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Abstract

Alkali-silica reaction occurs in concrete between the alkalis contained in the pore solu-
tion and silica in the aggregates. Generation of ASR products gives rise to the internal
pressures that cause expansion and cracking. Due to its deleterious effect on concrete,
ASR poses a major threat to the safety and operability of the concrete infrastructure
worldwide.

Recent experimental advances obtained in the scope of the multi-disciplinary Sinergia
project entitled “Alkali-silica reaction in concrete” of Swiss research institutes shed new
light on ASR. Being part of Sinergia, the research conducted in the scope of the present
thesis had a goal to fill in the knowledge gap on the ASR mechanics. Therefore, analytical
and numerical models facilitated by the novel experimental data have been developed.

One of the Sinergia experimental studies showed that the initial ASR products accu-
mulate between the crystal grains of aggregates. We are using this knowledge together
with an estimate of the volumetric increase of a typical ASR product to evaluate the
crack-growing potential of a single region filled with ASR products. This is done by em-
ploying a semi-analytical model of an expanding inclusion of nanometre-size encircled by
a disk-shaped crack. The role of the expansion value and the inclusion’s size and shape
on the resulting crack length is investigated. The analytical findings are confirmed by a
finite element model.

Another experimental Sinergia study produced a time-series of X-ray tomograms
of the ASR-affected concrete, which resolved the evolution of the deformation field,
the crack growth and the accumulation of ASR products. This unique set of data is
used in the current thesis to study the growth of ASR-crack networks and their role
in the macroscopic behaviour of concrete. A novel cohesive elements-based meso-scale
model capable of predicting the stable growth of numerous cracks is developed. Several
hypotheses on the ASR-loading and cracking mechanisms are proposed and tested by
including them in the model. Statistical comparison of the numerical and experimental
crack networks provide new insights into ASR-cracking physics.

The continuous-damage approach is adopted to improve the efficiency and stability
of the meso-scale model. The physics of the model is enriched by accounting for the
orthotropic behaviour of damaged elements and the self-contact in cracks. This develop-
ment allows reproduction of the macroscopic expansion of the concrete samples under
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Abstract

substantial uniaxial load, which was not feasible by the earlier isotropic-damage mod-
els. Moreover, the role of creep on the ASR in concrete is investigated by combining
viscoelasticity with strain-softening.

The last subject treated in this thesis is the macroscopic behaviour of ASR-affected
structures. A computational multi-scale model of concrete is developed, validated and
used to investigate the long-term behaviour of a real ASR-affected dam. The latter was
facilitated by the availability of actual field measurements. This approach combines the
meso-scale model with the orthotropic damage and the elastic macro-scale model of the
dam. The model allows us to relate the macroscopic expansion of concrete to its state
at the meso-scale, which comprises the crack network, its openings and orientations,
and expansions of individual ASR sites. Coupling of the mechanical model with the
transient heat analysis permits to evaluate the role of temperature variations on the
ASR expansion across the dam.

Key words: alkali-silica reaction, fracture mechanics, computational homogenisation,
Eshelby problem, cohesive zone model, crack network.

ii



Résumé

La réaction alcali-granulat (RAG) se produisant dans le béton est due à la réaction
entre la silice hétérogène contenue dans les granulats et les ions alcalins contenus dans
la solution de pore du ciment. Le produit généré par cette réaction augmente la pression
interne du béton engendrant une expansion de ce dernier et la création de fissures. L’effet
néfaste de la réaction alcali-granulat sur le béton représente une menace pour la sécurité
et la maintenance de nombreuses infrastructures en béton dans le monde entier.

Le projet multidisciplinaire Sinergia intitulé “La réaction alcali-silice dans le béton”
des instituts de recherche suisses à récemment apporté un nouvel éclairage sur la réac-
tion alcali-granulat. Cette thèse fait partie du projet Sinergia et a donc pour objectif
d’analyser et de comprendre les mécanismes de la RAG à l’aide de modèles analytiques
et numériques développés sur les bases de données expérimentales provenant de divers
laboratoires partenaires.

Une étude expérimentale conduite dans le cadre de Sinergia a démontré que le produit
primaire de la RAG s’accumule dans les grains cristallographiques des granulats. Cette
connaissance ainsi que l’estimation de l’augmentation de la différence entre le volume des
réactifs et des produits de la RAG, nous permettent d’évaluer la probabilité d’évolution
d’une fissure dans le cas d’une simple poche RAG. Afin de réaliser cette estimation nous
considérons un modèle composé d’une inclusion de taille nanométrique entourée d’une
fissure en forme de disque. L’expansion de l’inclusion provoque la croissance de la fissure.
Nous étudions le rôle de la valeur d’élargissement, la taille et la forme de l’inclusion sur
la longueur de la fissure. Les valeurs analytiques seront confirmées par un modèle aux
éléments finis.

Une seconde étude conduite dans le cadre du project Sinergia fournit une série
d’images radiographiques réalisée à l’aide de rayons X sur un béton affecté par la RAG.
Cette étude permet de résoudre l’évolution de la déformation, de l’élargissement de la
fissure et de l’accumulation du produit de la RAG. Ces données ont été utilisées pour
étudier l’évolution du ensemble de fissures dues à la RAG et son rôle sur le comporte-
ment mécanique du béton à l’échelle macroscopique. Un nouveau modèle aux éléments
finis incluant des éléments cohésifs a été développé. Ce modèle développé à l’échelle mé-
soscopique permet de simuler une évolution stable d’un ensemble de fissures. Plusieurs
hypothèses sur le chargement du béton par les produits de la RAG et le mécanisme
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Résumé

de fissuration sont proposées et testées. La comparaison statistique entre les résultats
du modèle numérique et les données expérimentales disponibles a permis de fournir un
nouvel éclairage sur les mécanismes physiques à l’œuvre dans la RAG.

Afin d’améliorer l’efficacité et la stabilité du modèle à l’échelle mésoscopique, une
approche basée sur un endommagement continu est étudiée. Dans le but de s’approcher
des observations expérimentales, un endommagement orthotropique et la récupération
de la rigidité sont intégrés au modèle. Cette amélioration du modèle permet de capturer
l’élargissement macroscopique du béton soumis à une charge uniaxiale. De plus, le rôle du
fluage de la pâte de ciment sur la fissuration RAG est étudiée en combinant le caractère
viscoélastique avec l’adoucissement par tension.

Le dernier sujet abordé dans cette thèse est le caractère macroscopique des structures
affectées par les fissures RAG. Un modèle multiéchelle du béton est développé, validé et
utilisé pour étudier le comportement à long terme d’un barrage affecté par des fissures
RAG. Le développement de ce modèle est facilité par la mise à disposition de mesures
expérimentales réalisées sur le barrage. Ce modèle combine le modèle mésoscopique
à endommagement orthotropique et le modèle élastique macroscopique du barrage. Ce
modèle permet de lier l’expansion macroscopique du béton à son état mésoscopique. Ceci
inclut l’extension de l’endommagement, l’ouverture et l’orientation des fissures, ainsi que
l’expansion des sites RAG individuels. Le couplage du modèle mécanique avec l’analyse
thermique permet d’évaluer le rôle de la variation de température sur l’expansion liée à
la RAG le long du barrage.

Mots clefs : réaction alcali-granulat, mécanique des fractures, homogénéisation com-
putationnelle, problème d’Eshelby, modèle de zone cohésive, ensemble de fissures.
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Резюме

Щелочно-кремнеземная реакция (ЩКР) происходит в бетоне и является результатом
взаимодействия ионов щелочи, содержащихся в цементной пасте, и диоксидом кремния,
содержащимся внутри заполнителя. Образование продуктов реакции приводит к росту
внутреннего давления на бетон, ведущего, в свою очередь, к его расширению и растрески-
ванию. Из-за своих пагубных последствийЩКР представляет собой существенную угрозу
безопасности и функционированию бетонных сооружений по всему миру.

Недавние экспериментальные разработки, проведенные в рамках междисциплинарно-
го проекта Sinergia “Щелочно-кремнеземная реакция в бетоне” рядом швейцарских ис-
следовательских институтов, позволили сделать новые открытия в области ЩКР. Будучи
частью проекта Sinergia, исследования, проведенные в рамках данной диссертации, име-
ли целью устранить имеющиеся пробелы в понимании механики ЩКР. Для исследования
этой тематики автором данной диссертации были разработаны аналитические и числен-
ные методы, основанные на недавних экспериментальных наблюдениях.

Одно из исследований в проекте Sinergia показало, что изначальные продукты ЩКР
накапливаются между кристаллическими зернами заполнителя. Это наблюдение вместе с
численной оценкой увеличения объёма продуктов ЩКР по сравнению с реагентами были
использованы для определения возможности трещинообразования вокруг отдельно взя-
того очага формирования продуктов ЩКР. Это исследование было осуществлено посред-
ством использования полуаналитическоймеханическоймодели расширяющегося наноско-
пического включения, опоясанного дискообразной трещиной. Были исследованы роли ве-
личины расширения, а также формы и размера включения на рост трещины и ее размер.
Аналитические выводы были подтверждены результатами конечно-элементной модели.

Исследователям из другого подпроекта удалось получить временное развитие трехмер-
ных томограмм подверженногоЩКР бетона. Эти томограммы позволяют отслеживать раз-
витие деформаций в образцах, рост трещин и накопление продуктов ЩКР в пространстве
и во времени. Этот уникальный набор данных был использован автором диссертации для
изучения роста ЩКР-трещин и их влияния на макроскопическое поведение бетона. Была
разработана трехмерная мезоскопическая численная модель, основанная на когезивных
интерфейс-элементах. Преимуществом этой модели является возможность одновременно-
го роста множества трещин сложной формы внутри одного образца. Был сформулирован
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ряд гипотез касаемо природы внутренней нагрузки, а также механизма трещинообразова-
ния, который позже был протестирован за счет включения его в модель. Сравнение стати-
стических показателей экспериментальных и численных результатов позволили сделать
выводы, касающиеся физики трещинообразования в результате ЩКР.

Для улучшения эффективности и стабильности мезоскопических вычислений была
также разработана двухмерная модель на основе теории непрерывного разрушения. Ре-
алистичность модели была повышена за счет включения ортотропного поведения разру-
шаемых элементов, а также контакта между стенками захлопывающихся трещин. Эти раз-
работки позволили воспроизвестимакроскопическое расширение бетонных образцов, под-
верженных существенной одноосной сжимающей нагрузке, что было невыполнимо ранее
предложенными моделями с изотропным разрушением. Более того, за счет включения в
модель вязкоупругости было изучено влияние ползучести бетона на динамику ЩКР.

Последняя тема, представленная в диссертации, касается макроскопического поведе-
ния конструкций, подверженных ЩКР. Автором была разработана двумерная мультимас-
штабная термо-механическая модель бетона, которая была использована для исследова-
ния поведения одной из швейцарских платин, подверженныхЩКР на протяжении послед-
них 70 лет. История деформаций платины, а также полевые измерения температуры и ко-
лебания уровня воды были предоставлены компанией-оператором. Предложенный подход
совмещает мезоскопическую модель бетона на основе ортотропного разрушения с упру-
гой макроскопической моделью платины. Деформации на макро-уровне связаны с состо-
янием бетона на мезо-уровне, где последнее включает в себя уровень растрескивания бе-
тона, степерь раскрытия и преобладающая ориентация трещин, а также расширение от-
дельных очагов ЩКР. Термо-механическое сопряжение модели позволяет оценить роль
сезонных перепадов температур на разницу в расширении бетона в зависимости от его
положения в плотине.

Ключевые слова: щелочно-кремнеземная реакция, механика трещин, вычислительная
гомогенизация, задача Эшелби, когезивная зона, сеть трещин.
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1 Introduction

1.1 Motivation

The alkali-silica reaction (ASR) is the most common type of alkali-aggregate reaction,
which is the generic term for reactions between the alkaline concrete pore solution and
certain mineral phases within the aggregates. At the scale of an aggregate, the ASR
manifests itself in the form of local silica dissolution, growth of micro-cracks, their filling
with ASR products, and the overall expansion of the aggregates, the cement paste and
concrete in general as shown in Fig. 1.1. The expansion and cracking caused by the ASR
has a major negative impact on the civil engineering infrastructure worldwide. Coping
with the ASR consequences in such large structures as dams, bridge piers and sea walls
requires considerable expenditure of funds. To prevent the ASR manifestation in the new
structures and reduce the severity of its consequences in the existing ones, substantial
scientific effort is dedicated to the ASR.

(a) (b) (c)

Figure 1.1: Stages of concrete damaging due to the ASR: (a) alkalis from cement paste
diffuse into aggregates and react with amorphous silica; (b) resulting ASR products
exert internal pressure on aggregates; (c) cracks open and grow inside aggregates and
cement paste.
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Chapter 1. Introduction

The formation of ASR products starts in the aggregates close to the interface with
the cement paste. With ongoing reaction, the formation of ASR products continuously
moves toward the interior of the aggregate. Fig. 1.2 shows three adjacent quartz grains
in a reactive quartzite aggregate of a concrete doped with caesium nitrate (Leemann,
2021). The contact zone of the three grains is lined with a thin film of ASR products
exhibiting a high back-scattering contrast due to the incorporation of caesium. Although
the collective form of the ASR products reflects the one of the pre-existing cracks and
voids as shown in Fig. 1.2, the newly formed ASR products precipitate as clusters of
alkali-silicate gel in the size of 1−100 nm (Gaboriaud et al., 2002). These newly formed
clusters can be regarded as “pockets”. They form between adjacent mineral grains within
the reactive aggregates close to the border with the cement paste (Leemann et al., 2016;
Leemann and Münch, 2019). Later on, the same pattern of ASR products accumulation
inside grain boundaries is observable also in aggregate inner regions. The primary ASR

Figure 1.2: Three adjacent quartz grains lined with a thin film of bright ASR products
with a thickness between 50 − 300 nm in a yet uncracked concrete aggregate. The
brightness is caused by the doping of the concrete with caesium and its incorporation in
the ASR products. Scanning electron image in the back-scattering mode adapted from
(Leemann, 2021).

product yields internal loading on the aggregates leading to cracking. The resulting
cracks originate in the aggregates and extend into the cement paste. Crack openings
could be much larger than the initial ASR product size and the openings of the pre-
existing cracks. As the reaction advances, the alkali front moves inwards the aggregates,
producing more ASR sites. The newly formed cracks start to fill with the secondary
ASR products.

At the meso-scale of concrete, micro-cracks are homogeneously distributed. They
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1.1. Motivation

align with the direction of the prevailing load (Larive, 1997; Hilaire et al., 2017; Dunant
and Scrivener, 2012); typical crack patterns vary from randomly oriented to co-directional
cracks. Another phenomenon triggered by the deviatoric loading is the so-called “stress-
induced anisotropy”, i.e. the reduction of the chemical expansion in the direction of
the compressive load and its partial transfer to perpendicular directions (Larive, 1997;
Multon and Toutlemonde, 2006; Gautam and Panesar, 2016; Dunant and Scrivener,
2012). Highly compressed specimens show negligible expansion in the loading direction.
Further opening and percolation of the micro-cracks lead to the appearance of the large
fissures detectable at the macro-scale. Cracking reduces the tensile strength by 50−70%,
the compressive strength by 25 − 60% and the elastic material properties by 60 − 70%
(Swamy, 2003; SCD, 2017).

At the macroscopic scale, the ASR manifests itself in form of continuous concrete
expansion and cracking. As the high relative humidity and the increased temperature
accelerate the ASR, the most affected structures are the ones in a direct contact with
water, such as dams, bridge piers and sea walls. According to the recent study conducted
by the Swiss Committee on Dams (SCD, 2017), roughly 50% out of 154 Swiss dams are
concerned by this problem. When discussing macroscopic effects of the ASR, the main
focus will be on dams as the engineering structures of a great economical importance.
Charlwood and Sims (2017), in their comprehensive review of the affected dams and
hydro-projects around the world, emphasise the following typical effects of the ASR
expansion:

• upstream, downstream and vertical deformation;

• map cracking on the surfaces;

• structural cracks;

• movements causing interference with gates and equipment;

• movement and leakage at the horizontal lift joints;

• deformations affecting stability, etc.

Field observations also suggest that the ASR expansions can be highly inhomogeneous
within a dam (Gunn et al., 2017). This ASR zonation could be caused by material,
structural and environmental effects. On the material side, the cementitious content
of a dam varies spatially, having higher values closer to the surface and along galleries.
Volume fraction of aggregates (also their mineralogy, size and shape) may also differ.
Since ASR is a process that is strongly dependent on the concrete micro-structure and its
chemical composition, its manifestation is expected to vary between zones with different
material properties.
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Chapter 1. Introduction

Possible environmental sources of the non-uniform ASR expansion are the variations
of the relative humidity and the temperature within a structure. Both scalar fields are
changing in a dam due to the daily/yearly fluctuations of the surrounding temperature,
reservoir level, precipitation rate, exposure to the direct sunlight, etc. In many of the
examined dams, the Swiss Committee on Dams (SCD, 2017) identified significant differ-
ences in concrete swelling between warm and slender upper wall areas and cold massive
lower parts. Moreover, the presented data suggests a certain link between the horizontal
drift and the orientation of the dam axis with respect to the South.

The experimental data and the field observations reveal a complex combination of
different phenomena happening simultaneously during ASR. This reaction involves mul-
tiple scales and couples chemical, structural and environmental aspects. To understand
the nature of this complex system and predict its future behaviour, the numerical mod-
elling is an indispensable tool.

1.2 Objectives

A multidisciplinary, collaborative Sinergia project “Alkali-silica reaction in concrete”
took advantage of the recent improvements in the investigation techniques and increased
computational capacities. The research was conducted by the laboratories from three
Swiss institutes: École Polytechnique Fédérale de Lausanne (EPFL), Swiss Federal Lab-
oratories for Materials Science and Technology (Empa) and Paul Scherrer Institut (PSI).
The project was financed by the Swiss National Science Foundation through grant CR-
SII5_17108. The goal of the project was to fill the existing knowledge gaps on ASR
and thus to support in the future the development of engineering countermeasures. The
proposed comprehensive approach encompassed a wide range of scales from nanometre
to the size of a structure. It included studies on the chemical, structural and mechanical
ASR aspects. The Sinergia project consisted of six sub-projects, each one handling a par-
ticular ASR phenomenon, e.g. initial dissolution of SiO2, analysis of the composition of
the initial ASR products, studying the structure of ASR products by synchrotron-based
techniques, prediction of the ASR kinetics by the thermodynamic modelling, monitoring
of the crack formation by non-destructive 3D analysis. The work presented in this thesis
was done within the scope of the Sinergia Sub-project VI. Its goal was to improve the un-
derstanding of the ASR by mechanical modelling based on the realistic micro-structures
provided by the 3D analysis of the crack formation from the Sub-project V. During the
overall Sinergia project’s evolution, collaborations with other sub-projects also emerged.
Benefiting from the multidisciplinary expertise of the colleagues and the availability of
their new data, in the Sub-project VI we have considered the complexity of the ASR
physics at a wide range of scales. Not only each scale is considered separately, but the
material behaviour at one scale is enriched by the information obtained at a different
scale. Like-wise, the objectives of this research are categorised per considered scale in
ascending order.
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While the ASR-expansion mechanisms have been studied intensively over the decades,
there is still no final agreement on the principal cause. The ASR-expansion mechanism
and the growth of the primary cracks at the nanometre scale are investigated. Sinergia
Sub-project II gave an estimate of the volumetric difference between the reactants and
the typical ASR products. One aim of this thesis is to understand if this volumetric
difference is sufficient for the initiation and propagation of the primary cracks. Moreover,
the role of the size and shape of a typical ASR pocket on its potential to grow a crack
is investigated.

To facilitate understanding of the ASR mechanics, cutting-edge experiments were
recently performed by the colleagues from the Sinergia Sub-project V. Shakoorioskooie
(2021); Shakoorioskooie et al. (2021a,b) conducted accelerated ASR experiments on con-
crete specimens under free-expansion conditions. Time-lapse characterisation by means
of X-ray micro-tomography allowed the researchers to capture the temporal evolution of
cracks and ASR products. To distinguish ASR products from its surroundings, caesium
(Cs) was added to the concrete mix as a contrast agent. The segmented tomograms give
access to the concrete meso-structure, positions and geometrical features of the cracks
and the pockets of ASR products. The aim of the current thesis done within the Sub-
project VI is to explain the physics behind the expansion and cracking captured by this
tomography data. While doing this, this study aims to identify the driving forces respon-
sible for crack growth and the way they affect the crack statistics and the macroscopic
behaviour of a specimen.

Researchers have previously made attempts to predict realistic deterioration of con-
crete at its meso-scale due to ASR. A group of works succeeded in reproducing the
natural crack patterns and chemical expansion under free boundary conditions (Dunant
and Scrivener, 2010; Cuba Ramos et al., 2018). Although the proposed approach allowed
capturing the reduction in the chemical expansion under moderate uniaxial loading, it
predicted some non-realistic specimen shrinkage under higher uniaxial loading. In the
current study, it is suggested that such numerical deficiency was caused by the simplistic
numerical treatment of cracks and one aim of this work was to improve this model.

Another observation made by Cuba Ramos et al. (2018) on their mesoscopic model
concerns the elevated amounts of damage in comparison to the laboratory observations.
As one of the possible reasons, the authors suspected the absence of the viscous dissi-
pation in the cement paste. This thesis aims to estimate the role of stress relaxation in
the cement paste on concrete expansion and cracking.

Finally, at the macro-scale, the knowledge obtained in the previous studies is used
to model the macroscopic behaviour of an ASR-concerned dam. The objective is to
develop a model of a dam that would explicitly use the information on the mesoscopic
state of the ASR-damaged concrete. By employing this model on a real-dam case, this
study aims to understand the interplay between the state of stress and deformations in
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the structure and the meso-scale concrete state. The latter accounts for the reaction
state, the amount of cracks, their connectivity, width and orientations. By linking these
two scales, this study aims to explain the origin of the ASR anisotropy. In addition, it
aims to distinguish the areas of a dam that are the most susceptible to develop such
anisotropy. Finally, the role of the seasonal temperature variations on the ASR-related
deformations is investigated.

1.3 Approach

Several strategies are adopted to fulfil the above objectives. These strategies comprise
both analytical and numerical methods.

To study the nature of the ASR mechanics at the nano-scale, a semi-analytical model
was employed. It combines a well-known analytical solution of an expanding inclusion
embedded in a matrix and an interpolated semi-analytical solution for a disk-shaped
crack encircling this inclusion. The former problem is also known as the Eshelby problem.
Here, the inclusion represents a single pocket of ASR products and the matrix is the
aggregate. This model allows evaluation the role of the ASR volumetric expansion and
the size and shape of the inclusion on the crack growing potential.

To confirm the findings of the analytical model and to reproduce the crack net-
work from the tomography data of Shakoorioskooie et al. (2021a,b), a finite-element
numerical model is used. The finite-element method is chosen due to its computational
efficiency and ease of implementation. Cracks are modelled by the cohesive elements
- zero-thickness interface elements inserted between the solid ones. The cohesive zone
model suggests the existence of a finite zone in the vicinity of the crack tip that dissipates
energy upon opening and percolation of micro-cracks, as was independently proposed
by Dugdale (1960); Barenblatt (1962). Like-wise, the cohesive elements dissipate energy
by generating the closing traction, which reduces with increasing opening. Cohesive ele-
ments form a network of thin cracks that could be easily compared to the crack network
coming from the tomography data.

Use of the cohesive elements becomes computationally expensive when numerous
simulations have to be performed simultaneously. As the multi-scale model of a dam
requires running hundreds of the meso-scale simulations, an alternative method had
to be used. This alternative is the continuous damage approach (Kachanov, 1986),
according to which the integrity of a material point is described by a damage parameter
d increasing from zero to one. As the crack within a single element becomes more
pronounced, the damage parameter increases and the elastic properties reduce. The
continuous damage approach permits efficient modelling of a complex crack network.
The finite-element approach is employed with the continuous-damage representation of
cracks to develop a realistic meso-scale model. The realism of the model encompasses its
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ability to reproduce both the free- and loaded-expansion ASR experiments by developing
a qualitatively similar crack network and exhibiting a quantitatively similar macroscopic
expansion. Such a model is obtained by introducing the orthotropic continuous damage
law with the stiffness recovery upon crack closure. This phenomenon is also described by
the term “self-contact of a crack”. A simple isotropic version of this model is employed
to study the effect of the visco-elasticity in the cement paste.

The improved efficiency and the good match of the meso-scale model with the lab-
oratory experiments enables its usage for the macro-scale analysis of a dam. As the
concrete state at the meso-scale evolves with the macroscopic deformations of a struc-
ture, a model coupling these two scales is necessary. Such functionality is offered by
the multi-scale approach based on the computational homogenisation (Renard, 1987;
Miehe et al., 1999; Feyel and Chaboche, 2000; Kouznetsova et al., 2001). Its idea is to
have two boundary value problems, one at each scale, and solve them simultaneously,
in a fully nested manner. This procedure allows evaluation the macroscopic effects of
the fine-scale processes in an explicit manner. Both scales are modelled by the finite-
element approach. At the fine scale, the previously-implemented meso-scale model with
orthotropic continuous damage is employed. The macroscopic stress and stiffness are
obtained by the homogenisation of the fine scale boundary value problem. Moreover, the
transient heat transport equation is solved to compute the temperature variations at the
structural level. The information on the temperature is used to estimate the expansion
rates of the ASR products at the meso-scale.

The numerical frameworks and constitutive models developed during this thesis are
implemented in the open-source FEM library Akantu [Richart and Molinari 2015; Vo-
cialta et al. 2017, akantu.ch].

1.4 Outline

The following chapters are organised as follows:

Chapter 2 starts with the review of the ASR-expansion and cracking mechanisms
suggested in the literature. Further, the existing models for concrete deterioration due
to ASR at different scales are described and categorised.

Chapter 3 describes a study on the potential of a single expanding ASR pocket of
a nano-to-micrometre size to grow a crack. The findings are confirmed by the numerical
model based on the cohesive elements.

Chapter 4 introduces a tomography-based numerical model with the cracks repre-
sented by the cohesive elements. The model is calibrated by matching the statistical
basis of the tomography data as well as the macroscopic behaviour of a sample. By
modelling different internal and external loading scenarios, the hypotheses on the crack
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loading and extension mechanism are tested. In addition, the role of the external loading
on the growth of cracks, their opening and orientation is investigated.

In Chapter 5, a meso-scale numerical model with the orthotropic continuous dam-
age treatment of cracks is introduced. The model is calibrated to match the free-
expansion laboratory experiments. The importance of the orthotropic damage and the
self-contact in cracks in reproducing the loaded ASR experiments is demonstrated. In a
sub-study, the effect of the stress relaxation on the crack growth is evaluated by adding
viscoelasticity to the strain-softening behaviour of the cement paste.

Chapter 6 describes a thermo-mechanical multi-scale numerical model. Its validity
is verified on a simple test case. Further, it is applied on the case of an ASR-affected
concrete gravity dam in Switzerland. Model parameters are calibrated to match the real
dam’s displacements. Finally, the conclusions concerning the structural consequences of
the ASR as well as the role of the temperature variations on the difference in the ASR
state are derived.

The thesis is concluded by the summary of the main results and an outlook on the
possible further developments.
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2 State of the art

Concrete can be considered as a multi-scale material comprising macro-, meso-, micro-
, and nano-scales as shown in Fig. 2.1. At the macro-scale, concrete is considered
homogeneous. At the meso-scale (also called structural), concrete is assumed to be a
three-phase composite material consisting of coarse aggregates, mortar, and interfacial
transition zone. Meso-scale modelling of concrete permits the investigation of initiation,
propagation and percolation of micro-cracks and their contribution to the failure of
concrete. The micro-scale covers the heterogeneous structure of mortar and distinguishes
cement paste, sand particles and ITZ. Finally, the nano-scale considers mineral grains
and their boundaries within a single aggregate. Further, we will discuss the possible
ASR-expansion mechanisms and the numerical models used to predict the ASR-affected
concrete behaviour at the different scales.

Macro-Scale Meso-Scale Micro-Scale

Nano-ScaleMortar ITZ Aggregates

Cement Paste
ITZ

Sand

Mineral Grains
Grain boundaries

Figure 2.1: Multiple scales of concrete. Inspired by Thilakarathna et al. (2020)
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2.1 Nano-scale

Most of the ASR-expansion mechanisms proposed in the literature suggest that the
expansion originates at the nano-scale. The most widely reported hypothesis for the
ASR expansion is swelling of the ASR products due to the uptake of water - the so-called
theory of imbibition or osmotic pressure (Glasser, 1979; Diamond, 1989; Poole, 1992).
Recent water uptake measurements on the synthetic ASR products, however, indicate a
very limited water uptake (Shi et al., 2019). This suggests that the ASR expansion is not
caused by the water-related swelling of the ASR products but by alternative mechanisms.
Dron and colleagues (Dron, 1990; Dron et al., 1998) proposed a theory explaining the
ASR expansion by the crystallisation pressure that appears due to over-saturation of the
surrounding solution. Chatterji and Thaulow (Chatterji, 1989; Chatterji and Thaulow,
2000) proposed the theory of ion diffusion and argued that the expansion is caused
by the difference in the fast inward diffusion of alkali ions into the reaction sites and
slow outward diffusion of silica ions. Within the ion diffusion theory, Wang and Gillott
(1991) suggested that Ca(OH)2 is responsible for maintaining a high concentration of
OH– ions in solution and providing Ca2+ ions that exchange for Na+ and K+ ions.
The latter are released to continue the damaging reaction. Ichikawa and Miura (2007)
modified the ion diffusion theory by suggesting that the reaction creates an insoluble tight
and rigid reaction rim that allows the penetration of alkaline solution but prevents the
leakage of viscous alkali silicate. The latter accumulates in the aggregates and produces
the expansive pressure. Jones (1988) has attributed swelling to the dispersion of gel.
Prezzi et al. (1997) and Rodrigues et al. (1999) suggested that the electrical double-layer
repulsion forces forming on the charged surfaces of the gel particles are responsible for the
ASR expansion. Garcia-Diaz et al. (2006) established experimental relationships between
the apparent volume variation of flint aggregate skeleton and micro-mortar swelling
consecutive to the ASR degradation. While ignoring the internal product stoichiometry,
the authors postulated that the Q4-Q3 silica tetrahedron transition, which has 30% of
volume difference, is the origin of swelling. All of these models explain some parts of
the experimental results, but fail to explain the others (Garcia-Diaz et al., 2006).

