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Biophysical properties at patch scale shape the metabolism of
biofilm landscapes
Anna Depetris1, Giorgia Tagliavini 2,3, Hannes Peter1, Michael Kühl 4, Markus Holzner2,3 and Tom J. Battin 1✉

Phototrophic biofilms form complex spatial patterns in streams and rivers, yet, how community patchiness, structure and function
are coupled and contribute to larger-scale metabolism remains unkown. Here, we combined optical coherence tomography with
automated O2 microprofiling and amplicon sequencing in a flume experiment to show how distinct community patches interact
with the hydraulic environment and how this affects the internal distribution of oxygen. We used numerical simulations to derive
rates of community photosynthetic activity and respiration at the patch scale and use the obtained parameter to upscale from
individual patches to the larger biofilm landscape. Our biofilm landscape approach revealed evidence of parallels in the structure-
function coupling between phototrophic biofilms and their streambed habitat.
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INTRODUCTION
Biofilms are surface-attached and matrix-enclosed communities
that dominate the microbial world in most natural ecosystems1

and that are of utmost relevance to public health2,3. Owing to their
three-dimensional structure, biofilms can be considered as
microbial landscapes4 and as such are increasingly recognized
as an integrated part of the landscape they inhabit5. This notion
has enabled aquatic microbial ecologists4 and more recently also
microbiologists studying the human microbiome6 to apply land-
scape ecology theory to the microbial realm. A basic tenet of
landscape ecology is that the spatial arrangement of patches
reciprocally interacts with higher-order processes such as mass
flux, dispersal, and biodiversity dynamics7,8. Despite the inherent
links between patchiness and the functioning of landscapes, the
existence of patches and their functional relevance for biofilms as
microbial landscapes remains elusive. This is certainly attributable
to the length scales typically used in biofilm research (micrometer
to millimeter), which is below the length scale at which patchiness
emerges (millimeter to several centimeters)4,9. Establishing links
between biofilm’s three-dimensional structure, patchiness and
higher-order processes is critical to improve our understanding of
the success of biofilms1,5 and their relevance for ecosystem
functioning.
The structure-function coupling of biofilms is modulated to a

large extent by the fluid flow around them10–12. Whereas flow-
induced shear stress can remove biomass locally, flow can
increase mass transfer and plays an important role in the
establishment of gradients in nutrients as well as electron donors
and acceptors and thus the diversification of niches within
biofilms13. In phototrophic biofilms, such as those that colonize
the benthic zone of streams and rivers, these gradients can be
reinforced by vertical light gradients14,15. Advective transport was
shown to enhance solute replenishment via channels that
surround individual biofilm clusters16–18. Turbulent bursts can
also occasionally erode the diffusive boundary layer thereby
enhancing solute transport from the bulk liquid to the

biofilms10,19. Within biofilms, particularly when their permeability
is low as in most purely bacterial biofilms, diffusion governs solute
transport10,20,21. However, in more permeable biofilms, advection
can sustain mass transport, provided that the pressure gradient is
sufficiently large22,23. The enhancement of solute transport in
permeable biofilms likely modulates the metabolic activity,
however, this has not been investigated for complex phototrophic
biofilms.
Phototrophic biofilms in streams harbor diverse communities

and develop complex topographies5,24,25. They are integrated
parts of the hierarchically organized stream ecosystem and its
nested levels of spatial heterogeneity26,27. These communities are
biodiversity hotspots and drive ecosystem metabolism, nutrient,
and carbon cycling5. While biodiversity dynamics of benthic
biofilms are increasingly understood at the scale relevant to
typical streambed features (e.g., bedforms, length scales of
centimeters to meters)28,29, we do currently not understand how
microbial diversity is organized at length scales relevant to the
structure and functioning of biofilm landscapes (length scales of
millimeters to centimeters). This is potentially relevant to infer
ecological mechanisms underlying the striking biodiversity with
hundreds of microbial taxa coexisting within streambed patches.
This work was motivated by the questions of how physical and

biological processes interact to control small-scale patterns of
biofilm structure and activity, and how these local patterns
influence outcomes at the larger scale, notably at the scale of the
biofilm landscape. To address these questions, we grew photo-
trophic biofilms under two hydraulic environments and combined
amplicon sequencing with spatially resolved O2 microprofiling
guided by optical coherence tomography (OCT). We leveraged the
spatial scale of OCT imaging and O2 microprofiling using two-
dimensional numerical simulations to assess fluid flow and mass
transfer. We found that biofilm patches differed in physical
structure, mass transfer, as well as community composition, and
metabolic activity. Upscaling to the entire biofilm landscape, we
estimate the relative contribution of the various patches to
community metabolism. Our results indicate how small-scale
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biodiversity patterns and structure-function coupling affect
higher-order biofilm functioning, with possible impacts on stream
ecosystem metabolism.

RESULTS AND DISCUSSION
Distinct patch types emerge from the biofilm landscape
We grew phototrophic biofilms from raw surface water in a flume
designed to reproduce a gradient of mean flow velocity and
turbulence relevant for the hydraulics of streams (Methods). We
focused on two contrasting hydraulic environments: one char-
acterized by high bulk flow velocity (0.13 m s−1) and turbulent
kinetic energy (7 × 10−4 m2 s−2) and another characterized by low
flow velocity (0.06 m s−1) and turbulent kinetic energy (2 × 10−4

m2 s−2) (Supplementary Fig. 1). Mature biofilms (after 1 month of
in situ growth) consisted of a base layer evenly carpeting the
flume bottom, and dominated by cyanobacteria (henceforth
referred to as cyanobacteria-dominated basis, CDB) (Fig. 1). Within
the biofilm landscape, distinct patches emerged from the CDB,
with fluffy tufts (up to 1.5 mm in height) dominated by green
algae of the Klebsormidiophyceae family (henceforth referred to
as Klebsormidiophyceae-dominated patches, KDP) and inter-
spersed patches dominated by diatoms (henceforth referred to
as diatom-dominated patches, DDP).

