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Abstract
Energy technologies are subject to dramatic cost changes. Indeed, the recent trend
in investment costs (expressed in [USD/kW]) for the main renewable energy tech-
nologies showed an important cost reduction (e.g. solar PV and wind) or increase
(e.g. hydro-power, geothermal energy) during the last decade. Taking these cost
variations into account within the scope of a prospective energy system model such
as Energyscope is therefore very important. While data concerning well-known en-
ergy technologies like solar PV and wind is widely available, emerging technologies
such as electrolysis and CCUS (carbon capture, utilization and storage) have very
few reliable data. Predicting their future cost is therefore a challenging task. To this
end, the learning curve theory has been used. It has been widely used to model the
cost reduction achieved in the industry via the learning-by-doing process, and can
easily be transposed to energy technologies. The assessment of carefully selected
learning curve functions applied to energy technologies historical data results in im-
portant cost changes until 2050. Indeed, the cost reduction between 2020 and 2050
of the cost-decreasing technologies under study are between 36% (onshore wind) and
74% (residential solar PV), with a mean over the studied technologies that equals
50%.
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1 Introduction

1.1 Description of the Problem

The Energy Center and IPESE group of EPFL have developed the Swiss-Energyscope
calculator. This interactive platform has been created with the aim to enable Swiss
citizen to understand the challenges of the energy transition. The Calculator of ES
is a tool that allows to create your own energy scenario and discover its implications
for Switzerland.
Within the scope of this project, studying the costs of renewable energy source and
have good predictions of future costs is crucial, as cost is a key limiting factor for
their large development. Therefore, there is a need for analyzing the bilateral rela-
tionship of the installed capacity and technological costs, and quantifying the cost
uncertainty ranges for energy technologies in the future.

1.2 Objectives

The objectives of this work are the following:

1. Determine a modelling approach for analyzing the relationship between the
installed capacity and investment cost of the main energy technologies,

2. Collecting historical data in order to test and compare modellings in terms of
outcome and performance,

3. Apply the model in future years in order to generate the cost uncertainty
ranges for energy main technologies, and validating the obtained results by
comparing them to other prediction results found in the literature.

The technologies under study are:

• Residential Solar PV

• Utility-scale Solar PV

• Commercial Solar PV

• Decentralized Solar thermal (CSP)

• Offshore and Onshore Wind

• Total Hydro-power1

• Geothermal energy

• Centralized and Decentralized Heat Pumps

• ALK, PEM and SOEC Electrolysis

• CO2 capture

1Total hydro-power is defined as the sum between run-of-river hydro and pumped-storage hydro

1
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2 Methods

2.1 Introduction to Learning Curves

The learning curve theory is commonly used to estimate the relationship between
the technology cost and the cumulative installed capacity of this same technology. It
assumes that the cost of a technology decreases with time according to the installed
capacity thanks to learning-by-doing. The present work is only focusing on cost-
related learning curves, but they may also model the time to produce a single unit,
number of units produced per time interval, or the percentage of non-conforming
units.
The main univariate cost-related learning curve models are summarised in what
follows [1].

2.1.1 Log-linear model and modifications

Log-linear (i.e. Wright) : y = C1x
b (1)

Stanford-B : y = C1(x+B)b (2)

DeJong’s : y = C1[M + (1−M)xb] (3)

S-curve : y = C1[M + (1−M)(x+B)b] (4)

Plateau : y = C + C1x
b (5)

Knecht : y =
C1x

b+1

1 + b
(6)

where C1 is the starting cost and b is the slope of the learning curve (−1 < b < 0).
And historically, B is the number of units of prior experience, M (0 ≤M ≤ 1) is the
incompressibility factor that informs the fraction of the task executed by machines
and C is describing the steady-state worker’s performance.

Wright’s (or log-linear) form (Eq. 1 and 13) is the most commonly used learning
curve function. It assumes a constant learning rate LR over time. The LR is defined
as the cost reduction factor occurring when the capacity is doubled. In the case of
Wright’s form, it can be expressed as:

LR = 1− 2b (7)

2.1.2 Exponential model

Knecht-2 : y = C1x
b exp(cx) (8)

where c is a constant to identify.
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2.1.3 Other models

Moreover, less usual learning curve forms, such as the so-called Boone’s form, which
is a decreasing learning curve model [9], and the Sigmoid function, may also be
interesting candidates within the scope of this study:

Boone[3] : y = C1x
b

1+xc (9)

Sigmoid : S(x) =
1

1 + exp(−x)
(10)

Regarding the Sigmoid function, the following expression is actually considered,
which differs from Eq. 10 by the addition of some parameters as well as an offset:

Parametric Sigmoid : y =
a

b+ exp(−cx)
+ d (11)

2.1.4 Assessing technological improvement

However, learning curve theory is not limited to these functions, and may therefore
take various forms. For instance, six learning curve forms for assessing technological
improvement were identified by Nagy et al. (Eq. 12 to 17) [30]. They are linking
the specific investment yt [USD/kW] of a technology at year t and the cumulative
installed capacity xt [GW] (or respectively qt [GW], the yearly installed capacity
during year t).

Moore[29] : log(yt) = a+ bt+ n(t) (12)

Wright[40] : log(yt) = a+ b log(xt) + n(t) (13)

Lagged Wright : log(yt) = a+ b log(xt − qt) + n(t) (14)

Goddard[7] : log(yt) = a+ b log(qt) + n(t) (15)

SKC[35] : log(yt) = a+ b log(xt − qt) + c log(qt) + n(t) (16)

Nordhaus[31] : log(yt) = a+ b log(xt) + ct+ n(t) (17)

where a, b and c are constants to identify and n(t) is the noise term.
The term xt−qt observable in Eq. 14 and Eq. 16 represents the cumulative capacity
until year t− 1. This is a way to emphasize the variable lag that may occur in the
learning-by-doing process.
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2.2 Methodology

2.2.1 General Method

Learning curve forms and parameters were chosen for each technology by solving a
non-dynamic estimation of the learning curve function parameters using GEKKO
library (Python) or AMPL depending on the learning curve expression (see Table
7 for the ones solved with GEKKO and Table 8 for the ones solved with AMPL)2.
The minimisation of squared errors between the learning curve function f̂ and the
discrete function f of real data points was therefore tested for various learning curve
forms. It is illustrated by Eq. 18.

argmin
α,β,...

