
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Model Predictive Control of Aerial Swarms

Enrica SORIA

Thèse n° 9542

2022

Présentée le 25 février 2022

Prof. P. P. Ramdya, président du jury
Prof. D. Floreano, directeur de thèse
Prof. N. Ayanian, rapporteuse
Prof. G. de Croon, rapporteur
Prof. C. N. Jones, rapporteur

Faculté des sciences et techniques de l’ingénieur
Laboratoire de systèmes intelligents
Programme doctoral en robotique, contrôle et systèmes intelligents

To Rosalba and Livio.

Acknowledgments
I am incredibly grateful to my supervisor Prof. Dario Floreano for having offered me the

opportunity to do research in such an exciting laboratory and work on a topic that I deeply

enjoyed during these years. His support and kind advice throughout these years have been

crucial to the achievements of this thesis. I thank the jury members, Prof. Colin Jones, Prof.

Guido de Croon, and Prof. Nora Ayanian, for having accepted to review and improve the quality

of this work. I equally thank Prof. Pavan Ramdya for having served as the jury president.

I wish to individually thank each of my colleagues who have accompanied me on this journey

over these years. Their presence in happy and difficult moments has always been a key

motivation for thriving and achieving goals in all circumstances. In particular, I thank Fabian

Schilling for having been an extraordinarily supportive office mate and for all the insightful

conversations we shared across the years. I thank Vivek Ramachandran, Valentin Wuest, Enrico

Ajanic, William Stewart, Euan Judd, Carine Rognon, and Julien Lecoeur for having offered

me their helpful point of view on scientific and personal matters on numerous occasions. In

particular, I acknowledge Vivek’s consistent engagement in improving the atmosphere of our

doctoral school and having been cheerful confident. I thank Enrico Ajanic and Kevin Holdcroft

for having shared the role of EDRS student representatives during the last two years with

seriousness and commitment. I acknowledge the help of postdocs, and among all Fabrizio

Schiano, who has encouraged me to improve the quality of my work and have dedicated their

time and effort to it. I feel privileged for having shared my time with each and every member

of LIS and for having built bonds with them that will survive the time. I also thank Michelle

Waelti and Corinne Lebet for their constant help and honorable commitment in dealing with

the administrative aspects of the Ph.D.

Some of the work presented in this thesis has been the fruit of a collaboration with Mas-

ter’s students. For this, I particularly thank Victor Delafontaine, Andrea Giordano, Yoann

Lapijover, Hugo Birch, and Samuele Lanzanova. I owe my thanks to Mauro Pfister, who has

contributed as an intern to perfecting many aspects of this thesis, the hardware setup used for

the experiments, and the graphic animations among others.

I would like to thank the open-source community for constantly and freely sharing their work

with the world. The democratization of knowledge is one of the most exciting aspects of our

era and their effort will never be acknowledged enough.

I feel an immense sense of gratitude towards my family, who has always satisfied my physical

and emotional needs without asking for anything in return. Chiefs of the list are my parents

Rosalba and Livio. To the first, I owe innumerable hours of a kind care, and to the second an

i

Acknowledgments

example of integrity and perseverance. To my brother Alberto, I owe deep gratitude for having

shared a happy childhood and adolescence and for his discrete presence through the most

joyful and unpleasant moments in life. I thank my uncle Carlo, called ’Pio’. He never loses

an occasion for demonstrating his deep affection to my brother and me. I have the immense

lack of having four healthy grandparents Remigia, Pierina, Mario, and Giuseppe, who have

been my second parents on different occasions and though me life lessons with touch and

kindness. Finally, I deeply thank Cesarina for having hosted and taken care of me during my

undergraduate studies. Her morning coffee was a good motivation for getting up every day.

Many are the friends who left their sign in my life. To them too, I owe who I am. First, I thank

Serena for always being present for me. I also thank Elisa, Pierangelo, Alessandro, Simone,

Marco, and Matteo, for the adventures I get to share with them. I thank Giulia, Chiara, and

Martina, for being such inspiring friends.

Finally, I owe to Anthony the taste of life. I thank him for offering me love and support every

day and for his openness to sharing with me countless personal and professional experiences.

"The important thing is not to stop questioning. Curiosity has its own reason for existence. One

cannot help but be in awe when he contemplates the mysteries of eternity, of life, of the

marvelous structure of reality. It is enough if one tries merely to comprehend a little of this

mystery each day."

- Albert Einstein

Lausanne, February 14, 2022 E. S.

ii

Abstract
Aerial robot swarms can have a large socio-economic impact. They can perform time-critical

missions faster than a single robot and access dangerous environments without compromising

human safety. However, swarm deployment is often limited to free environments where no

obstacle interferes with the robots’ flight. Their trajectories are computed before the flight

in many applications, and the robots are perceptually blind to one another. In these cases,

all decisions are taken by a central computer that is informed about all robots’ states, thus

increasing their chance of failure in case of signal interruptions, limiting their robustness to

failure, and preventing their scalability in size. Drones should have the autonomy to make

their own decisions based on local information, and they should integrate a safe obstacle

avoidance behavior to offer more versatility for their application in real-world environments.

We propose a predictive approach to swarm control inspired by flocking birds to address these

limitations. In particular, we develop methods that enable drones to coordinate their motion

by predicting their own future trajectory and that of their neighbors based on the current state

information and the knowledge of a model. We first present a centralized predictive algorithm

that computes the trajectories of the drones in real-time and improves the synchronization

and order of the swarm flight compared to current state-of-the-art algorithms. We show

in extensive simulations that our algorithm is robust to different obstacle densities, swarm

speeds, and inter-agent distances. Then, we formulate a distributed predictive algorithm

with the same qualitative advantages as its centralized counterpart but scalable in the swarm

size. We also show that our approach is tolerant to a wide range of sensor noise. We extend

and analyze the usage of this algorithm also for pure sensor-based swarms that cannot use

explicit communication. Finally, in relation to pure sensor-based swarms, we also analyze

the applicability of state-of the art reactive swarm models to drones with limited field of view

sensors and the scalability of the same models to large vision-based swarms which account

for occlusions. We validate the algorithms developed in this thesis in extensive simulation and

in the real world with a fleet of hand-sized quadcopters in controlled indoor environments

with obstacles.

Keywords: aerial robot swarms, multi-robot systems, model predictive control, convex opti-

mization, collective motion, flocking algorithms, path planning, genetic optimization, vision-

based control

iii

Résumé
Le vol de robots aériens en essaims peut avoir un impact socio-économique considérable.

Ces robots peuvent effectuer des missions collectives plus rapidement qu’un seul individu

et accéder à des environnements dangereux sans compromettre la sécurité des opérateurs

humains. Cependant, le déploiement en essaim est souvent limité à des environnements libres

où aucun obstacle n’interfère avec le vol des robots. Dans de nombreuses applications, leurs

trajectoires sont calculées avant le vol et les robots sont perceptuellement aveugles les uns aux

autres. Dans ces cas, toutes les décisions sont prises par un ordinateur central qui est informé

de tous les états des robots, augmentant ainsi leur risque d’accident en cas d’interruption du

signal, limitant leur robustesse à l’échec et empêchant l’augmentation du nombre d’individus

contrôlés simultanément. Une autre approche consiste à donner aux drones l’autonomie

nécessaire, pour prendre leurs propres décisions sur la base d’informations d’origine locale,

ces derniers manifestant ainsi un comportement d’évitement d’obstacles pour offrir plus de

polyvalence pour leur application dans des environnements réels.

Pour répondre à ces limitations, nous proposons une approche prédictive de contrôle des

essaims robotiques inspirée par les essaims d’oiseaux. En particulier, nous développons des

méthodes qui permettent aux drones de coordonner leur mouvement en prédisant leur tra-

jectoire future et celle de leurs voisins sur la base des informations d’état actuel et de la

connaissance d’un modèle de vol. D’abord, nous présentons un algorithme prédictif centralisé

qui calcule les trajectoires des drones en temps réel et améliore la synchronisation et l’ordre

du vol de l’essaim par rapport aux algorithmes de pointe actuels. Grâce à des simulations

approfondies, nous montrons que notre algorithme est robuste à différentes densités d’obs-

tacles, vitesses d’essaim et distances inter-agents. Dans les chapitres suivants, nous formulons

un algorithme prédictif distribué avec les mêmes avantages qualitatifs que son homologue

centralisé, mais qui peut accroître la taille de l’essaim. Nous montrons par ailleurs que notre

approche est tolérante à une large gamme de bruit des capteurs. Nous étendons l’utilisation

de cet algorithme également pour les essaims qui ne se basent pas sur de la communication

explicite, mais sur des capteurs tels que la vision pour mesurer les distances relatives entre les

individus. Enfin, concernant les essaims qui n’utilisent que des capteurs locaux, nous analy-

sons l’applicabilité des modèles d’essaim purement réactifs pour des robots à champ de vision

limité. Nous vérifions aussi l’adaptabilité de ces mêmes modèles basés sur la vision et qui

tiennent compte des occlusions à des essaims de grande taille. Nous validons les algorithmes

proposés dans cette thèse dans des environnements virtuels avec des nombreux obstacles

v

Résumé

ainsi que dans le monde réel avec une flotte de quadricoptères légers, tenant dans une main.

Mots clés : essaims de robots aériens, systèmes multi-robots, modèle de contrôle prédictif,

optimisation convexe, mouvement collectif, algorithmes d’ essaim, planification de trajec-

toires, optimisation génétique, contrôle basé sur la vision

vi

Table of contents
Acknowledgments i

Abstract (English/Français) iii

List of figures xi

List of tables xiii

1 Introduction 1

1.1 Motivation . 1

1.2 General approach . 3

1.3 Thesis outline . 4

2 Algorithms for aerial drone swarms 9

2.1 Preliminaries and notation . 9

2.2 Potential field-based models . 10

2.2.1 Potential field . 10

2.2.2 Reynolds swarm model . 10

2.2.3 Olfati-Saber model . 13

2.2.4 Vasarhelyi model . 15

2.3 Optimization-based models . 17

2.3.1 Sequential Convex Programming . 17

2.3.2 Optimal Reciprocal Collision Avoidance 17

2.3.3 Buffered Voronoi Cells . 18

2.4 Learning-based models . 18

2.4.1 Local to local learning models . 18

2.4.2 Global to local learning models . 18

2.5 Neighbor selection . 19

2.5.1 Neighbor selection based on the Euclidean distance 19

2.5.2 Neighbor selection based on the topological distance 20

2.5.3 Neighbor selection based on Voronoi tessellation 20

2.5.4 Neighbor selection based on line-of-sight occlusions 21

2.6 Swarm performance metrics . 22

2.6.1 Order . 23

vii

Table of contents

2.6.2 Agent-agent safety . 23

2.6.3 Agent-obstacle safety . 23

2.6.4 Union . 24

2.6.5 Connectivity . 24

2.6.6 Mission completion time . 24

2.6.7 Trajectory length . 25

3 Centralized predictive control of aerial drone swarms 27

3.1 Introduction . 28

3.2 Method . 29

3.2.1 PF swarm model . 31

3.2.2 Agents’ dynamics . 33

3.2.3 NMPC swarm model . 33

3.2.4 Simulation setup . 38

3.2.5 Drone experimental setup . 38

3.3 Results . 39

3.3.1 Comparison of PF and NMPC aerial swarms 41

3.3.2 Environments with different obstacle densities 42

3.3.3 Scalability to different inter-agent distances and speeds 44

3.4 Discussion . 45

4 Distributed predictive control of aerial drone swarms 51

4.1 Introduction . 51

4.2 Methods . 53

4.2.1 Model of a flying agent . 54

4.2.2 Trajectory parameterization . 54

4.2.3 Migration . 55

4.2.4 Agents’ reciprocal avoidance . 55

4.2.5 Agents’ cohesion . 57

4.2.6 Obstacle avoidance . 57

4.2.7 Control effort . 58

4.2.8 Desired trajectory . 59

4.2.9 Implementation of Bezier curves . 59

4.2.10 Swarm performance metrics . 59

4.3 Results . 61

4.3.1 Scalability in the agent number and noise robustness 62

4.3.2 Adaptability to different environments . 64

4.3.3 Comparison of collision avoidance methods 66

4.3.4 Computational complexity . 67

4.3.5 Hardware experiments . 67

4.4 Discussion . 68

5 Reynolds swarms with limited visual sensing 71

viii

Table of contents

5.1 Introduction . 71

5.2 Method . 72

5.2.1 Notation . 72

5.2.2 Limited field of view . 73

5.2.3 Reynolds swarm model . 75

5.2.4 Agents dynamics . 75

5.2.5 Swarm performance metrics . 76

5.3 Results . 76

5.3.1 Fixed Reynolds coefficients . 78

5.3.2 Optimized Reynolds coefficients . 79

5.4 Discussion . 80

6 Scalable vision-based swarms in the presence of occlusions 83

6.1 Introduction . 83

6.2 Method . 85

6.2.1 Neighbor selection . 86

6.2.2 Sensing noise . 88

6.3 Experimental setup . 89

6.3.1 Experimental parameters . 89

6.4 Results . 90

6.4.1 Performance across swarm sizes . 91

6.4.2 Performance across swarm densities . 96

6.5 Conclusions . 98

7 Sensor-based predictive control of aerial swarms 101

7.1 Introduction . 101

7.2 Method . 102

7.2.1 Model of a flying agent . 103

7.2.2 Inter-agent collision avoidance . 103

7.2.3 DMPC swarm model . 104

7.2.4 Neighbor selection . 105

7.2.5 Neighbor predicted trajectory . 106

7.2.6 PF swarm model . 106

7.2.7 Swarm performance metrics . 107

7.3 Results . 108

7.3.1 Scalability in the swarm size . 108

7.3.2 Comparison between swarm models . 109

7.4 Discussion . 111

8 Conclusion 113

8.1 Limitations of the predictive control approach . 114

8.2 Possible directions for future work . 115

8.3 Closing remarks . 116

ix

Table of contents

A Waypoint navigation of vision-based drone swarms 117

A.1 Introduction . 117

A.2 Method . 119

A.2.1 The visual field of view . 119

A.2.2 Vision-based swarm model . 120

A.2.3 Position-based swarm model . 122

A.2.4 Swarm performance metrics . 123

A.3 Results . 124

A.3.1 Vision-based swarm model: the effect of individual and visual parameters 125

A.3.2 Vision-based swarm model: goal-oriented flight 126

A.3.3 Swarm models comparison . 126

A.3.4 Hardware experiments . 127

A.4 Discussion . 127

B Open-source software 129

B.1 Introduction . 129

B.2 Related Work . 131

B.3 Software architecture . 132

B.3.1 Drone . 133

B.3.2 Swarm . 134

B.3.3 Swarm algorithms . 134

B.3.4 Graphical User Interfaces (GUIs) . 135

B.3.5 Plotting tools . 136

B.3.6 Performance analysis . 136

B.4 Comparison of swarm algorithms and computational time analysis 138

B.5 Conclusions and future work . 139

C Publications 141

Bibliography 143

Curriculum vitae 155

x

List of figures
2.1 Reynolds swarm in 2D and 3D . 11

2.2 Cohesion and separation forces in the Reynolds model 12

2.3 Inter-agent equilibrium distance of the Reynolds model for different swarm sizes 13

2.4 Olfati-Saber distance-matching potential . 14

2.5 Olfati-Saber distance-matching force . 14

2.6 Trajectories of agents flying with the Vasarhelyi’s model 17

2.7 Neighbor selection based on the Euclidean distance 19

2.8 Neighbor selection based on the topological distance 20

2.9 Neighbor selection based on Voronoi tessellation 21

2.10 Neighbor selection based on vision . 21

2.11 Illustration of the performance metrics used for the evaluation of the swarm

flight . 22

3.1 Experimental setup of NMPC drone swarm flying in cluttered environments . . 30

3.2 Experimental setup of NMPC drone swarm flying in cluttered environments . . 34

3.3 Comparison between the PF-based model and our NMPC swarm model in

simulation . 42

3.4 Comparison of the PF and NMPC swarm deployment in different environments 43

3.5 Scalability of the NMPC swarm in inter-agent distance and speed 46

3.6 Scalability of the PF swarm in inter-agent distance and speed 47

3.7 Performance of the simulated PF and the NMPC swarms for varying inter-agent

distances and speeds . 48

4.1 Self-organized distributed predictive swarm flying in an artificial forest 52

4.2 Modelling of the environments . 52

4.3 Schematic overview of the DMPC method . 54

4.4 Swarm performance in forest-like environment at different noise levels 62

4.5 Number of completed missions in the forest-like environment 63

4.6 Swarm trajectories in the forest like environment at different noise levels 63

4.7 Swarm performance comparison in the funnel and forest-like environments . . 64

4.8 Number of completed missions in the funnel-like environment 65

4.9 Swarm of 36 drones in a funnel-like environment 65

4.10 Comparison of collision avoidance methods for the DMPC swarm model 66

xi

List of figures

4.11 Experimental results of the DMPC swarm in a forest-like environment 68

5.1 Illustration of the width and azimuth angles for an agent with limited FOV . . . 73

5.2 Sensing configurations of an agent with different width and azimuth values . . 74

5.3 Reynolds swarm with limited-FOV agents . 74

5.4 Simulation workflow for testing sensor configurations with Reynolds model . . 77

5.5 Visual configurations with high order scores . 79

5.6 Simulation results of swarms with limited FOV and different Reynolds gains . . 81

5.6 Simulation results of swarms with limited FOV and different Reynolds gains . . 82

6.1 Scalability of nearest neighbor distance for varying group sizes and densities. . 87

6.2 Neighbor selection strategies: metric, visual, topological, and Voronoi-based. . 88

6.3 Performance of neighbor selection methods for the experiments on the scalabil-

ity of vision-based drone swarms. 92

6.4 Swarm trajectories using visual and Voronoi neighbor selection methods. . . . 93

6.5 Swarm trajectories using myopic and topological neighbor selection methods. 94

6.6 Schematic representation of the switching topologies caused by visual occlusions. 95

6.7 Swarm performance of neighbor selection methods for varying group density. . 97

7.1 Neighbor selection method for sensor-based drone swarms 103

7.2 Snapshots of predicted trajectories of the sensor-based DMPC swarm 104

7.3 Aggregated performance of the sensor-based DMPC model for different swarm

sizes . 109

7.4 Size scalability of the sensor-based DMPC swarm 110

7.5 Replanning variance and neighbor prediction error for the DMPC sensor-based

swarm model. 111

A.1 Vision-based swarm experiment in our motion tracking hall 118

A.2 Schematic representation of the vision-based swarm method that operates di-

rectly on the visual FOV . 121

A.3 Neighbors detection and estimation of the relative positions 122

A.4 Performance of the vision-based swarm model 123

A.5 Scalability of the vision-based swarm . 125

A.6 Goal-oriented flight of the two swarm models . 125

A.7 Hardware experiment of the vision-based swarm with four drones 127

B.1 3D swarm visualizations in SwarmLab . 130

B.2 Aerial swarms publications . 130

B.3 SwarmLab simulation workflow . 133

B.4 Maps with varying obstacle density . 136

B.5 Comparison of two swarm algorithms with SwarmLab 137

B.6 Real-time factor for varying sizes of the swarm . 139

xii

List of tables
3.1 Optimized parameter values of the PF swarm model 32

3.2 Parameter setting of the evolutionary optimization for the PF swarm. 32

3.3 Parameter description of the NMPC swarm model 38

3.4 Metrics to measure the performance of the NMPC drone swarm 41

3.5 Swarm and environment configurations for the NMPC swarm model experiments 44

3.6 Aggregate performance of the simulated PF and the NMPC swarms at varying

obstacle densities . 45

3.7 Aggregate performance of the simulated PF and the NMPC swarms at varying

inter-agent distances . 49

3.8 Aggregate performance of the simulated PF and the NMPC swarms at varying

speeds . 50

4.1 Performance metrics for the DMPC swarm . 60

4.2 DMPC swarm model parameters . 61

4.3 Empirical runtime of the DMPC swarm model for different swarm sizes 66

4.4 Comparison of simulation and hardware swarm performance 69

5.1 List of the different Reynolds gain triplets used in the simulation. 78

5.2 Parameters of the genetic algorithm used to determine the optimal Reynolds

gains for swarms with limited FOV . 80

6.1 Neighbor selection methods used for the experiments 87

6.2 Parameters used during the experiments on the scalability of vision-based drone

swarms . 90

7.1 Swarm model parameters used for the sensor-based DMPC model. 107

A.1 Optimal parameters for the vision-based swarm model 124

A.2 Comparison of the swarm performance with the two models 127

xiii

1 Introduction

Lausanne, 2052.