Even though the underlying mechanism for the expansion is not exactly known, it
is clear that the formation of ASR products, which incorporates, in addition to SiO2,
also ions (K+, Ca2+, OH– ) and water from the pore solution, leads to the increase in
solid volume. ASR products, commonly reported in the literature, precipitate as an
amorphous gel. However, it has been shown that in addition to the amorphous ASR
product, the one present in large cracks within aggregates could be crystalline (Cole and
Lancucki, 1983; De Ceukelaire, 1991; Dähn et al., 2016; Leemann et al., 2020). Presence
of ASR products of different morphology complicates understanding of the mechanism
of concrete expansion and cracking.

Mechanics of the ASR at the nano-scale is not a common subject of numerical mod-
elling. Until recently, it has been widely assumed that the cracking starts from the ASR
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gel filling up either the interfacial transition zone or pores. Researchers would consider a
group of pre-existing cracks and apply homogenisation principles to obtain macroscopic
response (e.g. Lemarchand et al., 2005; Esposito and Hendriks, 2016; Iskhakov et al.,
2019). Recent findings by Leemann and Münch (2019) showed that the initial ASR
products accumulate between the aggregate grains at the nano-scale. To the author’s
knowledge, there is no study on the ASR cracking at this scale available in the literature.
A possible reason for that is the difficulty to make observations and moreover to take
the experimental measurements of the local internal pressure.

2.2 Meso-scale

ASR meso-scale models resolve the structure of concrete at the level of the aggregates
and of the cement paste. Here, they are categorised in several types.

The first type is the reaction rim model. Its idea is to attribute the expansion and
cracking of concrete to the expansion of external rims of the aggregates. These models
assume that the alkalis are diffusing into the aggregates in the form of a smooth front,
which defines a boundary between the reacted and non-reacted silica. An example of
the reaction rim model would be the lattice discrete particle model by Alnaggar et al.
(2013), where each aggregate is represented by a discrete particle. Cracks in this model
can only propagate on the surfaces of the polyhedral aggregates.

Different reaction-rim models were proposed by Suwitoa et al. (2003) and Multon
et al. (2009). Both models compute the depth of ion diffusion into the aggregate and
estimate the amount of resulting ASR products. In the former model, the whole loading
is applied at the interfacial transition zone and the macroscopic elastic expansion is
evaluated. The latter model applies the loading within the body of an aggregate and
advances cracks, which are modelled by the continuum damage approach (Kachanov,
1986).

The second model type assumes that the expansive sites are randomly distributed
inside aggregates. A typical example of such model is the one proposed by Schlangen
and Copuroglu (2010). It is a lattice model with explicitly represented aggregates, ce-
ment paste and ITZ. The ASR expansion is applied as the eigenstrain at the ASR sites
randomly chosen inside the aggregate material. Upon damage, the elements are removed
from the lattice.

A similar approach but with 2D finite elements was proposed by Dunant and Scrivener
(2010) and later expanded for the needs of high-performance computing by (Cuba Ramos
et al., 2018). The pockets of ASR gel are represented by the finite elements randomly
distributed within aggregates. The continuous damage approach, adopted to represent
cracking, allowed reproduction of realistic crack networks. The model qualitatively cap-
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tured the stress-induced anisotropy. It however failed at the high uniaxial loads by
predicting specimens’ contraction along the loading direction, which is never the case
in the loaded ASR experiments (Larive, 1997; Multon and Toutlemonde, 2006; Gautam
and Panesar, 2016). Such limitation of the model is attributed to not accounting for the
self-contact in cracks. The model was complemented by Giorla et al. (2014, 2015) by
adding the visco-elasticity to the cement paste and studying its stress relaxation effect.

Rezakhani et al. (2021) used the continuous damage approach with explicit repre-
sentation of the ASR pockets to model the free expansion of ASR-affected concrete in
3D. The authors coupled Mazars’ damage model and visco-elasticity of cement paste.
Explicit dynamics analysis was called to avoid convergence issues. The authors have
shown that the biggest part of the macroscopic expansion comes from the propagation
and opening of cracks and not from the elastic expansion of ASR sites.

An interesting study comparing the reaction-rim and the gel-pockets models was
conducted by Miura et al. (2021). The authors have modelled the two mechanisms by
means of a 3D-rigid body spring model and applied them to the case of a single spherical
inclusion and multiple ones. The results showed that the gel-pockets model produces
some sharp radial cracks penetrating both the aggregates and the cement paste. The
reaction-rim model at first develops the onion skin cracks that propagate inside the
aggregates along their boundaries. Further, the radial cracks start to grow towards
the cement paste. The authors concluded that the reaction-rim model is well-suited
for highly reactive aggregates, such as glassy andesite. The gel-pockets model, in turn,
provides the most accurate description for the moderate and slowly reactive aggregates,
such as schist.

A different three-dimensional model of the concrete micro-structure undergoing ASR
was proposed by Comby-Peyrot et al. (2009). The main difference is that the internal
loading is represented by swelling of the entire aggregates. The continuous damage
approach was used to model the deterioration of cement paste only. The model qual-
itatively reproduces crack patterns on the concrete faces, but does not allow cracking
within the aggregates.

A different approach on modelling the ASR mechanics was recently proposed by Li-
audat et al. (2020). A meso-scale model of the ASR-affected soda-lime glass concrete
couples chemistry and mechanics. First, the diffusion-reaction problem accounts for the
concentrations of aqueous silicate, calcium and alkalis in the pore solution. Progress of
the reaction leads to accumulation of ASR products, eventually leading to the develop-
ment of internal pressures. The latter serves as the driving forces to open discontinu-
ities in the mechanical part of the model. These discontinuities comprise the cracks in
the aggregates, cement paste, and ITZ. The mesh incorporates zero-thickness interface
elements exhibiting strain-softening behaviour. These discontinuities are pre-inserted
along all the aggregate-paste contacts and some predefined paste-paste and aggregate-
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aggregate inter-elements boundaries representing potential crack paths. The alkali-silica
reaction is assumed to occur only at the glass-cement interfaces and within the opened
cracks. Hence, the accumulated ASR products directly lead to the generation of pres-
sures applied at the discontinuity faces. Simulation of a 2D specimen with a single
circular aggregate results in a crack pattern and a macroscopic expansion that fairly
match the experimental observations. Being very advanced in the chemo-mechanical
coupling, the proposed model is advantageous for the early stages of the ASR with few
short cracks developed. However, efficient modelling of a 3D concrete meso-structure by
the proposed method may be complicated, mainly because of the crack-path uncertainty,
which would require pre-insertion of the interface elements everywhere. The latter would
substantially rise the computational cost of the model.

Modelling damage in concrete at the meso-scale is a tedious task. All the described
models lose their efficiency when a realistic tomography-based mesh has to be consid-
ered. Huang et al. (2015) made an attempt to predict ASR-unrelated damage in a
tomography-based concrete model by using the compressive damage plasticity model
in ABAQUS. By simulating the uniaxial tension and compression tests, the authors
achieved fair agreement with the experiments and developed a network of localised thin
cracks. No information on the computational efficiency was reported. Yang et al. (2019)
applied a phase-field regularised cohesive zone model to predict deterioration of con-
crete. Simulations of the three- and four-point bending tests were conducted on a 2D
tomography-based geometry. The authors managed to predict several cracks growing
in the specimen. Extension of this model to 3D is complicated due to the extreme
computational cost of the phase-field model.

A model simulating the ASR expansion in a tomography-based mesh was recently
proposed by Pan et al. (2018). A centimetre-scale mesh of concrete was used to model
diffusion of alkalis from cement paste into the aggregates, dissolution of silica and its
reaction with alkalis. Volume of the reactants was transformed into the strains that
were later used to obtain the elastic stresses according to Hooke’s law. The authors have
matched the macroscopic expansion with experimental data from the literature. The
fact that the model is purely elastic and does not allow cracking, makes it suitable only
for the early ASR stages.

2.3 Macro/structural scale

The ASR is most commonly detected in the large concrete structures exposed to water,
such as sea walls, bridge piers and dams. Several macro-scale models that address the
consequences of the ASR directly at the structural level are available in the literature.
These models, calibrated on the historical measurements, aim to predict future behaviour
of a structure. Such predictions are important in order to avoid significant reduction
in the service life and hence help to alleviate the economical effects. In the macro-scale
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models, concrete is considered as a homogeneous material and the underlying concrete
structure comprising aggregates and cement paste is not resolved. As the explicit rep-
resentation of aggregates and cement paste at this scale would yield to computational
models of unacceptable size, a simplified material description is inevitable.

One large subgroup of macro-scale models is based on a phenomenological approach
(Larive, 1997; Capra and Bournazel, 1998; Ulm et al., 2000; Saouma and Perotti, 2006;
Martin et al., 2012; Omikrine Metalssi et al., 2014, etc.). These models compute directly
the macroscopic ASR strain by extrapolating results from laboratory measurements to
the field conditions. These phenomenological models require extensive experimental
studies to determine all the input parameters needed for the simulations.

Another group of macro-scale ASR models incorporates the principles of porome-
chanics, according to which concrete is considered as a solid skeleton permeated by
open porosity (Capra and Sellier, 2003; Bangert et al., 2004; Comi et al., 2009; Grimal
et al., 2010; Pignatelli et al., 2013; Multon and Sellier, 2016; Esposito and Hendriks,
2016). Constitutive laws for the macro-scale simulations are derived from homogenisa-
tion principles. The ASR-induced damage is typically assumed to be isotropic. The
solid phase does not distinguish between aggregates and cement paste, which causes a
uniform damage distribution inside the concrete skeleton.

In recent work, Vo et al. (2021) proposed a macroscopic ASR model considering
reinforced concrete in a homogenised manner. The particularity of this poroelastic
model is its ability to take into account interactions between steel rebars and concrete.
Moreover, the damage of concrete is modelled by a continuous damage approach with
three possible crack directions. The model predicts anisotropic swelling induced by the
effects of the reinforcement-caused constraints and the external loading.

Another group of macro-scale models considers propagation of the micro-cracks
within a representative volume element (RVE) of concrete. An RVE represents the het-
erogeneous concrete structure at a smaller length scale. Esposito and Hendriks (2016)
modelled the macroscopic expansion as a consequence of ASR-induced propagation of
the pre-existing cracks in the cement paste. The aggregates were modelled as spherical
inclusions. Three orthogonal families of penny-shaped cracks in the cement paste were
considered. The crack growth was governed by linear elastic fracture mechanics. The
effective stiffness tensor of an RVE is evaluated through the Mori-Tanaka homogenisa-
tion scheme (Benveniste, 1987). Iskhakov et al. (2019) advanced the previous model
by adding an independent crack family within the aggregates as well as ring-shaped
cracks around them. Being an elegant solution for the early stage ASR cracking, the
discussed models can not predict stiffness loss after the interconnection threshold - a
critical volume fraction of the micro-cracks, at which they form a connected network.

Recently, due to the advancement of high-performance computing, the first numer-
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ical multi-scale models have been proposed for ASR mechanics. These models couple
numerical computations at the large and fine scales in a single simulation. A computa-
tional multi-scale approach is advantageous because the consequences of the ASR at a
larger scale can be computed directly from the reaction advancement inside the under-
lying RVEs. A model by Puatatsananon and Saouma (2013) accounts for the diffusion
processes and the ASR-gel swelling at the level of the aggregates. Wu et al. (2014) pro-
posed a model that couples gel production and expansion in micro-pores of hardened
cement paste to its manifestation at the meso-scale. Nonetheless, both models are lack-
ing an explicit representation of the ASR-induced cracks, which could help to reproduce
the ASR anisotropy. Almenar et al. (2017) developed a thermo-poro-mechanical multi-
scale model that accounts for the concrete degradation. The resulting damage profile
inside RVEs has a rather diffused character, which poses a constraint on a realistic rep-
resentation of the concrete stiffness. A 3D multi-scale model by Rezakhani et al. (2019)
couples the lattice discrete-particle model at the meso-scale to a standard FE model at
the macro-scale. The authors approximated swelling of single ASR pockets by the over-
all expansion of the aggregates. Their model captures the anisotropic ASR expansion
under loading and produces localised crack patterns. On the other hand, cracks are only
allowed to develop along the planes delimited by the aggregates centres, which is not
the case of a real ASR-affected concrete.

The discussed numerical models succeed in capturing certain ASR phenomena: macro-
scopic expansion, expansion of individual aggregates, concrete cracking, water and ion
diffusion, growth of ASR products, etc. While some of the models are more interested in
reproducing one part of the ASR physics, they may ignore the rest. Capturing all of the
ASR features at all the scales simultaneously does not seem expedient and furthermore is
hardly possible due to the underlying complexity of the problem. Moreover, our limited
knowledge of the responsible mechanisms implies including certain empirical laws in the
developed models. The emergence of the new experimental data and field measurements
helps to improve the existing models by replacing some of the assumptions by the data.
A similar work is done in this thesis.
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3 ASR-crack nucleation at the nano-
scale

Recent experimental studies on the different ASR products suggest that the volume
increase between the reactants and the products could reach up to 100%. Taking place
inside the aggregates, newly formed ASR products impose internal pressure on the sur-
rounding material. In the current chapter, the possibility of crack growth due to such
internal loading is studied. Based on the responsible chemical reaction, the increase in
the volume of the products over the reactants could be computed. A semi-analytical
mechanical model for an expanding ASR pocket encircled by a pre-existing micro-crack
is formulated. The inclusion represents a single pocket of the expanding ASR products
surrounded by the aggregate matrix. The crack extension is predicted for the ASR
pocket of different sizes, shapes and expansion values. Theoretical predictions are con-
firmed by a numerical model based on the combination of the finite-element method and
the cohesive zone model. The results of this study are currently under review with the
preprint available in (Gallyamov et al., 2021b).

3.1 Chemical reaction

A typical ASR formation reaction could be written as

4 SiO2
solid

+K+ + Ca2+ + 3OH− + 2H2O −−→ KCa[Si4O9(OH)] · 3H2O
ASR product

(3.1)

that describes the formation of the ASR product with molar ratios K/Si and Ca/Si
of 0.25. These ratios correspond to the elemental ratios observed in ASR products in
the field samples as well as to those observed in laboratory synthesised ASR products,
although they vary to a certain extent (Leemann and Lura, 2013; Shi et al., 2019, 2020;
Iskhakov et al., 2021). All calculations presented here refer to the idealised composition
given in Eq. (3.1).

Assuming quartz or amorphous SiO2 as a silica source, it is possible to calculate
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the increase of solid volume if the ASR product is formed within the space origi-
nally occupied by SiO2. Note that other species (K+, Ca2+, OH– , and H2O), needed
to form ASR products, are assumed to diffuse into the aggregate from the cement
pore solution, such that their volume is not considered. Based on the molar vol-
ume of quartz (22.6 cm3/mol), and the molar volume of the crystalline ASR prod-
uct K-shlykovite, KCa[Si4O9(OH)] · 3H2O, of 183 cm3/mol (Geng et al., 2020) (or 45.7
cm3/mol if normalised to 1 silica: K0.25Ca0.25[SiO2.25(OH)0.25] · 0.75H2O) the increase
in solid volume by a factor of two is obtained, and a ratio between the additional vol-
ume (45.7− 22.6 = 23.1) and the initial volume is 23.1/22.6 ≈ 1.0, thus leading to 100%
expansion. For the amorphous ASR products, the molar volume has not been measured
but based on the extensive analysis performed by Leemann et al. (2020), the amorphous
ASR product with a composition of Na0.1K0.2Ca0.2SiO2.3(OH)0.1 · 1.1H2O indicates a
similar or even higher volume increase (≈ 2.3) as for the crystalline ASR product. The
duplication of the initial volme due to the precipitation of the ASR product could poten-
tially lead to the formation of cracks within aggregates. This hypothesis was studied in
detail based on a semi-analytical mechanical model of an inclusion-crack system within
an infinite medium.

3.2 Analytical model of expanding ASR pockets

The dependence of the possible crack growth on the size and the shape of ASR products is
studied by exploring a semi-analytical mechanical model that consists of two components.
The first one is a purely analytical model for an inclusion expanding within an infinite
medium. The second one is a semi-analytical model of a ring-shaped crack encircling
the previously described inclusion. The resulting model yields stress concentrations at
the external crack tip that are used to evaluate the crack growth. A pocket of an ASR
product is assumed to have a spheroidal shape since the latter comprises a wide range
of shapes with central symmetry (e.g. spheres, oblate spheroids, disks, etc).

The departing point of the analytical model is the Eshelby problem (Eshelby, 1959)
that describes an expanding ellipsoidal inclusion embedded in an infinite medium. The
term “inclusion” implies that its elastic properties differ from the ones of the matrix. The
inclusion represents a single pocket of an ASR product surrounded by the aggregate. In
this study, a spheroid is considered - a type of an ellipsoid with a circular cross-section.
Here, we assume a relatively small ASR pocket, which is positioned sufficiently far from
the aggregate’s boundary not to cause any mechanical influence, thus justifying the
“infinite surrounding medium” condition. Given the known expansion of the inclusion,
the elastic properties of the ASR product, its shape and size, the stress and strain
fields could be determined. The problem was solved by Eshelby (1959, 1957) for general
eigen strains. The solutions for the inclusion and the matrix are different. Later Mura
(1987) provided explicit equations for the Eshelby tensor S for different shapes of an
ellipsoid at the interior points. Ju and Sun (1999, 2001) gave the first explicit formulas
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Figure 3.1: Geometry of a spheroidal inclusion. Further in the text, stresses are evaluated
either in the observation point or along the y-axis

for computing the Eshelby tensor in the surrounding matrix. Healy (2009) developed a
MATLABTM code with the Eshelby solution in 3D both inside and outside the inclusion.

A spheroidal inclusion with the semi-axis a and the equatorial radius r (shown in
Fig. 3.1) is embedded in a matrix. Variation of the semi-axis a allows considering
different geometries: 1) a sphere (a = r); 2) a needle (a >> r); 3) a penny (or a disk)
(a << r). The expansion is applied at the inclusion in the form of the eigenstrain εeig - a
strain causing zero stress under no confinement. The eigenstrain is linked to the elastic
strain εel as

ε = εel + εeig (3.2)

where ε is the total strain. 100% volumetric expansion of the ASR product is applied
in the form of the isotropic eigenstrain εeig = 1.

The matrix is an infinite body with the remote stress σ0 or strain ε0 applied at
infinity. In the current study, a stress-free body with σ0 and ε0 equal to zero is assumed.
The effect of external loading on the ASR was previously studied by several authors (e.g.
Larive, 1997; Multon and Toutlemonde, 2006; Dunant and Scrivener, 2012).

The solution for the strain and stress inside the inclusion was given by Ju and Sun
(2001)

ε = ε0 + S : εeig

σ = σ0 + C0[S− I] : εeig
(3.3)

where S is the 4th-order Eshelby tensor for the interior points, C0 the matrix stiffness
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tensor and I the identity tensor. The particular property of the Eshelby problem is that
the stress and the strain fields at the interior points are uniform and the Eshelby tensor
S is independent of the position within the inclusion.

Oppositely, for the corresponding fields outside the inclusion, the strain and the
stress at a point depend on the position of the latter:

ε(x) = ε0 +G(x) : εeig

σ(x) = σ0 + C0G(x) : εeig
(3.4)

where G(x) is a 4th-order Eshelby tensor for the exterior points.

Explicit formulas for the components of S and G(x), available in (Ju and Sun, 2001)
and (Healy, 2009), yield the values of ε and σ at any point of space.

3.3 Semi-analytical model with a ring-shaped crack

Griffith (1921) in his fundamental work showed that the material strength at the macro-
scale is largely affected by the presence of microscopic flaws. For an expanding inclusion,
to grow a crack from its surface, there should be an initial micro-fissure that would facil-
itate the crack propagation. A higher expansion would be required if such an inclusion
would be surrounded by a sound material with no flaws in it. Pre-existing defects in the
form of microcracks are common in rocks (Anders et al., 2014).

A crack is added to the Eshelby problem as shown in Fig. 3.2. It has the shape of a flat
ring in the yz-plane. While the inner crack tip lays exactly on the equator of the spheroid,
the outer one extends by the distance l. r and R denote the internal and external crack
radii correspondingly. An additional y′-axis was introduced for computation purposes:
it is a y-axis with the origin shifted to the surface of the spheroid. The crack is opening
in mode I. Keeping the expansion value fixed, a different alignment of a crack would
reduce the probability of its extension.

According to the adopted model, the inclusion is always expanding as a solid body.
When the crack extends, the ASR product does not flow inside. Therefore this model
represents the ASR product in its mature stage. Accounting for the gel fluidity would
require an extended analytical model including the mass conservation and the pressure
redistribution.

Aggregates are composed of a brittle material that fractures abruptly without under-
going significant softening. Such behaviour is well reproduced by linear elastic fracture
mechanics (LEFM) that serves as a base for the further analytical developments. The
internal load εeig = 1 is based on the expansive potential of the ASR product (see Sec-
tion 3.1). Such a high expansion induces large strains that could not be sustained by the
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3.3. Semi-analytical model with a ring-shaped crack

Figure 3.2: Spheroid with the pre-existing disk-shaped crack in the yz-plane.

aggregate material. Instead, it would yield such second-order effects as micro-cracking
around the inclusion and alteration of the LEFM-based crack shape and length. Pre-
dicting such behaviour is a challenging task. Here, a first-order qualitative prediction is
aimed.

To evaluate the crack growth, one has to know KI - the stress intensity factor (SIF)
in mode I for the external crack tip. The principle of superposition states that applying
σ(x) on the crack faces is similar to loading the cracked body with the loads that cause
σ(x) in the absence of a crack (Petroski and Achenbach, 1978). To find KI , the problem
of a crack loaded by a spheroidal inclusion is replaced by a crack whose faces are loaded
by the stresses caused by the expanding inclusion in the absence of the crack. The latter
ones are known from the solution of the Eshelby problem.

Literature has few analytical solutions for computingKI for ring-shaped cracks under
simple loading, e.g. (Tada et al., 2000). Unfortunately, a solution for a general stress
distribution is not available. Instead, this problem could be solved using weight functions,
as proposed by Bueckner (1970) and Rice (1972). These authors suggested using the
known crack face displacement u(l, x) and the known stress intensity factor K0

I for a
symmetrical load system on a cracked body to compute unknown KI for any other
symmetrical load system. The equation for SIF reads as

KI =

∫ l

0
σ(y′)h(l, y′)dy′ (3.5)

where h(l, y′) is a weight function defined as

h(l, y′) = H
∂u

∂l
/K0

I (3.6)
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Chapter 3. ASR-crack nucleation at the nano-scale

In Eqs. (3.5) and (3.6), l is the crack length equal to the difference between the external
and internal radii (R−r), H is a material parameter, σ(y′) is the stress distribution along
the crack plane in the unflawed body under the load associated to KI . Integration is
carried out along the crack surface only. Fett and Rizzi (2007) computed weight functions
for a ring-shaped crack by the interpolating procedure. The latter is the reason for the
solution being “semi-analytical”. The weight function for the outer crack tip reads as

h(l, y′)
√
l =

2√
π(1− y′/l)(l/r + 1)

(
1 + y′/r√

2 + l/r + y′/r
−

1−
√

y′/l√
l/r + 2

)
(3.7)

Plugging Eq. (3.7) and the stresses from Eq. (3.4) into Eq. (3.5) and integrating it
numerically results in the required values of KI . A similar approach was previously
used by Iskhakov et al. (2019) within a multi-scale model.

3.4 Numerical validation

Analytical and semi-analytical predictions are validated through the numerical modelling.
Two components of the final solution are verified. The first component is the elastic stress
in the inclusion’s surroundings in the absence of a crack. The second component is the
actual crack radius for different inclusion shapes and sizes. The numerical model is based
on the finite element method (FEM).

The latter is briefly summarised for a body Ω with its boundary Γ, which comprises
both the external and the crack surfaces Γt and Γc correspondingly. The variational
form of Eq. (4.1) is∫

Ω
σ : ε(∂u) dΩ+

∫
Γc

T · ∂u dΓ−
∫
Γt

t · ∂u dΓ = 0 (3.8)

where ∂u the vector of virtual displacements, t is the vector of external boundary forces,
and T is the vector of cohesive tractions. The equilibrium above is the basis of the finite-
element method. Discretisation of the continuous displacement field ∂u by finite-element
interpolants and integration of Eq. (3.8) yields a system of the form:

Ku = fext (3.9)

where K is the global stiffness tensor and fext is the vector of external forces. When a
non-linear material behaviour is considered, the system above also becomes non-linear.
Its solution is obtained by employing the Newton-Raphson iterative solver. All imple-
mentations are done using the C++ open-source finite element library Akantu [Richart
and Molinari 2015; Vocialta et al. 2017, akantu.ch].

The geometry used for the numerical model is shown in Fig. 3.3. It comprises one-
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3.4. Numerical validation

Figure 3.3: Geometry of the numerical model used for the verification study. Red
colour corresponds to the ASR product, blue to the surrounding aggregate, green to the
predefined crack plane. The second half of the aggregate is omitted for visualisation of
the crack plane. The dimensions are given in meters.

quarter of the full space. Symmetry over the xz- and xy-planes is established by im-
posing zero out-of-plane displacements. The simulated block comprises one-quarter of
the inclusion-matrix system. The equatorial radius of the spheroid is 1 µm, while the
dimensions of the full block are 20× 20× 20 µm3. The behaviour of the bulk materials
(the aggregate and the inclusion) is linear elastic. The loading is prescribed at the inclu-
sion in the form of the isotropic eigenstrain εeig = 1 that represents a 100% volumetric
expansion of the ASR product.

For verification of the maximum crack radius, the crack plane is added to the FE
model along the yz-plane. The discontinuity is modelled by cohesive elements that
are inserted along the pre-defined plane during the mesh generation. The cohesive
zone approach yields to dissipation of the fracture energy by the interface (or cohesive)
elements placed between the neighbouring solid elements (see Fig. 3.4a). When two solid
elements are being pulled apart, a cohesive element in-between resists by generating the
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Chapter 3. ASR-crack nucleation at the nano-scale

(a)
(b)

Figure 3.4: a) Sketch of a first-order 2D cohesive element between 3D solid elements. b)
Illustration of the bi-linear cohesive law.

inwards traction whose amplitude depends on the opening displacement value. Cohesive
elements represent the non-linear process zone (or cohesive zone) at the crack tip, as
originally proposed by Dugdale (1960) and Barenblatt (1962).

Behaviour of a cohesive fracture is postulated by a cohesive law - a relation between
tractions T, effective displacements δ and cohesive energy density ϕ:

T =
∂ϕ

∂δ
(3.10)

For the current study, the bi-linear traction-separation law, shown in Fig. 3.4b, is em-
ployed. For the cohesive opening δ below the elastic limit δ0, a cohesive element behaves
in a linear elastic manner. The effective displacement is defined as

δ =
√
β2∆2

t +∆2
n (3.11)

where ∆t and ∆n are respectively the tangential and normal components of the opening
displacement vector ∆ at the cohesive elements. The empirical parameter β couples
normal and tangential displacements. As the considered problem is symmetric with
respect to the crack plane, the effective displacements of the cohesive elements have only
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normal component (δ = ∆n). The tractions are computed based on the opening δ:

T(δ, δmax) =



σtδ
δ0

n for δmax ≤ δ0

σt

(
1− δ

δc

)
n for δ = δmax > δ0

Tmax
δmax

n for δ < δmax > δ0

αpδ for δ < 0

0 for δ ≥ 0 and δmax ≥ δc

(3.12)

where n is the unity vector normal to the crack surface, σt is the local material strength
and δc is the critical normal opening at which full decohesion happens. After the traction
T reaches the material strength in tension σt, it starts to decrease linearly reproducing
material softening. The latter takes place up to a moment when the opening reaches its
critical value δc. Then the element is fully broken. If the loading is removed while the
element is in the softening stage (δ < δc), its behaviour becomes elastic again within the
window 0 ≤ δ ≤ δmax. Under compression, cohesive elements behave elastically with a
penalty coefficient αp. The initial elastic opening of a cohesive element is a numerical
artefact: ideally, the interface should be fully rigid up to the point where it reaches
the tensile strength σt and the softening starts. To minimise the artificial effect of the
pre-inserted cohesive elements on the behaviour of the bulk material, the elastic opening
δ0 should be kept very small, so that the initial stiffness of the cohesive element is higher
than the one of the bulk material. Opening of a cohesive element dissipates energy Edis.
The maximum value that can be dissipated upon reaching the critical opening δc equals
the fracture energy GC according to

δc = 2
GC

σt
(3.13)

where GC could be computed from the fracture toughness KIC as

GC =
K2

IC

E
(3.14)

where E is the Young’s modulus of the surrounding material.

