b) Detection (c) Cropped (d) Segmentation

Figure A.4 – Detection and segmentation results on Human3.6m. Results match in quality
with those from [224], with a slight bleeding due to not having a perfect background prediction
oracle.
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B Appendix for Chapter 4

In this section, we present the details of our differentiable multi-view consistency formulation,
architecture design, and training strategies. Furthermore, we show additional qualitative results
on the Ski-PTZ, Human3.6m and Handheld190k datasets. We provide a video which can be
accessed on https://youtu.be/bg3AYjTa1NY to explain the multi-view consistency setup and
demonstrate the Ski-PTZ and Handheld190k video results including the intermediate outputs of
our method along with the detection and segmentation predictions on consecutive frames for all
cameras and test subjects.

B.1 Implementation Details

B.1.1 Multi-view Consistency

Adjusting Bounding Box Centers. The candidate object location proposed by the sampled grid
cell in camera z is defined as bz = [δx,δy, sx , sy ] where δx,δy ∈ [0,1] are the offsets from the
grid center and sx , sy ∈ [0,1] are the width and height of the bounding box respectively. The
center location of the proposal in pixel coordinates can be written as

uz =W ∗δx + gx ,

vz = H ∗δy + g y ,
(B.1)

where uz ∈ [0,W ], vz ∈ [0, H ] and gx ∈ [0,W ], g y ∈ [0, H ] denote the grid center in pixel coordi-
nates. To reach a multi-view consensus on the center of a 3D bounding box, namely ū ∈R3×1, we
take into account the lines emerging from camera positions oz ∈R3×1 for each camera. The line
of sight for the proposal center is calculated as

lz = M−1
z

 uz

vz

1

 , (B.2)
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where lz represents all the points corresponding to the center of the sampled box in world
coordinates relative to the camera center and Mz is the 3×3 matrix formed by the first 3 columns
of the projection matrix Pz . Note that we use bold symbols (lz) for vectors in 3D world space
and normal letters (u and v) for coordinates in the 2D image plane. The unit direction vector for
each of these lines is

nz = lz

‖lz‖
, (B.3)

where nz ∈R3×1. To find the nearest point ū to a set of lines, we calculate the point with minimum
distance to them. Given that each line is defined by its origin oz and the unit direction vector nz ,
the squared perpendicular distance from the point ū to one of these lines is given by

dz = (oz − ū)T (I−nz(nz)T)(oz − ū) , (B.4)

where the matrix (I−nz(nz)T) serves as the projector of the line vectors into the space orthogonal
to nz . By minimizing the sum of squared distances, we can obtain the nearest point in the least
squares sense for Z cameras. The objective we want to minimize is

Z∑
z=1

dz =
Z∑

z=1
(oz − ū)T (I−nz(nz)T)(oz − ū) . (B.5)

The derivative with respect to ū gives

Z∑
z=1

−2(I−nz(nz)T)(oz − ū) = 0 , (B.6)

where I is the 3×3 identity matrix. Re-arranging this, we obtain a system of linear equations

Aū= m ,

A =
Z∑

z=1
(I−nz(nz)T) ,

m =
Z∑

z=1
(I−nz(nz)T)oz ,

(B.7)

with A ∈R3×3 and m ∈R3×1. The optimum is achieved at the least squares solution. Therefore,
ū= l st sq(A,m) and we use a differentiable implementation of lstsq function to solve it.

The new center computed through multi-view consistency is projected onto each view to update
the value of the 2D bounding box centers. Thus,ūz

v̄z

1

=Mz ū , (B.8)

where ū represents the coordinates of the new center in 3D and {ūz , v̄z } are the updated 2D
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bounding box centers in each view.

Adjusting Bounding Box Heights. Similarly, the top and bottom points of the 2D bounding
boxes can be subject to the multi-view consistency. The top and bottom locations, {ut ,z , vt ,z } and
{ub,z , vb,z } respectively, of the bounding box in camera view z are computed as

ut ,z =W ∗δx + gx ,

vt ,z = H ∗δy + g y − (H ∗ sx )/2 ,

ub,z =W ∗δx + gx ,

vb,z = H ∗δy + g y + (H ∗ sx )/2 .

(B.9)

To find the consensus top and bottom locations in 3D, we apply the least squares solution
explained in the previous section separately to the top and bottom points. For the top point, we
consider the set of lines originating from camera positions oz ∈R3×1 for each camera. The line of
sight for the top and bottom points of the bounding box in camera view z are given as

lt ,z = M−1
z

 ut ,z

vt ,z

1

 ,

lb,z = M−1
z

 ub,z

vb,z

1

 .