Community turnover across patch types
Community composition and diversity of stream biofilms have
been studied across spatial scales, ranging from entire stream
networks30 to small-scale streambed localities28,29. However, to
study biodiversity dynamics relevant to the scale of biofilm

landscapes, we individually sampled triplicates of CDB, DDP, and
KDP from both hydraulic environments. Using 16 S and 18 S rRNA
gene sequencing (Methods), we found a consistent community
turnover among all three patch types (Fig. 2a). The CDB
communities were dominated by cyanobacteria (predominantly
members of the Pseudanabaenales, Synechococcales, and Stigo-
nematales) and a not further classified Chlorophyceae. This
unclassified Chlorophyceae even contributed to the majority of
18 S rRNA gene sequences under fast flow, contrary to the
microscopic observations and likely attributable to differences in
rRNA gene copy numbers of cyanobacteria and the unclassified
Chlorophyceae. The DDP community was dominated by the
pennate diatom Achnanthidium saprophilum, and the KDP
community by a not further classified filamentous algae of the
Klebsormidiophyceae clade.
Besides these major phototrophs that did not differ between

both flow environments, CDB, DDP, and KDP were each associated
with diverse eukaryotic and bacterial communities. For instance,
between 36 and 46 distinct eukaryotic community members were
detected in the CDB, KDP, and DDP, respectively. Bacterial
heterotrophs were more diverse, with 140 to 281 amplicon
sequence variants (ASVs) present in the three patch types.
Generally, the bacterial assemblages were specific to CDB, DDP,
and KDP, with Bray–Curtis similarities among the three replicates
of the same patch type averaging 0.62 ± 0.10, while similarity
across different patch types averaged 0.48 ± 0.11 (ANOSIM, R=
0.63, p= 0.01). Differences in abundance-based community
similarity across samples can arise from the replacement of
individuals of some taxa by individuals of other taxa (i.e., balanced
variation in abundance) or through abundance gradients, in which
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Fig. 1 Characterization of a patchy phototrophic biofilm. A phototrophic biofilm was grown from a natural inoculum in an open-channel
flume with a turbulent flow regime and a gradient of hydraulic conditions. A digital elevation model of the biofilm surface topology under fast
(a) and slow (b) flow was derived from the OCT dataset. Note the formation of ridges aligned in the flow direction (arrow in panel a). High-
resolution structural details are shown for an example of the cyanobacteria-dominated base (c), a diatom-dominated patch (c) and (d)
Klebsormidiophyceae-dominated patch (e). Transects of O2 concentration profiles were obtained across selected biofilm structures. An example
OCT scan aligned with the corresponding O2 concentration measurements over a Klebsormidiophyceae-dominated patch is reported (f).
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abundance changes between samples without taxa substitution.
Partitioning Bray–Curtis similarities into these two components,
we found that balanced variation in abundance dominated
among replicate-dissimilarity, accounting on average for 59.3 ±
10.8 and 62.1 ± 9.1% of community turnover in CDB and DDP,
whereas this process accounted on average for 91.4 ± 7.4% of the
differences observed among replicates in KDP. Differences in
Bray–Curtis similarity across patch types were also predominantly
(82.0 ± 26.6%) attributed to balanced variation in abundance.
Taken together, these results highlight that all three patch types
harbor distinct and specific communities with the substitution of
taxa being the dominant driver of compositional turnover within
the biofilm landscape.
Non-metric multidimensional scaling (NMDS) ordination com-

bined with Procrustes superimposition revealed an overlap
between the CDB and DDP community compositions, while both
differed from the KDP community (Fig. 2b). This analysis also
highlighted the significant coupling between eukaryotic and
bacterial communities in each patch type (correlation in a
symmetric Procrustes rotation: 0.69, p < 0.01). Furthermore, using
linear discriminant analysis effect sizes (LefSe)31 (Fig. 2c), we
identified taxonomic units that were specifically enriched in the
three patch types. Several cyanobacterial taxa were enriched in
the DDP, and members of Cytophagia, unclassified Gammapro-
teobacteria, and Sphingomonadales were enriched in CDB (Fig.
2c). However, KDP had the largest number of consistently
enriched taxa, particularly affiliated with Betaproteobacteria
(Burkholderiales) and Alphaproteobacteria (Caulobacterales, Rho-
dobacterales, Bradyrhizobiaceae, and Hyphomicrobiaceae).
The specificity of the bacterial community was also reflected in

terms of diversity (Fig. 2d). While 31.8% of all ASVs were found in

all patch types, between 12.3 and 20.7% of ASVs (accounting in
total for 45.3% of ASVs) were exclusively detected in either CDB,
DDP, or KDP (Fig. 2d). There were no significant differences in
terms of ASV richness between the three biofilm components
under the two flow regimes, yet, bacterial community diversity
incorporating evenness (Shannon H) was significantly lower in
KDP and DDP as compared to CDB (ANOVA, F= 11.78, p < 0.01)
(Fig. 2e), reflecting the relative dominance of a few bacterial ASVs
in these patches. Generally, we found small differences in
community composition and diversity between the two hydraulic
regimes. These results show that diversity across the entire biofilm
landscape was composed of a core of abundant and common
ASVs, but that nearly half of the ASV diversity was exclusively
found in the different patches.
Collectively, these results highlight the nested contribution of

patch types to overall biofilm diversity. This is analogous to real
landscapes and stream ecosystems, where biodiversity patterns
across scales (e.g., from the stream network to the streambed
patch) arise from local communities that assemble from a regional
species pool28,30. Environmental variation and interactions
between hydraulic and microbial processes have been evoked
to induce heterogeneity and patchiness of the streambed
landscape27,32 and its biofilms5. Strikingly, however, in our
experiments, patchiness arose in the absence of substrate
heterogeneity, which highlights the importance of auto-
generated structural differentiation of biofilms. Auto-generated
differentiation, such as the formation of ridges, can result from the
coupling of localized growth, flow conditions, and mass transfer2,
which may arise stochastically (e.g., through priority effects) or
through the interactions between neighboring microcolonies
even early in biofilm formation33,34. While initial patchiness may
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Fig. 2 Patch types differ in composition and their contribution to diversity. A heatmap shows the distribution of the most abundant
phototrophic community members in CDB, DDP, and KDP (a). Non-metric multidimensional scaling with Procrustes superimposition illustrates
the compositional similarity of CDB and DDP and the more distinct assemblages in KDP, as well as the coupling between prokaryotic (lighter
color) and phototrophic eukaryotic (darker colors) communities grown under fast (diamonds) and slow (circles) flow (b). The cladogram
depicts taxonomic lineages (prokaryotes) that are significantly enriched in the three patch types (c). Note that particularly KDP harbored a
distinct set of prokaryotic community members. A Venn diagram shows the number of shared and unique prokaryotic amplicon sequence
variants (ASVs) among the three patch types (d). While a similar number of ASVs was detected in each patch type, particularly KDP were
dominated by abundant prokaryotic ASVs. This is reflected in the significantly reduced Shannon H in KDP (e, letters indicate significance in
post hoc comparisons). A patch-by-ASV matrix arranged by reciprocal averaging further highlights the turnover and specificity of ASV among
patch types (f). Prokaryotic ASVs common to all patch types form a central band, whereas ASVs specific to each patch type appear clustered.
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be the result of stochastic processes, patches are likely stabilized
by shared metabolites among mutualistically interacting taxa or
inhibitory modification of niches35. In the context of phototrophic
stream biofilms, this highlights the importance of interactions
among phototrophs and heterotrophs as potential drivers of
patchy biodiversity patterns.