Thousands of bionic bees fly around the city. They join their natural counterpart in buzzing soft

clouds that gently skims by buildings and soar over trees. They pollinate crops and guarantee

adequate nourishment for the populace. The sound of sirens penetrates the tranquility of the

city. A group of winged ambulances and firefighters cross the sky in the direction of a dense

plume of smoke. They extinguish the fire coming from an abandoned hangar and save a couple

of unfortunate passers-by engulfed in the flames. On a regular Monday morning, the sky traffic

is harmonious, the vehicles stream is fluid despite their heterogeneity. A window cleaner sits in

his comfortable chair and recollects his first manually cleaning job while monitoring the work

of his self-flying mini-helicopter cleaning apparatus on a screen. He is sure that his son would

not believe him if he told the story of how he hung against a wall of glass, secured by a rope like

a circus act.

1.1 Motivation

Aerial robotic swarms often appear in sci-fi movies as a symbol of future technologies 1 2 3.

Their development holds the promise of large socio-economic impacts. The synergistic flight

of multiple aerial robots can enable many real-world applications. For example, aerial robots

can be deployed to create detailed 3D maps, monitor crops, search for people in dangerous

areas, and deliver medicine to otherwise inaccessible places [1, 2]. Deploying drones in

swarms, as opposed to a single robot, allows them to complete time-critical tasks faster and

more efficiently. Most impressively, the collaboration between multiple drones can enable

entirely new applications that are beyond the capabilities of a single drone such as cooperative

transportation and construction [3] or mobile sensor networks [4, 5]. However, commercial

drone swarms deployed today are still far from autonomous.

1Black Mirror, Season 3, Episode 6, "Hated in the Nation" (October 2016)
2"Prometheus" (June 2012)
3Star Wars, Episode III, "Revenge of the Sith" (May 2005)

1

Chapter 1. Introduction

Hundreds of drones have been deployed in aerial light shows by companies such as Intel 4,

EHang 5, and Verity Studios 6. However, the drones in these examples were controlled centrally

and the trajectories were pre-programmed which did not allow for adaptation to unforeseen

changes in the environment. In addition, these swarms fly in open environments where no

obstacles interfere with their flight. As a result, their lack of autonomy severely limits their

usage for many applications.

Drone swarm control is traditionally divided into two categories according to its algorithmic

design: centralized and decentralized [6]. Centralized swarm models require the presence of a

central computing node that determines the robot commands based on the knowledge of all

positions and velocities and then sends them to the swarm [7, 8, 9, 10]. The central computer

can optimize for global objectives, such as the total energy required by the agents to complete

their missions. However, it can represent a major vulnerability for the swarm since the central

decision-maker constitutes a single point of failure. To deploy a centralized swarm, frequent

communication between the central computer and the agents needs to be orchestrated, and if

the communication is interrupted the mission is compromised. Alternatively, in decentralized

approaches, decision-making is shared among all agents, thereby improving robustness

against one individual’s failure [11, 12, 13, 14]. Additionally, in decentralized control strategies,

each agent’s decisions only depend on a limited number of neighbors, therefore allowing the

scalability of swarm size.

From the fluid wavelike movements of starlings flocks to the swift turning maneuvers of

bee swarms, nature displays impressive examples of coordinated flight, simply achieved

by decentralized decision-making [15, 16, 17, 18, 19]. In particular, animals rely on local

sensing capabilities to perceive other swarm members [19, 20]. Early work suggested that

the collective motion of a biological swarm can be described by the combination of three

behavioral rules that apply to each agent simultaneously [21]. These rules consist of (a)

cohesion, which brings each agent closer to its neighbors, (b) repulsion, which drives each

agent away from its neighbors to avoid collisions, and (c) alignment, which steers each agent

towards the average heading of its neighbors. For navigating environments with obstacles,

the addition of a fourth rule, collision avoidance, is necessary to steer the agents around the

obstacles [21, 22, 13]. Several works proposing variations of these rules have shown successful

deployment of drone swarms in the real world. However, their validation is often limited to

obstacle-free environments. To allow drone swarms to operate in cluttered environments

and therefore improve their versatility for varied applications, it is crucial to integrate a safe

collision avoidance behavior while operating in a decentralized manner. These requirements

motivate this thesis.

4“Intel Drone Light Show: Intel’s 50th Anniversary”, https://www.intel.com/content/www/us/en/technology-
innovation/videos/drone-light-show-50th-anniversary-video.html

5“EHang Egret’s 1374 drones dancing over the City Wall of Xian, achieving a Guinness World Records title”,
https://www.ehang.com/news/365.html

6“The Globe and Mail: Mini-drone use on the rise to light up big concerts like Celine Dion and Drake”,
https://veritystudios.com/news/globe-and-mail-celine

2

https://www.intel.com/content/www/us/en/technology-innovation/videos/drone-light-show-50th-anniversary-video.html
https://www.intel.com/content/www/us/en/technology-innovation/videos/drone-light-show-50th-anniversary-video.html
https://www.ehang.com/news/365.html
https://veritystudios.com/news/globe-and-mail-celine

1.2. General approach

1.2 General approach

The pioneering work of Reynolds [21] is at the origin of swarm robotics. Mathematically,

Reynolds rules can be synthesized by virtual Potential Fields (PFs), i.e., vector fields describing

how forces act at various positions in space. PFs encode the desired behaviors of the swarm.

They regulate the inter-agent distance among neighboring individuals similar to a spring-mass

system, adjust the velocity of the agents, steer them towards a common direction, and regulate

their distance to obstacles [22].

The advantage of PF swarm models is that they are purely reactive, meaning that their deci-

sions are solely based on the current sensory information and thus have low computational

complexity [21, 22]. For this reason, PF models are convenient for the implementation on real

robotic systems, either in obstacle-free environments [23, 12], or in environments with convex

obstacles [13]. In the latter case, collision avoidance is obtained by defining virtual repulsive

agents (called shill agents) located along the obstacles’ boundaries. However, these shill agents

present the inconvenience of slowing down the swarm as it approaches the obstacles [21, 24].

This effect becomes prominent in environments with a high density of obstacles, where PF

swarms can significantly slow down. The slowdown can be attenuated by weakening the re-

pulsion potentials, albeit at the expense of the swam safety, because some agents may collide.

Moreover, to account for the idiosyncrasies of the real world, these models often include a

significant number of parameters that have complex interdependencies [13, 25]. As a con-

sequence, they often require the adoption of optimization techniques, such as evolutionary

algorithms, to identify a viable instantiation of the parameters. Each of these instantiations

is specific to the swarm’s preferred speed and inter-agent distance and to the environmental

layout [23, 13, 26]. In practice, in an open environment with a varying number of agents in

the swarm, it would be unfeasible to find a suitable set of static parameters. Parameters maps

could be pre-computed, rising in computational complexity with the number of considered

scenarios. Finally, due to the absence of optimality considerations, these methods result in

high variability of the inter-agent distances.

In this thesis, we qualitatively and quantitatively analyze the efficiency of the current state-of-

the-art aerial swarm models in a variety of challenging real-world conditions (i.e., presence

of obstacles, sensor noise, limited perception). Then, we propose a method to remove the

difficulties anticipated above that consist of endowing swarming agents with prediction-based

control. It has been recently advocated that some form of predictive control, in the form of

an internal model of the actions of their conspecifics, may also be leveraged by biological

swarms where the apparent synchronization of coordinated maneuvers, such as a flock of

starlings or a school of fish, cannot be explained by a purely reactive system [27]. Inspired by

this hypothesis, the methodology proposed in this thesis endows flying agents with a model of

swarm behavior based on Model Predictive Control (NMPC).

Model Predictive Control (MPC) is a method that computes the control action of a system as

the solution of a constrained optimization problem [28, 29]. MPC leverages a mathematical

3

Chapter 1. Introduction

representation of the system to predict and optimize its future behavior in an iterative process.

Differently from PF control, MPC can explicitly handle constraints, such as physical limita-

tions (e.g., flight speed and acceleration ranges of a drone) [30, 31, 32], and environmental

restrictions (e.g., no-flight zones) [32, 33, 34]. However, the recursive online solution of con-

strained optimization problems is associated with higher computational costs, and therefore

the adoption of predictive controllers in robotics is relatively recent [35]. MPC has shown

promising results in simulation on multi-vehicle systems [36, 37, 33, 38, 39, 40, 41, 34], while,

at the time this thesis started, the efficacy of online and self-organized predictive flight of

swarms in the real world had yet to be proven. It is only recently that this technique has shown

its surprising potential for collective flight in open environments [42].

This thesis extends the current literature on aerial drone swarms by analyzing how state-

of-the-art PF-based models behave with various swarm sizes and in adverse conditions of

the real world, e.g. in the presence of sensor noise, in increasingly cluttered environments,

and with field-of-view limitations. To analyze the quality of the swarm flight, we propose a

number of swarm performance metrics based on the agents states, such as positions and

velocities. Then, we propose alternative swarm models based on MPC that can make the

swarm fly safely in a range of different real-world environments populated with obstacles.

These models have proven effective for operating with diverse swarm configurations such

as preferred inter-agent distances and agent speed. Lastly, we consider the relaxation of the

inter-agent communication requirements and explore the applicability of the MPC model

to agents that cannot communicate their predicted states but must rely only on the use of

on-board sensors with line-of-sight visibility such as cameras or depth sensors.

1.3 Thesis outline

In the following section, we provide a brief outline of the thesis and summarize the contents

of each chapter. The summaries are based on the abstracts of the publications mentioned in

the respective chapters.

Chapter 2: Algorithms for aerial drone swarms

We describe state-of-the-art algorithms that synthesize the collective motion of aerial swarms.

These algorithms usually reproduce the biological behavior of cohesion, collision avoidance,

and migration to a common destination. Among them, the PF algorithms are one of the most

popular choices for the hardware implementation of robot swarms and constitute a baseline

for comparing the algorithms that we design and present in the subsequent chapters. We then

present plausible methods for neighbor selection that we used in the design of decentralized

drone swarm models. Finally, we define the metrics that will be used to evaluate the flight

quality of drone swarms.

4

1.3. Thesis outline

Chapter 3: Centralized predictive control of aerial drone swarms

We propose a novel swarm model based on nonlinear MPC that removes the difficulties of state-

of-the-art PF models presented in the previous chapter. Our predictive model incorporates

the swarm behaviors of PF models and optimizes those behaviors under the knowledge

of the agents’ dynamics and environment. It generates self-organized, safe, and cohesive

trajectories by solving an optimization problem in real-time. We show that our approach

improves the speed, order, and safety of the swarm compared to the PF approach. Our model

is independent of the environment layout and scalable in the swarm speed and inter-agent

distance. We validate our model with a swarm of five quadrotors that can successfully navigate

in a real-world indoor environment populated with obstacles.

Chapter 4: Distributed predictive control of aerial drone swarms

The centralized MPC model of the previous chapter lacks scalability in the swarm size. Here,

we propose a distributed version of the same model. In simulation, we show that the dis-

tributed model is scalable to large numbers of agents and suitable for deployment in different

environments, specifically a forest and a funnel-like environment. Furthermore, our results

show that the agents are capable of collision-free flight with noisy sensor measurements for a

noise level of up to 70% of the magnitude of the agent safety distance. Real-world experiments

with a swarm of up to 16 quadrotors in an indoor artificial environment validate our method.

Chapter 5: Reynolds swarms with limited visual sensing

The MPC algorithms presented above require the use of explicit communication. Communication-

based drone swarm models are fragile to outages and delays, especially when flying in high-

density formations or in cluttered environments. From this chapter on, we remove the hy-

pothesis of explicit communication between agents. Instead, we assume the availability of

on-board visual sensors that allow the agents to estimate relative positions and velocities to

their neighbors. When considering vision-based agents, the modeling of perceptual factors

such as the limited field of view, i.e., the angular extent through which an agent is sensitive

to the world, becomes fundamental. In this chapter, we analyze the effects of limited visual

sensing on the performance of a commonly used and computationally efficient PF swarm

model, i.e., the Reynolds model. We study how the reduction in the field of view and the

orientation of the visual sensors affect the performance of the swarm. As Nature suggests, our

results confirm that lateral vision is essential for coordinating the movements of individuals

within a swarm. Moreover, agents benefit from omnidirectional vision to avoid collisions. We

achieve the results presented in this paper through extensive Monte-Carlo simulations and

integrate them with the use of genetic algorithm optimization.

5

Chapter 1. Introduction

Chapter 6: Scalable vision-based swarms in the presence of occlusions

We address the scalability of vision-based swarms with regard to group size and density.

Vision-based swarms rely on the detection of neighbors but usually neglect mutual visual

occlusions because they operate in small groups. We extend a PF-based algorithm with a

realistic model of visual occlusions that discards agents if they are obstructed by closer ones.

We evaluate the visibility model in simulation with up to one thousand agents. In particular,

we find that small agent displacements have considerable effects on neighbor visibility and

lead to control discontinuities. We show that the destabilizing effects of visibility switches,

i.e., agents continuously becoming visible or invisible, can be mitigated if agents select their

neighbors from adjacent Voronoi regions. The results show that Voronoi-based interactions

enable vision-based swarms to remain collision-free, ordered, and cohesive in the presence of

occlusions.

Chapter 7: Sensor-based predictive control of aerial swarms

We extend our previous work on predictive swarm models to purely sensor-based agents.

Instead of communicating their future trajectories, the agents predict them based on the local

knowledge of the environment and momentary neighbor information. We evaluate our model

in simulation in a forest-like environment at different swarm sizes and we show the swarm

can avoid collisions, while the flight synchrony worsen and the trajectory lengths increase

compared to the communication-based DMPC model. We also compare the sensor-based

swarm performance with a potential-field model from the state of the art and show that the

DMPC swarm has overall better flight performance across different sizes.

Chapter 8: Conclusion

We summarize the thesis and conclude with a discussion of the implications, significance,

limitations, and possible directions for future work.

Appendix A: Waypoint navigation of vision-based drone swarms

We present an alternative swarm model that operates directly on a segmentation of the visual

field of view. We show that this model can provide collision-free and goal-directed flight

without estimating relative positions. We extensively study this approach in simulation for

goal-oriented navigation missions. We compare the results with a position-based swarm

model and we validate our approach with a swarm of four drones flying in a controlled indoor

environment.

6

1.3. Thesis outline

Appendix B: Open-source software

We briefly describe a software package to simulate drone swarms which we developed during

this thesis and we made publicly available on Github.

Appendix C: Publications

The work presented in this thesis is based on the following publications:

• E. Soria, F. Schiano, D. Floreano, “The influence of limited visual sensing on the Reynolds

flocking algorithm,” in The Third IEEE International Conference on Robotic Computing

(IRC), Naples, Feb. 2019 [26].

• E. Soria, F. Schiano, D. Floreano, “SwarmLab: a MATLAB drone swarm simulator,” in

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas,

Feb. 2020 [43]

• E. Soria, F. Schiano, D. Floreano, “Predictive control of aerial swarms in cluttered envi-

ronments,” in Nature Machine Intelligence, vol. 3, pp. 545-554, May 2021 [10].

• E. Soria, F. Schiano, D. Floreano, “Distributed predictive drone swarms in cluttered

environments,” in IEEE Robotics and Automation Letters (RA-L), vol. 7, no. 1, pp. 73-80,

Jan. 2022 [44].

• E. Soria, H. Birch, F. Schilling, D. Floreano, “Waypoint Navigation of Vision-based Aerial

Swarms without Estimation of Relative Positions,” in IEEE International Conference on

Robotics and Automation (ICRA), (under review).

• F. Schilling, E. Soria, D. Floreano, “On the Scalability of Vision-based Drone Swarms in

the Presence of Occlusions,” in IEEE Access, (under review).

7

2 Algorithms for aerial drone swarms

We commence this thesis by describing state-of-the-art algorithms that synthesize collective

motion for the navigation of aerial drone swarms. We focus on those algorithms that are

decentralized and can generate the agents’ trajectories online, i.e., during flight. The purpose

of these models is threefold. Firstly, and most importantly, collisions among agents should

be avoided. Secondly, the swarm should remain cohesive. Thirdly and finally, the swarm

should be able to perform collective migration towards a common destination. According to

the technique they use, we divide the swarm models into the following categories: potential

field-based, optimization-based, and learning-based models. In the second part, we introduce

possible techniques that one may use for selecting the neighbors of an agent. Neighbor selection

is at the basis of decentralized swarm models in that each agent of the swarm reduces its focus

to a subset of the swarm agents and its decision only depends on their states and not the whole

swarm state.

2.1 Preliminaries and notation

In this thesis, we consider a set of N agents (i.e., components of the swarm) labeled by i ∈
{1,2,3, . . . , N }. The position, velocity, and acceleration of the agent i are denoted by pi , vi , ai ∈
R2 or R3 depending on whether we consider two-dimensional flight on a plane at constant

altitude or flight in the three dimensions. We will specify in each chapter of our dissertation

which one is considered. For the agents, we will consider single-integrator, double-integrator,

or different linear dynamics that we will introduce in the following chapters. Hence, the control

input to the agent, ui , can represent a position, velocity, or acceleration command depending

on the context. We let di j = ‖p j −pi‖ where ‖ ·‖ denotes the Euclidean norm. We model the

swarm with a directed sensing graph G = (V , E), where the vertex set V = {1 . . . N } represents

the agents, and the edge set E ⊆V ×V contains the pairs of agents (i , j) ∈ E for which agent

i can sense agent j . We denote Ni = { j ∈V |(i , j) ∈ E} ⊂V as the set of neighbors of an agent

i in G and |Ni | as its cardinality1. To describe swarm models in cluttered environments, we

1Note that both the set of edges E and the one of neighbors Ni of a specific agent i are time-varying.

9

Chapter 2. Algorithms for aerial drone swarms

introduce a set of M obstacles labeled by m ∈M= {1, . . . , M }. For convenience, most of the

considered obstacles are cylinders. In the following, k denotes the index of a discrete-time

step with duration d t . A generic variable x evaluated at instant k, x(k) can be denoted by xk if

that variable is discrete. To keep our notation concise, we omit the time dependency when it

is clear from the context.