(B.10)

To find the nearest point ūt to these lines, we apply Eq. B.3, B.4, B.5, B.6 and B.7. Finally, we
obtain the updated pixel location for the top point of the bounding box as followsūt ,z

v̄t ,z

1

=Mz ūt . (B.11)

We update the 2D bottom location using the same multi-view least-squares strategy.

B.1.2 Architectures

Our main network F consists of a detection and a synthesis network that reconstruct the input
scene against the background image generated by the inpainting network.

Detection network.We predict one candidate bounding box relative to each 2D grid cell in a
regular 8×8 grid using a fully-convolutional architecture similar to YOLO [222]. We use a
ResNet-18 backbone [89] without pre-training, that reduces the input dimensionality by a factor
16, forming a low resolution grid of features, e.g., to spatial resolution 8×8 from 128×128.
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The feature size is set to 5; two for bounding box location offset δx,δy ∈ [0,1] , two for scale
sx , sy ∈ [0,1], and one for the probability p. Each feature output represents the bounding box
parameters predicted by one grid cell, and the offset is relative to the cell center {gx , g y }. The
output p is forced to be positive and form a proper distribution, with

∑C
c=1 pc = 1 where C = 64,

by a soft-max activation unit. To prevent this network from constantly predicting bounding boxes
at the borders of the image, we zero out the outer cell probabilities.

Synthesis network.This network takes as input the cropped image region corresponding to the
sampled bounding box and has the form of a bottle-neck autoencoder, based on the publicly
available implementation of [225]. The encoding part is a 50-layer residual network, and the
weights are initialized with ones trained on ImageNet classification. The hidden layer is 856
dimensional, split into a 600 dimensional space and a 256 dimensional space that is replicated
spatially to a 512×8×8 feature map to encode spatially invariant features. The decoding is done
with the second half of a U-Net architecture with 64, 128, 256, 512 feature channels in each stage.
The final network layer outputs four feature maps, three to predict the color image Î ∈R128×128×3

and one for the segmentation mask S ∈R128×128.

Inpainting network.The inpainting network is trained separately for each dataset, from scratch
and on the training split, without requiring any annotation. It is a 6 layer U-Net model with 8, 16,
32, 64, 128, 256 feature channels in each stage. It is trained independently from the rest of the
pipeline by feeding images with randomly occluded regions of varying sizes. To compare the
reconstructed image I′ to the original one I, we use the L2 pixel reconstruction and perceptual
losses

Lr econst = ||I− I′||2 , (B.12)

Lper c = ||φ(I)−φ(I′)||2 , (B.13)

where φ(.) indicates the low level features obtained by passing its input to a pre-trained ResNet18
network. The pixel reconstruction and perceptual losses are weighted 1:2.

We integrate the inpainting network to our full pipeline and use it in an off-the-shelf manner. The
input to the inpainter is an image where the selected bounding box region is hidden and the output
is the entire image with the initially hidden patch being reconstructed. In our full pipeline, the
weights of the inpainting network are frozen and to remove the image evidence corresponding to
the foreground person, the hidden patch in the input image to the inpainting network is selected
to be the bounding box region expanded by 15% in both dimensions.

B.1.3 Training Details

Overall training.We train our model with L2 pixel reconstruction and perceptual losses on the
reconstructed image F (Iz ) and the L2 pixel reconstruction loss on the inpainted background image
Īz in view z . We rely on the same prior terms as in [120] to regularize the predicted segmentation
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masks and probability values for the voxels. We use an Lseg prior, which encourages the mean
value of a segmentation mask to be larger than a threshold lambda but small in general,

Lseg =
∣∣∣∣∣
(

1

W H

W∑
x

H∑
y
T −1(S)x y

)
−λ

∣∣∣∣∣+λ , (B.14)

where λ is set to 0.005. It encourages a non-zero segmentation mask at the beginning of the
training, when the decoder still produces non-perfect foreground, which improves and stabilizes
convergence. The voxel probabilities q j are regularized with

Lq =
V∑
j
|q j | (B.15)

that favors only few voxels to have non-zero values. The total training loss we minimize can be
written as

Ltot al =−α
Z∑

z=1
r j

‖Īz − Iz‖2

ar ea(bz
i z ( j ))

+β
Z∑

z=1
r j‖F (Iz )− Iz‖2

+γ
Z∑

z=1
r j‖φ(F (Iz ))−φ(Iz )‖2

+η
Z∑

z=1
Lz

seg +ζLq

(B.16)

where α= 0.1,β= 1,γ= 2,η= 0.25,ζ= 0.1 and φ(.) indicates the low level features obtained by
passing its input to a pre-trained ResNet18 network. The first three terms of Ltot al correspond to
Lbg(I1, . . . ,IZ ), Lfg(I1, . . . ,IZ ) and the perceptual version of Lfg(I1, . . . ,IZ ).