Biofilm patches have distinct physical structures that interact
with fluid flow
To explore the physical structure of the three patch types, we
inferred thickness, coverage, and volume from OCT imaging36

(Methods). We did not find significant effects of the hydraulics on
the overall thickness, areal coverage, and volume of the biofilm,
neither at the landscape level nor at the level of individual patch
types (Table 1). Likely, the differences in the imposed hydraulics
did not suffice to substantially compress the biofilms nor to select
for a flow-resistant biofilm under fast flow. However, more subtle
differences among hydraulic conditions could be noticed. For
instance, under high flow velocity, CDB tended to develop into
ridges aligned in the flow direction, as was previously reported for
similar phototrophic exposed to unidirectional flow12,33, while
KDPs were fewer but taller and larger in volume (Fig. 1 and
Table 1).
The internal porosity of biofilms is relevant for mass transfer,

chemical heterogeneity, and hence for the functioning of
biofilms2. However, it is notoriously difficult to empirically estimate
the porosity within biofilms36,37. Using OCT scans (Methods), we
estimated the apparent porosity of all three patch types ranging
from 0.29 ± 0.22 to 0.71 ± 0.15 in CDB and KDP, respectively
(Supplementary Table 1). We found that KDP porosity was ~1.5
times greater than CDB and DDP porosity, which is in line with the
filamentous and hence porous structure of this patch type as
revealed by Confocal Laser Scanning Microscopy. Our analyses did
not reveal the effect of hydraulics on biofilm porosity.
Biofilms not only respond to but also influence the adjacent

flow environment17,38,39. To assess how the different patch types
interact with the fluid dynamics, we numerically simulated the
flow field within and around each of them (Methods). We stress
that these simulations were performed on two-dimensional
biofilm topologies and hence do not resolve three-dimensional
flow around patches. We acknowledge that the two-dimensional
model is a simplification of reality, but it captures the main physics
and qualitative features of the system. We found that the three
patch types differently deflected streamlines, both up- and
downstream and under both flow environments (Fig. 3). This
effect was particularly evident for the protruding KDP, where
streamlines also detached to develop a downstream wake.
This interaction between the local biofilm topography and flow

affected the distribution of the viscous sublayer thickness. Our
simulations estimated the thickness of the viscous sublayer at 0.13
and 0.07 mm under slow and fast flow, respectively. It was
generally thinner at the top of KDP (~0.04 mm), than both

upstream (0.10 mm) and downstream (0.14 mm) of this
patch type.
Our simulations further revealed significant fluid flow within the

biofilm (Fig. 3). Flow patterns were consistently characterized by
liquid entering the microcolonies upstream and exiting them
downstream. For instance, in both hydraulic environments, the
fluid entered the KDP and traversed it almost parallel to the bulk
flow lines, which, albeit also affected by biofilm physical structure,
seems to reflect high permeability. Numerically estimated perme-
ability varied between 0.5 × 10−10 m2 and 2 × 10−10 m2, and did
not differ between KDP and the other two patch types. The
internal fluid velocity was highest in KDP (0.046 mm s−1), followed
by CDB (0.041 mm s−1) and DDP (0.031 mm s−1) under slow flow.
Under fast flow, internal fluid velocity increased to 0.170, 0.137,
and 0.061mm s−1, for KDP, CDB, and DDP, respectively. We
attribute these differences to the tall and protruding structure of
KDPs, which are impacted by a higher velocity upstream (high
pressure) and induce a wake downstream (low pressure) that
results in a streamwise pressure gradient. These estimates of
internal flow velocity and permeability are higher than those
reported from mono-species bacterial biofilms11. We attribute this
difference to the abundance of algal cells, which owing to their
large size and often filamentous structure increase the porosity of
phototrophic biofilms. These findings highlight the importance of
advection for mass transport within phototrophic biofilms.
Previous studies demonstrated the importance of advective
transport of solutes from the bulk liquid to the surface of, for
instance, algal mats40, while diffusion dominated internal trans-
port. Our spatially highly resolved observations and simulations
highlight the role of advective transport within microcolonies
protruding into the bulk liquid. Our findings specifically reveal
advection to supply oxygen to deeper biofilm layers and to
evacuate oxygen-depleted water from the microcolonies on their
downstream side.
These findings on internal flow patterns are reminiscent of the

hydrodynamic exchange of mass and solutes across streambeds,
particularly their bedforms, and present evidence towards the
congruence of the structure-function coupling between biofilms
and their habitat5. While differing in spatial scale, both, biofilm
microcolonies and bedforms, are porous systems where hydro-
dynamics drives advective flow, which enhances mass transport
and microbial activity41,42. Although pressure differences underly
flow in both bedforms and biofilms, pressure differences across
geomorphological features (e.g., step-pools in mountain streams)
typically arise from differences in water height (i.e., static
pressure), whereas in the case of biofilm patches, internal
advection arises because of dynamic pressure. We propose that
similar structure-function coupling across spatial scales contri-
butes to the high retention and transformation capacity of stream
ecosystems—a notion that is in line with the “benthic biolayer”
just below the sediment-surface interface in streams where
reaction rates are highest, and that greatly contributes to solute
dynamics at the scale of the entire streams43.

Table 1. Biofilm features across patch types and flow conditions, as derived from OCT and macro-photography imaging. A total area of 2016mm2

under slow and 1601mm2 under fast flow was analyzed.

