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Abstract— The paper presents a novel DAG-aware Boolean
rewriting algorithm for restructuring combinational logic before
technology mapping. The algorithm, called window rewriting,
repeatedly selects small parts of the logic and replaces them with
more compact implementations. Window rewriting combines
small-scale windowing with a fast heuristic Boolean resynthesis.
The former uses sophisticated structural analysis to capture
reconvergent paths in a multi-output window. The latter re-
expresses the multi-output Boolean function of the window using
fewer gates if possible. Experiments on the EPFL benchmarks
show that a single iteration of window rewriting outperforms
state-of-the-art AIG rewriting repeated until convergence in both
quality and runtime.

I. INTRODUCTION

Logic optimizations play a key role in automated design

flows for digital systems and are responsible for substantial area,

delay, and power reductions. They are applied to a simple and

technology-independent representation of the digital logic, typi-

cally automatically derived from a high-level description of the

system. Modern logic optimization algorithms target multi-level

logic representations such as And-inverter graphs (AIGs) [1],

composed of two-fanin AND gates and inverters, or Xor-and
graphs (XAGs) [2], AIGs enriched with two-fanin XOR gates.

Boolean rewriting [3] is a logic optimization methodology

to greedily minimize a multi-level logic representation by itera-

tively selecting sub-graphs rooted at a node and replacing them

with smaller pre-computed sub-graphs, while preserving the

functionality of the root node. DAG-aware AIG rewriting [4]

implements the Boolean rewriting methodology for AIGs. It

has been made scalable by combining cut-enumeration [5], [6],

fast truth table-based manipulation, and computing a canonical

representation of Boolean functions [7]. For each network

node v, the DAG-aware rewriting algorithm enumerates a fixed

number of sub-graphs rooted at v with at most k inputs, called

k-feasible cuts. In practice [4], due to scalability considerations,

the cut size k has been fixed to 4 and up to 8 cuts are considered

per node. Attempts to further improve the quality of Boolean

rewriting by enumerating more and larger sub-graph structures

per node, such as [8], [9], were not able to build on the success

of DAG-aware AIG rewriting because they suffer from one or

more of the following limitations:

• The number of k-feasible cuts per node significantly

increases with k such that considering many (or all) cuts

per node is often practically impossible without taking

considerable runtime degradation into account.

• Mining and storing a database with optimum implementa-

tions of Boolean functions of 5 or more inputs, as well as

searching over the database, become more time-consuming

and require more memory. Often only the most frequently

appearing functions are stored [8].

• Approaches based on exact synthesis [9], which compute

optimum implementations for each new cut function on-

the-fly and cache them, do not scale well due to the high

runtime requirements of exact synthesis.

In this paper, we propose a new way to perform Boolean

rewriting. The two main characteristics that distinguish the

proposed rewriting, called window rewriting, from the previous

approaches can be summarized as follows:

1) Reconvergence-driven windowing: Instead of enumerating

a large number of single-output cuts per node, our

approach uses sophisticated structural analysis to construct

only one multi-output window per node. The window is

constructed to include reconvergent paths in the vicinity

of the node. The existence of such a reconvergence in a

sub-graph is a necessary condition for a don’t-care-based

size reduction of the circuit. We argue that one 6-input

window (with possibly many outputs) constructed this way

contains many 4-feasible cuts and, consequently, provides

the same or better optimization capabilities, compared to

the classical rewriting based on cut enumeration.

2) Heuristic Boolean resynthesis: To optimize multi-output

windows, we generalize Boolean resubstitution, a tech-

nique that attempts to re-express a node’s function using

other nodes already present in the network. We have devel-

oped a generalized heuristic Boolean resynthesis engine

capable of efficiently resynthesizing multi-output Boolean

functions utilizing don’t-cares and existing node functions.

The computation performed by our engine is local and

does not require any pre-computed database information.

In contrast, traditional resubstitution algorithms run a trial-

and-error search (with filtering) to resynthesize a target

node more compactly using a fixed set of simple structures

of one or two logic gates built upon some existing nodes.

Our heuristic Boolean resynthesis algorithm generates

an arbitrary dependency circuit composed of potentially

many logic gates to resynthesize the target function.

Experiments with the EPFL benchmarks show that 6-input

window rewriting leads to a better quality-of-results than

the best implementation of AIG rewriting in ABC, drw [4],

while being comparable in runtime. A single iteration of

window rewriting improves by 3.25% over repeating drw
until convergence. The advantage of window rewriting lies in

its ability to analyze larger sub-graph structures (one 6-input

window instead of many 4-feasible cuts per node) and to exploit

don’t-cares and existing node functions during optimization

(in contrast to using a pre-computed database of optimum

implementations).
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The paper is structured as follows: Section II presents the

background and notation. Section III details the contribu-

tions: window rewriting, reconvergence-driven windowing, and

heuristic Boolean resynthesis. Section IV presents experimental

results, and Section V concludes the paper.

