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Commensurate-incommensurate transition in the chiral Ashkin-Teller model
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We investigate the classical chiral Ashkin-Teller model on a square lattice with the corner transfer matrix
renormalization group algorithm. We show that the melting of the period-4 phase in the presence of a chiral
perturbation takes different forms depending on the coefficient of the four-spin term in the Ashkin-Teller model.
Close to the clock limit of two decoupled Ising models, the system undergoes a two-step commensurate-
incommensurate transition as soon as the chirality is introduced, with an intermediate critical floating phase
bounded by a Kosterlitz-Thouless transition at high temperature and a Pokrovsky-Talapov transition at low
temperature. By contrast, close to the four-states Potts model, we argue for the existence of a unique
commensurate-incommensurate transition that belongs to the chiral universality class, and for the presence of a
Lifshitz point where the ordered, disordered, and floating phases meet. Finally, we map the whole phase diagram,
which turns out to be in qualitative agreement with the 40-year-old prediction by Huse and Fisher.
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I. INTRODUCTION

Recent experiments on Rydberg atoms [1,2] have brought
back the problem of commensurate-incommensurate (C-IC)
transitions, and of the nature of the melting of an ordered
period-p phase into an incommensurate one. This transition
was originally discussed in two-dimensional classical sys-
tems in the context of the melting of an adsorbed layer on
a substrate lattice, and simultaneously introduced by Huse
[3] and Ostlund [4] as a series of chiral models exhibiting
p − 1 types of domain walls, such that domain walls between
ordered domains A | B and B | A have different energy, in-
troducing a chiral into the problem. For p = 2, the system
is commensurate even in the disordered phase, and there is
no commensurate-incommensurate transition. The transition,
if continuous, generically belongs to the Ising universality
class. For p � 5 the transition is always a two-step one, with
a critical phase in between. In that phase, the configurations
are made of permutations of stripes of the p different orders
with domain walls at an average distance of l ∝ 1/q, where
q is the incommensurate wave vector of the correlations. As
the temperature approaches the ordered phase, the domain
walls repel each other and the wave vector converges to a
commensurate value with an exponent β̄ [q − q0 ∼ t β̄ , where
t = (T − Tc)/Tc is the reduced temperature]. It is commonly
agreed that the transition is in the Pokrovsky-Talapov (PT) [5]
universality class, characterized by critical exponents: νx =
1/2, νy = 1, β̄ = 1/2, where νx/y describes the divergence of
the correlation length in the directions x and y, respectively.
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The high temperature transition between the critical and the
disordered phases is a Kosterlitz-Thouless [6] one driven by
the unbinding of the dislocations [7] which become relevant at
η = 1/4, where η is the exponent of the decay of the spin-spin
correlation function.

For the p = 3, 4 cases, the picture might be different. It
was first argued by Huse and Fisher [8] that a floating critical
phase bounded by two transitions might not appear right away
when introducing the chirality. Instead the commensurate-
incommensurate transition could be unique and would belong
to a new chiral universality class characterized by the product
of the correlation length ξ and the wave vector q − q0 con-
verging to a constant at criticality (β = ν), and by a dynamical
(or anisotropy) exponent z ≡ νy/νx different from 1 (νy �= νx).

Since its first introduction, the existence of the chiral uni-
versality class has generated numerous studies, especially
for the p = 3 case incarnated by the three-state chiral Potts
model. Both the classical [8–20] and quantum [21–28] cases
have been studied extensively. Further experimental work was
also performed [29–31].

By contrast to the p = 3 case, the p = 4 literature is less
rich. We note, however, that recently an investigation of a
quantum version of the model has suggested the presence of a
chiral universality class as well [32]. In this paper, we address
the p = 4 case by studying the classical version of the chiral
Ashkin-Teller model, and we show that both possibilities (chi-
ral transition or two-step transition) are realized depending on
how close one is to the Potts or clock limit of the model.

The paper is organized as follows. In Sec. II, we describe
the model and the different possibilities for the phase dia-
gram. In Sec. III, we describe the methodology and the corner
transfer matrix renormalization group (CTMRG) algorithm.
In Sec. IV, we benchmark the algorithm and discuss its power
and limitation. In Sec. V we present our results. We compare
and study in detail the phase diagram of the chiral clock-Ising
model, where a floating phase opens right away, and of the
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FIG. 1. The two possible phase diagrams for λ < λc1: either the
transition is immediately a two-step one through an intermediate
critical floating phase, or it is a direct one in the chiral universality
class.

four-state chiral Potts model, where we observe a chiral tran-
sition, and we propose a full phase diagram of the model.