Flow Patch type Height (mean ± SD) [mm] Area [mm²] Coverage [%] Volume [mm³] Volume [%]

Slow CDB 0.39 ± 0.15 1411 70.0 591 57

DDP 0.58 ± 0.15 408 20.2 253 25

KDP 1.09 ± 0.24 197 9.8 189 18

Fast CDB 0.38 ± 0.11 1145 71.5 440 57

DDP 0.51 ± 0.13 314 19.6 174 23

KDP 1.27 ± 0.27 142 8.9 152 20
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Patch type and hydraulics affect O2 dynamics
The spatiotemporal dynamics of O2 concentration in biofilms
result from mass transport (i.e., replenishment) and microbial
activity (i.e., consumption and production)10,11. To assess O2

dynamics at the high spatial resolution, we used OCT-guided,
automated microelectrodes profiling and obtained a total of 1134
depth profiles of O2 across all three patch types, both in light and
dark conditions, as well as in both hydraulic environments
(Methods). We found that the distribution of O2 concentration
within the biofilm, and its variation between light and dark
conditions, differed among patch types (Wilcoxon rank test, p <
0.01 for each comparison) (Fig. 4a); with the exception of KDP
compared to CDB under dark conditions (Wilcoxon rank text, p=
0.17) (Fig. 4a). Under both flow conditions, DDP exhibited the
largest ranges in O2 concentration and the greatest light-to-dark
differences.
Given the importance of advection, both in- and outside the

biofilm, we posit that high flow velocity should reduce the
magnitude and dampen the variation of oxygen gradients within
biofilms. Indeed, in all three patch types, and under both light and
dark conditions, faster flow velocities significantly decreased
variation in O2 concentration (Wilcoxon rank test, p < 0.01, Fig.
4a), with the exception of KDP in the dark. In the most permeable
biofilm patch type, KDP, the distribution of O2 concentration was
narrow and skewed towards the bulk water O2 concentration.
Similarly, light-to-dark differences in KDP were also diminished
under fast flow compared to slow flow. Under fast flow, CDB and
DDP reached lower O2 concentrations in the dark throughout the
entire biofilm thickness compared to slow flow (Fig. 4b). In
contrast, biofilm grown under slow flow accumulated more O2 in
deeper layers (under light). Moreover, we observed that O2

concentration consistently peaked ~0.35 mm into the DDP
patches, and decreased deeper into the biofilm. Overall, the most
permeable biofilm patch type, KDP, presented weaker O2

gradients whereas CDB and DDP presented a strong vertical
differentiation of the chemical microenvironment.

Patch type affects O2 transport
In order to explore patterns in O2 transport within and above
biofilm patches, we established transects of O2 concentration
profiles across the different patch types, aligned with the flow
direction (Methods). We found that O2 concentration above the
biofilm was relatively homogeneous, which indicates that the
diffusive boundary layer was thin and followed the biofilm surface
topology (Fig. 5a).
Furthermore, we found that flow had a remarkable effect on the

distribution of measured O2 concentrations within KDP. We
observed an elevated O2 concentration upstream and reduced
O2 concentration downstream within patches (in the dark); this
effect was exacerbated under fast flow (Fig. 5b). This pattern
supports the finding that notable advective transport drove O2

dynamics within KDP. In contrast, O2 gradients in CDB and DDP
were overall more directed towards the substrate, and hence
perpendicular to their main flow direction (Fig. 5c, d).
To gain a better mechanistic understanding of the patterns of

O2 concentration observed within patches, we numerically
simulated O2 production in the light (i.e., net photosynthesis,
NP) and consumption in the dark (i.e., respiration, R), and transport
within and around the various patch types (Methods). The
parameters in these simulations were optimized such that the
modeled O2 concentration profiles best predicted observed O2

profiles (Table 2). We found that the modeled diffusive boundary
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Fig. 3 Fluid motion within and around biofilms. We used numerical simulations to compare the fluid patterns within and around biofilm
patch types. Streamlines plots of the velocity magnitude (log10(u)) are shown for slow (left) and fast flow (right) conditions for DDP (a, b), CDB
(c, d), and KDP (e, f). Note that streamlines in the water domain closely track the biofilm topology but are affected by tall, protruding
structures. Significant flow patterns within the biofilm domain emerged at the scale of the biofilm structural features and affected transport
within the biofilms.
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layer thickness averaged 6 and 3 μm under slow and fast flow,
respectively, and overall followed the patterns of the above-
mentioned viscous boundary layer. This is in line with our
microsensor measurements (Supplementary Figs. 2, 3), and is
explained by turbulent mixing (estimated eddy diffusivity reached
~10−5 m2 s−1 for both flow environments). In agreement with the
simulated patterns of fluid flow, we found that advective transport
greatly exceeded diffusive transport of O2 in the biofilms (Fig. 6),
which was particularly evident in KDP, where the average ratio
between advective and diffusive fluxes reached 86.7, compared to

76.7 and 53.8 in CDB and DDP, respectively. This was further
exacerbated under high flow velocity, where the average ratio
between advective and diffusive transport reached 275.8, 141.7,
and 62.1 for KDP, CDB, and DDP, respectively. Furthermore, the
fluid flow patterns may have greatly enhanced solute exchange
between the biofilm and the bulk fluid. Accordingly, we found that
advection accounted for 98.9% of the total O2 flux across the
biofilm surface in KDP, for 98.2 and for 98.7% of the total flux in
DDP and CDB, respectively. This fraction increased under fast flow
velocity (KDP: 99.6%; DDP: 98.4%; CDB: 99.3%). Overall, our results
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Fig. 4 O2 dynamics at the landscape scale. O2 concentration obtained by microelectrode profiling revealed the impacts of hydraulic
conditions and patch type under light and darkness (and the variation between light and dark conditions). Pooled probability density
distributions of O2 concentration measurements are shown (a). Flow, light/dark conditions, and patch type also affected the vertical
distribution of O2 within biofilms (b). Note the differences among y-axis scales and the divergence of the impact of the hydraulic condition on
the vertical distribution towards greater depth within the biofilm.
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highlight that advection enhanced O2 transport into and out of all
three patch types.

Metabolism from the patch scale to the biofilm landscape
Extrapolating fluxes from the patch to the landscape scale is
critical in order to understand the relevance of the various
landscape constituents to overall functioning44. To achieve this,
we combined numerically simulated volumetric rates of net O2

production (NP) and respiration (R) with OCT-derived estimates of
the volume and areal coverage of each biofilm patch type
(Methods). Among all patch types and flow conditions, volumetric
NP ranged from 1.1 to 5.38 mmol O2 m−3 s−1 and R ranged from
−0.55 to −1.61 mmol O2 m−3 s−1. R was generally higher under
fast compared to slow flow (Table 3). Integrating these fluxes over
the entire biofilm landscape, we estimated that in the dark, the
biofilm consumed on average 0.69mmol O2 m−2 s−1 and
0.44mmol O2 m−2 s−1 under fast and slow flow, respectively. On
the other hand, the average O2 production under light (i.e., NP)
was 1.8 mmol O2 m−2 s−1 and 2.11 mmol O2 m−2 s−1, under fast
and slow flow, respectively. These volumetric rates and areal fluxes

