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We trained a computer vision algorithm to identify 45 species of snakes from photos and
compared its performance to that of humans. Both human and algorithm performance is
substantially better than randomly guessing (null probability of guessing correctly given 45
classes � 2.2%). Some species (e.g., Boa constrictor) are routinely identified with ease by
both algorithm and humans, whereas other groups of species (e.g., uniform green snakes,
blotched brown snakes) are routinely confused. A species complex with largely molecular
species delimitation (North American ratsnakes) was the most challenging for computer
vision. Humans had an edge at identifying images of poor quality or with visual artifacts.
With future improvement, computer vision could play a larger role in snakebite
epidemiology, particularly when combined with information about geographic location
and input from human experts.
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INTRODUCTION

Snake identification to the species level is challenging for the majority of people (Henke et al., 2019;
Wolfe et al., 2020), including healthcare providers who may need to identify snakes (Bolon et al.,
2020) involved in the ∼5 million snakebite cases that take place annually worldwide (Williams et al.,
2019). The current gold standard in the clinical management of snakebite is identification by an
expert (usually a herpetologist; Bolon et al., 2020; Warrell, 2016), but experts are limited in their
number, geographic distribution, and availability. Snakes are never identified in nearly 50% of
snakebite cases globally (Bolon et al., 2020) and even in developed countries with detailed record
keeping, species-level identification of snakes in snakebite cases could be improved. For instance,
only 5% of snake bites in the United States from 2001 to 2005 were reported at the species level and
30% of bites were from totally unknown snakes (Langley, 2008); more recently, only 45% of snake
bites in the United States from 2013 to 2015 were identified to the species level (Ruha et al., 2017).

Computer vision canmake an impact by speeding up the process of suggesting an identification to
a healthcare provider or other person in need of snake identification. Once just a dream (Gaston and
O’Neill, 2004), AI-based identification exists for other groups of organisms (e.g., plants, fishes,
insects, birds; Hernández-Serna and Jiménez-Segura, 2014; Barry 2016; Seeland et al., 2019;
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Wäldchen et al., 2018; Wäldchen and Mäder, 2018) but all
applications for snakes have so far been quite limited in scope
(James et al., 2014; Amir et al., 2016; James, 2017; Joshi et al., 2018;
Joshi et al., 2019; Rusli et al., 2019; Patel et al., 2020), being focused
on only a few species or using only high-quality training images
from a limited number of individuals often taken under captive
conditions that do not reflect the variation in quality and
background that characterize photos taken by amateurs in the wild.

Performance of computer vision algorithms depends on the
quality of the training data as well as on the learning mechanism.
Generating realistic and unbiased training and testing data is a
major challenge for most computer vision applications, especially
for species of animals, which have greater intraclass (inter-
individual) variation than manufactured objects such as street
signs or license plates (Stallkamp et al., 2012). Although models
that are pre-trained on generic publicly available image datasets
(e.g., ImageNet, Object Net) can meet or exceed state-of-the-art
performance on several vision benchmarks after fine-tuning on just
a few samples (Barbu et al., 2019), biodiversity is so vast that
targeted labeled training datasets where each species represents one
class must be used to achieve desired performance benchmarks.

An ideal diagnostic tool for snakebite would support healthcare
providers in reporting the taxonomic identity of biting snakes,
which would vastly improve articulation of taxonomic names of
snake species with medical records of bite symptoms and improve
snakebite epidemiology data, responses to specific treatment, and
antivenom efficacy [see also Garg et al. (2019) for discussion of this
problem with genetic resources]. In certain cases, improved snake
identification capacity could also aid in clinical management; for
example, asymptomatic patients with bites from non-venomous
snakes could be released sooner, and knowing which species of
medically important venomous snake (which make up ∼20% of all
snake species) is involved could allow healthcare providers to select
among a possible diversity of monovalent or polyvalent
antivenoms and anticipate the appearance of particular
symptoms. Currently, the approach to all these diagnostics is
primarily syndromic—in the absence of herpetological expertise,
many healthcare providers await the appearance of symptoms and
then treat based on a diagnosis made from these symptoms.

Our goal was to develop a computer vision algorithm to
identify species of snakes to support healthcare providers and
other health professionals and neglected communities affected by
snakebite (Ruiz De Castaneda et al., 2019). Our project is a use
case of the ITU-WHO Focus Group on “AI for Health” (Wiegand
et al., 2019), with the aim of creating “a rigorous, standardised
evaluation framework” in order to promote the responsible
adoption of algorithmic decision-making tools in health. In
our opinion, an ideal benchmark in snake identification would
be >99% top-1 identification accuracy to the species level from a
single photo of low quality.

METHODS

Classes and Training Dataset
Although there are >3,700 species of snakes worldwide (Uetz
et al., 2020), 600–800 of which are medically important (Uetz

et al., 2020), we chose to initially focus on 45 of the most well-
represented species, each with ≥500 photos per species (i.e., per
class). We gathered a total of 82,601 images from open online
citizen science biodiversity platforms (iNaturalist, HerpMapper)
and photo sharing sites (Flickr). The photos were labeled by users
of these platforms; either by the user who uploaded the photo
(Flickr, HerpMapper) or through a consensus reached by users
who viewed the photo and submitted an identification
(iNaturalist; see Hochmair et al., 2020 for a synopsis). The
data from iNaturalist were collected Oct 24, 2018 using the
iNaturalist export tool (https://www.inaturalist.org/
observations/export) with the parameters quality_
grade�research&identifications�any&captive�false&taxon_id�85553.
The HerpMapper data were provided via a partner request on 19
Sept 2018 (see https://www.herpmapper.org/data-request). The
Flickr data were collected Nov 5, 2018 using a python script
(https://github.com/cam4ani/snakes/blob/master/get_flickr_
data.ipynb). The full training dataset can be accessed at
(https://datasets.aicrowd.com/aws-eu-central1/aicrowd-static/datasets/
snake-species-identification-challenge/train.tar.gz)

