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Thermally driven flows in fractures play a key role in enhancing the heat transfer
and fluid mixing across the Earth’s lithosphere. Yet the energy pathways in such
confined environments have not been characterised. Building on Letelier et al. (J. Fluid
Mech., vol. 864, 2019, pp. 746–767), we introduce novel expressions for energy transfer
rates – energetics – of geometrically constrained Rayleigh–Bénard convection in
Hele-Shaw cells (HS-RBC) based on two different conceptual frameworks. First, we
derived the energetics following the well-established framework introduced by Winters
et al. (J. Fluid Mech., vol. 289, 1995, pp. 115–128), in which the gravitational potential
energy, Ep, is decomposed into its available, Eap, and background, Ebp, components.
Secondly, we derived the energetics considering a new decomposition for Ep, named
dynamic, Edp, and reference, Erp, potential energies; Edp is defined as the departure of
the system’s potential energy from the reference state Erp, determined by the ‘energy’ of
the scalar fluctuations. For HS-RBC, both frameworks lead to the same energy transfer
rates at a steady state, satisfying the relationship 〈Eap〉τ = 〈Edp〉τ + 1/6. Consistent
with the work by Hughes et al. (J. Fluid Mech., vol. 729, 2013) on three-dimensional
Rayleigh–Bénard convection, we report analytical expressions for the energetics and
efficiencies of HS-RBC in terms of the Rayleigh number and the global Nusselt number.
Additionally, we performed numerical experiments to illustrate the application of the
energetics for the analysis of HS-RBC. Finally, we discuss the impact of the thermal
forcing and the geometrical control exerted by Hele-Shaw cells on the development of
boundary layers, protoplumes and the self-organisation of large-scale flows.
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1. Introduction

Heat and energy transported by convection regulate the climate and support life on
Earth. Examples of planetary-scale convective processes include the circulation within
the atmosphere, oceans (Vallis 2017; Forget & Ferreira 2019), geothermal fluxes across the
lithosphere (Grant & Bixley 2011; Letelier et al. 2021) and the mantle dynamics (Korenaga
2020; Tackley 2000).

The fundamentals of heat and energy transport in free three-dimensional flows (Ahlers,
Funfschilling & Bodenschatz 2009a; Grossmann & Lohse 2011; Hughes, Gayen &
Griffiths 2013) and porous media (Doering & Constantin 1998; Hewitt, Neufeld & Lister
2012; Nield & Bejan 2013; Hewitt 2020) have been extensively investigated via the classic
Rayleigh–Bénard convection (RBC) problem. However, in highly confined environments
where fluids are not entirely free to develop three-dimensional convection, heat transport
and its link with energy fluxes remain uncharacterised. Such systems include geothermally
driven flows across open fractures (Letelier et al. 2021) and near-surface flows in fractures
observed in the ice shell of the solar system moons Enceladus and Europa (Le Gall et al.
2017; Sparks et al. 2017; Le Reun & Hewitt 2020). In the above examples, convection can
be examined at the laboratory scale using Hele-Shaw cells (Hidalgo et al. 2012; Cooper
et al. 2014; Letelier et al. 2016). Studying the energy transfer rates, or energetics, of
thermally driven flows in Hele-Shaw cells is therefore significant to unravelling energy
pathways and their link with heat transport and mixing processes within fractured solid
environments.

Winters et al. (1995) introduced a mathematical formalism to characterise the energetics
and mixing of Boussinesq flows. Their formalism allows decomposition of the system’s
potential energy into a reference state of minimum or background potential energy (BPE)
and the available potential energy (APE) to drive motion and enhance mixing. A strength
of the APE–BPE framework is that it enables quantification of the irreversible diascalar
mixing rate responsible for depleting the APE in a system. The latter is possible by
knowing the density field ρ and the equilibrium position z� of the fluid parcels that
constitute the domain. Although determining the function z�(ρ) – and its derivatives –
from field observations may be challenging and involve approximations (e.g. Winters &
D’Asaro 1996), z�(ρ) can be computed robustly from high-fidelity numerical simulations
in cylindrical and closed domains via standard sorting algorithms (Winters & Barkan
2013). Thus the APE–BPE framework represents a sound approach to characterise the
energetics and mixing of RBC in Hele-Shaw cells (HS-RBC).

Recently, Caulfield (2021) emphasised that there is a close connection between the
buoyancy variance and the APE of a system, especially in flows with a constant
background buoyancy gradient. The latter is the case for the Earth’s subsurface, which
has a geothermal gradient of approximately 30 ◦C km−1 (Dickson & Fanelli 2013). Yet
many regions, such as hot spots in oceans, volcanic arcs along subduction zones and
continental areas with a high density of fractures, have greater geothermal gradients. This
geothermal gradient plays a critical role on the onset and development of convection in
deep sedimentary aquifers and through fractured crystalline rocks (Murphy 1979; Tournier,
Genthon & Rabinowicz 2000). If the system’s potential energy can be written in terms
of the APE–BPE decomposition, the question here is whether a different decomposition
could be directly expressed in terms of the temperature variance and hold the same
information on the energy transfer rates.

This paper focuses on investigating the energy pathways and their inherent link with
heat transfer and mixing of HS-RBC (figure 1). For the above, it is essential to determine
the energetics associated with surface thermal forcing, convective buoyancy transport
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Figure 1. Schematic of a Hele-Shaw cell adopted to investigate the fluid dynamics of geometrically
constrained flows energised by constant temperature conditions at the bottom (Th) and top (Tc), with Th > Tc.
(a) Boundary conditions evaluated at z∗ = 0 and z∗ = H, while for x∗ = 0 and x∗ = L we have periodic
boundary conditions. (b) Non-dimensional representation of the boundary conditions of the problem. The
two-dimensional Hele-Shaw model in (2.2), valid for the XZ plane, is derived considering adiabatic and no-slip
wall conditions at y∗ = 0 and y∗ = b.

and irreversible dissipative mechanisms – i.e. the rates of kinetic energy dissipation and
thermal mixing.

Building upon the Hele-Shaw equations derived in Letelier, Mujica & Ortega (2019),
which represent an extension of the Darcy model for permeable media, we introduce the
mechanical energy budget and the efficiencies of HS-RBC. The energetics are derived
following the APE–BPE framework (Winters et al. 1995) and a different potential energy
decomposition whose reference state is determined from the scalar fluctuations. Deriving
the energetics and efficiencies for HS-RBC based on two different frameworks has an
advantage. On the one hand, the APE–BPE decomposition is widely used for the study
of turbulent mixing in stratified flows (e.g. Peltier & Caulfield 2003; Caulfield 2020),
and it provides a readable interpretation and comparison with other studies on convective
flows (e.g. Hughes et al. 2013; Davies Wykes, Hughes & Dalziel 2015; Winters et al.
2019). On the other hand, the new potential energy decomposition brings new insights
into the system’s energy partitioning and the energy flux supplied at the boundaries for
the HS-RBC problem. Instead of using the BPE reference state, the new potential energy
decomposition considers a reference potential energy linked to the quadratic scalar field
potential, also known as the temperature variance (Zilitinkevich et al. 2007), a simple
quantity to compute.

For HS-RBC, the two energetics frameworks here introduced are mathematically linked
and lead to the same non-dimensional analytical expressions for the energy transfer rates
and efficiencies. We show that the relationship between the energy partition and the heat
transfer across the thermal boundary layers (TBLs) in permeable media is determined only
by the Nusselt number Nu. Additionally, we illustrate the flow properties and the energetics
of HS-RBC via a set of direct numerical simulations of the Hele-Shaw equations. The
numerical experiments are discussed and compared with existing laboratory and numerical
results (Otero et al. 2004; Ahlers, Grossmann & Lohse 2009b; Hewitt et al. 2012; Gayen,
Hughes & Griffiths 2013; Letelier et al. 2019), which allows us to provide a conceptual
interpretation of the effects of geometrical control in three-dimensional RBC (3D-RBC).
The mechanical energy framework and the numerical results here reported are relevant

930 A16-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

89
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

co
le

 P
ol

yt
ec

hn
iq

ue
 F

éd
ér

al
e 

de
 L

au
sa

nn
e,

 o
n 

19
 N

ov
 2

02
1 

at
 0

7:
24

:4
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.897
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


H.N. Ulloa and J.A. Letelier

to the study and characterisation of thermally driven flows through natural fractures or
artificial apertures in solids.

2. Hele-Shaw model

We consider an incompressible Boussinesq fluid in a three-dimensional Hele-Shaw
domain whose cell gap is b in the y∗ direction, and whose horizontal length and vertical
height are L and H in the x∗ and z∗ directions, respectively (figure 1). The permeability
of the medium is K = b2/12 and the kinematic viscosity νc and thermal diffusivity
κc are assumed to be constant and isotropic. The fluid density and temperature are
considered to be linearly dependent as ρ∗ = ρc − α(T∗ − Tc), with ρ∗(Tc) = ρc the
reference value, α = ρcα̃ and α̃ the thermal expansion coefficient. For convenience,
we define the Boussinesq density component as ρ̃∗ = ρ∗ − ρc. Here, we consider the
following non-dimensional form of the dimensional variables {x∗, t∗, v∗, p∗, T∗, ρ̃∗},

x = x∗

H
, t = t∗

H/u′
c
, v = v∗

u′
c
, p = p̃∗

pc
, T = (T∗ − Tc)

�T
, and ρ = ρ̃∗

α�T
= −T,

(2.1a–e)

with x = x x̂ + z ẑ, the position, v = ux̂ + wẑ the velocity field, �T = Th − Tc (Th > Tc)
the temperature difference between the top (Tc) and the bottom (Th) boundaries (Letelier
et al. 2019), g the gravity acceleration, u′

c = α�TgK/(ρ′
cνc) the characteristic velocity

and pc = ρ′
cνcu′

cH/K the characteristic pressure in terms of a modified reference density
ρ′

c = (6/5)ρc.
For b � H, the non-dimensional, two-dimensional (2-D) Hele-Shaw model (Letelier

et al. 2019) governing the fluid motion is given by

ε2 Ra′

Pr

(
∂vi

∂t
+ 9

7
vj∂jvi

)
= −∂ip + Tδiz − 5

6
vi + ε2∂2

j vi − 2
35
ε2Ra′(vj∂jT)δiz + O(ε4),

(2.2a)

∂T
∂t

+ vi∂iT = 1
Ra′ ∂

2
i T + 2

35
ε2Ra′∂j

(
(vi∂iT)vj

)+ O(ε4), (2.2b)

where ε = √
K/H is the anisotropy ratio, Ra′ = u′

cH/κc is the modified Rayleigh number,
with Ra = (6/5)Ra′ = (α�TgKH)/(ρcκcνc) the classic Rayleigh number for Hele-Shaw
cells (Letelier et al. 2019), and Pr = νc/κc is the Prandtl number. In this model, the
velocity field v (vi in tensorial form) is divergence free.