II. BACKGROUND

A. Boolean Functions

Let B = {0, 1}. A (single-output) Boolean function f :
B
n → B, f(x) = y, over Boolean variables x = x1, . . . , xn

defines a mapping from assignments of n Boolean val-

ues to single Boolean values. A Boolean function f de-
pends on a variable xi if f(x1, . . . , xi−1, 0, xi+1, . . . , xn) �=
f(x1, . . . , xi−1, 1, xi+1, . . . , xn). We define DEPS(f) as the

set of all variables on which f depends.

B. Gate-Inverter Graphs

We use gate-inverter graphs (GIG) as a technology-

independent model of combinational logic circuits, which

implement Boolean functions. A gate-inverter graph N =
(V,E, I, O) is a 4-tuple, where (V,E) is a directed acyclic

graph with nodes V and edges E ⊆ V 2, and where I ⊆ V
is a set of primary inputs and O ⊆ V is a set of primary

outputs. Each node v ∈ V models either a primary input or a

gate from a predefined gate library. Edges, connecting nodes,

model wires and can either be regular or complemented.

The fanins (fanouts) of a node v ∈ V , denoted as FANINS(v)
and FANOUTS(v), are the nodes connected to v via incoming,

respectively, outgoing edges. The k-bounded transitive fanin-
cone TFIk(v) and k-bounded transitive fanout-cone TFOk(v)
of a node v in N are the subsets of nodes in N reachable by

traversing at most k transitive fanin-edges and at most l tran-

sitive fanout-edges starting at v. We use TFI(v) = TFI∞(v)
and TFO(v) = TFO∞(v) to denote the unbounded transitive

cones. A GIG N is κ-regular if all gates in N have exactly κ
fanins.

Prominent examples of GIGs are And-inverter graphs and

And-xor graphs, which use two-fanin AND gates and two-fanin

AND and XOR gates as a gate library, respectively. AIGs and

XAGs are 2-regular.

C. Cuts and Cut Expansion

A cut C = (r, L) in a GIG N is a pair of a node r, called

root, and a set L of nodes, called leaves, such that

1) each path from any primary input of N to r passes through

at least one leaf in L and

2) for each leaf l ∈ L, there is at least one path from a

primary input to r passing through l and not through any

other leaf.

The cover COVER(C) of a cut C = (r, L) in N is the set

of nodes v in N that appear on a path from any l ∈ L to r,

without L. The expand operation

EXPAND(L, v) =

{
(L− {v}) ∪ FANINS(v), v ∈ L

L, v �∈ L
(1)

replaces a node v in a set L of leaves with its fanins. The cost

Δ(L, v) = |EXPAND(L, v)| − |L| (2)

p

l1 l2 l3

(a) L1 = {p, l1, l2, l3}

p

l1 l2 l3

(b) EXPAND(L1, p) = {l1, l2, l3}

p

l1 l2 l3

(c) L2 = {p, l2, l3}

p

l1 l2 l3

(d) EXPAND(L2, p) = {l1, l2, l3}
Fig. 1: Two examples of cost-free expansions of sets of leaves.

vl

v0...
...

...
...

Fig. 2: Graph structure with reconvergent paths.

of expanding L with a node v is the difference of the number

of leaves after and before expansion. If Δ(L, v) ≤ 0, we call

an expansion cost-free. It is easy to observe that EXPAND(L, v)
is cost-free if and only if (iff ) at most one fanin of v is not in

L, i.e., iff |FANINS(v)− L| ≤ 1.

Two simple examples of cost-free expansions of sets of

leaves are depicted in Figure 1(a)-(b) and Figure 1(c)-(d),

respectively.

D. Node Function and Don’t-Care Conditions

We introduce Boolean variables x1, . . . , xn for the primary

inputs of a GIG, and express the (global) node function
fv : B

n → B of a node v using these variables. Internal

flexibilities may arise in the Boolean function fv due to limited

controllability or observability at the node v. These don’t-care
conditions at the node v are modelled as a Boolean function

dcv : Bn → B, whose value is 1 under an assignment iff the

value produced by fv does not affect the primary outputs of

the GIG.

E. Reconvergence

A path p is a finite sequence v0, . . . , vl of nodes such that

(vi, vi+1) ∈ E for 0 ≤ i < l. Two paths are reconvergent if

they start at the same node v0, end at the same node vl, and

contain, respectively, two different fanins of vl. For the sake

of simplicity, we call the corresponding node v0 reconvergent.
Figure 2 shows a pair of reconvergent paths starting at v0 and

ending in vl.