While the LEFM-based semi-analytical solution assumes that the material undergoes
brittle failure, the cohesive zone model suggests that it undergoes softening that is
contained in the process zone next to the crack tip. The length of this zone, lz, depends
on the adopted model. According to Hillerborg et al. (1976), it can be estimated as

lz =
EGC

σ2
t

(3.15)

To make the cohesive zone model match the LEFM solution, the process zone lz should
be big enough to accommodate several finite elements, but smaller than any other model

25



Chapter 3. ASR-crack nucleation at the nano-scale

Material properties ASR product* Aggregate † Cohesive material
Young’s modulus E [GPa] 10 60 -
Poisson’s ratio ν [-] 0.3 0.3 -
Fracture toughness KIC [MPa

√
m] - 2 -

Fracture energy GC [J/m2] - - 66.7
Tensile strength σt [MPa] - - 4.5 · 103
Elastic opening δ0 [nm] - - 1
Critical opening δc [nm] - - 29.6

Table 3.1: Material properties of the ASR product and the aggregate matrix, and param-
eters of the bi-linear cohesive law. * Based on the micro-indentation tests by (Leemann
and Lura, 2013). † Taken from (Alehossein and Boland, 2004).

length scale (the size of the inclusion, the crack, and the domain). For an inclusion of
1 µm radius and a domain of 20 µm size, a 0.2 µm cohesive zone was chosen. The
crack plane was meshed with the element size of 0.03 µm, which allowed having several
elements within the cohesive zone. In Eq. (3.15), E and GC are the material properties,
while σt is treated as a calibration parameter. To make lz equal to 0.2 µm, the tensile
strength σt was assigned 4.5 GPa (see Table 3.1). Such a high value is adopted to make
the cohesive zone model comply with the principles of LEFM. The values of σt, δ0 and
δc are given in Table 3.1.

3.5 Results

The theoretical predictions of stresses and crack radii are computed for different inclusion
shapes and sizes. The theory is then validated by comparing with the numerical model.

3.5.1 Stresses in the bulk

To compute the stresses, material properties given in Table 3.1 are used. Due to the
unavailability of the mechanical properties of the amorphous ASR product, those of the
crystalline state are taken.

The analytical solution for the stresses inside and outside the inclusion is given in
Fig. 3.5. The x-, y- and z-directions coincide with the directions of the principal stresses.
Stresses at the interior points are independent of the point’s position. Stresses in the
matrix are plotted at the intersection point between the y-axis and the surface of the
spheroid (see the observation point in Fig. 3.1). The semi-axis a is varied from almost
zero to five times the equatorial radius r, changing from a penny to a sphere and finally
to a needle. Stresses inside the inclusion are always compressive, becoming hydrostatic
(σxx = σyy = σzz) in the spherical configuration. When approaching the disk limit, the
stress in the direction normal to the disk plane tends towards zero. The stress state in

26



3.5. Results

Figure 3.5: Stresses inside (on the left) and outside the inclusion (on the right) at the
observation point for a varying inclusion’s shape. Stresses are normalised by a product
of the matrix’s Young’s modulus E0 and the eigenstrain scalar εeig. The semi-axis a is
normalised by the equatorial radius r.

the matrix is different. While the stress in the y-direction is still compressive, the other
two stresses are either null or tensile. This creates the necessary premises for the crack
nucleation. In the spherical setup, the tensile stresses in the x- and y-directions are
equal, which makes any plane passing through the y-axis suitable for the crack growth.
In the penny-shape limit (a/r → 0), σxx intensifies making the yz-plane preferable for
a crack to grow. Since the gel inclusions are expected to have a flat shape, the analysis
is limited to the cases where the ratio a/r changes from zero to one.

The analytical solution for the stresses along the y-axis for three different inclusion
shapes is plotted in Fig. 3.6. Although the disk has a tensile stress at the border much
larger than the one of a sphere, it decays much faster. For a spherical configuration
(a = r), the stress drops with the rate of r3/y3, which matches a well-known analytical
solution (Timoshenko and Goodier, 1951, p. 417). A particularity of the Eshelby solution
is its size independence: both the small and the large inclusions will generate similar
stress and strain fields under the same expansion value.

The numerical solution for the stress σxx along the y-axis fairly matches the analytical
predictions. A comparison between the two sets of results is plotted in Fig. 3.7. At this
stage, no crack is present in the simulation. The only difference between the two methods
is observed at the inclusion’s boundary, where FEM cannot represent the stress peak for
the oblate shapes. The numerical solution could be improved by the mesh refinement.
The stress decay further from the inclusion surface is perfectly resolved.
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Chapter 3. ASR-crack nucleation at the nano-scale

Figure 3.6: Stress σxx for three different inclusion shapes plotted along the y-axis. Its
value is normalised by a product of the matrix’s Young’s modulus E0 and the eigenstrain
scalar εeig. The distance y is normalised by the equatorial radius r.

Figure 3.7: Comparison of the stress σxx along the y-axis from the analytical model and
FE simulation
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Figure 3.8: KI/KIC depending on the aspect ratio of the spheroid a/r and the external
crack radius R/r for a spheroid with the fixed equatorial radius r = 1 µm under the
expansion of 100% .

3.5.2 Crack radius

The crack is added to the numerical problem employing the cohesive elements. The
parameters of the cohesive law are listed in Table 3.1. To have a small lz and preserve
the fracture energy GC , the tensile strength σt had to be assigned a high value and the
critical opening δc had to be adjusted.

Expansion of the inclusion leads to the concentration of stresses at the crack tip.
The intensity of this concentration is characterised by the stress intensity factor. The
analytical solution for KI depending on the spheroid’s shape and the crack radius are
plotted in Fig. 3.8. The equatorial radius of the inclusion in this plot equals 1 µm.
KI normalised by the fracture toughness KIC serves as an indicator for crack growth.
While the values of KI/KIC above one suggest that the crack will extend, a strict
equality indicates the crack radius at which growth will cease. Cracking due to the ASR
is happening in a quasi-static regime. The expansion value of 100% is not applied at
once but is gradually increased. The process of crack growth is illustrated for the case
of a spherical inclusion in Fig. 3.9. The cracking starts at a value that is lower than
the final load. More specifically, the first crack extension happens when KI at the peak
of the curve becomes equal to KIC (point 1 of Fig. 3.9). After the first crack growth
event, any further infinitesimal increase in the load would lead to an increase in the
crack length (point 2). At all times, the stress intensity factor KI is strictly equal to the
fracture toughness KIC , and the crack propagation is stable. Finally, the load reaches
its final value, and the crack growth arrests at point 3.
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Figure 3.9: Illustration of the crack growth process around a spherical inclusion. Point
1 denotes the lowest value of expansion at which the crack extension begins. Point 2
corresponds to some intermediate expansion value at which the crack propagates in a
stable mode (KI = KIC). Crack growth stops upon reaching the final εeig at point 3.

All the curves in Fig. 3.8 have unimodal distribution shape. At the extreme values
of R, zero and ∞, KI tends towards zero. In physical terms, it means that for a crack
to grow, a pre-existing fissure of a finite length must exist. Otherwise, the problem
transitions from being toughness-controlled to strength-controlled (Bažant, 1984; Ritchie,
2011). Overcoming material strength in the absence of micro-fissures would require
higher expansion values of the ASR pocket. In contrast, a sufficiently large size of the
pre-existing crack encircling the inclusion facilitates its further growth.

The curves in Fig. 3.8 are ascending up to theKI peak value and later descend to zero.
Such behaviour of KI is not typical for the majority of the classical fracture mechanical
problems. Normally, KI is monotonously growing or reducing, e.g. a semi-infinite body
under tension or a penny-shaped crack under a pair of forces applied at its centre. One
may wonder why, in the case of the expanding inclusion, KI has a peak, while in the
case of a remote tensile load, it does not. The difference in KI profiles stems from the
different nature of loads. For the remote tensile load, the crack tip always “feels” the
tensile stress applied at infinity. For the expanding inclusion, the stresses in the matrix
in the absence of the crack are not constant. For simplicity, a spherical case is considered.
In Fig. 3.10, the normalised stress σxx and stress intensity factor KI are plotted along
the distance y′ given in logarithmic scale. The stress intensity factor was computed
for the geometry where the crack size l equals the distance y′. The stress is constant
up to y′/r = 10−3 after which it starts to drop. While the stress is constant, KI is
monotonously growing (similar to the remote tension case). When the stress reduces, so
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Figure 3.10: Stress σxx along the y′-axis in an unflawed configuration and SIF KI for
a crack of length l = y′. Values are normalised by a product of the matrix’s Young’s
modulus E0 and the eigenstrain scalar εeig. An extra normalisation term 1/

√
r is applied

to KI . The distances y′ and l are normalised by the equatorial radius r.

does KI , which results in a peak.

The KI peak position and its height vary for different shapes of the inclusion. The
highest KI corresponds to an oblate spheroid with an aspect ratio a/r = 1/4, which
makes it the most critical case for high fracture toughness. A sphere (a/r = 1) has a
lower peak value but its maximum crack length is the largest. Consequently, a sphere
and a 1/4-spheroid are the two most critical geometries with regards to the KI intensity
and the maximum crack length correspondingly.

For the current equatorial radius of a spheroid r = 1 µm, any aspect ratio 1/10 ≤
a/r ≤ 1 leads to the fracture growth. Flattening of the shape of the inclusion would
reduce its potential to grow a crack. For instance, a penny with thickness a = 0.01 µm
is not expected to develop a crack. The maximum crack radius for all possible spheroids
with 1 µm radius is 2.35 µm, which is more than twice as big as the ASR pocket itself.

Although the stress solution of the Eshelby problem does not depend on the size
of the inclusion, the solution for the stress intensity factor does. This is demonstrated
in Fig. 3.11. The two most critical shapes (a sphere and a 1/4 spheroid) of different
radii were tested: 0.1 µm, 1 µm, and 10 µm. The previous expansion value was applied.
One can observe a gradual increase in both the peak SIF value and the maximum crack
length for bigger inclusions. This allows concluding that the size of the ASR pocket has
a direct effect on the crack propagation: larger ASR inclusions have a higher chance to

31



Chapter 3. ASR-crack nucleation at the nano-scale

Figure 3.11: KI/KIC for a sphere and a 1/4-spheroid of different radii and a constant
expansion of 100%.

damage the surrounding aggregate and thus cause a longer crack. Another important
observation is that, irrespective of its shape, an inclusion of 0.1 µm size or smaller does
not trigger the crack growth. This observation suggests that there is a critical value
of the spheroid’s radius below which no crack extension will happen for the expansion
values of 100% and the chosen material properties. This critical radius lays in the range
between 0.1 µm and 1 µm.

To study how the inclusion size is related to the maximum developed crack radius, an
additional parametric study was performed. Its results are presented in Fig. 3.12. Two
previously highlighted shapes (a sphere and a 1/4-spheroid) were increased in size from
hundreds of nanometers to a few centimetres and the corresponding maximum crack
radii were measured. Such a wide range was chosen for purely illustrative purposes and
does not have any physical implications. The expansion values of 100% and 200% were
applied. The maximum crack radius shows a power-law dependence on the inclusion size.
The power law has an exponent of 4/3. The plot also shows that the same power-law
exponent holds for different expansion values.

Numerical validation of the analytical solution is given in Fig. 3.13. Here, white dot-
ted lines represent the semi-analytical predictions for three spheroids, while the coloured
background comprises three numerical crack profiles. The final positions of the numer-
ical cracks can be interpreted through the damage colours: brown corresponds to the
fully damaged cohesive elements, blue to the intact ones. The rainbow-coloured regions
correspond to the cohesive zones at the external crack radii. The radius of the crack
next to a sphere is about 2.4 µm, which is almost equal to the analytically predicted
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Figure 3.12: Maximum crack radii for the spheroidal inclusions of different sizes under
two different expansion values. Results are plotted in log-log scale.

radius of 2.35 µm. For a 1/4-spheroid, the numerically-grown crack measures 1.6 µm,
which is 8.5% smaller than the analytical value of 1.75 µm. Finally, a penny has not de-
veloped a crack and just slightly opened a rim of elements while its analytical prediction
is 1.27 µm. The reason for the underdeveloped crack is believed to be the interference
coming from the inclusion that is too close-by. Except for this last case, the numerical
model fairly reproduces the semi-analytical predictions.

3.6 Conclusions

In this study, the potential of ASR pockets of different sizes and shapes to cause cracking
of surrounding aggregates due to their volumetric increase of 100% was estimated. For
this, a semi-analytical model consisting of the expanding spheroidal inclusion and a ring-
shaped crack encircling it was employed. The inclusion represented a pocket of an ASR
product at its mature solid state. A prerequisite for such a model was the presence of
pre-existing fissures, which are abundant in rocks. First, the stresses in the matrix were
computed by an analytical solution. Later, the product of the computed stresses and
the specific weight function was integrated over the surface of the crack to obtain the
stress intensity factor for mode I. The latter characterises the crack potential to grow.
The distance at which the stress intensity factor normalised by the fracture toughness
equals one rendered the maximum crack length.

The resulting solution strongly depended on the inclusion’s shape and size. Flat
shapes concentrated higher tensile stresses on their sharp edges. At the same time,
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Figure 3.13: Final values of damage in the numerical simulations for three spheroids with
the radius 1 µm and the expansion of 100%. The dotted lines denote the semi-analytical
predictions of the maximum crack radii presented in Fig. 3.8. The dimensions are given
in meters.
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these stresses decayed much faster further away from the inclusion. While the stress
intensity factor for mode I was the highest for an oblate spheroid with an aspect ratio
of 1/4, the longest crack was caused by a spherical shape. It made the 1/4-spheroid
and the sphere the two most critical shapes, either for reaching the high values of the
fracture toughness or for growting the longest crack.

The size of the inclusion played a crucial role on the crack-growing potential. For an
inclusion of 1 µm radius under the expansion of 100%, all the spheroidal shapes with
the aspect ratios above 1/10 were likely to grow a crack. Flatter shapes would cause
either short cracks (R/r ≤ 1.25) or no crack at all. The study indicated the existence
of a critical inclusion radius in the range between 0.1 µm and 1 µm below which no
crack growth is expected for the current combination of KIC and εeig. Consistently, an
increase in the inclusion’s size yielded higher values of KI and longer cracks.

Further increase in the inclusion size, as well as in the expansion value, suggested a
power-law dependence between the radius of a spheroid and the maximum crack radius.
Independently of the spheroidal shape or the expansion value, the power-law exponent
was about 4/3.

The results of the analytical and semi-analytical predictions were confirmed by the
numerical model. For verification of the stresses in the bulk in the absence of the crack,
a purely elastic finite element model was assembled. To validate the predicted maximum
crack length, this model was enriched with cohesive elements. Both the elastic stresses
and the crack lengths obtained numerically had a good match with the semi-analytical
results.
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4 Tomography-based meso-scale
ASR model

After studying the origins of the ASR expansion at its finest scale, we proceed to the scale
above. At the meso-scale, the ASR manifests itself in the form of expanding aggregate
regions, micro-cracking, accumulation of the secondary ASR products in cracks, pores
and ITZ. If in the previous chapter a single growing crack was considered, at the meso-
scale multiple cracks grow simultaneously, branch and percolate, creating a complex
network. Understanding how these networks evolve and their role on the macroscopic
behaviour should improve the overall understanding of the ASR. For this purpose, some
researchers have conducted the post-mortem microscopy analysis of the damaged speci-
mens, which allowed building the damage maps of a single specimen (Ben Haha, 2006).
However, reconstruction of the entire crack network was still not feasible.

Recent advances in this direction were done by the researchers from the Sinergia Sub-
project V. Shakoorioskooie et al. (2021a,b) conducted an accelerated ASR experiment
where the concrete blocks were regularly scanned with X-ray tomography. Addition of a
contrasting agent in the concrete mixture allowed distinguishing the aggregates, cement
paste, cracks and voids, and ASR products as individual phases. The resulting time-
series of tomograms gave access to time-evolving deformation fields, crack maps and
their occupancy by ASR products. The tomography scans were accompanied by the
macroscopic measurements of expansion, stiffness, compressive and flexural strength.

The acquired data is aimed to help in understanding the processes that lead to
expansion and cracking processes. Visual study of the data allows making qualitative
evaluations and build hypotheses. A more quantitative approach is by using numerical
models. Hypotheses on the ASR nature could be included into these models and be
tested by comparing the results of the simulations with the experimental data. As the
numerical models are sufficiently flexible, multiple hypotheses could be tested in a short
period of time. This approach is adopted to study mechanics of the ASR in the current
chapter.

The aim of the current chapter is to better understand the mechanisms behind the
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meso-scale concrete expansion and cracking guided by the X-ray tomography data. This
study aims to investigate how the growth of cracks and evolution of their patterns affect
the macroscopic behaviour of concrete. An additional goal is to develop a numerical
model that would predict realistic growth of multiple cracks while preserving the physics.

To meet these goals, a novel numerical model of the meso-scale concrete undergoing
the ASR is developed. The novelty of the approach is built on the combination of the
cohesive zone model with the sequential linear solution, which improves the numerical
stability, and of a crack extension algorithm, which ensures the cracks’ smoothness. The
proposed numerical approach permits explicit representation of multiple localised thin
cracks in a stable and controlled manner. Having these characteristics is crucial for the
comparison with the experimental data. Two main hypotheses on the nature of the ASR
loading and associated cracking are tested. First, the hypothesis of a pointwise loading of
cracks by ASR products that is sufficient to lead to a realistic crack network is discussed.
Second, the hypothesis that cracks elongate from the pre-existing micro-cracks, instead of
continuous nucleation, is tested. The rest of the chapter is organised as follows. First, a
theoretical background of the model is given in Section 4.1. In Section 4.2, the numerical
implementation (e.g. mesh generation, solution scheme, crack treatment) as well as the
hypotheses and modelling assumptions are discussed. Section 4.3 describes a test case
that is used for the validation. The laboratory experiments and the tomography-based
model are described in Section 4.4. The simulation results, their comparison with the
experiments and evaluation of the hypotheses are discussed in Section 4.5. The chapter
is concluded with the summary of the main findings.

4.1 Governing equations

4.1.1 Solid mechanics

The slow progression of the ASR justifies use of momentum conservation as the governing
equation:

∇ · σ = 0 (4.1)

where σ is the Cauchy stress tensor. The latter is related to the infinitesimal strain
tensor ε by a constitutive law:

σ = C : ε (4.2)

where C is the fourth order stiffness tensor. Following the hypothesis of small displace-
ments, the strain tensor ε is defined as

ε =
1

2

[
∇u+ (∇u)T

]
(4.3)

where ∇u is the displacement gradient vector.
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4.1.2 ASR product growth

During the accelerated ASR experiments, the concrete specimens were submerged in an
alkali solution. As its concentration was kept constant, an infinite supply of alkalies
is assumed. Although, the amount of amorphous silica and quartz are limited by their
availability within aggregates, it is sufficient to keep the reaction going during the ex-
periment as indicated by the continuous expansion of concrete. It is assumed that the
concentration of reactants is constant during the whole experiment, which implies the
constant reaction rate v.

The latter leads to the linear increase in the concentration of the ASR products with
time:

v =
1

a

∂[ASR products]
∂t

(4.4)

In the above equation, a represents the stoichiometric coefficient and [X] is the concen-
tration of species X. As there is no clear understanding on the nature of ASR loading,
proportionality between the concentration of ASR products and the internal ASR pres-
sure is assumed.

4.1.3 Crack growth

Similar to the previous chapter, cracks are modelled by cohesive elements, the behaviour
of which is postulated by a cohesive law :

T =
∂ϕ

∂δ
(4.5)

with T being tractions, δ the effective displacements and ϕ the cohesive energy density.
In this study, a simplified version of the linear irreversible cohesive law by Camacho and
Ortiz (Camacho and Ortiz, 1996) is adopted. The cohesive law is illustrated in Fig. 4.1.
While a single crack loaded by the internal ASR pressure would open in pure tension,
the interaction between multiple cracks could provoke their closure and evolution of
frictional forces. Friction is omitted by equating the effective cohesive displacement and
the normal component of the opening δ = ∆n. Although this is done to improve the
solution scheme, it ignores an important mechanical aspect and should be addressed in
the future work. The tractions are computed as follows:

T(δ, δmax) =


σt

(
1− δ

δc

)
n for δ = δmax

Tmax
δmax

n for δ < δmax

αpδ for δ < 0

0 for δ ≥ 0 and δmax ≥ δc

(4.6)
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Figure 4.1: Illustration of the linear cohesive law.

where n is the unity vector normal to the crack surface, σt is the local material strength
and δc is the critical opening at which full decohesion happens. To avoid interpenetration
of crack surfaces, a simple penalty contact law with the penalty parameter αp is employed.
Dissipated energy can be defined as

Ediss =
1

2
σtδmax (4.7)

The equality Ediss = GC is established upon full decohesion. The critical opening δc is
defined by the fracture energy GC and the insertion stress σt as

δc = 2GC/σt (4.8)

4.2 Numerical implementation

Similar to the model described in the previous chapter, the finite element method was
employed. Its theory was briefly summarised in Section 3.4 and is not repeated here.

4.2.1 Crack front treatment

Cracks are resolved by zero-thickness cohesive elements exhibiting traction-separation
law from Eq. (4.6). They are inserted continuously during the simulation (extrinsic
approach of Camacho and Ortiz (1996)). A cohesive element is introduced at the place
of a facet that complies with the insertion criteria. The latter is based on stress: the
normal tensile traction on a facet Tn has to overcome the local material strength σt.

The cohesive zone of concrete is few-centimetres wide. This is larger than the size
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Figure 4.2: Illustration of the crack insertion procedure. At each point P1 of a crack
contour, two neighbouring segments S1 and S2 are identified. The shortest facet path
from S1 to S2 is searched for. The path consisting of the facets F1, F2 and F3 complies
with the insertion and the smoothness criteria. Cohesive elements are inserted at the
positions of F1, F2 and F3 and the crack contour is updated.

of the tomograms used for the model construction. Such a large size causes diffused
micro-cracking, which is characterised by some weakly-opened micro-cracks spread all
over the specimen. The tomography data used in this work distinguishes cracks after
certain width while the features thinner than the tomography resolution could not be
detected. This discards most of the thin crack of nano- to micrometre width expected
in the diffused cracking regime.

To make the numerical model develop only localised cracks similar to the ones ob-
served in the tomograms, three additional measures were taken. First, to reduce the
cohesive zone size, the value of the tensile strength σt was taken one order of magnitude
higher than the ones reported in the literature (e.g. Alehossein and Boland, 2004). The
second measure was to scatter the tensile strength σt according to a statistically repre-
sentative distribution. This measure aims to represent the natural micro-fissures which
facilitate crack propagation. Details on the specific choice of the material properties and
the distribution parameters are given in Section 4.4.

The third measure called to develop localised cracks is the enforcement of the smooth
crack extension from its contour. Only the cohesive elements forming a continuous path
between two neighbouring segments of a crack contour could be inserted. The procedure
for crack extension is illustrated in Fig. 4.2. It can be split into three steps. The first
one is to pick a node on the current crack contour (P1) and define a pair of neighbouring
contour segments S1 and S2. The next step is to identify the shortest path from S1 to
S2 consisting of facets containing the node P1. The final step is to verify the insertion
criteria and the smoothness of the loop. The latter is ensured by discarding the facets
forming sharp angles with any of their loop neighbours. Given that the facets in the
loop comply with all the necessary conditions, cohesive elements are inserted and the
crack contour is updated. The initial cracks are necessary as a starting point for the
future crack growth. For this purpose, closed loops of cohesive elements are randomly
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placed within the aggregate material during the mesh generation. Later, these cohesive
loops are used for the load application. The procedures of the cracks pre-insertion and
extension are given in Algorithms 1 and 2, correspondingly.

Algorithm 1 Insertion of N pre-existing cracks
1: procedure insertCracks(N)
2: Create an empty set of visited nodes U
3: while number of inserted cracks < N
4: Randomly pick a node Pi within the aggregate material
5: Create an empty list of the crack facets V
6: if node Pi already belongs to a crack
7: Add node Pi to the set U
8: go to 4
9: Randomly pick a segment Si and a facet Fi adjacent to node Pi

10: Define segment Si as a starting one S0

11: Add facet Fi to V
12: repeat
13: Consider the last facet Fl from V
14: Identify its bordering segment Sb

15: Find a facet containing Sb and forming the largest obtuse angle with Fl

16: Add the identified facet to V
17: until the identified facet contains the starting segment S0

18: if a closed loop was not identified
19: go to 4
20: Insert cohesive elements according to the list V

All these measures were taken to produce localised smooth cracks similar to what is
qualitatively observed in the ASR experiments. Cracks merging and branching remains
possible within this workflow. By adopting this modelling approach, the hypothesis
that the ASR cracks start from the pre-existing micro-flaws and later elongate from
their contours is made. This hypothesis eliminates the possibility for new cracks to
nucleate. Moreover, it discards the development of cracks that are not loaded by the
ASR products from inside (e.g. shear cracks).

4.2.2 Parallelism

The efficient parallel implementation of an FE model with dynamic insertion of cohesive
elements was presented by Vocialta et al. (2017). Efficient parallel execution of the model
was enabled by the message passing interface (MPI). In contrast to that model, where
cohesive elements could be inserted everywhere, in the current study cracks are only
allowed to elongate. Therefore, additional treatment is required when a crack is crossing
the border between two domains handled by different processors. In such a case, the
same contour segments of a crack could be handled by both processors simultaneously.
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Algorithm 2 Crack extension algorithm
1: procedure extendExistingCracks
2: for every crack
3: for every node Pi of the crack’s contour
4: Create an undirectional graph G ▷ Using Boost Graph Library
5: Find two segments S1 and S2 of the contour adjacent to node Pi

6: for facet Fj containing node Pi ▷ Excepting the facets of the crack
7: Check the insertion criteria
8: if tn,j ≥ σt,j
9: Find two segments Sk and Sl of facet Fl that share node Pi

10: Add segments Sk and Sj as vertices to G
11: Add facet Fl as a corresponding edge to G
12: Within G, compute the shortest facet path between vertices S1 and S2

13: if path does not exist
14: move to the next contour node Pi+1

15: for each pair of two consequent facets of the path
16: if angle between two facets is sharp
17: Delete problematic facet from G
18: go to 12
19: Insert cohesive elements at the identified path

As each processor decides independently whether to extend a crack, there is a possibility
of artificial crack branching. To avoid this, the stress communication between processors
is established during each cohesive insertion event. During these communications, two
neighbouring processors decide whose bordering facets are the most stressed.

4.2.3 ASR loading

The internal ASR loading is applied at the nodes of the pre-existing cracks in aggregates
(see Fig. 4.3). Loading applied at a single crack is represented by a pair of splitting
forces with equal amplitudes but opposite directions. The loading is applied at the
duplicated nodes of cohesive elements. Even when the crack extends and more nodes
are duplicated, loading is kept at the original nodes (see Fig. 4.3b). The orientation of
the forces is based on the normals of associated cohesive elements. The amplitude of the
loading is growing linearly with time in accord with Section 4.1.2:

Fn+1 = Fn + Ḟ∆t (4.9)

where Ḟ is the constant loading increase rate, Fn and Fn+1 are the loading values at
two subsequent steps, and ∆t is the time step. The equation above does not take into
account the temperature as the reference experiments were conducted under constant
environmental conditions. The linear loading increase is a modelling assumption. Any
other loading profile could be used based on the experimental evidence.
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(a) (b)

Figure 4.3: Illustration of the loading applied at an ASR site. a) Loading at the initial
configuration with a single duplicated node pair. b) Loading of the extended crack
with several duplicated node pairs. In both cases, the loading is applied at the initial
duplicated node pair only.

4.2.4 Sequential solution

Computation of failure in brittle and quasi-brittle materials by means of the classical
non-linear finite element method is often prone to numerical instabilities. In particular,
for problems characterised by the simultaneous propagation of multiple cracks, as in the
case of the ASR, the solution of the system is likely to diverge and hence a completely
different approach becomes necessary.

This problem is circumvented by the algorithmic elimination of the non-linearity in
the constitutive behaviour. The latter is done by linearizing the cohesive law with a
treatment similar to the sequentially linear analysis (SLA) proposed by Rots (2001);
Rots and Invernizzi (2004); Rots et al. (2008). The idea of this method is to replace
the incremental solution of the strain-softening behaviour by a sequence of linear elastic
steps with the step-wise reduced stiffness. The loading is not applied all at once, but in
small increments that bring a single element to its failure envelope. In this way, negative
tangent stiffness is avoided and the convergence check becomes unnecessary. The SLA
procedure is illustrated in Fig. 4.4. Application of SLA to interfacial elements with
friction was previously demonstrated by Pari et al. (2021).