SE = {(α, β...)|min
∑
x∈X

(f̂(x, α, β...)− f(x))2} (18)

Furthermore, the acceptance of the learning curve depends on:

1. the plausibility analysis of the estimated cost in 2050;

2. the index R2.

The first requirement was to ensure a feasible cost for the 2018-2050 period,
meaning that the function should be non-zero and non-negative. Moreover, the
shape of the curve should make sense. For instance, one could not accept a non-
monotonic function, or a function that suddenly becomes constant. Then, the learn-
ing curve that maximised the coefficient of determination R2, defined by Eq. 19,
was selected.

R2 = 1−
∑

i(yi − fi)2∑
i(yi − y)2

(19)

Here yi represents the real data values and fi the predicted data.

2.2.2 Important Assumptions and Remarks

Chronology of the study This study has begun with a first focus on a priori
simple learning curve expressions. These are the linear, logarithmic, exponential,
power law (i.e. Wright’s form) and 2nd order polylogarithmic functions. There ex-
plicit expression is showed in Table 7. These regressions have been performed using
the GEKKO library [2], and the calculation of R2 has been done via SciPy library
[4], using scipy.stats. At that point, these intermediary results were used for a first
implementation in Energyscope.

Once these first results were assessed, some other learning curve functions were
added to the analysis in order to improve the quality of the overall results. These
are showed in Table 8. Regressions on these more complicated expressions could not
be handled with GEKKO, therefore they have been performed by our own codes in

2The Python and AMPL files are available on this repository

4
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AMPL language. Historical data of each technology are stored in separated data
files, while each learning curve function has its own model file. The optimisation
problem was squared errors minimisation exactly as formulated in Eq. 18.

Figure 1: Structure of the AMPL files

Prospective Capacities The prospective capacities were chosen within the scope
of the net-zero energy system objective by 2050. To this end, the main source comes
from the Net-Zero by 2050 Roadmap from IEA [13]. The missing data are collected
from a bunch of other literature given below. It is therefore important to understand
that all the results that are given in this work strongly rely on the assumption that
the energy technology installation pathway until 2050 should be close to the one
predicted by IEA in its net-zero roadmap. This is the strong objective on which
Energyscope is based.
Reports such as IEA’s Net-Zero Roadmap often give milestones, typically in 2030
and 2050, and sometimes also in 2040. A linear interpolation between these mile-
stones have been performed in order to estimate the yearly capacities between 2020
and 2050. In this work, learning curves are typically generated based upon the 1985-
2020 data, especially 2010-2020 where the majority data are available (see Section
3.1) and then are applied to the 2021-2050 period with the interpolated capacities.

Cost Unit Regarding investment costs, they are all given in [USD2018/kW]. Data
from the literature have been converted to this unit by taking into account currency
change rates and inflation rates between their publication date and 2018.

Assumptions

• Residential, Utility-scale and Commercial PV

The investment cost used for the learning curve of the residential PV cost is the
one of the Swiss market [23], while the cost used for commercial PV is the one
of the French market, due to lack of data concerning global or Swiss-market cost.
Additionally, the learning curve of residential PV has been generated on the 2013-
2020 period due to lack of data on older periods. The future installed capacities
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have been estimated by considering that the shares of residential, utility-scale and
commercial solar PV would be constant: they have been set at 13.51%, 55.43% and
30.10% respectively (with respect to the total solar capacity). These ratios are the
means over the 2015-2020 period. Note that these ratios do not sum up to 100%,
the rest being indeed covered by off-grid PV. Capacity values are given in Table 1.

Year Total PV
Capacity [GW]

Residential PV
Capacity [GW]

Utility-scale PV
Capacity [GW]

Commercial PV
Capacity [GW]

2030 4956 670 2747 1492
2040 10980 1484 6087 3305
2050 14458 1954 8014 4352

Table 1: Prospective capacities for Residential, Utility-scale and Commercial PV

• Onshore and Offshore Wind

Over the past 10 years, the share of offshore wind over total wind energy has in-
creased from 1.7% to 4.7%. This increasing trend has been taken into account in
the prospective study, since the cost of onshore and offshore wind farms are signif-
icantly different. IRENA’s Future of Wind report [19] gives an estimation of the
onshore and offshore wind capacities shares in 2030 and 2050, which are applied to
IEA Net-Zero Roadmap total wind capacities, see Table 2.

Year Share of
Onshore Wind [%]

Share of
Offshore Wind [%]

Total Wind
Capacity [GW]

Onshore Wind
Capacity [GW]

Offshore Wind
Capacity [GW]

2030 88.68 11.32 3101 2750 351
2050 83.45 16.55 8265 6898 1367

Table 2: Prospective shares and capacities of onshore and offshore wind

• Thermal CSP

The decentralised thermal solar is approximated by thermal CSP in EnergyScope.

• Hydro-power

The total hydro-power capacity refers to the sum between run-of-river hydro-power
and pumped-storage hydro-power. For instance, the future capacities have been
estimated by summing the run-of-river capacity prediction from IEA [13] and the
pumped-storage capacity prediction from IRENA [20].

• Ground-Source Heat Pumps

GSHP data is used to approximate centralized heat pumps in EnergyScope. GSHP
learning curve was computed based on Swiss market capacities and costs over the
period 1985-2008 [24] due to lack of better data. As these costs only included
the heat pump purchase cost, they are multiplied by the bare module factor that
is assumed to be 3.6 [36] in order to estimate the total investment, including the
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installation. The prospective GSHP capacity in 2050 has been estimated by IEA,
reaching 739 GWth in terms of the global GSHP capacity by 2050 [14]. The ratio of
the Swiss GSHP capacity over the global one amounts to 3.26% [27] [28]. Therefore,
the Swiss GSHP capacity in 2050 is estimated to 24 GWth.