are closely bracketed by those computed from microsensor
profiles measured in microbial mats formed by cyanobacteria and
diatoms in alluvial rivers40 and salt marshes45 and by epibenthic
biofilms14,46. We consider this as a confirmation that our approach
of microelectrode measurements and numerical modeling pro-
vided reliable estimates of metabolic fluxes. Furthermore, we
found that the contributions from CDB, DDP and KDP to the
landscape-level metabolism largely reflected their relative con-
tribution by volume (Table 3). However, it is clear that besides
areal coverage, small-scale spatial covariation of microbial activity
and flow in both benthic and hyporheic zones of streams and river
influences the bioactive layer extent, with important conse-
quences for reach-scale biogeochemical transformations41,43,47.
We next calculated the net O2 balance as the difference

between R and NP of the biofilm patch types. We found that all
three patch types were net producers of O2, with the notable
exception of KDP under fast flow (Table 3). The positive O2 balance
is in general agreement with previous findings on cyanobacterial
biofilms from hypersaline mats48,49, for instance. In streams,
ecosystem metabolism is generally net heterotrophic except for
certain windows, such as in spring, when copious algal growth can
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Fig. 5 O2 dynamics at the patch scale. We measured several transects of O2 concentration profiles across the three patch types. Examples of
profile transects measured over KDP (in darkness) under slow (a) and fast (b) flow are shown. The vertical profiles indicate the measured O2
concentration, contour lines show the O2 concentration field triangulated from these measurements, while the gray arrows indicate the
intensity and direction of the O2 concentration gradient. The top-left arrow indicates the direction of the bulk fluid flow. The direction of the
O2 concentration gradients (in darkness) under slow flow (c) and fast (d) flow were compared within several replicates per patch type. See
arrow cross in panel a for directions. While CDB and DDP gradients were steep and directed towards the substrate (90°, black dashed line), O2
gradients within KDP were less intense and often bent against the flow direction (>90°).

Table 2. Optimized model parameters that best predicted the measured transects of O2 concentration profiles across different patch types and flow
conditions.

Flow Patch type Porosity O2 diffusivity (Deff/Daq) Permeability [m2] Turbulent Prandtl number Eddy diffusivity [m2 s−1]

Slow CDB 0.36 0.7 1 × 10−10 0.98 1 × 10−5

DDP 0.47 0.7 0.6 × 10−10 0.6 1.2 × 10−5

KDP 0.58 0.8 1 × 10−10 0.95 1.4 × 10−5

Fast CDB 0.62 0.7 1 × 10−10 1 1.8 × 10−5

DDP 0.41 0.5 0.5 × 10−10 1 1.2 × 10−5

KDP 0.86 0.9 2 × 10−10 0.72 1.2 × 10−5
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shift ecosystem metabolism to autotrophy50. We argue that our
benthic biofilms with their marked positive O2 balance are
representative of the phototrophic biofilms during these win-
dows—potentially even overwhelming the heterotrophy within
the deeper layers of streambeds.
Despite limited community turnover and similar biofilm

structures across flow regimes, the hydraulic conditions strongly
affected the metabolic rates. While R was higher in all three patch

types under fast flow than under slow flow, NP was lower under
fast flow in two out of the three patch types. The opposite
response of R and NP to the hydraulic environment indicates
different factors controlling photosynthesis and respiration in
phototrophic biofilms. We attribute this to enhanced advective
flow that replenishes resources, which otherwise would limit
respiration41,47. At the landscape scale, NEP under fast flow was
66% lower than under slow flow, an effect that was linked both to
a decreased NP and enhanced R. Hence, our results indicate that
higher flow velocity, potentially mediated by the delivery of
nutrients to biofilm communities, can trigger a shift towards a less
net autotrophic metabolism and that these patch-level processes
may integrate to a landscape-level metabolic response.

CONCLUSION
Combining OCT imaging with microelectrode profiling, numerical
simulations, and amplicon sequencing, we highlight the structural
and functional patchiness of a phototrophic biofilm. While
patchiness in streams is often related to a heterogeneous
environment26,27, our findings suggest that small-scale patchiness
can also exist in a relatively homogeneous environment,
potentially emanating from biotic interactions or stochastic
processes. While the spatial patchiness of physical structures in
mono-species biofilms has been acknowledged for decades, it has
been rarely addressed for complex phototrophic biofilms harbor-
ing hundreds if not thousands of microbial taxa. We found that
phototrophic biofilms emerge as complex landscapes, in which
different communities coexist within spatially segregated patches.
The functioning of these patches is linked to their structural
features, which, by interacting with fluid flow, generate physico-
chemical micro-niches within the biofilm landscape. Our findings
highlight the role of hydraulics, that allows for pervasive advective
transport around and within biofilm patches, and that can induce

SLOW FLOW FAST FLOWlog(Jc/Jd)
[-]

log(Jc/Jd)
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log(Jc/Jd)
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log(Jc/Jd)
[-]

log(Jc/Jd)
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log(Jc/Jd)
[-]

a b

c d

e f

Fig. 6 O2 transport within biofilms. We used numerical simulations to compare the mass transport patterns within and around the biofilm
patch types developed under contrasting hydraulic conditions. Streamline plots for slow and fast flow conditions for DDP (a, b), CDB (c, d),
and KDP (e, f) are shown. The streamline plots depict log10 of the ratio between advective (Jc) and diffusive (Jd) fluxes within the biofilm.

Table 3. Modeled volumetric rates [mmolm−3 s−1] of O2

consumption in the dark (R) and net O2 production in the light (NP)
were used to estimate the net O2 balance (NP–R) of each patch type.
O2 fluxes (across the projected, planar area) [mmolm−2 s−1], were
calculated based on the aerial coverage and volume of each patch
type (Methods). These values were used to estimate the overall O2

balance of the whole microbial landscape, both as volumetric rate
(vol.) and aerial flux (area).

Flow Patch type R (vol.)
[mmol
m−3

s−1]

NP
(vol.)
[mmol
m−3

s−1]

NP–R
(vol.)
[mmol
m−3

s−1]

R
(area)
[mmol
m−2

s−1]

NP
(area)
[mmol
m−2

s−1]

NP–R
(area)
[mmol
m−2

s−1]

Slow CDB −0.98 5.1 4.11 −0.41 2.13 1.72

DDP −0.55 3.0 2.46 −0.34 1.87 1.53

KDP −0.88 2.5 1.66 −0.84 2.42 1.58

landscape −0.86 4.11 3.26 −0.44 2.11 1.67

Fast CDB −1.61 5.38 3.77 −0.62 2.06 1.45

DDP −1.11 2.06 0.94 −0.62 1.14 0.52

KDP −1.37 1.1 −0.28 −1.48 1.18 −0.3

landscape −1.45 3.77 2.32 −0.69 1.8 1.11
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a metabolic shift at the scale of the entire biofilm landscape. Our
landscape approach has revealed patchiness as a hitherto
unrecognized driver of diversity in natural phototrophic biofilms
and the interactions of patches with the fluid dynamics as a driver
of their metabolism. The notion of biofilms as microbial land-
scapes4–6 is critical to predict and understand their function and
role in ecosystem processes. In this context, our findings shed new
light on the biofilm machinery of stream ecosystem metabolism
and its consequences for large-scale biogeochemical fluxes.