2.2 Potential field-based models

2.2.1 Potential field

In physics, a Potential Field (PF) V is any field that obeys Laplace’s equation. This equation is:

∇2V = 0 (2.1)

where ∇ symbol denoted the gradient operator. In R3 with a Euclidean metric, the gradient

of a generic function f , if it exists, is given by: ∇ f (x, y, z) =
(
∂ f
∂x , ∂ f

∂y , ∂ f
∂z

)
[45]. Some common

examples of PFs include electrical, magnetic, and gravitational fields.

A force field is a vector field that describes a non-contact force acting on a particle at various

positions in space. Specifically, a force field is a vector field F(x, y, z), where F is the force that

a particle would feel if it were at the point (x, y, z) ∈R3 [46]. Any conservative force field F can

be expressed as the negative gradient of a potential V :

F =−∇V (2.2)

Newton’s second law of motion relates the force acting on a rigid body to two variables: the

acceleration a and the mass m of the rigid body. It holds:

F = ma (2.3)

A PF-based algorithm uses the artificial PF to regulate a robot around in a certain space [24].

By using the formulas above, we can transform artificial potentials into acceleration inputs

to the robots. Then, the dynamic equations of the robot let us trace its velocity and position

over time. In swarm robotics, artificial PFs can be defined to regulate the inter-agent distance

among neighboring individuals similar to a spring-mass system, adjust the velocity of the

agents, steer them towards a common direction, and regulate their distance to obstacles [22].

2.2.2 Reynolds swarm model

Reynolds’ pioneering work on collective motion [21] opened the way to the fast-growing

literature of swarm robotics. He suggested that the collective motion of a biological swarm

can be described by the combination of three behavioral rules that apply to each agent

10

2.2. Potential field-based models

Figure 2.1 – Reynolds swarm in 2D and 3D. Snapshots at t ∈ 0.1,5,10,15,20 s of the position
and velocities of the Reynolds swarm of 150 agents in R2 (row 1 and 2) and R3(row 3 and 4).
Reynolds parameter values are the same as in 2.3. Here, we consider point-mass dynamics and
Ni =V \ {i }. At t = 0 s, the agents positions and velocities are uniformly randomly distributed.
Then, the swarm expands and contracts (see velocities at t = 10 s) while the agents reorganize
into a lattice formation. The agents have almost reached an equilibrium at t = 20 s where they
occupy the vertices of a lattice formation while constantly translating with the average of the
initial velocities.

simultaneously. These rules consist of (a) cohesion, which brings each agent closer to its

neighbors, (b) repulsion, which drives each agent away from its neighbors to avoid collisions,

and (c) alignment, which steers each agent towards the average heading of its neighbors.

Although these rules are defined locally, i.e., every agent regulates its flight with respect to a

limited set of neighboring agents, they have proven to produce a globally coordinated motion.

Mathematically, Reynolds model can be written as:

ũi = ccoh

|Ni |
∑

j∈Ni

(p j −pi)︸ ︷︷ ︸
cohesion

− csep

|Ni |
∑

j∈Ni

p j −pi

d 2
i j︸ ︷︷ ︸

separation

+ calign

|Ni |
∑

j∈Ni

(v j −vi)︸ ︷︷ ︸
alignment

(2.4)

11

Chapter 2. Algorithms for aerial drone swarms

Figure 2.2 – Cohesion and separation forces in the Reynolds model. On the left, magnitude
of the cohesion and separation forces in the Reynolds swarm model as functions of the inter-
agent distance di j . We consider agents of unitary mass. In the middle and on the right,
magnitude of the cohesion and separation force field in 2D generated by an agent positioned
in pi = (0,0). The parameters are ccoh = 0.5, csep = 2, and amax = 4 m/s2. For N = 2, it holds
deq = 2.

where ũi is the ideal acceleration command for agent i , while ccoh, csep, and calign are the

weights referred to cohesion, alignment, and separation, respectively. We illustrate in 2.1 the

2D and 3D swarm patterns generated by the Reynolds rules with point-mass agents.

However, when working on real robots the behavior is generally more complex. The dynamics

do not follow the point-mass model, the actuation is limited, and sensing is imperfect. To

account for the actuation limitations, the ideal acceleration must be cut off at a maximum

value, amax:

ui = ũi

‖ũi‖
min(‖ũi‖, amax) (2.5)

However, in some situations applying the cutoff leads to collisions.

The cohesion and separation forces define the equilibrium distance deq between any pair of

neighbors, i.e., the distance at which the sum of the forces acting on an agent is null. This

distance is given by the condition:∑
j∈Ni

(
Fcoh(di j)+Fsep(di j)

)= 0 (2.6)

For N = 2, we can compute it analytically: deq(N = 2) =
√

csep

ccoh
(Fig. 2.2). The equilibrium

distance usually decreases when we add agents to the swarm, but it can vary depending on

the choice of the neighbor set. In Fig. 2.3 we show the trend for a growing number of agents,

and Ni =V \ {i }.

When the neighbor selection method is symmetric (i.e., if i is neighbor of j then j is neighbor

of i) we can analytically determine the final velocity of the swarm. In that case, forces acting

on neighboring agents are symmetric, meaning that whenever an agent i exerts a force on

another agent j , j simultaneously exerts a force equal in magnitude and opposite in direction

on i . Since no external force is applied, the momentum is conserved and hence the sum of the

12

2.2. Potential field-based models

Figure 2.3 – Inter-agent equilibrium distance of the Reynolds model for different swarm
sizes. Average and standard deviation of the equilibrium inter-agent distances (measured as
min j di j (t = 200 s)) of the Reynolds model in R3 for different swarm sizes (N = {2,10, . . . ,200}).
Here, we consider Ni =

{
j ∈V | j 6= i

}
. The Reynolds parameters are ccoh = 0.5, csep = 2, and

calign = 0.5. The distances have been measured at t = 200 s to avoid the influence of the initial
conditions.

velocities in the system is conserved at any instant k, i.e.,
∑

i∈V vi (k) =∑
i∈V vi (0) =V0. At the

equilibrium configuration, every agent has the same velocity V0/N that depends on the initial

velocities of the agents.

Based on Reynolds model, many variants have been developed. For goal-directed flight,

alignment is replaced by migration, which steers each agent in a preferred migration di-

rection [23, 47]. For navigating environments with obstacles, the addition of a fourth rule,

collision avoidance, is necessary to steer the agents around the obstacles [12, 13].

2.2.3 Olfati-Saber model

Olfati-Saber first proposed the idea of formalizing Reynolds swarm rules with the definition of

PFs [22]. Mathematically, Olfati-Saber combined the cohesion and separation rules relative

to an agent i into a single PF Udm,i for the distance matching, which has the advantage of

presenting the reference distance dref as an explicit parameter. For N = 2, the reference dis-

tance is equal to the equilibrium inter-agent distance. The formula for the distance-matching

potential Udm,i is (Fig. 2.4):

Udm,i =
1

|Ni (k)|
∑

j∈Ni

ρ(di j /r)σ(di j −dref) (2.7)

where ρ(·) is a weight function defining the influence of neighbor j on i , r is the perception

radius of the agents, andσ(·) is a scalar function defining the intensity of cohesion or repulsion

to neighbor j , depending on whether the two agents are closer or farther than the equilibrium

13

Chapter 2. Algorithms for aerial drone swarms

Figure 2.4 – Olfati-Saber distance-matching potential. From left to right, weight function ρ,
shape function σ, and distance-matching potential U dm

Figure 2.5 – Olfati-Saber distance-matching force. On the left, distance-matching force as a
function of the inter-agent distance. In the middle and on the right, plots of the magnitude of
the 2D field generated by the same force.

distance. Their definitions are:

ρ

(
di j

r

)
=

1,

di j

r ∈ [0,δ]

1/22
[

1+cos
(
π

((di j /r)−δ)
(1−δ)

)]2
,

di j

r ∈ [δ,1]

0, otherwise

(2.8)

σ(di j −dref) =
a +b

2

[√
1+ (di j −dref + c)2 −

√
1+ c2

]
+ (a −b)(di j −dref)

2
(2.9)

where the constant parameters δ defines the weight function ρ(·), while a, b, and c define the

shape of σ(·). The force for the distance matching can be obtained from the potential as:

Fdm,i =∇Udm,i (2.10)

The alignment rule, renamed to velocity matching, is expressed by the same formula as in the

Reynolds model. When a migration point (or waypoint) is provided, the alignment behavior

can be replaced by another formula that steers the agents towards a migration point pmig ∈R3

with a preferred speed vref:

Fvm,i (vi) = γ(‖pmig −pi‖
)

(vrefumig,i −vi) (2.11)

14

2.2. Potential field-based models

where γ(·) is a function weighting the velocity-matching force, i.e., γ(z) = min(1, z/dtol), and

umig,i = (pmig −pi)/‖pmig −pi‖ is the unit vector directed from agent i to the migration point

pmig.

2.2.4 Vasarhelyi model

Standing on the models above, Vasarhelyi et al. proposed an adaptation for the navigation

in confined environments and the presence of no-flight regions [13]. Their model includes

the rules of self-propulsion for matching a preferred speed, repulsion to prevent inter-drone

collisions, friction to reduce velocity oscillations, obstacle avoidance to avoid collisions with

obstacles, and lastly wall avoidance to keep the swarm within the boundaries of a confined

flight area.

The repulsion is active when neighboring agents are closer than the perception radius r and

push them further apart. Its formula is:

vrep,i j =
crep(r −di j)

pi−p j

di j
if di j < r

0 otherwise
(2.12)

where crep is the constant weight of the repulsion term. The total repulsion term is given by

the sum of individual terms:

vrep,i =
∑
j 6=i

vrep,i j (2.13)

The friction term synchronizes motion to achieve collective swarming behavior, but it also

serves as a damping medium, reducing self-excited oscillations emerging due to the delayed

and noisy response to, for example, repulsion. Its formula is:

vfric,i j =
Cfric(vi j − vfricmax,i j)

vi−v j

vi j
if vi j > vfricmax,i j

0 otherwise
(2.14)

vfricmax,i j is defined by:

vfricmax,i j = max(vfric,D(di j − r0,fric, afric,cfric)) (2.15)

where cfric, r0,fric, vfric, and afric are constant parameters. The function D(·) is a smooth velocity

decay function in space with constant acceleration at high speeds and exponential approach

in time at low speeds. It is defined by:

D(di j , afric,cfric) =

0 ifdi j < 0

cfricdi j if 0 < cfricdi j < afric/cfric√
2africdi j −a2

fric/c2
fric otherwise

(2.16)

15

Chapter 2. Algorithms for aerial drone swarms

Similarly to repulsion, the total friction term is given by the sum of individual terms:

vfric,i =
∑
j 6=i

vfric,i j (2.17)

Obstacle and wall avoidance are obtained by defining virtual repulsive agents (called shill

agents) located along the obstacle and wall boundaries. These virtual agents are heading

perpendicular to the obstacle or wall surface with a certain speed, vshill. The real agents close

to them should relax their velocity to the velocity of the shill agents through the formula:

vfric,i s =
(vi s − vshillmax,i s) vi−vs

vi s
if vi s > vshillmax,i s

0 otherwise
(2.18)

where s is an index referring to a shill agent on a wall or obstacle, and vfricmax,i j is defined by:

vshillmax,i j = D(di s − r0,shill, ashill,cshill) (2.19)

Finally, the self-propulsion term is obtained from the previous velocity of the agent as:

vflock,i =
vi

‖vi‖
vref (2.20)

where vref is the preferred speed of the swarm.

At any instant, the velocity command for agent i resulting from the contributions above is:

ũi = vflock,i +vrep,i +vfric,i +
∑

w∈Wi

vwall,i m + ∑
m∈Mi

vobstacle,i m (2.21)

After summing the contributions, a cutoff at vmax is applied on the velocity commands ũi and

the velocities commanded to the agents become:

ui = ũi

‖ũi‖
min(‖ũi‖, vmax) (2.22)

To search the large parameter space and find a parameter combination suitable to the deploy-

ment settings, Vasarhelyi et al. propose the use of evolutionary optimization. The selected

parameters maximize the swarm order while minimizing the number of collisions within the

agents and with the environment. However, the parameter choice gives no guarantees of

collision avoidance, especially when tested on different swarm configurations (i.e., inter-agent

distances and preferred speed) or different environmental settings (i.e., obstacle density and

size).

16

2.3. Optimization-based models

Figure 2.6 – Trajectories of agents flying with the Vasarhelyi’s model. Top and side views, on
the left and right respectively, of the agent trajectories flying through cylindrical obstacles with
Vasarhelyi’s model. The goal is located at (10,0,1), while the floor and ceiling are set at z = 0 m
and z = 2 m. The agent’s initial positions are indicated with dots.

2.3 Optimization-based models

A wide variety of optimization-based techniques exist to tackle the tasks of multi-robot trajec-

tory generation and collision avoidance. These tasks are more generic and do not require all

the behaviors that we defined for the swarm (i.e., cohesion, collision avoidance, and alignment

or migration to a common destination). However, as these techniques work on some common

ground, we describe them here for completeness and use them in the following chapters for

comparison.

2.3.1 Sequential Convex Programming

Sequential Convex Programming (SCP) has been successfully applied to point-to-point tra-

jectory generation for multiple agents [48, 49]. This method solves sequential optimization

problems with convex approximations of collision constraints. However, in scenarios where

the spaces are non-convex, these algorithms can fail to find feasible solutions because the

convex approximations lead to a sequence of infeasible optimization problems. An alternative

approach based on an iterative SCP scheme (iSCP) solves this issue by tightening the collision

constraints incrementally, thus forming a sequence of more relaxed, feasible intermediate

optimization problems [50].

2.3.2 Optimal Reciprocal Collision Avoidance

Optimal Reciprocal Collision Avoidance (ORCA) and all its variants have pushed towards

real-time trajectory generation [51, 52]. Real-time trajectory generation is required for quick

adaptation in dynamic environments. ORCA builds on the concept of reciprocal velocity

obstacle and computes the set of non-colliding velocities for an agent. The selected robot

velocity lies in this set and minimizes its distance to the preferred velocity (which is usually

determined by the goal location of the robot and the preferred traveling speed). It implicitly

17

Chapter 2. Algorithms for aerial drone swarms

assumes that all other agents make similar collision-avoidance reasoning while providing

a simple approach to navigate multiple agents safely and smoothly amongst each other

without explicit communication between them. Variations have been elaborated to minimize

the discomfort of travelers supposing that the agents are vehicles carrying humans [53]. The

variation minimizes the instantaneous accelerations while providing collision-less trajectories.

2.3.3 Buffered Voronoi Cells

A similar approach to ORCA achieves collision avoidance through the concept of Buffered

Voronoi Cells (BVC) [54]. BVCs are Voronoi cells with edges retracted by a safety radius for

the robot so that if the robot’s center point is in the BVC, its body will be entirely within the

Voronoi cell. The BVC concept has been recently used in tandem with discrete planners [55],

primarily to avoid deadlocks in scenarios where plain BVC would not find a viable solution

and the mission would fail.

2.4 Learning-based models

2.4.1 Local to local learning models

The decentralised drone swarms described previously rely on knowing the positional data of

other agents which is either communicated or acquired visually. A different approach consists

of learning some swarm model outputs directly from the visual inputs of the agents. Recent

work has done this with the help of a convolutional neural network that learns the Reynolds

model by imitation [47]. We call this approach local to local since both the expert and the

learned network use only local information. The network could learn not only robust inter-

agent collision avoidance but also the cohesion of the swarm in a sample-efficient manner. By

visualizing the regions with the most influence on the motion of an agent, the authors showed

that the neural controller effectively learns to localize other agents.

2.4.2 Global to local learning models

Different from the previous work, where a decentralized expert model is used to learn a decen-

tralized swarm behavior, other works imitate the policy of centralized controllers using global

information at training time while they require only local information and communications at

test time. We call this approach global to local. A remarkable example is based on aggregation

graph neural networks that use time-varying signals and time-varying network support [56].

They demonstrate the performance on communication graphs that change as the robots

move. The common local controller of a single robot can exploit information from distant

teammates using only local communication interchanges. Cohesive and safe collective motion

is generated in empty environments. Interestingly, the authors examine how a decreasing

communication radius and faster velocities increase the value of multi-hop information.

18

2.5. Neighbor selection

Another example uses deep imitation learning to solve the online multi-agent trajectory

generation task in the presence of obstacles [57]. In this work, every individual has a different

target position and cohesion is not a requirement. However, the interesting addition is the

introduction of a differentiable safety module that ensures collision-free operation, thereby

allowing for end-to-end policy training.

2.5 Neighbor selection

Careful consideration of the neighbor selection method is important for all swarm models

since it introduces the notion of locality (e.g., in communication and perception) as opposed

to all-to-all information transfer. In the following, we present different ways of selecting the

neighbor set Ni of an agent i .

2.5.1 Neighbor selection based on the Euclidean distance

Neighbor selection based on the Euclidean distance chooses only those agents that fall within

a radius r centered around the focal agent i (Fig. 2.7). We can formalize metric neighbor

selection as the set:

Ni =
{

j ∈V , j 6= i | | di j < r
}

(2.23)

where r denotes the maximum perception range of the agents. Defining the set of neighbors

based on a Euclidean distance is the most popular means of neighbor selection in the literature

[21, 58, 22, 59]. In robotic implementations, r can be interpreted as a perception radius for

vision-based swarms or a communication range for swarms that can exchange information via

wireless links, for example. With the assumption that all agents are homogeneous and equally

sized, we can use the metric perception range to represent visual acuity, i.e., the minimum size

that another agent spans on the retina of the focal agent before it can no longer be perceived.

(a) r = 0.5 m (b) r = 0.75 m (c) r = 1 m (d) r = 1.25 m

Figure 2.7 – Neighbor selection based on the Euclidean distance. The sensing radius r in-
creases from left to right, i.e., r = 0.5, 0.75, 1, and 1.25 m. The number of neighbors (in blue) of
the focal agent (in red) grows with r .

19

Chapter 2. Algorithms for aerial drone swarms

2.5.2 Neighbor selection based on the topological distance

Neighbor selection based on the topological distance chooses only the n nearest neighbors of

the focal agent i (Fig. 2.8). In this case, we can write the set of neighbors as:

Ai =
{

n-argmin
j∈V , j 6=i

di j

}
(2.24)

where the n-argmin operator selects at most the n nearest neighbors.

Topological neighbor selection is a popular method due to its explanatory success in natural

swarms [19, 60] and is often used in models of collective motion to maintain group cohesion

[59, 61].

(a) n = 3 (b) n = 6 (c) n = 9 (d) n = 12

Figure 2.8 – Neighbor selection based on the topological distance. The number of neighbors
n increases from left to right, i.e., n = 3, 6, 9, and 12.

2.5.3 Neighbor selection based on Voronoi tessellation

Neighbor selection based on the Voronoi tessellation chooses only those agents whose Voronoi

regions share a border with the focal agent (Fig. 2.9). We can write the set of Voronoi neighbors

as:

Ni =
{

j ∈V , j 6= i | Vi ∩V j 6= ;}
(2.25)

where ; denotes the empty set and Vi the Voronoi region of agent i in the d−dimensional

space which can be defined as:

Vi =
{

q ∈Rd , j ∈V , j 6= i | ‖q −pi‖ ≤ ‖q −p j‖
}

. (2.26)

In other words, the Voronoi region of an agent can be described as the set of all points that are

closer to itself than to any other agent. Neighbor selection based on the Voronoi tessellation

can be seen as topological interactions that are parameter-free and automatically balanced

in space [61]. Moreover, it can be shown that the average number of Voronoi neighbors is at

most six for the planar case (i.e., d = 2) [62].