• Decentralized Heat Pumps

The same Wright’s learning rate as GSHP has been applied to DHP. Swiss market
data is also used for prospective capacities. The Swiss Energy Office (SFOE) esti-
mated the DHP electricity consumption in Swiss buildings in 2000, 2019 and 2050
[33] at 0.6, 2.3 and 8.7 TWhel respectively. Assuming a COP of 4.2 and a capacity
factor of 0.17, this consumption can be converted to a power capacity of 6.49 and
24.54 GWth in 2019 and 2050 respectively. 2018’s capacity has been obtained by
linear interpolation between years 2000 and 2019.

• CO2 capture

The carbon capture learning curve has been computed with nine historical data
points and one prospective data point in 2026 [17], estimated at 44 USD2018/tCO2

.
The latter is added in order to increase the reliability of the result by compensating
the large uncertainty of the few collected data.

• Electrolysis

As electrolysis is an emerging technology, very limited data are available at the time
of the study. Therefore, we listed all the collected single costs of various plants
instead of taking their annual arithmetic mean (see Section 3.1). Prospective shares
[10] and capacities are given in Tables 3 and 4. Prospective data points in 2030
and 2050 have been taken from IEA’s Net Zero Roadmap by 2050 [13] (see Table 6)
and have also been added for the learning curve computation in order to get more
reliable results.

Year ALK Electrolysis
Share [%]

PEM Electrolysis
Share [%]

SOEC Electrolysis
Share [%]

2030 35 23 13
2050 37 32 30

Table 3: Prospective shares of ALK, PEM and SOEC Electrolysis

Year Total Electrolysis
Capacity [GWel]

ALK Electrolysis
Capacity [GWel]

PEM Electrolysis
Capacity [GWel]

SOEC Electrolysis
Capacity [GWel]

2030 850 297.5 195.5 110.5
2045 3000 1093 892.5 772.5

Table 4: Prospective capacities of ALK, PEM and SOEC Electrolysis

Finally, the power-to-hydrogen efficiencies used in order to convert electrical power
into thermal power are given in Table 5 [16].
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Electrolysis Technology Efficiency [%]
ALK 66.5
SOEC 77.5
PEM 58.0

Table 5: Power to hydrogen efficiencies of ALK, PEM and SOEC Electrolysis
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3 Data

3.1 Historical Data

The historical data that has been used is represented on the following figures (one
figure per technology). The data sources are given in the corresponding figure cap-
tion. Future capacities predictions have been collected in the literature and are
shown in Table 6.

2013

2014

2015
2016

2017

2018

2019

2020

30 40 50 60 70 80 90 100
2400

2600

2800

3000

3200

3400

3600

3800

Cumulative Capacity [GW]

In
ve

st
m

en
t C

os
t [

U
SD

 20
18

 /k
W

]

2010

2011

2012 2013 2014

2015

2016

2017
2018

2019

2020

2 3 4 5 6 7 8 9
100

2

2000

3000

4000

5000

6000

7000

8000
9000

Cumulative Capacity [GW]

In
ve

st
m

en
t C

os
t [

U
SD

 20
18

 /k
W

]

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

8 9
10

2 3 4 5 6 7 8 9
100

2 3 4 5 6

1000

1500

2000

2500

3000

3500

4000

4500
5000

Cumulative Capacity [GW]

In
ve

st
m

en
t C

os
t [

U
SD

 20
18

 /k
W

]

Figure 2: Historical data of residential PV (left) [15] [23], commercial PV (middle)
[15] [23] and utility-scale PV (right) [15] [23]
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Figure 3: Historical data of CSP (left) [22] [23] onshore wind (middle) [22] [23] and
offshore wind (right) [22] [23]
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Figure 4: Historical data of GSHP (left) [24] and geothermal energy (right) [22] [23]
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Figure 5: Historical data of total hydro-power (left) [15] [23] and carbon capture
(right) [18] [17]. Mtpa: Million tonne per annum.
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Figure 6: Historical data of ALK Electrolysis (left) [11] [6] PEM Electrolysis (middle)
[12] [6] and SOEC Electrolysis (right) [12] [6]

For ALK electrolysis, PEM electrolysis, SOEC and carbon capture, the very low
amount of data allows us to represent each data point rather than the mean (as it
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is the case of other technologies, where each yearly data point is actually the mean
of a several hundreds or thousands of collected data). Note that the data points
of these four technologies are therefore aligned on the same vertical line when they
belong to the same year (as for a fixed year the cumulative capacity is fixed too).

3.2 Future Capacities Predictions

Future capacities predictions have been collected in the literature and are shown in
Table 6.

Technology Year Region Predicted Capacity
or Production Unit Source

Total PV 2030 Global 4956 [GW]
IEA-NZ-2050 [13]Total PV 2040 Global 10980 [GW]

Total PV 2050 Global 14458 [GW]
CSP 2030 Global 73 [GW]

IEA-NZ-2050 [13]CSP 2040 Global 281 [GW]
CSP 2050 Global 426 [GW]
Total Wind 2030 Global 3101 [GW]

IEA-NZ-2050 [13]Total Wind 2040 Global 6525 [GW]
Total Wind 2050 Global 8265 [GW]
Total Electrolysis 2030 Global 850 [GW]

IEA-NZ-2050 [13]Total Electrolysis 2040 Global 2400 [GW]
Total Electrolysis 2050 Global 3000 [GW]
GSHP 2050 Global 739 [GWth] IEA [14]
Geothermal 2030 Global 52 [GW]

IEA-NZ-2050 [13]Geothermal 2040 Global 98 [GW]
Geothermal 2050 Global 126 [GW]
HP in buildings 2050 Switzerland 8.7 [TWhel/year] OFEN [33]
Carbon capture 2030 Global 1670 [Mtpa] IEA-NZ-2050 [13]Carbon capture 2050 Global 7600 [Mtpa]
Hydro
(excl. pumped storage) 2030 Global 1804 [GW]

IEA-NZ-2050 [13]Hydro
(excl. pumped storage) 2040 Global 2282 [GW]

Hydro
(excl. pumped storage) 2050 Global 2599 [GW]

Pumped hydro storage 2030 Global 225 [GW] IRENA [20]Pumped hydro storage 2050 Global 325 [GW]

Table 6: Future Capacities or Yearly Productions found in the literature

As explained in the assumptions, it was decided to linearly interpolate these
milestones. This means that between two milestones (e.g. between 2020 and 2030,
and then between 2030 and 2050) the annual capacity addition is constant.
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4 Results and Calibration

4.1 Preliminary Learning Curve Choice

Even if the usual learning curve forms are known, some other very usual regression
expressions were tested in order to test the accuracy of learning curve theory. The
tested expressions are listed in Table 7.