F. Boolean Resynthesis

Optimization of a node v in a GIG can be of two types:

(1) controllability (CDC)-based optimization that does not

change the node’s function fv during optimization; and

(2) observability (ODC)-based optimization that transforms fv
into another function f�

v , but preserves the functions of all

primary outputs because the difference between fv and f�
v is

included in the observability don’t-cares of v.
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Logic optimization is performed by solving Boolean resyn-
thesis formulated as follows: A target function f : B

n → B is

specified by its on-set function fon and off-set function foff. The

target function can be incompletely-specified if the union of fon

and foff does not cover the Boolean domain. Given fon, foff and

a set {fd1 , . . . , fdr} of completely-specified divisor functions
fdi

: Bn → B over the same variables, find a dependency
function h : Br → B, such that

h
(
fd1

(x), . . . , fdr
(x)

)
→ fon(x) and

foff(x)→ ¬h
(
fd1(x), . . . , fdr (x)

) (3)

for all assignments x ∈ B
n.

In particular, we are interested in the dependency circuits
that realize h with as few nodes as possible. In the context

of window rewriting, the target function is the function of a

selected node, called the root node, in the window, and the n
Boolean variables it depends on are assigned to the n window

inputs. The divisor functions are the functions of some other

nodes, called the divisors, in the same window.

In this paper, we use truth tables to represent node functions,

which are sequences of bits recording the values of the node

under each combination of (local) input values and is stored in

an 64-bit unsigned integer in our implementation. The number

of 1-bits in the truth table of a function f is denoted as

ONES(f).

III. WINDOW REWRITING

Boolean rewriting is a fast and greedy methodology for

minimizing GIGs. Algorithm R summarizes the conceptual

steps of eager Boolean rewriting at high level: the algorithm

iteratively chooses a node as a pivot p, constructs a sub-graph

in the local neighborhood of p, optimizes the logic of the

sub-graph, and replace it.

Algorithm R (Boolean Rewriting). Given a GIG N .

R1. [Choose pivot.] Select a node p in N as pivot node.

R2. [Construct sub-graph.] Construct a sub-graph struc-

ture (I,O,G) in the local neighborhood of p with lo-

cal inputs i1, . . . , in, local outputs o1, . . . , om, and inner

nodes g1, . . . , gr, where n, m, and r are the number of local

inputs, local outputs, and gates.

R3. [Simulate sub-graph.] Compute the functions of all nodes

in the sub-graph in a topological order to obtain output

functions foi : B
n → B for 1 ≤ i ≤ m.

R4. [Resynthesize output functions.] Resynthesize the out-

put functions foi , 1 ≤ i ≤ m, to obtain a replacement

(I,O′ = {o′1, . . . , o′m}, G′) with functionally equivalent output

functions. If |G′| > |G|, goto R1. Otherwise, proceed with R5.

R5. [Replace sub-graph.] Insert the gates G′ in topological

order into N , replace oi with o′i, and remove oi from N for

all 1 ≤ i ≤ m. Goto R1.

The conceptual steps can be instantiated with different

strategies. In Section III-A, we propose a reconvergence-driven

windowing algorithm to construct sub-graphs in R2 that capture

the reconvergent paths of a pair of nodes in form of multi-

output windows. In Section III-B, we present a fast heuristic

Boolean resynthesis algorithm for R4 that re-synthesizes the

∧

∧ ∧

∧

∧ ∧
a b c

f

g1

g2

g3 g4

g5

(a) Original sub-graph.

∧

∧

∧ ∧
a b c

f

(b) Optimized sub-graph.

Fig. 3: Example of CDC-based optimization.

logic of a multi-output sub-graph using AND (and optionally

XOR) gates with cost-free inversions.

A. Reconvergence-Driven Windowing

In this section, we first show that reconvergence are

essential for don’t-care-based optimization and then introduce

a reconvergence-driven window construction algorithm.

Reconvergence enables don’t-care-based optimizations.
We show that reconvergence is essential for don’t-care-based

optimizations. In our proofs, we consider controllability and

observability separately.

Theorem 1. For any node v in a κ-regular GIG N , if there
exists a CDC-based optimization for v, then there must be a
reconvergent node in TFI(v).

Proof of Theorem 1. We prove the reversed statement, i.e., if

there is no reconvergent node in TFI(v), then the cone is a

minimum-size implementation of fv . Having no reconvergent

node in TFI(v) means all nodes in TFI(v) has only one fanout

staying in TFI(v). In other words, TFI(v) is a tree. Let S(v)
denote the (structural) support of TFI(v), which is defined

as the leaves of TFI(v). Since N is κ-regular, the sizes of

TFI(v) and S(v) are related by

|S(v)| = (|TFI(v)| − |S(v)|) · (κ− 1) + 1

=⇒ |TFI(v)| = |S(v)| − 1

κ− 1
+ |S(v)| (4)

Since the functions of all nodes depend on all of their fanins,

fv depends on all nodes in S(v) and none of them can be

taken out. Now, we attempt to build a smaller graph N ′ to

replace TFI(v) starting from S(v). At each step, we add one

node into N ′ and connect κ nodes to it, which eliminate at

most κ− 1 zero-fanout nodes. At least (|S(v)| − 1)/(κ− 1)
steps are needed to make N ′ have only one zero-fanout node.