II. CHIRAL ASHKIN-TELLER MODEL

The two-dimensional Ashkin-Teller (AT) model [33] is
defined with two Ising spins τ, σ ∈ {±1} on each site with
energy:

H0 = −
∑
〈i, j〉

σiσ j + τiτ j + λσiσ jτiτ j, (1)

where the sum runs over pairs of nearest neighbors. It has been
shown [34] that there is an exact critical line known from dual-
ity where the correlation length exponent varies continuously
from the four-state Potts model (λ = 1) to the clock model
(λ = 0) equivalent to two decoupled Ising models as

ν = 1

2 − π
2 arccos(−λ)−1

. (2)

To our knowledge there is no known theoretical value known
for β̄, but it is believed to be larger than 1, implying that the
product ξq → 0 along this line [9]. The chiral Ashkin-Teller
model can be defined by adding a chiral perturbation along the
x direction:

H = H0 + 

∑
x,y

(τx+1,yσx,y − σx+1,yτx,y). (3)

This model was originally introduced by Schulz [11], who
showed that the chiral perturbation is irrelevant for λ > λc1 ∼
0.9779. For large enough values of 
, the C-IC transition is
expected to be a two-step transition separated by a floating
phase. For λ < λc1 , for small enough values of 
 two possi-
bilities arise: either the transition is two step and the floating
phase opens right away or the transition is unique and belongs
to the chiral universality class with νx = β̄. The two different
scenarios are depicted in Fig. 1. On the other hand, for λ >

λc1 , the perturbation is irrelevant, and for small enough values
of 
, the transition is expected to be in the AT universality
class. The parameter range between λc1 and the Potts limit
is very small, actually too small to be observed numerically
as we shall see. For larger 
, beyond this small range of
AT transition, the question of a unique chiral transition or a
floating phase remains unchanged.

Z = ≈

χ
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a a a

a a a

C1 T1 C2

T4 a T2

C4 T3 C3

FIG. 2. Sketch of the partition function as the contraction of a
tensor network.

For the rest of the paper, we will refer to the λ = 1 case
as the four-state chiral Potts model and to the λ = 0 case as
the chiral clock-Ising model in reference to their respective
universality classes at 
 = 0.

III. METHODOLOGY

We use the same methodology already developed in the
previous work on the three-state chiral Potts model [35] where
more details are available.

A. CTMRG

The CTMRG algorithm was first introduced by Nishino
and Okunishi [36]. It is a numerical method which combines
Baxter’s corner matrices [37] and White’s renormalization
group density matrix method [38]. It is most commonly
used for two-dimensional quantum systems as a contraction
algorithm of wave functions [39], but has recently shown
promising results on classical systems as well [40–42].

The investigation of classical systems with tensor networks
is done by expressing the partition function in the thermo-
dynamic limit as an infinite tensor network and contracting
it. CTMRG sets a way to contract such an infinite square
tensor network made of local tensors a on each vertex as
shown in Fig. 2. In particular, it allows one to express the
Gibbs measure observables as a contraction made of eight
tensors denoted by T = {C1, T1,C2, T2,C3, T3,C4, T4}, with
corner tensors Ci of dimension χ × χ and row/column ten-
sors Ti of dimensions χ × 4 × χ . The parameter χ is what
controls the numerical approximation and is usually referred
to as the bond dimension. The local tensors a can be expressed
in many different ways. We choose the most common one
given by

ai1i2i3i4 =
∑

j1 j2 j3 j4

√
Qx

i1 j1

√
Qx

j3i3

√
Qy

i2 j2

√
Qy

j4i4
(4)

with Qx/y
i j the Boltzmann weight matrices between two

spins on the horizontal/vertical axis. In the (σ, τ ) =
{(1, 1), (1,−1), (−1, 1), (−1,−1)} basis, Qx is given
by

Qx =

⎛
⎜⎝

ex0 ex1 ex2 ex3

ex2 ex0 ex3 ex1

ex1 ex3 ex0 ex2

ex3 ex2 ex1 ex0

⎞
⎟⎠ (5)
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FIG. 3. Sketch of the full iteration for the corner and row tensors
C1 and T1.

with

x0 = β(λ + 2), x1 = −β(2
 + λ),

x3 = β(λ − 2), x2 = β[2
 − λ)].

Qy is defined similarly with 
 = 0. CTMRG therefore pro-
vides an easy way to directly measure the local observable and
two points functions.

The algorithm can be summarized in two steps [43]:
(i) Update: each corner matrix is extended by adding a row,

a column, and a local a tensor. And each row/column tensor is
extended by adding a local tensor a. We illustrate this step for
the tensors C1 and T1 in Fig. 3. The other tensors are updated
similarly.