20

2.5. Neighbor selection

Figure 2.9 – Neighbor selection based on Voronoi tessellation. The Voronoi tessellation is
highlighted in light blue. Only agents that share an edge of their Voronoi cell with the focal
agent (in red) are considered neighbors (in blue). This neighbor selection method does not
depend on any parameter.

2.5.4 Neighbor selection based on line-of-sight occlusions

Neighbor selection based on line-of-sight occlusions chooses only those agents that are not

occluded by closer ones as seen from the perspective of the focal agent (Fig. 2.10). The set of

visible agents can be written as:

Ni = { j ∈V , j 6= i , j 6= k | ¬(‖ui j −ui k‖ < r̂i j + r̂i k ∧di j < di k
)
} (2.27)

where ui j = ‖p j −pi‖/di j and r̂i j = ragent/di j are the projections of the agent position and

radius onto the unit circle, respectively. According to this definition, partially occluded agents

are considered invisible, i.e., only the closest set of agents with an uninterrupted line of sight

are contained in the visible set. This assumption is reasonable for monocular vision since the

relative distance to other agents can only be reliably estimated if all of their spatial extents are

visible.

Figure 2.10 – Neighbor selection based on vision. Only agents which are fully visible from the
focal agents (in red) are considered neighbors (in blue). This neighbor selection method does
not depend on any parameter.

21

Chapter 2. Algorithms for aerial drone swarms

2.6 Swarm performance metrics

Figure 2.11 – Illustration of the performance metrics used for the evaluation of the swarm
flight. In particular, they are: order (Φorder), safety (Φsafety), union (Φunion) and connectivity
(Φconnectivity). In general, 1 corresponds to a high score, while 0 refers to a poor score. Signifi-
cant levels are chosen for every metric. In particular, for the safety metric, important changes
in the flock configuration already happen in the highest half-range.

We define here relevant metrics that will be used for the evaluation of the swarm flight quality

in the following chapters. These metrics are inspired by both the robotics and biology literature

and adapted to this context.

22

2.6. Swarm performance metrics

2.6.1 Order

The order metric Φk
order captures the correlation of the agents’ movements and gives an

indication about how ordered the flock is. At every instant k, it is expressed by:

Φk
order =

1

N |Ni |
∑

i , j∈Ni

ẋk
i · ẋk

j

‖ẋk
i ‖‖ẋk

i ‖
. (2.28)

It is equal to 1 when all the agent velocities are aligned towards the same direction and it is

equal to 0 when agent velocities are diametrically opposed two by two. To evaluate the global

performance of the swarm during the experiment time Tmax, the performance is averaged

over time, as:

Φorder =

K∑
k=1
Φk

order

K
(2.29)

The same reasoning applies to other metrics.

2.6.2 Agent-agent safety

To measure the safety against inter-agent collisions we count the number of collisions Ncoll,agent

and we compute the agent-agent safety metricΦk
safe,agent, which measures the risk of collisions

among the members of the flock at a given temporal instant. We define rsafe,agent as the radius

of a virtual sphere that surrounds the agent where the presence of other agents should be

avoided for safety reasons. For real drones, it corresponds to the dimension of the robot,

plus an arbitrary margin which is higher for more conservative approaches. If the number

of violations (or collisions) is Ncoll,agent(k) = |{(i , j) s.t . j 6= i ∧di j (k) < rsafe,agent}|, then the

agent-agent safety metric at instant k is:

Φk
safe,agent = 1− Ncoll,agent

N (N −1)
. (2.30)

While Ncoll,agent ∈N, Φsafe,agent ∈ [0,1]. In particular, Φsafe,agent = 0 when all possible pairs of

agents are colliding andΦsafe,agent = 1 when no collision happens. In practice, since each agent

occupy a volume it is not possible to getΦsafe,agent = 0 for large swarms. However, for a swarm

of a given size, it is always true that a higher number of inter-agent collisions corresponds

to a lower agent-agent safety value. Additionally, we use the minimum inter-agent distance

min(di j)(k) between all pairs of agents as a complementary measurement. The latter indicates

whether collisions are happening at a given time k.

2.6.3 Agent-obstacle safety

To measure the safety against obstacle collisions we count the number of obstacle collisions

Ncoll,obs and we compute the agent-obstacle safety metricΦk
safe,obs, which measures the risk of

23

Chapter 2. Algorithms for aerial drone swarms

collisions among the members of the flock at a given temporal instant. We define rsafe,obs as the

radius of a virtual sphere that includes the obstacles where the presence of other agents should

be avoided. If the number of obstacle collisions is Ncoll,agent(k) = |{(i , j) s.t . j 6= i ∧di j (k) <
rsafe,agent}|, then the agent-obstacle safety metric at instant k is:

Φk
safe,agent = 1− Ncoll,agent

N (N −1)
. (2.31)

We then measure the minimum distance to obstacles max(di j) as the minimum of the agent

distances to all obstacles over the experiment time.

2.6.4 Union

The union metric Φk
union reflects how scattered the group members are and it counts the

number of independent subgroups that originate during the experiment. We define Ncc as

the number of connected components of the undirected graph that corresponds to the flock

topology, then at time tk it holds:

Φk
union = 1− Ncc −1

N −1
. (2.32)

Complementarily, we measure the maximum inter-agent distance max(di j) over the experi-

ment time.

2.6.5 Connectivity

The connectivity metric Φk
connectivity is defined from the algebraic connectivity [63] of the

swarm underlying graph. Also known as the connectivity eigenvalue, this is the second smallest

eigenvalue of the Laplacian matrix [63] associated with the undirected graph G′ obtained from

G and it is usually denoted by λ2. Algebraic connectivity has been extensively used in swarm

robotics [64, 65] because the magnitude of this value reflects crucial qualities of the graph. We

define the value of the metric at time tk as:

Φk
connectivity =

λ2

N
(2.33)

where λ2 is defined in 5.2.1. Notice that Φk
connectivity 6= 0 only when Φk

union = 1. In this sense,

the connectivity metric is complementary to the union metric.

2.6.6 Mission completion time

The mission completion time T is the time that the swarm takes to get to the final destination.

If the swarm migrates according to a preferred velocity vref we consider the mission completed

when the swarm crosses a finish line, while if the swarm migrates towards a goal destination

24

2.6. Swarm performance metrics

pmig then we consider the mission completed when the center of the swarm is located around

pmig up to a tolerance distance rtol.

2.6.7 Trajectory length

The trajectory length Ltraj is the average distance flown by the swarm agents from the beginning

of the experiment until they reach the goal destination or the finish line, depending on the

context, or until the experiment end if none of the previous conditions is verified.

Ltraj =
∑

i∈V
∑K

k=1 ‖pk
i −pk−1

i ‖
N

(2.34)

with K being the minimum between the time index corresponding to the mission completion

and the experiment end time index.

25

3 Centralized predictive control of
aerial drone swarms

In the previous chapter, we introduced classical models of aerial swarms, and in particular those

based on potential fields. These models describe global coordinated motion as the combination

of local interactions that happen at the individual level. Despite their explanatory success, they

fail to guarantee rapid and safe collective motion when applied to aerial robotic swarms flying

in cluttered environments of the real world, such as forests and urban areas. Moreover, these

models necessitate a tight coupling with the deployment scenarios to induce consistent swarm

behaviors. Here, we propose a predictive model that incorporates the local principles of potential

field models in an objective function and optimizes those principles under the knowledge of

the agents’ dynamics and environment. We show that our approach improves the speed, order,

and safety of the swarm, it is independent of the environment layout and scalable in the swarm

speed and inter-agent distance. Our model is validated with a swarm of five quadrotors that

can successfully navigate in a real-world indoor environment populated with obstacles.

The work presented in this chapter is adapted from [10]:

• E. Soria, F. Schiano, D. Floreano, “Predictive control of aerial swarms in cluttered envi-

ronments,” in Nature Machine Intelligence, vol. 3, pp. 545-554, May 2021.

Simulation and hardware experimental data that support the findings of this study can be

downloaded from https://doi.org/10.5281/zenodo.4379168.

The code that supports the findings of this study can be downloaded from https://doi.org/

10.5281/zenodo.4379503.

A press release realized by Mediacom is available at https://actu.epfl.ch/news/ helping-drone-

swarms-avoid-obstacles-without-hitti/.

27

https://doi.org/10.5281/zenodo.4379168
https://doi.org/10.5281/zenodo.4379503
https://doi.org/10.5281/zenodo.4379503
https://actu.epfl.ch/news/helping-drone-swarms-avoid-obstacles-without-hitti/
https://actu.epfl.ch/news/helping-drone-swarms-avoid-obstacles-without-hitti/

Chapter 3. Centralized predictive control of aerial drone swarms

3.1 Introduction

In this chapter, we propose a novel drone swarm method that removes the difficulties of PF-

based methods, and specifically the slow-down effect caused by shill agents and the usability

of the model for a range of swarm configurations and different environments. This method

consists of endowing swarming agents with prediction-based control. We show that aerial

swarms with predictive control display faster flight while guaranteeing safe navigation in

cluttered environments, they can adapt to diverse obstacle densities, and they are scalable

to changes in the inter-agent distance and swarm’s speed. It has been recently advocated

that some form of predictive control, in the form of an internal model of the actions of their

conspecifics, may also be leveraged by biological swarms where the apparent synchronization

of coordinated maneuvers, such as a flock of starlings or a school of fish, cannot be explained

by a purely reactive system [27]. Inspired by this hypothesis, the proposed method endows

flying agents with a model of swarm behavior based on Nonlinear Model Predictive Control

(NMPC).

Model Predictive Control (MPC) is a method that computes the control action of a system as

the solution of a constrained optimization problem [28, 29]. MPC leverages a mathematical

representation of the system to predict and optimize its future behavior in an iterative process.

Differently from PF control, MPC can explicitly handle constraints, such as physical limita-

tions (e.g., flight speed and acceleration ranges of a drone) [30, 31, 32, 66], and environmental

restrictions (e.g., no-flight zones) [32, 33, 34]. However, the recursive online solution of con-

strained optimization problems is associated with higher computational costs, and therefore

the adoption of predictive controllers in robotics has spread only recently [35].

MPC has shown promising results in simulation on multi-vehicle systems. Examples include

the stabilization of multiple agents in obstacle-free environments [36, 37], in the presence of

obstacles [33], and the generation of collision-free trajectories for groups of robots with known

target locations [38, 39, 40]. NMPC is a variant of MPC that can handle the nonlinearities of a

system or its constraints [29]. This advantage comes at the cost of being more computationally

demanding. In the simulation, NMPC has been used to control leader-follower formations

of drones without obstacles [41], and to control 2D quadrotor formations in the presence of

convex obstacles [34].

Less work has been done on the use of MPC with multiple real drones, notably due to the

difficulty of real-time implementation. Linear MPC has been used for trajectory planning

in the presence of virtual obstacles in a leader-follower configuration, where a drone (the

follower) has to keep a constant distance from a virtual agent (the leader) [67]. However,

in leader-follower approaches, the leader has the extra knowledge of the group trajectory,

which is either preprogrammed or provided by an external source. This aspect introduces

an asymmetry in the agents’ roles and adds a single point of failure in the swarm [68]. MPC

has been used for the online generation of collision-free trajectories for a group of drones in

environments with obstacles, where every drone is individually assigned an initial position

28

3.2. Method

and a target destination [32]. Instead, the model presented here is meant to coordinate the

navigation of the swarm as a unique entity and guarantee internal order, in lieu of generating

the trajectories separately. Concurrently, we avoid imposing a rigid formation or a fixed

topology to the swarm, which may impact the freedom and fluidity of the agents’ movements.

Finally, NMPC has been shown to be capable of dealing with non-convex collision avoidance

constraints in real multi-drone systems when the agents are assigned intersecting paths,

although they were flying in empty environments [69].

In the proposed NMPC model, the objective function to be optimized is made of three compo-

nents inspired from PF swarm models: (a) separation, which drives the inter-agent distances

to a preferred value, (b) propulsion, which propels the agents with a preferred speed value, and

(c) direction, which steers the swarm along a preferred direction. The separation component

incorporates the effects of cohesion and repulsion in a single rule, in such a way that the

inter-agent distance between neighboring individuals appears as an explicit parameter. The

propulsion and direction components taken together in the NMPC swarm model replicate

the effect of the migration term in the PF swarm models. However, keeping two terms with

two independent parameters allows separate adjustments of their relative strengths. A fourth

rule, (d) control effort is added to minimize the agents’ accelerations, thereby smoothing

flight trajectories and increasing energy efficiency. Each drone regulates its flight based on

the knowledge of its neighbors and its own state and predicts its own trajectory and those

of its neighbors thanks to a linearized dynamical model. The drones’ neighbors are selected

within a topological range, i.e. for every drone only a constant number of nearest neighbors is

considered [19]. The proposed NMPC model integrates a set of constraints to ensure safety

distances among drones and with obstacles. We implement a centralized version of our NMPC

model and we compare simulation results to a PF model. We show that predictive controllers

can safely fly the swarm in cluttered environments while significantly increasing the flight

speed and synchronization of the swarm. Also, we show that the performance of the proposed

NMPC model is independent of the obstacle density and environmental layout, differently

from PF models. Additionally, we test the scalability of the proposed model to variations

of desired inter-agent distance and swarm speed. We perform systematic experiments in

simulation and validate the results with a swarm of five palm-sized quadrotors.

3.2 Method

In this work, we consider a swarm of N agents labeled by i ∈ {1, . . . , N }. The position, velocity,

and control input of the i -th agent are denoted by pi , vi , ui ∈ R3, respectively. Let di j =
‖p j −pi‖ represent the distance between the center of two agents i and j , where ‖ ·‖ denotes

the Euclidean norm. We model the swarm with a directed sensing graph G = (V ,E), where

the vertex set V = {1, . . . , N } represents the agents, and the edge set E ⊆ V ×V contains the

pairs of agents (i , j) ∈ E for which agent i can sense agent j . We denote as Ni = { j ∈V |(i , j) ∈
E} ⊂ V the set of neighbors of an agent i in G, and | · | indicates the cardinality of a set. We

define the neighbors set utilizing a topological range, i.e., the set Ni contains the n nearest

29

Chapter 3. Centralized predictive control of aerial drone swarms

Start

Cylindrical
obstacles

Arrival

Y

Z
X

Motion capture arena

Flight direction

Radio
antenna

Ground control
station

Drone 1

Drone 2

Drone 3

Drone 5

Drone 4

a

b marker deck +
12.5 mm marker

9.5 mm marker

DC coreless motor

250 mAh LiPo battery

Crazyflie 2.1

Components

c

Figure 3.1 – Experimental setup of NMPC drone swarm flying in cluttered environments.
(a) Illustration of the experimental setup and the environment configuration. A ground
control station, equipped with a radio transmitter, computes and sends run-time control
commands to the drones. The swarm flies in the 3D space of an indoor flying arena. The
drones take off from initial random positions within a predefined start area (red zone). Drones
swarm along the preferred migration direction (orange arrow). The mission is completed
when all drones cross the arrival plane on the opposite side of the region. (b) Indoor test
environment populated with cylindrical obstacles. (c) Components of the drones used for the
hardware experiments.

neighbors of agent i . This choice is convenient for keeping the cardinality of the neighbor set

constant, and it has also been shown to hold true for biological swarms [19]. Other studies

have investigated different neighborhood approaches based on the Voronoi partition or ad-

hoc attraction topologies [70]. However, we discarded those methods because they would

introduce discontinuities in the objective function of our predictive swarm model, or they

would constrain the swarm to a fixed formation. To reproduce a forest-like environment,

we introduce M cylindrical obstacles labeled by m ∈M = {1, . . . , M }. We denote as dim the

distance between an agent i and the symmetry axis of cylinder m. In our simulations, the

dynamics of the agents is reproduced in discrete time. We let pi (k), vi (k), ui (k) ∈R3 be the

position, velocity, and control input of the i -th agent at the time t (k) = kd t , respectively. For

30

3.2. Method

brevity, in the following, we will omit the time dependency when clear from the context.

3.2.1 PF swarm model

The PF model we present is inspired by a state-of-the-art model that allows drone swarm

navigation in confined environments [13]. From the original model, we include the rule of

repulsion to prevent inter-drone collisions, friction to reduce velocity oscillations, and obstacle

avoidance to avoid collisions with obstacles. For the mathematical definition of these rules,

we refer the reader to [13]. To ensure goal-directed flight in open environments, we added two

rules: migration to provide a preferred velocity vector, and cohesion to keep agents together.

We denote the migration velocity with vref = vrefuref, where vref is the preferred speed and uref

is the preferred direction. Then, the migration term, equal for every agent, corresponds to:

vmig = vrefuref (3.1)

If the repulsion is active when neighboring agents are closer than the preferred distance dref

and push them further apart, the cohesion is active when they are farther than dref to bring

them closer. Repulsion and cohesion are inactive when two agents are precisely at the distance

dref. The cohesion exerted on an agent i from a neighbor j is:

vcoh,i j =
ccoh(di j −dref)

p j−pi

di j
if di j < dref

0 otherwise
(3.2)

where we choose the pairwise gain of cohesion equal to the repulsion gain ccoh = crep and the

cutoff for the minimum cohesion range equal to the repulsion range dref. The total cohesion

effect calculated for agent i with respect to its neighbors is:

vcoh,i =
∑

j∈Ni

vcoh,i j (3.3)

At any instant, the velocity for agent i resulting from the contributions above is:

ṽi = vmig +vcoh,i +vrep,i +vfric,i

∑
s∈Mi

vobstacle,i s (3.4)

After summing the contributions, we apply a cutoff on the acceleration at amax according to:

ai = ãi

‖ãi‖
min(‖ãi‖, amax) (3.5)

where ãi (k +1) = (ṽi (k +1)− ṽi (k))/d t . Then, we apply a cutoff on the speed at vmax, and get

the velocity command vi of the i -th agent:

vi = ṽi

‖ṽi‖
min(‖ṽi‖, vmax) (3.6)

31

Chapter 3. Centralized predictive control of aerial drone swarms

To search the large parameter space of the PF swarm model, we used evolutionary optimization

for highest-order flight and lowest number of collisions. The evaluation of the swarm behavior

is based on a single fitness function that sums three independent values (Φorder,Φagent-safety,

and Φobs-safety) smaller or equal to 1 (ideal case). The fitness is determined in simulations

where the swarm is initialized with random positions in an environment where obstacles are

randomly placed. The parameter values and their description are detailed in Table 3.1.

Parameter Symbol Unit Value

Repulsion
crep 1/s 0.29
dref m 0.8

Cohesion
ccoh 1/s 0.29
dref m 0.8

Friction

cfric 1/s 3.34
Cfric − 0.06
vfric m/s 0.63
afric m/s2 0.05

r0,fric m 6.98

Obstacle avoidance

cshill 1/s 2.99
vshill m/s 0.81
ashill m/s2 1.17

r0,shill m 0.10
Migration vmig m/s (0.5,0,0)

Table 3.1 – Optimized parameter values of the PF swarm model. The parameter values are
obtained via evolutionary optimization. For the complete explanation on the meaning of the
parameters, please refer to [13].