In order to improve the accuracy of labels used for image
classification, we employed several best practices. For the
iNaturalist data, only “research grade” observations, which
require a community-supported and agreed-upon
identification at the species taxonomic rank, were used.
Additionally, we selected a subset (N � 336) of these images
for additional label validation by human experts (Durso et al.,
2021) and found that just five (1.5%) were misidentified (these
have been corrected on iNaturalist). HerpMapper is used
primarily by experienced enthusiasts with a lot of experience
in snake identification; we found no misidentifications in the
subset (N � 200) we examined. Finally, we used only scientific
names in our Flickr search to target photographers with a more
serious interest in biodiversity. We found no misidentifications in
the subset (N � 63) we examined, although one image showed
only the habitat without an actual snake. Subset sample sizes were
chosen to represent 0.5% of the total dataset from each source.
Human experts (N � 250) were recruited via social media,
targeting Facebook groups that specialize in snake
identification (Durso et al., 2021) as well as by email or
private messages over iNaturalist to top identifiers. Because of
privacy issues, we were unable to collect demographic
information about this community of experts. Their accuracy
in aggregate was 43% at the species level, 56% at the genus level,
and 75% at the family level, with important variation among
individuals, snake species, and global region (Durso et al., 2021).

The distribution of photos among classes was unequal: the
class with the most photos had 11,092, while the class with the
fewest photos had 517. Some species classes have high intraclass
variance (Figure 1), due to geographic and ontogenetic variation
(e.g., Manier, 2004), and to color and pattern polymorphism (e.g.,
Shannon and Humphery, 1963; Cox et al., 2012), and others have
very low interclass variance (Figure 1), due to morphological
similarity among closely related species as well as inter-species
and even inter-family mimicry (e.g., Sweet, 1985; Akcali and
Pfennig, 2017). The 45 species we used are found largely in North
America (42 species in 19 genera; see Appendix I for a full list),
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with two Eurasian species (Hierophis viridiflavus and Natrix
natrix) and one Central/South American species (Boa
constrictor). An interactive version of Figure 1 is available at
https://chart-studio.plotly.com/∼amdurso/1/#/.

Algorithm Development Challenge
We used the platform AICrowd, which takes a collaborative
approach to the development of algorithms, by inviting data
science experts and enthusiasts to collaboratively solve real-world
problems by participating in challenges in which the solutions are
automatically evaluated in real-time. On January 21, 2019, we
launched a “Snake Species Identification Challenge”. The first
round lasted until May 31, 2019, and the second round (during
which live code collection was implemented) until July 31, 2019.
We offered prizes as incentives for the best algorithms submitted
(a travel grant and co-authorship on this manuscript). A total of
24 participants made 356 submissions, resulting in five
algorithms with an F1 ≥ 0.75 and a top score of F1 � 0.861
with a log-loss � 0.53.

Test Datasets
We evaluated the identification accuracy of the submitted
algorithms using two test datasets (TD2 and TD3), both
distinct from the training dataset described above and its
subset (TD1) used for pre-submission testing by the challenge
participant (Table 1). One (TD2) was made up of 42,688 photos
of the same 45 species of snakes submitted to iNaturalist between
January 1, 2019 and September 2, 2019 (after the beginning of our
challenge; range 23–6,228 photos per class). The other (TD3) was
made up of 248 undisclosed images from 27 classes (1–10 images
per class) that were collected from private individuals. Many of

the images in this dataset were purposefully chosen to be as
difficult to identify as possible—e.g., low resolution, out of focus,
with the snake filling only a small part of the frame, and/or
obscured by vegetation. The identity of species in these images
was confirmed by a herpetologist (A. Durso) and they were used
in a citizen science challenge where they were presented to
participants recruited from online snake identification
communities (largely Facebook snake identification groups and
iNaturalist) who suggested species identifications, resulting in
68–157 labels of 5–47 classes per image (Durso et al., 2021). We
further subdivided TD3 to take all 45 classes into account (TD3a;
for fairer comparison with human labeling, because humans were
allowed to choose any of the >3,700 snake species classes from a
list), and to evaluate only the 27 classes in common (TD3b; for
fairer comparison with TD2).

Winning Algorithm
Applying large, deep convolutional neural networks for image
classification is a well-studied problem (Krizhevsky et al., 2012;
Huang et al., 2017; He et al., 2019). The top algorithmmade use of
incremental learning in neural networks and incorporated
elements of EfficientNet from Google Brain (Tan and Le,
2019), a pre-trained network from ILSRVC (Russakovsky
et al., 2015), discriminative learning, cyclic learning rates and
automated image object detection (Figure 2).

As shown by Kornblith et al. (2019), models trained on a
standard data distribution generalize better than the models
trained from scratch. The ImageNet Large Scale Visual
Recognition Competition (ILSVRC) dataset is the most widely
used dataset for benchmarking image classifiers, comprising 1.2
million images classified into 1,000 different classes. The winning

FIGURE 1 | Examples of high intra-class (i.e., intra-species) and low inter-class (i.e., inter-species) variance among snake images. All photos by Andrew M. Durso
(CC-BY).
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solution applied incremental learning on a pre-trained
EfficientNet network. Specifically, this involved retaining what
the model has learned from the ILSVRC dataset and performing
incremental learning on the snake species domain. The final layer
from the pretrained network was removed and replaced with a
domain specific head, a fully connected layer of size 45, each
representing the probability of the snakes being in a particular
class. Discriminative learning strategy was also used to train the
network. Specifically, different layers of the network are
responsible for capturing different types of information
(Yosinski et al., 2014) and discriminative learning allows us to
set the rate at which different components of the network learn.