A lower bound on |N ′| is hence derived as

|N ′| ≥ |S(v)|+ |S(v)| − 1

κ− 1
(5)

Thus, |TFI(v)| is minimal.

An example of a CDC-based optimization is illustrated in

Figure 3, where a, b, c denote primary inputs, ∧ denotes an

AND gate and dotted edges denote complementation. The

assignment fg1 = 1 and fg2 = 1 is a controllability don’t-

care for the XOR function implemented by the AND gates

g3, g4, and g5. Consequently, the three AND gates can be

replaced by a single AND gate (implementing an OR function)
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∧ ve

∧vi ∧ v

a b c

f

(a) Original sub-graph.

∧

∧
a b c

f

(b) Optimized sub-graph.

Fig. 4: Example of ODC-based optimization.

without affecting the output function f . There are two pairs

of reconvergent paths ending at g5, one pair starting from g1
and the other pair starting from g2.

Theorem 2. For any node v in a κ-regular GIG N , if there
exists an ODC-based optimization for v, then v must be on a
reconvergent path.

Proof of Theorem 2. Suppose the ODC-based optimization

for v transforms the function of v into f∗v . The necessary

condition to preserve primary output functions is

(fv ⊕ f∗v )→ dcv =⇒ DEPS(dcv) ∩ DEPS(fv) �= ∅. (6)

Following the computation of ODCs [10], it can be shown that

∃ve ∈ TFO(v), vi ∈ FANINS(ve) : vi /∈ TFO(v)

such that DEPS(fvi
) ∩ DEPS(fv) �= ∅.

(7)

Hence, starting from a common primary input of DEPS(fv)
and DEPS(fvi

), there is at least a pair of reconvergent paths

ending in ve, one passing through v and the other passing

through vi.

To illustrate the proof of Theorem 2, an example of ODC-

based optimization is shown in Figure 4, where a, b, c are

primary inputs and other nodes are AND gates. An ODC-based

optimization for v transforms its function from fv = b ∧ c
to f∗v = c. This preserves the output function f = a ∧ b ∧ c
because dcv = ¬(a ∧ b) and (fv ⊕ f∗v ) → dcv holds. The

reconvergent paths are colored in red.

Theorems 1 and 2 show that the existence of reconvergence

is a necessary condition for both CDC-based and ODC-based

optimization. This motivates us to develop a reconvergence-

driven windowing algorithm which prioritizes the inclusion of

reconvergent paths.

Remark. Although reconvergence is necessary for optimizing a

single node, when the size of a multi-output GIG is considered,

another type of optimization is possible without the existence

of reconvergence, namely logic sharing. It is possible that the

TFIs of all primary outputs are of minimum size, but there exist

several different implementations of one output that can be

partly shared with the TFIs of other outputs to further decrease

the overall size of the GIG. For example, for a GIG with

two primary outputs f, g and three primary inputs x, y, z, the

following sub-optimal implementation has no reconvergence:

f = (x ∧ y) ∧ z, g = x ∨ (y ∧ z) (8)

The optimal GIG with logic sharing of y ∧ z is:

f = x ∧ (y ∧ z), g = x ∨ (y ∧ z) (9)

Window construction. For a given pivot node p, Algo-
rithm W identifies another node m such that there exists a

pair of reconvergent paths between p and m and m has shortest

distance to p. The algorithm then collects the nodes on the

two reconvergent pathts and expands the sub-graph structure

towards the input and output boundary.

Algorithm W (Window construction). Given a node p, called

pivot, in a GIG N and two integers k and l, called cut size and

distance, this algorithm computes a small-scale window in the

local neighborhood of p with at most k inputs and potentially

multiple outputs that reaches a reconvergence in at most l
steps. The window is characterized by a triple (I,O,G), of

local inputs I , local outputs O, and inner nodes G.

W1. [Identify and collect reconvergence.] Use breadth-first

search to identify a node m, called meet, reachable from two

fanins of p in at most l steps and add all nodes on the two

paths from p to m to G.

W2. [Identify and collect inputs.] Mark all nodes in G as

visited. Iterate over all fanins of the nodes in G and add

all nodes without marks to I . If |I| > k, terminate without

returning a result.

W3. [Expand towards TFI.] As long as |I| ≤ k and not all

nodes in I are primary inputs, repeat two steps: (a) first perform

all cost-free expansions of I; (b) then choose a fanin v from

I such that |EXPAND(I, v)| ≤ k and v has a highest fanout

count within G. Expand I with n and go to (a). Otherwise, if

no further expansion is possible in (b), go to the next step.

W4. [Expand towards TFO.] Define a (sorted) map L which

assigns a (initially empty) set of nodes to each level of N .