Type Expression
Linear y = α + βx
Logarithmic y = α + β log(x)
Exponential log(y) = α + βx
Log-linear (Wright) log(y) = α + β log(x)
2nd Order Polylogarithmic log(y) = α log(x) + β log(x)2 + γ

Table 7: Expressions of preliminary regressions

The results in terms of R2 and corresponding projected costs in 2050 of all expres-
sions for each technology for are given in the Appendix as Table 13. Regressions
that are considered as being the better fit are showed in bold. More details on the
literature results given in Table 13 ("cost in 2050" column) are showed in Table 12.

4.2 Assessment of more complex learning curve models

In addition to the ones presented in Table 7, the models presented in Table 8 are
assessed in what follows. The study is restricted to these four additional learning
curve forms (not counting Wright that has already been treated in Section 4.1) for
the sake of simplicity. Indeed, after some tests to observe which models were fitting
well the data under study, the choice of the four candidates has been motivated by
the variety of expressions, in order to get a rich set of results.

Type Expression
Log-linear (Wright) y = C1x

b

S-curve y = C1[M + (1−M)(x+B)b]
Plateau y = C + C1x

b

Boone y = C1x
b

1+xc

Parametric Sigmoid y = a
b+exp(−cx) + d

Table 8: Learning curve models

The Table containing the results in terms of R2 and cost in 2050 is available as
Appendix 14, where the learning curve functions that are considered as being the
better choice are showed in bold, and the information about the parameters of all
learning curve functions presented in Table 8 is available as Appendix 15.
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4.2.1 Learning curves visualisation

For each technology, all the learning curves predicted by the expressions of Table
8 are plotted in this section. The historical data is represented by black dots, and
the curves ending point is coinciding with the predicted capacity for 2050 (on the
x-axis).
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Figure 7: Learning curves visualisation for residential PV (left), commercial PV
(middle) and utility-scale PV (right)
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Figure 8: Learning curves visualisation for CSP (left), onshore wind (middle) and
offshore wind (right)

Note: for CSP, Boone’s and Plateau curves are coinciding.
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Figure 9: Learning curves visualisation for GSHP (left) and geothermal energy
(right)

Note: for GSHP, Boone’s and Sigmoid curves are coinciding.
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Figure 10: Learning curves visualisation for total hydro-power (left) and carbon
capture (right)
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Figure 11: Learning curves visualisation for ALK electrolysis (left), PEM electrolysis
(middle) and SOEC electrolysis (right)

One can observe an interesting variety of curves for each technology. As explained
earlier, non-monotonic and partly constant curves cannot be kept for further anal-
ysis. The final choice of the learning curve is given in Table 9 and a justification of
why some learning curve could not be chosen is given in Table 14.

4.2.2 Learning rates visualisation

The learning rates, which are defined as the cost reduction observed when the ca-
pacity is doubled, are plotted in this section for each learning curve expression for all
technologies. As seen previously, Wright’s form as a constant learning rate, whereas
other functions may have varying learning rates over time. A positive learning rate
is associated to a cost reduction. Here, we stick to the mathematical definition and
allow negative learning rates to illustrate a cost increase.
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Figure 12: Learning rates visualisation for residential PV (left), commercial PV
(middle) and utility-scale PV (right)
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Figure 13: Learning rates visualisation for CSP (left), onshore wind (middle) and
offshore wind (right)

Note: for CSP, Boone’s and Plateau curves are coinciding.
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Figure 14: Learning rates visualisation for GSHP (left) and geothermal energy
(right)

Note: for GSHP, Boone’s and Sigmoid curves are coinciding.
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Figure 15: Learning rates visualisation for total hydro-power (left) and carbon cap-
ture (right)
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Figure 16: Learning rates visualisation for ALK electrolysis (left), PEM electrolysis
(middle) and SOEC electrolysis (right)

4.3 Final Learning Curves Parameters Values and Validity
Ranges

After analysing a large variety of candidates for each technology, the expressions
and parameters that are finally selected as well as their respective validity ranges
are summarised in Table 9. A justification of this choice can be found in Table 14.
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Technology Model Expression Parameters Validity range [GW]

Onshore Wind Wright log(c) = α + β log(Q)
α = 8.7969
β = -0.2337 178 - 6898

Offshore Wind Plateau c = α + γQβ

α = -2849200
β = -0.000211753
γ = 2855210

3 - 1368

Residential PV Wright log(c) = α + β log(Q)
α = 9.5926
β = -0.4103 27 - 1954

Utility-scale PV Wright log(c) = α + β log(Q)
α = 9.2414956077
β = -0.36978581295 8 - 8014

Commercial PV S-curve c = γ[δ + (1− δ)(Q+ α)β]

α = -16.8468
β = -0.574336
γ = 18146.3
δ = 0.0368012

21 - 4352

CSP Wright log(c) = α + β log(Q)
α = 9.2176319436
β = -0.23914138084 1.3 - 426

GSHP Boone c = αQ
β

1+
Q
γ

α = 5571.67
β = -0.501507
γ = 10094400

0.020 - 24.1

Decentralized HP Wright log(c) = α + β log(Q)
α = 7.8974
β = -0.5972 6.22 - 24.5

Geothermal Boone c = αQ
β

1+
Q
γ

α = 7597.11
β = -81.6475
γ = 0.0409338

10 - 126

SOEC Electrolysis Logarithmic c = α + β log(Q)
α = 1577.406647
β = -122.94632644 6.05e-4 - 837