Parameter Value

Population size 15
Number of generations 60

Maximum stall generation 6
Selection function tournament

Fitness scaling proportional

Table 3.2 – Parameter setting of the evolutionary optimization for the PF swarm. The opti-
mization algorithm used to compute the optimal parameter values for the PF swarm model
was obtained from https://www.mathworks.com/help/gads/genetic-algorithm.html. The
most important parameter values are shown in the table below. Parameters not listed here
were used with default values. The fitness function used to instantiate the PF swarm model is a
linear combination of the order (Φorder), agent-agent safety (Φagent-safety), and agent-obstacle
safety (Φobs-safety), with gains 0.1, 1, and 1, respectively.

32

https://www.mathworks.com/help/gads/genetic-algorithm.html

3.2. Method

3.2.2 Agents’ dynamics

The NMPC swarm model supposes the availability of the agents’ dynamic model. We assume

that every drone of the swarm obeys a discrete linear system, given by:

xi (k +1) = Ai xi (k)+Bi ui (k) (3.7)

where Ai and Bi are constant matrices. In this chapter, we consider the system to repre-

sent a quadrotor with an underlying acceleration controller. The input ui is an acceleration

command and the state xi = [pi , vi] ∈R6 is a vector containing the position and velocity.

We assume that the velocities and acceleration inputs of the agents are bounded by constant

vectors vmin, vmax and umin, umax respectively. This translates into the inequalities:

vmin ≤ vi ≤ vmax (3.8)

umin ≤ ui ≤ umax (3.9)

Let x = [x1, x2, . . . xN] ∈ R6N the positions and velocities of the agents of the swarm, and

u = [u1,u2, . . .uN] ∈R3N . The system defining the motion of the swarm can be written as:

x(k +1) = Ax(k)+Bu(k) (3.10)

where A and B are block diagonal matrices with blocks A1, ... , AN and B1, ... , BN , respectively.

Parameter values of the agents’ dynamics are detailed in Table ??.

3.2.3 NMPC swarm model

For our NMPC swarm model, we defined behavioral rules similar to those of the PF model.

These rules are encoded as four terms of a cost function, including separation, propulsion,

direction, and control effort. At each time step, each agent updates its neighbor set and

computes the cost associated with the four swarm rules only considering neighboring agents.

All agents’ contributions are then summed in a global cost function that defines our centralized

model. The dynamic model of the agents determines the evolution of the agents’ state over

a constant time window, called the prediction horizon. These predictions are optimized by

the global cost function, whose solution gives the control inputs for the swarm over the so-

called control horizon (see Fig. 3.2). The prediction and control horizons are finite and shift

forward at every time step. In the following, they will be denoted as TP = Pd t and TC =C d t

respectively, with P ≥C and P , C ∈N+.

We let (·)(k + l |k) represent the predicted value of (·)(k + l) with the information available at

time t (k) and l ∈ {0, . . . ,P }. Then, the continuity condition on the swarm state is written as:

x(k|k) = x(k) (3.11)

33

Chapter 3. Centralized predictive control of aerial drone swarms

Figure 3.2 – Experimental setup of NMPC drone swarm flying in cluttered environments.
(a) Illustration of the experimental setup and the environment configuration. A ground
control station, equipped with a radio transmitter, computes and sends run-time control
commands to the drones. The swarm flies in the 3D space of an indoor flying arena. The
drones take off from initial random positions within a predefined start area (red zone). Drones
swarm along the preferred migration direction (orange arrow). The mission is completed
when all drones cross the arrival plane on the opposite side of the region. (b) Indoor test
environment populated with cylindrical obstacles. (c) Components of the drones used for the
hardware experiments.

The separation term for agent i and time t (k) is:

Jsep,i (k) = ∑
j∈Ni

P∑
l=1

wsep

|Ni |
(‖p j (k + l |k)−pi (k + l |k)‖2 −dref

2)2 (3.12)

34

3.2. Method

The separation component incorporates the effects of cohesion and repulsion and drives the

inter-agent distances to the preferred value dref. It is important to notice that commanding

inter-agent distances instead of relative positions, as done in problems of formation keep-

ing [33, 34, 36, 37], introduces a non-convexity in the separation term. The propulsion term is:

Jprop,i (k) =
P∑

l=1
wprop(‖vi (k + l |k)‖2 − vref

2)2 (3.13)

The direction term is:

Jdir,i (k) =
P∑

l=1
wdir

(
1− (vi (k + l |k) ·uref)

2

‖vi (k + l |k)‖2

)2

(3.14)

The combined action of the propulsion 3.13 and direction 3.14 terms contribute to the so-

called migration behavior of the swarm that regulates the two components of the swarm’s

velocity, i.e., magnitude and direction, respectively. The choice of two separate terms that

independently act on the swarm’s velocity components is necessary to maintain constant

flight speed during obstacle avoidance maneuvers. The control effort is:

Ju,i (k) =
P−1∑
l=0

wu‖ui (k + l |k)‖2 (3.15)

where wsep, wprop, wdir , and wu represent the constant weights associated with the cost

function terms.

To prevent the agents from colliding with their neighbors or the obstacles, we associated with

the cost function two sets of collision avoidance constraints:

di j (k + l |k)2 ≥ d 2
agent-safety i ∈V , j ∈Ni (3.16)

di m(k + l |k)2 ≥ d 2
obs-safety i ∈V , m ∈M (3.17)

where dagent-safety is the safety distance between two agents’ positions and dobs-safety is the

safety distance that an agent should keep from the obstacle’s position. While in this study we

consider collision avoidance with all obstacles (see Eq. 3.17), the model does not necessarily

require it. Indeed, the obstacles that do not interfere with the agents’ predicted trajectories are

discarded by the optimization process. A strategy for reducing the number of constraints in

the model consists of considering only the subset of obstacles that are on the collision course

with the agents. While this strategy would represent an approximation of more comprehensive

modeling of all obstacles, as presented here, the advantages of the model-based approach

described here would still hold.

We let X (k) ∈ R6N P the stacked sequence of the predicted states x(k + l |k) over the horizon

l ∈ {1, . . . ,P } and U (k) ∈R3N P the stacked sequence of the predicted control inputs u(p|k) over

the horizon l ∈ {0, . . . ,P −1}. Then, the terms of the cost function and the constraints define

35

Chapter 3. Centralized predictive control of aerial drone swarms

the following non-convex optimization problem:

min
X (k),U (k)

N∑
i=1

(
Jsep,i (k)+ Jprop,i (k)+ Jdir,i (k)+ Ju,i (k)

)
(3.18)

subject to: (3.19)

x(k + l +1|k) = Ax(k + l |k)+Bu(k + l |k) (3.20)

x(k|k) = x(k) (3.21)

vmin ≤ vi ≤ vmax (3.22)

umin ≤ ui ≤ umax (3.23)

di j (k + l |k)2 ≥ d 2
agent-safety (3.24)

di m(k + l |k)2 ≥ d 2
obs-safety (3.25)

with l ∈ {1, . . . ,P }, i ∈V , j ∈Ni , and m ∈M.

Parameter Symbol Unit Description

Separation
dref m Preferred inter-agent distance. The pre-

ferred distance value for neighboring pairs of

drones. Larger values create sparser swarms.

wsep 1/m Separation weight. The strength of the sepa-

ration behavior of neighboring drones (simi-

lar to the spring constant in a spring model).

The separation encapsulates both the repul-

sion and the attraction behaviors that tend to

bring two agents at the reference inter-agent

distance. The repulsion acts when the inter-

agent distance is larger than the reference, vice

versa the attraction kicks in. High values result

in emphasized repulsive and attractive behav-

iors. We used wsep = 1 m−1.

Propulsion
vref m/s Preferred swarm speed. The preferred speed

value of the swarm agents.

wprop s/m Propulsion weight. The strength of the

propulsion behavior of the drones. Higher val-

ues of this gain penalize more the deviation

of the swarm speed from the preferred value.

However, good speed tracking happens at the

expense of the other two behaviors, i.e., sepa-

ration and direction. We used wprop = 5 m/s.

Continued on next page

36

3.2. Method

Table 3.2 – continued from previous page

Parameter Symbol Unit Description

Direction
uref − Preferred swarm direction. A unit vector ex-

pressing the preferred direction of flight of the

swarm.

wdir − Direction weight. The strength of the direc-

tion term. High values give this term a high

priority. We used wdir = 5.

Control effort wu s2/m Control effort weight. The strength of the

control effort term. High values penalize high

accelerations. We used wu = 0.4 s2/m.

Collision avoidance
dagent-safety m Safety agent-agent distance. The distance

that every pair of agents should maintain to

guarantee agent-agent collision avoidance. It

is measured between the centers of two agents,

and it depends on the agents’ size (ragent). We

used dagent-safety = 2ragent.

dobs-safety m Safety agent-obstacle distance. The distance

that every pair of agent-obstacle should main-

tain to guarantee collision avoidance. It is

measured between the center of an agent and

the center of an obstacle, and it depends on

the agents’ size (ragent) and the obstacle size

(robs). In the case of real-world experiments,

we also accounted for an extra safety mar-

gin (rmargin), hence dobs-safety = ragent + robs +
rmargin.

Agents dynamics

Ai − State matrix. A 6x6 matrix representing a

double integrator agent, the quadrotor. Our

hardware experiments confirm that when the

agents are closed-loop controlled by an on-

board low-level controller (as described in the

Drone experimental setup section) a linear

model can describe them appropriately within

the bounds that we have defined.

Bi − Input matrix. 6x3 matrix representing an ac-

celeration input.

vmax m/s Maximum speed. Maximum linear speed in

x, y, and z of the agents. We used vmax =
5/
p

3 m/s.

Continued on next page

37

Chapter 3. Centralized predictive control of aerial drone swarms

Table 3.2 – continued from previous page

Parameter Symbol Unit Description

umax m/s2 Maximum acceleration. Maximum linear ac-

celeration in x, y, and z of the agents. We used

amax = 2/
p

3 m/s2.

Table 3.3 – Parameter description of the NMPC swarm model. List and description of the
NMPC swarm model parameters.

3.2.4 Simulation setup

We implemented our NMPC model in MATLAB with the help of acados [71], an open-source

library for fast nonlinear optimal control. This software relies on C code generation for speed-

ing up the computation in real-time applications. The system dynamics and the constraints of

the problem are discretized by the library over the prediction horizon to obtain a structured

Nonlinear Program (NLP). Then, the NLP is approximated through Sequential Quadratic Pro-

gramming (SQP) that iteratively solves convex Quadratic Program (QP) sub-problems. After

applying a condensing step, a linear algebra solver, HPIPM, based on the Interior Point (IP)

method finds the solution of the sub-problems []. We run our simulations on a DELL Precision

Tower with a 3.6 GHz Intel Core i7-7700 processor and 16 GB 2400 MHz RAM, where we set

the maximum number of SQP to 7 and the maximum number of QP iterations to 7.

3.2.5 Drone experimental setup

In our experiments, we used five Bitcraze Crazyflie 2.1 quadrotors (Fig. 3.1c). Each quadrotor

is equipped with a 3-axis accelerometer, a 3-axis gyroscope, a pressure sensor, and a marker

deck for hosting passive reflective markers. The microcontroller is a STM32F4 running at

168MHz, on which both state estimation and low-level control are running. An OptiTrack

motion capture system was used to track the position of the robots. All the acceleration

commands for the drones were computed on a single computer with our NMPC model,

integrated into position and velocity commands, and broadcast to the swarm through a radio-

link alongside the estimated position of each drone. The estimated positions were used by the

drones to perform the lower-level control loops and track the commands sent. The positions

and velocities used by the swarm model were predicted with the agents’ dynamic model.

To guarantee the transferability of the NMPC swarm model to hardware experiments, we

decreased the number of maximum SQP to 4. This was sufficient to compute converging

solutions of the NLP in less than 0.1 s.

38

3.3. Results

3.3 Results

For the performance assessment of the swarm models, we set up a forest-like environment

that consists of a rectangular flight region populated with cylindrical obstacles (Fig. 3.1a). At

the experiment onset, we place five drones at random positions within a predefined start area

on one side of the region (Fig. 3.1a, red zone) and let the swarm fly through the region along

the migration direction (Fig. 3.1a, orange arrow). The mission is completed when all drones

cross the arrival plane (Fig. 3.1a, orange plane) on the opposite side of the region.

We assess the quality of the aerial swarm’s flight considering eight different metrics. The

mission completion time T measures the time that the swarm requires to cross the region. The

inter-agent distance error Ed measures the agents’ deviation from the preferred distance dref ,

and the inter-agent distance range Rd measures the range in which the inter-agent distances

vary (defined by the minimum and maximum inter-agent distance over time). The speed

error Ev measures the deviation of the agents’ speeds from the preferred migration speed

vref, and the speed range Rv measures the range in which the agents’ speeds vary. Ed , Rd , Ev

and Rv take values greater than or equal to 0 (ideal case). We determine the swarm’s level of

synchronization by calculating the directional correlation of the agents’ movements, expressed

by the so-called order Φorder. Φorder takes values between −1 (complete disorder) and 1

(perfect order). Finally, the agent-agent safetyΦagent-safety assesses the ability of the swarm’s

agents to avoid collisions among themselves, and the agent-obstacle safetyΦobs-safety assesses

the ability of the agents to avoid collisions with the obstacles. Φagent-safety and Φobs-safety

take values between 0 (complete unsafety) and 1 (perfect safety, i.e., zero collisions) (see

Table 3.4 for mathematical formulation). To evaluate the overall performance of the swarm

during a mission, we compute the average and standard deviation of these metrics. For the

instantaneous evaluation of the swarm over time, we additionally plot the inter-agent distance

and speed, and the distance to obstacles, from which we can appreciate their respective errors

and ranges, and the occurrence of collisions.

We extensively tested the proposed NMPC swarm model in simulation and compared it to

a reactive PF model that has been recently described and validated on 30 real drones []. In

addition to the repulsion and obstacle avoidance rules, the PF model includes a friction

rule to reduce velocity oscillations. In order to ensure cohesive goal-directed flight in open

environments, we added the rules of cohesion and migration to the PF model. As in previous

work [], we used evolutionary optimization to search the large parameter space of the PF

swarm model, and favored swarms with highly ordered flight (Φorder = 1) and a low number

of agent-agent and agent-obstacle collisions (Φagent-safety = 1 ,Φagent-safety = 1) (see Table 3.2

and 3.1). The purpose of the experimental comparison between NMPC swarming and PF

swarming is to emphasize behavioral differences and performance advantages of the proposed

NMPC swarm model. However, the choice of a swarm model for the deployment on physical

drones should also consider computational resources, which are significantly larger for NMPC

swarming.

39

Chapter 3. Centralized predictive control of aerial drone swarms

Below we present three sets of simulation experiments: (i) we compare the performance

metrics of the two models in the same environmental conditions, (ii) we investigate the

adaptability of the PF and NMPC swarm models to environments with different obstacle

density, and (iii) we study the scalability of the NMPC swarm model at different preferred

speeds and inter-drone distances. Finally, we experimentally validate the NMPC swarm

model with five palm-sized drones (Fig. 3.1c) flying through a room with cylindrical obstacles

(Fig. 3.1b).

Metric Formula Description

T − Mission completion time. The

time that takes for all agents to navi-

gate the environment and cross the

arrival plane.

Ed (k)
∑
i∈V

∑
j∈Ni

|di j (k)−dref|
N |Ni |dref

Inter-agent distance error. The er-

ror of the inter-agent distances nor-

malized by dref. A value equal to 1

indicates an inter-agent distance er-

ror of 100%. While a value equal to 0

indicates that all distances between

neighboring agents match the pre-

ferred value dref.

Rd (k) max
i∈V , j∈Ni

(di j (k))− min
i∈V , j∈Ni

(di j (k)) Inter-agent distance range. The

range in which the inter-agent dis-

tances vary, normalized by dref.

Ev (k)
∑
i∈V

|vi (k)− vref|
N vref

Speed error. The error of the

agents’ speeds normalized by vref.

A value equal to 1 indicates a speed

error of 100%. While a value equal

to 0 indicates that all agents’ speeds

match the preferred value vref.

Rv (k) max
i∈V

(vi (k))−min
i∈V

(vi (k)) Speed range. The range in which

the agents’ speeds vary, normalized

by vref.

Φorder(k)
∑
i∈V

∑
j∈Ni

vi (k) ·v j (k)

N |Ni |‖vi (k)‖‖v j (k)‖ Order. The correlation between

the agents’ flight directions. It is

equal to 1 when all agents’ veloci-

ties are pointing in the same direc-

tion (ideal case), while it is equal to

0 when, for instance, they are dia-

metrically opposed in pairs.

Continued on next page

40

3.3. Results

Table 3.3 – continued from previous page

Metric Formula Description

Φagent-safety(k) 1 − Nagent-coll(k)

N (N −1)
with

Nagent-coll(k) = |{di j (k)|i ∈ V , j 6= i ,

di j (k) < dobs-coll}|

Agent-agent safety. A measure of

the number of collisions among

the swarm’s agents. It is equal to

1 when no collision is registered

(ideal case), while it is equal to 0

when all pairs of agents are collid-

ing (worst case).

Φobs-safety(k) 1 − Nagent-coll(k)

N (N −1)
with

Nagent-coll(k) = |{di j (k)|i ∈ V , j 6= i ,

di j (k) < dobs-coll}|

Agent-obstacle safety. A measure

of the number of collisions between

the swarm agents and the obsta-

cles. Like the agent-agent safety,

the agent- obstacle safety is equal

to 1 when no collision is registered

(ideal case), while it is equal to 0

when all agents are colliding with at

least one obstacle (worst case).

Table 3.4 – Metrics to measure the performance of the NMPC drone swarm. The table de-
scribes the metrics used to assess the performance of the swarm models. Except for the
mission completion time T , which is global, i.e. it refers to the entire mission, all other metrics
are defined instantaneously, i.e. for every time instant t(k) with k ∈ {0, . . . ,K } and T = K d t .
Therefore, to evaluate a mission we consider the average and standard deviation of the metrics.
The computation of Ed , Ev , Rd , Rv excludes an initial transient period of t̃ = 3 s.