The initial layers are trained at much lower learning rates to
inhibit the loss of learned information while the final layers are
trained at higher learning rates. A general update to model
parameters ⍵ at time step t looks like:

ωt � ωt−1 − λ.ΔωJ(ω)
where λ denotes the learning rate and ΔωJ(ω) denotes the
gradient with respect to the model’s objective function. In
discriminative learning, the model is split into N components,
{ω1, ω2,. . .ωN} where ωn contains the layers of the nth component
of the model. Each component can have any number of layers. An
update to model parameters then becomes:

TABLE 1 | Summary of three test datasets used to evaluate identification accuracy of top algorithm. Performance of humans on TD3a yielded F1 � 0.76, accuracy � 68%,
error � 32%, and on TD3b F1 � 0.79, accuracy � 79%, error � 21%. *The winning F1 high score of 0.861 reported above comes from a different randomly generated
subset, not reported here in detail.

Test dataset TD1 TD2 TD3a TD3b

# of images 16,483 42,688 248
# of classes 45 45 27
# of classes used
to compute F1

45 45 45 27

Minimum # of
images per class

94 23 1

Maximum # of
images per class

2,226 6,228 10

F1 score 0.83* 0.83 0.53 0.73
Log-loss 0.49 0.66 1.19 1.03
Accuracy 87% 84% 73% 72%
Error 13% 16% 27% 28%
Dataset
description

Subset of training dataset. Used for
pre-submission testing by winning
challenge participant

Photos submitted to
iNaturalist after the beginning
of our challenge

Photos collected from private individuals and social media and labeled by
human experts (71–156 labels per image)
When all 45 classes were taken into
account (for fairer comparison with
human labeling)

When only 27 classes were taken into
account (for fairer comparison with
TD1 and TD2)

FIGURE 2 | Diagram of overall pipeline including both object detection and classification.
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ωn
t � ωn

t−1 − λn.ΔωJ(ω)
where λn denotes the learning rate of the nth component of
the model.

In the first attempt, an image classifier was trained using
progressive resizing, starting with Densenet121 (Huang et al.,
2017) architecture with a modified focal loss function (Lin et al.,
2017) for multi-class image classification and resizing image sizes
from (256,256) → (384,384) → (512,512) → (768,768) →
(1024,1024). Using this as an initial method, the scores plateaued
at F1 ∼0.67. As an alternative, a new image classifier was trained
from scratch using Resnet152 with modifications as suggested by
Bag of tricks (He et al., 2019) called XResnet152 (152 indicating the
number of layers). This time, the scores plateaued at ∼0.75.

Adding a preprocessing pipeline to predict the four coordinates
of the corners of the box bounding the snake itself (which may be
any size and shape and in any orientation within the image, against
any background) and crop the images, as well as handling
orientation variance, was accomplished by annotating 30–32
images from the training dataset from each species category
using an annotation tool called sloth (https://github.com/
cvhciKIT/sloth/). Pipelining preprocessing and training with
XResnet architecture together increases the accuracy to 0.78–0.79.

Finally, a pre-trained EfficientNet (Tan and Le, 2019), which
balances the depth of the architecture, the width of the
architecture [Mobile Inverted Bottleneck Convolutional block
(Sandler et al., 2018) with Swish activation function
(Ramachandran et al., 2017)], image resolution and uses
appropriate drop-outs, was fine-tuned using preprocessed
images. Our winning algorithm carefully tuned hyper-
parameters for EfficientNetB0 (Supplementary Figure S1) and
used the exact same parameters for EfficientNetB5
(Supplementary Figure S2), although it is expected that
higher accuracy is possible using the more time-intensive
checkpoints/pretrained weights for B6 and B7 and by fine-
tuning EfficientNetB6/B7 pre-trained on ImageNet. Some of
the best hyperparameters required to train the EfficientNet

include: 1) taking off the final layer of EfficientNetB5 and
adding a single layer of size 45 (fastai adds an additional layer,
which was not optimal for this case); 2) using the
LabelSmoothingCrossEntropy Loss function; 3) using
RMSProp optimizer with centered � True; 4) setting bn_wd �
false, no batchnorm weight decay; 5) training with discriminative
learning; 6) using resize method as SQUISH and not CROP; 7) no
mixup augmentation; 8) use rotation augmentation (rotating the
training image from −90 to +90 with a probability of 0.8) as
shown in Figure 3; and 9) training on 95% of the dataset instead
of the 80–20 split.

The network was trained on a single Tesla V100 GPU with a
batch size of 8 for 12 epochs. The learning rate schedule is shown
in Figure 4. Each epoch took approximately 55 min for
completion. Other approaches that were tried but did not
work include building a genus classifier to predict the snake
genus and then the snake species within genus, focal loss, a
weighted sampler/oversampling and batch accumulation
(updates happen every n epochs, where n > 1).

The algorithm and readme are available at https://github.com/
GokulEpiphany/contests-final-code/tree/master/aicrowd-snake-
species.