The Hele-Shaw equations (2.2) are valid for ε small, Pr � 1 and ε2 Ra′ � 1. For ε → 0,
and considering a fixed Ra′, the model (2.2) reduces to the Darcy equations coupled
with the advection–diffusion model (Hewitt et al. 2012). Recent laboratory experiments
demonstrated that the theoretical bound ε2Ra � 1 is valid for the Hele-Shaw model (2.2)
(De Paoli, Alipour & Soldati 2020). Thus the Hele-Shaw model represents a ‘mathematical
bridge’ between the Darcy and Navier–Stokes models.

We examine the problem of HS-RBC considering a periodic domain in the horizontal
which is stress free at the top and bottom boundaries. The bottom and top boundary
conditions for the temperature field are T(z = 0) = 1 and T(z = 1) = 0 (figure 1).

Henceforth, we express mean quantities through the horizontal and domain averages of
a function f (t, x) as

〈 f 〉h(t, z) = 1
L′

∫ L′

0
f (t, x) dx and 〈 f 〉(t) =

∫ 1

0
〈 f 〉h(t, z) dz, (2.3a,b)
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Rayleigh–Bénard convection in Hele-Shaw cells

respectively, with L′ = L/H the cell aspect ratio. In this paper, Gauss’s theorem is
expressed as follows: ∫ 1

0

∫ L′

0
∂jf dx dz =

∮
�

fnj d�, (2.4)

where nj is the unit normal vector to the surface �. Additionally, we express the time
average of a function 〈 f 〉(t) over a window of size τ as

〈 f 〉τ = 1
τ

∫ t+τ

t
〈 f 〉(t′) dt′. (2.5)

If a function 〈 f 〉(t) is in a statistically steady-state (SSS) condition for t > τs, it satisfies〈
d〈 f 〉

dt

〉
τ

= 0 and 〈 f 〉τ = K : const., for τ > 0. (2.6)

In the following, all physical variables and equations presented in this work are valid
up to O(ε2), which is enough to include the cell gap effects on the thermal dynamics if
ε2Ra′ � 1 is fulfilled. Within this framework, the energetics derived from the Hele-Shaw
model (2.2) approximate the actual energetics for 3-D Boussinesq fluid flows.

3. Energetics up to O(ε2)

From the Hele-Shaw model (2.2) and the boundary conditions in figure 1, we derive
the evolution equations for the mechanical energy, i.e. the kinetic and gravitational
potential energy balances, for HS-RBC. In order to simplify the algebra, we examine the
gravitational potential energy budget in terms of the Boussinesq density only, introduced
previously in § 2. In what follows, variables are expressed in non-dimensional form.
Nonetheless, for completeness, Appendix A introduces the dimensional mechanical energy
components.

3.1. Kinetic energy balance
We define the specific kinetic energy as Ek = v2

i /2 and the mean kinetic energy as 〈Ek〉.
Multiplying the momentum equation (2.2) by ‘vi’ and averaging over the domain using
(2.3a,b), the evolution equation for 〈Ek〉 results in

ε2 Ra′

Pr
d〈Ek〉

dt
+ F(surf)

k = 〈Φ(ε)prod〉 − 〈Φ(ε)diss〉, (3.1a)

F(surf)
k =

∮
�

(
9
7
ε2Ra′ v

2
i

2
vj + pvj + 2

35
ε2Ra′wTvj − ε2viτij

)
nj d�, (3.1b)

Φ
(ε)
prod = wT + 2

35
ε2Ra′Tvj∂jw, (3.1c)

Φ
(ε)
diss = 5

6
v2

i + ε2τij∂jvi. (3.1d)

The term τij denotes the stress tensor. Considering the boundary conditions of the
problem (figure 1), the net kinetic energy flux at the domain boundaries is F(surf)

k = 0,

930 A16-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

89
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

co
le

 P
ol

yt
ec

hn
iq

ue
 F

éd
ér

al
e 

de
 L

au
sa

nn
e,

 o
n 

19
 N

ov
 2

02
1 

at
 0

7:
24

:4
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.897
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


H.N. Ulloa and J.A. Letelier

and therefore

ε2 Ra′

Pr
d〈Ek〉

dt
= 〈Φ(ε)prod〉 − 〈Φ(ε)diss〉. (3.2)

In (3.2), 〈Φ(ε)prod〉 is the production rate of convective energy, i.e. the work done by
buoyancy and Hele-Shaw dispersion to transport heat mechanically across the medium.
On the other hand, 〈Φ(ε)diss〉 quantifies the decay rate of kinetic energy controlled by the
Darcy and Stokes viscous dissipation. Note that, for ε = 0, we recover a classical result for
RBC in porous media, in which the rate of kinetic energy production due to the buoyancy
flux 〈wT〉 balances the rate of dissipation owing to Darcy dispersion (5/6)〈v2

i 〉 (Nield &
Bejan 2013).

3.2. Gravitational potential energy balance
We define the specific potential energy as Ep = zρ, and the mean potential energy as 〈Ep〉.
The rate of change in time of 〈Ep〉 is determined by considering that ρ = −T and the
transport equation (2.2b),

d〈Ep〉
dt

+ F(surf)
p = 1

Ra′ 〈∂zT〉 − 〈Φ(ε)prod〉, (3.3a)

F(surf)
p = 1

L′

∮
�

1
Ra′ z∂jTnj d�+ 1

L′

∮
�

[
zT − 2

35
ε2Ra′ (z∂i(Tvi)− wT)

]
vjnj d�. (3.3b)

Notice that 〈Ep〉 = −〈zT〉 < 0. Applying the boundary conditions of the system
(figure 1), only the first term on the right-hand side of (3.3b) survives, leading to

d〈Ep〉
dt

= − 1
Ra′

∂〈T〉h

∂z

∣∣∣∣
z=1

− 1
Ra′ − 〈Φ(ε)prod〉, (3.4)

where (1/L′)
∮
�
〈z∂jT〉 = (∂z〈T〉h)|z=1 and 〈∂zT〉 = −1. Therefore, defining the Nusselt

number (e.g. Hewitt et al. 2012; Letelier et al. 2019) as

Nu(t) = −∂〈T〉h

∂z

∣∣∣∣
z=0

= − ∂〈T〉h

∂z

∣∣∣∣
z=1

, (3.5)

the evolution equation for the mean potential energy reduces to

d〈Ep〉
dt

= Nu − 1
Ra′ − 〈Φ(ε)prod〉. (3.6)

In SSS conditions, 〈d〈Ep〉/dt〉τ = 0, the energy transport due to convection in the
inner domain balances the surface buoyancy fluxes resulting from thermal conduction
across the TBLs. This balance allows the expression of the Nusselt number as 〈Nu〉τ =
1 + Ra′〈Φ(ε)prod〉τ , a result previously obtained for permanent conditions in the mean
temperature field 〈T〉 (Letelier et al. 2019). If the mechanical energy 〈Em〉 = 〈Ek〉 + 〈Ep〉
is conserved, we obtain 〈d〈Ek〉/dt〉τ = 0, and consequently 〈Φ(ε)prod〉τ = 〈Φ(ε)diss〉τ .

3.3. APE and BPE decomposition (APE–BPE)
To determine the potential energy gained by the system due to heat supplied at the
boundaries, and that is free to enhance convection, Ep is traditionally decomposed into the
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Rayleigh–Bénard convection in Hele-Shaw cells

background Ebp and available Eap components (Winters et al. 1995; Hughes et al. 2013).
The specific background potential energy Ebp = z�ρ defines the minimum potential energy
attainable by adiabatically rearranging the fluid parcels to their equilibrium positions given
by the function z� = z�(ρ) (Winters et al. 1995). This energy cannot drive fluid motion.
On the other hand, the specific APE, defined as Eap = Ep − Ebp, quantifies the energy that
is free to generate fluid motion and enhance mixing. Their mean quantities 〈Eap〉 and 〈Ebp〉
are determined by

〈Eap〉 = 1
L′

∫ 1

0

∫ L′

0
(z − z�)ρ dx dz and 〈Ebp〉 = 1

L′

∫ 1

0

∫ L′

0
z�ρ dx dz, (3.7a,b)

respectively, and they represent approximations of the actual available and background
potential energies for 3-D geometries (see Appendices D and E). In the fixed Hele-Shaw
domain, d〈Ebp〉/dt (3.7a,b) leads to

d〈Ebp〉
dt

= 1
L′

∫ 1

0

∫ L′

0
ρ
∂z�
∂t

dx dz + 1
L′

∫ 1

0

∫ L′

0
z�
∂ρ

∂t
dx dz. (3.8)

The first term on the right-hand side of (3.8) integrates zero (Winters et al. 1995). Since
ρ = −T , we plug the transport equation (2.2b) into (3.8), obtaining

d〈Ebp〉
dt

+ F(surf)
bp = 〈Φ(ε)mix〉, (3.9a)

F(surf)
bp = 1

L′

∮
�

1
Ra′ z�∂iTni d�+ 1

L′

∮
�

[
ψ + 2

35
ε2Ra′z�∂j(Tvj)

]
vini d�. (3.9b)

Notice that 〈Ebp〉 = −〈z�T〉 < 0. The term F(surf)
bp integrates the surface fluxes acting

on the mean BPE, with ψ = ∫
ρ(Ω)

z�(ρ̂) dρ̂ and Ω the Hele-Shaw domain. Applying the
boundary conditions (figure 1), only the first term on the right-hand side of (3.9b) remains,
and it reduces to

F(surf)
bp = − 1

Ra′
∂〈T〉h

∂z

∣∣∣∣
z=0

, (3.10)

with z�(z = 0) = 1 and z�(z = 1) = 0 (Hughes et al. 2013). Besides, the right-hand side
term in (3.9a) is defined as

〈Φ(ε)mix〉 =
〈

dz�
dT

Φ
(ε)
scalar

〉
, (3.11)

where

Φ
(ε)
scalar = 1

Ra′ (∂iT)2 + 2
35
ε2Ra′ (∂i(viT))2 , (3.12)

is the scalar dissipation rate (Letelier et al. 2019), a positive definite flux. Since by
construction dz�/dT > 0, then 〈Φ(ε)mix〉 is also a positive definite flux, and it characterises
the rate at which thermal mixing increases 〈Ebp〉. Thus, the evolution equation for the
mean BPE can be written as

d〈Ebp〉
dt

= − Nu
Ra′ + 〈Φ(ε)mix〉. (3.13)