3.3.1 Comparison of PF and NMPC aerial swarms

Both PF and NMPC swarms navigated around the obstacles without collisions (Fig. 3.3e), but

the NMPC swarm completed the mission due to the ability of the NMPC swarm to track the

preferred speed vref more consistently (Ev = 0.02±0.02 , Rv = 0.08±0.07) than PF swarm

(Ev = 0.39±0.15, Rv = 0.47±0.15) (Fig. 3.3c). The NMPC swarm also generated a smaller inter-

agent distance error (Ed = 0.11±0.02) and range (Rd = 0.55±0.18) compared to the PF swarm

(Ed = 0.26±0.15, Rd = 0.90±0.26) (Fig. 3.3b). The NMPC model generated almost perfectly

ordered flight manoeuvres throughout the entire flight (Φorder = 0.98±0.02) while the PF model

displayed lower and more variable order (Φorder = 0.78±0.17) (Fig. 3.3d). Neither the NMPC

nor the PF swarm presented agent-agent or agent-obstacle collisions (Φagent-safety = 1± 0,

Φobs-safety = 1± 0) (Fig. 3.3e). While optimizing the swarm’s objectives, the NMPC model

reduced the minimum distance to obstacles to 0.03 m. In comparison, the PF swarm achieved

a minimum distance to obstacles of 0.14 m. This difference is due to the fact that in the PF

model the obstacles apply a repulsion force on the agents in their proximity, while in the

41

Chapter 3. Centralized predictive control of aerial drone swarms

a

Y Position [m]

X
Po

si
tio

n
[m

]

PF swarm

Y Position [m]

X
Po

si
tio

n
[m

]

NMPC swarm
Time t [s]

Sp
ee

d
v i [

m
/s

]

 avg(vi)
 min/max(vi)
 vref

 avg(vi)
 min/max(vi)
 vref

b
 PF swarm NMPC swarm

In
te

r-a
ge

nt
 d

is
ta

nc
e

d ij [
m

]

Time t [s]

 avg(dij)
 min/max(dij)
 dref
 dagent-safety

c

Time t [s]

O
rd

er
Φ

or
de

r
d

e

 avg(dij)
 min/max(dij)
 dref
 dagent-safety

Time t [s]

D
is

ta
nc

e
to

ob

st
ac

le
s

m
in

(d
im

) [
m

]

 dobs-safety

Figure 3.3 – Comparison between the PF-based model and our NMPC swarm model in sim-
ulation experiments. (a) Top views of the 3D trajectories of five drones flying in a cluttered
environment with the PF (top) and the NMPC models (bottom). The circular objects on the
map corresponds to cylindrical obstacles. (b) Inter-agent distance average (solid line) and
range (shaded region). The curve on top (blue) refers to the PF swarm, while the one at the
bottom (orange) refers to the NMPC swarm. (c) Swarm speed average (solid line) and range
(shaded region). (d) Order metric, Φorder . (e) Distance to obstacles, min(di m) expressed as
the minimum distance between the swarm’s agents and the set of obstacles.

NMPC model there is no penalty for approaching the obstacles. As a consequence, when

implementing the NMPC model on a real-world swarm, the user should carefully choose a

safety margin.

3.3.2 Environments with different obstacle densities

We tested the PF and the NMPC swarm models for three different obstacle densities (Case A:

0.06, B: 0.12, and C: 0.20) to quantify the impact on the swarms’ performance. The obstacles

occupy random positions on the map, but they have a homogenous distribution (Fig. 3.4a

and 3.4d). The initial positions of the drones are random. In Fig. 3.4, we show the evolution of

the inter-agent distance and speed for the scenario with the highest obstacle density (Case C)

and for both models. The results show that the inter-agent distance error is smaller with NMPC

swarms (Ed = 0.11±0.02) than with PF swarms (Ed = 0.27±0.12), and the inter-agent distance

42

3.3. Results

d

e
Y Position [m]

X
Po

si
tio

n
[m

]

a

b

c

A B C

Time t [s]

C

C

Time t [s]

 avg(vi)
 min/max(vi)
 vref

 avg(dij)
 min/max(dij)
 dref
 dagent-safety

f

Sp
ee

d
v i [

m
/s

]
In

te
r-a

ge
nt

 d
is

ta
nc

e
d ij [

m
]

PF swarm NMPC swarm

Y Position [m]

X
Po

si
tio

n
[m

]

A B C

Sp
ee

d
v i [

m
/s

] C

Time t [s]

In
te

r-a
ge

nt
 d

is
ta

nc
e

d ij [
m

] C

Time t [s]

 PF swarm NMPC swarm

g

Figure 3.4 – Comparison of the PF and NMPC swarm deployment in environments with
different obstacle densities. (a, d) Top views of the 3D simulated trajectories of the PF and the
NMPC swarms in environments with three different obstacle densities. The density increases
from left to right (Case A: 0.06, B: 0.12, and C: 0.20). (b, c) Inter-agent distance and speed of
the PF swarm in Case C. (e, f) Inter-agent distance and speed of the NMPC swarm in Case C.
(g) Aggregated results (average and standard deviation) of 10 stochastic simulations of the PF
(blue) and NMPC (orange) swarm models in Cases A, B, and C. The represented metrics are
the mission time T , the distance error Ed , the distance range Rd , the speed error Ev , and the
speed range Rv (see Table 3.4).

range is shorter for NMPC swarms (Rd = 0.56±0.18) than with PF swarms (Rd = 0.90±0.26)

(Fig. 3.4b and 3.4e). The NMPC swarms tracked the preferred speed vref more precisely

(Ev = 0.03±0.02) than the PF swarms (Ev = 0.39±0.15), and the speed range was shorter

(Rv = 0.08±0.07 and 0.47±0.15, respectively) (Fig. 3.4c and 3.4f). The faster speed of NMPC

swarms resulted in faster mission completion time than the PF swarms (T = 21.5 s and 34.1 s,

respectively).

To assess the reproducibility of the results, we performed ten stochastic simulations for each

43

Chapter 3. Centralized predictive control of aerial drone swarms

Parameter Unit Description Value

dref m Preferred (or reference)
value for the inter-agent
distance

0.8

vref m/s Preferred (or reference)
value for the swarm speed

0.5

uref - Preferred migration direc-
tion

(1 0 0)

Lmap m Length of an edge of the
square flight region (or
map)

10

robs m Obstacles radius 0.35
ρobs 1/m2 Obstacle density Case A: 0.06, Case B: 0.12, Case C: 0.20

Table 3.5 – Swarm and environment configurations of the simulation experiments with
different obstacle densities. The same configurations are used for both the PF and the NMPC
swarm models.

of the three obstacle densities and for the two swarm models, and we report here aggregated

performance results (Fig. 3.4g). While the speed error in the NMPC swarm is small and

constant for all obstacle densities (Case A: Ev = 0.01±0.01, B: 0.01±0.01, C: 0.01±0.01), it is

larger and increases with larger obstacles densities in the PF swarm (Case A: Ev = 0.08±0.07, B:

0.21±0.11, C: 0.25±0.11). As a consequence, the mission completion time of the PF swarm is

increased when increasing the obstacle density (Case A: T = 21.56±0.81 s, B: 25.35±2.46 s, C:

27.48±2.43 s), while for the NMPC swarm it is shorter and it stays almost constant across the

different densities (Case A: T = 20.47±0.22 s, B: 20.54±0.21 s, C: 20.72±0.28 s). Also, the PF

swarm’s order deteriorates when increasing the obstacle density (Case A:Φorder = 0.98±0.03,

B: 0.92±0.08, C: 0.81±0.08), while for the NMPC swarm it stays almost constant (Case A:

Φorder = 0.99±0.01, B: 0.98±0.02, C: 0.98±0.02). While the NMPC swarm produces collision-

free movements in all cases, for the PF swarm we observe some agent-obstacle collisions at

high obstacle densities (Case A:Φobs-safety = 1±0, B: (99.98±0.06)10−2, C: (99.99±0.02)10−2).

The aggregated performance results are summarized in Table 3.6.

3.3.3 Scalability to different inter-agent distances and speeds

We assess the scalability of the proposed NMPC model to different values of the preferred inter-

agent distance (Case A: dref = 0.5 m, B: 1.0 m, and C: 1.5 m, see Fig 3.7a-c) and speed (Case A:

vref = 0.5 m/s, B: 1.0 m/s, and C: 1.5 m/s, see Fig 3.7 d-f) in the same environmental conditions.

We analyze the swarm’s inter-agent distance and speed and quantify their respective errors

and ranges. The results show that at different inter-agent distance levels the swarm inter-agent

distance converged to the preferred value with comparable errors (Case A: Ed = 0.05±0.06, B:

0.01±0.02, C: 0.02±0.03, see Fig. 3.7b). The swarm’s speed error is almost zero in the three

cases (see Fig. 3.7c), and it resulted in similar mission times (Case A: T = 20 s, B: 21 s, and C:

44

3.4. Discussion

Metric Unit Case A Case B
PF NMPC PF NMPC

T s 21.56±0.81 20.47±0.21 25.34±2.45 20.54±0.21
Ed − 0.10±0.05 0.03±0.02 0.21±0.05 0.05±0.03
Ev − 0.08±0.08 0.00±0.00 0.21±0.11 0.01±0.01
Rd − 0.39±0.20 0.10±0.11 0.79±0.25 0.19±0.11
Rv − 0.21±0.17 0.01±0.01 0.44±0.22 0.03±0.02
Φorder − 0.98±0.03 0.99±0.01 0.92±0.08 0.98±0.02

Φagent-safety − 1±0 1±0 1±0 1±0
Φobs-safety − 1±0 1±0 (99.98±0.06)10−2 1±0

Metric Unit Case C
PF NMPC

T s 27.48±2.43 20.72±0.28
Ed − 0.20±0.05 0.05±0.03
Ev − 0.25±0.11 0.01±0.01
Rd − 0.74±0.18 0.22±0.12
Rv − 0.39±0.17 0.03±0.02
Φorder − 0.81±0.08 0.98±0.02

Φagent-safety − 1±0 1±0
Φobs-safety − (99.99±0.02)10−2 1±0

Table 3.6 – Aggregate performance of the simulated PF and the NMPC swarms at varying
obstacle densities. The table reports numeric results (in terms of average and standard
deviation) of stochastic simulations of the PF and the NMPC swarm models deployed in
environments with three different obstacle densities (Case A: 0.06, B: 0.12, and C: 0.20). For
every model and configuration, we ran 10 experiments. The computation of Ed , Ev , Rd , Rv

excludes an initial transient period of t̃ = 3 s.

21.2 s). We did not observe collisions. Regarding the experiments on the scalability in speed,

the speed error Ev was close to zero in the three cases (Fig. 3.7e), while the mission times were

decreasing with the increase of the speed (Case A: T = 20.2 s, B: 10.5 s, and C: 7.5 s). However,

the variability of the inter-agent distance in Case C is higher (Rd = 0.46±0.05) than in Cases

A (Rd = 0.13±0.11) and B (Rd = 0.19±0.03) (Fig. 3.7f). Indeed, when the agents turn around

the obstacle in the middle of the scene, they rearrange and increase their distance. Also in

these experiments, we did not observe collisions. Comparative results on the PF swarm are

in Fig. 3.6. Aggregate results of stochastic simulations for each of the preferred inter-agent

distance and speed values, and for both the PF and the NMPC models are in Fig. 3.7, and in

Tables 3.7 and 3.8.

3.4 Discussion

This chapter shows that a Nonlinear Model Predictive Control (NMPC) model achieves a

faster and more synchronized flight in cluttered environments as compared to state-of-the-art

45

Chapter 3. Centralized predictive control of aerial drone swarms

da
Inter-agent distance scalability Speed scalability

A

B

C

Y Position [m]

X
Po

si
tio

n
[m

]

A B C

Y Position [m]

X
Po

si
tio

n
[m

]

A B C

A

B

C

A

B

C

A

B

C

c f

b e

Sp
ee

d
v i [

m
/s

]
In

te
r-a

ge
nt

 d
is

ta
nc

e
d ij [

m
]

Time t [s]

 A: avg(dij)
 A: min/max(dij)
 B: avg(dij)
 B: min/max(dij)
 C: avg(dij)
 C: min/max(dij)
 dref
 dagent-safety

Sp
ee

d
v i [

m
/s

]
In

te
r-a

ge
nt

 d
is

ta
nc

e
d ij [

m
]

Time t [s] Time t [s]

Time t [s]

 A: avg(vi)
 A: min/max(vi)
 B: avg(vi)
 B: min/max(vi)
 C: avg(vi)
 C: min/max(vi)
 vref

Figure 3.5 – Scalability of the NMPC swarm in inter-agent distance and speed. On the left,
simulation results on the scalability of the NMPC swarm model in the inter-agent distance
for three preferred distance values (Case A: dref=0.5 m, B: 1.0 m, and C: 1.5 m). On the right,
simulation results on the scalability in the swarm speed for three preferred speed values (Case
A: vref=0.5 m/s, B: 1.0 m/s, and C: 1.5 m/s). (a, d) Top views of the 3D trajectories of the swarm.
(b, c) Inter-agent distance and speed for the experiment on the inter-agent distance scalability.
(e, f) Inter-agent distance and speed for the experiment on the speed scalability. The obstacle
size and density are the same for the six cases.

models based on potential fields (PFs). NMPC swarms report no collisions in cluttered envi-

ronments, they better attain and maintain target speeds, and they remain more ordered and

cohesive. The benefits brought by predictive controllers to robotic aerial swarms confirm a par-

allel with biological systems, where individuals are thought to enhance their synchronization

by future state projection [27].

In robotics, the advantages of the NMPC method are promising for applications that require

navigation in crowded scenarios, such as the exploration of urban environments, collapsed

buildings, or forests [72, 73]. Also, vision-based swarms could benefit from all these features

since the reliability of reciprocal visual detection of the drones strongly depends on their

356 distance, and NMPC swarms showed that they can better maintain target inter-agent

46

3.4. Discussion

Figure 3.6 – Scalability of the PF swarm in inter-agent distance and speed. On the left, simu-
lation results on the scalability of the NMPC swarm model in the inter-agent distance for three
preferred distance values (Case A: dref=0.5 m, B: 1.0 m, and C: 1.5 m). On the right, simulation
results on the scalability in the swarm speed for three preferred speed values (Case A: vref=0.5
m/s, B: 1.0 m/s, and C: 1.5 m/s). (a, d) Top views of the 3D trajectories of the swarm. (b, c)
Inter-agent distance and speed for the experiment on the inter-agent distance scalability. (e, f)
Inter-agent distance and speed for the experiment on the speed scalability. The obstacle size
and density are the same for the six cases.

distances [47, 74]. Overall, predictive methods can improve the autonomy of swarm operations

as well as the safety of the swarm and the environment, which are both essential elements to

build public confidence in the use of swarms [75].

For our experiments, we relied on a central computing node that generates the motion of

the agents at run time according to local interactions only. This assumption simplifies the

implementation since it requires only one computer, acting as a ground control station,

instead of several onboard computers that the agents would carry. However, the NMPC model

requires a higher amount of computational resources than the PF model and scales worse

with the swarm size. It will be interesting to develop a decentralized NMPC model where the

computational costs are independent of the number of agents. Work in this direction will

allow to scale our approach to swarms of larger size.

47

Chapter 3. Centralized predictive control of aerial drone swarms

Figure 3.7 – Aggregate performance of the simulated PF and the NMPC swarms for varying
inter-agent distances and speeds. (a) Aggregate results of the PF and NMPC swarms for three
different inter-agent distances (Case A: dref = 0.5 m, B: 1.0 m, and C: 1.5 m). (b) Aggregate
results of the PF and NMPC swarms for three different swarm speeds (Case A: vref = 0.5 m/s,
B: 1.0 m/s, and C: 1.5 m/s). We performed 10 stochastic simulations for every configuration.
Numeric results of the same experiments can be found in Tables 3.7 and 3.8.

Finally, our results motivate future works to address research questions in the design of robust

swarm models in dynamic environments. Thanks to their recursive structure, MPC controllers

offer a promising method to allow navigation in scenarios with moving obstacles. However,

a generalization of the proposed model to dynamic environments would require theoretical

and numerical investigation on the conditions for stability, as well as a reliable estimation of

the obstacles’ motion.

48

3.4. Discussion

Metric Unit Case A Case B
PF NMPC PF NMPC

T s 21.15±0.75 20.31±0.22 22.11±0.49 20.71±0.31
Ed − 0.12±0.05 0.05±0.04 0.09±0.05 0.02±0.03
Ev − 0.07±0.10 0.00±0.00 0.10±0.07 0.01±0.01
Rd − 0.49±0.23 0.23±0.18 0.43±0.24 0.08±0.10
Rv − 0.14±0.14 0.01±0.01 0.29±0.21 0.02±0.03
Φorder − 0.99±0.02 0.99±0.01 0.96±0.05 0.98±0.03

Φagent-safety − (99.98±0.13)10−2 1±0 1±0 1±0
Φobs-safety − 1±0 1±0 (99.99±0.04)10−2 1±0

Metric Unit Case C
PF NMPC

T s 23.87±0.91 21.40±0.35
Ed − 0.10±0.03 0.02±0.03
Ev − 0.14±0.07 0.01±0.01
Rd − 0.43±0.17 0.05±0.07
Rv − 0.41±0.21 0.03±0.04
Φorder − 0.91±0.13 0.96±0.11

Φagent-safety − 1±0 1±0
Φobs-safety − 1±0 1±0

Table 3.7 – Aggregate performance of the simulated PF and the NMPC swarms at varying
inter-agent distances. The table reports numeric results (in terms of average and standard
deviation) of stochastic simulations of the PF and the NMPC swarm models deployed in
environments with three different inter-agent distances (Case A: 0.5 m, B: 1.0 m, and C: 1.5 m).
For every model and configuration, we ran 10 experiments. The computation of Ed , Ev , Rd ,
Rv excludes an initial transient period of t̃ = 3 s.

49

Chapter 3. Centralized predictive control of aerial drone swarms

Metric Unit Case A Case B
PF NMPC PF NMPC

T s 21.54±0.40 20.42±0.25 11.68±0.58 10.66±0.11
Ed − 0.10±0.05 0.03±0.03 0.17±0.04 0.03±0.02
Ev − 0.08±0.08 0.00±0.00 0.11±0.08 0.00±0.00
Rd − 0.41±0.21 0.12±0.11 0.67±0.17 0.15±0.08
Rv − 0.22±0.17 0.02±0.02 0.24±0.14 0.01±0.00
Φorder − 0.98±0.03 0.99±0.01 0.98±0.08 0.96±0.02

Φagent-safety − 1±0 1±0 1±0 1±0
Φobs-safety − 1±0 1±0 (99.87±0.37)10−2 1±0

Metric Unit Case C
PF NMPC

T s 8.87±0.44 7.64±0.07
Ed − 0.18±0.03 0.09±0.05
Ev − 0.17±0.08 0.00±0.00
Rd − 0.70±0.15 0.35±0.14
Rv − 0.19±0.09 0.00±0.00
Φorder − 0.98±0.08 0.94±0.02

Φagent-safety − 1±0 1±0
Φobs-safety − (99.95±0.17)10−2 1±0

Table 3.8 – Aggregate performance of the simulated PF and the NMPC swarms at varying
speeds. The table reports numeric results (in terms of average and standard deviation) of
stochastic simulations of the PF and the NMPC swarm models deployed in environments
with three different speeds (Case A: 0.5 m/s, B: 1.0 m/s, and C: 1.5 m/s). For every model and
configuration, we ran 10 experiments. The computation of Ed , Ev , Rd , Rv excludes an initial
transient period of t̃ = 3 s.

50

4 Distributed predictive control of
aerial drone swarms

In the previous chapter, we showed that predictive models have the potential to incorporate

safe collision avoidance capabilities and give the agents the ability to anticipate and synchro-

nize their trajectories in real-time. However, our previous model makes use of a centralized

formulation, which does not allow scalability to a large number of agents. Here, we propose a

distributed predictive swarm model that generates self-organized, safe, and cohesive trajectories

by solving an optimization problem in real-time. In simulation, we show that our method

is scalable to large numbers of agents and suitable for deployment in different environments,

specifically a forest and a funnel-like environment. Furthermore, our results show that the

agents are capable of collision-free flight with noisy sensor measurements for a noise level of up

to 70% of the magnitude of the agent safety distance. Real-world experiments with a swarm of

up to 16 quadrotors in an indoor artificial environment validate our method.