RESULTS AND DISCUSSION

First Test Dataset (TD1)
A confusionmatrix generated using TD1 (a withheld subset of the
training data) is shown in Figure 5. Species classification accuracy
ranged from 96% for Rhinocheilus lecontei to 35% for
Pantherophis spiloides. Interclass confusion was 0 for 1332/
2025 (66%) of class pairs. F1 for this dataset was 0.83 and log-
loss was 0.49 (Table 1). Relatively high confusion remains
between some similar species pairs. In particular, the three
putative species of the Pantherophis obsoletus (North
American ratsnake) complex (Burbrink, 2001) were frequently
confused (Table 2).

FIGURE 3 | Rotation augmentation of a sample image.

Frontiers in Artificial Intelligence | www.frontiersin.org April 2021 | Volume 4 | Article 5821105

Durso et al. Snake Species Recognition From Photographs

https://github.com/cvhciKIT/sloth/
https://github.com/cvhciKIT/sloth/
https://github.com/GokulEpiphany/contests-final-code/tree/master/aicrowd-snake-species
https://github.com/GokulEpiphany/contests-final-code/tree/master/aicrowd-snake-species
https://github.com/GokulEpiphany/contests-final-code/tree/master/aicrowd-snake-species
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Among species that are uncontroversially delimited, there
were seven species pairs with confusion >10% in TD1 (max �
26% for Thamnophis elegans as Thamnophis sirtalis; Table 3).

The highest confusion between species in different genera was
Natrix natrix as Thamnophis sirtalis (7%). Although these genera
are found in different hemispheres, confusion among

FIGURE 4 | Max learning rate schedule and corresponding F1 score.

FIGURE 5 | Confusion matrix for the top algorithm, using TD1 and an 80-20 split (subset of training data). The final model was trained on a 95-5 split. For an
interactive version see https://chart-studio.plotly.com/~amdurso/1/#/.
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co-occurring genera exceeded 5% for Coluber constrictor as
Pantherophis alleghaniensis (6%) and for Lichanura trivirgata
as Crotalus atrox (5%). The last is particularly troubling because
Lichanura trivirgata is a harmless boid whereasCrotalus atrox is a
large, potentially dangerous rattlesnake; these species co-occur in
the Sonoran Desert and are probably frequently photographed
against similar backgrounds (Rorabaugh, 2008). Other frequently
confused intergeneric and intercontinental species pairs were
Hierophis viridiflavus (as Thamnophis sirtalis and as
Masticophis flagellum; both 5%) and Natrix natrix (as Nerodia
rhombifer; 5%).

Second Test Dataset (TD2)
In our second test dataset (TD2, containing images for all 45
classes taken from iNaturalist after the challenge had started),
F1 � 0.83 and log-loss � 0.66 (Table 1). Species classification
accuracy ranged from 97% for Pantherophis guttatus to 61% for
Pantherophis alleghaniensis. Interclass confusion was 0 for 1118/
2025 (55%) of class pairs. Again, the most frequently confused
were members of the Pantherophis obsoletus complex (Table 2).

Among species that are uncontroversially delimited, there
were five species pairs with confusion >10% in TD2 (Table 3).
The highest confusion among species in different genera was
Pituophis catenifer as Lichanura trivirgata (14%). As in TD1,
Pituophis catenifer and Lichanura trivirgata co-occur in the
Sonoran Desert and are probably frequently photographed
against similar backgrounds, although they are dissimilar in
appearance. The highest confusion among species/genera
found on different continents in TD2 was Coluber constrictor
as Hierophis viridiflavus (7%). Both are slender, fast-moving,
diurnal snakes, and the subspecies H. v. carbonarius (sometimes
considered a full species; Mezzasalma et al., 2015) from Italy is all
black, making it very similar in appearance to adult forms of C. c.
constrictor and C. c. priapus in the eastern United States.

Species pairs that were commonly confused in both TD1 and
TD2 were Coluber constrictor as Pantherophis alleghaniensis (9%;
also confused 6% of the time in TD1), Opheodrys vernalis as
Opheodrys aestivus (8%; also confused 23% of the time in TD1)
and Nerodia fasciata as Nerodia erythrogaster (7%; also confused
11% of the time in TD1).

Third Test Dataset (TD3)
In our third test dataset (TD3, containing images for just 27 of
the 45 classes hand-selected from other sources), F1 � 0.53 and

log-loss � 1.19 when all 45 classes were considered (TD3a), and
F1 � 0.73 and log-loss � 1.03 when only the 27 classes relevant to
both datasets were considered (TD3b; Table 1). In TD3, species
classification accuracy ranged from 100% for 10 species to 25%
for Nerodia erythrogaster. Interclass confusion was 0 for 648/729
(89%) of class pairs.

Among species that are uncontroversially delimited, there
were 23 pairs with confusion >10% in TD3 (Table 3),
including two that were also commonly confused in both TD1
and TD2 (Opheodrys vernalis as Opheodrys aestivus; 33% in TD3,
8% in TD2, 23% in TD1; Nerodia fasciata as Nerodia
erythrogaster; 25% in TD3, 7% in TD2, 11% in TD1) and one
that was also commonly confused in TD1 (Storeria
occipitomaculata as Storeria dekayi; 18% in TD3 vs 10% in
TD1). The highest confusion among species in different
genera was 25% for two species pairs (Heterodon platirhinos as
Nerodia erythrogaster and Storeria occipitomaculata as Nerodia
erythrogaster) and the highest confusion among species that do
not occur in sympatry was Charina bottae as Haldea striatula
(22%) (see Table 3 for detailed comparison).

When we asked human experts to identify the same images,
they performed slightly better overall (species-level F1 � 0.76 for
45 classes, F1 � 0.79 for 27 classes; Table 1), with significant
variation among species (Durso et al., 2021). Humans correctly
labeled the 248 images in TD3 at the species level 53% of the time
(N � 26,672), although this varied by species from 83% for
Agkistrodon contortrix to 30% for Nerodia erythrogaster.