As a baseline (Ours w/ TC), we report the results of using a L2 loss term to minimize the distance
between lines passing through the initial bounding box centers and camera optical centers in each
view.

All training stages are performed on a single NVIDIA TITAN X Pascal GPU with Adam and
a learning rate of 1e-3. First, the inpainting network is optimized for 100k iterations and
subsequently the complete network for an additional 50k iterations. The decoding part of the
synthesis network uses a reduced learning rate of 1e-4, to prevent occasional diverging behavior.
We use a batch size of 48 and an input image resolution of 640px×360px for the Ski-PTZ and
Handheld190k and 500px×500px for Human3.6m.

Importance sampling.Sampling from a discrete distribution is not differentiable with respect to
its parameters. Therefore, we integrate importance sampling as in [120]. However, instead of
sampling from a 2D grid of cells, we sample a voxel from a 3D grid of proposals. Importance
sampling allows us to introduce an auxiliary distribution k that is used as the importance
sampling distribution while maintaining the differentiability and optimizing the voxel probability
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distribution q . The relationship between k and q can be expressed as

k j = q j (1−V ε)+ε (B.17)

for a voxel j , where (1−V ε) determines the probability of choosing a random voxel. In the
multi-view setting, the number of voxels that can be seen by all the cameras change from one
frame to another. Therefore the importance sampling related hyper-parameters must be adjusted
accordingly. As in [120], we take (1−V ε) = 0.064 and to satisfy this equality, we use an adaptive
ε ≈ 0.0002, which makes the method numerically stable while the probability of choosing a
random bounding box stays low, i.e., 6.4% for on average V = 300 voxels that participate the
multi-view consensus voting. In Section 4.1.1, r j is the ratio of the probability q j by its
importance sampling probability k j .

Consistency.We demonstrate that the proposed training strategy is stable and produces consistent
results when repeated using the same configuration. To this end, we train the best-performing
model on the Ski-PTZ and Human3.6m datasets three times from scratch and provide the mean
and std of the scores on the test sequences. The J- and F- measures on the Ski-PTZ dataset are
consistent, respectively, 0.71±0.006, 0.83±0.002 and the mAP0.5 score on Human3.6m dataset
is 0.85±0.004.

B.2 Qualitative Results

We present additional qualitative results on Ski-PTZ, Human3.6m and Handheld190k in Fig. B.1,
Fig. B.2 and Fig. B.3 respectively. On Ski-PTZ, our method reliably detects the skier even when
there are other people in the scene and our segmentation predictions cover the entire body and
skis more accurately than [305], relying on multi-view consistency
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(a) Inp/Ours detection (b) [305] (c) [132] (d) [120] (e) Ours (f) GT

Figure B.1 – Additional multi-view consistency results on the Ski-PTZ. (a) Input images with
our predicted bounding box overlaid in red. (b) Segmentation mask prediction of [305]. (c)
Segmentation mask prediction of [132]. (d) Segmentation mask prediction of [120] (e) Our
segmentation mask prediction. (f) Ground truth segmentation mask. Note that, unlike our
method, [132] and [305] use explicit temporal cues at inference time.
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(a) [120] (b) [224] (c) Ours (d) GT

Figure B.2 – Additional multi-view consistency results on the Human3.6m dataset. (a) The
detection and segmentation mask results of Katircioglu et al. [120] trained and tested on single
images. (b) The results of [224] trained with a pair of camera views and tested on single images.
(c) Our predictions obtained from the model trained with the 4-cam multi-view consistency and
tested on single images. (d) Ground truth.
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(a) [120] (b) Ours (c) GT

Figure B.3 – Additional multi-view consistency results on the Handheld190k dataset. (a)
The detection and segmentation mask results of [120] trained and tested on single images. (b)
The predictions of our model trained using 3-camera multi-view consistency and tested on single
images. (c) Ground truth. Our results are generally more accurate, which justifies the effort
invested in calibrating the cameras.
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during training, whereas [132] uses strong temporal cues both during training and test time
and [120] leverages optical flow images during training. Due to the background objective, our
approach favors tight bounding boxes around the subject and this causes the auxiliary object
moving with the primary one to be partially included in the detection. Therefore, compared to
the ground truth masks, our predictions do not contain the skis entirely. However, compared to
other baselines, our method can segment out the skis more precisely.