For SSS conditions, i.e. 〈d〈Ebp〉/dt〉τ = 0, (3.13) leads to the relationship 〈Nu〉τ =
Ra′〈Φ(ε)mix〉τ . The last result is analogous to the relationship between the Nusselt number
and the diapycnal mixing rate obtained by Hughes et al. (2013) for 3D-RBC.
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3.4. Evolution equation for mean quadratic scalar field potential 〈T2〉
Before introducing the new potential energy decomposition, let us consider the mean
quadratic scalar field (or temperature variance) 〈T2〉, and the transport equation (2.2b).
The evolution equation for 〈T2〉 can be written as

1
2

d〈T2〉
dt

+ F(surf)
T = −〈Φ(ε)scalar〉, (3.14a)

F(surf)
T = − 1

L′

∮
�

1
Ra′ T∂iTni d�+ 1

L′

∮
�

[
T2

2
− 2

35
ε2Ra′T∂j(Tvj)

]
vini d�, (3.14b)

with F(surf)
T the surface fluxes. Applying the boundary conditions, only the first term on

the right-hand side of (3.14b) remains, and F(surf)
T reduces to

F(surf)
T = 1

Ra′
∂〈T〉h

∂z

∣∣∣∣
z=0

. (3.15)

Note that F(surf)
T = −F(surf)

bp in (3.10). Thus, considering (3.5), the evolution equation
(3.14a) can be written as

1
2

d〈T2〉
dt

= Nu
Ra′ − 〈Φ(ε)scalar〉. (3.16)

For HS-RBC, Letelier et al. (2019) showed that at SSS conditions 〈Nu〉τ =
Ra′〈Φ(ε)scalar〉τ . The latter implies that the non-dimensional fluxes 〈Φ(ε)mix〉τ and 〈Φ(ε)scalar〉τ
are equivalent,

〈Φ(ε)mix〉τ = 〈Φ(ε)scalar〉τ , (3.17)

which means that

Δmix = 1
τ

∫ t+τ

t

[
1
L′

∫ 1

0

∫ L′

0

(
dz�
dT

− 1
)
Φ
(ε)
scalar dx dz

]
dt′ = 0. (3.18)

Notice that (3.18) does not imply dz�/dT = 1. The equivalence (3.17) is shown
numerically in § 5.

In light of the identity (3.17), the energetics of HS-RBC can be characterised without
the need to compute the reference position z�, essential for the analysis of the APE and
the diapycnal mixing rate. In order to benefit from the equivalence (3.17), in the next
subsection, we introduce a new decomposition for the problem’s potential energy here
treated.

3.5. Dynamic and referential potential energy decomposition (DPE–RPE)
The mean potential energy 〈Ep〉 is decomposed into a reference state (RPE) defined in
terms of the mean quadratic scalar field potential

〈Erp〉 = −1
2 〈T2〉, (3.19)

and the mean dynamic component (DPE), 〈Edp〉 = 〈Ep〉 − 〈Erp〉, such that

〈Edp〉 = 1
L′

∫ 1

0

∫ L′

0

(
−z + 1

2
T
)

T dx dz = −〈zT〉 + 1
2

〈T2〉. (3.20)

Without loss of generality, we explicitly impose the minus sign in the definition of
〈Erp〉 because of the sign of the non-dimensional potential energy, 〈Ep〉 = −〈zT〉 < 0.
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Rayleigh–Bénard convection in Hele-Shaw cells

External

energy

External

energyInternal

energy

Internal

energy

Nu/Ra′ Nu/Ra′

Nu/Ra′ Nu/Ra′

1/Ra′ 1/Ra′

1/Ra′ 1/Ra′

〈Φ(ε) 〉prod 〈Φ(ε) 〉prod

〈Φ(ε) 〉diss 〈Φ(ε) 〉diss
γε〈E∙k〉 γε〈E∙k〉

〈E∙ap〉 〈E∙dp〉

〈E∙bp〉 〈E∙rp〉

〈Φ(ε) 〉mix 〈Φ(ε) 〉scalar

APE-BPE decomposition DPE-RPE decomposition

(a) (b)

Figure 2. Topology of the energy pathways in RBC for an incompressible Boussinesq fluid in a Hele-Shaw
cell. We use the notation γε = ε2Ra′/Pr, and ˙〈 f 〉 = d〈 f 〉/dt to denote the time derivative of the function f .
(a) APE and BPE decomposition (APE–BPE). (b) DPE and RPE decomposition (DPE–RPE). Despite both
energy pathways being similar, the potential reference states 〈Ebp〉 and 〈Erp〉 are physically different. For the
particular problem of RBC, the DPE–RPE decomposition allows computation of the energetics readily, without
requiring z� and its derivatives.

One could, otherwise, define the decomposition 〈Ep〉 = 〈Edp〉 + 〈Erp〉 as 〈z T〉 = 〈E′
dp〉 +

1/2 〈T2〉, being 〈E′
dp〉 = −〈Edp〉, and work in terms of 〈E′

dp〉 instead of 〈Edp〉. However,
we are interested in the rate of change of quantities that determine the potential energy
budget, so the advantage of holding a minus sign in (3.19) is to preserve the energy flux
pathways given by dEbp/dt and shown in figure 2.

For the HS-RBC problem, let us now consider the evolution equation for the temperature
fluctuations σ 2 = 〈T2〉 − 〈T〉2 given by

1
2

dσ 2

dt
+ F(surf)

σ = −〈Φ(ε)scalar〉. (3.21)

Thus, noticing that 〈T〉 = 1/2, one can link mathematically 〈Erp〉 and σ 2 as follows:

〈Erp〉 = −1
2
σ 2 − 1

8
; d〈Erp〉

dt
= −1

2
dσ 2

dt
= − Nu

Ra′ + 〈Φ(ε)scalar〉. (3.22a,b)

Since the destruction rate of the temperature variance, 〈Φ(ε)scalar〉, is a natural metric of
the rate at which thermal mixing occurs (Hidalgo et al. 2012; Paoli et al. 2019; Caulfield
2021), the physical meaning of 〈Erp〉 is related to the ‘state of mixing’ of the system at
a given time. The above interpretation is further supported in § 4, where we provide the
explicit linear relationship between 〈Erp〉 and the degree of mixing χ introduced by Jha,
Cueto-Felgueroso & Juanes (2011), which is function of σ 2. Under SSS conditions, the
DPE–RPE decomposition does not change the energy pathways of HS-RBC because of
the identity 〈Φ(ε)mix〉τ = 〈Φ(ε)scalar〉τ . However, 〈Ebp〉 and 〈Erp〉 are physically different. Both
〈Ebp〉 and 〈Erp〉 can be considered gauge fixing terms of a potential energy decomposition;
the former is based on the state of minimum potential energy, whereas the latter is based
on the state of mixing of the system. At SSS conditions, (3.22a,b) yields that 〈Nu〉τ =
Ra′〈Φ(ε)scalar〉τ , which reflects a balance between the surface buoyancy flux, Nu/Ra′, and its
conversion into 〈Erp〉 via irreversible mixing at a rate 〈Φ(ε)scalar〉.

Here, we formulate the dynamic potential energy 〈Edp〉 as the departure of the system’s
potential energy from its scalar fluctuations. From (3.6) and (3.22a,b), the evolution
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equation for the dynamic potential energy is given by

d〈Edp〉
dt

= 2
Nu
Ra′ −

(
〈Φ(ε)prod〉 + 〈Φ(ε)scalar〉 + 1

Ra′

)
. (3.23)

For SSS conditions, i.e. 〈d〈Edp〉/dt〉τ = 0, the Nusselt number can then be expressed
as 〈Nu〉τ = (1/2)Ra′(〈Φ(ε)diss〉τ + 〈Φ(ε)scalar〉τ + 1/Ra′). The latter relation represents a
fundamental balance between the continuous supply of energy at the boundaries and its
rate of conversion into ‘internal energy’, 〈Φ(ε)int 〉τ = 〈Φ(ε)diss〉τ + 〈Φ(ε)scalar〉τ + 1/Ra′, which
is the total irreversible energy flux in the system due to small-scale processes. As we
show later in § 4, the energy flux 〈Φ(ε)int 〉τ is important for the definition of efficiencies in
HS-RBC.

Before proceeding, it is relevant to clarify the mathematical relationship between the
APE–BPE and DPE–RPE formalisms. From (3.13) and (3.22a,b), we find that

d
dt

(〈Ebp〉 − 〈Erp〉
) = 〈Φ(ε)mix〉 − 〈Φ(ε)scalar〉. (3.24)

Also, since the APE–BPE and DPE–RPE decompositions allow us to express the mean
potential energy as 〈Ep〉 = 〈Eap〉 + 〈Ebp〉 = 〈Edp〉 + 〈Erp〉, the latter identity and (3.24)
lead to the following relationship:

d
dt

(〈Eap〉 − 〈Edp〉
) = 〈Φ(ε)scalar〉 − 〈Φ(ε)mix〉. (3.25)

Under SSS conditions, and using (3.17), the balance (3.25) satisfies〈
d
dt

(〈Eap〉 − 〈Edp〉
) 〉
τ

= 0. (3.26)

For fixed ε, Ra′ and Pr, a solution of (3.26) is

〈Eap〉(t) = 〈Edp〉(t)+ K +Θ(t), (3.27)

with K a constant andΘ(t) a function that satisfies 〈Θ(t)〉τ = 0 and 〈dΘ(t)/dt〉τ = 0. The
constant K in (3.27) can be obtained by analysing the conductive regime, i.e. Ra < 4π2.
For the above, let us consider the definitions of 〈Eap〉 and 〈Edp〉 in (3.7a,b) and (3.20),
respectively. Hence, for the conductive – non-convective – regime 〈Eap〉τ = 1/6 and
〈Edp〉τ = 0, i.e. (3.27) satisfies

〈Eap〉τ = 〈Edp〉τ + 1
6 . (3.28)

Thus, expressions (3.27) and (3.28) define the mathematical relationship between the
APE–BPE and DPE–RPE formalisms. Hereinafter, we use the DPE–RPE decomposition
to characterise the energetics and energy pathways of HS-RBC.

3.6. Energy pathways in HS-RBC
Figure 2 summarises the energy pathways of HS-RBC. The net heat supplied at the
boundaries is converted into 〈Edp〉 at rate (2/Ra′)Nu. When the dynamic potential energy
is large enough to generate hydrodynamic instabilities, Ra > 4π2 (Kimura, Schubert &
Straus 1986), Nu becomes greater than unity. This means that the system shifts from
a conductive to a convective regime, and finger-like thermal plumes start to produce
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Rayleigh–Bénard convection in Hele-Shaw cells

kinetic energy at rate 〈Φ(ε)prod〉 (figure 2a). The production is controlled by buoyancy-driven
motions and dispersion. The onset of convection not only generates fluid displacement that
enhances vertical heat transport, but also boosts dissipative mechanisms. Thus, kinetic
energy is dissipated and converted into internal energy due mainly to Darcy friction at
rate 〈Φ(ε)diss〉 (figure 2a). As a consequence of stretching and squeezing of the isotherms,
the remaining dynamic potential energy is expended in irreversible thermal mixing at rate
〈Φ(ε)scalar〉 + 1/Ra′ (figure 2b).