Thirteen species pairs were confused >10% of the time by
humans, five of which also exceeded 10% in at least one of the
three test datasets and all but one of which involved species that
were also commonly confused by the algorithm (Table 3).
Among frequently confused species from TD1 and TD2,
humans only had the option to select “Black Ratsnake
complex”, so there were no opportunities for confusion among
the three putative species (P. obsoletus, P. alleghaniensis, and P.
spiloides). Recent changes to taxonomy resulting in unfamiliar
names may also hinder human experts’ ability to identify snakes
(Carrasco et al., 2016), which could partially explain why e.g.,
Haldea striatula (more widely known as Virginia striatula in
recent decades; Powell et al., 1994; McVay and Carstens, 2013)
was correctly identified to the species level by humans only 31%
of the time, or why Lampropeltis californiae was identified as
Lampropeltis getula (the species from which it was split; Pyron
and Burbrink, 2009) 23% of the time.

TABLE 2 |Confusion among putative species of the North American Ratsnake (Pantherophis obsoletus) complex (Burbrink, 2001) in TD1 and TD2 (the three putative species
were combined in TD3). The identity of species in training and testing data was done exclusively from photos, taking into account the geographic location but not
information from scale counts or DNA.

Correct ID of testing
image

ID suggested by algorithm Percent
confusion in TD1

Percent
confusion in TD2

P. spiloides P. obsoletus 0.31 0.11
P. spiloides P. alleghaniensis 0.25 0.08
P. alleghaniensis P. obsoletus 0.13 0.07
P. alleghaniensis P. spiloides 0.08 0.20
P. obsoletus P. alleghaniensis 0.05 0.10
P. obsoletus P. spiloides 0.04 0.13
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Some of the images in this dataset were purposefully chosen
to be as difficult to identify as possible—e.g., low resolution, out
of focus, with the snake filling only a small part of the frame,
and/or obscured by vegetation. Stallkamp et al. (2012) also
found that humans were superior to computer vision at
identifying images with visual artifacts (e.g., traffic signs with
graffiti or a lot of glare).

Patterns Across Test Datasets
Because TD1 is a withheld subset of the training data and TD2
was collected using very similar methods, their similarity to the
training data is very high. In contrast, TD3 images were selected
to be representative of realistic difficult cases. We suggest that this

explains the drop in performance for TD3, because image datasets
often have built-in biases that are difficult to pinpoint and tests of
cross-dataset generalization are rare (Dollár et al., 2009) but
generally show that algorithms perform better on their
“native” test sets (here, TD1 and TD2) than on entirely novel
testing datasets (here, TD3) (Torralba and Efros, 2011). Of the
types of bias discussed by Torralba and Efros (2011), we took
pains to eliminate or account for label bias (inconsistent category
definitions across datasets) by using the same snake taxonomy
consistently and paying particular attention to cases where
instability in species definitions might sabotage identification
predictions. Our dataset is probably most susceptible to
capture bias (photographers tending to take pictures of objects

TABLE 3 | Confusion among species that are uncontroversially delimited, showing only pairs with confusion >10% in TD1, TD2, or TD3 (by algorithm or humans). MIVS �
medically important venomous snakes.

Correct ID Given ID TD1 TD2 TD3 Humans-all Humans-45 Humans-27
(with geo)