Iterate over all nodes in I ∪ G, mark them, and sort them

into L at the corresponding levels. Iterate over the nodes at

each level in L from lowest to highest level. For each node,

systematically explore its fanouts. If a fanout v is an inner

node and not marked, but all its fanins are marked, then add

v to G, mark it, and sort it into L.

W5. [Identify and collect window outputs.] Define a zero-

initialized reference counter for each node in N . Iterate over

all nodes in G and increment the counters of all fanins of

g ∈ G. Iterate again over all nodes in G, observe their reference

counters, and mark a node as output if its reference counter is

lower than its fanout count.

W6. [Topologically sort.] Sort the nodes in G in topological

order with respect to the structure of N and return the

triple (I,O,G).

B. Heuristic Boolean Resynthesis

In this section, we propose a heuristic algorithm to solve the

logic resynthesis problem using AND and optionally XOR gates

with cost-free inversions. The algorithm is based on a recursive

decomposition that classifies divisors on their intersections with

the on-set and the off-set of a target function.

Given the target on-set function fon and off-set functions

foff, a divisor d (or its negation ¬d) is said to be positive unate
if fd ∧ foff = 0 (or if ¬fd ∧ foff = 0). Similarly, a divisor d
is said to be negative unate if fd ∧ fon = 0. If both d and

¬d are neither positive nor negative unate, then d is said to

be a binate divisor. For example, in Fig. 5 (a), d is positive

unate because fd ∧ foff = 0; in Fig. 5 (b), ¬d is negative unate

because ¬fd ∧ fon = 0; and in Fig. 5 (c), d is a binate divisor
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fd ¬fd

(a) d is positive unate.

fd ¬fd

(b) ¬d is negative unate.

fd ¬fd

(c) d is a binate divisor.

¬fd fd

(d) ¬d is a 0-resub.

fd1 ¬fd1

¬fd2

fd2

(e) d1 ∨ ¬d2 is an 1-resub.

fd1 ¬fd1

¬fd2

fd2

(f) d1 ∧ ¬d2 is an 1-resub.

fd1 ¬fd1

¬fd2

fd2

(g) d1 ∧ ¬d2 is positive unate.

fd1 ¬fd1

¬fd2

fd2

(h) d1 ⊕ d2 is negative unate.

fd0 ¬fd0

(i) Divide fon with a positive unate
divisor d0.

fd1 ¬fd1

¬fd2

fd2

(j) f ′
on can be more easily realized

with ¬d1 ∧ ¬d2.

Fig. 5: Illustration of Algorithm S. Black dots represent on-set

minterms, white dots represent off-set minterms, and dotted

circles represent don’t-care minterms.

because neither d nor ¬d is unate. As the unateness property

is independent for d and ¬d, from now on, a divisor with

optional negation is referred to as a literal, i.e., a literal is

either a divisor or a negated divisor.

If a literal l is positive unate and its negation ¬l is negative

unate, then l realizes the target. We call this a 0-resub because

it is a resubstitution with 0 additional nodes. For example,

in Fig. 5 (d), ¬d is a 0-resub because ¬d is positive unate

and d is negative unate. Two positive unate literals may be

combined with an OR gate (implemented in AIGs and XAGs

as an AND gate with input and output negations) to obtain a

larger intersection with the on-set. If all on-set minterms are

contained in the union of two literals l1, l2, then l1∨ l2 realizes

the target and we call it an OR-type 1-resub. To find such cases,

we check if ¬(fl1 ∨ fl2)∧ fon = 0, i.e., if ¬fl1 ∧¬fl2 ∧ fon =
0. For example, in Fig. 5 (e), d1 and ¬d2 are two positive

unate literals and d1 ∨ ¬d2 is an OR-type 1-resub because

¬fd1 ∧ fd2 ∧ fon = 0. Similarly, two negative unate literals

l1, l2 can be combined with an AND gate to form an AND-type
1-resub if ¬fl1 ∧ ¬fl2 ∧ foff = 0. For example, in Fig. 5 (f),

¬d1 and d2 are two negative unate literals and d1 ∧ ¬d2 is an

AND-type 1-resub because fd1
∧ ¬fd2

∧ foff = 0.

The definitions of positive and negative unateness are

extended for pairs of literals. A pair p of two literals l1, l2
obtained from binate divisors can be combined using an AND

gate (or an XOR gate, if XAGs are used) to construct a new

function fp = fl1 ∧fl2 (or fp = fl1⊕fl2 if XOR is used). The

pair is said to be positive unate if fp ∧ foff = 0, and is said to

be negative unate if fp ∧ fon = 0. For example, in Fig. 5 (g),

d1 and d2 are both binate divisors and (d1,¬d2) form an

AND-type positive unate pair because fd1
∧¬fd2

∧foff = 0; in

Fig. 5 (h), d1 and d2 are both binate divisors and (d1, d2) form

an XOR-type negative unate pair because (fd1
⊕fd2

)∧fon = 0.