Summarising our results for HS-RBC, the energetics are determined by the Nusselt and
Rayleigh numbers as follows:

〈Φ(ε)prod〉τ = 1
Ra′ (〈Nu〉τ − 1) ; 〈Φ(ε)scalar〉τ = 〈Nu〉τ

Ra′ ; 〈Φ(ε)int 〉τ = 2
〈Nu′〉τ

Ra′ . (3.29a–c)

4. Efficiencies and degree of mixing

We use three metrics to link the energy partition with the heat transport and mixing in
HS-RBC under statistically steady conditions. First, we define the ‘convective efficiency’
ηc as the fraction of dynamic potential energy, 〈Edp〉, expended in driving motion

ηc =
〈Φ(ε)prod〉τ
〈Φ(ε)int 〉τ

. (4.1)

Using the results in (3.29a–c), the convective efficiency can be expressed as

ηc = 1
2

(
1 − 1

〈Nu〉τ

)
, (4.2)

where 〈Nu〉τ quantifies the global heat transfer. For conductive regimes, 〈Nu〉τ = 1, the
energy consumed in transporting heat by convection becomes null, ηc = 0. By contrast,
when the primary transport mechanism is convection, i.e. 〈Nu〉τ 
 1, ηc → 1/2.

The second metric is the ‘mixing efficiency’ (Davies Wykes et al. 2015; Caulfield 2020),
defined as

ηm = 〈Φ(ε)scalar〉τ + 1/Ra′

〈Φεint〉τ
. (4.3)

Using the results in (3.29a–c), the mixing efficiency can be expressed as

ηm = 1
2

(
1 + 1

〈Nu〉τ

)
, (4.4)

and it quantifies the fraction of 〈Edp〉 expended in thermal mixing. For 3D-RBC, Hughes
et al. (2013) derived the same expression in (4.4) using the APE–BPE decomposition.
Notice that (4.2) and (4.4) satisfy ηm + ηc = 1 and that for 〈Nu〉τ 
 1, both efficiencies
are asymptotically convergent to 1/2. As in 3D-RBC, the mixing efficiency in Hele-Shaw
geometries is only governed by the Nusselt number.

The third metric is the ‘degree of mixing’ of the system (Jha et al. 2011), defined as

χ = 1 − 12σ 2, (4.5)

where χ = 1 represents a perfectly mixed state and χ = 0 represents a perfectly
segregated state. Thus, χ provides information about the inner thermal state of the bulk.
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Notice that we can express the reference potential energy as a function of the degree of
mixing as

〈Erp〉 = χ/24 − 1/6. (4.6)

The latter identity provides a physical argument to link 〈Erp〉 with the state of mixing of
a system.

5. Numerical experiments

We performed a series of direct numerical simulations of the Hele-Shaw model (2.2) to:
(i) illustrate the spatial and temporal structure of the energetics introduced in § 3; (ii)
compare the numerical estimation of the convective efficiency ηc obtained from (4.1) with
the analytical result in (4.2); and (iii) explore the degree of mixing (4.5) as a function of
the Rayleigh number.

5.1. Numerical implementation
The numerical experiments were performed using the spectral solver flow _ solve (Winters
& de la Fuente 2012), which has been applied for a wide range of geophysical fluid
dynamics problems (e.g. Barkan, Winters & Llewellyn Smith 2013; Letelier et al. 2019;
Ulloa et al. 2019).

The dynamical variables in (2.2a) were expanded by means of trigonometric basis
functions over the rectangular (Hele-Shaw) computational domain and integrated in
time using a third-order Adams–Bashforth scheme for advective/buoyant terms and
the implicit fourth-order Adams–Moulton method for diffusive scheme. The equations
of motion admitted a base state solution given by us = 0, ws = 0, Ts(z) = 1 − z
and ps(z) = p0 + ∫ z

0 Ts(ξ) dξ . Then, we perturbed all dynamical variables as u(t, x) =
u′(t, x), w(t, x) = w′(t, x), p(t, x) = ps(z)+ p′(t, x) and T(t, x) = Ts(z)+ θ(t, x). From
the boundary conditions defined in figure 1, we expanded u′ ∼ exp(iknx) cos(nπz), w′ ∼
exp(iknx) sin(nπz), p′ ∼ exp(iknx) cos(nπz) and θ ∼ exp(iknx) sin(nπz), with n a natural
number and kn the wavenumber.

The spatial resolution �x = �z was chosen to resolve at least with ten grid points the
thermal and viscous boundary layers, a priori estimated as δT/H ∼ Ra−1/3 and δu/H ∼
(Pr/Ra)−1/2, respectively (Ahlers et al. 2009b). The time step was defined satisfying the
Courant–Friedrichs–Lewy (CFL) condition of the numerical scheme, CFL � 0.2, for both
velocity components.

The numerical procedure to compute the horizontal average of a function fi = f (xi)
over nx grid points was based on a cubic spline interpolation of f on a three times denser
grid, with mx = 3nx points. The new interpolated function f new

j , with j = 1, . . . ,mx, was
integrated using the composite Simpson rule. The same procedure was used for the domain
average of a function in the vertical direction. Numerical derivatives were computed
using a spectral approach based on Fourier, sine and cosine transforms, depending on
the boundary conditions.

Despite the highly accurate numerical schemes used, numerical diffusion problems
arose mainly from the numerical averaging procedure, which was not sufficiently accurate
to preserve the same numerical precision of the spectral methods. Thus, it was not
possible to recover numerically the condition 〈d〈Ef〉/dt〉τ = 0 for f = {k, rp, dp} the
indices to denote the mechanical energy components. For the cases analysed in this
manuscript, we obtained 〈d〈Ef〉/dt〉τ = δf � O(ε2), with O(ε2) the order of magnitude
of the smallest contribution in the energy budgets. Nevertheless, the latter gave an
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Figure 3. (a) Shows the reference state z� of fluid parcels at their gravitational equilibrium with respect to
the temperature field T for ε = 10−3 and three Rayleigh numbers at SSS conditions. As Ra increases, the
function z�(T) departures from its initial state condition z� = T to achieve new distributions at SSS conditions,
which tend towards the homogenisation of the inner temperature field while keeping the boundary conditions
z�(0) = 0 and z�(1) = 1. (b) Shows the derivative of z� with respect to T as a function of T for ε = 10−3 and
Ra = 7572 at SSS conditions. A low-pass filter based on the fast Fourier transform (FFT) was applied, with a
cutoff wavenumber of 50π/L, with L = 1 the amplitude of the dimensionless temperature.

adequate accuracy to resolve the mechanical energy budget for the RBC problem in
Hele-Shaw cells, so the numerical deviations δf were treated as numerical errors. To
propagate the errors, we defined the following energy rates: 〈Φ(ε)prod〉∗τ = 〈Φ(ε)prod〉τ ±
δk, 〈Φ(ε)diss〉∗τ = 〈Φ(ε)diss〉τ ± δk, 〈Φ(ε)scalar〉∗τ = 〈Φ(ε)scalar〉τ ± δr and 〈Nu〉∗τ /Ra′ = 〈Nu〉τ /Ra′ ±
δr. Therefore, the convective efficiency was computed as η∗

c = ηc ± δη, with δη =
(δk/〈Φ(ε)int 〉τ )

√
1 + η2

c [(δk + δr)/δk]2.
To estimate the APE and the diapycnal mixing rate 〈Φ(ε)mix〉 introduced in § 3.3, we

computed z�(T) following the algorithm given by Winters & Barkan (2013). In order
to obtain dz�/dT , we smoothed z� using a linear interpolation on a grid n(1)g = ng/100,
with ng = nx × nz the original numerical length vector for z�. This procedure allowed
us to build the new function z(1)� . Then, we built a high-resolution representation of the
smoothed z(1)� applying a cubic interpolation on a grid n(2)g = 50 × n(1)g = ng/2, generating
the final function z(2)� . The derivative dz�/dT was computed from z(2)� using compact finite
differences (Lele 1992). The obtained result was smoothed using a low-pass filter based
on the FFT transform of the odd extension of dz�/dT .

As an example, figure 3 illustrates z� and dz�/dT as a function of the temperature field
T for a numerical experiment characterised by ε = 10−3 and Ra = 7527. Consistently,
we observe that z� is a monotonically increasing function of T , with z�(T = 0) = 0 and
z�(T = 1) = 1. Its derivative is a positive, nonlinear function of T . As we show later
in § 5.2, the interpolation and smoothing procedure to compute dz�/dT , 〈Φ(ε)mix〉τ and
(3.18), gives absolute values of Δmix ∼ 10−4 for high-Ra, which is approximately 1 %
of 〈Φ(ε)scalar〉τ . For low-Ra, however,Δmix ∼ 10−5. These are our best values obtained from
the methodology discussed above.
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Label ε Ra nx × nz �t 〈Nu〉τ ηc χ

1 0.01 47.8 64 × 33 2.16 × 10−4 1.37 1.34 × 10−1 0.12 × 10−1

2 0.01 75.5 64 × 33 2.71 × 10−4 2.18 2.70 × 10−1 1.01 × 10−1

3 0.01 120.0 64 × 33 3.42 × 10−4 2.62 3.09 × 10−1 3.27 × 10−1

4 0.01 190.2 64 × 33 4.03 × 10−4 3.87 3.71 × 10−1 4.61 × 10−1

5 0.01 301.4 64 × 33 5.41 × 10−4 5.00 4.00 × 10−1 5.66 × 10−1

6 0.01 477.7 128 × 65 3.41 × 10−4 6.06 4.17 × 10−1 6.45 × 10−1

7 0.01 757.1 128 × 65 4.29 × 10−4 8.16 4.39 × 10−1 7.28 × 10−1

8 0.01 1200.0 128 × 65 6.75 × 10−4 9.47 4.47 × 10−1 7.79 × 10−1

9 0.001 2394.4 512 × 257 7.63 × 10−5 19.19 4.73 × 10−1 8.05 × 10−1

10 0.001 3794.8 512 × 257 1.20 × 10−4 28.84 4.82 × 10−1 8.37 × 10−1

11 0.001 7571.5 512 × 257 1.70 × 10−4 55.08 4.91 × 10−1 8.66 × 10−1

12 0.001 12000.0 1024 × 513 1.71 × 10−4 76.79 4.93 × 10−1 8.88 × 10−1

13 0.001 30142.7 1024 × 513 1.21 × 10−4 169.28 4.97 × 10−1 9.16 × 10−1

14 0.001 75714.8 2048 × 1025 6.79 × 10−5 236.51 4.99 × 10−1 9.52 × 10−1

Table 1. Parameter space and resolution of numerical experiments presented in figures 4 and 8. The
non-dimensional grid spatial resolutions in x and z are Δx = L′/nx and Δz = 1/(nz − 1), respectively, while
the non-dimensional time step is�t. The cell aspect ratio L′ = Lx/Lz = 2 and the Prandtl number Pr = 7 were
kept constant for all our experiments. In this table, the values of ηc are computed using (4.1).