(ii) Truncation: the update increases the bond dimension
of the environment tensors by a factor 4. In order to avoid an
exponentially growing bond dimension one needs to project
the tensors into a subspace. The isometries are given by doing
the singular value decomposition on some density matrices
and keeping only the χ largest singular values. The choice of
the density matrices influences greatly the convergence of the
algorithm. We choose the ones originally proposed by Nishino
and Oknishi and given by

U ′
1S ′

1V ′
1 = C′

2C
′
3C

′
4C

′
1, (6)

U ′
2S ′

2V ′
2 = C′

3C
′
4C

′
1C

′
2, (7)

U ′
3S ′

3V ′
3 = C′

4C
′
1C

′
2C

′
3, (8)

U ′
4S ′

4V ′
4 = C′

1C
′
2C

′
3C

′
4 (9)

with C′
i the extended corner matrices. A full iteration for one

corner and one column tensor is illustrated in Fig. 3.
Both steps are repeated until the energy between two itera-

tions converges to some threshold, at which point we consider
the thermodynamic limit reached. We note that the initial ten-
sors represent the boundary conditions on the infinite systems
and influence the convergence of the algorithm. We choose
to set the boundary conditions to be open as it gives the best
convergence.

B. Effective exponents and critical temperatures

Our analysis is based on effective exponents and some
general hypotheses regarding the nature of the transitions. The
effective exponent of some physical quantity A which behaves
algebraically, A ∼ t θ , is defined as

θeff = d log(A)

d log(t )
(10)

with t = |T − Tc|, the reduced temperature. Due to crossovers
and various corrections, the effective exponent might not be
equal to the critical exponent if evaluated outside the criti-
cal regime but should converge to it as t → 0. If the C-IC
transition is unique, effective exponents, and in particular νeff

from both sides of the transition, should converge to the same
value at t = 0. It turns out that this requirement is enough to
fix Tc. On the other hand, if the transition is two step, due
to the exponential divergence of the correlation length from
the Kosterlitz-Thouless (KT) transition at high temperatures,
asking for a unique limit of νeff from both sides of the tran-
sition will lead to ν > 1. Such an exponent is unphysical
and one can conclude that the hypothesis is wrong. Thus,
the transition must be two step. In that case, fixing TKT by
looking for the regime where η = 1/4 turned out to be more
accurate than fitting the correlation with an exponential, where
η is the exponent of the decay of the spin-spin correlation
function:

〈S0Sr〉 = 〈τ0τr〉 + 〈σ0σr〉 ∝ r−η. (11)

TPT is fixed by the condition limt→0 ν
y
eff = 1 from the ordered

phase. From now on, we will use νHT and νLT to denote the
limit of the effective exponent from the respective high and
low temperature regimes.

C. Extrapolation of the correlation length and wave vector

The correlation length and wave vector can be easily com-
puted through partial diagonalization of transfer matrices. If
one denotes the normalized ordered eigenvalues of the trans-
fer matrix with λi = ε jeiφ j , j = 1, 2, . . ., then the correlation
length and wave vector are given by

ξ = 1

ε2
, q = φ2. (12)

This estimation, which corresponds to a given finite bond
dimension, can be improved using extrapolations [44] with
respect to gaps (δ) within the transfer matrix spectrum. Rams
et al. suggested that the inverse correlation length scales lin-
early such that

1

ξexact
= ε2 + δ, (13)

φexact = φ2 + δ′. (14)

Various gaps δ can be used. In particular, in the disordered
phase we systematically used δ = ε4 − ε2. In some cases
the energy levels of the transfer matrices cross and in order
to follow a given gap closing, we extrapolate using dif-
ferent eigenvalues. An example of such a case is given in
Fig. 4. As for the wave-vector extrapolation, we used dif-
ferences in the argument of the eigenvalues; usually we used
δ′ = φ4 − φ2.

D. Error bars

The errors on the effective exponents come from the un-
certainty on the critical temperature δTc and the error in the
correlation length from the linear fit δξ . A first order Taylor
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FIG. 4. Inverse correlation length as a function of a gap of the
transfer matrix at 
 = 0.2 and λ = 1. The bond dimensions used
vary from 100 to 200. Because of a level crossing, two different
eigenvalues were used to extrapolate the correlation in order to fol-
low the same gap: δ = ε18 − ε5 (crosses) and δ = ε16 − ε5 (circles).
Each color represents a different temperature. The simulations are
done in the low temperature regime.

expansion gives

δνeff = νeff

(
δξ (T )

ξ (T )
+ δTc

T − Tc
+ δξ (T +dT ) + δξ (T −dT )

ξ (T + dT ) − ξ (T − dT )

)
.