METHODS
Biofilm cultivation
We grew a benthic biofilm in an open-channel flume fed by filtered water
from Lake Geneva (nominal pore size 50 μm, FA 10 SX 50 ATLAS FILTRI)36. A
constant flow rate (2.22 × 10−4 m3 s−1) was supplied using valves equipped
with flow meters. Water was partially recirculated in a 1m3 reservoir and
water temperature varied between 14.5 and 15.5 °C throughout the
experiment. Total dissolved organic carbon (DOC) averaged 824 ± 65 ppb
and was quantified in filtered samples (pre-ashed GF/F, Whatman) using a
TOC carbon analyzer (Sievers M9 TOC Analyser, GE). Phosphate,
ammonium, nitrite, and nitrate were measured with a Lachat QuikChem
8500 flow injection analyser (QuikChem Methods 10-115-01-1-M (PO4

3−),
10-107-04-1-B (NO3

−/NO2
−), 10-107-05-1-C (NO2

−) and 10-107-06-3-D
(NH3)). Average concentrations were 3.75 ± 0.75 ppb, 36 ± 11 ppb, 386 ±
22 ppb for PO4

3−, NH4-N, and NO3-N, respectively. Hence, C:N, C:P, and N:P
ratios were 2.3, 567, and 249, respectively. Light (~13Wm2, as measured
with a JAZ spectrometer Ocean Optics) was provided for 12 h a day using a
combination of red and blue LEDs.
The flume was constructed from plexiglass with a funnel-like shape, with

flume width gradually increasing from 0.05 to 0.3 m in the flow direction,
resulting in a gradient of decreasing flow velocity. It is important to note
that hydraulic conditions at the sites where samples were taken were
therefore not independent from another. The average water depth was
0.022m. The mean flow velocity (u) was estimated from the flume
geometry (w), the water depth (h), and discharge (Q, 2.22 10−4 m3 s−1) as
in Eq. (1).

u ¼ Q
h ´w

(1)

and decreased from 0.13 to 0.06m s−1. Flow velocity depth profiles and
root-mean-square velocity fluctuations at the extremes of the hydraulic
gradients were measured by Laser-Doppler velocimetry in a clean flume
without biofilm, which enabled calculation of flow velocity and turbulent
kinetic energy (averaged between 0 and 10mm from the plexiglass
surface). Turbulent kinetic energy (TKE) was calculated as in Eq. (2).

TKE ¼ 1
2
ðu02 þ v02 þ w02Þ (2)

Where u′, v′, and w′ denote root means square (RMS) of velocity
components. Strong turbulent eddies characterized the flow patterns,
which were considerably unsteady.
Prior to the experiment, phototrophic biofilms growing continuously in

the reservoir were harvested and disaggregated by shaking. The slurry was
filtered (41-μm nylon filter, Millipore) and diluted in 8 L lake water. The
biofilm slurry was then poured into the flume and incubated for 12 h
without flow (under light). This seeding step produced a thin layer of base
biofilm evenly covering the flume bottom. After seeding, the flow was
started and biofilm was allowed to grow without disturbance for 30 days.

OCT data and macro-photography acquisition and processing
After 30 days of biofilm growth, we used a spectral-domain optical
coherence tomography system (GANYMEDE, Thorlabs GmbH, Germany)
centered at 930 nm (LSM03 lens) and equipped with an immersion
adapter. In OCT imaging, an A-scan describes a single vertical profile of
laser light interference, whereas a B-scan refers to the combination of
several A-scans into a cross-sectional tomographic image. The 3D OCT
datasets were acquired by averaging 3 A-scans with an x-y-z resolution of
11 μm× 11 μm× 2.18 μm, covering a scan volume of 10mm× 10mm×
2.23mm. The OCT scans resolved the highly reflective Plexiglas surface but
did not completely resolve biofilm structures exceeding 2.23 mm height.
We mounted the OCT probe on a precision positioning device (STEPCRAFT,
30 μm precision), as described previously36. Automatic positioning and

OCT scan acquisition allowed us to obtain 6 × 6 OCT scans in a mosaic
pattern (with a 30% overlap of the field of view) at both ends of the
velocity gradient. Individual OCT datasets were processed to obtain a
digital elevation model (DEM) of the biofilm surface topology that was
denoised with a median filter (size of 4 pixels) and stitched36. The final
DEMs each covered a field of ~ 45mm× 45mm. Biovolume was estimated
as the volume beneath the biofilm surface, (i.e., the sum of all pixels in the
DEM). This was supported by visual inspection of the OCT images, which
did not reveal the presence of large void areas (i.e., channels) below the
biofilm surface. Median biofilm thickness and inter-quantile range
(calculated between the 0.2 and the 0.8 quantiles) were calculated from
the distribution of pixel gray-values in the DEM.
Similarly, we mounted a camera (Canon EOS 7D Mark II) equipped with a

macro-objective on the precision positioning robot and acquired a large
set of pictures in a mosaic pattern, which was assembled using the
software Image Composite Editor Version 2.0.3.0 (Microsoft Corporation).
We used this picture to segment the three patch types (CDB, DDP, and
KDP) based on coloration. More specifically, CDB covered most of the
flume, while DDP were identified imposing a threshold on the ratio
between the red and green channels. Then, KDP were identified by
thresholding a combination of the original green channel and a local mean
filter on the same channel. Then, small objects and holes were discarded
and the final KDP binary mask was dilated by 5 pixels. The remaining areas
were labeled as CDB. The outcome of this segmentation algorithm was
confirmed by visual comparison and further substantiated by rRNA gene
sequencing. Macrophotographs and OCT-derived DEMs were aligned
manually, which allowed us to estimate the thickness distribution of each
patch type. An example of the output of this segmentation algorithm is
shown in Supplementary Fig. 4.