Our simulations considered 4.7 × 101 � Ra � 7.5 × 104, with Pr = 7 and two values
of the anisotropy ratio, ε = 10−3 and ε = 10−2. The experimental set is summarised in
table 1.

5.2. Results
Figure 4 shows the non-dimensional temperature,Φ(ε)scalar andΦ(ε)diss fields for different ε and
Ra. For 4π2 < Ra < 1350 and SSS conditions, the above fields show coherent convective
structures (figure 4a,b). For Ra � 1350 and SSS conditions, on the other hand, convection
becomes chaotic, and the flow is self-organised into ‘multi-megaplumes’ (figure 4c–e).
Figure 4( f –j) shows that thermal mixing rates are maximal at the boundaries of convective
plumes, where isotherms tend to squeeze due to the thermals’ development – the higher
rates ofΦ(ε)scalar occur near the top and bottom boundaries. We remark that, as Ra increases,
the zone over which the maximum rates are found becomes more confined near the
horizontal boundaries. In contrast, figure 4(k–o) shows that the kinetic energy dissipation
rate, Φ(ε)diss, has its higher magnitudes in the interior zone, spatially aligned throughout the
core of the megaplumes. As Ra increases, the maximum dissipation rates tend to become
scattered and weaker.

Figure 5 illustrates mean energetic quantities as a function of time for ε = 10−3 and
Ra = 7571.5, under SSS conditions. Figure 5(a) shows times series of the energetics
involved in the mean kinetic energy balance, 〈Φ(ε)prod〉 and 〈Φ(ε)diss〉. The production rate of
kinetic energy is balanced by its dissipation rate. The latter is further corroborated by the
inset panel in figure 5(a), which shows that the rate of change in time of the mean kinetic
energy is statistically zero. Figure 5(b), on the other hand, shows the rate of change in time
of the dynamic potential energy component, d〈Edp〉/dt. The above quantity was computed
following two approaches. First, we computed d〈E(1)dp 〉/dt directly from the energetics on
the right-hand side of (3.23). Second, we computed the rate of change in time of 〈Edp〉 from

930 A16-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

89
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

co
le

 P
ol

yt
ec

hn
iq

ue
 F

éd
ér

al
e 

de
 L

au
sa

nn
e,

 o
n 

19
 N

ov
 2

02
1 

at
 0

7:
24

:4
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.897
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Rayleigh–Bénard convection in Hele-Shaw cells

Lz

Lx

ε = 0.01, Ra = 301.4 ε = 0.01, Ra = 1200 ε = 0.001, Ra = 7571.5 ε = 0.001, Ra = 30142.7 ε = 0.001, Ra = 75714.8

0

0

–3

–6

–1

–2

–3

0.5

1.0

(T
∗  −

 T
0
)/
�

T
lo

g
1
0
 (
Φ

(ε
) 

  
 )

sc
al

ar
lo

g
1
0
 (
Φ

(ε
) 
)

di
ss

(a) (b) (c) (d) (e)

( f ) (g) (h) (i) ( j)

(k) (l) (m) (n) (o)

A B C D E

F G H I J

K L M N O

Figure 4. Results of numerical experiments of the Hele-Shaw model (2.2) for five different ε and Ra values
under SSS conditions. All quantities are in non-dimensional units. (a–e) Show the temperature fields in the
Hele-Shaw domain (x–z plane). ( f –j) Show the scalar dissipation rate Φ(ε)scalar, where their maximum values
are achieved along the boundaries of thermal plumes. (k–o) Show the dissipation rate Φ(ε)diss; Φ

(ε)
diss achieves

maximum values inside the core of each thermal plume, where the Darcy induced dissipation is dominant.
Inset labels A–O link these results with the results in figure 8.
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Figure 5. Results of experiment 11 under SSS conditions, ε = 10−3 and Ra = 7571.5. All quantities are
in non-dimensional units. (a) Shows the mean kinetic energy production rate 〈Φ(ε)prod〉 and the mean kinetic

dissipation rate 〈Φ(ε)diss〉 as functions of time t. The inset in (a) exhibits the time derivative of the mean kinetic
energy 〈Ek〉, oscillating around zero, i.e. 〈d〈Ek〉/dt〉τ = 0. (b) Shows times series of the rate of change in time
of the dynamic potential energy, d〈Edp〉/dt, computed from the energetics (left vertical axis) and from the rate
of change in time of 〈Edp〉 defined in (3.20) (right vertical axis). Both estimations follow the same temporal
pattern and oscillate around zero, i.e. 〈d〈Edp〉/dt〉τ = 0.

(3.20), i.e. d〈E(2)dp 〉/dt. In both cases, d〈Edp〉/dt exhibits an oscillatory dynamics around
zero at high-Ra and a statistically steady regime.

Figure 6 illustrates the relationship between the mean dynamic potential energy, 〈Edp〉,
and the mean APE, 〈Eap〉. Figure 6(a) displays time series of 〈Edp〉(t)− 〈Edp〉τ and
〈Eap〉(t)− 〈Eap〉τ . As expected for SSS conditions – see (3.26) and (3.27) – both quantities
should differ from a constant and a time-dependent function Θ(t), exhibited in the inset
panel. We highlight the similitude (as a function of time) between both quantities and
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Figure 6. Results of experiment 11 under SSS conditions, ε = 10−3 and Ra = 7571.5. All quantities are in
non-dimensional units. (a) Shows the temporal evolution of the mean dynamic potential energy 〈Edp〉 and the
mean available potential energy, 〈Eap〉, as functions of time t. Both potential energy components are defined
relative to their time averages 〈Edp〉 and 〈Eap〉, respectively. The inset in (a) exhibits the function Θ(t) =
〈Eap〉(t)− 〈Edp〉(t)− (〈Eap〉τ − 〈Edp〉τ ), which fluctuates around zero, i.e. 〈Θ〉τ = 0. (b) Shows times series
of the rate of change in time of the scalar dissipation rate 〈Φ(ε)scalar〉 and the diapycnal mixing rate 〈Φ(ε)mix〉 as
functions of time t. Both quantities follow the same temporal pattern and have the same order of magnitude.
The inset figure in (b) shows the rate of change in time ofΘ(t), which fluctuates around zero, i.e. 〈dΘ/dt〉τ = 0.

that their rate of change in time is statistically the same, as shown in (3.25). The rate of
change of the APE depends on the irreversible mixing rate 〈Φ(ε)mix〉, displayed as a function
of time in figure 6(b). On the other hand, the rate of change of the dynamic potential
energy depends on the thermal dissipation rate 〈Φ(ε)scalar〉, also displayed as a function of
time in figure 6(b). The graph shows that 〈Φ(ε)mix〉 and 〈Φ(ε)scalar〉 follow the same pattern and
magnitude, with minor differences that may result from the adopted numerical procedure
to compute dz�/dT . The result in figure 6(b) supports numerically that, at SSS conditions,
the relationship 〈Φ(ε)mix〉τ = 〈Φ(ε)scalar〉τ is fulfilled, with a numerical absolute difference
(error) of Δmix ∼ 10−4 and a relative difference of approximately 1 % with respect to
〈Φ(ε)scalar〉τ . Additionally, the inset panel in figure 6(b) exhibits the rate of change in time
of Θ , which shows a fluctuating pattern with a mean temporal value of approximately
zero. The latter is required to characterise the functional relationship between 〈Eap〉(t) and
〈Edp〉(t) introduced in (3.27).

Under SSS conditions, the time-averaged mean available and dynamic potential energy
components must fulfil the relationship 〈Eap〉τ = 〈Edp〉τ + K in (3.28), with K = 1/6.
Consistently, figure 7 shows that the numerical experiments agree with the latter identity;
the slope m of the linear fitting is approximately one in absolute value, |m| ≈ 1.17 ± 0.02,
and the intercept n ≈ K ≈ 0.172 ± 0.002. Differences between theory and the numerical
results are not unexpected since they may well arise from the numerical procedure to
compute integrals and averages.

The relationship between the convective efficiency ηc and the global Nusselt number
〈Nu〉τ is shown in figure 8(a). Using our numerical experiments, we confirm that, under
SSS conditions, the convective and mixing efficiencies, (4.1) and (4.3), can be estimated by
the expressions (4.2) and (4.4), respectively. The solid curve in the main panel illustrates
the analytical expression for ηc in (4.2), whereas markers derived from this figure (see
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Figure 7. Relationship between time-averaged mean available potential energy 〈Eap〉τ and time-averaged mean
dynamic potential energy, 〈Edp〉τ , for the numerical experiments at SSS conditions (red circles). The linear
least-square fitting 〈Eap〉τ = m〈Edp〉τ + n shows good agreement with the relationship (3.28). The arrow
indicates the growth direction of Ra.

legend) show ηc computed numerically from (4.1). All points collapse to the analytical
curve ηc–〈Nu〉τ . We identify that for 〈Nu〉τ = 10, already approximately 45 % of the
available energy is used in transporting heat by convection. However, to reach values close
to the maximum convective efficiency, i.e. when 50 % of the APE is used to produce
convection, 〈Nu〉τ must increase by at least two orders of magnitude, as shown in the
upper inset.

Figure 8(b) exhibits the ‘degree of mixing’ 〈χ〉τ as a function of Ra computed from
the numerical experiments summarised in table 1. The numerical results show that 〈χ〉τ
follows the relationship

〈χ〉τ =
{

0 if Ra < 4π2,

a − b Ra−1/2 if Ra � 4π2,
(5.1)

with a = 0.97 ± 0.01 and b = 7.1 ± 0.2. Expression (5.1) evidences a functional
dependence between the level of the inner temperature homogenisation characterised by
〈χ〉τ and Ra. The fitting parameter ‘a’ indicates that at high-Ra, the degree of mixing
〈χ〉τ → 1. However, as shown in figure 8(c), the TBLs must match the temperature
boundary conditions (figure 1), so χ cannot be exactly 1.

Furthermore, recalling that χ allows determination of the RPE (see (4.6)), we can
directly study the physics of RPE by looking at its response to variations on the state
of mixing at SSS conditions, Δχ 〈Erp〉τ = (1/24)Δ〈χ〉τ . Thus, if the system shifts from a
conductive to a convective regime, i.e. Δ〈χ〉τ > 0, then the system ‘gains’ RPE due to a
better homogenisation of the temperature scalar field.

