

Global fluid simulations of plasma turbulence in diverted stellarators

A. J. Coelho, J. Loizu, P. Ricci and M. Simões

École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC)

antonio.coelho@epfl.ch

Content of this talk

- 1. Introduction: plasma boundary and GBS code
- 2. Simulation of an island divertor stellarator
- 3. First approach to simulate a stellarator with an ergodic divertor

Introduction

- Plasma boundary determines the heat flux on plasma-facing materials
- In tokamaks, the boundary has been addressed experimentally and through simulations:
 - Broad-band turbulence and blobs
- Recent W7-X experiments showed significant differences with respect to tokamaks:
 - Filaments bound to their flux surface [Killer, 2021]
- Stellarator turbulence simulations still in its infancy:
 - Gyrokinetic δf codes (GENE-3D, Stella, XGC-S, ...) study the core
 - Fluid code BOUT++ simulated edge filaments in a rotating ellipse [Shanahan, 2019]

Introduction

- In the boundary: collisionality may be high and turbulence time-scales longer than ω_{ci}^{-1}
 - fluid drift-reduced Braginskii equations [Zeiler, 1999]
- GBS is a two-fluid, global, flux-driven turbulence code that solves the drift-reduced Braginskii equations

Ricci and Rogers, PoP 2013

Giacomin et al., submitted to JCP

Giacomin et al., NF 2020

This talk: Global fluid simulations of diverted stellarators with GBS

Density hand de ampionate two serve quisige in erand the cyratic in the stratic strive turbulence

GBS solves the drift-reduced Braginskii equations

• Set of equations for n, T_e , T_i , $V_{\parallel e}$, $V_{\parallel i}$, ω , φ

$$\nabla \cdot \mathbf{\Gamma}_{\text{ExB}} = \mathbf{b} \cdot [\nabla \phi \times \nabla \mathbf{n}] + 2\mathbf{n} \frac{\mathbf{B}}{2} \left[\nabla \times \frac{\mathbf{b}}{\mathbf{B}} \right] \cdot \nabla \phi$$

• Density (n) equation:

$$\frac{\partial n}{\partial t} + \nabla \cdot \mathbf{\Gamma}_{\text{ExB}} + \nabla \cdot \mathbf{\Gamma}_{\text{dia}} + \nabla \cdot \mathbf{\Gamma}_{\parallel e} = \mathcal{S}_n$$

- Electron and ion temperatures (T_e, T_i) equations: <u>energy conservation</u>
- Parallel electron and ion velocities $(V_{\parallel e}, V_{\parallel i})$: parallel force balance
- Electrostatic potential (Φ): <u>obtained from vorticity (quasi-neutrality)</u>

Content of this talk

- 1. Introduction: plasma edge and GBS code
- 2. Simulation of an island divertor stellarator
- 3. First approach to simulate a stellarator with an ergodic divertor

Stellarator with an island divertor

$$\nabla \times \mathbf{B} = 0 \to \mathbf{B} = \nabla V$$

$$\nabla \cdot \mathbf{B} = 0 \to \nabla^2 V = 0$$

 Dommaschk potentials [Dommaschk, CPC 1986] are a solution of Laplace's equation in a torus:

$$V(R, \phi, Z) = \phi + \sum_{m,l} V_{m,l}(R, \phi, Z)$$

We simulate a 5-field period stellarator...

We simulate a 5-field period stellarator... with a 5/9 chain of islands

All rotational transform from rotation of the ellipses

GBS domain boundary intersects divertor islands

GBS domain boundary intersects divertor islands

Source for density and temperature localized around a magnetic surface

Simulation doesn't strongly depend on the sources' profile

Steady-state of simulation dominated by coherent mode

Steady-state of simulation dominated by coherent mode

- An m=4 mode dominates the global dynamics
- Mode rotates with ~ ion diamagnetic frequency
- No broad-band turbulence
- Radial turbulent transport due to $<\tilde{\Gamma}_{\rm ExB}>_t = <\tilde{n}\tilde{V}_{\rm ExB}>_t$ balances source

Mode is field-aligned

Equilibrium profiles

Effectiveness of the island divertor

• On the **TOP** of the simulation box, pressure is maximum where field lines strike:

Asymmetry of ExB-flux between HFS/LFS

Asymmetry of ExB-flux between HFS/LFS

Understand the mode with non-local linear theory

• Linearize GBS equations by assuming quantities vary as:

Linear theory predicts the observed mode

Is the linear mode able to transport the same Γ_{ExB} ?

$$<\Gamma_{E\times B}>\int_{\mathrm{LCFS}}dS=\int_{\mathrm{LCFS}}\mathcal{S}_ndV$$

• Solve for $n_0 \sim \Phi_0$ and obtain the perturbation's amplitude needed to balance the source

Linear mode is able to transport the same Γ_{ExB}

Nature of the linear mode: balloning

No drift-waves drive $(\nabla_{\parallel} p_e = 0 \text{ in } V_{\parallel e} \text{ eq.})$

No ballooning drive (curvature(p)=0 in vorticity eq.)

Content of this talk

- 1. Introduction: plasma edge and GBS code
- 2. Simulation of an island divertor stellarator
- 3. First approach to simulate a stellarator with an ergodic divertor

Arrangement of the coils

3 pairs of circular coils

2 helical coils with period=5

LHD-like scaled down by a factor of ~3.5

Arrangement of the coils

Poincaré plots

with MAKEGRID & FIELDLINES from STELLOPT:

$$\phi = 0.5 \frac{2\pi}{10}$$

Rotational transform

Fixed GBS box is not a good idea

$$\phi = 0$$

$$\phi = 0.25 \; \frac{2\pi}{10}$$

$$\phi = 0.5 \frac{2\pi}{10}$$

Change of coordinates

Change of coordinates

Simulation still in the beginning

Conclusions & Future Work

- First global fluid simulations of a **stellarator** have been performed with **GBS code**
- Unlike tokamak experiments/simulations, no broad-band turbulence nor blobs were observed. Instead, a low poloidal mode (m=4) dominates transport
- Linear theory points to ballooning mode
- Is this coherent mode a property of the configuration used?