The work presented in this chapter is adapted from [44]:

• E. Soria, F. Schiano, D. Floreano, “Distributed predictive drone swarms in cluttered

environments,” in IEEE Robotics and Automation Letters (RA-L), vol. 7, no. 1, pp. 73-80,

Jan. 2022.

4.1 Introduction

The results from the previous chapter suggest that predictive controllers can improve the

safety of aerial swarms by predicting and optimizing the agents’ future behavior in an iterative

process. Model Predictive Control (MPC) computes the control action of a system as the

solution to an optimization problem that explicitly accounts for the robot dynamics and

actuation constraints. Moreover, the computations can be shared among all agents according

to a Distributed MPC (DMPC) formulation [69, 32, 76]. With DMPC, every robot solves an

optimal problem locally and then communicates its solution to the others to allow global

coordination. Following this control scheme, multiple drones can reliably avoid reciprocal

collisions when assigned intersecting trajectories [69]. This approach is extended in [32],

51

Chapter 4. Distributed predictive control of aerial drone swarms

(a)

Figure 4.1 – Self-organized predictive swarm flying in an artificial forest. Picture of a swarm
of 16 drones flying in a forest-like environment in our indoor experimental facility. A supple-
mentary video of our experiments is found at https://youtu.be/1Vg1jdw2Ruk.

(a) Forest-like environment (b) Funnel-like environment

Figure 4.2 – Modelling of the environments. On the left, modeling of the forest-like environ-
ment filled with cylindrical obstacles. On the right, funnel-like environment made of two
curved surfaces that gradually reduce the flight volume towards the migration point. In both
environments, the allowed flight workspace is set to [8.5,8.5,1.1] m3 and the migration point
is in pmig = [7.5,0,0.6] m). The swarm flies from the start region (pink cube) in the foreground
of the scene towards the migration point (orange sphere) in the background.

where the authors present a DMPC motion planner that allows the real-time and collision-

free trajectory generation for swarms of up to 20 drones with a single off-board computer.

52

4.2. Methods

Their on-demand Collision Avoidance (CA) method reduces the computation and travel

time compared to Buffered Voronoi Cells (BVC) CA methods [54, 55]. These works show the

remarkable potential of modern optimization-based motion planners for solving CA problems

of collective systems, although they are designed for individual point-to-point transitions and

do not generate self-organized cohesive flight similar to biological swarms.

In our previous work [10], we showed that the collective behavior of biological swarms could

be reproduced with an NMPC (Nonlinear MPC) model. The results indicated improved safety

and flight synchronization at different obstacle densities, inter-agent distances, and speeds

compared to purely reactive approaches based on artificial potential fields[13]. However,

the centralized nature of this model allowed the real-time control of only five drones and

prevented it from scaling to a large number of drones. Also, the non-convex formulation of

the optimization problem required using a computationally expensive scheme based on SQP

(Sequential Quadratic Programming) [77].

Here, we present a novel and scalable DMPC swarm model that allows a safe and cohesive

flight of aerial swarms in cluttered environments (Fig. 4.1). We show its scalability in the

swarm size and its robustness to noise by systematically analyzing the swarm performance at

different agents number and noise levels. The swarm performance is studied and compared

for two different environments: a forest and funnel-like environment. We also compare the

performance of the presented DMPC swarm model with different reciprocal CA methods,

i.e., BVC, on-demand, and continuous CA. Finally, we validate the proposed algorithm in

real-world experiments with up to 16 palm-sized quadrotors.

4.2 Methods

We consider a swarm composed of N agents labeled by i ∈ V = {1, . . . , N } and a set of M

static obstacles labeled by m ∈M = {1, . . . , M } (Fig. 4.2). The swarm can be modeled with

a directed sensing graph G = (V , E), where the vertex set V represents the agents, and the

edge set E ⊆ V ×V contains the pairs of agents (i , j) for which agent i can sense agent j .

The state of the i -th agent is represented by xi = (pi , vi) ∈ R6 and is made of its position

pi ∈R3 and velocity vi ∈R3. In the following, k denotes the index of a discrete time step with

duration d t . In our DMPC scheme, at every step k, each agent i computes its neighborhood

Ni
k = { j ∈ V | (i , j) ∈ E} according to the topological metric, which is defined as the set of

the n nearest neighbors of agent i at time k [19]. If we indicate with | · | the cardinality of

a set, then |N k
i | = n is fixed for all instants k, although the neighbors in the set may vary

at different k. Then, the agents determine their optimal trajectory w.r.t. their neighbors by

solving a constrained optimization problem over a fixed time window called the prediction

horizon and denoted as TP = P d t , P ∈ N+ (Fig. 4.3a). The optimization problem aims at

minimizing a cost function, which encodes the swarm rules, under constraints that include

the dynamic limitations of the agent and the trajectory smoothness. The swarm rules comprise

the migration, which steers the agents towards a common goal, the regulation of the inter-

53

Chapter 4. Distributed predictive control of aerial drone swarms

(a) Inter-agent distances (b) Agent’s predicted trajectory

Figure 4.3 – Schematic overview of the method. In 4.3a, inter-agent distance parameters: on
the left, the cohesion distance dcoh = 1.30 m (i.e., the maximum allowed distance between
neighboring drones), in the middle, the safety distance dsaf-agent = 0.30 m, and on the right,
the collision distance dcoll-agent = 0.14 m. In 4.3b, illustration of the predicted trajectory for
the focal agent i . At every time step k, the focal agent i determines the neighbor set N k

i ,
then computes the distance to the migration point, the relative distances to its neighbors,
and potential obstacle collisions over the horizon TP = 3.0 s. Agents’ cohesion and reciprocal
avoidance with the proposed continuous CA method are enforced over TB = 1.8 s. Trajectory
replanning happens every 0.2 s.

agent distance, which consists of cohesion and agents’ reciprocal avoidance, and obstacle

avoidance, which steers the agents away from obstacles. Additionally, the control effort rule

minimizes the energy spent on maneuvering.

4.2.1 Model of a flying agent

Every agent of the swarm obeys a discrete linear system:

xi (k +1) = Ai xi (k)+Bi ui (k) (4.1)

where Ai and Bi are constant matrices modeling the dynamics of the Crazyflie 2.1 quadrotor

with an underlying position controller. To account for the dynamic feasibility, we limit the

position commands by the dimensions of the environment and the acceleration by constant

vectors. Hence, it holds pmin ≤ ui (k) ≤ pmax and amin ≤ ai (k) ≤ amax.

To quantify the effects of noisy sensor measurements on the flight performance, we model the

noise on the agents’ positions with a random normal distribution with zero average and equal

standard deviation in the three dimensions, σp .

4.2.2 Trajectory parameterization

We model the agents’ trajectories with l Bezier curves in R3 of duration Tl , in the same spirit

as [32, 78]. This parameterization allows us to define continuous input trajectories to the

54

4.2. Methods

drones from a finite set of control points. A 3-dimensional Bezier curve of order d is uniquely

characterized by a set of d+1 control points Ũ = {ũ0, ..., ũd } ∈R3(d+1) and the trajectory of agent

i is defined by l (d +1) control points Ũi ∈R3l (d+1). In the following, xi and ui are considered

as function of the new unknown Ũi . At each time k, we can rewrite the dynamic feasibility

conditions described above as:

Adyn,iŨ k
i ≤ bdyn,i (4.2)

To obtain smooth trajectories, we impose continuity requirements C2 on the input curve.

Samples of the Bezier curves and their derivatives are obtained by linear combinations of the

control points. Hence, at each time k, the continuity conditions translate in linear equality

constraints of the form:

Acont,iŨ k
i = bcont,i (4.3)

4.2.3 Migration

A migration point pmig ∈R3 known by all agents orients the motion of the swarm in a common

direction. The advantage of choosing a migration point over a migration velocity as in [10]

is that, even if the agents’ path is deviated by some obstacles, the agents will correct their

direction to reach the expected destination. We let (·)(k +π|k) represent the predicted value of

(·)(k+π) with the information available at time step k. Then, the migration term is defined as:

J k
mig,i =

P∑
π=1

qmig‖pi (k +π|k)−pmig‖2
2 (4.4)

where qmig is the weight of the migration behavior.

4.2.4 Agents’ reciprocal avoidance

Safety among agents is ensured by requiring neighboring couples of agents to fly at a distance

larger than a safety inter-agent distance dsaf-agent (Fig. 4.3a). To model the down-wash effect of

the quadrotors, 2-norm distances between agents are scaled according to a weight matrix E ,

with positive diagonal elements Exx = Ey y = 1 and Ezz < 1 that defines an ellipsoidal distance

‖ · ‖E . Here, we explore three methods for Collision Avoidance (CA): (i) BVC [54, 55], (ii) on-

demand [32], and (iii) continuous CA, the method that we propose. All methods are based on

the principle of imposing hyperplane constraints that limit the available space over which the

agent optimizes its future trajectory to avoid collisions with its neighbors. In the following, we

describe each of them.

BVC CA. In the BVC method, each agent i is forced to stay within its Buffered Voronoi Cell Vi

for a time Tl corresponding to the first Bezier curve of its input trajectory. Let di j = ‖pi −p j‖E

be the 2-norm scaled distance between agents i and j , then the Buffered Voronoi Cell of agent

55

Chapter 4. Distributed predictive control of aerial drone swarms

i is:

Vi =
{

(pi −p j)T E−2(p −pi)

di j
≥ dsaf-agent −di j

2
, ∀ j ∈Ni

}
(4.5)

Condition 4.5 translates into a linear constraint per each of the (d +1) control points of the

Bezier curve. For more details on the BVC method we refer to [54, 55, 32].

On-demand CA. This method is based on an event-triggered strategy. It assumes commu-

nicative agents that share with their neighbors their predicted actions (i.e., ui (k +π|k), π ∈
{0, ...,P −1}), and imposes constraints only if potential collisions are detected. On-demand

CA only constrains one sample of the agents’ trajectory, corresponding to the time of the

first detected collision. If agent i detects the first collision at time kcoll,i , then avoidance

constraints are enforced with all its neighbors at that time. Based on the results in [32], we

write the constraints in the input space as:

‖ui (kcoll,i |k)−u j (kcoll,i |k)‖E ≥ dsaf-agent (4.6)

which results in collision-free position commands. Then, we linearize them with a first-order

Taylor expansion. For more details on the on-demand method we refer to [32].

Continuous CA. In this method, the constraints have the same formula as in the on-demand

method, but they are enforced over an entire trajectory segment rather than a single sample.

We define the braking time TB = B d t ≤ TP as the minimum time required by an agent that

flies at maximum speed to brake until zero velocity. Continuous CA constraints for agent i are

enforced with the neighbors j ∈N k
i over the horizon TB. Hence, neighboring agents need to

share their predicted actions over the braking horizon (i.e., ui (k +π|k), π ∈ {0, ...,B −1}). As for

on-demand CA, these constraints are written in the input space. They are:

‖ui (k +π|k)−u j (k +π|k)‖E ≥ dsaf-agent (4.7)

with π ∈ {0, ...,B −1}. Because of the larger number of constraints, continuous CA leads to

more conservative maneuvers than on-demand CA. Also in this case, we approximate the

constraints with a first-order Taylor expansion.

For all methods, we introduce a set of slack variables Ek
i that relax the hyperplane constraints

and make it more likely for the optimization problem to find a viable path. Each variable

εi j ≥ 0 indicates the amount by which the avoidance constraint between agent i and neighbor

j is violated. For example, for continuous CA, the relaxed constraints are:

‖ui (k +π|k)−u j (k +π|k)‖E ≥ dsaf-agent −εi j (k +p|k) (4.8)

More generally, for all CA methods, we indicate the set of linear reciprocal CA constraints for

56

4.2. Methods

agent i at time k as:

Ak
saf-agent,i [(Ũ k

i)T , (Ek
i)T]T ≤ bk

saf-agent,i (4.9)

−Ek
i ≤ 0 (4.10)

The cost associated with the violation of these constraints includes linear and quadratic terms

in εi j with constant weights lsaf and qsaf, respectively. For example, for continuous CA, the

total violation cost is:

J k
saf-agent,i =

∑
j∈Ni

B−1∑
π=0

(
lsafεi j (k +π|k)+qsafε

2
i j (k +π|k)

)
(4.11)

4.2.5 Agents’ cohesion

The swarm behavior of cohesion requires neighboring couples of drones to stay closer than

the cohesion distance dcoh. We introduce slack variables δi j for agent i and neighbors j ∈N k
i

and we formulate the cohesion constraint over the horizon TB in the input space as:

‖ui (k +π|k)−u j (k +π|k)‖E ≤ dcoh +δi j (k +π|k) (4.12)

If we indicate with∆k
i the set of slack variables for agent i at time k, then the set of cohesion

constraints approximated by a first-order Taylor expansion is denoted as:

Ak
coh,i [(Ũ k

i)T , (∆k
i)T]T ≤ bk

coh,i (4.13)

−∆k
i ≤ 0 (4.14)

The cost associated with the violation of the constraints is:

J k
coh,i =

∑
j∈Ni

B−1∑
π=0

(
lcohδi j (k +π|k)+qcohδ

2
i j (k +π|k)

)
(4.15)

where lcoh and qcoh are constant weights.

4.2.6 Obstacle avoidance

The obstacle avoidance behavior is produced by requiring the drones to fly at a safety distance

dsaf-obs from the obstacles. To keep this behavior local, each agent only considers the first

obstacle on the collision course with its predicted trajectory. In this work, we consider convex

obstacles that we model with 3D ellipsoids with arbitrary axes dimensions. If a drone i detects

its first collision with obstacle m at instant kcoll,i it adds an anti-collision constraint with it

to its optimization problem. We introduce the slack variable ζi m ≥ 0 referred to agent i and

57

Chapter 4. Distributed predictive control of aerial drone swarms

obstacle m and consider the following constraint:

‖ui (kcoll,i |k)−pm‖E ≥ dsaf-obs −ζi m(kcoll,i |k) (4.16)

As done before, we indicate with Zk
i the obstacle avoidance slack variables for agent i at time

k, and write the first-order approximation of the above constraint as:

Ak
saf-obs,i [(Ũ k

i)T , (Zk
i)T]T ≤ bk

saf-obs,i (4.17)

−Zk
i ≤ 0 (4.18)

The cost associated with the violation of the constraint is:

J k
saf-obs,i = lsafζi m(kcoll,i |k)+qsafζ

2
i m(kcoll,i |k) (4.19)

4.2.7 Control effort

The control effort is responsible for minimizing the energy required by the control commands.

It is defined by a weighted sum of the second squared derivative of the input commands that

penalizes acceleration and deceleration of an agent:

J k
effort,i =

P−1∑
π=0

qeffort

∥∥∥∥ d 2

d t 2 ui (k +π|k)

∥∥∥∥2

2
(4.20)

where qeffort is the weight of the control effort rule.

58

4.2. Methods

4.2.8 Desired trajectory

To calculate the desired trajectory at each time step k, every drone i solves the following QP

problem, which includes all the above cost terms and constraints:

min
Ũ k

i ,Ek
i ,∆k

i ,Zk
i

J k
mig,i + J k

saf-agent,i + J k
coh,i + J k

saf-obs,i + J k
effort,i

subject to:

Adyn,iŨ k
i ≤ bdyn,i

Acont,iŨ k
i = bcont,i

Ak
saf-agent,i [(Ũ k

i)T , (Ek
i)T]T ≤ bk

saf-agent,i

Ak
coh,i [(Ũ k

i)T , (∆k
i)T]T ≤ bk

coh,i

Ak
saf-obs,i [(Ũ k

i)T , (Zk
i)T]T ≤ bk

saf-obs,i

−Ek
i ≤ 0

−∆k
i ≤ 0

−Zk
i ≤ 0

(4.21)

4.2.9 Implementation of Bezier curves

A three-dimensional Bezier curve of degree d and duration T is defined as:

B(t) =
d∑

m=0
PmBm,d (t) (4.22)

where P = {P0,P1, . . . ,Pd } is the set of d +1 control points that characterize that curve and

Bm,d (t) are the d +1 Bernstein polynomials of degree d :

Bm,d (t) =
(

d

m

)
(1− t/T)p−m(t/T)m ∀t ∈ (0,T) (4.23)

Expressing the Bezier curve in the power basis {1, t , . . . , t d } is useful to obtain the samples of the

curve. If we denote with S = {S0,S1, . . . ,Sd } the d +1 polynomial coefficients of the power basis,

then the linear transformation between polynomial bases can be defined by a constant matrix

β as S = βP (see [79] for details on how to compute β). Another important aspect of Bezier

curves is that samples at t ∈ [0,T] are a linear combination of the polynomial coefficients (and

thus, of the control points) that we denote with B = T S. Hence, it holds B = TβP .

4.2.10 Swarm performance metrics

We assess the performance of the swarm’s flight according to six different metrics. The mission

completion time T measures the time that the swarm requires to complete a mission. A

59

Chapter 4. Distributed predictive control of aerial drone swarms

mission is completed if the swarm average position reaches the migration point up to a

tolerance distance dtol and if, at the same time, all the drones are within the distance dcoh

from their neighbors. The trajectory length Ltraj measures the average of the agents’ flown

distances until they complete the mission. The minimum and the maximum inter-agent

distances, min(di j) and max(di j), measure the minimum and the maximum distance among

neighboring couples of drones over the mission. The minimum distance to the obstacles

min(di m) measures the minimum distance between all agents and all obstacles. Finally, the

orderΦorder measures the average correlation of the agents’ directed movements. It is often

used to quantify the synchronization of the agents’ flight [13, 17], and in formula, it is written

as:

Φorder =
∑

k∈{1,...,K }

∑
i∈V

∑
j∈N k

i

vi (k)v j (k)

K N n‖vi (k)‖‖v j (k)‖ (4.24)

where K = min(dT /d te,dTmax/d te) and d·e is the ceiling function.

Table 4.1 – Swarm performance metrics. Description of the swarm performance metrics
used to evaluate the swarm flight. We denote with K the minimum between the time index of
mission completion and the experiment end time.

Metric Formula Description
T − Mission completion time. The time that

takes for the swarm to reach the migration
point up to a tolerance distance dtol while, at
the same time, having maximum inter-agent
distances within the bound dcoh.

Ltraj
∑

k∈{1,...,K }

∑
i∈V ‖pi (k)−pi (k−1)‖

N Trajectory length. Average trajectory length
of the agents until they complete the mission
or the experiment ends.

Φor der

∑
k∈{1,...,K }

∑
i∈V

∑
j∈Ni

vi (k)v j (k)

K N n‖vi (k)‖‖v j (k)‖ Swarm order. The correlation between the
agents’ flight directions. It is equal to 1 when
all agents’ velocities are pointing in the same
direction (ideal case), while it is equal to 0
when, for instance, they are diametrically op-
posed in pairs.

min(di j) mini∈V , j∈Ni , k∈{1,...,K }(di j (k)) Minimum inter-agent distance. Minimum
distance between any agents and their neigh-
bors over the mission.

max(di j) maxi∈V , j∈Ni , k∈{1,...,K }(di j (k)) Maximum inter-agent distance. Maximum
distance between any agents and their neigh-
bors over the mission.

min(di m) mini∈V , m∈M, k∈{1,...,K }(di m(k)) Minimum distance to obstacles. Minimum
distance between any agents and any obsta-
cles over the mission.