Figure 9 shows the scaling laws for 〈Eap〉τ and 〈Nu〉τ as functions of Ra. In the low-Ra
regime, i.e. 4π2 � Ra � 1350; 〈Eap〉τ -Ra shows a robust linear fitting in logarithmic scale,
instead of the multiscale, complex relationship observed in 〈Nu〉τ -Ra (inset panel). In this
regime, 〈Eap〉τ ∼ Ra−0.38. An interesting finding is that the slope observed in 〈Eap〉τ -Ra
changes at Ra ∼ 1350. This change is understood as a transition from fully steady-state
conditions towards quasi-steady-state conditions, where chaotic multi-megaplumes govern
the dynamics. The same change is also observed in 〈Nu〉τ -Ra (inset panel). Notice that
the global Nusselt number and the Rayleigh number exhibit a power-law relationship

930 A16-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

89
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

co
le

 P
ol

yt
ec

hn
iq

ue
 F

éd
ér

al
e 

de
 L

au
sa

nn
e,

 o
n 

19
 N

ov
 2

02
1 

at
 0

7:
24

:4
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.897
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


H.N. Ulloa and J.A. Letelier

0.5

1.0

0.5

0

0
0 0.2 0.4 0.6 0.8 1.0

z/Lz

0.5

1.0

0.50

0.48

0.46

0.44

MEB theory

Palm 1-roll (1972)

Otero 3-rolls (2004)

Otero 2-rolls (2004)

RBC porous media

Hewitt et al. (2012)

Pirozzoli et al. (2021)

RBC free fluids

0.4

0.3

0.2

0.1

0

100 101

101 102 103 104 105

101

C

B

A

D E

102

102 103

〈Nu〉τ
〈T

〉 h
〈χ

〉 τ =
 1

 –
 1

2
〈σ

2
〉 τ

Ra

ηc

ηc

〈Nu〉τ

Gayen et al. (2013)

Alhers et al. (2009)

This work
Hele-Shaw ε = 0.001

Hele-Shaw ε = 0.01

Hele-Shaw ε = 0.001

Hele-Shaw ε = 0.01

A

B
C D E

a = 0.97 ± 0.01

b = 7.1 ± 0.2

Ra = 40, ε = 0.01

Ra = 240, ε = 0.01

Ra = 75 000, ε = 0.001

(b)(a)

(c)

〈χ〉τ = a –
b

�Ra

Figure 8. (a) Convective efficiency as a function of the global Nusselt number, 〈Nu〉τ . Solid curves in the
main panel and magnified region correspond to the analytical convective efficiency as a function of 〈Nu〉τ ,
ηc = (1/2)(1 − 1/〈Nu〉τ ). Symbols for this figure (diamonds and circles) correspond to convective efficiencies
computed numerically from the energetics, ηc = 〈Φ(ε)prod〉τ /〈Φ(ε)int 〉τ . Convective efficiencies associated with
symbols from previous studies of 2-D porous media and free fluids were obtained based on the Nusselt numbers
reported and steady-state conditions, i.e. ηc = (1/2)(1 − 1/〈Nu〉τ ). (b) Degree of mixing 〈χ〉τ as a function
of Ra and computed from the Hele-Shaw numerical experiments. (c) Horizontally averaged temperature
distribution 〈T〉h as a function of height z/L for three numerical experiments. For Ra � 4π2, convection begins
to govern the heat transport, and the horizontally averaged temperature field changes from a linear distribution
as a function of height, Ts = 1 − z (red symbols), to an almost uniform distribution, 〈T〉h ≈ 1/2, in the interior
as convection becomes vigorous and TBLs become thinner (black curve).

〈Nu〉τ ∼ Ra0.9 for 1350 < Ra < 104 (part of the high-Ra regime). The latter is the same
scaling law obtained for 2-D porous media by Hewitt et al. (2012). Yet the above power
law changes at approximately Ra = 3 × 104 for ε = 0.001, from where it is observed that
〈Nu〉τ ∼ Ra0.36.

6. Discussion

6.1. The Nusselt and Rayleigh numbers
As shown in § 3.6, under SSS conditions, the energetics of HS-RBC are determined by
both the global Nusselt number 〈Nu〉τ and the Rayleigh number of the system, whereas
the efficiencies ηc and ηm introduced in § 4 only depend on 〈Nu〉τ . Owing to these results,
determining general scaling laws for the Nusselt number would allow us to quantify the
energetics and the efficiencies of RBC from external parameters only. In order to generalise
our results, future studies should look at the transition from HS-RBC to 3D-RBC. Yet one
of the first challenges we face is the lack of a unified definition for the system’s Rayleigh
number.

In environments where RBC is ‘free’ to develop fully 3-D structures, convection
transfers heat and energy throughout the three spatial dimensions. For these cases, the
Rayleigh number is traditionally defined as Ra∗ = (α�TgH3)/(ρcκcνc), and the power
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Figure 9. Numerical results under SSS conditions. Time-averaged, mean APE, 〈Eap〉τ , as a function of Ra �
30 000. Inset plot shows the Nusselt number 〈Nu〉τ as a function of Ra. Results show that 〈Eap〉τ scales with Ra
following a power law Ram, depending on the Ra regime, i.e. m = −0.39 for 4π2 � Ra � 1350 (the low-Ra
regime), whilst m = −0.18 for 1350 < Ra � 30 000 (part of the high-Ra regime). Labels 1P to 4P indicate the
number of steady-state plumes in the Hele-Shaw cell for low-Ra regime.

of the scaling law 〈Nu〉τ ∼ Raγ∗ varies between γ = 0.14 and γ = 0.38, depending on
Ra∗ and the dynamics of the TBLs (Ahlers et al. 2009a; Funfschilling, Bodenschatz
& Ahlers 2009; Grossmann & Lohse 2011). However, for RBC in porous media
(also known as Rayleigh–Darcy convection), the Rayleigh number (also known as the
Rayleigh–Darcy number) is the same as that used here for Hele-Shaw geometries,
Ra = (α�TgKH)/(ρcκcνc). In 2-D convection in porous media, the scaling law between
the Nusselt and Rayleigh numbers varies from 〈Nu〉τ ∼ Ra0.9 for 103 < Ra < 104, to
〈Nu〉τ ∼ Ra for the ultimate regime, i.e. Ra 
 105 (Doering & Constantin 1998; Otero
et al. 2004; Hewitt et al. 2012; Nield & Bejan 2013; Pirozzoli et al. 2021). Based on
numerical simulations for 3-D porous media, Pirozzoli et al. (2021) show that the ultimate
regime is reached when Ra 
 106. In Hele-Shaw environments, on the other hand, heat
and energy transport is constrained to occur mostly in the direction of gravity. In this case,
the scaling law is 〈Nu〉τ ∼ Raγ (ε) (Letelier et al. 2019). For Hele-Shaw cells satisfying
ε � 10−3 and ε2Ra′ � 1, 〈Nu〉τ ∼ Ra0.9 for Ra � 104, the same scaling observed for 2-D
porous media. A departure of the latter scaling is observed for Ra ∼ 4 × 104, as shown in
figure 9 (inset panel), where the dispersion contribution is evident because ε Ra > 1. In
this regime, the Nusselt number is reduced and 3-D effects start to be prominent in the
problem (Letelier et al. 2019). The above result can be inferred by examining equation
(2.2b), where it can see that the terms on the right-hand side balance if ε Ra ∼ O(1),
i.e. dispersion starts to be relevant in the heat transfer.

For a fixed 〈Nu〉τ , we can compare our direct numerical simulation (DNS) in Hele-Shaw
cells with numerical results reported by Gayen et al. (2013) in a 3-D domain. For this, let
us consider the points C and E shown in figure 7, in which HS-RBC and 3D-RBC share
the coordinates (〈Nu〉τ , ηc) ≈ (55, 0.491) and (〈Nu〉τ , ηc) ≈ (235, 0.497), respectively.
Point C is obtained for Ra∗ ≈ 5.89 × 108 in 3D-RBC and for Ra ≈ 7.57 × 103
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in HS-RBC, whereas point E is obtained for Ra∗ ≈ 6.03 × 1010 and Ra ≈ 7.57 × 104.
Although the classic definitions for the 3D-RBC and HS-RBC Rayleigh numbers differ,
they relate as follows: Ra∗ = Ra/ε2. Bearing in mind the above relationship between Ra∗
and Ra, point C in HS-RBC has a Rayleigh number one order of magnitude greater than the
case of 3D-RBC. Such a difference in magnitude arises because the fluid in a Hele-Shaw
cell follows a Darcy-like dynamics, whereas in the 3D-RBC it does not. In the former
scenario, albeit the confinement allows an efficient organisation of the convective plumes
to transfer heat vertically, with γ ≈ 0.9, a Darcy dissipation law dominates the decay rate
of kinetic energy ∼v2

i instead of a Stokes law ∼vi∇2vi as in 3D-RBC. In Hele-Shaw cells
and permeable media, the latter implies that more external energy, i.e. higher Ra, is needed
to match the transfer heat 〈Nu〉τ observed in 3D-RBC.

Let us now consider point E, for which the 3D-RBC and HS-RBC cases have Rayleigh
numbers Ra∗ with the same order of magnitude. In this scenario, however, the relationship
between Ra and 〈Nu〉τ deviates considerably from the scaling law 〈Nu〉τ ∼ Ra0.9 (inset
in figure 7), meaning that 3-D effects are already relevant for the global heat transfer
law of the system. Indeed, points D and E follow a scaling law 〈Nu〉τ ∼ Ra0.36, i.e.
the exponent is within the range observed in 3D-RBC. Therefore, in order to unify the
scaling laws in RBC, we emphasise the need to use a unique Rayleigh number, valid
for constrained domains. Future studies of RBC should consider the Rayleigh number
as Ra = (α�TgB2H)/(ρcκcνc), with B the width of the cell and H its height.

6.2. Geometrically controlled RBC
The differences observed in flow structures and heat transfer between free and confined
RBC lie in two main aspects: (i) the role of lateral boundaries on the development of
boundary layer processes; and (ii) the self-organised, large-scale inner convection and its
relevance for the global heat transfer, i.e. the Nusselt number.

To understand the first aspect, let us consider an elementary cubic geometry of length L,
height H and width B ∼ L, with fixed temperatures Tc and Th > Tc at the top and bottom
boundaries, respectively. The response of the system is the formation of coherent thermal
plumes that take off from the TBL regions towards the core of the cubic geometry (Togni,
Cimarelli & De Angelis 2015). For 3D-RBC, TBLs have characteristic thickness δ∗BL ∼
H Prα/

√
Ra, which matches the characteristic length of the neck of the ‘protoplumes’ λpp

(Ahlers et al. 2009b; Grossmann & Lohse 2011). However, when we narrow down the
width B of the cubic domain to a new value b � B, the 3-D coherent structures collapse
to quasi-steady-state plumes with TBLs of characteristic length δ∗BL 
 b when ε2Ra′ �
1 (e.g. figure 4a,b). If ε Ra′ > O(1), δ∗BL starts to be comparable to the cell’s gap and,
eventually, for Ra′ � 1/ε2, δ∗BL � b and the flow becomes three-dimensional. Owing to
this confinement in the asymptotic limit ε2Ra′ � 1, the effective surfaces of the TBLs
across which most of the thermal mixing takes places are reduced. Thus, a fraction of
〈Edp〉 that was previously consumed in reducing thermal variance at rate 〈Φ(ε)scalar〉 is now
available for producing kinetic energy at rate 〈Φ(ε)prod〉 (figure 2).