Algorithm S (Heuristic Boolean Resynthesis). The inputs

to this algorithm are the target on-set and off-set functions

fon, foff and a set D = {d1, . . . , dr} of divisors associated

with divisor functions fd1
, . . . , fdr

.

S1. [Constants.] Check if fon = 0 or if foff = 0. If so, return

the constant 0 or 1.

S2. [Classify divisors.] For each divisor d and its negation ¬d,

check if they are positive or negative unate. If both of them

are not unate, classify d as binate.

S3. [0-resub.] Check the collected lists of positive and negative

unate literals for an 0-resub and return it if found.

S4. [Sort unate literals.] Sort the positive unate literals by

the number of on-set minterms ONES(fl ∧ fon), and sort the

negative unate literals by the number of off-set minterms

ONES(fl ∧ foff).
S5. [1-resub.] Enumerate pairs (l1, l2) of positive unate literals

to find an OR-type 1-resub. With the order sorted in S4, the

enumeration can be terminated earlier if we know

ONES(fl1 ∧ fon) + ONES(fl2 ∧ fon) < ONES(fon) (10)

for the rest of the list. Similarly, enumerate pairs of negative

unate literals to find an AND-type 1-resub and return it if

found.

S6. [Collect and sort unate pairs.] For each pair of binate

divisors d1, d2, test the unateness of combining them using an

AND gate and with all the four possibilities of negations. If

XOR gates are allowed, test also the unateness of combining

them using an XOR gate or an XNOR gate. Collect the positive

and negative unate pairs and sort them using the same method

as in S4.

S7. [2- and 3-resub] Similar to S5, try to find a 2-resub by

combining a unate literal and a unate pair. Then, try to find a

3-resub by combining two unate pairs.

S8. [Recursive construction.] When the target cannot be

realized within 3 gates, the algorithm heuristically choose

an unate literal or an unate pair to decompose the function.

If a positive unate literal (or pair) lp is chosen, a new on-set

function f ′on = fon∧¬flp with fewer minterms is derived using

an OR gate on top of the dependency circuit and having lp
as one of the fanins of the OR gate. Then, Algorithm S is

recursively called on the new f ′on to construct the remaining

circuit at the other fanin of the OR gate. For example, in

Fig. 5 (i), the original target (fon, foff) and the function of

a positive unate literal d0 is shown. Dividing fon with fd0
,

the new f ′on = fon ∧ ¬fd0
is shown in Fig. 5 (j). Then, the

new target (f ′on, foff) is realized by ¬d1 ∧¬d2, resulting in the
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TABLE I: STATISTICS OF WINDOWING ON EPFL BENCH-

MARKS.

Property Total Contained

Node containment 467399 458260 98.04%
4-Cut containment 4770189 1949063 40.86%

final solution d0 ∨ (¬d1 ∧ ¬d2). Similarly, if a negative unate

literal (or pair) ln is chosen, an AND gate is used on top of the

dependency circuit and a new off-set function f ′off = foff∧¬fln
is derived.

C. Multi-output Window Optimization

In the previous sections, Algorithm W constructs a multi-

output window and Algorithm S can be used to resynthesize

the function of a node using the functions of some other

nodes. To optimize the multi-output window, in this section,

Algorithm M runs Algorithm S on each node in a window,

trying to optimize its local implementation using the don’t-care

conditions computed within the window.

Algorithm M (Multi-output Resubstitution). Given a multi-

output window (I,O,G) with input nodes I , output nodes O,

and inner nodes G, this algorithm resynthesizes the output

functions foi , 1 ≤ i ≤ m to obtain a replacement (I,O′, G′)
with functionally equivalent output functions.

M1. [Initialize.] Initialize G′ with G. Let T = ∅ be the set of

already-tried nodes. Associate each input nodes ij ∈ I with the

jth projection function. Simulate the window in a topological

order to obtain the functions of all inner nodes and output

nodes in terms of the input nodes.

M2. [Choose the node to resynthesize.] Select a node r ∈
G, r /∈ T in a reversed topological order.

M3. [Compute ODC.] Temporarily complement the function

of r, i.e., let f ′r = ¬fr, and re-simulate TFO(r) to obtain f ′oi
for each output node oi. Compute the ODC:

dcr = ¬
∨

oi∈O
foi ⊕ f ′oi . (11)

M4. [Mark MFFC.] Mark the nodes in the maximum fanout-

free cone (MFFC) [6] of r. A node v is in the MFFC of r
if v ∈ TFI(r) and all paths from v to any output node pass

through r.

M5. [Collect divisors.] Collect the divisors D = I ∪ G′ −
MFFC(r)− TFO(r).
M6. [Resubstitute node.] Resynthesize fr using the collected

divisors D by calling Algorithm S with

fon = fr ∧ ¬dcr and foff = ¬fr ∧ ¬dcr. (12)

If a dependency circuit (IS ⊆ D,OS = {r′}, GS) is

resynthesized and |GS | < |MFFC(r)|, update G′ with

G′ ∪GS ∪ {r′} −MFFC(r)− {r} (13)

Add r or r′ into the set of tried nodes T . Goto M2.