PEM Electrolysis S-curve c = γ[δ + (1− δ)(Q+ α)β]

α = -0.0031024
β = -0.446522
γ = 648.199
δ = 0.682924

5.18e-3 - 668

ALK Electrolysis S-curve c = γ[δ + (1− δ)(Q+ α)β]

α = -0.0886337
β = -0.129458
γ = 744.529
δ = 0.488405

88.6e-3 - 886

Carbon Capture Plateau c = α + γQβ

α = -44898.2
β = -0.000189357
γ = 45008.9

13 - 7600 [Mtpa]

Total hydropower Plateau c = α + γQβ

α = -5750.07
β = 0.286223
γ = 958.715

1027 - 2924

Table 9: Learning curves parameters, expressions and validity ranges

4.4 Summary Graph of Prospective Costs

Figure 17 shows the historical and prospective costs, as well as the learning curve,
for all technologies that are under study.
In order not to overload Figure 17, only the first and last years of historical data are
labelled. Except for electrolysis technologies and carbon capture, which have several
points per year (showed due to the low amount of data). These four technologies
(ALK, PEM, SOEC and carbon capture) have one label per year. Note that the
data points of these technologies which belong to the same year are therefore aligned
on the same vertical line (as for a fixed year the cumulative capacity is also fixed).
The right y-axis and the top x-axis are relative to carbon capture only, while the
left y-axis and the bottom x-axis are relative to other technologies.
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Figure 17: Summary Graph of the Results
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4.5 Cost reduction between 2020 and 2050

Cost reductions (or rise in the specific cases of geothermal energy and total hydro-
power) between 2020 and 2050 are summarised in Table 10.

Technology Cost in 2020
[USD2018/kW]

Cost in 2050
[USD2018/kW] Cost reduction [%]

Residential PV 2443 654 73.21
Utility-scale PV 857 371 56.71
Commercial PV 1309 810 38.10
CSP 4448 2368 46.76
Onshore Wind 1316 838 36.32
Offshore Wind 3092 1648 46.72
GSHP 29541 1129 61.77
ALK Electrolysis 8652 522 39.67
SOEC Electrolysis 11782 750 36.33
PEM Electrolysis 10352 454 56.14
Total hydro-power 1816 3663 -101.71
Geothermal 4338 6683 -54.05
CO2 capture 791 35 55.70

Table 10: Cost reduction between 2020 and 2050

Excepting total hydro-power and geothermal energy, which actually have an
increasing trend, the cost reduction mean between 2020 and 2050 of these 11 tech-
nologies is 49.77%. The higher cost reduction is achieved by residential PV with
73.21%, whereas the lowest one is achieved by onshore wind with 36.32%.

1Estimation via our learning curve due to lack of data
2Mean between the 2020’s data points
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5 Discussion of the Results

5.1 Comparison with Literature Results

The results of this study have been compared to the ones from the literature ac-
cording to two main results: the technologies learning rates [%] and the investment
costs [USD2018/kW] in 2050. This comparison is shown in Tables 11 and 12. Some
technologies may be missing from one of these tables due to lack of reliable result
in the literature. However, each technology is at least present in one of these two
tables.

Technology This report Learning rates from literature [%]
Res. PV 24.75 23.83[38] 203 [37] 233 [34] 11 - 243 [26]
Utility-scale PV 22.61 34 [23]
CSP 15.28 22 [23] 7 [37] 10 - 23 [26]
Onshore Wind 14.96 17 [23] 5 [37] 12 [34]
Offshore Wind 10.22 - 25.39 9 [23] 5 - 11 [37] 12 [34]
ALK Electrolysis 2.6 - 18.61 9 [5]
SOEC Electrolysis 3.4 - 11.4 15 - 25 [8]
PEM Electrolysis 0.66 - 21.02 13 [5]
GSHP 29.36 35 [25] 5 - 17 [26]
Dec. HP 33.89 35 [25] 5 - 17 [26]
Geothermal -26.86 - -5.65 5 [37]
Carbon capture 7.29 - 17.04 2.1 - 5.0 [37] 6.45 - 11.35 [39]
Hydropower -95.85 - -56.39 1 [37] 1.4 [34]

Table 11: Learning rates found in the literature

Technology This report Investment costs results from literature [USD2018/kW]
Res. PV 654.48 3403 [13] 300 - 16003 [41] 533 - 984 [32] 396 - 1096 [37]
Utility-scale PV 371.48 472 - 761 [32] 294 - 904 [37]
Commercial PV 810.26 510 - 894 [32] 328 - 1096 [37]
CSP 2367.91 2689 - 6648 [32] 2475 - 5548 [37] 1600 - 5225 [41]
Onshore Wind 838.08 1300 [13] 514 - 882 [32] 825 - 1989 [37] 1000 - 1700 [41]
Offshore Wind 1647.52 1420 [13] 1494 - 2660 [32] 1446 - 5481 [37] 1525 - 3610 [41]
ALK Electrolysis 521.85 200 - 700 [16] < 200 [21]
SOEC Electrolysis 750 500 - 1000 [16] < 300 [21]
PEM Electrolysis 453.93 200 - 900 [16] < 200 [21]
Hydropower 3663.01 2141 - 2478 [32] 1209 - 3955 [37]
Geothermal 6682.74 4240 - 5592 [32] 2260 - 12588 [37]

Table 12: Investment costs in 2050 found in the literature

Note: In Tables 11 and 12, the notation "Value 1 - Value 2" corresponds the the
minimum and maximum values. When it concerns the "This report" data, it is due
to the fact that some learning curves have varying learning rates. When it concerns
literature results, it means that authors have mentioned different sub-categories of
the considered technology.