Error bars on the critical exponents are computed by fitting
error bars of the effective exponents as shown in Fig. 5.

IV. BENCHMARK

In this section we benchmark the results on the two extreme
cases λ = 0 and λ = 1 of the well understood Ashkin-Teller
line in order to test and understand the limitations of the

-0.05 0 0.05

0.98

1

1.02

0 0.02 0.04 0.06 0.08

1.24

1.25

1.26

FIG. 5. Effective exponents for the Ising model. We extrapolated
with a linear fit ν = 0.992 ± 0.008 and ν = 0.999 ± 0.01, respec-
tively, from the low and high temperature regime. The error on the
extrapolated values is estimated with a linear fit (gray dashed line)
on the error bars of the effective exponents. For β̄, a linear fit on the
last three points extrapolates to β̄ = 1.262 ± 0.004.

algorithm. Both models are commensurate along 
 = 0, so
in order to study β̄ we approach the critical point from the
line 
 = T − Tc.

1. Ising point

At the λ = 
 = 0 point, the model decouples into two
independent Ising models. Therefore, the transition belongs
to the Ising universality class characterized by an exponent
ν = 1 and a specific heat that diverges logarithmically, i.e., an
exponent α = 0 with a multiplicative logarithmic correction.
The critical temperature is known from duality and is given
by Tc = 2/ log(

√
2 + 1).

The numerical results are summarized in Fig. 5. A linear
extrapolation gives νHT = 0.999 ± 0.01 and νLT = 0.992 ±
0.008 in excellent agreement with the theoretical value ν =
1. The wave-vector exponent extrapolates to β̄ = 1.262 ±
0.004, implying that the product ξq → 0.

2. Four-state Potts point

We now turn to the 
 = 0 and λ = 1 point, which belongs
to the four-state Potts universality class. It is characterized
by the exponents ν = 2/3 and α = 2/3 with multiplicative
logarithm corrections [45] both in the specific heat and in
the correlation length. The critical temperature Tc = 4/ log 3
is also known from duality.

Due to these corrections, the measurement of ν is known
to be difficult. In particular, previous studies with the Monte
Carlo renormalization group method [46] have obtained
ν−1 � 1.34 (or ν � 0.746). We find similar results. A linear
extrapolation of the effective exponents in Fig. 6 gives ν =
0.713. This is quite far from the exact value. Indeed, due to the
logarithmic correction, extrapolating the results with a linear
fit is wrong and one expects the effective exponent to converge
to 2/3 with an infinite slope. We are not close enough to
the critical temperature to observe this change of behavior.
For the incommensurability, we observe β̄ = 1.71 ± 0.02.
Due to the poor accuracy of ν, we can ask how much one
can trust this result. However, we notice that the product ξq
has exponent β̄ − ν = 0.99 ± 0.06. Thus, if the product can-
cels the corrections in the wave vector and in the correlation
length, one would have β̄ = 2/3 + 0.99 = 1.66 ± 0.06 which
we note to be close to the three-state Potts critical exponent.
Results are summarized in Fig. 6. In any case, we established
that, as expected β̄ > ν and ξq → 0.

V. RESULTS FOR 0 � λ � 1

We now look at the C-IC transitions. In particular, we study
in detail the phase diagram of the chiral Ising and the four-
state chiral Potts models. For both systems, we observe a KT
and a PT transition enclosing a floating phase. In addition,
for the four-state chiral Potts model, we found a unique chiral
transition.

A. Pokrovsky-Talapov transition

We first consider the λ = 0 model at which we observe a
PT transition for 
 as small as 0.05. As we will see later, in
contrast to larger values of λ, the floating phase extends over a

013093-4



COMMENSURATE-INCOMMENSURATE TRANSITION IN THE … PHYSICAL REVIEW RESEARCH 4, 013093 (2022)

-0.02 -0.01 0 0.01 0.02

0.68

0.7

0.72

0.74

0 0.02 0.04 0.06 0.08
1.68

1.7

1.72

0 0.02 0.04 0.06 0.08

0.95

1

1.05

(a)

(b)

(c)

FIG. 6. Effective exponents for the Potts model. From top to
bottom: (a) Simulations done along the commensurate line. (b) and
(c) Simulations done along the line 
 ∝ T − Tc.

broad parameter range for relatively small values of 
 and we
are able to locate TKT using the criterion η = 1/4 for 
 > 0.1.
Looking at the phase diagram of Fig. 7, the KT and the PT
transitions do not seem to cross before the Ising point and we
conclude that, as expected for this model, the floating phase
opens up as soon as the chirality is introduced.