Cuba Ramos et al. (2018) have shown that the use of SLA allows capturing the
complex crack networks inside the aggregates and the mortar. The load increments
are chosen in such a way that for each imposed load increment, exactly one integration
point (IP) undergoes softening and all other IPs remain below their failure criterion. The
development of this method has been inspired by lattice models, in which the continuum
is replaced by a lattice of beams. In lattice models, divergence problems do not occur
because the solution is obtained from a sequence of linear analyses. In every step of the
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Figure 4.4: Illustration of the sequentially linear analysis.

analysis, the beam with the highest load is detected and subsequently removed. The
SLA transfers this approach to the continuum modelling. Consequently, in every step,
the IP with the highest load is detected, and if the damage criterion is satisfied, the
stiffness and strength at this IP are reduced according to the current damage value di,
which is defined as

di = 1− 1

ai
(4.10)

where the empirical reduction constant a, is brought to the power i, which is the number
of the reduction step. In the following simulations, a = 2 and imax = 10, which are
chosen as a compromise between the computational time and the high resolution of the
strain-softening curve.

Resolving each damaging event brings excessive computational cost. In order to
overcome this complication and speed up the computations, the classical SLA scheme
was altered by two modifications. First, the loading increase was fixed to a constant
sufficiently small value that is still reasonable from the computational time perspective.
By the second modification, all the IPs stressed above their tensile limit are permitted
to be damaged within one iteration. The summary on the adopted workflow is given in
Algorithm 3.

Compared to the lattice models, an advantage of SLA is that the concept of strength,
elasticity and fracture energy remain meaningful at the macro-scale. As SLA does not
use the tangent stiffness, numerical instabilities do not arise and, during the analysis,
the equilibrium path of the material degradation is always followed. Another advantage
is that due to the controlled increase of damage, jumps over the structural response do
not occur. However, the major drawback of this method is its high computational cost.
It results from the fact that a new solution has to be computed after each damaging
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Algorithm 3 Linearisation of the cohesive law
1: for every time step tj
2: while cohesive elements are damaged
3: Apply the full load F = F(tj)
4: Obtain the elastic solution u
5: for every cohesive element k
6: Compute normal traction Tn

7: Note its current reduction step i and tensile strength σt,i
8: if Tn ≥ σt,i
9: Damage the cohesive element k and update its properties:

• Reduction step : i += 1

•Damage : di = 1− 1

ai

• Secant stiffness : Ei = E0(1− di)

• Tensile strength : σt,i = δcEi
Et

Ei + Et

with Et =
σt,0

δc − σt,0/E0

event. Consequently, the total number of computations is significantly larger than in
a non-linear finite element approach. A more detailed description of the application of
SLA to the meso-scale ASR problem can be found in (Cuba Ramos, 2017).

4.3 Model validation

The proposed numerical approach is validated by matching a well-known analytical
solution. The validation problem comprises a penny-shaped crack in the infinite medium
loaded in Mode I by a pair of equal, oppositely-oriented forces F applied at the crack
centre, as depicted in Fig. 4.5. Such setup was chosen due to its similarity to the modelled
ASR problem. The solution to this problem based on linear elastic fracture mechanics
(LEFM) can be found in classical cracks handbooks (e.g. Tada et al., 2000). The stress
intensity factor KI is

KI =
F

(πa)3/2
(4.11)

where F is the force magnitude and a is the crack radius. Given the constant loading
F , as the crack becomes larger, the stress intensity at the crack tip reduces and KI is
subject to power-law decay. The value of a at which KI becomes equal to the material
toughness KIc corresponds to the maximum crack radius for this configuration. It can
be computed as

a =
1.5
√
F/KIc

π
(4.12)
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Figure 4.5: Validation case of a penny-shaped crack loaded by a pair of forces.

Model parameter Value
Domain sizes D,W,H [µm] 20
Loading F/4 [Pa] 1.45 · 10−2

Fracture toughness KIc [MPa
√
m] 2∗

Tensile strength σt [GPa] 4.5
Bulk Young’s modulus E [GPa] 60
Bulk Poisson’s ratio ν [-] 0.3
Initial crack radius a0 [µm] 1
Predicted crack radius a [µm] 3
Cohesive zone size lz [µm] 0.2
Mesh size along the crack plane h [µm] 0.03/0.05†

Table 4.1: Model parameters and material properties used in the validation case. ∗Taken
from (Alehossein and Boland, 2004). †Two different mesh sizes used to study the con-
vergence.

The geometry of the numerical model developed for comparison with the analytical
solution is depicted in Fig. 4.6. It comprises one quarter of the full space and the crack.
The amplitude of the load applied in the model equals to one quarter of the one in
the analytical solution. An initial crack of a radius a0 is pre-inserted (coloured in red).
Application of the load F/4 should result in the crack extension up to its final radius
a predicted by Eq. (4.12). Crack growth is restricted to the horizontal middle plane
(coloured in green). Symmetry over the two section planes is established by applying
zero out-of-plane displacements. To minimise the boundary effect, height, width and
depth of the model are sufficiently large. The dimensions of the model are given in
Table 4.1.

Similar to the previous chapter, a high value of σt = 4.5 GPa was chosen to make
the size of the cohesive zone significantly smaller than the model and, by this, approach
the LEFM solution. Material properties are given in Table 4.1.
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Figure 4.6: Illustration of the numerical model used for the validation.

Comparison of the numerical solution to the analytical prediction is plotted in Fig. 4.7.
While the black dotted line represents the analytical prediction, the coloured background
defines the numerical cracks. The final positions of the numerical cracks are interpreted
through the damage colours: brown corresponds to the fully damaged cohesive elements,
blue is for the intact ones. The rainbow-coloured regions correspond to the cohesive
zones at the external crack radii. The numerical solutions are obtained for two meshes
of different density along the crack plane. In both cases, the results are in a fair agree-
ment with the analytical prediction. While the densest mesh with 0.03 µm element size
matches predicted af exactly, a coarser mesh (h = 0.05 µm) underestimates it by 6.7%
which is considered satisfactory.

More insights into the behaviour of the proposed numerical scheme are obtained from
the dissipated energy plot in Fig. 4.8. Two families of curves are presented: the curved
lines are obtained by the proposed algorithm; the smooth ones are obtained by using the
intrinsic cohesive elements approach used in the previous chapter. The latter implies the
pre-insertion of all the cohesive elements during mesh generation. The advantage of this
approach is the permanent connectivity between elements, which simplifies the solution
process. Its drawback is the alteration of the homogenised properties of the cohesive-
bulk material mix. The set of curves obtained by the intrinsic method is treated as a
benchmark. In addition to the different mesh sizes (0.03 and 0.05 µm), the maximum
number of stiffness reductions N is varied between 10 and 20 times ( Fig. 4.4 and
Algorithm 3).
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Figure 4.7: Numerical cracks for two different meshes in comparison with the analytical
prediction.

Figure 4.8: Energy dissipation due to the increase in the applied load in the validation
study.
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Both the mesh refinement and the increase in N brings the curves closer to the
benchmark. Further mesh refinement and increase in N should lead to convergence
of the numerical solution. On the other hand, it also extends the computational time.
Thus, the final choice of the mesh size and the number of stiffness reductions is a trade-off
between model’s efficiency and precision.

The dissipated energy serves as a proxy for the crack area. In case of SLA, the energy
is not growing monotonously, and so is the crack. Instead, it is advancing in small isles -
loops of facets complying with the insertion criteria. This criteria is not met for all the
facets in the loop at once, thus a certain time delay is introduced. Similar discontinuous
crack growth is also observed experimentally (see (Schmittbuhl and Måløy, 1997)).

4.4 Tomography-based model

The final model used to investigate the crack growth due to the ASR is based on the
tomography data obtained by Shakoorioskooie (2021). This data consists of the time
sequence of the X-ray tomograms of the ASR-affected concrete specimens. The spec-
imens were prisms of 24.6mm × 24.6mm × 100mm along the X-, Y - and Z-axes,
correspondingly. Starting from the intact state, the tomograms capture the evolution
of ASR cracks and the accumulation of ASR products. The current set of scans covers
405 days. The spatial resolution of the tomograms is about 35 µm. A central part of
the specimen underwent tomography. The tomograms’ size is 24.6mm × 24.6mm ×
24.6mm. Aggregates, cement paste and pores were segmented due to the difference in
voxel values. Cracks and ASR-products were also segmented into independent volumes.
This allowed the authors to measure volumes of the cracks and the ASR products and
build a statistical database. It includes the volume distributions, local thicknesses and
orientations of crack and ASR pockets. Moreover, such macroscopic parameters as the
relative length changes, quasi-static Young’s modulus, flexural and compressive strength
were measured.

The tomograms of the intact concrete were used to build a FE mesh. An algorithm
to generate an irregular tetrahedron mesh out of a stack of 2D cross-sections from the
tomographed volume was developed. First, it builds a dummy irregular mesh by the
Gmsh software (Geuzaine and Remacle, 2009) with the final dimensions of the model.
Then, the tomography-based material indexes are assigned to the elements of this mesh.
Coordinates of each element’s barycentre are used to find a corresponding voxel in the
tomogram and choose its material index. Additional smoothing algorithm is applied to
remove material isles - single finite elements that have one or no neighbouring element
of the same material.

The resolution of the model is 0.2mm. To reduce the computation load, only a
quarter of the full tomogram is modelled. Thus, the final model size is 12.3mm ×

50



4.4. Tomography-based model

Figure 4.9: Tomography-based FE mesh of concrete. Dark colour denotes the aggregate
material and light the cement paste.

12.3mm × 12.3mm. The mesh distinguishes between aggregates, cement paste and ITZ,
and accounts for internal air voids. The ITZ is defined by the facets shared by the solid
elements belonging to aggregates and cement paste. The concrete part is encircled by a
layer of a non-damageable buffer to mimic surrounding material. The internal part of
the mesh (discarding the buffer) is depicted in Fig. 4.9.

Properties of the two elastic solid materials and three cohesive ones are given in
Table 4.2. The values of the tensile strength σt are one order of magnitude higher
than the ones obtained in the macro-scale experiments (e.g. Alehossein and Boland,
2004). Assigning a higher tensile strength allows constraining the cohesive zone within
the specimen and avoid diffused cracking. Natural defects present in all materials are
reproduced by spreading the tensile strength σt according to a Weibull distribution with
the following cumulative distribution function

F (σt) = 1− e

(
−
(

σt−σt,min
λ

)k
)

(4.13)

where σt,min is the material quasi-static failure strength, k is the Weibull shape param-
eter, and λ is the scale parameter. The adopted values are given in Table 4.2.
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Material name / parame-
ter

Aggregates Cement
paste

Aggregates
(cohesive)

Cement
paste
(cohesive)

ITZ

Young’s modulus E [GPa] 59 25 - - -
Poisson’s ratio ν [-] 0.2 0.2 - - -
Fracture energy Gc [J/m2] - - 66.7∗ 13† 10
Quasi-static tensile strength
σt,min [MPa]

- - 70 20 20

Weibull shape parameter k [-] - - 5 5 5
Scale parameter λ [MPa] - - 20 6 6

Table 4.2: Material parameters for the tomography-based simulation. ∗Taken from
(Alehossein and Boland, 2004). †Taken from (Xu and Zhu, 2009).

Parameter / scenario 1 2 3 4 5
Loading rate Ḟ [N/day] 25 50 12.5 6.25 25

Number of ASR sites 14 7 28 56 14

Loading pressure along z-axis [MPa] - - - - −5

Table 4.3: Scenarios of the numerical simulations of the tomography-based model.

4.5 Results

Deformations of the numerical and laboratory specimens are shown in Fig. 4.10. The
black lines with error bars are the experimental data. The experimental prisms exhibit
initial shrinkage during the first 60 days possibly caused by drying. Shrinkage is followed
by the gradual expansion, the rate of which reduces after 250 days. The strain values
after 100 days become anisotropic: the expansion along the short prism side X is larger
than in the other two directions. This difference could be attributed to different humidity
and alkalinity profiles along each direction as well as to the casting process. Discussion
on the source of anisotropy in the experimental data is out of the scope.

Numerical simulations were performed according to several scenarios. The results
presented in Fig. 4.10 are obtained by the model calibration according to Scenario 1

in Table 4.3. The coloured lines represent mean values and the shaded areas define
the range of the obtained results. Three simulations with different initial positions of
ASR sites are performed. In this way, randomness of the cracking process is taken into
account and statistical representativeness of the numerical output is improved. The
abrupt jumps in several curves stem from the simulations that did finalise due to non-
convergence. The reason for this is the stiffness alteration between a compressed and
tensioned states of cohesive elements. Therefore, when the cracks become abundant,
such issue becomes more prominent and hinders the numerical convergence.

The numerical model does not have a preferential direction, thus it demonstrates
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Figure 4.10: Macroscopic deformation of the numerical and laboratory specimens. Solid
coloured lines represent mean values from several simulations, and the shaded areas
define the range of the obtained results. The black lines and error bars represent the
laboratory measurements. The experimental data is taken from (Shakoorioskooie, 2021).

similar expansion values in all three directions. Due to the limited number of simula-
tions, the mean values are far from being statistically representative. If the number of
simulations with different concrete meso-structures is much higher, the mean expansions
in all three directions shall equalise and the curves shall overlap. The numerical expan-
sion rate is at its maximum in the beginning of the simulation and gradually decreases
towards its end, making the expansion almost linear in the last 100 days. Both the
absolute values and their increase rates of the numerical expansion fall into the range of
values defined by the experiments.

Fig. 4.11 presents two crack distribution maps, one coming from the experiments of
Shakoorioskooie (2021) and another one from the simulation. Different colours corre-
spond to the crack numbers associated with the initial numbering of the ASR site. The
tomogram level of details is high, which allows having more fine-scale features. The
obtained numerical cracks map is qualitatively similar to the experimental cracks distri-
bution in space, as well as in terms of crack shapes and curvatures.

Fig. 4.12a plots the crack volume ratios in different phases. The volume ratio Ṽcracks

is computed as
Ṽcracks,i(tj) =

Vcracks,i(tj)

Vmodel(tj)

where Vcracks,i(tj) is the volume of cracks at the time step j, Vmodel(tj) is the current
volume of the model without the surrounding buffer, and i defines the crack phase (i.e.
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(a)

(b)

Figure 4.11: Qualitative comparison between a typical crack map from a) the exper-
iment and b) the numerical simulation. Both snapshots were taken in the middle of
the experiment/simulation duration. Tomography data is taken from (Shakoorioskooie,
2021).
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(a)

(b)

Figure 4.12: a) Numerical crack-volume ratios and b) areas by different phases (i.e. total
volume, aggregates, cement paste and ITZ) compared to the experimental results. Solid
coloured lines represent mean values from several simulations, and the shaded areas
denote the range of the obtained results. The experimental crack volumes are taken
from (Shakoorioskooie, 2021).
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total volume, aggregates, cement paste, and ITZ). According to the experiments, nearly
the same volume of cracks is present in the aggregates and the cement paste at any time.
Their maximum total volume arrives to ≈ 1.2% at 405 days. While the numerical total
crack volume is in a fair agreement with its experimental counterpart, the aggregate
crack volume is slightly higher than the one in the cement paste.

The simulated crack areas per phase are plotted in Fig. 4.12b. These curves help
to interpret the numerical results from the previous plot. Unlike the crack volume that
includes the crack extension and opening, the crack area takes into consideration only
its elongation. Therefore, the area could be used as an indicator for the newly opened
cracks. All the curves in Fig. 4.12b have characteristic asymptotic shape which suggests
that the propagation of new cracks is slowing down. Further crack growth is hindered
by the non-damageable buffer surrounding the specimen. In the absence of such a buffer,
crack growth would be halted by reaching the free external surface. Detailed comparison
between the computed crack areas and the experimental ones is complicated due to the
spatial resolution of the X-ray tomography. Even though the model can predict thin
cracks with few-nanometre width, a CT scanner is not able to resolve such small features.

Although the numerical crack areas in Fig. 4.12b are slowly approaching their asymp-
totes, the volumes in Fig. 4.12a continue to increase linearly, which is caused by linear
increase in the internal loading. Similar phenomenon could also happen in the experimen-
tal samples: initially intensive crack growth could reduce due to the crack percolation
and reaching the borders. Further volume increase would continue solely due to wider
opening of the existing cracks and accumulation of ASR products inside.

Fair agreement between the numerical results and the experimental data suggests
that the two made hypotheses are sufficient to reproduce the realistic crack pattern
and have similar macroscopic expansion. It does not however disprove different loading
mechanisms, e.g. distributed loading along the whole crack area. Neither does it disprove
the possibility of nucleation of cracks that are not pressurised from inside (e.g. due to
shear stresses, differential expansion of aggregates or even chemical crack formation).

4.5.1 Sensitivity study

A sensitivity study was performed in order to understand the influence of the initial
ASR sites number on the macroscopic behaviour. Three additional scenarios with half,
double and quadruple number of ASR sites (see Scenarios 2, 3 and 4 in Table 4.3) were
simulated. To preserve the global load, the loading rate of a single ASR site was scaled
with respect to the original one. Each scenario was simulated three to four times with
different random positions of initial ASR cracks. The results of the sensitivity study are
presented in Figs. 4.13 and 4.14. As it has been previously seen, the difference between
the numerical strains in three directions is small for the free-expansion conditions. This
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Figure 4.13: Strains averaged over three directions in simulations with different number
of the initial ASR sites. The total loading was preserved by scaling the individual force
values. Solid lines represent the mean values and shaded areas the range of the output.

Figure 4.14: Averaged total crack volume ratios in the simulations with different number
of the initial ASR sites.
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fact permitted us to average strains in all three directions and present a single averaged
value per scenario in Fig. 4.13. None of the simulations with 7 and 56 initial ASR sites
could reach the final loading due to the convergence issue.

A surprising outcome of this study is the inequality in the final deformations and
crack volumes for different number of the initial ASR sites. Expansion of the specimens
with more ASR sites starts later and has lower rates, and so does the total crack volumes.
It appears that the few initial cracks with high loads are more efficient in causing the ASR
expansion and cracks opening. This behaviour is associated to the two main contributors.
First, the high loads applied at the few cracks generate higher stress intensities and
lead to early crack growth and macroscopic expansion. Second, the inequality of the
final crack volumes is attributed to the differences in the crack networks. A few cracks
percolate less with their neighbours and the crack pattern remains localised. In contrast,
the numerous initial cracks start to percolate early and result in a diffused crack pattern.
Application of the same load within a specimen with the few localised cracks and with
a diffused crack network has different effects. In the first case, the opening of several
cracks will be directly transmitted to the specimen’s extremities. In the diffused cracking
regime, the loading is partially accommodated by the relative movements of multiple
crack segments of the network.

4.5.2 Uniaxial loading

Another study was called to investigate the effect of the uniaxial loading on the crack
growth, orientation and percolation. An additional goal was to verify the capacity of
the developed model to realistically simulate the loaded ASR experiments. A single
simulation of a loaded sample was performed according to Scenario 5 in Table 4.3. The
loading was homogeneously applied at the top of the concrete specimen on the border
with the surrounding buffer. The loading was applied along the z-axis. Positions of the
pre-existing ASR cracks were repeating the ones from the free-expansion simulation. As
the experimental campaign did not include the loaded samples, the loading pressure of
5MPa was chosen rather arbitrarily. A similar value was applied in the ASR experiments
by Larive (1997) and Gautam and Panesar (2016). Their results showed reduction of
the ASR-related expansion along the loaded direction by 30 − 70% and increase in the
perpendicular directions by 10 − 40%. All these numbers are approximate and do not
take into account the experimental error margins. Moreover, Larive (1997) mentioned
that the cracks in the loaded cases are wider than under the free-expansion: the average
width of 0.2− 0.3 mm under the load and 0.05− 0.1 mm in the free samples.

To visualise the results, in Fig. 4.15 crack maps of the free and loaded specimens
are plotted. These snapshots were done after 120 days of the simulation time. At the
later stages, crack networks spread over the specimens, which complicates the visual
perception. An arrow in Fig. 4.15b denotes the loading direction. By comparing the two
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(a) (b)

Figure 4.15: Crack maps in a) the free and b) loaded sampes after 120 days. Colours
denote the crack numbers. An arrow in the loaded simulation denotes the direction of
the applied load.

sets of images, it could be noticed that the crack network of a freely expanding sample
is more developed: it has a larger area and more branches. Oppositely, the cracks in
the loaded specimen are more planar and localised. To estimate the cracks orientations,
probability distributions of the angles between the crack segments represented by cohe-
sive elements and the loading direction are plotted in Fig. 4.16. Both histograms have a
normal distribution shape centred around zero degrees (parallel to the z-axis). In both
simulations, there are fewer cracks perpendicular to the z-axis than parallel to it. The
angle distribution of a loaded specimen is more shrank to zero. This leads to the con-
clusion that the loaded cracks are more often aligned with the loading direction, while
the free cracks are less oriented.

Fig. 4.17 plots the ASR-related strains obtained by subtracting the loading-related
deformations from the total ones. Similar to the mentioned experimental results, the
loaded model develops smaller ASR strains in the direction of the loading. Difference
in εz between the two setups is around 25%, which fits the experimental range. More-
over, the strains in the x- and y-directions are higher than in z, which suggests certain
redistribution of the ASR expansion between the free directions.

Evolution of the total crack volumes, plotted in Fig. 4.18, shows a smaller value for
the loaded sample. As the cracks have a preferential direction to go when loaded, it
takes shorter time for them to reach the border. After this moment, a further loading
increment is mainly spent on opening the existing cracks rather than generation of new
crack surfaces. Oppositely, the internal load in the freely-expanding concrete block is
generating a dense network of randomly-oriented cracks. The resulting volume increases
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Figure 4.16: Probability densities of the angles between the crack segments and the
loading axis at 120 days of the simulation time.

Figure 4.17: Macroscopic strains of the free and loaded specimens.
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Figure 4.18: Crack volumes by the phase for the loaded and freely-expanding specimens.

simply because of a larger cracks extent. When the diffused network reaches the spec-
imen’s borders, further loading increase mostly contributes to opening of the existing
cracks. This stage is characterised by almost a linear volume increase observed in both
specimens after 200 days.

4.6 Conclusions

A novel 3D meso-scale numerical model for the ASR deterioration of concrete was pre-
sented. Owing to the proposed crack insertion algorithm and the numerical solution tech-
nique, application of the internal load resulted in a deformed concrete meso-structure
permeated by a network of thin cracks. Such an output facilitated qualitative and quan-
titative comparison with the experimental data, especially with the X-ray tomograms.

Cracks were modelled by cohesive elements. Localisation of the former was facilitated
by the insertion algorithm that implies only crack elongation. The cohesive elements
were inserted in form of smooth facet loops connecting pairs of neighbouring contour
segments.

Ability of the model to simulate multiple deviated cracks simultaneously was pro-
vided by adoption of the modified sequentially linear analysis. Within its scope, stiffness
of a single cohesive element is reduced in a series of linear steps. It eliminates the need of
a tangent stiffness and improves the numerical stability. Stiffness ambiguity between the
compressed and tensioned states of the cohesive elements still brings certain complexity
to the solution scheme.
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The proposed numerical approach was validated by simulating a 3D problem of a
penny-shaped crack loaded in its centre. Comparison between the numerical and the an-
alytical predictions yielded a good match. Moreover, the role of some model parameters
on the convergence of the numerical solution to the analytical one was investigated.

The final numerical model used for simulating real concrete was built based on the
X-ray tomograms. Loading was applied to a number of randomly chosen ASR sites
and was linearly increased with time. This led to the evolution of localised cracks and
macroscopic expansion of a specimen. The model parameters such as the number of the
ASR sites and the loading increase rate were calibrated based on the experimental data.
The latter comprised the crack statistics collected from the tomography data as well as
the macroscopic deformations.

Agreement between the results has proved two made hypotheses. Both the central
crack loading and the crack elongation from its contour were sufficient to reproduce the
realistic crack patterns and the macroscopic behaviour. It did not however disprove
the idea that ASR products could apply their pressure along the whole crack surface.
Neither did it disprove the idea that the ASR could also cause continuous nucleation of
new cracks, some of which are not caused by the internal pressure (e.g. shear cracks).
This study showed that the proposed hypotheses are valid from the mechanical point of
view and should not be ignored in studying the ASR mechanics. To evaluate the impact
of different loading mechanisms, additional numerical simulations should be performed.
The proposed numerical approach is a perspective tool for further studies.

In the sensitivity study with varying number of the ASR sites, the total loading was
preserved by modifying an absolute value of individual forces. The results have shown
that few ASR sites with a high load are more efficient in generating new cracks and
causing expansion than numerous sites with a moderate loading.

In a simulation of a concrete sample under uniaxial loading, a network of localised,
largely oriented cracks has been developed. The smaller crack volume of the loaded
specimen was associated to the shorter crack paths to the borders. Macro-scale model
behaviour is in accordance with the experimental observations.

The conducted simulations proved the applicability of the developed model to the
ASR-expansion experiments. This model is a practical tool to study the complexity of
ASR-related mechanics. It allows statistical representation of realistic crack patterns
while preserving the physics. It could be used in the future to study different types of
ASR loading, e.g. ASR gel distributed along cracks. Moreover, it could be fully coupled
with a fluid-flow model, which would mimic accumulation of ASR products and their
transport within a crack network.
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5 Meso-scale ASR model with
continuous damage

The meso-scale ASR model with cohesive-elements representation of cracks proposed in
the previous chapter is a powerful tool to predict realistic concrete cracking and expan-
sion. Such a model is indispensable when comparison with the tomography data is at
hand. At the same time, fine resolution of a dense crack network comes at the price
of the high computational cost. This cost is bearable when several simulations have to
be performed, but it becomes unaffordable for tens and hundreds of them. Numerous
simultaneous meso-scale simulations become necessary in a computational multi-scale
model presented in the following chapter. Therefore, a high computational cost moti-
vates development of a more efficient meso-scale model.

In this chapter, a 2D numerical model with cracks represented by a continuous dam-
age approach is described. The model accounts for the internal structure of concrete
including the aggregates and the cement paste. In contrast to the previous develop-
ments, the ASR sites are explicitly represented. The adoption of the continuous damage
approach increases the computational efficiency and allows conducting Monte Carlo sim-
ulation by varying the internal structure of concrete. Two different studies are performed.
In the first one, the role of self-contact in cracks in the uniaxially-loaded concrete spec-
imens is evaluated. The self-contact is incorporated by using the orthotropic damage
approach. The model succeeds to reproduce the ASR expansion under high uniaxial
loads.

In the second study, a simple quasi-static meso-scale model of a viscoelastic strain-
softening material is developed. This model can be easily implemented in a standard
finite element package. It is based on the combination between the SLA-based approach
and the quasi-static solution of a rheological equation. The developed model is used
to study the viscoelastic effects in the cement paste on the ASR cracking. The results
show that the viscoelastic strain-softening behaviour of the paste causes less damage
and lower stiffness reduction than in the linear strain-softening case. The macroscopic
expansion also becomes lower than the experimental values. The results of this chapter
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ΩA ΩC ΩG
Γ

Figure 5.1: Concrete domain with closure Γ and three mutually exclusive phases: cement
paste ΩC , aggregates ΩA and ASR sites ΩG.

have been published in (Gallyamov et al., 2020, 2021a).

5.1 ASR meso-scale problem

The meso-scale model presented here is purely mechanical. The dissolution and precipi-
tation processes, which govern the ASR products’ evolution, are not modelled. The effect
of temperature is taken into account through a phenomenological ASR expansion law.
In the following, the basic equations and assumptions constituting this ASR meso-scale
model are summarised.

A two-dimensional domain Ω with closure Γ is considered, which represents a block of
ASR-affected concrete as shown in Fig. 5.1. Three mutually exclusive phases constitute
Ω: the cement paste ΩC , the aggregates ΩA, and the ASR sites ΩG. An isotropic
eigenstrain matrix εeig is imposed at each ASR site to account for expansion. Eigenstrain
is linked to elastic strain εel via the following equation:

ε = εel + εeig (5.1)

where ε is the infinitesimal strain tensor ε = 1
2

(
∇u+∇uT). Note that the Cauchy

stress σ depends only on the elastic part of the strain, i.e. σ = σ(εel).
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5.1.1 ASR loading

The volume increase of ASR products is approximated by increasing the imposed eigen-
strain at every step of the simulation. In this study, it is assumed that the strain imposed
at ASR sites εeig is proportional to the total amount of the generated ASR products,
which is proportional to the chemical reaction extent ξ. Dependence of the ASR kinet-
ics on temperature and relative humidity was experimentally studied by Larive (1997).
As the previously discussed set of experimental data (Shakoorioskooie, 2021) does not
account for the loaded experiments, the data published by Multon and Toutlemonde
(2006) is used. In order to match this data with the proposed model, an asymptotic
expansion law proposed by Ulm et al. (2000) is adopted, which makes the best fit with
the majority of accelerated experiments available in the literature. A first-order kinetic
law in isothermal conditions results in an explicit equation for the chemical reaction
extent ξ:

ξ(t, T ) =
1− exp[−t/τch(T )]

1 + exp[−t/τch(T ) + τlat(T )/τch(T )]
(5.2a)

τch(T ) = τch(T0) exp[UC(1/T − 1/T0)] (5.2b)
τlat(T ) = τlat(T0) exp[UL(1/T − 1/T0)] (5.2c)

where t and T are the current time and temperature, τlat and τch are the latency and
characteristic times, T and T0 are the current and the reference temperatures, UC and
UL are the activation energy constants. Therefore, the phenomenological ASR expansion
law reads as

εeig(t, T ) = ε(∞)
1− exp[−t/τch(T )]

1 + exp[−t/τch(T ) + τlat(T )/τch(T )]
I (5.3)

where I is the identity matrix and ε(∞) is the asymptotic volumetric expansion strain in
the stress-free experiment. The latency time τlat, the characteristic time τch, the thermal
activation constants UC and UL, and the asymptotic strain ε(∞) are the calibration pa-
rameters of the model. Given a homogeneous temperature of a specimen, the expansion
law results in the same eigenstrain values εeig at all ASR sites ΩG.