Porosity estimate from OCT scans
The porosity of the three patch types was estimated from the OCT scans as
the ratio of small void spaces and biomass. To differentiate between areas
with and without biomass, we segmented the OCT scans based on two
gray-level thresholds (i.e., 120, 130). Gray-level values above the threshold
were treated as biomass, whereas gray-level values below were regarded
as empty space within the biofilm. The choice of a threshold is somewhat
arbitrary and we selected these two values to quantify this uncertainty
(both values are well apart from the low gray-level noise outside the
biofilm and higher gray-levels deep in the biofilm). OCT signal intensity
gradually decreases inside biofilms and therefore, we restricted our
analysis to the top layer (two thicknesses, 0.1 and 0.2 mm) and excluded
structures protruding beyond the imaging depth of the OCT system
(~1.2 mm). Porosity was then estimated as the ratio between biomass
volume and the total volume in each position in the OCT scan
(Supplementary Table 1 and Supplementary Fig. 5), and the median
porosity was calculated within each patch type.

Microsensor measurement and O2 concentration profiles
analysis
Vertical depth profiles of O2 concentration were measured with a fast-
responding Clark-type O2 microsensor (tip diameter 50 μm, OX-50,
Unisense A/S, Aarhus, Denmark)51 in steps of 50 μm. The microsensor
was linearly calibrated from sensor readings in air-saturated water and
anoxic sodium ascorbate solution. Sensor drift during the experiment was
compensated by linear interpolation of the bulk water oxygen concentra-
tions. We noted a gradual increase in bulk water O2 concentration during
the measurements under light conditions, which we attribute to
photosynthetic activity in the flume and header tank. This was reversed
after switching to dark conditions but may have led to a slight
overestimation of bulk water O2 concentrations as compared to theoretical
expectations. The microsensor was vertically mounted on a motorized
micromanipulator (Unisense A/S) and connected to a laptop-interfaced
microsensor multimeter (Unisense A/S). Data acquisition and micromani-
pulator positioning were controlled by dedicated software (Sensor
TracePro, Unisense A/S). The micromanipulator was mounted on the
precision positioning robot alongside the OCT probe. In order to calibrate
the position of the microsensor with respect to the OCT scans, a parafilm
membrane was fixed at 2 mm from the plexiglass surface, and four holes
were pierced in it using the microsensor tip. The holes in the membrane
were then scanned by OCT in order to calculate the relative shift in x and y
directions of the microsensor relative to the OCT scan. Profiles were
measured in both fast (n= 301) and slow (n= 293) flow conditions,
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following an experimental design including both points- and transects-
measurements (Supplementary Fig. 6). Profiles were measured in light and
dark conditions, allowing for the O2 gradients to stabilize for at least one
hour between light conditions. Supplementary Figs. 2 and 3 report two
examples of transects of O2 concentration profiles aligned with the OCT
B-scans and macrophotographs. The position of the biofilm surface was
recorded in a few microsensor profiles using an endoscope. This estimate
was further refined based on the inflection point of profiles in dark and
light conditions, as aligned with the OCT B-scans (Supplementary Fig. 6).
To test for differences in the distributions of O2 concentration measured

inside each patch type (nCDB fast= 131, nCDB slow= 141, nDDP fast= 76, nDDP
slow= 78, nKDP fast= 68, nKDP slow= 49), we pooled all the measurements
below the biofilm surface by patch type, light/dark condition and flow
condition. We compared distributions among different patch types within
the same flow and light conditions using the Wilcoxon rank test. Using the
same statistical test, we compared distributions between flow conditions,
within the same patch type and light condition.
To test for statistical differences in the distributions of O2 concentration

at the same depth below the biofilm surface, we aligned each profile based
on the latter. Then, we compared measurements at the same depth below
(or above) the biofilm surface using unpaired Welch two-sample t-tests. To
analyze within-patch O2 dynamics, we triangulated measurements within
transects of O2 concentration profiles in each patch type and flow
condition (in the dark) and measured the intensity and direction of the
two-dimensional O2 concentration gradients for each measurement point.

DNA extraction, sequencing, and bioinformatics
We sampled biofilms exposed to two contrasting hydraulic conditions using
sterile razor blades and dissected biofilms into patch types under a
microscope (samples were ~5mm×5mm). Three replicates of each patch
type and under both flow conditions (n= 18) were flash frozen at −80 °C and
the DNA was isolated using the DNeasy Power Soil kit (QIAGEN). The 16 S and
18 S rRNA genes were amplified using PCR with the 341 f (5′
CCTACGGGNGGCWGCAG-3′) and 785r (5′-GACTACHVGGGTATCTAAKCC-3′)52

and TAReuk454FWD1 (5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3′)
and TAReukREV3 (5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACA-3′)53 pri-
mer pairs, for prokaryotic and eukaryotic community members, respectively.
We prepared sequencing libraries using the Nextera XT kit (Illumina),
equimolar pooled and sequenced on a 300 bp paired-end MiSeq (Illumina)
run at the Lausanne Genomic Technology Facility (LGTF). We clipped the
sequencing adapters from the raw reads, which were subsequently denoised
and clustered into Amplicon Sequence Variants (ASV) using dada2
(vers. 1.14)54 as implemented in QIIME255. After taxonomic assignment,
autotrophic community members were extracted from the 18 S dataset and
merged with cyanobacterial reads from the 16 S dataset, accounting for the
number of reads in both datasets. Multivariate and diversity analyses were
performed in R using the packages vegan, betapart, metacom, and Venn
Diagram.

Confocal laser scanning microscopy
Biofilm samples (~5mm× 5mm) were embedded in optimal cutting
temperature compound at the end of the experiment and frozen (−20 °C).
Thin sections (50 μm) were cryosectioned and immediately imaged by
confocal laser scanning microscopy (Leica SP8 FLIM equipped with a
Supercontinuum White Light Laser). Chlorophyll a autofluorescence was
excited at 670 nm and recorded between 685 and 750 nm. Phycocyanin
autofluorescence was excited at 594 nm and collected between 640 and
660 nm.

Numerical model
A computational model was built in COMSOL Multiphysics 5.5 based on
the finite element method. It takes into consideration both the bulk flow
(water) and the biofilm (water-saturated porous media) part in a two-
dimensional domain. The model ensures mass conservation in 2D and thus
flow over protruding biofilm structures such as tufts occurs entirely over
their top, while in reality (3D) a part of the flow is diverted laterally around
tufts. For a given streamwise velocity, our model may thus slightly
overestimate pressure differences between the up- and downstream sides
of a patch. The model solves for both fluid flow and O2 transport. Two
different transport conditions were simulated, namely the consumption
and production of O2 by the biofilm in dark and light conditions,
respectively. The simulations were used to predict the following
parameters: O2 production (NP)/consumption (R) rate [mol O2 m−3 s−1)],

biofilm permeability K [m2] and porosity ε [−], effective diffusivity
coefficient C= Deff/Daq [−], turbulent Prandtl number Prt= νt/Dt, with νt
the eddy viscosity [m2 s−1], and the eddy diffusivity Dt [m2 s−1]. To obtain
the parameter values an optimization procedure was carried out in
COMSOL as described below.
The biofilm geometries in the model are representative of realistic