To understand the second aspect concerning the self-organised, large-scale convection
and its relevance for the global heat transfer, we focus on the response of the inner domain
at high-Ra. As we confine the lateral domain progressively, the 3-D ‘megaplume’ (Ahlers
et al. 2009b; Gayen et al. 2013) changes its shape and texture fundamentally. In Hele-Shaw
environments, for Pr � 1 and ε2Ra � 1, the inner domain develops ‘multi-megaplumes’
that tend to self-organise into a meandering 2-D columnar architecture (figure 4c–e).
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In this regime, the megaplumes detach from the TBLs and occupy most of the domain,
creating ‘optimal’ pathways to transport fluid parcels from top to bottom, and vice versa,
with marginal changes in their heat and buoyancy content. This phenomenon is supported
by the time-averaged degree of mixing 〈χ〉τ that tends to unity as the TBL reduces its
thickness (figure 8b) and the horizontally averaged inner temperature approaches �T/2
(figure 8c). The limited loss in buoyancy along the trajectories of the megaplumes also
implies that a substantial fraction of their kinetic energy reaches the opposite TBL. The
impinging of the megaplumes on the boundaries thins the TBLs and forces the emerging
protoplumes to diverge laterally from the impact zone and to merge with the megaplumes
travelling in the opposite direction. Thus the consequence of the strong interplay between
megaplumes and TBLs is the amplification of the global Nusselt number 〈Nu〉τ and the
reduction of the mean APE 〈Eap〉τ in the system as Ra increases (figure 9).

7. Concluding remarks

Grounded on the Hele-Shaw model (Letelier et al. 2019), this paper introduces the
energetics and efficiencies for HS-RB), or laterally confined geometries. The energetics
associated with the rate of change of potential energy are mathematically characterised
using two formalisms: (i) the available and BPE decomposition introduced by Winters
et al. (1995), derived in § 3.3; and (ii) the new dynamic and reference potential
energy decomposition introduced in § 3.5. Under SSS conditions both formalisms have
mathematical equivalences and allow unification of the energetics for RBC from porous
media to quasi-2-D environments. For SSS conditions, we show that the energetics
in HS-RBC are determined by the Nusselt and Rayleigh numbers of the problem,
〈Φ(ε)scalar〉τ = 〈Nu〉τ /Ra′, and 〈Φ(ε)diss〉τ = 〈Φ(ε)prod〉τ = (〈Nu〉τ − 1)/Ra′. The above means
that by determining the scaling laws for the Nusselt number, Nu ∼ Raγ , the energy
partitioning in HS-RBC can be fully characterised by the Rayleigh number of the system.

Furthermore, we obtain analytical expressions for the ‘convective and mixing
efficiencies’, ηc = (1/2)(1 − 1/〈Nu〉τ ) and ηc = (1/2)(1 + 1/〈Nu〉τ ), respectively. These
expressions predict that at high-Ra half of the available energy is expended in transferring
mass and heat wall to wall via convective megaplumes, ηc = 1/2, whereas the remaining
half is used to increase the reference potential energy via irreversible thermal mixing,
ηm = 1/2. Our numerical experiments match the latter analytical results and also agree
with the theoretical and numerical result obtained by Hughes et al. (2013) and Gayen et al.
(2013) for ‘free’ 3D-RBC.

Additionally, our numerical experiments showed that the ‘degree of mixing’, 〈χ〉τ ,
which characterises the extent of temperature homogenisation in the inner domain due
to mixing, follows the relationship (5.1). In particular, for Ra � 4π2, 〈χ〉τ = a − b/

√
Ra

with a = 0.97 ± 0.01 and b = 7.1 ± 0.2. The above numerical result suggests that the
degree of mixing might be parametrised in terms of the thermal boundary layer, δBL =
δ∗BL/H ∼ 1/

√
Ra. Here, however, we keep a constant Pr = 7, so future studies should

explore whether the relationship (5.1) shows explicit dependence on Pr and the TBL.
An interesting numerical result is the relationship between the mean APE 〈Eap〉τ and the

Rayleigh number Ra, which shows a linear behaviour in logarithmic scale in the low-Ra
regime. This trend in the low-Ra regime is different to the multiscale, complex relationship
observed in the global Nusselt number as a function of the Rayleigh number. The latter
result might provide new insights into the stored and APE in terms of the forcing state
of the system. The above has potential applications in geothermal reservoir engineering,
since we can relate one of the main non-dimensional parameters of the system, Ra, with
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the thermal energy stored in a reservoir capable of generating hydrothermal convection
and mixing.

To unify 3D-RBC with HS-RBC, we emphasise the need to re-evaluate 3-D thermal
convection data using the Rayleigh number defined as Ra = (α�TgB2H)/(ρcκcνc) with B
the width of the cell and H its height.

Finally, the analytical results here presented are instrumental in quantifying energy and
heat transfer processes across fractures in the Earth’s lithosphere, as well as fractured
environments found in the frozen surface of the moons Enceladus and Europa (Le Gall
et al. 2017; Sparks et al. 2017).
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Appendix A. Dimensional mechanical energy components

Recalling that we use the superscript ‘∗’ to denote dimensional variables, the dimensional
forms of the specific kinetic energy and specific potential energy are determined by E∗

k =
ρc |v∗|2 and E∗

p = gρ̃∗z∗, respectively, with ρ̃∗ = ρ∗ − ρc the Boussinesq density and ρc
the reference density. Considering f ∗ a function, we define its domain average as 〈 f ∗〉 =
(1/LH)

∫ H
0

∫ L
0 f ∗(x∗, z∗) dx∗ dz∗. Then, the global relationship between E∗

p and the total
potential energy, E∗

p,total = gρ∗z∗, is 〈E∗
p,total〉 = K∗

p + 〈E∗
p〉, with K∗

p = gρcH/2 > 0 the
potential energy offset and 〈E∗

p〉 < 0. We should also recall that we have assumed a linear
equation of state that relates temperature and density such that ρ̃∗ = −α(T∗ − Tc), with
α = ρcα̃ and α̃ the thermal expansion coefficient.

Using the non-dimensional form of the potential energy introduced in § 2, the total
potential energy can be written as 〈E∗

p,total〉 = K∗
p + ρcN2H2〈Ep〉, where the natural scale

of potential energy is expressed as ‘ρcN2H2’, with N2 = gα̃�T/H the reference buoyancy
frequency square associated with a temperature difference �T over a vertical distance H.

The dimensional forms of the specific BPE and specific APE are given by (Winters et al.
1995)

E∗
bp = gρ̃∗z∗

� and E∗
ap = gρ̃∗ (z∗ − z∗

�

)
, (A1a,b)

respectively, where z∗
� is the dimensional equilibrium position of fluid parcels in the

domain. Following the same procedure used above, the global relationship between E∗
bp

and the total BPE, E∗
bp,total = gρ∗z∗

� , is 〈E∗
bp,total〉 = K∗

bp + 〈E∗
bp〉, with K∗

bp = gρc〈z∗
�〉 =

gρcH/2 > 0 the background potential energy offset and 〈E∗
bp〉 < 0. The result 〈z∗

�〉 =
H/2 is demonstrated in Appendix B. Thus, it is easy to show that the decomposition
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〈E∗
p,total〉 = 〈E∗

ap,total〉 + 〈E∗
bp,total〉 is equal to the one used in this work, 〈E∗

p〉 = 〈E∗
ap〉 +

〈E∗
bp〉. The non-dimensional form of the last relation is obtained by normalising each of its

terms by the potential energy scale, ρcN2H2.
Since 〈E∗

p〉 < 0, we define the dimensional form of the specific reference potential
energy (RPE) of the system with an explicit minus sign

E∗
rp = −ρcγ

2

N2
1
2

T̃∗2, (A2)

with T̃∗ = T∗ − Tc and γ = gα̃. Thus, the mean reference potential energy 〈E∗
rp〉 is

proportional to the ‘energy’ of the ‘temperature variance’, 〈T̃∗2〉/2, introduced by
Zilitinkevich et al. (2007). By construction, the sign of (A2) allows matching of the energy
pathways of the BPE and RPE components, as shown in figure 2.

The temperature fluctuations are quantified by the dimensional variance, σ ∗2 = 〈T̃∗2〉 −
〈T̃∗〉2. Noticing that 〈T̃∗〉 = �T/2, the domain average of (A2) is written as

〈E∗
rp〉 = −ρcγ

2

2N2

(
σ ∗2 + 1

4
(�T)2

)
. (A3)

Now, let us consider the conductive base state of the system, where the temperature
profile satisfies T∗

s = Tc +�T(1 − z∗/H). For this case, we obtain

〈E∗
rp〉 = − 1

LH

∫ H

0

∫ L

0

ρcγ
2

2N2

(
T∗

s − Tc
)2 dx∗ dz∗ = −gα�TH

6
. (A4)

This is the same value obtained directly from the mean potential energy 〈E∗
p〉, i.e.