In Fig. 8, we present a more careful study of the transition
at 
 = 0.4. We have plotted the inverse correlation length in
the y direction and the square of the wave vector with respect
to the temperature. We were not able to measure ξx from
the ordered phase due to poor extrapolations. Because in the
floating phase the algorithm converges very slowly, the wave-
vector values shown have not been extrapolated but were
made with fixed bond dimension χ = 200 and χ = 150. One
first notices the accuracy of both linear fits on a large temper-
ature interval, in agreement with critical exponent νy = 1 and
β̄ = 1/2 with no or very little corrections. If these are indeed
the correct critical exponents, the critical temperature can be
determined by the intersection with the temperature axis either
using the inverse correlation length or with the squared wave
vector. This gives respective values of TPT = 1.806 and TPT =
1.807, in agreement with each other up to 10−3, and provides
a self-consistent picture in agreement with a PT transition.
Furthermore, in Fig. 9, we observe that the specific heat does
not diverge from the ordered phase but has a clear divergence
from the floating phase, as expected at a PT transition.

0 0.1 0.2 0.3 0.4

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

FIG. 7. Phase diagram for λ = 0. The red and blue dots rep-
resent the measured critical temperatures. The lines are spline
interpolations.

For λ = 1, we observe a PT transition only at 
 > 0.7
with at first, a narrow floating phase. We illustrate the results
at 
 = 0.8 in Fig. 11. For λ = 0 and 
 = 0.4, we deduced
TPT from the critical exponents. Here, we work the other way
around; we fix TPT and deduce the exponents. Setting TPT with
νLT

y = 1 at the transition fixes β̄ = 0.53 ± 0.04 and νLT
x =

0.51 ± 0.05, once again providing a self-consistent picture
with exponents in good agreement with the PT universality
class.

1.75 1.8 1.85 1.9
0

0.01

0.02

0.03

0.04

0.05

FIG. 8. Inverse correlation length and square of the wave vector
as a function of temperature at 
 = 0.4 and λ = 0. If νy = 1, TPT can
be determined by the intersection of 1/ξy and the temperature axis.
If β̄ = 1/2, the same applies to the squared wave vector. The critical
temperature extracted from the correlation length gives TPT = 1.806,
and from the wave vector TPT = 1.807, both in good agreement with
each other. We also plot the squared wave vector obtained for a
smaller bond dimension.
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FIG. 9. Specific heat at 
 = 0.4 and λ = 0 for finite bond
dimensions, χ = 200 at low temperature and χ = 150 at high tem-
perature. As there is no extrapolation over the bond dimension, we
prefer not to use effective exponents. The specific heat does not
diverge from the ordered phase and diverges from the floating phase,
as expected for a PT transition.

B. Kosterlitz-Thouless transition

The main limitation of the algorithm is its convergence. It
turns out that close to the PT transition, the algorithm does
not converge to sufficiently low precision to give sensible

0 2 4 6

-2

-1.5

-1

-0.5

0

FIG. 10. Log-log plot of the spin-spin correlations for 
 = 0.1
at λ = 0. The bond dimension used is 200 and the convergence in
energy 10−9. The results are similar up to 400 sites for bond dimen-
sion 150. The fits are done between 150 and 300 sites. The exponent
reaches the values η = 1/4 between T = 2.22 and T = 2.225, al-
lowing us to locate TKT with a precision of the order 5 × 10−3. In
general, the larger the floating phase, the slower the exponent η varies
inside it. Therefore, we have best estimates of the critical temperature
for narrow floating phases rather than larger ones.

-0.1 -0.05 0 0.05 0.1

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

FIG. 11. Effective exponents as a function of temperature for

 = 0.8 at λ = 1. νx and νx diverge from the disordered phase in
agreement with an exponential divergence of the correlation length.
We found β̄ = 0.53 ± 0.04 and νLT

x = 0.51 ± 0.05. β̄ is extrapolated
with a linear fit on all available points. νx is extrapolated with a linear
fit on the four last points. The error is computed by fitting the error
bars and indicated with a gray dashed line.

results. This forbids us to use the η = 1/4 criteria to determine
TKT when the floating phase is too narrow. In that case, an
exponential fit of the correlation length will not give enough
accuracy to distinguish the two critical temperatures.

As already mentioned, for λ = 0, the floating phase ex-
tends over a large parameter range so that even at 
 = 0.1
the η = 1/4 criterion can be used to locate the KT transition.
We now illustrate such log-log fit with different temperatures
in Fig. 10. We notice that the log-log plot is linear only above
some threshold distance that increases as the temperature de-
creases. This is due to the fact that the true power law decay is
only visible above the average distance between domain walls
l = 2π

4q which diverges as one approaches the PT transition.
For T = 2.22, we evaluate log l � 3.99, which is in good
quantitative agreement with where the curve starts to be linear
in Fig. 10. This makes the study of the power law decay close
to the transition extremely difficult.