Geo-overlap MIVS

Thamnophis elegans Thamnophis sirtalis 0.26 0.18 0.10 0.06 0.11 Y Neither
Opheodrys vernalis Opheodrys aestivus 0.23 0.08 0.33 0.24 0.13 0.24 Y Neither
Thamnophis ordinoides Thamnophis sirtalis 0.19 NA NA NA Y Neither
Crotalus scutulatus Crotalus atrox 0.13 0.22 0.14 NA Y Both
Nerodia fasciata Nerodia erythrogaster 0.11 0.07 0.25 0.04 0.02 0.02 Y Neither
Nerodia erythrogaster Nerodia sipedon 0.10 0.19 0.10 0.15 Y Neither
Storeria occipitomaculata Storeria dekayi 0.10 0.18 0.22 0.12 0.06 Y Neither
Nerodia sipedon Nerodia erythrogaster 0.17 0.02 0.01 0.02 Y Neither
Thamnophis sirtalis Thamnophis radix 0.15 0.10 0.05 NA Y Neither
Pituophis catenifer Lichanura trivirgata 0.14 0.00 0.00 NA Y Neither
Thamnophis sirtalis Thamnophis elegans 0.12 0.06 0.03 0.12 Y Neither
Opheodrys aestivus Opheodrys vernalis 0.11 0.19 0.10 0.24 Y Neither
Heterodon platirhinos Nerodia erythrogaster 0.25 0.01 0.00 0.00 Y Neither
Storeria occipitomaculata Nerodia erythrogaster 0.25 0.00 0.00 0.00 Y Neither
Charina bottae Haldea striatula 0.22 0.01 0.00 0.01 N Neither
Agkistrodon contortrix Thamnophis elegans 0.17 0.00 0.00 0.00 N False negative
Agkistrodon contortrix Agkistrodon piscivorus 0.14 0.04 0.02 0.11 Y Both
Pantherophis obsoletus Agkistrodon piscivorus 0.14 0.02 0.01 <0.01 Y False negative
Haldea striatula Diadophis punctatus 0.14 0.16 0.10 0.02 Y Neither
Agkistrodon piscivorus Heterodon platirhinos 0.14 <0.01 0.00 0.03 Y False negative
Storeria dekayi Masticophis flagellum 0.14 0.01 0.01 0.00 Y Neither
Heterodon platirhinos Pantherophis obsoletus 0.12 0.03 0.02 <0.01 Y Neither
Storeria dekayi Haldea striatula 0.11 0.02 0.01 0.04 Y Neither
Crotalus horridus Agkistrodon contortrix 0.10 0.01 0.00 <0.01 Y Both
Haldea striatula Agkistrodon contortrix 0.10 0.00 0.00 0.00 Y False positive
Crotalus scutulatus Crotalus adamanteus 0.10 0.04 0.03 0.01 N Both
Pantherophis guttatus Crotalus horridus 0.10 0.00 0.00 <0.01 Y False positive
Pituophis catenifer Crotalus horridus 0.10 0.01 0.00 <0.01 Y (barely) False negative
Agkistrodon piscivorus Pituophis catenifer 0.10 0.00 0.00 <0.01 Y (barely) False negative
Masticophis flagellum Pituophis catenifer 0.10 0.01 0.00 0.02 Y Neither
Pantherophis guttatus Pituophis catenifer 0.10 0.00 0.00 0.01 N Neither
Thamnophis radix Thamnophis sirtalis 0.23 Y Neither
Nerodia erythrogaster Nerodia fasciata 0.19 0.33 Y Neither
Lampropeltis triangulum Pantherophis guttatus 0.17 Y Neither
Nerodia erythrogaster Agkistrodon piscivorus 0.15 Y False positive
Agkistrodon piscivorus Agkistrodon contortrix 0.13 Y Both
Hierophis viridiflavus Natrix natrix 0.13 Y Neither
Nerodia sipedon Nerodia fasciata 0.11 0.11 Y Neither
Storeria dekayi Storeria occipitomaculata 0.19 Y Neither
Nerodia fasciata Nerodia sipedon 0.15 Y Neither
Pantherophis guttatus Lampropeltis triangulum 0.14 Y Neither
Natrix natrix Hierophis viridiflavus 0.14 Y Neither
Diadophis punctatus Haldea striatula 0.12 Y Neither
Haldea striatula Carphophis amoenus 0.10 Y Neither
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in similar ways) and perhaps to selection bias (source datasets
that prefer particular kinds of images). Future studies should
address the trade-offs between effort and information gain that
may result from attempting to acquire images taken from
particular angles or of particular anatomical features (Rzanny
et al., 2017; Rzanny et al., 2019).

Species that were consistently identified with high accuracy
across the three test datasets include:

• Boa constrictor (Boa Constrictor) had the highest average F1
(Figure 6), the fourth highest average recall (Supplementary
Figure S3) and the third highest average precision
(Supplementary Figure S4), as well as among the lowest
average false positive (6.3 ± 2.7%) and average false negative
(4.0 ± 2.3%) rates, across the three test datasets. These large,
iconic snakes are easily recognized and there are few similar
species with which they could be confused, especially within
their range. Potential for confusion with large Python and
Eunectes (anaconda) species exists. Several recent studies
have suggested that Boa constrictor is likely to be a species
complex containing as many as nine species (see Reynolds
and Henderson, 2018 for a summary).

• Lichanura trivirgata (Rosy Boa) had the highest average
recall (true positive rate) across three test datasets (95.7 ±
3.3%; Supplementary Figure S3). These short, stocky
snakes are native to southwestern North America and are
quite distinct in shape within their range; they most closely
resemble species of Eryx (sand boas) from the Middle East
and south Asia, which were not represented in our dataset.
However, this species had only moderate average precision;
in particular, it was confused with other species that are
often photographed against similar backgrounds (e.g.,
Crotalus atrox in TD1, Pituophis catenifer in TD2).

• Pantherophis guttatus (Red Cornsnake) had the highest
average precision (positive predictive value) across three
test datasets (98.1 ± 1.6%; Supplementary Figure S4). These
snakes are native to the southeastern United States and are
common in the pet trade. Our dataset may contain more
images of captive P. guttatus than any other species,
although we attempted to filter these out. The impact of
incorporating images of captive snakes in training data
intended to be used for identifying wild snakes is not well
understood, but the plethora of designer color morphs that
have been produced by captive breeding of cornsnakes

FIGURE 6 | Average F1 across three test datasets for all 45 species.
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probably influences the algorithm’s ability to recognize this
species.

• Rhinocheilus lecontei (Long-nosed Snake) had the second-
highest average precision (97.2 ± 0.6%; Supplementary
Figure S4) and second-highest average F1 (94.3 ± 4.4%;
Figure 6) and relatively high average recall (91.8 ± 8.8%;
Supplementary Figure S3). This species is placed in its own
monotypic genus, but it is part of a mimicry complex
including its non-venomous relatives in the genera
Lampropeltis (kingsnakes and milksnakes) and Cemophora
(Scarletsnake) (as well as many other mimics in Central and
South America) and their dangerous models in the genera
Micrurus and Micruroides (coralsnakes) (Savage and
Slowinski, 1992; Davis Rabosky et al., 2016). The mimicry
of Rhinocheilus is not as exact as that of many species, but
addition of similar species to the training dataset would
certainly increase the computer vision algorithm’s confusion
of species that currently have low confusion (e.g.,
Rhinocheilus lecontei could be confused with several
Lampropeltis species on which the algorithm is not
currently trained; Shannon and Humphery, 1963; Manier,
2004).