5.1.2 Solution scheme

Similar to the finite-element procedure described in Chapter 3, quasi-static conditions
are assumed. The expression for the virtual work for the current FE model is

δW =

∫
Ω
C (ε− εeig) : ε(δu) dΩ−

∫
Γt

t · δu dΓ = 0 (5.4)

where C is the global stiffness tensor, δu and ε are the vectors of virtual displacements
and associated strains, t is the vector of external forces applied at the corresponding
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portion of the boundary Γt.

The aggregates and the cement paste are modelled as brittle materials and ASR
products as linear elastic. The constitutive behaviours are detailed in Section 5.2.1.

To avoid numerical divergence due to simultaneous propagation of multiple cracks,
an SLA-based approach (Rots, 2001; Rots and Invernizzi, 2004) similar to the one used
in Chapter 4 is adopted. The main distinction is that here the cracks are modelled by
means of continuous damage.

The damaging procedure is also slightly modified. In the damaging algorithm used
in the previous chapter (see Algorithm 3), all the integration points (IPs) with stress
above the threshold were damaged. It was necessary for speeding up the simulations.
Here, the maximum number of simultaneously damaged IPs is limited, which is called
to relax the previously imposed condition. This improvement is facilitated by a lower
computational cost of the current model, which allows having more iterations per load
increment. Damaging single element at a time, as originally envisaged by SLA, is still
not feasible due to extremely long simulations. The number of simultaneously damaged
IPs is controlled by the threshold parameter ζ. An IP will be damaged if the following
conditions hold:

σ ≥ (1− ζ)σmax (5.5)
σ ≥ σt,i (5.6)

where σ is the principal tensile stress at this IP, σt,i is its tensile strength and σmax is
the maximum principal tensile stress across the whole model. This allows multiple IPs,
having stress slightly below the maximum, to be equally damaged. In the current study,
ζ was taken equal to 0.01. By reducing this parameter, less and less IPs will be damaged
simultaneously.

After each damaging event, mechanical properties at the damaged IP are updated
as follows:

Ei = E(1− di), νi = ν(1− di), µi = µ(1− di) (5.7)

where E is the Young’s modulus, ν the Poisson’s ratio, µ the shear modulus, di the
damage and i the reduction step. The tensile strength is reduced as

σt,i = εuEi
Et

Ei + Et
(5.8)

with the softening slope
Et =

σt
εu − (σt/E)

(5.9)

The damaging procedure is illustrated in Fig. 5.2a.
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(a) (b)

Figure 5.2: Stress-strain curves obtained with SLA: (a) a curve without regularisation
and (b) a regularised stress-strain curve.

Due to the discrete reduction of stiffness and strength, the stress-strain curve ob-
tained with SLA differs from the original softening curve shown by the dashed line in
Fig. 5.2a. In order to ensure that the dissipated energy equals the fracture energy,
different regularisation techniques can be applied (Rots and Invernizzi, 2004). In this
work, the combined regularisation technique is used, where the tensile strength σt and
the ultimate strain εu are simultaneously adjusted. The resulting stress-strain curve is
illustrated in Fig. 5.2b.

5.2 Role of the self-contact in uniaxial compression exper-
iments

It was previously reported that models with isotropic damage can capture macroscopic
expansion of concrete under free boundary conditions and moderate uniaxial loading
(Dunant and Scrivener, 2012). However, they fail under high compression by predicting
specimen’s contraction along the loading direction. Such contraction is never observed in
laboratory (Larive, 1997; Gautam and Panesar, 2016; Multon and Toutlemonde, 2006).
It is hypothesised that such numerical deficiency is caused by the lack of the self-contact
mechanism in existing cracks. Self-contact happens when previously open cracks close
and start to transmit compressive loads in the direction perpendicular to their plane.
To test the hypothesis, the ability for cracks to come into contact and recover their
stiffness is added into the model. Having these features in place, it is verified if the
model can efficiently reproduce concrete expansion and cracking under the free-expansion
and uniaxially-loaded conditions. By comparing the results of the simulation with the
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experimental observations, it is concluded if the made hypothesis was correct.

5.2.1 Constitutive behaviour

σ

ε

σt

εu

1
E Et

1

(a)

σ2
σt

σt

σ1

(b)

Figure 5.3: a) Failure criterion based on the maximum principal tensile stress. b) Bi-
linear constitutive law with an initial elastic loading phase and subsequent linear strain-
softening.

As it was shown in Chapter 3, expansion of ASR products causes tensile tangential
stresses in the surrounding material. It is valid to assume that the material fails locally
always under tension with subsequent linear softening. A bilinear strain-softening curve
is plotted in Fig. 5.3b.

Self-contact in cracks and associated stiffness recovery was incorporated into the
model by the fixed crack concept (Rots and Blaauwendraad, 1989). In this approach,
the continuum is modelled as an elastically softening orthotropic material with its elastic
properties degraded in a single direction. This direction is chosen at the first damaging
event and kept fixed for the rest of the simulation (see Fig. 5.4). When previously opened
crack closes, it goes into self-contact and can again transmit stresses in the perpendicular
direction. The crack orientation is decided based on the principal stress criteria:

σi ≤ σt, with i = 1, 2, 3 (5.10)

where σi is the ith principal stress (see Fig. 5.3b). If stress σi at any integration point
violates Eq. (5.10), the plane perpendicular to the direction of σi becomes the crack
plane.

Having a single crack passing through an element permits simple energy accounting
in a way proposed by Bažant and Oh (1983). The essence of their approach is to smear
out existing micro-cracks over the fracture process zone of width wc, taken equal to the
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Figure 5.4: Illustration of the fixed crack model. Orientation axes of a crack n1 and n2

are rotated with respect to the global coordinate system by an angle α.

average element size. The area under the stress-strain curve in Fig. 5.3b equals the
fracture energy Gc divided by the crack band width wc:

Gc

wc
=

∫ ∞

0
σdεf =

1

2
σ2
t

(
1

E
− 1

Et

)
(5.11)

where εf is the fracturing strain, E is the initial material stiffness in the direction
perpendicular to the crack, Et is the softening slope. In all meso-scale simulations, crack
band width wc is taken equal to the average element size. The ultimate strain εu becomes
a function of the fracture energy, the crack band width, and the material strength in
tension:

εu =
2Gc

wcσt
(5.12)

The stress-strain relation for the orthotropic material in a compact matrix form is

σ = C(ε−αt∆T ) (5.13)

with C being the stiffness tensor in the coordinate system associated with the global
problem, αt is the matrix of thermal expansion coefficients, and ∆T is the temperature
increase. Multiple works have studied thermal stresses in the vicinity of a crack (Kit
et al., 1977; Atkinson and Clements, 1977; Da Yu Tzou, 1990). Among other findings,
they have shown that the temperature gradient can cause crack propagation. Factors
that play a role in this process include material properties, boundary conditions (both
mechanical and thermal), crack shape, its dimensions and a level of insulation. Consid-
ering the complexity of the problem and the lack of knowledge of the material and crack
properties, the thermo-mechanical aspects of crack growth are ignored and the second
term on the right-hand side of Eq. (5.13) is discarded. This is however a simplification,
which could be addressed in future work.
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An orthotropic material has three perpendicular symmetry planes. Basis vectors are
perpendicular to these planes. These vectors could differ from the basis vectors of the
global coordinate system. In such a case, transformation from the coordinate system
associated with the material symmetry planes to the global coordinate system in matrix
form can be expressed as

C = Q · C(p) · QT (5.14)

where Q is the transformation matrix and C(p) is the orthotropic stiffness matrix in the
direction of the basis vectors. In the scope of the crack model, the matrix Q accounts for
the angle α between the global coordinate system and the crack plane shown in Fig. 5.4.
The stiffness matrix takes the form (Bower, 2009):

C(p) =



c11 c12 c13 0 0 0

c22 c23 0 0 0

c33 0 0 0

sym c44 0 0

c55 0

c66


(5.15)

Its components are related to the elastic moduli through the following equations:

c11 = E1(1− ν23ν32)γ, c22 = E2(1− ν13ν31)γ, c33 = E3(1− ν12ν21)γ,
c12 = E1(ν21 + ν31ν23)γ, c13 = E1(ν31 + ν21ν32)γ, c23 = E2(ν32 + ν12ν31)γ,

c44 = µ23, c55 = µ13, c66 = µ12,
γ = 1/(1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν21ν32ν13)

where Ek is the Young’s modulus in the direction of the basis vector nk, νkl and µkl

are the Poisson’s ratio and the shear modulus between directions nk and nl. Symmetry
of the stiffness matrix is ensured by satisfying the following equality:

νkl/Ek = νlk/El for k, l = 1, 2, 3 and k ̸= l (no sums). (5.16)

For the undamaged material, all elastic properties are equal to the initial isotropic values:

Ek = E, νkl = ν, µkl = µ (5.17)

If a crack starts growing along the plane n2n3, as shown in Fig. 5.4, the material prop-
erties for the perpendicular direction n1 are reduced according to:

E1 = E(1− d), ν12 = ν13 = ν(1− d), µ12 = µ13 = µ(1− d) (5.18)

where d is the damage parameter, which was defined earlier. The material properties in
the undamaged directions remain unaltered.

The orthotropic damage approach simplifies modelling of self-contact in cracks and
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associated stiffness recovery. For this, the principal strain in the direction perpendicular
to the crack is checked. A negative value indicates that the crack segment is closed and
its stiffness has to be recovered. In this study, friction is ignored and Young’s moduli and
Poisson’s ratios are fully recovered while the values of shear moduli are kept reduced:

Ek = E, νkl = ν, µkl = µ(1− d)

Omission of friction imposes a limitation on the ability of the model to reproduce the
real concrete behaviour under the shear load. Accounting for friction should be priority
of future work.

5.2.2 Model calibration

The parameters of the ASR expansion law in Eq. (5.3) require calibration with the exper-
imental data. In addition, the number of ASR sites has also to be defined. Calibration
is done based on the experimental results of Multon and Toutlemonde (2006), who stud-
ied the effects of loading on the macroscopic behaviour of ASR-affected concrete. For
this purpose, cylindrical ASR-fostered concrete specimens were either free to expand or
loaded longitudinally and radially. Control cylinders without the ASR were set under
the same conditions. Their deformations were subtracted from the samples with the
ASR as not ASR-related.

The algorithm proposed by Wriggers and Moftah (2006) is used to generate the
geometrical models of the concrete specimens and RVEs. In this algorithm, a circular
shape is assumed for all aggregates and a Fuller curve is used as a grading curve for the
generation of aggregates. The model is not restricted by the shape of the aggregates:
any other shape can be incorporated into the proposed model with ease. Subsequently,
this geometrical model is discretized with Gmsh (Geuzaine and Remacle, 2009) into a
finite element mesh of linear triangular elements with a uniform average element size
h = 0.5mm. The resulting numerical concrete samples have a size of 70× 70 mm2, and
contain the aggregates with diameters in the range of 1 − 16 mm (see Fig. 5.5). All
the aggregates and sand particles smaller than the mesh size are not resolved. A mix
between the small particles and the cement paste is treated as mortar further in the text.
The aggregates’ packing density is 70%.

The ASR affects a range of scales, varying from nanometre to millimetre. It in-
cludes growth of ASR products, opening of micro-cracks, possible transport of products
into pores and fissures, change of the products’ properties with time and surrounding
environment. As it was discussed in Chapter 3, a typical size of an ASR inclusion is
of nanometre scale. In the current numerical study, the size of an element is 0.5mm,
which does not resolve individual ASR pockets. Thus, the expansion that is applied at a
single finite element to represent the effect of the ASR, should be seen as a homogenised
expansion of an aggregate portion comprising several ASR pockets, rather than expan-
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E [GPa] µ [GPa] ν [-] Gc [J/m2] σt,min [MPa]
Aggregates 59∗ 22.6 0.3∗ 160† 10†
Mortar 12∗ 4.6 0.3∗ 60‡ 3∗
ASR product 11¶ 4.7 0.18¶ - -

Table 5.1: Material properties. ∗ Taken from (Dunant and Scrivener, 2012). † Taken
from (Ben Haha, 2006). ‡ Taken from (Xu and Zhu, 2009). ¶ Taken from (Leemann and
Lura, 2013).

sion of the ASR product itself. These expanding sites are represented by a number of
finite elements that are randomly distributed inside the aggregates and assigned the
corresponding mechanical properties.

Similar to the study in Chapter 4, heterogeneity of the underlying micro-structure
is taken into account by locally varying the tensile strength of the corresponding finite
elements according to a Weibull distribution. A cumulative distribution function of the
tensile strength σt is computed as follows:

F (σt) = 1− e

(
−
(

σt−0.8σt,min
λ

)k
)

(5.19)

where σt,min is the quasi-static tensile strength, k and λ are the shape and the scale
factors of the Weibull distribution, taken equal to 5 and 0.2 · σt,min correspondingly.

The intact properties of all material phases are listed in Table 5.1. Shear modulus µ
is computed as µ = E/[2(1 + ν)].

The boundary conditions for the calibration tests are shown in Fig. 5.5. Both free-
and loaded-expansion tests are simulated. In the first test type, only the internal load
coming from the expanding ASR-sites is present. In the second one, a vertical compres-
sion load of 10MPa is additionally applied on top. Similar to the experiments, both
simulation types last 450 days. The time step is taken equal to half a days. This value
provides a good time resolution and allows capturing of the gradual evolution of crack
networks.

A single-simulation outcome strongly depends on the specific realisation of a concrete
specimen (aggregates sizes and positions, spatial distribution of tensile strength, posi-
tions of ASR-sites) and may not be representative. To obtain a statistical distribution
of results, a Monte Carlo simulation consisting of 200 independent runs is performed for
each loading type. The random parameter of the Monte Carlo analysis is the concrete
meso-structure. Out of these 200 runs, one hundred has fixed sizes and positions of the
aggregates but different distributions of ASR-sites. The second half are performed with
the different spatial distribution of the aggregates and, consequently, the ASR-sites. The
statistics of the output parameters is plotted in Figures 5.6, 5.8 and 5.9. Mean values
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Table 5.2: Parameters of the ASR-expansion law.

Parameter Value
Ratio of the ASR sites area to the aggregates area [%] 0.1

Asymptotic strain ε(∞) [%] 6.5

Latency time τlat(T0 = 38◦) [days] 30

Characteristic time τch(T0 = 38◦) [days] 60

Thermal activation constant UC [◦K] 5, 400

Thermal activation constant UL [◦K] 9, 700

in these figures are denoted by letters with an over-line, and standard deviations are
denoted by percents in brackets.

Figure 5.5: Concrete meso-structure and boundary conditions for the calibration tests.
The specimens are composed of the aggregates (in blue) surround by the mortar (in
grey). Loading is applied on top of the specimen during the compression tests only.

The parameters of the ASR-expansion law and the density of the ASR sites were cal-
ibrated on the free expansion experiment and kept constant for the loaded case. Their
values are listed in Table 5.2. The total number of ASR sites (or the ratio of their total
area to the total area of aggregates) is an important parameter that governs crack dis-
tribution across the domain: a small number of sites results in isolated cracks, while a
higher number leads to a diffused crack pattern. Currently, experimental quantification
of this parameter is a complicated task as there is no unique way of accurately determin-
ing the reactive sites. In the simulations, this parameter was chosen in a rather intuitive
way.
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Results of the calibration tests and the experimental expansion values are plotted
in Fig. 5.6. The latter represent the average expansion values over multiple tested
specimens. The range of the observed values is marked by the error bars. Both the
experimental and the numerical curves account only for the ASR-induced expansion.

In Fig. 5.6a, the numerical expansion curves for the freely-expanding specimens are
compared the experimental ones. Both sets of curves have a typical sigmoidal shape and
similar asymptotic values. The main discrepancies between the two sets of curves are the
faster experimental expansion rate during the first 50 days and the earlier saturation of
the numerical expansion (300 days against ∼ 370 days in the experiment). To improve
the fitting, different thermal law could have been used. However, the choice was made
in favour of the one presented in Eq. (5.3) as it is most commonly used in the field of
ASR modelling.

In Fig. 5.6a, both the numerical and the laboratory specimens show different strain
values depending on the direction. While this difference is insignificant in the simula-
tions, the experimental results show more pronounced separation. In the free-expansion
simulation, cracks are overall randomly oriented. However they may have a slight ori-
entation bias due to the aggregates shape and positions, and the ASR-sites placement
(see Fig. 5.7a). In the real concrete, the difference in expansions may also be caused by
the casting directions, the effect of the self-weight, specific boundary conditions, rock
anisotropy, etc (Larive, 1997; Ben Haha, 2006; Gautam and Panesar, 2016). Macro-
scopic strain curves for both the free-expansion and the loaded conditions have a typical
S-shape, as a result of the similar shape of the ASR-product expansion curve. It is
important to mention, that in the field conditions, the ASR-affected dams experience
continuous swelling during decades (Mauris et al., 2015). The difference in the long-term
behaviour of the laboratory specimens with the ASR and the full-scale structures is sub-
ject of debate. One of the possible causes of the reduction in experimental expansion is
the drop in alkalis concentration due to its leaching (Lindgård et al., 2018; Multon and
Sellier, 2016).

Results of the loaded simulations show similar trends as the experimental ones (see
Fig. 5.6b). The application of 10MPa reduces significantly concrete expansion along the
loading direction. The experimental average longitudinal expansion εexp

long is almost null.
The numerical average ε̄sim

long equals 0.009%. The experimental strain in the stress-free
direction εexp

lat is slightly bigger than the average values of the free-expansion case, which
is also reproduced in the simulations. However, the proposed model overestimates the
lateral expansion ε̄sim

lat and results in a wider distribution of the final values. A possible
explanation is the two-dimensionality of the model: cracks would have more space to
accommodate in a 3D volume, which would reduce the overall expansion. Expanding
this model to 3D should improve its fit with the experimental data.

A clear advantage of the proposed model is its capacity to produce positive longitu-
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(a)

(b)

(c)

Figure 5.6: Macroscopic strain under a) the free-expansion conditions, b) the uniaxial
compression of 10MPa compared to the experimental results of Multon and Toutle-
monde (2006). Solid lines denote the mean values, and shaded areas bound the range
of the output parameter. c) Distributions of the final expansions from the Monte Carlo
simulation. Values in brackets are the standard deviations.
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dinal expansion under the high-load conditions. This feature was enabled by including
self-contact and orthotropic damage in cracks, which was not the case in the previous
models.

It is important to mention that the final expansion values shown in Fig. 5.6c have a
distribution close to normal. Similar shapes could be also appreciated in Figures 5.8b
and 5.9c. Such a uni-variate distribution suggests that varying positions of ASR-sites
within fixed aggregates and shuffling aggregates themselves has a similar statistical effect
on the final results.

The numerical damage patterns are shown in Figures 5.7a and 5.7b. Colours denote
the damage level: blue and grey colours stand for the intact material, red is fully-
damaged. The cracks that were earlier open but later closed and recovered normal
stiffness do still appear in red. This leads to a certain visual overestimation of the damage
amount. Instead of the damage parameter d, Figures 5.7c and 5.7d show additional area
of damaged elements. The basic assumption of this plotting way is that, in a damaged
element, most of the deformation comes from the crack opening. Then, the crack area
of a finite element Acr could be computed as follows

Acr = Ael
0 · εvol (5.20)

where εvol is the volumetric strain, Ael
0 is the initial area of an element. In a 3D-

computation, an analogue of the crack area would be the crack volume. This metric is
facilitating comparison with the experiments, where crack density is one of the output
parameters (it will be discussed later in this section). By a comparison between two
sets of figures, one could note that some of the cracks, which are explicit in the damage
maps, could not be distinguished in the crack opening plots. This is the effect of the self-
contact and stiffness recovery in cracks. Although the cracks open due to tensile loading,
their interaction could lead to closure of ones and wider opening of others. Important
to mention that the darkest colours in Figures 5.7c and 5.7d correspond to the opening
of tens of microns. Cracks of the same size from the real concrete would not be visible
with a naked eye.

A real crack pattern coming from the laboratory experiments is plotted in Fig. 5.7e.
This image is obtained by X-ray micro-tomography of the ASR-accelerated concrete
under free-expansion conditions after 500 days. Similar to the numerical results, the
real concrete cracks are present both in aggregates, paste and interfacial transition zone.
Their random orientations, broken shapes and homogeneous spread across the cross-
section qualitatively resemble those from Fig. 5.7c.

The response of the meso-structure to the load application shows cracks alignment
with the load direction, as shown in Figs. 5.7b and 5.7d. The observed crack pattern
explains why the horizontal expansion in Fig. 5.6b is higher than the vertical one. Since
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multiple coalesced vertical cracks are widely opened in the horizontal direction, the
corresponding macroscopic strain εnum

lat is larger than the strain in the direction of the
load εnum

long .

Fig. 5.8 plots the crack density λ, which is the ratio between the crack area within
a specific phase and the total area of this phase. To compute this parameter, the crack
area from Eq. (5.20) is used. The resulting crack density per phase is not exceeding one
percent. The tomography studies of the samples in laboratory and field conditions by the
colleagues from the Sinergia project (Shakoorioskooie et al., 2019; Leemann et al., 2019)
showed the total crack densities of a similar order (1.8−2.6%). The former tomographic
analysis showed a very similar crack volume fraction inside the paste and inside the
aggregates.

For both loading conditions, one can observe a smaller crack density in the aggregates
compared to the mortar caused by the lower strength of the latter. Previous studies on
the effect of creep on the ASR show that it helps to accommodate larger strains in the
cement paste without damaging it (Giorla et al., 2015; Rezakhani et al., 2021). A model
combining isotropic damage with viscoelasticity is described in the following section. The
current orthotropic model does not include viscoelastic effects, thus it overestimates the
damage amount in the mortar.

The stiffness loss is plotted in Fig. 5.9. The relative stiffness, expressed in per cent, is
computed by applying either compressing or extending displacements at the specimen’s
surfaces. After solving for a new displacement field, internal forces at the nodes on these
surfaces are integrated into a scalar. The ratio between the current value of this integral
and its initial value serves as an estimator of the specimen’s relative stiffness. Pulling
a sound piece of concrete would give rise to high reaction forces, whereas in a severely
damaged specimen the applied load will only open cracks. In the Monte Carlo simulation,
the stiffness was evaluated always in compression. For the comparison purpose, a single
simulation with the stiffness computed via tension was performed.

The relative stiffness estimated in compression is higher than the one obtained in ten-
sion. This is due to the stiffness recovery of cracks brought into self-contact. Although
this phenomenon could still happen while applying tension, its effect is more pronounced
during the compression test. Another interesting observation concerns the ratio between
the stiffness values into two directions. In the free expansion case the stiffness is almost
equally reduced in both directions, whereas the loaded case shows larger stiffness loss in
the x-direction. This anisotropy is equally pronounced in both tensile and compressive
estimates and is linked to the vertical cracks percolation. When later this meso-scale
model is used in the multi-scale framework, the difference between stiffness values esti-
mated via tensile and compressive tests justifies an adaptive homogenisation procedure.
According to it, loading directions of virtual tests are chosen based on the stress state of
the macroscopic element. In Fig. 5.9a, the grey shaded area denotes the limiting values
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(a) (b)

(c) (d)

(e)

Figure 5.7: Damage map under a) the free expansion and b) the uniaxial loading of
10MPa. Red colour denotes fully damaged elements (d = 1). c,d) Crack opening maps
of the same samples. e) Typical X-ray micro-tomography image of ASR-affected concrete
(courtesy of the Concrete Technology Group at Empa).
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(a)

(b)

Figure 5.8: a) Crack density in the aggregates and the mortar for the free-expansion and
the loaded ASR simulations. b) Distributions of the final crack density per phase with
their mean values and standard deviations (values in brackets) from the Monte Carlo
simulation.
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of the stiffness in the accelerated free-expansion experiments of Ben Haha (2006). The
current model results in the stiffness reduction of 10 − 20%, which is very close to the
experimental values.

Modelling self-contact and associated stiffness reduction in cracks indeed increases
the load-bearing capacity of the numerical sample. Including this phenomenon into the
numerical model with the continuous damage representation of cracks solves the problem
of the specimens’ shrinkage under high uniaxial load, which was previously observed by
Dunant and Scrivener (2012). This capacity of the meso-scale model together with its
increased computational efficiency allows its integration into the multi-scale numerical
model discussed in Chapter 6.

5.3 Role of the viscoelasticity of the cement paste

Earlier, Dunant and Scrivener (2010) have proposed a micro-mechanical model able
to simulate brittle concrete deterioration due to the ASR. Later, Giorla et al. (2014)
have developed a space-time finite element model, which allowed simulating arbitrarily
complex linear viscoelastic behaviour. Finally, the same authors have combined the two
approaches in a micro-scale ASR model that accounted for the viscous energy dissipation
in the cement paste (Giorla et al., 2015). The authors reported an important effect of
creep on the distribution of the damage in the micro-structure. They have also related
the low level of damage in the paste to the creep.

The model of Giorla et al. (2015) is unconditionally stable and convergent, and appli-
cable to any rheological model. This model requires elaborate developments associated
to the reformulation of the global system of equations and hence can not be easily im-
plemented in a standard FE package. The performed study aimed to develop a simple
quasi-static finite element model of viscoelastic strain-softening material, which could be
built within a standard FE library. This is done by combining the SLA-based solution
technique with the quasi-static solution of a rheological equation.

Having the model ready, the role of the viscoelasticity of cement paste on the deteri-
oration of concrete due to the ASR is evaluated. Viscoelastic strain-softening behaviour
of the cement paste is referred as viscous softening further in the text. This behaviour is
compared to the paste exhibiting linear strain-softening. To distinguish between these
two material behaviours, the latter is referred as elastic softening. Properties of both
material laws are calibrated on the experimental data. A free-expansion experiment is
simulated in a 2D concrete model comprising either viscously or elastically softening
cement paste. Based on the comparison of the two results, conclusions on the role of the
viscoelasticity in the concrete damage due to the ASR are derived.
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(a)

(b)

(c)

Figure 5.9: Estimation of the stiffness loss via compressive and tensile tests under a) the
free expansion and b) the uniaxial loading of 10MPa. A grey shaded area corresponds
to the range of the experimental values reported by Ben Haha (2006). c) Distributions
of the final relative stiffness in two directions with mean values and standard deviations
(values in brackets) from the Monte Carlo simulation.
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Figure 5.10: Generalised Maxwell chain

5.3.1 Rheological model

To model the viscoelasticity of the cement paste, a generalised Maxwell chain is adopted
as the rheological model. It comprises a series of sequential spring-dashpots (Maxwell
elements) placed in parallel with a single spring as depicted in Fig. 5.10. Viscosities of
the dashpots are marked with ηi, while stiffnesses of the springs are Ei. The relation
between stress and strain in the Maxwell chain is described by

σ(t) =

∫ t

−∞
E(t, τ)Dε̇dτ (5.21)

where E(t, τ) is the time-dependent relaxation function, τ is the loading age, and D is
the dimensionless matrix relating a 3D deformation state to a 1D relaxation function.
The latter is expanded in the exponential series

E(t, τ) = E0 +

n∑
α=1

Eαe
− t−τ

λα (5.22)

where the relaxation time of each Maxwell element is defined as λα = ηα/Eα . Assuming
a constant strain rate ε̇ within each time step, analytical integration of the right-hand
side of Eq. (5.21), by using the definition of the relaxation function as given in Eq. (5.22),
leads to the following form

σ(t+∆t) = E0Dε+

n∑
α=1

((
1− e−

∆t
λα

) Eαλα

∆t
D∆ε+ e−

∆t
λα σα(t)

)
(5.23)
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with σα(t) being the internal stress within each Maxwell element, defined as

σα(t) = D
∫ t

0
Eαe

− t−τ
λα ε̇dτ (5.24)

The first term under the sum sign in Eq. (5.23) could be seen as the effective stiffness
of a single Maxwell element multiplied by the matrix D and the strain increment ∆ε:

Eef
α =

(
1− e−

∆t
λα

) Eαλα

∆t
(5.25)

The time increment ∆t controls rate dependency of the effective stiffness. By limit anal-
ysis, the limiting values of the effective stiffness are found equal to E0 for the infinitely
slow loading (∆t tending to infinity) and E0 +

∑
Eα for the infinitely fast (∆t tending

to zero). At the end of each converged time step, the internal stress σα(t) is updated
according to

σα(t) = σα(t−∆t)e−
∆t
λα + Eef

α D∆ε (5.26)

5.3.2 Coupling between the strain-softening and the viscoelasticity

Contrary to the first study of this chapter, a simple isotropic damage law is used. This
is done to simplify the coupling of the strain-softening behaviour with viscoelasticity.
Damage is affecting the viscoelastic material by reducing both the stiffnesses of the
spring elements Ei and the viscosities of the dash-pots ηi by the factor (1 − d). The
influence of the temperature on the viscoelasticity is neglected.