For λ = 1, we can use the η = 1/4 criterion to determine
TKT only above 
 > 1. In contrast, for 0.7 < 
 < 1 the
floating phase is too narrow to distinguish the two critical tem-
perature transitions. In any case we can identify the transition
to be in the KT universality class from the divergence of νx

and νy from the high temperature regime at the transition as
shown in Fig. 11.

C. Chiral transition and Lifshitz point

We now move to λ = 1 and small values of 
. We recall
that at this point, the chiral perturbation is irrelevant and the
transition should initially be a unique one in the AT univer-
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FIG. 12. Effective exponents as a function of temperature for

 = 0.3 at λ = 1. Simulations were made with bond dimension
between 100 and 200. The main part of the error bars is due to the
extrapolations error. Extrapolated exponents come from a linear fit
done on the four last points (dashed lines).

sality class. Yet, we do not see any incommensurate melting
in the AT universality class. This is probably due to the fact
that the parameter range of the AT transition is too small to
be detected by our approach. The results are summarized in
Figs. 12 and 13. Based on those, we exclude the possibility of
a two-step transition. Indeed, fixing the critical temperature up
to 10−4 with a unique exponent νy fixes a unique exponent νx

with good accuracy. We note that both exponents are smaller
than 1 and the transition must then be unique.

For 
 = 0.3, we obtained after extrapolation νHT
x =

0.692 ± 0.012 and νLT
x = 0.710 ± 0.010 in reasonable agree-

ment with each other. Furthermore, we also extrapolated
β̄ = 0.689 ± 0.010. Then, we obtain νHT

x = β̄ within a 0.4%
difference, and an anisotropy exponent z > 1. Those two fea-
tures are the main characteristics of the chiral universality
class and give already strong evidence in favor of a chiral
transition. For 
 = 0.1, we extrapolate from the disordered
phase νx = 0.71 ± 0.02 and νy = 0.72 ± 0.03, close to the
effective exponents obtained at the Potts point. Similar ex-
ponents are obtained from the ordered phase as shown in
Fig. 13. This is probably due to strong crossovers. However,
in contrast to the Potts point we extrapolate β̄ = 0.70 ± 0.02.
Such drastic change of behavior allows us to conclude that
the nature of the transition must be different. Once again, we
note that νHT

x = β̄ within 1.4% and in agreement with a chiral
transition.

As already mentioned, just beyond the Lifshitz point, we
will obtain νy > 1 if we try to locate a unique transition due
to the KT nature of the upper transition. We can therefore
locate the Lifshitz point with the condition νy = 1, leading to
a Lifshitz point at 
L = 0.705 ± 0.01.
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FIG. 13. Effective exponents as a function of temperature for

 = 0.1 at λ = 1. Simulations were made with bond dimension
between 100 and 200. The main part of the error bars is due to
the extrapolations error. Extrapolated exponents come from a linear
fit done on the three last points (dashed lines). We obtain νHT

x =
0.71 ± 0.02, νLT

x = 0.72 ± 0.01, and β̄ = 0.70 ± 0.02.

D. Phase diagram

By applying the same methodology systematically we have
been able to map the whole phase diagram, and to identify a
line of Lifshitz points. This leads to three different regimes
depending on the value of λ. For 0 � λ < λc2 , the chiral
perturbation opens a floating phase right away. By contrast,
for λc2 < λ < λc1 , the chiral perturbation leads to a unique
transition in the chiral universality class, and a floating phase
only opens for a nonzero value of 
. Finally, for λc1 < λ � 1,
the transition should first be in the AT universality class, a
regime too small to be detected numerically. For a small but
nonzero value of 
, the transition should become a unique
transition in the chiral universality class, and finally, for larger

, a floating phase should open. These results are summa-
rized in Fig. 14, where we show the three-dimensional phase
diagram, and in Fig. 15, where we show a projection of the
phase diagram on the (
,λ) plane. The similarity between the
phase diagram of Fig. 14 and Fig. 12 of Ref. [9] is striking.
The transition is clearly unique for a range of λ below the
Potts point λ = 1, and a two-step one for a range of λ above
the clock-Ising point λ = 0. A linear extrapolation of the
Lifshitz point at λ = 0.6 and λ = 0.7 towards 
 = 0 leads
to the estimate λc2 � 0.42, but the curvature of the line of
Lifshitz points in Fig. 15 suggests that this value should be
considered as an upper bound for λc2 . This result for λc2

is in agreement with recent density-matrix renormalization
group simulations on the quantum version of the model [32],
for which a chiral transition has been identified in a model
with λ ∼ 0.57.
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FIG. 14. Phase diagram of the chiral Ashkin-Teller model. The
orange line is the Ashkin-Teller transition in the absence of a chi-
ral perturbation, while the blue line is the Lifshitz transition. The
chiral transition is indicated by red lines. Beyond the Lifshitz line,
the commensurate-incommensurate transition becomes a two-step
process.