TABLE II: STATISTICS FOR HEURISTIC SYNTHESIS.

Heuristic Resynthesis Exact Database

Repr Var Success Failed ANDs XORs ANDs XORs

AIG
3 254 2 890 0 794 0
4 54622 10914 499308 0 365276 0

XAG
3 254 2 528 142 384 206
4 54622 10914 351592 60332 178536 98940

IV. EXPERIMENTAL EVALUATION

Window rewriting has been implemented in C++ as part

of the logic synthesis library mockturtle1 [11] and experi-

ments have been conducted using the EPFL benchmark suite.

In the Sections IV-A and IV-B, the performance of Algo-
rithm W (Window construction) and Algorithm S (Heuristic

Boolean Resynthesis) are analysed. In Section IV-C, a com-

parison between 4-cut rewriting and 6-input window rewriting

is presented.

A. Quality of Reconvergence-Driven Windowing

In this section, we investigate the quality of the

reconvergence-driven windowing algorithm (proposed in Sec-

tion III-A) by structurally analyzing the windows constructed

for the EPFL benchmark suite. We consider each node in

the EPFL benchmarks as a pivot node and run Algorithm W
and a conventional 4-cut enumeration algorithm to test node

containment (how many nodes are contained at least once in

a window) and cut containment (how many 4-feasible cuts

are completely contained in a window). We say that a cut is

contained iff its cover is a subset of the window nodes. Table I

summarizes our results. The table lists the total number of

nodes and 4-feasible cuts (Total) generated for all benchmarks

and the number of nodes and 4-feasible cuts contained in

a window (Contained), respectively. The 6-input windows

produced by the algorithm contain 98.04% of all nodes at

least once and 40.86% of all 4-feasible cuts. One node, on

average, contributes to 6.39 6-input windows.

B. Quality of Heuristic Boolean Resynthesis

In this section, we analyze the quality of the heuristic

Boolean resynthesis algorithm (proposed in Section III-B)

experimentally considering all completely-specified 3-input and

4-input Boolean functions. As a baseline for the comparison,

we use an exact database of all NPN-4 functions containing

size-minimum AIG and XAG implementations.

Table II summarizes the synthesis statistics. The table is

structured as follows: the first two columns list the logic

representation (Repr) and the number of variables (Var). The

next four columns present the number of times the heuristic

algorithm is capable to derive a logic implementation for the

function (Success) and the number of times the algorithm

fails to do so (Failed), and the total number of gates (ANDs,

XORs) of the obtained logic implementations. The last two

columns present the numbers of gates (ANDs, XORs) for

the successfully synthesized functions found in a database of

minimum-node implementations. Heuristic resynthesis suc-

ceeds for 99.22% and 83.55% of all 3-input and 4-input

1Available: https://github.com/lsils/mockturtle
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TABLE III: COMPARISON OF 4-CUT REWRITING AND 6-INPUT WINDOW REWRITING.

Benchmark ABC drw Window rewriting

First iteration Until convergence First iteration Until convergence

Name Size Depth Size Depth Time Size Depth Iter Time Size Depth Time Size Depth Iter Time

adder 1020 255 1020 255 0.07 1020 255 1 0.07 892 256 0.01 892 256 2 0.02
bar 3336 12 3141 12 0.09 3141 12 2 0.18 3124 12 0.10 2952 12 17 1.55
div 29040 4374 20952 43724 0.48 20833 4350 4 1.45 20985 4350 1.13 20907 4352 4 2.86
hyp 214306 24800 213118 24800 3.40 213108 24800 5 16.76 205006 24804 5.73 205004 24804 3 15.62
max 2865 287 2862 287 0.09 2862 289 2 0.18 2798 321 0.04 2765 367 3 0.12
sin 5353 222 5124 222 0.13 5108 219 4 0.52 5089 218 0.35 5089 218 2 0.63
sqrt 24506 5057 18379 5057 0.74 18371 6048 3 1.42 18265 7277 1.34 18265 7277 2 1.96
square 18482 251 17754 251 0.29 17629 249 7 1.91 16971 251 0.44 16963 251 3 1.55
arbiter 11839 87 11839 87 0.19 11839 87 1 0.19 11839 87 0.22 11839 87 1 0.22
cavlc 690 16 681 16 0.06 680 16 3 0.20 620 19 0.14 614 19 4 1.14
ctrl 169 10 125 10 0.06 122 9 3 0.18 91 17 0.01 89 17 3 0.03
dec 304 3 304 3 0.07 304 3 1 0.07 304 3 0.00 304 3 1 0.02
i2c 1321 20 1265 20 0.07 1264 19 3 0.21 1262 21 0.01 1262 21 2 0.02
int2float 258 16 224 16 0.06 221 16 4 0.25 222 18 0.01 222 18 2 0.02
mem ctrl 46717 115 46115 115 0.56 46069 117 5 2.88 44008 122 0.95 43318 121 7 6.37
priority 978 250 852 250 0.07 695 250 19 1.32 576 65 0.01 521 47 19 0.07
router 257 54 246 54 0.06 246 52 2 0.12 173 49 0.01 160 45 3 0.01
voter 11925 65 9042 65 0.21 8899 60 3 0.53 8079 62 0.19 7993 61 3 0.63