Combination of the viscoelasticity with sequential linear analysis is not a trivial
task, and to the best of the author’s knowledge has not been previously reported in
the literature. The major challenge in its implementation is rate-dependency of stresses
and hence non-uniqueness of the stress-strain path. To overcome this difficulty, it is
assumed that the softening slope is constant and independent of the loading rate. The
illustration is in Fig. 5.11. When the softening slope is fixed, a generalised Maxwell chain
has two limiting cases: when the loading rate is either infinitely high or infinitely low.
The intermediate loading rates will result in a stress-strain curve positioned in-between.
This property was used to develop equations for the viscoelastic strain-softening law.
The ultimate strain εu will now depend on the loading rate ε̇ through the effective
stiffness Eef

α :

εu =
2Gc

σtwc
− σt

E0 +
∑

Eα
+ ε0 (5.27)

ε0 =
σt

E0 +
∑

Eef
α

(5.28)

where Eef
α is connected to the loading rate through the varying time step ∆t according

to Eq. (5.25). In this way, the decrease in the loading rate will result in the growth of
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Figure 5.11: Constitutive law combining viscoelasticity with damage. Two cases with
the limiting loading rates and the intermediate one.

εu with the slope Et remaining unchanged.

The modified algorithm of the sequentially linear analysis introduced in the previous
chapter is applied. The modified SLA supposes that every solution in time is obtained
via a direct jump from zero displacements to the current loading. The solution obtained
in such manner differs from the one obtained incrementally (using information from the
previous steps). It happens because of the proposed scheme not taking into consideration
the loading history between the initial and the current step: loading is assumed to
increase linearly. This approximate way of solving a viscoelastic problem will introduce
a certain error. However, it is argued that for relatively short relaxation times λ this
difference will be less pronounced. This is demonstrated in Fig. 5.12. A single finite
element of the viscously softening mortar is deformed by strain ε. The element does not
experience any damage. Sequential and incremental stress values differ from each other
by 5 − 10%. In the case of the sigmoidal loading profile in Fig. 5.12a, the sequentially
computed stress slightly exceeds the incremental one. In the later stage, it steadily tends
towards the incremental curve due to the stronger stress relaxation. This loading profile
is of primary interest since it is similar to the one used for the ASR product expansion,
which is discussed in Section 5.3.3. It is concluded that the proposed solution technique
is approximate and has some error that could be controlled. This model is therefore
used for the qualitative study of the viscous-softening behaviour of the mortar.

5.3.3 Simulations of the free-expansion experiments

To study the effects of the viscoelasticity on the damaging process, the ASR deterioration
of a freely-expanding concrete specimen is modelled. The same two-dimensional problem
introduced in the first study of this chapter is used and depicted in Fig. 5.5. Free
expansion boundary conditions are applied. In a same manner, the model comprises the
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(a)

(b)

Figure 5.12: Comparison of stresses in a viscoelastic material computed in the incremen-
tal and sequential manners: a) sigmoidal and b) sinusoidal loading.
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Property / material Aggregates Mortar
(elastic
soften-
ing)

Mortar (vis-
cous soften-
ing)

ASR
product

Single spring stiffness E0

[GPa]
60 19 6 11

Maxwell stiffness Ei / relax-
ation time λi [GPa/days]

- - 5/0.5
6.5/20
1.5/67

-

Poisson ratio νi [-] 0.3 0.3 0.3 0.18
Tensile strength σt [MPa] 10 4 4 -
Fracture energy Gc [J/m2] 160 80 80 -

Table 5.3: Material properties of the simulations with elastically and viscously softening
mortar.

aggregates and the mortar. The latter accounts for the aggregates and sand particles
smaller than the finite elements size (h = 0.5mm) and the cement paste. Two simulations
with elastically and viscously softening mortar are performed. The material parameters
are given in Table 5.3. The viscoelastic properties of the mortar were calibrated on the
experiments on uniaxial loading of 28 day-old concrete by L’Hermite et al. (1965). The
stiffness of the elastically-softening mortar is chosen to be equal to the sum of the spring
stiffnesses in the Maxwell chain of the viscously softening mortar. In this way, the elastic
material behaves as if it would be a viscoelastic one under infinitely fast loading. Such
a choice of the material properties facilitates fair comparison of two simulations.

Concrete undergoing free ASR expansion was simulated for 450 days at the temper-
ature of 38◦C. The damage patterns obtained in case of the elastically and viscously
softening mortar are shown in Fig. 5.13. In both cases, the damage is mainly spread
within the mortar due to its lower tensile strength. It is observed that in case of the elas-
tically softening mortar, the damaged area is larger. This becomes evident in Fig. 5.14b,
which plots the damage ratio. The latter is computed as the ratio between the damaged
area of a concrete phase and its total area. To compute this parameter, area of each
damaged element was multiplied by its damage value d, summed all together and divided
by the total area of the phase. Damage ratio in the elastically softening mortar is by
5% higher than in its viscoelastic counterpart. The difference in the damage ratio is
caused by the lower values of stress within viscously softening material due to the stress
relaxation. The damage ratio in aggregates saturates at the value of 2% already at 120
days. This effect is caused by having all the cracks reaching exteriors of aggregates.

Fig. 5.14a shows macroscopic expansion of the numerical specimens, experimental
expansion by Multon and Toutlemonde (2006) and expansion of the ASR sites. In this
specific distribution of ASR sites, a major crack percolate in the horizontal direction
(see Fig. 5.13). It has wide opening in the vertical direction forcing the corresponding

86



5.3. Role of the viscoelasticity of the cement paste

(a) (b)

Figure 5.13: Damage patterns in concrete blocks with a) the elastically and b) viscously
softening mortar. Colours denote the level of damage.

macroscopic strain εy to be larger than the horizontal one εx. Although these two curves
differ significantly, their mean value is close to the calibration curves. Expansion of the
viscously softening mortar in the same figure is similar in the vertical direction but much
lower in the horizontal one. This fact is again caused by shorter cracks in the viscously
softening paste and hence lower expansion. The average between the horizontal and
vertical values becomes lower than the calibration data. The expansion curves follow
the behaviour of the ASR product expansion εeig.

Stiffness reduction estimated in tension is plotted in Fig. 5.15a. Here, one can observe
almost total stiffness loss in the vertical direction due to the percolated crack. In the
other direction, stiffness drops to 40− 50% of its initial value due to the vertical cracks
yet not reaching the specimen boundaries. Stiffness reduction in the horizontal direction
is higher in the elastic-softening case. This is also explained by the elastically-softening
mortar having longer cracks in the vertical and close to the vertical directions.

When adding the viscoelasticity to the mortar, a lower stiffness drop is observed.
This also results in the reduction of the macroscopic strain due to the shortening of
cracks. The reduced strains are lower than the ones observed by the experimentalists.
It is suggested that the total damage observed in the concrete (either in mortar or in
aggregates) is insufficient to reach the experimental values of expansion. To prove that
the damage is the main cause of the macroscopic expansion, two simulations are run,
where the mortar is modelled either purely elastically or viscoelastically without any
damage. The results are plotted in Fig. 5.15b. The elastic and viscoelastic expansion
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(a)

(b)

Figure 5.14: a) Macroscopic expansion of the concrete specimen and b) its damage ratios
per phase.
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(a)

(b)

Figure 5.15: a) Stiffness reduction for the elastic- and viscous-softening cases. b) Macro-
scopic expansion for the purely elastic and viscoelastic cases without damage.
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curves overlap in the absence of damage. The final value of the expansion is three orders
of magnitude lower than in the brittle case. This demonstrates that purely (visco-) elastic
deformations are not sufficient to bring the macroscopic expansion to the experimental
levels. Therefore, the damage is required.

Giorla et al. (2015) also reported little damage in the viscoelastic cement paste which
corresponded to the general observations in experiments. However, the macroscopic
expansions were lower than the experimental values of Haha et al. (2007). As a possible
cause, the authors suggested the fact that the smaller aggregates were not reactive in
their simulations. To verify their hypothesis, additional simulations are required.

5.4 Conclusions

The damage-based meso-scale numerical model of concrete deterioration due to the ASR
has been presented. Aggregates and mortar are explicitly represented. Two different
material laws were introduced in this model. The first one allows orthotropic reduction
of elastic properties upon crack nucleation and their recovery upon crack closure and
self-contact. The second material law combines isotropic linearly growing damage with
viscoelasticity. It was shown that the orthotropic constitutive law better mimics the
macroscopic expansion and the stiffness loss observed in the laboratory experiments
than a simple isotropic law. The meso-scale model with orthotropic continuous damage
is stable and does not pose convergence issues. Its adequate computational efficiency
permitted conducting the Monte Carlo simulation with varying concrete meso-structure.

Extension of the elastically-softening material behaviour by viscoelasticity has been
formulated and demonstrated on an example. Combination of the generalised Maxwell
chain with the sequentially linear analysis resulted in an approximate solution technique
permitting qualitative analysis of the ASR problem. The proposed solution algorithm
is easily implementable in a standard FE package. To understand the role of the vis-
coelasticity in the ASR damaging process, simulations with the elastically and viscously
softening cement paste were compared. The results are summarised below:

• Macroscopic expansion of the ASR-affected specimens is mainly caused by the
crack growth and opening. Direction of the major expansion is orthogonal to the
prevailing crack path.

• Macroscopic strain follows the expansion of the ASR sites.

• Viscous-softening behaviour of mortar leads to relaxation of stresses and reduction
of damage. It preserves the macroscopic stiffness but also reduces the macroscopic
expansion of concrete.
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6 Multi-scale modelling of ASR-
affected structures

After the mechanics of the ASR at the nano- and meso-scales were studied, the obtained
knowledge and the developed models are used to predict the macroscopic behaviour of
ASR-affected concrete. One way to pass the information on the important physics from
one scale to another is through the multi-scale model, which establishes a link between
the meso- and the macro-scales. The development of such a multi-scale model of the
ASR-affected concrete, which would naturally capture the expansion anisotropy effect, is
the objective of the current chapter. A finite element approach based on the first-order
FE2 homogenisation technique is formulated. It is used to analyse the ASR-induced
damage in concrete structures, by linking the concrete degradation at the macro-scale
to the reaction extent at the meso-scale. Here, the meso-scale concrete model described
in the previous chapter is used. A 2D model of an ASR laboratory specimen is analysed
as a proof of concept. The model accounts for the loading applied at the macro-scale
and the ASR-product expansion at the meso-scale. The results of this proof-of-concept
study have been published by Gallyamov et al. (2020).

The model is used for the analysis of a concrete gravity dam in Western Switzerland.
Results of a simulation, calibrated on the field measurements and observations, suggest
limited effect of the temperature variation on the ASR advancement in the dam: field
displacements could have been reproduced by assigning a constant temperature within
an entire dam cross-section. Study of the structural effects shows that the ASR-related
expansion anisotropy and cracks alignment is more pronounced along the upstream part
and the foundation of the dam. The results of this study of the dam were submitted to
a journal and are currently under review.

The future usage of the developed model is meant for scientists, dam engineers
and dam owners in order to understand the interplay between the mesoscopic state of
concrete and macroscopic behaviour of a structure. The level of details at the meso-scale
facilitates visualisation of phenomena at hand, which is hindered by pure macroscopic
models. Apart from explaining the current behaviour of an ASR-affected structure, given
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enough field measurements for calibration, the model could be used for predictions of the
structure’s future behaviour. Such opportunity is crucial for the dam owning companies
as it allows making well-timed planning and preview necessary interventions.

6.1 ASR multi-scale model

Modelling the ASR at the structural-scale by incorporating the results of the meso-scale
simulations is done with the use of a first-order FE2 homogenisation scheme. This
method consists of two coupled finite element problems, one for the macro-scale and the
other for the fine scale, i.e. the scale of the underlying representative volume element
(RVE) that determines the effective material behaviour. Note that in this work, the fine
scale of the FE2 problem is the meso-scale of concrete. The FE2 method is based on
the principle of separation of scales, which has been formulated as “The microscopic
length scale is assumed to be much smaller than the characteristic length over which the
macroscopic loading varies in space” by Geers et al. (2010). This assumption is valid for
the multi-scale modelling of the ASR, since large concrete structures have several tens
of meters of width and height, and a meso-scale RVE is in the centimetre range. The
concept of a first-order FE2 homogenisation scheme for small deformations is illustrated
in Fig. 6.1. The first version of this model was developed by Cuba Ramos (2017).
It incorporated isotropic damage at the meso-scale and had no iterative procedure in
place due to its high computational cost. Instead of the homogenised fine-scale stress,
the homogenised eigen strain was transmitted to the macro-scale. Given a small time
step, this model permitted modelling macro-scale structures in a stable manner. In the
current work, the iterative procedure is introduced into the preceding model, enrich its
meso-scale physics and couple mechanical and thermal analyses.

Note that in the following, the subscripts M and m will be used to denote physical
quantities at the macro- and the meso-scale, respectively. For instance, σM is the
macroscopic stress for which the mesoscopic counterpart is σm. Every Gauss integration
point of the macro-scale FE problem is coupled to a meso-structural RVE of concrete.
Quasi-static conditions are assumed at both scales because the advancement of the
ASR is slow. The two scales are coupled through the macroscopic deformation gradient
FM , the effective stiffness tensor CM , and the macroscopic stress σM . The boundary
conditions of the meso-scale boundary value problem (BVP) are a function of FM . The
BVP is solved for the given boundary conditions. Macroscopic temperature TM is passed
to the meso-scale for predicting the ASR product expansion rate. The effective stiffness
tensor CM and the homogenised mesoscopic stress σM are then computed and passed
back to the macro-scale. The balance between the internal and external forces at the
macro-scale is verified. In the case of imbalance, the whole procedure is repeated in
the next iteration. As a convergence criterion, the norm of the difference between the
internal and external forces, also known as residual, is used.
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Macro-scale

Meso-scale

ASR advancement

FM , TM
CM , σM

Figure 6.1: Schematic illustration of the numerical homogenisation scheme for the ASR
simulations. Every macroscopic computational point is coupled to an underlying RVE.
The boundary conditions for the RVE are defined through the macroscopic deformation
gradient FM . Macroscopic temperature TM is passed to the meso-scale for predicting
the ASR product expansion rate. After solving the RVE problem, the macroscopic stress
σM and the effective stiffness tensor CM are computed.
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During the evolution of the ASR within RVEs, cracks may coalesce and therefore
violate the separation of scales’ principle. The strain localisation limits the concept of
homogenisation (Coenen et al., 2012a). The validity of the numerical homogenisation
is used for a problem where cracks are evenly distributed over the meso-scale volume.
The following model components are called to extend the applicability of the classical
homogenisation concept to the ASR case:

• Extended constitutive model of concrete: the material model adopted in this
study is the continuous orthotropic damage with self-contact in cracks, previously
described in Section 5.2.1.

• Robust stiffness homogenisation procedure: this measure is called to over-
come the ill-posedness of the macro-scale boundary value problem. This is done
by an adaptive homogenisation of stiffness either by tension or by compression
tests, which produce a non-singular stiffness tensor. The resulting tensors are bet-
ter suited for the macroscopic stress state, which also improves the convergence
rate of the iterative scheme. The homogenisation procedure is described in Sec-
tion 6.1.4.

One distinctive feature of the current multi-scale model is the fact that the external
loading is not only coming from the macro-scale, but also from the fine scale in the form
of expanding ASR product. The interplay between these two load scales is interesting
both from the physical and the numerical point of view.

The proposed multi-scale model is two-dimensional. This limitation is caused by
its high computational cost, which mainly comes from the fine resolution of RVEs and
the adopted way of solving the BVP. However, the concept of the proposed approach is
universal, and the model could be easily extended to 3D given enough computational
powers. Similar to many other 2D multi-scale models, this study aims to investigate the
physics at hand while being aware of the possible limitations.

6.1.1 Macro-scale problem

Let ΩM denote a body of the ASR-affected concrete at the macro-scale. The domain is
bounded by ΓM , which can be decomposed into the Neumann boundary ΓM,t and the
Dirichlet boundary ΓM,u, such that the following definitions hold:

ΓM = ΓM,u ∪ ΓM,t (6.1)
ΓM,u ∩ ΓM,t = ∅ (6.2)
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Ωm,G

Ωm,C

Ωm,A
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34
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Figure 6.2: Periodically deformed RVE of concrete with three mutually exclusive phases:
cement paste Ωm,C , aggregates Ωm,A and ASR sites Ωm,G. The four edges are denoted
by Γm,12, Γm,23, Γm,34 and Γm,14.

The principle of virtual work reads as:

δWM =

∫
ΩM

σM : εM (δuM ) dΩ−
∫
ΩM

bM · δuM dΩ−
∫
ΓM,t

tM · δuM dΓ = 0 (6.3)

where δWM , bM and tM denote the macroscopic virtual work, the macroscopic body-
force and traction vectors, and εM (δuM ) and δuM the macroscopic virtual-strain and
virtual-displacement vectors. No assumptions are introduced regarding σM . Instead, it
is obtained directly from the meso-scale computations as explained in Section 6.1.4 and
Section 6.1.5.

6.1.2 Meso-scale problem

The meso-scale problem was introduced in the previous chapter. A periodically deformed
RVE comprising aggregates, cement paste and ASR sites is depicted in Fig. 6.2. The
damage in the aggregates and the cement paste is modelled orthotropically with self-
contact in cracks. Viscoelasticity, discussed in the previous chapter, is not taken into
account to simplify the computations.

6.1.3 Macro-to-meso transition

The displacement field inside an RVE can be decomposed into two parts:

um (x) = uM + û(x), (6.4)
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where û(x) are the micro-fluctuations. The current macroscopic state enters the RVE
computations via the boundary conditions. In this work, periodic boundary conditions
are chosen because they give better estimates for the effective stiffness in comparison
with the uniform displacement or uniform traction boundary conditions (Coenen et al.,
2012a). The periodic boundary conditions are defined as follows:

um,i = (FM − 1)xm,i for i = 1, 2, 3, 4 (6.5a)
uΓm,34 = uΓm,12 + um,4 − um,1 (6.5b)
uΓm,23 = uΓm,14 + um,2 − um,1 (6.5c)

where FM denotes the deformation gradient at the corresponding macroscopic material
point, um,i is the displacement of the corner node i, and Γm,12, Γm,23, Γm,34 and Γm,14

are the boundaries of the RVE (see Fig. 6.2). While the terms [um,4−um,1] and [um,2−
um,1] represent the macroscopic component of displacement, uΓm,12 and uΓm,14 are the
periodic micro-fluctuations at the boundary pairs (Γm,12 and Γm,34) and (Γm,14 and
Γm,23), correspondingly.

6.1.4 Meso-to-macro transition

The stress distribution inside an RVE is obtained through the solution of the meso-scale
boundary value problem. For the macro-scale, the average stress response of an RVE
needs to be determined. This can be done using the Hill-Mandel macro-homogeneity
condition (Hill, 1963)

1

Ωm

∫
Ωm

σm : εm dΩm = σM : εM (6.6)

Note that σm and εm are coupled to their macroscopic counterparts via the following
equations:

σm = σM + σ̂ (6.7)
εm = εM + ε̂ (6.8)

where σ̂ and ε̂ are the micro-fluctuations of the stress and the strain fields, respectively.
The Hill-Mandel macro-homogeneity condition implies that the work of the stress fluc-
tuations σ̂ on the strain fluctuations ε̂ vanishes, i.e.

1

Ωm

∫
Ωm

σ̂ : ε̂ dΩm = 0 (6.9)
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Therefore, σ̂ and ε̂ must be orthogonal to each other. The macroscopic stress can be
expressed in terms of traction along the boundaries of the RVE:

σM =

∫
Γm

tm ⊗ xm dΓm (6.10)

It was shown by Suquet (1987) that the boundary conditions presented in Section 6.1.3
fulfil the Hill-Mandel condition and yield equivalence between the macroscopic stress
and volume average of the mesoscopic stresses inside the RVE:

σM =

∫
Γm

tm ⊗ xm dΓm =
1

Ωm

∫
Ωm

σm dΩm (6.11)

The above equation is used for the stress homogenisation at the meso-scale.

For the macro-scale analysis, a tangent stiffness tensor is required at each integration
point. The effective stiffness tensor is defined by the effective stress-strain relation

σM = CMεM . (6.12)

Both, σM and εM are symmetric second-order tensors with three independent compo-
nents in 2D. There are multiple methods of stiffness homogenisation available in the
literature. The one proposed by Kouznetsova et al. (2001) comprises rearrangement of
the full RVE stiffness tensor and its condensation with the help of position vectors of the
fixed corner nodes. Miehe (1996) has suggested a method based on a forward difference
approximation. In the present work, the virtual-tests approach is adopted, the mathe-
matical formulation of which is thoroughly described by Fritzen (2011). In the scope of
this method, the results of three virtual loading tests, linearly independent from each
other, are required to determine the symmetric fourth-order tensor CM .

For a specimen with isotropic stiffness reduction in cracks and no self-contact, tensile
and compressive loading tests would result in the same tensor CM . However, a material
with orthotropic damage and stiffness recovery will behave differently under tension than
under compression, as it was previously demonstrated in Section 5.2. While pulling a
specimen would only open the cracks perpendicular to the load, its compression will
close them and cause stresses in the bulk. This is however a simplification of a problem.
In reality, cracks could be oriented in different directions, and the opening of one crack
could be accompanied by the closing of another. In general, the stiffness obtained via
compression is higher than the one computed via tension. The effect of the test type on
the stiffness reduction is described in Section 5.2.2.

Since the homogenised stiffness is used to solve the macro-scale problem for displace-
ments, the better it approximates the stiffness of the meso-scale structure, the faster the
multi-scale scheme converges. Providing low tensile stiffness for an element which un-
dergoes compression would result in an underestimation of its stress level and thus slow
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convergence of the iterative scheme. Similarly, providing high compressive stiffness for
a tensioned element will result in a similar issue. In order to avoid this nonconformity,
the direction of the stiffness homogenisation tests is decided based on the stress sign.
For this, the hydrostatic part is extracted from the averaged mesoscopic RVE stresses,
and its value is used to judge on the stress state of the macroscopic element. If the
hydrostatic stress is positive, then two uniaxial tensile tests are done, if it is negative -
two compression tests. The uniaxial tests are performed in the horizontal and vertical
direction. Additionally to the uniaxial tests, one pure shear test is done.

For each virtual-loading test, the effective stress and strain can be computed. Using
a normalised Voigt basis {Bα}α=1,...,3 and the notation introduced in Fritzen (2011)
yields the following system of linear equations:

ĈM Ê = Σ̂ with (6.13a)
Êαβ = Bα · εβ (6.13b)
Σ̂αβ = Bα · σβ (6.13c)
ˆ̄Cαβ = CM ·Bα ⊗Bβ (6.13d)

6.1.5 Nested multi-scale approach

As discussed in Section 6.1.3, the boundary conditions for the RVEs are prescribed
in terms of the macroscopic deformation gradients. The macroscopic displacements,
however, are not known a priori and depend on the deformation process inside the RVEs.
In the multi-scale approach adopted here, a deformation-driven iterative procedure is
applied, where an initial macroscopic deformation is imposed and a series of solve steps
are performed until reaching convergence. Subsequently, both the macroscopic and
mesoscopic loads can be increased, and the next iteration starts.

The homogenised mesoscopic stress passed to the macro-scale serves both to judge
on the convergence of iterations and also to update the displacements at the macro-
scale. The global macroscopic stiffness matrix, composed of the homogenised stiffness
matrices of the underlying RVEs, is used at the macro-scale to compute the increment
of displacements. The algorithm for the current multi-scale implementation, executed
by every processor, is detailed in Algorithm 4.
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Algorithm 4 Multi-scale algorithm for the ASR-affected concrete
1: for every integration point at the macro-scale
2: Generate an RVE
3: for every time step i

4: Apply boundary conditions at the macro-scale
5: for every RVE
6: Compute ASR products expansion value
7: Impose expansion at the ASR sites
8: while solution is not converged
9: Solve the macro-scale problem

10: for every RVE
11: Collect deformation gradient from the macro-scale
12: Apply it as boundary conditions
13: while finite elements are damaged
14: Solve the meso-scale problem
15: Reduce material properties of the damaged elements (SLA)
16: Homogenise stress
17: Determine hydrostatic component of the homogenised stress
18: Homogenise the RVE stiffness
19: Assemble global stiffness matrix
20: Assemble macro-scale internal force
21: Check for convergence
22: Output results

6.1.6 Parallel implementation

The current ASR multi-scale model was implemented into the open-source finite-element
library Akantu (Richart and Molinari, 2015; Cuba Ramos, 2017). The coding develop-
ments were carried out under the premise that the meso-scale computations for a single
RVE are executed in serial. Therefore, the FE meshes of the RVEs must be small in
size, which is the case for two-dimensional numerical concrete samples containing only
the coarse aggregates. The parallel computation scheme of the multi-scale model is il-
lustrated in Fig. 6.3. At the beginning of the simulation, the macro-scale FE mesh is
partitioned among all available processors. Every processor generates an RVE per each
integration point belonging to macroscopic finite elements.
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Figure 6.3: Parallel computation scheme for the multi-scale ASR simulations: the macro-
scopic finite-element mesh is partitioned among all available processors. Each processor
generates RVEs for the elements it owns. The RVEs are then used for the meso-scale
computations. Inspired by Cuba Ramos (2017).

6.2 Multi-scale model verification

The meso-scale model was previously calibrated in Section 5.2.2 with the material and
expansion law parameters listed in Table 5.1. Here, the predictive capacities of the
multi-scale model are validated. The test case is based on the previously-used laboratory
experiments by Multon and Toutlemonde (2006) as a macro-scale structure. This allows
us to verify the ASR multi-scale model and to provide the proof of concept for the method.
Although the separation of scales concept does not hold anymore, this choice allows
a direct comparison between the results of the FE2-simulation and the experimental
measurements. Another advantage of this setup is its simple stress state, which is not
the case for a large operating structure such as a dam or a bridge pier. By applying
a load at the macro-scale, one can directly observe how it is balanced by the internal
forces at the meso-scale. Fig. 6.4 shows the multi-scale setup used for the validation
test. The size of the numerical macro-scale specimen is 140× 280 mm2, while the RVE
size is kept the same as the one used previously (70 × 70 mm2). In the present case,
each finite element at the macro-scale is linked to an underlying RVE, which represents
the heterogeneous structure of concrete at the meso-scale. The total number of RVEs
corresponds to the number of finite elements in the macroscopic FE mesh because each
macroscopic finite element contains only one integration point. The macro-scale mesh is
coarsely discretised in order to keep the macro-element size larger or equal to the RVE
size, in partial accordance with the separation of scales concept. From the computational
point of view, the macro-scale problem could be easily discretized by a much denser mesh.

The laboratory experiments of Multon (2004) were performed at 38◦C temperature.
Since the temperature field is homogeneous within the specimen, a constant single value
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Macro-scale

Meso-scale140 mm

28
0
m
m

70
m
m

x

y

Figure 6.4: Meshes used for the multi-
scale simulation. Each of 16 macro-
scopic finite elements has a square con-
crete RVE at the meso-scale.
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Figure 6.5: Mesh for the detailed macro-
scale simulation used for the compari-
son with FE2.

TM is passed to all RVEs during the entire simulation.

For comparison, fully detailed simulations of the macro-scale structure were per-
formed. The mesh for these simulations is shown in Fig. 6.5. In both models, the
density of the ASR sites and the parameters of the ASR product expansion law from
the calibration tests are used (see Table 5.2). The two following tests were performed:
free expansion and uniaxial compression with 10MPa. These two stress values were
chosen as the limiting values of the possible stress variation in a massive concrete struc-
ture undergoing the ASR. As the statistical distributions of the output parameters were
studied in the previous chapter, here, the study is limited to a single realisation of both
the multi-scale and the fully detailed models.

Expansion curves from the multi-scale simulations are plotted in Fig. 6.6 next to the
ones coming from the fully detailed macro-scale model. The multi-scale expansion values
were obtained by averaging the individual strain values at the macro-scale integration
points. One can see a good match between the two sets of curves in both simulations.
Naturally some differences remain between the multi-scale and detailed macro-scale sim-
ulations. Similar to the calibration simulations, there is a gap between the numerical
lateral expansion value and its experimental counterpart.

The average crack density of the multi-scale simulations is plotted in Fig. 6.7, where
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(a)

(b)

Figure 6.6: Expansion curves of the macroscopic specimen obtained by the multi-scale
and fully resolved macro-scale simulations: a) the free-expansion experiment; b) the
uniaxial compression by 10MPa. The experimental expansion curves are plotted for
comparison.
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the averaging was done over all RVEs. The FE2 simulation of 10MPa compression
has the lowest crack area both in the aggregates and the mortar (0.05% and 0.29%
correspondingly). It is followed by the free-expansion experiment with 0.07% of the
aggregates and 0.42% of the mortar occupied by cracks.

(a)

(b)

Figure 6.7: Average crack density for the a) the free and b) the loaded multi-scale
simulations.