Species groups that were consistently confused across the three
test datasets include:

• The two greensnake species in the genus Opheodrys: O.
aestivus (Rough Greensnake) and O. vernalis (Smooth
Greensnake; formerly placed in the genus Liochlorophis).
Average F1 across test datasets and species was 81.4 ± 6.9%
(Figure 6). These sister taxa are similar in their bright green
color, slender bodies, small size, and gestalt; they differ
anatomically mainly in that O. aestivus has keeled dorsal
scales in 17 rows, whereas O. vernalis has smooth dorsal
scales in 15 rows, subtle characteristics that may not be
discernible in photos that are not taken at close range.
Habitat and geographic range are also useful in
distinguishing them (Ernst and Ernst, 2003). Although
telling Opheodrys species apart is not likely to ever be
clinically or epidemiologically useful, there are many
other solid bright green snakes lacking easy-to-distinguish
features in Africa, including non-venomous Philothamnus
and Hapsidophrys as well as some highly dangerous
Dispholidus (boomslangs) and Dendroaspis (mambas); see
e.g., Broadley and Fitzsimons (1983) and Chippaux and
Jackson (2019).

• Watersnake species in the genus Nerodia, especially N.
fasciata (Banded Watersnake), N. erythrogaster (Plain-
bellied Watersnake), and N. sipedon (Northern
Watersnake). Average F1 across test datasets and species
was 75.9 ± 13.8% (Figure 6). All species in this genus are
brown and blotched, but they can be reliably identified
using differences in dorsal and ventral pattern, scalation,
and range (Gibbons and Dorcas, 2004). However, a photo
that does not show the posterior part of the body (where
the alignment of blotches is an important characteristic) or
the venter (which is commonly concealed in photos) may

represent a challenging ID for a human, especially in the
absence of geographic information. Again, telling Nerodia
species apart is not likely to ever be clinically or
epidemiologically useful, but they are often confused
with Agkistrodon piscivorus (Cottonmouth) by
laypeople, and worldwide there are many brown,
blotched snakes that look similar and may mimic one
another (e.g., Gans, 1961; Gans and Latifi, 1973; Kroon,
1975) as well as species that can only be reliably identified if
a particular part of the body is visible. Although k nearest-
neighbor techniques have been used to semi-automatically
classify snakes from images based on their anatomical
features (James et al., 2014; James, 2017), these involve
laborious and detail-oriented curation of feature databases
that should include every possible snake species, a
gargantuan task that, although useful for snake
taxonomy, would require constant updating (see e.g.,
Meirte, 1992 for an example of a dichotomous key
based on scale characters used by humans). Semi-
supervised self-learning algorithms such as ours do not
require such databases and represent a more efficient,
modern approach to image classification, and wisely
chosen pipelines of local feature detection, extraction,
encoding, fusion and pooling allows for high accuracy
in species classification in groups even more biodiverse
than snakes (Seeland et al., 2017).

• The Pantherophis obsoletus (North American Ratsnake)
species complex (Burbrink, 2001). All three putative
species were among the bottom five in terms of F1,
never exceeding 74.6% (average across all test datasets
and all three species � 63.5 ± 9.0%; Figure 6), as well as the
bottom five for recall (Supplementary Figure S3) and the
bottom 10 for precision (Supplementary Figure S4). The
practice of delimiting species largely on the basis of
mitochondrial DNA haplotypes (or combining these
with nuclear genetic data sets with little phylogenetic
signal) has been criticized for being sensitive to gaps in
data caused by limited geographic sampling, which are
artifactually detected as species boundaries by clustering
algorithms used in the Multispecies Coalescent Model for
species delimitation, leading to “over-splitting” of widely
distributed species and assignment of species names to
“slices” of continuous geographic clines that are not
evolving independently (Hillis, 2019; Chambers and
Hillis, 2020) and may not be morphologically
diagnosable (Guyer et al., 2019; Freitas et al., 2020;
Mason et al., 2020). Here we show that computer vision
algorithms have low power to distinguish at least some
putative species that have been delineated primarily using
molecular methods and where training data were
identified exclusively from photos, presumably primarily
based on geographic location (Table 2). Although
Burbrink (2001) provided multivariate analyses of 67
mensural and meristic characters (mostly related to
scalation) that corresponded to mitochondrial lineages,
the most obvious color and pattern variants intergrade
with one another over large areas and correspond to former
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subspecies designations rather than Burbrink’s species
concepts (recently refined to better match phenotypic
variation; Burbrink et al., 2020; Hillis and Wüster, 2021),
and numerous color patterns can be found within each
putative species, especially P. alleghaniensis (not to mention
the marked ontogenetic change characteristic of all three,
wherein juveniles are most similar to adult P. spiloides from
the southern portion of their range). This, combined with the
widely overlapping distribution between P. alleghaniensis
and P. spiloides, makes the three putative species nearly
impossible for both humans and AI to differentiate in the
absence of information about geographic location. We also
note that training images in this species complex are probably
more likely to be mis-labeled due to confusion over how to
differentiate the putative species.

• Other taxa used in our dataset that may be susceptible to the
same problem as the Pantherophis obsoletus complex include
Lampropeltis californiae and Lampropeltis triangulum (both
members of widespread species complexes that were
formerly treated as a single species, of which only one
putative species per species complex is present in our
dataset; Pyron and Burbrink, 2009; Ruane et al., 2014) and
Agkistrodon contortrix and Agkistrodon piscivorus (both of
which have recently been split into two putative species along
former subspecies lines but were treated as single species in
our dataset; Burbrink and Guiher, 2015) as well as Boa
constrictor (the taxonomy of which is even less settled; see

Reynolds and Henderson, 2018 for a summary). See
Appendix I for a full list of species in our dataset together
with notes on recent taxonomic changes that may affect their
diagnosability based purely on a photograph.