Total 373366 353043 6.70 352411 28.44 340304 10.69 339159 32.84
Improv. 5.44% 5.61% 8.86% 9.16%

Boolean functions, respectively. The two 3-input functions

heuristic resynthesis fails to synthesize are XOR3 and its

complement, whose possible AIG and XAG structures all have

an XOR2 component on top (either with an XOR gate or with

three AND gates). In Algorithm S, XOR gates are only used

in S6 to construct unate pairs with binate divisors and are not

considered as the top gate in S7 or S8, thus it is impossible to

construct a circuit with a topmost XOR gate. An XOR2 function

realized with three AND gates is not possible either, because

the recursive construction in S8 builds only tree-like circuits

with disjoint sub-graphs at the two fanins of the topmost gate.

The average size-overhead of an implementation derived by

the proposed method over the minimum-size implementation

accounts for 0.35 and 2.05 gates per 3- and 4-input function,

respectively.

C. Comparison with 4-Cut AIG Rewriting
All experiments targeting AIG rewriting have been conducted

on a 3.5 GHz Intel Core i7 CPU with 16 GB RAM. The

resulting AIGs have been verified after rewriting using the

combinational equivalence checker (&cec) of ABC [12].
Table III shows a comparison of window rewriting and 4-cut

rewriting (drw) using the EPFL benchmark suite. The initial

benchmarks have been pre-processed using SAT sweeping [13]

(&fraig -x -C 50000) to merge gates that are proven

equivalent modulo complementation. The table is structured

as follows: the first three columns name the benchmarks and

present their sizes and depths after pre-processing, measured

in the number of AND gates. The remaining columns list the

synthesis results for each benchmark after one iteration of

drw and window rewriting and after repeating them until

convergence. Window rewriting achieves an average size

reduction of 8.86% in one iteration, which increases to 9.16%

when applied repeatedly. When compared to 4-cut rewriting,

just one iteration of window rewriting outperforms one iteration

of drw by 3.42%, and is still better in quality, by 3.25%, than

drw applied until convergence.

V. CONCLUSION

This paper presents a unique attempt to enhance Boolean

circuit rewriting. The proposed algorithm builds on (1) so-

phisticated structural analysis to identify and capture pairs of

nodes with reconvergent paths in multi-output windows and

(2) fast heuristic Boolean resynthesis to optimize the logic in a

multi-output window with 6 or more inputs utilizing additional

divisor functions and don’t-care-based optimization.

The proposed technique addresses the two exponential

bottlenecks for scaling-up Boolean rewriting beyond the

capabilities of 4-cut rewriting. The windowing is driven by

reconvergences in the circuit structure, avoiding enumerating

and prioritizing cuts whose number grows exponentially in

the cut size. A fast Boolean resynthesis engine allows us to

compute replacements online, and avoids the pre-generation

of a database of optimized circuit structures. Pre-generating

the database is a hurdle due to the exponential growth of

the number of Boolean functions. Storing a database for all

6-variable Boolean functions needs an enormous amount of

memory and does not allow to consider multiple outputs or

logic sharing of existing divisors in the current circuit structure.

Optimizing the size of the database by storing only a subset of

circuit structures for frequently-occurring Boolean functions

tends to be a tedious manual task and leads to a biased rewriting

algorithm that is only effective for a fixed set of benchmarks.

By eliminating the dependency of rewriting on a pre-computed

database, the technique keeps all computations local and has

best preconditions for parallelization—there is no need for

sharing a huge database with slow access times between writing

workers.

In an experimental comparison between our prototypical

implementation of window rewriting and all AIG rewriting

algorithms in ABC (rewrite, irw, drw2) using the EPFL

2We have only reported the numbers for drw, the latest and best
implementation of AIG rewriting in ABC.
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benchmark suite, a single iteration of window rewriting pro-

duces better results than running any AIG rewriting algorithm

until convergence. Our current implementation of rewriting

considers the number of AIG nodes as the objective function.

An implementation focusing on size optimization of majority-

inverter graphs has been presented by Lee et al. [14]. Other

objective functions are possible, but require novel heuristics

to keep the algorithm fast and practical. Recent experiments

with simulation-guided Boolean resubstitution [15] show that

the proposed resynthesis engine can be also integrated with

other optimization frameworks.
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