RVEs crack opening maps are shown in Figs. 6.8a and 6.8b. For comparison, similar
images in the detailed macro-scale simulations are given in Figs. 6.8c and 6.8d. A simi-
lar amount of cracks and matching orientations in each pair of simulations are evident.
The difference in crack volumes between the two loading cases is somehow expected.
Compressive load pushes the stress state of each finite element further from the tensile
failure envelop. In such case, the cracks are strongly localised and follow the direction
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perpendicular to the maximum principal stress. In the case of the free-expansion experi-
ment, the stress state is closer to the limits, therefore the cracks appear earlier and grow
longer. The periodic boundary conditions applied at the RVEs cause cracks continuity
across the borders. Artificial perpendicularity of the cracks to the periodic boundaries
is a well-known issue, which also brings bias into the homogenised stiffness tensor. A
possible solution was proposed by Coenen et al. (2012b), who proposed to align bound-
aries with the evolving localisation bands, enabling crack bands to grow slantwise to the
boundaries directions. In future, this method could be adopted in the current model to
enhance the crack patterns and stiffness estimation.

6.3 Macro-scale simulation of an ASR-affected dam

The objective of the current section is the analysis of the structural effects of the ASR
within a dam by solving the concrete deterioration problem at the meso-scale level.
The study aims at understanding the interplay between the macroscopic state of a
dam (stresses, deformations and their anisotropy) and the mesoscopic state of concrete
(amount of cracks, their percolation, opening and orientation). Moreover, the role of the
seasonal temperature variation across the dam in the advancement of the ASR is stud-
ied. The model sensitivity to the temperature fluctuations in the field and laboratory
conditions is compared. A 2D thermo-mechanical multi-scale model of a dam with a
concrete meso-structure resolved numerically is employed. A unique set of continuous 67
years-long field measurements from an ASR-affected gravity dam in Western Switzerland
allows for an improved model calibration and quantitative interpretation of the results.

The presented model is thermo-mechanical at the macroscopic scale and purely me-
chanical at the RVE level. However, the effect of temperature enters RVEs through
the ASR-product expansion law. To facilitate the reading, the previously described
equations of the expansion law are listed below:

εeig(t, T ) = ε(∞)
1− exp[−t/τch(T )]

1 + exp[−t/τch(T ) + τlat(T )/τch(T )]
I (6.14a)

τch(T ) = τch(T0) exp[UC(1/T − 1/T0)] (6.14b)
τlat(T ) = τlat(T0) exp[UL(1/T − 1/T0)] (6.14c)

where t and T are the current time and temperature, τlat and τch are the latency
and characteristic times, T and T0 are the current and the reference temperatures, UC

and UL are the activation energy constants, I is the identity matrix and ε(∞) is the
asymptotic volumetric expansion strain in the stress-free experiment. The moisture
diffusion process, which governs the evolution of the chemical reaction, is not taken into
account, and it is assumed that the dam is fully saturated. Previous study by Comi et al.
(2012) showed that, for the particular environmental conditions and water-reservoir level,
this assumption is valid and only a thin layer of concrete in contact with air of about
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(a) (b)

(c) (d)

Figure 6.8: Crack opening patterns within typical RVEs under a) the free expansion
conditions and b) the uniaxial compression stress of 10 MPa. c,d) Similar images from
the full macro-scale model.

105



Chapter 6. Multi-scale modelling of ASR-affected structures

40 cm is dry.

Thermo-elastic expansion is ignored both at the macro- and meso-scales. At the
macroscopic scale, this is done mainly to separate displacements of a dam due to yearly
temperature fluctuations from continuous ASR-caused drift. For more details on this
subject, readers can refer to the comprehensive study of the dam deformations due to the
thermo-elastic expansion by Aniskin and Shaytanov (2020). At the meso-scale, assuming
that the thermo-elastic properties of the damaged material are similar to the undamaged
ones, the thermo-elastic expansion should not cause any difference in the results due to
the homogeneous temperature across an entire RVE. This is however a simplification
that should be addressed in future work.

6.3.1 Macroscopic heat transfer model

Assuming no mass transfer or radiation, the energy conservation equation for a non-
uniform isotropic medium is written as

ρcp
∂T

∂t
−∇ · (k∇T ) = b (6.15)

with T being the scalar temperature field, cp the specific heat capacity, ρ the material
density, k the thermal conductivity, and b the volumetric heat-source. The first term in
the equation above is responsible for the heat accumulation, the second for its diffusion
to a colder area, and the right-hand side for the heat generation.

Similar to the mechanical part, the heat transfer problem is discretized by the finite
element method. Accounting for the dynamical nature of the heat transfer problem,
Eq. (6.15) is solved implicitly, which makes the solution unconditionally stable and does
not limit the time step size.

In the current study, a one-way coupling scheme is adopted. The heat transfer
model affects the mechanical one by altering the ASR-product growth rate (Eq. (6.14)),
while the reverse influence of the stress and damage states on the thermal parameters
in Eq. (6.15) is omitted.

At each time step, first, the heat transfer model is solved for the given boundary
conditions. Then, the updated temperature field is passed to the macro-scale model,
which, in its turn, transfers local temperatures to the corresponding RVEs. After that,
the mechanical multi-scale problem is solved iteratively.

Thermal properties of concrete are specified in Table 6.1. Due to the unknown
geological situation and a wide range of possible thermal rock properties (Robertson,
1988), the latter were taken equal to the concrete ones.
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Parameter Value
Thermal conductivity k [W/(mK)] 1

Specific heat capacity cp [kJ/(kgK)] 1

Table 6.1: Thermal properties of the concrete and the rock in the multi-scale simulation.

6.3.2 Macro-scale problem

A cross-section of the Salanfe gravity dam is chosen to study the mechanical behaviour
of an ASR-affected dam and the role of temperature on it. The Salanfe dam, owned by
Alpiq Suisse SA, is located near Martigny of canton Valais in Switzerland and was built
in 1952. Irreversible upstream deformations have been reported for the first time in the
early 1970’s. In 2001, petrographic and SEM analysis finally proved that the dam is
affected by the ASR. Slot cutting, as a rehabilitation measure, was carried out on the
dam in 2012 (Droz et al., 2013).

A cross-section in the middle of a long straight segment of the dam was chosen as
the reference to minimise the 3D effect. Actual drawings of the dam as well as the field
measurements of displacements, temperature and reservoir level were provided by the
dam owner.

The 2D finite-element mesh of the dam’s cross-section is shown in Fig. 6.9 and
consists of 250 triangular finite elements. Each finite element at the macro-scale (3 m
size, on average) is linked to a single underlying RVE (70× 70 mm2), which represents
the heterogeneous structure of concrete at the meso-scale. The total number of RVEs
corresponds to the number of finite elements in the macroscopic FE mesh because each
macroscopic finite element contains only one integration point. The total number of
degrees of freedom in the FE2 analysis is about 25, 000, 000 and the simulation was run
on 280 processors.

The real foundation shape of the reference cross-section has a rough profile due
to the rock topology. The latter changes significantly from one joint to another. For
simplification, the numerical model has a planar inclined foundation resembling the
actual shape. To allow for certain relative movement of the dam bottom with respect to
the underlying rock, a layer of interface finite elements was placed in-between. Its shear
stiffness is adjusted to test different rigidities. For the basic case, its value was set to
4 MPa. The effect of the shear stiffness on the overall dam behaviour will be discussed
further in the text.

The mechanical boundary conditions at the macro-scale are shown in Fig. 6.10. Two
types of loads are acting on the dam: the load of the water and the load due to the
self-weight. One component of the water load is applied along the upstream face with
the hydrostatic distribution starting from the reservoir level down to the bottom. The
second component acts upon the dam bottom as the hydrostatic uplift. Field data on

107



Chapter 6. Multi-scale modelling of ASR-affected structures

Figure 6.9: Macroscopic finite element mesh of the cross-section of the dam and the
underlying concrete RVE.
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the water pressure under the dam is not available, thus the following pressure profile
was suggested: pressure linearly reduces from the value of the reservoir bottom pressure
to one third of it at the grout curtain position (≈ 5 m from the upstream face in the
downstream direction); later it linearly reduces to zero at the downstream side.

Figure 6.10: Altitudes and dimensions of the dam and mechanical boundary conditions
for the 2D model of the Salanfe dam. Dimension are given in metres.

The water level in the reservoir is not constant within a year. It is at its maximum in
the winter months and at its minimum in summer. The intermittent field measurements
of the water level were approximated by the continuous periodic parabolic curve shown
in Fig. 6.11.

The boundary conditions for the heat transfer problem are illustrated in Fig. 6.12.
They consist of either prescribing the temperature (Dirichlet type) or the temperature
gradient (Neumann type) at the model’s contour. Actual record of the air temperature in
surroundings of the Salanfe dam was used to establish its continuous sinusoidal approx-
imation (see Fig. 6.13). The temperature prescribed at the concrete surface comprises
the effect of the air temperature and the solar radiation. It is known that exposure to
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Figure 6.11: Real reservoir level fluctuations within two consequent years and its numer-
ical approximation.

the sunlight can increase the temperature of structures significantly. Such an increase,
computed based on the building code SP 20.13330.2016 (in Russian), for this specific
dam location and its orientation, equals 7.9◦C added on top of the daily mean tem-
perature during the warm season. The above-mentioned code suggests the same total
solar radiation for vertical surfaces facing West or East. Although the lower part of the
downstream face is inclined and thus attracts more solar radiation, this additional incre-
ment is not taken into account for simplicity. According to the meteorological reports,
total annual sunshine in Western Switzerland is about 50%. To account for this infor-
mation, the annual surface temperature curve was built based on the air temperature
curve by shifting the highest temperature value by the radiation increase and keeping
the low value similar to the original one. To verify the correctness of such approach, the
proposed curve was integrated over one year and compared to the integral of a curve
with 180 days with a constant radiation increase and other 180 days with normal air
temperature. The final difference between the two integrals was less than one percent,
which proves the applicability of the proposed adjustment.

Temperature at the soil top was assumed to be equal to the air temperature, and
the radiation effect was discarded. The constant rock temperature of 6◦C was assumed
at the 40 m depth based on the data of Huang and Pietruszczak (1999) . Left and right
borders of the rock mass were assigned the homogeneous Neumann boundary condition
(∇T = 0). Reservoir temperatures were taken from the field measurements of Vieux
Emosson dam situated in the Salanfe’s neighbouring valley. Temperature at the top of
the reservoir is fluctuating between 0◦C and 10◦C. Fluctuations penetrate down to 15

m depth, after which a constant temperature of 6◦ is applied and maintained down to
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Figure 6.12: Boundary conditions for the macroscopic heat transfer problem.

the bottom of the reservoir.

6.4 Results

6.4.1 Field measurements

Performed numerical simulations were compared to the field data provided by the dam
owner. This data includes horizontal displacements in the upstream-downstream (U-D)
and left-right (L-R) directions as well as vertical (Z) movement of the crest. Horizon-
tal displacements are available both at the level of the crest and at the base and are
measured by direct and inverted pendulums correspondingly. Available data is shown
in Fig. 6.14. Since the numerical model is two-dimensional, the left-right displacement
of the crest is ignored. The rest of the data is used for the comparison. The upstream-
downstream movement of the crest has the longest historical track beginning right after
the dam construction in 1953. The rest of the data (crest Z and base U-D movements)
start its record in 1993. While the base movements are almost zero, the crest has sub-
stantial uplift. As there are no available data during preceding 40 years, the Z curve
does not provide the absolute values of displacement, but rather the uplift rate. This
plot shows that in the field conditions, the ASR expansion continues for already 68
years and it still goes on. In the subsequent figures, the initial offset of 13 mm was
subtracted from the whole U-D curve as being not ASR-related. If the frequency of
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Figure 6.13: Approximations for the temperature fluctuations of the air, top of the soil,
the concrete surface and top of the reservoir within a year.

Figure 6.14: Field measurements of the Salanfe displacements in the reference cross-
section. U-D stands for the upstream-downstream direction, L-R for the left-right direc-
tion, and Z for the vertical direction.
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the horizontal displacement varies between one to four measurements per month, the
vertical displacement data is much more scarce and is measured only two to three times
per year.

Extra to the displacement measurements, the dam owner performs yearly inspections.
One of the outcomes is the updated crack map of the surface. The latter is not presented
here due to privacy reasons. It could have been observed that, in the block of interest,
almost all the cracks are concentrated in the upper half of the upstream face with most
of them following the axis of the dam (horizontal lines on the upstream face). The
latter makes the approach of 2D modelling of a cross-section valid: all the numerical
cracks in a 2D model take form of infinite planes propagating along the dam axis when
extrapolated to 3D.

6.4.2 ASR parameters

Simulation of the dam behaviour with the parameters of the expansion law in Table 5.2,
calibrated on the accelerated laboratory experiments, results in the premature dam
expansion and the reaction stop within the first ten years after construction, which does
not correspond to the field observations, as can be seen in Fig. 6.15. In order to match

Figure 6.15: Displacements at the crest and the bottom of the dam obtained by employ-
ing the expansion law parameters calibrated on the accelerated laboratory experiments.

the numerical results with the field data, parameters of the ASR expansion law had to be
re-calibrated. The updated set of parameters is given in Table 6.2. The energy constant
UC got eliminated by making the characteristic time τch in Eq. (6.14) independent of the
temperature and equal to the reference value τch(T0), and the reference temperature was
reduced to 0◦C. The actual values of the latency and characteristic times are not unique:
both lower and higher values could have been chosen. The main purpose of taking such
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Parameter Value
Ratio of the ASR sites area to the aggregates area [%] 0.1

Asymptotic strain ε(∞) [%] 37

Latency time τlat [years] 120.5

Characteristic time τch [years] 123.29

Reference temperature T0 [◦C] 0

Energy constant UC [◦K] -
Energy constant UL [◦K] 400

Table 6.2: Updated parameters of the ASR-expansion law.

large numbers is to make the expansion linear within the studied time period. The
minimum values of τlat and τch for which the expansion curve stays linear are of order
of 43 years.

The numerical outcome is plotted next to the field data in Fig. 6.16. Displacements
of the crest are measured at the top upstream point. Numerical results have a good
agreement both with the vertical movement and the upstream drift of the crest. Similar
to the field data, numerical horizontal drift curves have yearly fluctuations caused by
the reservoir level change. While the rate of the simulated horizontal drift is matching

Figure 6.16: Comparison of the field measurements of the dam movement with the
numerical results. Shaded areas represent variation between three simulations with
different RVEs. TE stands for the isotropic thermo-elastic simulation.
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the measured one perfectly, its vertical counterpart is by 25% slower than the field rate.
This difference could possibly be explained by the 3D effect, which is not captured by
the model. High out-of-plane stress might play a role on the ASR-related expansion by
hindering it in the dam-axis direction and boosting it in the other two. The horizontal
drift of the upstream bottom point is not exactly zero as measurements indicate. The
behaviour of the foundation is dictated by the shear stiffness of the interface between
concrete and rock, which will be demonstrated further in the text.

The macroscopic results depend on a specific RVE meso-structure and on the posi-
tions of the ASR sites. For a better statistics, an ensemble of multi-scale simulations with
different RVE meso-structures shall be run. The result of the Monte Carlo simulation
would be a family of displacement curves forming a statistical distribution. The mean
curve shall match the field measurements. Otherwise, the expansion law parameters
have to be adjusted and the statistics updated. The described procedure is extremely
computationally expensive and could not be performed within the scope of the current
study. To obtain a better statistical representation, two additional FE2 simulations with
different positions of ASR sites and distributions of tensile strength σt within RVEs were
conducted. The ranges of displacements between the three simulations are defined in
Fig. 6.16 as shaded areas. As there is no significant variation between these three sim-
ulations, the results of the first simulation will be used further in the text. We do not
expect qualitatively different results from the full Monte Carlo simulation.

The final set of the expansion law parameters substantially differs from the ones
based on the laboratory experiments. Employment of a less reactive concrete with a
lower alkali content could cause an increase in the τlat and τch. However, this argument
does not seem to be legit for their thousandth increase as the construction data does
not have any track of ASR-mitigating additives used in the Salanfe dam. The energy
constant UL was reduced significantly compared to the one identified by Ulm et al. (2000).
More than that, UC had to be fully eliminated. Overall, the newly identified parameters
made the thermal law less sensitive to the temperature variation and narrowed the gap
between expansion rates of the coldest and the warmest parts of the dam. Moreover,
the macroscopic expansion became linear with no sign of slowing down.

To obtain similar results, there is no need in the asymptotic expansion law of
Eq. (6.14). Instead, a linear Arrhenius-inspired law could be formulated as follows:

∂εeig(t, T )

∂t
= ke−(Ea/RT ) (6.16)

where k is some pre-exponential constant, Ea is the ASR activation energy, R is the
universal gas constant and T is the temperature. Ea has a double functionality: it
defines the expansion rate as well as the sensitivity to the temperature difference. k

is a scaling factor for the final curve. To get the feeling of the role of Ea, a short
limit analysis is performed. The ratio between the expansion values for two different
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temperatures equals
εeig(T1)

εeig(T2)
= e

Ea
R

(
1
T2

− 1
T1

)
(6.17)

Taking Ea infinitely small would result in the exponential taking value of 1, which means
equality between the expansion values εeig(T1) and εeig(T2) no matter how different
temperatures T1 and T2 are. Oppositely, an increase in Ea would separate the two
expansion values. Experimentally, Ea for the ASR was identified in a wide range of
10 − 50 kJ/mole (Larive, 1997; Ben Haha, 2006; Mukhopadhyay et al., 2006; Ghanem
et al., 2010).

To match the field data, the following parameters of the expansion law in Eq. (6.16)
were used: the pre-exponential constant k = 9.3e−6 and the activation energy Ea = 3

kJ/mole. The displacement curves obtained with the Arrhenius equation are plotted in
Fig. 6.17. The results obtained with Eq. (6.14) and Eq. (6.16) match each other. Similar

Figure 6.17: Comparison between the results obtained by the asymptotic expansion law
from Eq. (6.14) and the linear one from Eq. (6.16).

to the previous case, the energy constant had to be reduced by more than ten times.
Although the low value of Ea generally suggests high reactivity of aggregates, the reason
for reducing Ea in the developed model was to minimise the difference in expansion values
within the operational temperature range. To counteract the increase in expansion due
to the reduction of Ea, a small value of k had to be adopted. Equilibrium between
the values of Ea and k allowed us to keep the expansion rate low and close to the

116



6.4. Results

measurements.

The identified mismatch between the laboratory and field-based parameters suggests
that there is a certain gap between two conditions. The issue of predicting field behaviour
based on the accelerated tests was repeatedly discussed in the literature (i.e. Ideker
et al. (2012a,b); Fournier et al. (2009); Durand and Fournier (2016)). Expansion results
obtained in the accelerated mortar bar test at 80◦C (AMBT), concrete prism test at
38◦C (CPT) and exposure field sites for the same concrete are not monotonous (Ideker
et al., 2012b). Fournier et al. (2016) pointed at the progressive loss of correlation between
the concrete prism expansion under 38◦C and relative humidity > 95% and the 15-year
expansions in concrete blocks stored outdoors. A recent study by Borchers et al. (2016)
proved that accelerated tests are useful for determining the reactivity of aggregates,
however correlation of the expansion magnitude between the laboratory experiments
and the field exposure sites is complicated.

One possible reason for such discrepancy is the difference in the temperature regimes.
The laboratory temperature range at which the expansion law was calibrated does not
cover the field conditions, and this results in a change in environmental conditions. Most
of the accelerated ASR tests are done at temperatures above 20◦C (Ulm et al., 2000;
Larive, 1997; Ben Haha, 2006; Gautam and Panesar, 2016; Multon and Toutlemonde,
2006), which is above the upper limit of the current field range in Switzerland. The
obtained results suggest that the ASR experiments at elevated temperatures result in a
different ASR dynamics than what happens in the field conditions. Moreover, the rates
of the chemical and mechanical processes can not be exponentially extrapolated from
the accelerated experiments by employing the Arrhenius law.

Given a relative model’s simplicity, it has its limitations. The latter are summarised
in the following list:

• not modelling the long-term deformations in the dam due to the creep;

• the two-dimensionality of the model not capturing the 3D effects in the dam;

• the relative humidity (RH) of a dam differing from the assumed full saturation
conditions: the reduced RH would slow the ASR down;

• not accounting for the alkalis transport and the ASR products migration within
cracks and pores.

In order to evaluate the possible contribution of these factors, the proposed model has
to be expanded and additional simulations to be performed. It also requires extensive
additional field measurements (e.g. typical displacements of a dam only due to the
creep effect, RH and displacement measurements of the dam as a 3D structure, etc.)
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Meanwhile, the author of the thesis hopes that the highlighted mismatch will trigger
further discussions in the scientific and engineering committees.

6.4.3 Temperature effect

When the calibration is completed, the focus is on the ASR effects within the dam
structure. ASR products’ strain εeig accumulated at the end of simulation is plotted in
Fig. 6.18a. There is a slight increase of the ASR products’ strain from the upstream

(a) (b)

Figure 6.18: a) Accumulated ASR products’ strain at the end of the last time step. b)
Macroscopic temperature averaged over the simulation time.

underwater part towards downstream and the crest. This gradient is caused by the
upstream having in average lower temperature during the year than the downstream.
The lowest ASR products’ strain values are concentrated in the middle upstream zone,
as temperatures there could take values between 0 and 6◦C in winter. The two extreme
ASR products’ strain values differ insignificantly (0.062 and 0.063 for the minimum and
the maximum values).

To have a clear understanding on the contribution of this ASR products’ strain differ-
ence to the overall dam displacement an additional multi-scale simulation was performed.
The latter comprised no heat flow simulation, but only a mechanical FE2 model with
a constant temperature applied across the entire dam. The temperature value was ob-
tained by spatial and temporal averaging within the dam cross-section and was equal
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to 8◦C. The parameters of the ASR-expansion law were kept the same. The results are
plotted in Fig. 6.19. All the displacement curves are exactly matching the results of
the thermo-mechanical multi-scale simulation. This study proves that the homogeneous

Figure 6.19: Results of the isothermal simulation with average temperature applied
across the dam compared to the full thermo-mechanical model and field measurements.

ASR products’ strain results in the same deformation profile of the dam as in the non-
homogeneous case with small ASR products’ strain variation. Therefore, the numerical
model suggests that, within the specific environmental conditions (specific temperature
range, dam geometry and reservoir fluctuations), the temperature difference has a neg-
ligible effect on the ASR evolution within the structure.

The macroscopic temperature averaged over the simulation time is presented in
Fig. 6.18b. ASR products’ strain accumulation for the minimum and the maximum av-
erage temperatures, which are 4.1◦C and 9.3◦C correspondingly, is plotted in Fig. 6.20.
These curves were obtained from Eq. (6.14) by applying constant temperature values
and the parameters from Table 6.2. One can observe that the original curves have a
very small gap in-between which illustrates low sensitivity to the temperature variation
within considered temperature window. To understand how higher sensitivity (there-
fore higher energy constants) would affect model behaviour, two additional simulations
were performed. The parameters of the expansion law were modified to have a larger
expansion difference between the cold and warm areas. This resulted in the constant-
temperature curves plotted in Fig. 6.20 (by stars and circles). First set of parameters
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Figure 6.20: ASR products’ strain evolution for two extreme temperatures for original
parameters of the expansion law (solid line) and two sets of curves for modified param-
eters.
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(τlat = 41.1 year, τch = 230 year, UL = 4500 K) produces the same ASR products’ strain
for low temperature and a higher strain for 9.3◦ C. The second set (τlat = 41.1 year,
τch = 298.6 year, UL = 4500 K) has an opposite effect. In physical terms, the first
set would increase the ASR expansion in the warmer part compared to the simulation
presented below, while the second set would reduce the expansion in the cold part. The
rest of the parameters were kept unchanged with respect to Table 6.2. Multi-scale sim-
ulations were performed with these two sets of parameters. The results are plotted in
Fig. 6.21. The first set of parameters, as expected, results in premature U-D and Z crest

Figure 6.21: Crest displacements for two sets of the expansion law parameters compared
to the field data. Displacements at the base are omitted for brevity.

displacements due to the “warm” area accumulating higher ASR strain. The results of
the second set are somehow intriguing: although the “cold” area is producing less ASR
products’ strain, the U-D displacement of the crest still starts earlier and goes above
the field measurements. This is happening because of the difference in the ASR strain
values of the “warm” and “cold” zones: the “warm” area will produce an additional
“push” of the crest in the upstream direction due to the expansion advantage over the
“cold” one, independently of the absolute values. Contrary to the case with different
expansion values, having the same expansions across the entire cross section minimises
the U-D drift and brings it close to the observations.

Oppositely to the horizontal displacements, expansion magnitude is directly linked
to the vertical crest displacement: higher ASR strains across the dam cause higher crest
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uplift. These two additional simulations demonstrate that the model does not have to be
sensitive to the temperature variations within the considered temperature gap in order
to match the available field measurements. The constant expansion across the dam has
to be high enough to cause the sufficient uplift.

6.4.4 Measurements frequency

The field data on temperature has relatively a low frequency (one datapoint per month),
so that it had to be replaced by the continuous sinusoidal curve. Therefore, a question
on a sufficient data density persists. Engineers in the field may wonder what is the lowest
frequency of the temperature measurements which would not affect the numerical model
results significantly. In order to answer this question, an additional set of simulations was
performed. The idea behind it was to take a real high-density temperature data from the
field and run the thermal simulation with different time steps: starting with the smallest
one and steadily increasing it. Then, the accumulated ASR products’ strain (εeig in
Eq. (6.14)) distribution across the dam cross-section is compared between the simulations
with the different time steps. This comparison is done by computing the difference
between the ASR products’ strain distributions of a simulation with the shortest time
step (the most precise) and all the other simulations.

Since in the proposed approach computation of the ASR products’ strain depends
only on the temperature, there is no need to include the mechanisms of actual ASR
expansion and crack growth. Therefore, only transient thermal analysis was run and
the ASR products’ strain was updated at each time step. The macroscopic mesh was
further densified.

As the temperature measurements from the Salanfe dataset were not dense enough
to convey this study, a different set of data was used. A record of the air temperature in
Vancouver, Canada taken every hour between 10/2012 and 10/2017 (Beniaguev, 2017)
was used as the basis. This five year-long basis was looped to form a 70 year-long
continuous record.

Simulations were performed with following time steps: 0.25, 0.5, 1, 10, 20, 50, 100
and 200 days. Results of all the simulations were compared to the one with the shortest
time step. The comparisons were done at the final time of 70 years. Results are shown
in Figs. 6.22 and 6.23. A typical distribution of the ASR products’ strain is shown in
Fig. 6.22a. There is a front-like reduction of εeig from the warmest (downstream wall
and crown) towards the coldest area (contact with water). The difference between the
extreme values of strain is about 1e−3. The error between 6 hours and 200 days time-step
simulations is plotted in Fig. 6.22b. Here, one could note the two major error zones: the
negative error on the upstream face in the area of the reservoir level fluctuation and the
positive error in the rest of the dam. The error sign does not play a role, however it helps
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to distinguish two different error sources. The positive zone, with maximum values at
the dam extremities, is due to skipping the details on the temperature within a long time
step. The extreme value of such error is 0.0045% which is fairly low. The negative error
zone is due to the combined effect of the temperature and the reservoir level fluctuation.
A large time step not only skips details on the temperature, but also on the water level
which changes dynamically during the year (see Fig. 6.11). Within 200 days the reservoir
is depleted and refilled again. Skipping this data leads to the application of the average
reservoir level and assigning the corresponding temperature profile on the upstream
face. This type of averaging causes a higher relative error of 0.47%. The evolution of

(a) (b)

Figure 6.22: a) Cumulative ASR products’ strain distribution within the dam after 70
years computed with the time step of 6 hours. b) ASR products’ strain error of the 200
days time-step simulation compared to the 6 hours one normalised by the absolute ASR
products’ strain value.

the two types of error with the time step size could be appreciated in Fig. 6.23. The
error in the upstream face develops non-monotonously which might be explained by the
combination of the specific water fluctuation periodicity and the time step. The change
in the error sign serves as evidence of the faster evolution of water-level related error
than the temperature-fluctuations related one. Such a low error due to the time skipping
owes to the low sensitivity of the ASR-expansion law in Eq. (6.14) to the temperature
high-frequency fluctuations. While the expansion law has been more sensitive with the
previously-identified parameters in Table 5.2, their updated version in Table 6.2 has
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increased the “thermal inertia”.

Figure 6.23: Evolution of the ASR products’ strain relative error with the time-step
growth.

6.4.5 Expansion anisotropy

It is of great importance to state that the homogeneous ASR products’ strain distri-
bution does not cause homogeneous expansion within the cross-section. The so called
ASR-expansion anisotropy manifests itself in the form of the load-dependent expansion.
The current numerical model successfully reproduces ASR-related anisotropy, which was
demonstrated in the previous chapter. To highlight the ASR-anisotropy effect in the dam
simulation, the multi-scale results are compared to the thermo-elastic simulation with
no damage in it. In the latter, expansion is caused by applying homogeneous hydrostatic
eigenstrain εeig across the dam cross-section (similar to the thermo-elastic expansion).
The eigenstrain value is chosen in a way to match the horizontal crest drift. The final
vertical and horizontal displacement values are plotted in Fig. 6.16 by triangles. The
elastic crest uplift is by 140% higher than the multi-scale one. Such difference owes to
the expansion anisotropy present in the FE2 simulation. This result should raise aware-
ness between the dam engineers on modelling the ASR as the thermal expansion. The
results indicate that not including the anisotropy into ASR models could lead to the
unrealistic predictions.