Obviously, some of these results may not be in line with literature results. Even
if these have been taken into account during the final learning curve step choice, the

3Total PV
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set of learning curves functions, the assumptions that we have made and the fact
that we use the most recent data may induce major differences with other literature
results. One should be aware that the uncertainty on all of these results may be very
important, as the cost of a technology depends on so many parameters that may
know dramatic modifications until 2050. For example, the impact of Swiss subsides
on these technologies cost until 2050 would be a very interesting topic to further
continue this work.

5.2 Limitations and further possible improvements

In order to further improve the limitations of the conducted work, following ideas
could be addressed:

• Propose a different interpolation method than the linear one to compute
prospective capacities

By taking the example of electrolysis (both ALK, PEM and SOEC), one can
see on Figure 17 that the gap between the 2020 and 2021 points is really huge.
This is due to the fact that IEA’s predictions in terms of electrolysis capacities
are really massive with respect to the current ones. The linear interpolation
there generates a very unrealistic capacity evolution that starts in 2020 (order
of magnitude: the capacity addition in 2020 is 10’000 larger than the ones
of 2019, and the installed capacity is multiplied by a factor between 100 and
1000 within a year depending on the electrolysis technology). Consequently,
a S-curve interpolation may be much more relevant, but it is also much more
complicated to choose its parameters (it could be a whole study in itself, es-
pecially regarding very uncertain technologies like electrolysis).

• Add some missing technologies as data becomes more widely available

Originally, this study included some additional technologies that are expected
to play a major role in future energy systems, but for which data is currently
very difficult to find. These technologies were the followings: CO2 sequestra-
tion, natural gas storage, wood gasification, cogeneration, methanation and
H2 storage. A further improvement would be to include these technologies as
soon as reliable data can be found.

• Enrich the learning curve functions set thanks to machine learning

Even if this method may look very non-standard, it may be interesting to
try some machine learning regression methods on our data. Indeed, one could
use methods like SVR (support vector regression) or GMR (Gaussian mixture
regression) to generate additional regression functions that may be interesting
candidates. However, it looked much safer to focus on learning curve theory,
this is why it has not been done in this work.

• Update data and see how the model is performing
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In some years, this model will probably have to be updated, it will be the
occasion to assess its performances and see if some learning curve functions
may be further kept, by adding the new historical points.

• Perform an uncertainty analysis on the obtained results

An interesting complement to our result would be to have the 95% confi-
dence range (e.g. in terms of cost in 2050 or learning rate). In our case, the
original data does not always present a confidence interval, thus making such
an analysis more difficult.

• Perform a train/test analysis

With longer time series (e.g. 30 years with data), the data could be split
into a training set (e.g. 15 first years) and a testing set (e.g. 15 last years).
The model could then be trained on the training set and tested on the testing
set in order to verify its accuracy.
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6 Conclusions
To conclude, the dramatic predicted cost variation between 2020 and 2050 show
the relevance of including varying investment costs into Energyscope. Moreover,
the variety of selected learning curve forms show that considering a large set of
functions is necessary to ensure good predictive performances.
The investment cost of hydro-power and geothermal energy is expected to increase.
Indeed, hydro-power cost is doubling between 2020 and 2050 (from 1816 USD/kW to
3663 USD/kW), while geothermal energy cost increase is more than 50% (from 4338
USD/kW to 6683 USD/kW). This can be explained by the fact that water streams
and places to drill are more and more difficult to find, and therefore the associated
cost should increase. On the other hand, all other studied technologies investment
costs (Solar, Wind, HP, Electrolysis, CO2 capture) are expected to decrease a lot
in future years. The mean cost reduction between these technologies being 50%.
The most impressive cost increase is achieved by Residential PV, with 73% cost
reduction between 2020 and 2050 (from 2443 USD/kW to 654 USD/kW).
However, these results are estimation that were subject to several assumptions, thus
leading to important uncertainties. This work can therefore be used as a starting
point in future years, when new data points are available and can be compared to
the obtained results.
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7 Appendices

Technology Expression Cost in 2050
[USD2018/kW] R2

Cost in 2050
from literature
[USD2018/kW]

Onshore Wind Linear -5885.81 0.962

514 - 1989
Onshore Wind Logarithmic 365.92 0.922
Onshore Wind Exponential 16.51 0.959
Onshore Wind Wright 838.08 0.902

Onshore Wind 2nd order
polylogarithmic 191.53 0.966

Offshore Wind Linear -112’911 0.724

1420 - 5481
Offshore Wind Logarithmic -1329.59 0.600
Offshore Wind Exponential 1.500E-7 0.698
Offshore Wind Wright 1156.54 0.549

Offshore Wind 2nd order
polylogarithmic 1.86 0.620

Residential PV Linear -36’525 0.861

340 - 1600
Residential PV Logarithmic -228.53 0.946
Residential PV Exponential 3.996E-3 0.899
Residential PV Wright 654.48 0.965

Residential PV 2nd order
polylogarithmic 9019.92 0.965

Utility-scale PV Linear -45314.27 0.736

294 - 904
Utility-scale PV Logarithmic -1796.64 0.984
Utility-scale PV Exponential 1.81e-10 0.851
Utility-scale PV Wright 371.48 0.977

Utility-scale PV 2nd order
polylogarithmic 134.25 0.991

Commercial PV Linear -45657.12 0.463

328 - 1096
Commercial PV Logarithmic -3078.04 0.720
Commercial PV Exponential 2.19e-8 0.563
Commercial PV Wright 35.95 0.940

Commercial PV 2nd order
polylogarithmic 28975.16 0.981

CSP Linear -249079 0.673

1600 - 6648
CSP Logarithmic -791.30 0.660
CSP Exponential 4.54E-10 0.677
CSP Wright 2367.91 0.647

CSP 2nd order
polylogarithmic 575.76 0.678

ALK Electrolysis Linear 450.00 0.170

< 200 - 700
ALK Electrolysis Logarithmic 450.00 0.229
ALK Electrolysis Exponential 450.00 0.183
ALK Electrolysis Wright 450.00 0.238
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ALK Electrolysis 2nd order
polylogarithmic inf 0.271