〈E∗
p〉 = − 1

LH

∫ H

0

∫ L

0
gz∗α(T∗

s − Tc) dx∗ dz∗ = −gα�TH
6

. (A5)

Therefore, the quantity 〈E∗
rp〉 is understood as the mean energy of the temperature

fluctuations, which is equal to the mean potential energy of the system in the conductive
regime. As the system shifts from a conductive to a convective regime, E∗

p = E∗
dp + E∗

rp,
with E∗

dp the dimensional form of the specific dynamic potential energy component. The
latter can be then expressed as follows:

E∗
dp = −ρcγ T̃∗z∗ + ρcγ

2

2N2 T̃∗2. (A6)

Thus, recalling from § 2 that T = (T∗ − Tc)/�T and z = z∗/H are the non-dimensional
temperature field and non-dimensional height, respectively, the domain average of (A2)
and (A6) can be written in terms of the potential energy scale and non-dimensional
variables

〈E∗
rp〉 = −

(
ρcN2H2

)
1
2 〈T2〉 and 〈E∗

dp〉 =
(
ρcN2H2

) {
−〈zT〉 + 1

2 〈T2〉
}
. (A7a,b)
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Appendix B. Domain average of the reference position z∗
�

Let us consider the dimensional reference position z∗
� (Winters et al. 1995) in the state of

minimum potential energy of an infinitesimal fluid parcel at (t, x) with density ρ∗(t, x) =
ρc − α(T∗(t, x)− Tc) in the 3-D Hele-Shaw cell shown in figure 1,

z∗
�(t, x) = 1

Lb

∫
Ω

H [ρ∗(t, x′)− ρ∗(t, x)
]

dv′, (B1)

where H is the Heaviside step function,Ω is the Hele-Shaw domain of volume ‘LbH’ and
horizontal area ‘Lb’ and z∗

� ∈ [0,H]. Recalling that H can be expressed as

H[x] = lim
ν→0

Hν[x] = lim
ν→0

(
1
2

+ 1
π

arctan
x
ν

)
= 1

2
+ lim
ν→0

[
1
π

∞∑
k=0

(−1)k

2k + 1
x2k+1

ν2k+1

]
,

(B2)

where k = 0, 1, 2, . . . is an integer, then one can write z∗
�(t, x) as follows:

z∗
�(t, x) = 1

Lb

∫
Ω

{
1
2

+ lim
ν→0

[
1
π

∞∑
k=0

(−1)k

2k + 1

(
ρ∗(t, x′)− ρ∗(t, x)

)2k+1

ν2n+1

]}
dv′, (B3a)

= H
2

+
∫
Ω

{
lim
ν→0

[
1
π

∞∑
k=0

(−1)k

2k + 1

(
ρ∗(t, x′)− ρ∗(t, x)

)2k+1

ν2k+1

]}
dv′. (B3b)

Here, we define the domain average of a function f ∗(t, x) as 〈 f ∗〉 = (1/LbH)
∫
Ω

f ∗(t, x) dv.
Applying the above linear operator to z∗

�(t, x) in (B3), we obtain

〈z∗
�〉 = H

2
+ 1

LbH

∫
Ω

∫
Ω

{
lim
ν→0

[
1
π

∞∑
k=0

(−1)k

2k + 1

(
ρ∗(t, x′)− ρ∗(t, x)

)2k+1

ν2k+1

]}
dv′ dv.

(B4)

Using that (ρ∗(t, x′)− ρ∗(t, x))2k+1 = (ρ∗(t, x′)− ρ(t, x))2k (ρ∗(t, x′)− ρ∗(t, x)), we
can rewrite (B4) as

〈z∗
�〉 = H

2
+ I′(t)− I(t), (B5)

with

I′(t) = 1
LbH

∫
Ω

∫
Ω

{
ρ∗(t, x′) lim

ν→0

[
1
π

∞∑
k=0

(−1)k

2k + 1

(
ρ∗(t, x′)− ρ∗(t, x)

)2k

ν2k+1

]}
dv′ dv,

(B6)

I(t) = 1
LbH

∫
Ω

∫
Ω

{
ρ∗(t, x) lim

ν→0

[
1
π

∞∑
k=0

(−1)k

2k + 1

(
ρ∗(t, x′)− ρ∗(t, x)

)2k

ν2k+1

]}
dv′ dv.

(B7)

Thus, noticing that (ρ∗(t, x′)− ρ∗(t, x))2k = (ρ∗(t, x)− ρ∗(t, x′))2k and interchanging
the order of integration in (B6), i.e.

∫
Ω

∫
Ω
(·) dv′ dv = ∫

Ω

∫
Ω
(·) dv dv′, one can show that

I′(t) = I(t) and that the domain average of the reference position is 〈z∗
�〉 = H/2.
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Rayleigh–Bénard convection in Hele-Shaw cells

Appendix C. Hele-Shaw solutions for the temperature field

The Hele-Shaw model was derived by Letelier et al. (2019) from the Navier–Stokes
equation and the advection–diffusion equation for heat transfer, under the Boussinesq
approximation. Using the perturbative parameter δ = b/H, with b the cell’s gap and H
the cell’s height, the temperature field can be expanded as

T(t, x, y, z) = T0(t, x, z)+ δ2[T1(t, x, z)+ α(t, x, z)f ( y)] + O(δ4), (C1)

with α(t, x, z) = −Ra (v0 · ∇T0) and f ( y) = y2(1 − y)2/2 − 1/60. The function (velocity)
v0 is solution of the non-dimensional Darcy equation

v0 = − 1
12

(∇p − T0ẑ
)
, (C2)

while T0 is solution of the non-dimensional advection–diffusion equation

∂T0

∂t
+ v0 · ∇T0 = 1

Ra
∇2T0, (C3)

with ∇ = x̂ ∂/∂x + ŷ ∂/∂y.

Appendix D. Approximation of the potential energy

The actual non-dimensional potential energy of the 3-D Hele-Shaw geometry is given by
the expression

〈Ep〉 = − 1
L′

∫ 1

0

∫ 1

0

∫ L′

0
zT(t, x, y, z) dx dy dz. (D1)

Using the Hele-Shaw solutions introduced in Appendix C, we express the temperature
field as in (C1) and

∫ 1
0 f ( y) dy = 0. Then, computing the latter integral (D1) up to O(δ4)

along the y direction, the non-dimensional potential energy reduces to

〈Ep〉 = − 1
L′

∫ 1

0

∫ L′

0
zθ(t, x, z) dx dz + O(δ4), (D2)

with θ(t, x, z) = T0(t, x, z)+ δ2T1(t, x, z) the gap-averaged temperature field. Notice that
θ(t, x, z) = T(t, x, z) in the heat equation (2.2) introduced § 2.

Appendix E. Approximation of the BPE

The actual non-dimensional BPE of the 3-D Hele-Shaw geometry is given by the
expression

〈Ebp〉 = − 1
L′

∫ 1

0

∫ 1

0

∫ L′

0
z�(T)T(t, x, y, z) dx dy dz, (E1)

where z�(T) = z�(t, x, y, z) is defined as in Winters et al. (1995)

z�(t, x, y, z) = 1
L′

∫ 1

0

∫ 1

0

∫ L′

0
H [T(t, x, y, z)− T(t, x′, y′, z′)

]
dx′ dy′ dz′, (E2)

with H[x] the same Heaviside step function as used in Appendix B. For simplicity, we use
H[T(t, x, y, z)− T(t, x′, y′, z′)] = H[T − T ′], where T ′ refers to prime positions. Also, we
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H.N. Ulloa and J.A. Letelier

consider the notation ∫ 1

0

∫ L′

0
f (x, z) dx dz =

∫
Ω

f (x, z) dυ (E3)

to express integrals over the cell x–z plane. Replacing (E2) into (E1), we obtain the
expressions

〈Ebp〉 = − 1
L′2

∫
Ω

∫ 1

0

(∫
Ω ′

∫ 1

0
H [T − T ′] dy′ dυ ′

)
T dy dυ,

〈Ebp〉 = − 1
L′2

∫
Ω

∫
Ω ′

(∫ 1

0

∫ 1

0
H [T − T ′] T dy′ dy

)
dυ ′ dυ.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(E4)

Using the Hele-Shaw solutions introduced in Appendix C, we express the temperature
field as in (C1) and

∫ 1
0 f ( y) dy = 0. On the other hand, the Heaviside step function can be

approximated as

H[x] = lim
ν→0

Hν[x] = lim
ν→0

[
1
2

+ 1
π

(
x
ν

− x3

3ν3 + . . .

)]
. (E5)

Therefore, the integral I(t, x, z) = ∫ 1
0

∫ 1
0 H[T − T ′]T dy′ dy can be written as

I = lim
ν→0

[
1
2

I0 + 1
π

(
1
ν

I1 − 1
3ν3 I3 + . . .

)]
, (E6)

with I0 = ∫ 1
0

∫ 1
0 T dy′ dy, I1 = ∫ 1

0

∫ 1
0 (T − T ′)T dy′ dy and I3 = ∫ 1

0

∫ 1
0 (T − T ′)3T dy′ dy. It

is easy to show that

I0 =
∫ 1

0

∫ 1

0
T(t, x, y, z) dy′ dy =

∫ 1

0
T(t, x, y, z) dy = θ(t, x, z)+ O(δ4), (E7)

with θ(t, x, z) = T0(t, x, z)+ δ2T1(t, x, z). Then, the integral I1 can be written as

I1 =
∫ 1

0

∫ 1

0
(T − T ′)T dy′ dy =

∫ 1

0
T2 dy −

(∫ 1

0
T dy

)(∫ 1

0
T ′ dy′

)
. (E8)

Since T2 = T2
0 + 2δ2T0 [T1 + αf ( y)] + O(δ4) = θ2 + 2δ2α T0f ( y)+ O(δ4), therefore,

the integral I1 is reduced to

I1 = θ2 − θθ ′ + O(δ4) = (θ − θ ′)θ + O(δ4). (E9)

Similarly, the integral I3 can be written as

I3 =
∫ 1

0

∫ 1

0
(T − T ′)3T dy′ dy =

∫ 1

0
T4 dy − 3

(∫ 1

0
T3 dy

)(∫ 1

0
T ′ dy′

)

+ 3

(∫ 1

0
T2 dy

)(∫ 1

0
T ′2 dy′

)
−
(∫ 1

0
T dy

)(∫ 1

0
T ′3 dy′

)
. (E10)
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Rayleigh–Bénard convection in Hele-Shaw cells

Given that Tn = Tn
0 + nδ2T(n−1)

0 (T1 + αf ( y))+ O(δ4) = θn + nδ2αT0f ( y)+ O(δ4),
then I3 can be reduced to

I3 = (θ3 − 3θ2θ ′ + 3θθ ′2 − θ ′3)θ + O(δ4) = (θ − θ ′)3θ + O(δ4). (E11)

The above procedure can be applied for the next integrals of the series expansion (E6)

I2k+1 =
∫ 1

0

∫ 1

0
(T − T ′)(2k+1)T dy′ dy, k = 2, 3, 4, . . . , (E12)

allowing the reconstruction of (E6). Thus, we obtain the expression

I(t, x, z) =
∫ 1

0

∫ 1

0
H [T − T ′] T dy′ dy = H[θ − θ ′]θ + O(δ4). (E13)

Using the latter result, the non-dimensional BPE in (E4) is determined by the following
expression:

〈Ebp〉 = − 1
L′2

∫
Ω

∫
Ω ′

I(t, x, z) dυ ′ dυ = − 1
L′2

∫
Ω

(∫
Ω ′

H[θ − θ ′] dυ ′
)
θ dυ + O(δ4).

(E14)

Thus, defining z�(θ) = (1/L′)
∫
Ω ′ H[θ − θ ′] dυ ′, (E14) can be reduced to

〈Ebp〉 = − 1
L′

∫
Ω

z�(θ)θ dυ + O(δ4) = − 1
L′

∫ 1

0

∫ L′

0
z�(θ)θ dx dz + O(δ4), (E15)

which is the non-dimensional BPE for the 2-D Hele-Shaw model introduced in § 3.
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