On Human3.6m dataset, our method has more accurate hand detections and lower legs are
more precisely segmented compared to [120] employing a single view approach with optical
flow images during training and [224] using multi-view images during training for novel view
synthesis. Even in the rare cases of performing an action on the floor, our method can still reliably
detect the person. The failure cases include the detections that miss the head and feet when
the chair is in close proximity to the subject. This is expected since the chair is also hard to be
reconstructed from its neighboring regions and can be treated as a foreground object.

To demonstrate that our method can be applied to in-the-wild scenes without initial camera
calibration, we used the OpenSFM software to calibrate 4200 frames out of 120000 training
images in the Handheld190k dataset. We ran OpenSFM with HaHOG (the combination of
Hessian Affine feature point detector and HOG descriptor) features and the calibration took
approximately 7 hours. We did not provide masks for the moving objects. Nonetheless, we
managed to obtain accurate camera poses. Our results in Fig. B.3 show that when trained with
a small calibrated part of the training set, our multi-view approach can detect and segment the
person more accurately than [120] which often fails to detect the moving object precisely.

Although we target the detection of a single object or person, our probabilistic framework can
handle several of them at test time by sampling more than once. In Fig. B.4, we show an example
of this on Ski-PTZ, by synthetically creating an image with two skiers. Our method trained on
single person images can accurately detect and segment two skiers as long as they are sufficiently
separated.

(a) Detection (b) Segmentation

Figure B.4 – Multi-person detection and segmentation at test time.
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[318] L. Zhang, J. Zhang, Z. Lin, R. Měch, H. Lu, and Y. He. Unsupervised Video Object
Segmentation with Joint Hotspot Tracking. In European Conference on Computer Vision,
2020.

[319] R. Zhang, P. Isola, and A. A. Efros. Colorful Image Colorization. In European Conference
on Computer Vision, 2016.

[320] Z. Zhang, C. Wang, W. Qin, and W. Zeng. Fusing Wearable IMUs with Multi-View Images
for Human Pose Estimation: A Geometric Approach. In Conference on Computer Vision
and Pattern Recognition, 2020.

[321] L. Zhao, X. Peng, Y. Tian, M. Kapadia, and D.N. Metaxas. Semantic Graph Convolutional
Networks for 3D Human Pose Regression. In Conference on Computer Vision and Pattern
Recognition, 2019.

[322] M. Zhen, S. Li, L. Zhou, J. Shang, H. Feng, T. Fang, and L. Quan. Learning Discriminative
Feature with CRF for Unsupervised Video Object Segmentation. In European Conference
on Computer Vision, 2020.

[323] K. Zhou, X. Han, N. Jiang, K. Jia, and J. Lu. HEMlets Pose: Learning Part-Centric

139



Bibliography

Heatmap Triplets for Accurate 3D Human Pose Estimation. In International Conference
on Computer Vision, 2019.

[324] T. Zhou, J. Li, X. Li, and L. Shao. Target-Aware Object Discovery and Association for
Unsupervised Video Multi-Object Segmentation. In Conference on Computer Vision and
Pattern Recognition, 2021.

[325] X. Zhou, Q. Huang, X. Sun, X. Xue, and Y. Wei. Towards 3D Human Pose Estimation
in the Wild: a Weakly-supervised Approach. In International Conference on Computer
Vision, 2017.

[326] X. Zhou, A. S. Liu, A. G. Pavlakos, A. V. Kumar, and K. Daniilidis. Human Motion
Capture Using a Drone. In International Conference on Robotics and Automation, 2018.

[327] X. Zhou, X. Sun, W. Zhang, S. Liang, and Y. Wei. Deep Kinematic Pose Regression. In
European Conference on Computer Vision, 2016.

[328] X. Zhou, M. Zhu, S. Leonardos, K. Derpanis, and K. Daniilidis. Sparseness Meets
Deepness: 3D Human Pose Estimation from Monocular Video. In Conference on Computer
Vision and Pattern Recognition, 2016.

[329] D. Zou and P. Tan. CoSLAM: Collaborative Visual SLAM in Dynamic Environments.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(2):354–366, 2013.

[330] Z. Zou and W. Tang. Modulated Graph Convolutional Network for 3D Human Pose
Estimation. In International Conference on Computer Vision, 2021.

140



ISINSU KATIRCIOGLU
(+41) 78 808 6113 � Lausanne, Switzerland

isinsu.katircioglu@gmail.com � linkedin.com/isinsu-katircioglu

RESEARCH INTERESTS

Computer Vision, Machine Learning, Deep Learning, Self-supervised Learning, Human Pose Estimation, Image Seg-
mentation, 2D/3D Object Detection, Inpainting

EDUCATION
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