PEM Electrolysis Linear 550.00 0.051

< 200 - 900
PEM Electrolysis Logarithmic 550.00 0.176
PEM Electrolysis Exponential 550.00 0.056
PEM Electrolysis Wright 33.12 0.373

PEM Electrolysis 2nd order
polylogarithmic - -

SOEC Electrolysis Linear - -

< 300 - 1000
SOEC Electrolysis Logarithmic 750.00 0.196
SOEC Electrolysis Exponential 750.00 0.084
SOEC Electrolysis Wright 0.44 0.501

SOEC Electrolysis 2nd order
polylogarithmic - -

GSHP Linear - -

-
GSHP Logarithmic -26863.20 0.941
GSHP Exponential - -
GSHP Wright 661.89 0.875

GSHP 2nd order
polylogarithmic 36.81 0.982

Geothermal Linear 22787.40 0.075

2260 - 12588
Geothermal Logarithmic 8350.43 0.075
Geothermal Exponential 706998.77 0.076
Geothermal Wright 13299.89 0.075

Geothermal 2nd order
polylogarithmic 2.107e12 0.053

Carbon capture Linear -157.52 0.310

-
Carbon capture Logarithmic 28.95 0.223
Carbon capture Exponential 1.55 0.308
Carbon capture Wright 34.27 0.197

Carbon capture 2nd order
polylogarithmic 3.30 0.414

Total hydro Linear 4962.13 0.650

1209 - 3955
Total hydro Logarithmic 3637.54 0.659
Total hydro Exponential 3.802e9 0.634
Total hydro Wright 6091.12 0.645

Total hydro 2nd order
polylogarithmic 79.37 0.681

Table 13: Results in terms of R2 and 2050’s cost of the preliminary regressions
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Technology Form Cost in 2050
[USD2018/kW] R2 Remark for assessment

Cost in 2050
from literature
[USD2018/kW]

Onshore Wind Wright 838.08 0.902

514 - 1989
Onshore Wind S-curve 302.78 0.949 2050 cost not in range
Onshore Wind Plateau 386.39 0.921 2050 cost not in range
Onshore Wind Boone 455.98 0.966 2050 cost not in range
Onshore Wind Sigmoid 803.90 0.963 too rapidly constant
Offshore Wind Wright 1156.54 0.549 2050 cost not in range

1420 - 5481
Offshore Wind S-curve 1072.61 0.581 2050 cost not in range
Offshore Wind Plateau 1647.52 0.448
Offshore Wind Boone 2122.72 0.716 non-monotonic
Offshore Wind Sigmoid 1736.24 0.731 too rapidly constant
Residential PV Wright 654.48 0.965

300 - 1600
Residential PV S-curve 1184.62 0.974
Residential PV Plateau 1813.22 0.972 2050 cost not in range
Residential PV Boone 1829.78 0.972 2050 cost not in range
Residential PV Sigmoid 2322.71 0.969 2050 cost not in range
Utility-scale PV Wright 371.48 0.977

294 - 904
Utility-scale PV S-curve 214.72 0.991 2050 cost not in range
Utility-scale PV Plateau 368.06 0.977
Utility-scale PV Boone 970.59 0.972 2050 cost not in range
Utility-scale PV Sigmoid 1131.86 0.967 too rapidly constant
Commercial PV Wright 35.95 0.940 2050 cost not in range

328 - 1096
Commercial PV S-curve 810.26 0.987
Commercial PV Plateau 1591.59 0.983 2050 cost not in range
Commercial PV Boone 1019.36 0.981
Commercial PV Sigmoid 1915.71 0.967 too rapidly constant
CSP Solar Wright 2367.91 0.647

1600 - 6648
CSP Solar S-curve 284.23 0.676 2050 cost not in range
CSP Solar Plateau 1477.36 0.641 2050 cost not in range
CSP Solar Boone 1477.36 0.641 2050 cost not in range
CSP Solar Sigmoid 361.49 0.677 2050 cost not in range
ALK Electrolysis Wright 450.00 0.238

<200 - 700
ALK Electrolysis S-curve 521.85 0.471
ALK Electrolysis Plateau 602.94 0.387 too rapidly constant
ALK Electrolysis Boone 481.86 0.384 too rapidly constant
ALK Electrolysis Sigmoid 450.51 0.210 unrealistic curvature
PEM Electrolysis Wright 33.12 0.373 2050 cost not in range

<200 - 900
PEM Electrolysis S-curve 453.93 0.426
PEM Electrolysis Plateau 725.14 0.424
PEM Electrolysis Boone 182.37 0.409 non-monotonic
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PEM Electrolysis Sigmoid 1127.01 0.422 too rapidly constant
SOEC Electrolysis Wright 0.44 0.501 2050 cost not in range

<300 - 1000
SOEC Electrolysis S-curve 3.94 0.509 2050 cost not in range
SOEC Electrolysis Plateau 3.01 0.51 2050 cost not in range
SOEC Electrolysis Boone 624.38 0.533 too rapidly constant
SOEC Electrolysis Sigmoid 1269.68 0.58 too rapidly constant
GSHP Wright 661.89 0.875

-
GSHP S-curve 4021.80 0.983 too rapidly constant
GSHP Plateau 1129.29 0.904
GSHP Boone 1129.29 0.904
GSHP Sigmoid 5336.81 0.986 too rapidly constant
Geothermal Wright 13299.89 0.075 2050 cost not in range

2260 - 12588
Geothermal S-curve 42897.97 0.0754 2050 cost not in range
Geothermal Plateau 7667.05 0.0754
Geothermal Boone 6682.74 0.0751
Geothermal Sigmoid 3951.18 0.106 too rapidly constant
Carbon capture Wright 34.27 0.197

-
Carbon capture S-curve 20.78 0.301 LR strongly increasing
Carbon capture Plateau 34.61 0.224
Carbon capture Boone 24.93 0.452 non-monotonic
Carbon capture Sigmoid 40.38 0.316 unrealistic curvature
Total hydropower Wright 6091.12 0.645 2050 cost not in range