E. Specific heat and Kibble-Zurek exponent

We now discuss and analyze the specific heat exponent α

obtained along the line λ = 1 and its relation with the Kibble-
Zurek exponent. We recall the hyperscaling relation νx + νy =
2 − α. If such a relation applies, there are two different ways
to determine if, as reported earlier for the three-state Potts
model [35], α is constant along the transition: either through
the direct computation of α itself, or through the computation
of the sum νx + νy.

For the Potts point, the exact value is known to be α = 2/3.
Due to logarithmic corrections in the correlation length, we
have found 2ν = 1.426 which gives α = 0.57. If we make
the hypothesis of a chiral transition, we can use the iden-
tity β̄ = νx and for 
 = 0.1 and 
 = 0.3, we respectively
found νHT

y + β̄ = 1.42 and 1.427. We also directly studied
αeff (see Fig. 16) and found evidence of a constant exponent
along the transition at α � 0.55, which establishes the validity
of the hyperscaling relation. Thus, we observe that α seems to
be more or less constant along the chiral transition, as already
observed in the p = 3 [35] case and in a quantum version of
the model at λ � 0.57 [32]. We note that a constant value of
α = 2/3 along the transition and in particular at 
 = 0 would
imply that there are still logarithmic corrections in the correla-
tion length along the chiral transition. Thus, we are probably
overestimating the sum νx + νy, and in fact most certainly νx

since, in order to keep νx + νy = 4/3 with νy > νx, νx should
be smaller than 2/3.

The Kibble-Zurek exponent can be measured in arrays of
Rydberg atoms [2]. It is defined as μ = ν/(1 + νz), with ν

FIG. 15. Projection of the phase diagram of the chiral Ashkin-
Teller model on the (
,λ) plane. The color map shows the critical
exponent νy from the ordered phase. It is obtained from a linear
interpolation of simulations performed at intervals of length 0.1 in
the 
 and λ axis (gray dots). In the two-step transition regime, νy = 1
by definition due to the PT nature of the transition. The values along
the 
 = 0 line are exact. The dotted line is a linear extrapolation
of the Lifshitz points at λ = 0.6 and λ = 0.7. It extrapolates to
λ � 0.42.

the correlation length exponent along the chain and z the
dynamical exponent. In our case, z plays the role of the
anisotropy exponent z = νy/νx, and ν is the correlation length
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FIG. 16. Effective specific heat exponent αeff for different values
of 
 along the transition at λ = 1. The simulations are performed at
finite χ = 200. The error bars for 
 = 0.1 and 
 = 0.3 come from
the uncertainty of the critical temperature.
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exponent in the x direction. Therefore, we can compute the
Kibble-Zurek exponent as μ = νx/(1 + νy). For reasons dis-
cussed above, we choose to express μ with respect to νy.
Then, using the hyperscaling relation and the hypothesis of a
constant α = 2/3 along the transition, the Kibble-Zurek expo-
nent becomes μ = (4/3 − νy)/(1 + νy). Using this expression
of the exponent and the critical exponents obtained from the
disordered phase for λ = 1, we found μ = 0.36 and μ = 0.34
for 
 = 0.1 and 
 = 0.3, respectively. These results indicate
that the Kibble-Zurek exponent is smaller along the chiral
transition than at the Potts point, where μ = 0.4. These re-
sults are in qualitative agreement with recent experiments [2]
on chains of Rydberg atoms, which have been argued to be
described by the AT model with λ close to 1 in the vicinity of
the p = 4 ordered phase [32], and for which values μ � 0.25
have been reported [2].

VI. RESULTS FOR λ /∈ [0, 1]

Since our main purpose was to identify a possible chiral
transition we have concentrated in the preceding section on
the interval λ ∈ [0, 1] since it contains the relevant parameter
range λc2 � 0.32 � λ < λc1 = 0.9779. For completeness we
now comment on the effect of a chiral perturbation outside
this interval.

A. −1 < λ < 0

In this range, the chiral perturbation stays relevant and the
floating phase opens up as soon as the chirality is introduced.
The zero temperature ground state stays four times degenerate
and we do not expect any qualitative change from the λ < λc2

case.