Of the 44 species pairs that exceeded 10% confusion on any
test dataset (including human IDs), only four had no overlap in
geographic range (two others had very little geographical
overlap). Incorporating information on the geography has the
potential to better discriminate these species pairs (Wittich et al.,
2018), but in the most biodiverse regions of the world, >125
species of snakes may be sympatric within the same 50 × 50 km2

area (Roll et al., 2017).
Most commonly confused species pairs involved either two

non-venomous or two medically important venomous species
(hereafter “venomous”). Of the 44 species pairs that exceeded
10% confusion on any test dataset (including human IDs), 31
involved two non-venomous species and five involved two
venomous species (Table 3). Only three of the 44 pairs were
“false positives” (a non-venomous species identified as a
venomous one) and only five were “false negatives” (a
venomous species identified as a non-venomous one). Bites
from all medically important venomous snakes in our dataset
(all North American pit vipers) would be treated using the same
antivenom (Dart et al., 2001; Gerardo et al., 2017) but this would
not be as straightforward in other regions of the world (e.g., Bitis
vs. Echis in sub-Saharan Africa) and indeed is becoming more

FIGURE 7 | Frequency with which confused species pairs were incorrectly identified by algorithm and humans. The algorithm erred on the side of the species with
more training images much more often than humans.
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complex in North America as new products enter the market
(Bush et al., 2015; Cocchio et al., 2020).

Finally, we found that among the 163 confused species pairs in
TD3, the algorithm suggested the species with more images in the
training dataset as the identity of the species with fewer images far
more often (78% of pairs) than the other way around. For example,
Opheodrys vernalis (1,471 training images) was misidentified as O.
aestivus (3,312 training images) 33% of the time in TD3, but O.
aestivus was never misidentified as O. vernalis in TD3, even though
humans confused these two species nearly equally often in both
directions (12 and 10%). Humans were marginally more likely to
suggest the species from a given pair with more images even when it
was incorrect (65 of 118 confused pairs; 55%), but the effect wasmuch
more pronounced for AI than for humans (Figure 7). For the
algorithm, this is probably due to the imbalance in the amount of
training data among classes; for humans, we suggest that it may be
caused by the same processes that lead a species to be represented by
fewer images in the training data: smaller geographic ranges or lower
probabilities of encounter, leading to less familiarity with the rarer
species.

Long-tailed distributions are commonplace and have been called
“the enemy of machine learning” (Bengio, 2015). As we enlarge our
dataset to include more of the snake species with few images per
species (i.e., those in the “long-tailed” part of the distribution), wemust
pay particular attention to rare species. Previous studies on faces
(Zhang et al., 2017) and scene parsing (Yang et al., 2014) suggest
approaches including rare class enrichment (Yang et al., 2014) and
clustering objects into visually similar hierarchical groups (in our case,
snake genera or families) (Ouyang et al., 2016).

CONCLUSION

It is extremely important to keep in mind that the 45 species that the
algorithmwas trained on were selected solely based on the quantity of
photos available, and no effort wasmade to include all possible similar
or closely related species. Additionally, human experts could suggest
any of the >3,700 species of snakes as an identification, and species
other than the 45 used to train the computer vision algorithm were
suggested (always incorrectly) 76% of the time overall (min � 7% for
Agkistrodon contortrix, max � 50% for Hierophis viridiflavus). The
average number of species that a human expert knowswell (analogous
to the number of classes that an algorithm is trained on) is hard to
estimate. The grand total number of species suggested by all 580
human experts was 457, but the mean ± SD per person was just 35 ±
18 (min � 18, max � 61; Durso et al., 2021). Another important
difference was that human experts had access to the geographic
location of each image, whereas the computer vision algorithm
does not yet incorporate this information. To further explore these
issues, additional rounds of our AICrowd challenge, including more
photos, additional species classes, and information on geography at
the continent and country level have allowed us to assess the generality
of patterns discovered here (Bloch et al., 2020; Moorthy, 2020; Picek
et al., 2020). Future directions include finer image segmentation (e.g.,
the head, body, and tail of the snake) and hierarchical (e.g., genus level)
classification, whichmight work better whenmore species from larger
genera are included.

The accuracy of our algorithm at predicting species-level
identity ranged from 72 to 87% depending on the test dataset
(Table 1), which is comparable to that for other taxa (see Table 2
of Weinstein, 2018). A promising future awaits snake
identification as AI begins to compliment static photos,
diagrams, and audio-visual media, interactive multiple-access
keys, species checklists that can be customized to particular
locations, dynamic range maps, and online communities in
which people share species observations and identifications in
“next-generation field guides” (Farnsworth et al., 2013). In
particular, we emphasize the need to keep “humans in the
loop” in order to validate labels in training datasets as well as
AI predictions, particularly for healthcare applications
(Holzinger, 2016; Holzinger et al., 2016).

We suggest that AI could play a larger role in disease
surveillance and disease ecology (Hosny and Aerts, 2019; Pandit
and Han, 2020), particularly as a widely available rapid diagnostic
test for improving detailed epidemiological reporting andmapping
of snakebite, as well as clinical management (Ruiz De Castañeda
et al., 2019). However, a more complete understanding of how AI
and humans perform and interact with one another when
identifying species classes from photos with regard to image
quality, inter-species similarity, and prior information about
geographic location is essential before this technology could aid
in the snakebite crisis. Critically, increasing data availability in
regions of high snake diversity and snakebite prevalence is a pre-
requisite for applying data-hungry algorithms to the regions of the
world where they are most needed.
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