1209 - 3955
Total hydropower S-curve 5007.17 0.647 2050 cost not in range
Total hydropower Plateau 3663.01 0.656
Total hydropower Boone 3593.08 0.654
Total hydropower Sigmoid 1843.58 0.680 too rapidly constant

Table 14: Results in terms of R2 and 2050’s cost of the learning curve models

iv



Technology Form a b c d m
Onshore Wind Wright 8.797E+00 -2.337E-01
Onshore Wind S-curve 9.250E+02 -9.521E-01 1.542E+06 1.000E-05
Onshore Wind Plateau -9.379E+04 -4.648E-03 9.813E+04
Onshore Wind Boone 3.189E+02 4.333E-01 7.106E+02
Onshore Wind Sigmoid -4.029E+02 2.486E-01 3.068E-03 2.425E+03
Offshore Wind Wright 8.673E+00 -8.278E-02
Offshore Wind S-curve 3.904E+01 -7.534E-01 7.551E+04 1.000E-02
Offshore Wind Plateau -2.543E+06 -2.372E-04 2.549E+06
Offshore Wind Boone 5.701E+04 -3.148E+05 5.486E+00
Offshore Wind Sigmoid -4.147E+01 1.245E-02 1.394E-01 1.157E+06
Residential PV Wright 9.593E+00 -4.103E-01
Residential PV S-curve -1.673E+01 -2.213E-01 1.607E+06 1.000E-03
Residential PV Plateau 1.772E+03 -9.017E-01 3.849E+04
Residential PV Boone 1.785E+03 5.160E+00 1.231E+00
Residential PV Sigmoid -2.461E+05 7.627E+00 3.944E-02 3.459E+04
Utility-scale PV Wright 9.241E+00 -3.698E-01
Utility-scale PV S-curve 1.113E+06 -5.151E-01 2.182E+04 1.000E-04
Utility-scale PV Plateau 1.000E-03 -3.729E-01 1.051E+04
Utility-scale PV Boone 9.548E+02 2.601E+05 1.593E+06
Utility-scale PV Sigmoid -1.762E+06 2.136E+01 1.745E-02 8.360E+04
Commercial PV Wright 1.215E+01 -1.022E+00
Commercial PV S-curve -1.685E+01 -5.743E-01 1.815E+04 3.680E-02
Commercial PV Plateau 1.591E+03 -1.843E+00 1.847E+06
Commercial PV Boone 9.911E+02 6.763E+03 2.160E-03
Commercial PV Sigmoid -3.022E+05 3.196E+00 6.982E-02 9.646E+04
CSP Solar Wright 9.218E+00 -2.391E-01
CSP Solar S-curve 1.461E+01 -2.053E+00 2.740E+06 1.000E-04
CSP Solar Plateau 1.000E-03 -3.275E-01 1.073E+04
CSP Solar Boone 1.073E+04 -3.275E-01 5.249E+09
CSP Solar Sigmoid -3.853E+05 5.557E+00 1.279E-01 6.970E+04
ALK Electrolysis Wright 6.826E+00 -1.056E-01
ALK Electrolysis S-curve -8.863E-02 -1.295E-01 7.445E+02 4.884E-01
ALK Electrolysis Plateau 6.029E+02 -3.222E+00 3.064E-01
ALK Electrolysis Boone 4.820E+02 -3.719E+02 1.009E-04
ALK Electrolysis Sigmoid -5.808E+04 -3.161E+05 8.093E-03 7.617E+03
PEM Electrolysis Wright 6.008E+00 -3.855E-01
PEM Electrolysis S-curve -3.102E-03 -4.465E-01 6.482E+02 6.829E-01
PEM Electrolysis Plateau 7.250E+02 -8.421E-01 3.457E+01
PEM Electrolysis Boone 1.932E+02 -5.532E-01 2.713E+06
PEM Electrolysis Sigmoid -3.469E+02 1.025E-01 2.592E+02 4.510E+03
SOEC Electrolysis Wright 3.435E+00 -6.324E-01

v



SOEC Electrolysis S-curve -1.000E-06 -4.860E-01 8.277E+01 1.000E-02
SOEC Electrolysis Plateau 1.000E-06 -4.885E-01 8.060E+01
SOEC Electrolysis Boone 6.244E+02 -2.875E-01 1.655E-03
SOEC Electrolysis Sigmoid -6.201E+01 8.141E-03 1.414E+04 2.552E+06
GSHP Wright 7.512E+05 -5.971E-01
GSHP S-curve 3.052E-01 -3.001E+00 5.097E+03 7.891E-01
GSHP Plateau 1.000E-03 -5.015E-01 5.572E+03
GSHP Boone 5.572E+03 -5.015E-01 1.009E+07
GSHP Sigmoid -8.114E+06 1.493E+01 8.356E+00 5.489E+05
Geothermal Wright 6.837E+00 5.498E-01
Geothermal S-curve 6.718E+01 2.718E+00 1.728E-01 8.478E-01
Geothermal Plateau -3.428E+04 4.099E-02 3.441E+04
Geothermal Boone 2.081E+06 -8.165E+01 4.093E-02
Geothermal Sigmoid 3.952E-02 1.000E-05 1.325E+00 -1.142E+00
Carbon capture Wright 4.724E+00 -1.332E-01
Carbon capture S-curve 6.469E+02 -7.063E-01 2.104E+06 1.000E-03
Carbon capture Plateau -4.490E+04 -1.894E-04 4.501E+04
Carbon capture Boone 2.100E+01 4.853E-01 3.124E+02
Carbon capture Sigmoid 2.612E+05 5.838E+03 -9.547E-03 4.038E+01
Total hydropower Wright -3.476E+00 1.527E+00
Total hydropower S-curve -1.166E+02 1.240E+00 2.654E-01 1.000E-03
Total hydropower Plateau -5.750E+03 2.862E-01 9.587E+02
Total hydropower Boone 7.423E+03 -8.709E+02 3.053E-01
Total hydropower Sigmoid -6.320E+05 2.362E+02 -6.395E-03 1.844E+03

Table 15: Learning curves parameters

vi
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