B. λ < −1

In this case, at 
 = 0, the nature of the zero temperature
ground state has changed and so has the transition. It is ex-
pected to be described by Ising critical exponents. Indeed, in
the λ → ∞ limit, the model is described by Ising variables
ui = τiσi, and the Hamiltonian reduces to H = ∑

i∼ j uiu j .
The zero temperature ground state is infinitely degenerate and
we recover a log(2) residual entropy. Introducing the chirality
will lift the residual entropy but the zero temperature ground
state stays 2L degenerate for a L × M lattice size, and we
expect the transition to stay a C-C one. We thus also expect
the transition to stay in the Ising universality class. Other
values of λ within the interval should be described by the same
physics. We show the results for λ = −2 at finite chirality

 = 0.1 in Fig. 17. And as expected, we found a unique π

commensurate–π commensurate transition with a correlation
length exponent consistent with the Ising value ν = 1.

C. λ > 1

At 
 = 0, for λ > 1, the self-dual line does not represent
the critical line anymore and the Ashkin-Teller transition splits
up into two Ising transitions with, in between, a nematic phase
characterized by 〈τ1σ1〉 �= 0. When introducing the chirality,
the two Ising transitions first stay in the Ising universality
class, but as the chirality increases, the nematic phase closes

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

0.98

0.99

1

1.01

1.02

FIG. 17. Evidence of a unique transition at λ = −2 and 
 = 0.1
with a critical exponent ν in good agreement with the Ising universal-
ity class ν = 1. For this simulation, we have changed the isometries
and used those in [43], which we noticed perform better in the
anisotropic case.

and the two Ising transitions merge into a unique one bounded
by commensurate phases, as illustrated in Fig. 18 for λ = 1.7.
Upon further increasing the chirality 
, the high temperature
phase becomes incommensurate, and for large enough 
 a

0 0.5 1 1.5 2

3.2
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3.6
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4.2
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FIG. 18. Phase diagram at λ = 1.7 (above the Potts point) as a
function of 
. The two Ising transitions at small 
 merge around

 � 1.7 into a single phase transition that must be in the AT univer-
sality class since the high temperature phase remains commensurate
for some range of 
. At larger 
, a floating phase bounded by KT
and PT transitions develops. For this value of λ, the region of chiral
transition (if any) is too small to be detected.
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FIG. 19. Evidence of a unique transition with β̄ � νx for λ =
1.05 and 
 = 0.5, in agreement with a chiral transition.

floating phase bounded by KT and PT transitions appears.
For this value of λ, the range of chiral transition (if any) is
too small to be detected. By contrast, for not too large λ,
we found evidence for the existence of a chiral transition to
follow up on the AT one. This result is illustrated in Fig. 19.
In the high chirality limit, one recovers a two-step transition
separated by a floating phase (not shown). Based on the results
illustrated in Figs. 18 and 19, a sketch of the expected generic
phase diagram as a function of 
 is shown in Fig. 20. Whether
the chiral transition persists for all λ is an open question that
would require further investigation.

VII. SUMMARY

Based on the qualitative study of effective exponents, we
have been able to give a self-consistent picture of the crit-
ical exponents and universality classes, and to identify two
different types of commensurate-incommensurate transitions,

Δ0

Two Ising AT Chiral KT/PT

FIG. 20. Sketch of the expected generic phase diagram for λ >

1. The high temperature phase above the Ising and AT transitions
is commensurate. The width of the various phases varies with λ, and
the widths of the sketch are arbitrary. Upon increasing λ, the width of
the chiral transition becomes smaller and smaller to the point where
we cannot say for sure if it still exists.

either a two-step one through a KT and a PT transition, or
a unique chiral transition. If we take for granted that for
λc1 � 0.9779 � λ � 1, the transition should remain AT for a
while—something we have not been able to show numerically
because this range is too small—we are led to the conclusion
that the Ashkin-Teller family of models can be classified into
three regimes according to the way they react to a chiral
perturbation: (i) A floating phase opens right away for 0 �
λ < λc2 ; (ii) the transition is unique in the chiral universality
class for λc2 � λ < λc1 ; and (iii) the transition remains in the
AT universality class before becoming chiral for λc1 � λ � 1.
The critical value for λc2 could not be pinned down very
precisely, but it can be expected to satisfy λc2 � 0.42. We
further found evidence for the chiral transition to be charac-
terized by a specific heat exponent that keeps its AT value. In
many models, the melting of an ordered period-4 phase into
an incommensurate phase takes place and the nature of the
transition is still debated. If an Ashkin-Teller point is present
along the transition, by identifying its universality class and
its exponent ν, our prediction can be used to determine the
nature of the melting close to that point. Further study on such
a model and in particular on the quantum chiral Ashkin-Teller
model would be of particular interest to test these predictions.
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