Comparison of the full thermo-mechanical multi-scale model with its homogeneous-
temperature modification have shown that the difference in the ASR products’ strain is
not sufficient to cause the horizontal drift. However, there are two other causes for the
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latter:

• orthogonal triangle shape of the dam;

• different levels of expansion anisotropy at the upstream and downstream dam faces.

The geometrical component could be identified directly from the thermo-elastic sim-
ulation (see Fig. 6.16). Having the same expansion values of the vertical upstream and
the inclined downstream faces, the latter is longer, which results in a bigger length in-
crease. The difference in extensions between two dam faces makes the whole structure
extend upwards and bend upstream (see Fig. 6.24c). Following this logic, a dam having
an isosceles triangle shape would have only a vertical uplift due to the homogeneous
ASR extent.

The second contributor to the horizontal drift is the non-homogeneous expansion
anisotropy across the dam cut. This is illustrated in Fig. 6.24a. Black segments here
denote the principal strains at the integration points. Their directions correspond to
the principal directions. Sizes of the segments were obtained by multiplying the actual
principal strain values by some scaling factor to make them visible. Principal strains
and their directions were computed by the eigenvalue analysis of the small strain tensor
ε. Although there is certain rotation taking place, its contribution to the deformation
gradient is negligible. This eliminates the need to compute more complex deformation
measures (such as right or left Cauchy-Green tensors) and allows operating the simple
strain ε. All the values of the principal strain are positive. The maximum extension
corresponding to the maximum segment size is 0.12%. Coloured background denotes the
ratio between two principal strain values. While the warm shades indicate the expansion
state close to isotropic, the cool ones denote the areas with orthotropic expansion. The
downstream wall and the crest are primarily expanding isotropically as they are not
constrained nor heavily loaded. The foundation is restrained by the underlying rock,
thus its horizontal movement is limited, which minimises its horizontal strain. The red
area in the right bottom corner has the most isotropic state. It could be explained
by the transition between the restrained lower boundary and the free downstream side.
The most interesting observation about this plot concerns the slightly blue area on the
upstream side of the dam. In this zone, the principal strain directions are close to
horizontal and vertical. The horizontal strain is 1.3 times larger than the vertical one.
The reason for this could be deduced from Fig. 6.24b where the principal stresses are
plotted. Colours here denote the amplitudes of the highest principle stress. The load
coming from the self-weight and the reservoir pressure generates compressive stresses,
which transition from being nearly vertical in the upper part to almost horizontal at
the base. Such transition is due to the following factors: the presence of the horizontal
load from the reservoir, which is transmitted to the underlying rock; the horizontal
constraint at the bottom, which gives rise to the high compressive stresses in response
to the expansion of concrete. The highest principal stresses pass through the area next to
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(a)
(b)

(c)
(d)

Figure 6.24: a) Ratio between the principal strains in colour. Segments denote the
directions and the amplitudes of the principal strains at each integration point. b)
Coloured background represents the crack density. The principal stresses are denoted
by segments. c) Deformed shape of the dam in comparison with the initial configuration
(amplification factor of 100). d) Crack density map quantifying the ratio between the
total crack opening area and the RVE area.126
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the upstream wall and impose compressive forces on the corresponding RVEs. Although
the stress values are relatively small (≈ 0.4−1.0 MPa), it is sufficient to partially hinder
the vertical ASR expansion.

To further illustrate the loading effect, a crack density map in Fig. 6.24d and crack
opening maps in Fig. 6.25 are given. The crack density map is visualising the ratio

(a) (b)

Figure 6.25: Crack opening maps of the RVEs on a) the upstream and b) downstream
sides at the age of 42 years.

between the total crack area and the area of an RVE. Indeed, the RVEs on the upstream
side have slightly lower area of cracks in comparison to the downstream side. Two typ-
ical RVEs on the upstream and downstream sides at the age of 42 years are plotted in
Fig. 6.25. The reason for choosing this intermediate step is the possibility to clearly dis-
tinguish the difference between two patterns. At the end of the simulation it becomes
complicated due to the abundance of cracks. The intensity of grey here denotes the
crack opening. The darkest shade corresponds to an opening of 40 µm. Such crack is
difficult to distinguish by visual inspection. The downstream RVE has more horizontally
oriented cracks. Moreover, the horizontal cracks present in both RVEs are more open
in the downstream RVE. Since expansion in the proposed model comes mainly from the
propagation and opening of cracks, two typical crack maps explain why the expansion is
orthotropic on the upstream side and close to isotropic on the downstream one. Expan-
sion is never exactly isotropic due to its dependence on a specific RVE meso-structure
and ASR positions.

While the simulation results show variations in the crack density from the upstream
to the downstream face, the field observations show more developed cracking in the
upper part of both faces. A possible explanation for such discrepancy could be the 3D
effect not captured by the model.
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6.4.6 The concrete-rock interface

The effect of the interface between the dam and the rock was investigated by modifying
its shear stiffness. If in the original simulation its value was 4 MPa, which allowed for
substantial displacement, here it was increased to 4 GPa, bringing it into the range of
rock-like materials. For a better match in the upstream-downstream displacement of the
crest, the latency time τlat of Eq. (6.14) had to be reduced to 109.6 years.

Results of this simulation are plotted in Fig. 6.26. While the crest displacements
were not significantly affected by this change, the horizontal drift at the base was almost
eliminated, which brings it even closer to the field data. Therefore, the stiffness of the
concrete-rock interface is controlling the foundation’s horizontal displacement.

Figure 6.26: Crest and bottom displacements of the dam with two different shear stiffness
values of the concrete-rock interface.

More consequences of the stiff interface could be observed in Fig. 6.27. Due to
the rigidity of the dam’s foundation, the horizontal expansion is constrained and the
principal strain ratio reduces down to the 0.2 − 0.3 range. Two bottom corners show
negative strain ratio due to the highest stress concentrations. The reduced horizontal
expansion comes at the cost of high compressive stresses shown in Fig. 6.27b. The range
of the principal stress values along the foundation is 3 − 10 MPa, which is few times
higher than the stresses caused by the self-weight of the structure (see Fig. 6.24b). Two
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(a) (b)

Figure 6.27: a) Principal strains (segments) and ratios between them (colour) for the
stiff concrete-rock interface simulation. b) Compressive principal stresses for the same
simulation.
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RVEs, one from the bottom and one from the crest, are compared at the end of the
simulation in Fig. 6.28. Cracks in the bottom RVE are predominantly horizontal, while
the crest ones have random orientations. This horizontal cracks alignment is due to the
strong uniaxial compression setting the preferable crack orientation.

(a) (b)

Figure 6.28: Crack opening maps of the RVEs at a) the bottom and b) the crest at the
age of 70 years.

Important to discuss that the high compressive stresses in the foundation are partially
caused by the idealistic elastic modelling of the underlying rock. The latter develops
tensile stress in response to the expansion of the foundation. Thus, compression in the
foundation is equilibrated by the tension in the rock. In reality, the underlying rock is
far from being a continuous elastic material: it has pre-existing fissures and also can
fracture. The full tensile strain applied to the rock will be partially accumulated by
the rock mass movement, while the rest of it will contribute to the stress evolution.
Additionally, the tensile strength of the rock is also imposing a cap on the maximum
possible tensile stress. For most of the rock types used as foundations, its value is in
5−14 MPa range (Demirdag et al., 2019). Therefore, the developed model with the stiff
interface gives an approximate upper estimate for the stresses in the foundation. Better
prediction could be obtained by using more sophisticated rock model, e.g. Hoek-Brown.
For this, more field data on the underlying rock is necessary (GSI, RMR, tensile strength
and stiffness).

6.5 Conclusions

A multi-scale finite-element method for simulating the mechanical consequences of the
ASR in large concrete structures has been presented. The multi-scale approach is advan-
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tageous because the macroscopic material behaviour is governed by the mesoscopic ASR
phenomena. Consequently, no drastic assumptions on how the mesoscopic damage evo-
lution affects the effective stiffness of the concrete are required. The multi-scale model
has been implemented in the parallel open-source library Akantu. Meso-scale laboratory
experiments of Multon and Toutlemonde (2006) are numerically simulated as a proof
of concept. The model is able to simultaneously account for the loading due to the
boundary conditions on the macro-scale and for the loading due to the ASR expansion
at the meso-scale. The results, furthermore, demonstrate that the macroscopic stress
state influences the orientation of damage inside the underlying RVEs. The effective
stiffness becomes anisotropic in cases where the cracks are aligned. Comparison of the
multi-scale and the fully detailed macro-scale model shows a fair agreement of results
both for the free and the loaded tests. Although the evolution of the percolated crack-
bands within RVEs is evident, their diffused patterns make the classical homogenisation
concept still applicable.

The performed validation of the multi-scale model suggests its applicability for the
detailed studies of real concrete structures affected by the ASR. Thus, the model was ap-
plied to simulate the behaviour of the ASR-affected Salanfe dam in Western Switzerland.
The parameters of the expansion law were re-calibrated to match the field measurements.
The obtained set of parameters substantially differs from the one matching the acceler-
ated laboratory experiments. A possible reason for the gap between the two sets could
be the different dynamics of the ASR (both in chemistry and physics) happening in the
low temperature range compared to the accelerated laboratory tests. Moreover, the ex-
pansion saturation, commonly seen in laboratory experiments, could not be observed in
the field data, where the expansion is predominantly linear. This fact also suggests that
there is a gap between the laboratory conditions and field. Otherwise, the model could
underestimate the role of temperature in the ASR expansion due to certain factors not
being accounted. The latter comprise the visco-elastic effects, variations in the relative
humidity and ion concentrations within across the dam, etc. To evaluate the possible
contribution of these factors, additional simulations of an expanded numerical model
and supplementary field measurements are necessary.

The structural analysis of the dam revealed some interesting insights. The upstream
drift and the vertical uplift at the level of the dam crest were attributed to the difference
in length between the upstream and the downstream faces rather than the different ASR
products’ strains within a structure. Having the same level of expansion, the longer
downstream face pushes the crest in the upstream direction.

Although the ASR is advanced to the same level within the whole cross-section,
concrete strain is only partially isotropic. The most of isotropic expansion is happen-
ing along the downstream face, while the bottom upstream part has more pronounced
horizontal expansion. Such behaviour was attributed to the sensitivity of the ASR expan-
sion to the external load: the self-weight of the structure partially hinders the evolution
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of horizontal cracks in corresponding RVEs reducing the vertical expansion. Another
anisotropically-expanding area of the dam is its foundation. The vertical strains there
prevail over the horizontal ones due to the restraining effect of the rock below. Given
a competent rock, such expansion constraints could lead to the evolution of compres-
sive stresses few times larger than the ones coming from the self-weight. Given all the
evidence of the ASR anisotropy within a dam, it could be concluded that the common
engineering approach of modelling the ASR through the thermal expansion dictates
unrealistic behaviour to the structure.
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7.1 Conclusions

The current thesis has presented the analytical and numerical studies on the mechanics of
the alkali-silica reaction in concrete performed in the scope of the multi-disciplinary inter-
institutional Sinergia project. These studies were conducted in collaboration with other
Sinergia sub-projects and were partially based on their experimental findings. Three
different scales of concrete were considered: nano, meso and macro. The points of
interest concerned the nature of the ASR loading, the mechanisms responsible for the
initiation and propagation of cracks, the evolution of the effective properties of concrete.
Moreover, the dialogue between the macroscopic behaviour of an affected structure and
its mechanical state at the meso-scale was studied. The final question was asked on the
role of the temperature variation in the progression of the ASR in field conditions.

First, an overview of the existing mechanisms of the ASR expansion available in
the literature was presented. They vary from relatively simple ones, like the osmotic
pressure due to the water uptake by ASR products, to very complex ones, like the
theory of electrical double-layer repulsion forces on the surface of the ASR-gel particles.
Yet, modern science does not have a definitive answer to the question, “Which exact
mechanism causes the ASR expansion and the cracking of concrete?”

Further, a literature review of the existing numerical methods used to model the
ASR at the meso- and macro-scales was given. At the meso-scale, these models were
categorised by the source of the expansion, while at the structural level, the models were
either phenomenological or based on the principles of poromechanics.

In the first study of a single ASR pocket of a nanometer-size, the hypothesis that the
100% volume increase could lead to the evolution of surrounding cracks was investigated.
This value was provided by the colleagues from the Sinergia and was based on their ex-
tensive studies of different ASR products. To analyse this problem, a semi-analytical
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model of an expanding ellipsoidal inclusion encircled by a ring-shaped crack was em-
ployed. An analytical solution was used to estimate the stresses outside the inclusion
in the absence of a crack. When the crack was added, the stress intensity factor was
estimated by integrating the product between the stresses and the specific weight func-
tion over the crack area. This stress intensity factor was used to estimate the maximum
crack radius.

Between all possible inclusion shapes, a spheroid with 1/4 height-radius ratio and
a sphere were distinguished. Given the same expansion, the former causes the highest
stress intensity factor and the latter produces the longest crack. The size of the inclusion
played a crucial role on the crack growing potential. For an inclusion of 1 µm radius
under the expansion of 100%, all spheroidal shapes with aspect ratios above 1/10 were
likely to grow a crack. Flatter shapes caused either a short crack or no crack at all. A
critical inclusion radius was identified, below which no crack growth was expected for
any inclusion’s shape. This size depends on the material parameters and the expansion
value. A further increase in the inclusion size suggested a power-law dependence between
the inclusion size and the maximum crack radius. Independently of the spheroidal shape
or the expansion value, a power-law exponent was about 4/3.

The results of the analytical predictions were verified by the finite element model.
First, the elastic stresses in the inclusion’s vicinity were reproduced by an elastic 3D
model. Then, a crack was added to the model by means of cohesive elements. The
numerical crack size fairly matched the one predicted by the semi-analytical model for
the case of a sphere and a 1/4-spheroid but failed for a penny-shaped inclusion by
predicting no crack evolution. The latter was associated to the interference from the
inclusion.

When the initial stage of the ASR expansion and cracking was studied, the thesis has
proceeded to a more advanced ASR stage, namely the evolution of a crack network. This
phenomenon is considered at the intermediate scale of concrete - the meso-scale. For this,
meso-scale structure of concrete was resolved, distinguishing between the aggregates, the
cement paste and the interfacial transition zone. To represent cracks numerically, two
different approaches were adopted: one used zero-thickness interface elements following a
cohesive law, while the second one modelled cracks by the continuum damage approach.

The goal of the first meso-scale study employing the cohesive zone model was to
investigate the nature of the propagation and percolation of the ASR cracks in a real-
istic meso-scale structure of concrete. This study was done in collaboration with the
colleagues from the Sinergia Sub-project V from Concrete Technology Group at Empa
in Switzerland, who performed laboratory experiments resulting in a set of time-evolving
X-ray tomograms of ASR-affected concrete. The latter captured the evolution of the dis-
placement field accounting for opening and elongation of cracks as well as accumulation
of ASR products. The tomograms were used to build a numerical mesh. Two hypothe-
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ses on ASR-loading and cracking mechanisms were made. The first one stated that the
ASR loading is applied pointwise inside cracks, while the second one stated that the new
crack area is produced due to the elongation of the pre-existing cracks rather than the
nucleation of the new ones. These hypotheses were tested by including them into the
model and verifying their sufficiency in reproducing realistic crack networks. The time-
dependent internal loading was represented by the pairs of oppositely-oriented forces of
equal magnitudes applied at the randomly chosen initial ASR sites, which coincided with
the pre-existing micro-cracks. The latter were modelled by the loops of the pre-inserted
cohesive elements. Application of the pulling forces led to the crack growth. A novel
crack-extension mechanism comprised insertion of cohesive elements at the contours of
existing cracks. New cohesive elements were inserted in smooth loops connecting every
two neighbouring segments of the crack contour. Choice of the elements in a loop was
based on finding the shortest smooth path. The proposed insertion algorithm ensured
the development of a network of localised cracks similar to the ones observed in the
tomograms.

For comparison with the tomographic data, crack statistics and macroscopic strains
were computed. The numerical concrete samples exhibited a gradual expansion increase
followed by the continuous linear expansion growth, which was attributed to the further
opening of the existing cracks and a slowdown in generation of the new ones. A similar
mechanism was suggested to happen in the laboratory specimens. The calibrated nu-
merical model had a good match with the experimental data regarding the expansion,
the crack statistics and patterns. The hypotheses made on the loading and cracking
mechanism were sufficient to reproduce the ASR processes at the meso-scale.

A sensitivity study varying the number of the initial ASR sites and the loading rate
produced interesting results. It appeared that the few initial ASR sites with a high load
are more efficient in growing a crack network and causing macroscopic expansion than the
multiple cracks with a small load. It was attributed to the higher stress concentrations
and hence earlier crack growth and expansion. More than that, the crack networks in
the specimens with fewer initial sites were more localised. In contrast, the specimens
with numerous ASR sites had very diffused crack patterns. It was suggested that a
very diffused crack network could partially accommodate the internal loading and hence
cause less macroscopic expansion.

An additional simulation of a concrete block under uniaxial compression showed
a reduction in the ASR-related expansion along the loading direction. Moreover, a
statistical distribution of the crack-segment orientations showed that the cracks in the
loaded specimen are more aligned with the loading direction. Both these observations
are in fair agreement with the experimental studies available in the literature.

Although the cohesive elements permit realistic representation of the ASR cracks and
facilitate comparison with the tomography data, they have a substantial computational
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cost and could lead to non-convergence. When multiple simulations have to be performed
(e.g. within a Monte Carlo simulation or in a multi-scale framework), the efficiency and
stability of computations play a crucial role. A need in numerous simulations is explained
by the development of a multi-scale model presented in Chapter 6. To improve the
computational characteristics of the meso-scale model, a different modelling approach
was adopted.

In the second meso-scale study, cracks were represented by means of the continuous
damage approach. Not only it was done to make the model computationally cheaper
and more stable, but also to investigate the role of the crack growth on the macroscopic
behaviour of concrete specimens. Namely, the difference in the representation of cracks
by isotropic and orthotropic damage was investigated, and how it affected the macro-
scopic strain. Another question to be answered was on the role of the viscoelasticity on
the damage extent and the homogenised elastic properties of concrete.

To reach the defined goals, two sub-studies were conducted in Chapter 5. In the first
one, a material law with orthotropic damage was introduced. This development allowed
modelling of thin cracks with the stiffness recovery upon self-contact. A 2D model of
a concrete meso-structure was calibrated on the free-expansion laboratory experiments
by matching the macroscopic expansion. This was followed by modelling the uniaxial-
loading experiment. In the direction of the load, the specimen developed positive ex-
pansion, whose values depended on the loading magnitude. Such behaviour reproduced
the laboratory experiments much better than the earlier models with isotropic damage,
which predicted substantial specimen shrinkage under the load. The numerical cracks
were aligned with the loading direction, which is commonly observed in experiments.
The developed model was relatively slow but stable, which made it possible to include
it into the multi-scale framework discussed in Chapter 6.

In the second sub-study, a simple quasi-static FE model of viscoelastic strain-softening
material, which could be easily implemented in a standard FE package, was developed.
This model combined the isotropic continuous damage and viscoelasticity in the cement
paste. The smallest aggregates together with the cement paste were treated as mortar.
A generalised Maxwell chain was adopted as a rheological model and was integrated in
the modified sequentially linear analysis. The resulting approximate solution differed
insignificantly with respect to the exact one, which permitted us to analyse the results
qualitatively. To understand the role of the viscoelasticity in the ASR damaging pro-
cess, the behaviours of specimens with elastic and viscoelastic strain-softening mortars
were compared. It was shown that adding the viscoelasticity to the mortar leads to the
relaxation of stresses and consequent reduction of the damage. The latter, in its turn,
reduces the overall expansion of the specimens. A possible way to increase the macro-
scopic expansion of concrete without significant damage increment in the mortar is to
have more reactive ASR sites in the aggregates, including the small ones. To test this
hypothesis, additional numerical simulations resolving smaller aggregates are necessary.
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Finally, the macroscopic behaviour of ASR-affected structures was studied in Chap-
ter 6. The thesis aimed to understand how it was related to the local state of concrete,
namely its level of cracking and expansion. Moreover, the role of the seasonal temper-
ature variations in the ASR evolution in a structure was questioned. To link the two
scales (meso and macro), the numerical multi-scale approach was adopted. At the meso-
scale, the finite element model with the orthotropic damage representation of cracks
was employed. At the macro-scale, no damage was modelled and the elastic properties
of concrete were extracted from the meso-scale through the numerical homogenisation
procedure. The developed model was verified by simulating the free-expansion and the
loaded laboratory experiments. The model simultaneously accounted for the external
loading due to the boundary conditions at the macro-scale and for the internal loading
due to the ASR expansion at the meso-scale. The results showed that the macroscopic
stress influenced the orientations of the cracks inside the underlying RVEs. The effective
stiffness has become anisotropic in cases where the cracks were aligned.

The developed multi-scale model was used to simulate a cross-section of an ASR-
activated dam. Extra to the mechanical simulations, the heat flow problem was solved
at the macro-scale. The information on the concrete temperature was used to compute
the temperature-dependent ASR-expansion rate. For this study, Salanfe dam in Western
Switzerland was considered. It experiences continuous ASR-related deformations since
it was constructed. The parameters of the ASR-expansion law were calibrated based
on the field data comprising the displacements, the air and the reservoir temperatures,
and the reservoir fluctuations. The identified parameters suggested limited or no effect
of the temperature variations in the cross-section of the dam on the difference in the
ASR expansion. To match the field displacements, almost the same ASR expansion was
applied at all RVEs. The field measurements of the upstream drift and uplift at the
level of the crest were reproduced by the model due to the difference in extension of
the long downstream and short upstream faces. The identified parameters significantly
differed from the ones that were previously calibrated on the accelerated laboratory
experiments. Such a difference could be explained by the different ASR dynamics hap-
pening at low temperatures. The obtained results suggested that the ASR rates observed
in the accelerated laboratory experiments could not be exponentially extrapolated to the
low-temperature range according to Arrhenius law. Otherwise, the model could under-
estimate the role of the temperature on the ASR dynamics due to the several factors
that were not accounted for. The latter comprised the viscoelastic deformations, the 3D
nature of the dam displacements, the variations in the relative humidity and alkalis con-
centration. To evaluate the contribution of these factors, additional model developments
and simulations, as well as the field measurements are required.

Strain at the macro-scale was partially anisotropic, which was related to the differ-
ence in the crack patterns at the meso-scale. The bottom upstream part and the dam
foundation had the strongest anisotropic expansion and also showed crack alignments.
These specific areas were affected by the self-weight and the underlying rock causing a
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constraint that led to the disturbance of the isotropic expansion state. Moreover, the
dam foundation developed high compressive horizontal stresses due to the competent
dam-rock interface. The obtained results had a clear indication that the ASR anisotropy
was significant in massive concrete structures. The conducted study demonstrated that
the common engineering practice of modelling the ASR as thermal expansion was mis-
leading as it did not represent the real complexity of the ASR stress-dependence.

7.2 Outlook

In the current section, we analyse the possible further improvements and the follow-up
work that could be performed based on the presented developments.

The study of the crack growing potential of an expanding nanoscopic ASR inclusion
had certain limitations, which could be addressed in future work. First, the small-strain
theory was considered, limits of which were exceeded by assigning a 100% expansion on
the inclusion. Although the small strain theory still permits a qualitative analysis, more
quantitatively-precise estimates could be obtained by adopting the finite deformations
theory. However, its combination with the principles of linear elastic fracture mechanics
could be complicated.

Moreover, the adopted model assumed that the ASR product remained solid and did
not redistribute upon the crack extension and opening. While this is true for a mature
crystallised ASR product, it might be wrong for the amorphous one. In that case, the
opening of a crack would cause the ASR-product to flow and to reduce the original
pressure. Both analytical and numerical models could be developed for this scenario.
The numerical model would comprise a classical hydro-fracking problem of petroleum
engineering, where the fluid-solid interaction and the mass conservation is taken into
account. As the crack is never full with the ASR products, the two-phase flow shall be
modelled, where one phase would be the ASR gel and another one the air.

Moving one scale above, a cohesive-zone meso-scale model of concrete was considered.
The proposed model succeeded to simulate the growth of cracks in a localised manner.
Nevertheless, the numerical scheme was very sensitive to the changes in the loading.
While a simulation was stable for the loads applied at the one-time-defined positions, it
was diverging if a new loading force was introduced. Such instability partially came from
the stiffness jumps between the opened and closed states of the cohesive elements, which
is particularly inconvenient when different loading scenarios are to be tested. Another
issue of the proposed method is its high computational cost due to the sequentially
linear analysis, which requires numerous elastic solutions within a single loading step.
Therefore, both the stability and efficiency of the solution scheme shall be improved.
One way of doing so is to use more complex iterative solver. In the current work, the
Newton-Raphson algorithm is employed. Instead, Broyden–Fletcher–Goldfarb–Shanno
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(BFGS) algorithm could be tested. Its advantage over the conventional methods is the
approximated Hessian matrix, which does not require assembly and inversion of the
global stiffness matrix at each iteration. This fact is expected to improve both the
stability and the efficiency of the model.

If the convergence is improved, different loading scenarios could be tested. A point-
wise application of the load could be compared with the case where the load is partially
redistributed along the newly opened crack. Comparison of the crack patterns developed
in these two scenarios is called to shed light on the real nature of the ASR loading.

A more ambitious step would be to model the full fluid-structure interaction problem,
where the fluid would be the ASR gel that expands and flows within the crack network.
This direction was partially explored by the author of this thesis by developing a model
based on the Poiseuille flow equation. While the flow was taking place within the crack
network, the fluid pressure was passed to the surrounding solid in the form of external
forces. The fluid and solid parts were modelled separately and later were linked by a
staggered scheme. The solutions were obtained in an explicit dynamic manner, which
imposed a limiting time-step size on both models. Further developments in this direction
were hindered by the few-orders-of-magnitude difference between the time steps of the
fluid and solid problems. One thousand steps of the fluid-flow model corresponded to a
single step of the solid on. A possible way to overcome this problem is the modification
in the solution scheme. For instance, instead of explicitly solving the fluid flow, one
could solve it implicitly. Otherwise, a numerical stabilisation technique could be used
(e.g. Meyer et al., 2012).

For the continuous damage model, the study on the role of viscoelasticity has a
potential extension to account for a larger reaction extent in smaller aggregates. The
conducted study showed that the viscoelasticity is reducing the damage extent in the
cement paste. This reduction is also affecting the macroscopic behaviour of concrete by
reducing its expansion. It was suggested that in order to reach the experimental values
of expansion, more damage and expansion should happen in the aggregates. Although
this hypothesis seems to be convincing, it is not clear if the local damage and expan-
sion of isolated aggregates could be transmitted to the specimen’s borders. Numerical
simulations of the concrete meso-structures with different packing densities could be
tested. Smaller aggregates, which were previously homogenised into the mortar, could
also be resolved. Given a larger extent of the ASR expansion over the aggregates, the
damage extent and the macroscopic expansion should be compared to the laboratory
measurements. This will verify the correctness of the made hypothesis.

Finally, at the macro-scale, there was a major question that was risen by the results of
the dam simulation. It concerned the difference between the parameters of the expansion
law calibrated on the accelerated laboratory experiments and the field measurements.
The model predicted no difference in the reaction extent at its warm and cold areas.
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It has been suggested that the results of the accelerated laboratory tests could not be
exponentially extrapolated to the low-temperature operational range by the Arrhenius
equation. However, zero difference in the ASR extent across the dam still seems counter-
intuitive and contradicts the general field observations. One possible reason is the fact
that the model does not account for the creep effects in the cement paste. It is possible
that the long-term creep is slowly moving the dam’s crest in the downstream direction
and counteracts the ASR-related upstream movement. In this manner, the difference in
the ASR extent between the warm and cold areas could be larger. It could be also due
to the non-homogeneous distribution of the ASR within the cross-section of the dam,
or due to the variations in the relative humidity or alkali concentration, or due to the
two-dimensionality of the proposed model. To test any of these hypotheses, additional
numerical simulations are required. The simplest one would be adding the viscoelasticity
at the meso-scale. It still requires a smart coupling between the orthotropic damage
law and the rheological model. Otherwise, the isotropic viscous-softening behaviour
introduced in Section 5.3 could be used. Extension of the multi-scale model to three
dimensions depends fully on the available computational capacities. A 3D model of a
dam would require numerous three-dimensional RVEs to be solved simultaneously. To
reduce the computational burden, one possible strategy would be to create a database
of RVE states which would relate the input and the output RVE parameters. The
input parameters are the temperature and the deformation of an RVE coming from the
macro-scale. These two quantities fully define the RVE response expressed in a form of
homogenised RVE stress and stiffness, which are the output parameters mentioned above.
Creation of a database of unique input-output pairs could be done before the actual
simulation and thus could be called “database training”. This training could employ
machine learning algorithms. When the database is ready, the RVEs are not necessary
anymore and the macroscopic structure could be efficiently computed. Once constructed,
the database could be kept for the future simulations. Adding more variables to the
model (e.g. relative humidity and alkali concentration) would extend the parametric
space of the database and increase the training time.
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