biofilm patches reconstructed from OCT images (Supplementary Fig. 7).
The domain had a constant height of 0.005m, while its width varied from
~0.004 to ~0.01m, according to patch type. The structure was meshed
using an unstructured grid made of triangles and quads elements with a
total number of ~5 × 104 cells. The maximum and minimum element sizes
were ~1 × 10-4 and ~1 × 10−5 m, respectively. The mesh size was refined at
the fluid–biofilm interface and an inflation layer was created at the bottom
of the biofilm to simulate boundary layer formation (Supplementary Fig. 8).
This grid allowed a convergence with residuals lower than ~1 × 10−6.
For the boundary conditions of the flow problem, a velocity profile was

set at the inlet, which was obtained from the fitting of LDV measurements
with a quadratic polynomial, considering only the points within the
domain height (0.005m= 14 points). This profile likely over-predicts actual
velocities within the porous biofilm, as seen by the faster velocities near
the inlet compared to the rest of the domain (Fig. 3). However, an
equilibrium is reached quickly, i.e., velocity in the porous medium is quite
uniform ~1mm away from the inlet (Fig. 3). At the outlet, a zero static
pressure was assumed. A no-slip condition was set at the bottom of the
biofilm and a slip condition was selected for the top of the flow domain to
account for the remaining fluid above the considered domain.
Regarding the transport problem, individual concentration profiles for

each biofilm type obtained from microsensor profiling were imposed as an
inlet boundary condition, while at the outlet an outflow condition was
imposed. A zero flux was set at the top and bottom of the domain, and a
constant rate of production (or consumption) was set in the biofilm
domain. The entire domain was initialized with zero velocity and zero O2.
We include turbulence using a Reynolds-averaged model with constant
eddy viscosity/diffusivity and assumed steady-state conditions of the mean
flow. Prior to optimization56, an initial guess for the eddy viscosity was
obtained by estimating the integral length scale of the turbulence (~7% of
the water depth) and turbulent velocity fluctuations (u′ equal to friction
velocity), and the turbulent Prandtl number was initialized as Pr= 1. Even
though in reality the eddy viscosity decays toward the fluid–biofilm
interface, this simple model is sufficient to reproduce the sharp transition
to a flat concentration profile from the biofilm to the bulk liquid flow.

Governing equations
The water flow at the top of the biofilm was modeled as steady, turbulent,
and incompressible. Therefore, we applied the Reynolds-averaged
Navier–Stokes (RANS) and continuity equations. The transport of O2 is
also considered steady, since the comparison is done with experimental
data collected at steady-state conditions. The Eq. (3) of transport is:

�D∇2c þ u∇c ¼ R (3)

where u is the flow velocity vector, c is the O2 concentration [mol m−3], D is
the O2 diffusivity in water [m2 s−1] and R is the production (NP)/
consumption rate of O2 [mol s−1]56. The ratio between advective and
diffusive fluxes was calculated as in Eq. (4).

Jc=Jd ¼ u!C
�� ��= �Deff∇Cj j (4)

A ratio larger than unity indicates the dominance of advective over
diffusive fluxes, whereas a ratio smaller than one indicates the dominance
of diffusive fluxes.

Parameters optimization
To optimize the parameter listed in Table 2, the optimization module in
COMSOL Multiphysics 5.5 was employed. For each patch type and each
flow and light condition, one transect of O2 concentration profiles was
used as Least-Squares Objective features to create an objective function of
the sum of squared differences between experimental data and a
corresponding expression calculated by the model. The model expression
was evaluated using interpolation on the feature selection, at measure-
ment locations. Then, the Nelder–Mead algorithm57,58 was used to
optimize the parameters. The solver uses geometrical reflections,
expansions, and contractions to improve the points in the simplex. The
optimality tolerance was set to 1 × 10−4 for each controlled variable
(parameter ranges used in the optimization procedure are reported in
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Supplementary Table 2). Given the effects of missing lateral flow diversion
in our model (compared to a 3D scenario), the optimization of permeability
may have yielded a lower permeability (to provide the same advective
transport compatible with the experimental concentration profile within
the biofilm but based on a lower pressure gradient). One might thus
expect larger differences in permeability between KDP and the other
biofilm types in 3D than in 2D.
Profiles modeled using the optimized parameters were validated against

O2 concentration profile transects. The Pearson correlation coefficients
between measured and predicted O2 concentrations were 0.4 ± 0.3 (mean
± standard deviation) under slow, and 0.6 ± 0.2 under fast flow (Supple-
mentary Fig. 9). The quality of the fit between measured and predicted O2

concentrations was generally low for transects across very tall KDP under
fast flow. The height of these structures exceeded the OCT imaging field,
and the geometry used to model O2 dynamics was therefore inaccurate. In
addition, profiles in the proximity of the boundary of the modeled domain
presented a lower fit as a consequence of the velocity profile at the inflow
boundary, which was measured without the biofilm. With increasing
downstream distance, the velocity profile gradually adjusted to the given
roughness conditions of the different biofilm transects, and generally the
quality of the fits improved accordingly.
We calculated the average wall shear stress τ over the biofilm surface.

The friction velocity is given by Eq. (5).

u� ¼
ffiffiffiffiffiffiffi
τ=ρ

p
(5)

where ρ is the fluid density. The viscous length scale δ was estimated as in
Eq. (6).

δ ¼ ν

u�
(6)

where ν is the kinematic viscosity of water. Finally, the DBL scale was
estimated using Eq. (7).

DBLscale ¼ δ=
ffiffiffiffiffi
Sc

p
(7)

where Sc= ν/Dw is the Schmidt number and Dw is the diffusion coefficient
of oxygen in water. However, it should be noted that our numerical model
realizations clearly depend on the chosen biofilm geometry and that
parameter optimizations can be trapped in local maxima. We chose
representative biofilm structures and provided plausible parameter
ranges for optimizations, yet, this does not allow us to quantify
uncertainties associated with these model predictions. The use of
smoothed OCT images may thus reflect idealized biofilm structure and
function; however, we deem this idealization well suited for upscaling.
Consequently, volume-weighted metabolic rates were used for upscaling
to the entire biofilm landscape. Given the absence of evidence for effects
of metabolic activity extending across neighboring biofilm patches (e.g.,
Fig. 1f), the spatial arrangement of the different patch types and spatial
interactions were not considered.

Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Experimental data, as well as ASV tables, are available on Figshare (https://doi.org/
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