60

4.3. Results

4.3 Results

We implemented our swarm model in MATLAB 2020b, and executed our simulations on a

computer equipped with Intel Core i7-8750H CPU with 12 cores and 16 GB of RAM. For the

solution of the optimization problem, we used the active set algorithm [80]. The parameter

values used in simulation experiments are detailed in A.1.

Parameter Description Unit Value

d t Control time step s 0.2
dτ Simulation time step s 0.01

Tmax Simulation time s 20
TP Prediction horizon s 3
TB Brake time s 1.8
l Number of Bezier curves − 3
d Bezier curve order − 5
Tl Bezier curve duration s 1

pmig Migration point m [7.5,0,1]
pmin Minimum allowed position m [0,−4.25,0.4]
pmax Maximum allowed position m [8.5,4.25,1.5]
amin Minimum acceleration m/s2 [−1,−1,−1]
amax Maximum acceleration m/s2 [1,1,1]
qmig Quadratic migration weight − 2
lsaf Linear safety weight − 10000
qsaf Quadratic safety weight − 100
lcoh Linear cohesion weight − 1000
qcoh quadratic cohesion weight − 10
dcoh Cohesion distance m 1.3

dsaf-agent Inter-agent safety distance m 0.3
dcoll-agent Inter-agent collision distance m 0.14

rmargin-agent Agent safety margin m 0.08
dsaf-obs Obstacle safety distance m 0.2
dcoll-obs Obstacle collision distance m 0.07

rmargin-obs Obstacle safety margin m 0.14
n Number of nearest neighbors − 3

Exx Distance scaling in x − 1
Ey y Distance scaling in y − 1
Ezz Distance scaling in z − 0.5
robs Cylindrical obstacle radius m 0.35

Table 4.2 – Swarm model parameters. Description and values of the DMPC swarm model
parameters used in our simulation experiments.

61

Chapter 4. Distributed predictive control of aerial drone swarms

(a) Mission completion time (b) Avg. trajectory length (c) Avg. order (d) Min. inter-agent distance

Figure 4.4 – Swarm performance in forest-like environment. On top, simulation results for
swarms with different agent numbers and noise levels. For each parameter combination (i.e.,
one bin in the heatmaps), the results show the average of 10 random simulations. Specifically,
4.4a reports the mission completion time T , 4.4b reports the average trajectory length Ltraj, 4.4c
reports the average orderΦorder, and 4.4d reports the minimum inter-agent distance min(di j).
At the bottom, aggregate average and standard deviation of the same metrics for three different
noise levels: in blue σp = 0 m, in orange σp = 0.024 m, and in yellow σp = 0.048 m. Collisions
between agents happen at noise levels σp ≥ 0.056 m. Instead, collisions with the obstacles
already happen at σp ≥ 0.040 m.

4.3.1 Scalability in the agent number and noise robustness

We run swarm simulations for 9 swarm sizes N ∈ {4, 8, 12, 16, 20, 24, 28, 32, 36} and 9

noise levels, σp ∈ {0, 0.008, 0.016, 0.024, 0.032, 0.040, 0.048, 0.056, 0.064} m in the forest-like

environment (Fig. 4.2a). For every configuration, we run 10 random simulations and averaged

the results. In the computation of the swarm performance, we only considered the missions

that the swarm could complete within Tmax = 20 s (Fig. 4.5).

The results show that the coordination of a large swarm requires a longer time than a small

swarm. Analogously, an increase in the noise level requires extra time for the swarm to reach

the migration point (Fig. 4.4a). The increased mission time in the presence of noise can be

explained by an increment in the agents’ trajectory lengths (Fig. 4.4b). Instead, for swarms

of large sizes, the trajectory lengths seem almost stationary for a given noise level (Fig. 4.4b),

necessarily implying a lower speed. The average swarm order remarkably reduces when the

swarm size and noise level increase (Fig. 4.4c). Specifically, when passing from zero noise level

to noise level σp = 0.048 m the order decreases of about 21 to 32% depending on the swarm

size (Φorder ≈ 0.83 to 0.68 for N = 4 to 36 at σp = 0 m, whileΦorder ≈ 0.67 to 0.46 for N = 4 to 36

at σp = 0.048 m). The reduction of order in the presence of noise, indicating a decrease in the

correlation of the agents’ movements, is due to the agents’ need of adjusting their directions

in order to avoid collisions (Fig. 4.6i). This tendency increases with the agent number. With

no noise, the minimum inter-agent distance is approximately steady around the safety value

(min(di j) ≈ 0.3 m) independently on the swarm size (Fig. 4.4d). Instead, in the presence of

noise, the minimum distance decreases when the swarm size increases (Fig. 4.4d). On average,

collisions between drones happen from a noise level σp = 0.056 m, which is approximately

70% of the magnitude of the safety margin rmargin-agent and 80% of agent collision radius

62

4.3. Results

Figure 4.5 – Number of completed missions in time t ≤ Tmax. Number of completed missions
(out of 10 random simulations) for swarms of different agent numbers N at different noise
levels σp , flying in the forest-like environment. We consider the mission completed only if the
swarm gets to the migration point before a maximum time of Tmax = 20 s. For a noise level
σp = 0 m, the swarm could complete all missions.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time [s]

0.00

0.25

0.50

0.75

1.00

S
pe

ed
 v

i [
m

/s
]

max(vi)
avg(vi)
min(vi)

(g) Noise level σp = 0 m

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time [s]

0.00

0.25

0.50

0.75

1.00

S
pe

ed
 v

i [
m

/s
]

max(vi)
avg(vi)
min(vi)

(h) Noise level σp = 0.024 m

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time [s]

0.00

0.25

0.50

0.75

1.00

S
pe

ed
 v

i [
m

/s
]

max(vi)
avg(vi)
min(vi)

(i) Noise level σp = 0.048 m

Figure 4.6 – Swarm trajectories at different noise levels. Simulated trajectories and inter-
agent distances for a swarm of 16 drones in a forest-like environment at three noise levels
(σp = 0, 0.024 m, and 0.048 m). Although we report no collisions in all cases, the trajectories
are visibly smoother at zero noise level (4.6g) than in the presence of noise (4.6h and 4.6i). The
middle and bottom rows show the envelope of the distance between neighboring drones di j

and the drones speed vi . The plots are grayed out from the mission completion time T until
the simulation end time Tmax. The swarm completes the mission in T = 14.6, 14.2, and 15 s at
low, medium, and high noise level respectively.

63

Chapter 4. Distributed predictive control of aerial drone swarms

rcoll-agent. Finally, the minimum distance to obstacles showed the same trend as the minimum

inter-agent distance. We did not observe a significant trend for the maximum inter-agent

distance, which slightly fluctuates above the cohesion distance (max(di j) = 1.40±0.09 m on

average).

By comparing the swarm flight at three different noise levels (i.e., σp = 0, 0.024, and 0.048 m),

we notice that the trajectories are visibly smoother in the absence of noise than in the presence

of little or high noise (Fig. 4.6). This result is consistent with the order results, which show

decreasing values at high noise levels (Fig. 4.4c). Furthermore, the minimum inter-agent

distance decreases with an increase in the noise (min(di j) = 0.29 and 0.22 m at σp = 0 and

0.048 m, respectively) (Fig. 4.6i). However, the distance envelope stays above the collision

distance, which indicates that no collisions happen. The maximum inter-agent distance

slightly exceeds the cohesion value in all cases, but presents its maximum value in the case of

σp = 0.048 m (max(di j) = 1.52 m) (Fig. 4.6i). This violation happens in favor of the obstacle

avoidance behavior, which has priority over cohesion. In all cases, after the swarm completes

the mission (at time T), the agents concentrate around the migration point and orbit around

it at low speed while reducing their inter-agent distance to minimize the distance to the

migration point and without violating the collision avoidance constraints (Fig. 4.6).

4.3.2 Adaptability to different environments

(a) Mission completion time (b) Avg. trajectory length (c) Avg. order (d) Min. inter-agent distance

Figure 4.7 – Swarm performance comparison in the funnel and forest-like environments.
Aggregate results (average and standard deviation of 10 random simulations) of the swarm
performance in the funnel-like (in blue) and forest-like (in light blue) environments at zero
noise level and for different agent numbers N . For all agent numbers, we report zero agent-
agent collisions.

To evaluate the swarm flight quality in different environments, we simulate our swarm model

in a funnel-like environment (Fig. 4.2b) for the same swarm sizes as in the forest-like environ-

ment and compare the results.

In the funnel-like environment, the swarm flies overall shorter trajectories to get to the mi-

gration point compared to the forest-like environment (Fig. 4.7b). As a result, the mission

times are generally shorter (Fig. 4.7a). The mission completion time and the average trajectory

length present the same trends in both environments: while the first increases with the agent

number, the second slightly decreases. The order is almost steady across the swarm sizes

64

4.3. Results

Figure 4.8 – Number of completed missions in time t ≤ Tmax. Number of completed missions
(out of 10 random simulations) for swarms of different agent numbers N at different noise
levels σp , flying in the funnel-like environment. We consider the mission completed only if
the swarm gets to the migration point before a maximum time of Tmax = 20 s. For a noise level
σp = 0 m, the swarm could complete all missions.

(a) Trajectories (b) Inter-agent distance (c) Speed

Figure 4.9 – Swarm of 36 drones in a funnel-like environment. Results of a swarm of 36
agents flying in a funnel-like environment. From left to right, trajectories, inter-agent distance,
and speed. The swarm completes the mission at T = 10.8 s, instant from which the plots are
grayed out.

(Fig. 4.7c) since all agents fly consistently along the x-direction. Instead, in the forest-like

environment, the swarm is less ordered due to the obstacle avoidance maneuvers, and this

effect is amplified at large swarm sizes. Finally, we report zero collisions and the maximum

inter-agent distance stayed below the cohesion distance for all agent numbers. However, in

the funnel environment we notice a phenomenon of swarm compression characterized by

a decrease of the average inter-agent distance towards the end of the funnel and due to the

reduced volume.

The reduced volume of the funnel causes a phenomenon of swarm compression that is

characterized by a decrease of the average inter-agent distance over time and it is accentuated

towards the end of the funnel, where the two surfaces draw closer. This tendency is evident for

large swarms (i.e., N = 36 drones, Fig.4.9). The speed highlights two phases: in the first phase,

the agents accelerate and their speed grows to get to the migration point as quickly as possible.

In the second phase, the agents decelerate. By the time the swarm attains the migration point,

they have little speed left and orbits around that point without colliding.

65

Chapter 4. Distributed predictive control of aerial drone swarms

Solve time Swarm size
4 8 12 16 20 24 28 32 36

Avg [ms] 9.3 9.3 9.4 9.8 10.7 11.3 12.1 12.3 16.1
Std [ms] 2.6 1.7 2.0 2.4 3.0 3.4 4.4 4.9 8.4

Table 4.3 – Empirical runtime per agent for different swarm sizes. Empirical runtime results
(average and standard deviation) for the algorithm implementing continuous CA method. The
shown data is the average over 10 random trials.

4.3.3 Comparison of collision avoidance methods

We compared the performance of the optimization-based swarm model with the three recip-

rocal CA methods. In order to test the algorithms as the agent density increases, we run 10

random simulations in the forest-like environment for all the swarm sizes. For brevity and

clarity, we present here the results at a fixed noise level (i.e., σp = 0.024 m), although similar

trends can be observed for other noise levels too.

(a) Mission completion time (b) Min. inter-agent distance

Figure 4.10 – Comparison of collision avoidance methods. Comparison of the average per-
formance metrics for different CA methods: BVC, on-demand, and continuous CA. The shown
data is the average over 10 random trials for each swarm size.

Being the least conservative, on-demand CA leads to the fastest mission completion times

for all swarm sizes (20% and 49% of average time reduction over all swarm sizes compared

to the continuous and BVC methods, respectively (Fig. 4.10a). However, continuous CA

outperforms the other two methods in terms of safety. This evidence is supported by the

plot of the minimum inter-agent distance (Fig. 4.10b). For continuous CA, the minimum

inter-agent distance stays close to the safety value (ranging from 0.30 to 0.23 m for swarms

of 4 to 36 agents). Instead, for the other two methods it is significantly lower (ranging from

0.29 to 0.18 m and from 0.18 to 0.10 m for swarms of 4 and 36 agents and for the BVC and

the on-demand methods, respectively). Indeed, with the BVC and on-demand methods we

recorded occasional collisions.

66

4.3. Results

4.3.4 Computational complexity

We formally analyze the computational complexity of the presented algorithm with the three

reciprocal CA methods in terms of computation time per agent to build constraints and solve

the QP. In our notation, |Ni
k | indicates the number of considered neighbors for agent i at

time step k, which is constant and equal to n. The number of reciprocal CA constraints for

each algorithm scales linearly with the number of neighbors, i.e., O(n). The BVC method

adds (d +1)n slack variables for relaxing the reciprocal avoidance constraints, where d is the

Bezier curve order. The on-demand method adds only n slack variables and hence has the

lowest complexity, while our method adds Bn new decision variables. Since in our method

the number of variables increases with B , increasing the agents’ maximum speed increases

the computational complexity. Solving a standard QP problem has complexity O(ν3), where ν

is the number of decision variables, which is linear in the planning horizon P and the number

of neighboring robots n. Hence, for each robot, the total computational complexity is O(ν3).

Numerical values for the runtime depend on the used hardware and solver capabilities. Here,

we report the empirical runtime of the algorithm running on the ground station with continu-

ous CA in the forest-like environment and for different swarm sizes (Table 4.3). We expect the

runtime per agent to be independent of the swarm size since we chose agents’ neighborhood

to have a fixed cardinality (i.e., n). Instead, we notice that it increases as we add more agents

to the swarm. We explain this fact with an increase in the swarm density, which implies more

complex QPs to be solved for each agent, due to its closer proximity to the obstacles, neighbors,

and environment boundaries.

4.3.5 Hardware experiments

We implemented the swarm model in Python, where we used numba1 to speed up the mathe-

matical computations, OSQP to solve the QP [81], and the Crazyswarm interface to commu-

nicate with the Crazyflie 2.1 drones [82]. An Optitrack motion capture system acquired the

drone positions and streamed them to the ground station. Then, the ground station com-

puted the optimal predicted trajectories online and for all drones in parallel and broadcast

them to the swarm via two radio links. In our experiments, local communication between

drones is mimicked by the ground station exchanging information between threads. Instead,

full on-board implementation would require direct communication between neighboring

robots. Moreover, drones should embed sensors to estimate their relative positions to obsta-

cles and more powerful computers to solve the optimization problems on-board. The model

parameters are the same as above, except for the migration point (pmig = [6,0,1] m) to fit our

experimental room.

The swarms of 8 and 16 drones reach the migration point in comparable times and cover

comparable distances (see Table 4.4). However, the trajectory lengths in hardware experiments

are slightly longer than in simulation because of the small positional errors in real-world

1https://numba.pydata.org/

67

Chapter 4. Distributed predictive control of aerial drone swarms

(a) Time t = 0 s (b) Time t = 4 s (c) Time t = 8 s

0 2 4 6

x position [m]

2

0

2

y
po

si
tio

n
[m

]

(d) Trajectories

0 2 4 6 8

Time [s]

0.0

0.5

1.0

1.5

D
is

ta
nc

e
d i

j [
m

]

max(dij)

avg(dij)

min(dij)

dcoh

dsafe agent

dcoll agent

(e) Inter-agent distance

0 2 4 6 8

Time [s]

0.00

0.25

0.50

0.75

1.00

S
pe

ed
 v

i [
m

/s
]

max(vi)
avg(vi)
min(vi)

(f) Speed

0 2 4 6

x position [m]

2

0

2

y
po

si
tio

n
[m

]

(g) Trajectories

0 2 4 6 8

Time [s]

0.0

0.5

1.0

1.5

D
is

ta
nc

e
d i

j [
m

]

max(dij)

avg(dij)

min(dij)

dcoh

dsafe agent

dcoll agent

(h) Inter-agent distance

0 2 4 6 8

Time [s]

0.0

0.5

1.0

S
pe

ed
 v

i [
m

/s
]

max(vi)
avg(vi)
min(vi)

(i) Speed

Figure 4.11 – Experimental results with 16 drones in a forest-like environment. Snapshots
at three instants (from left to right, t = 0, 4, 8 s) of a swarm of 16 drones flying from the start
area (in the foreground) to the migration point (in the background). At the bottom, trajectories,
inter-agent distance, and speed for swarms of 8 and 16 drones over the mission completion
time T .

experiments. The average order decreases when passing from 8 to 16 drones (Φorder = 0.88

and 0.85, respectively). This result follows the simulation experiments (Φorder = 0.93 and 0.88

for 8 and 16 agents, respectively) and confirms the above statistic results in the forest-like

environment: larger swarms decrease their order to insure collision avoidance in cluttered

environments. The minimum inter-agent distance remains above the collision threshold in all

cases. However, it decreases when increasing the swarm size (min(di j) = 0.26 and 0.20 m for

the swarms of 8 and 16 drones, respectively). Finally, the agents do not collide with obstacles.

4.4 Discussion

In this chapter, we described a distributed MPC model for aerial swarms that results in self-

organized, safe, and cohesive flight in cluttered environments. The proposed DMPC algorithm

with the continuous collision avoidance method generates collection-free trajectories even in

the presence of sensor noise at levels up to 70% of the magnitude of the agent safety margin

distance. We validated the proposed algorithm in two types of simulated environments with

obstacles, and on 16 palm-sized drones flying in a real forest-like indoor environment.

68

4.4. Discussion

Metric Simulation Hardware
8 agents 16 agents 8 agents 16 agents

T [s] 9.2 9.0 8.9 8.7
Ltraj [m] 5.88 5.47 5.93 5.49
Φorder [−] 0.93 0.88 0.88 0.85

min(di j) [m] 0.31 0.26 0.26 0.20
max(di j) [m] 1.31 1.26 1.31 1.45
min(di m) [m] 0.22 0.18 0.09 0.08

Table 4.4 – Comparison of simulation and hardware swarm performance. Comparison of
the performance metrics of two swarms of 8 and 16 drones between simulation and hardware
experiments.

While this work paves the way for large and safe decentralized aerial drone swarms, future

work should focus on the challenges for a full on-board implementation. Work in this direction

will address communication issues for large multi-agent systems such as communication

delays, packets losses, interference, and synchronization.

Additionally, future work will explore swarm navigation in non-convex configuration space. In

the presence of concave obstacles, the current obstacle avoidance strategy may lead to dead-

locks due to the presence of local minima. Hence, the integration of alternative techniques

based on topological planning as in [42] should be investigated to solve this issue.

69

5 Reynolds swarms with limited visual
sensing

Our previous work on predictive swarms relies on the assumption that each robot can communi-

cate its predicted trajectory to a local neighborhood. Communication-based swarm models are

fragile to outages and delays, especially when flying in high-density formations or in cluttered

environments. From this chapter on, we remove the hypothesis of explicit communication

between agents. Instead, we consider sensor-based agents that can estimate relative positions

and velocities to their neighbors. In nature, the central sensor modality often used for achieving

swarming is vision. Hence, in this chapter, we analyze the effects of limited visual sensing

on the behavior of potential field swarm models from the state-of=the-art. We study how the

reduction in the field of view and the orientation of the visual sensors affect the performance

of the Reynolds algorithm used to control the swarm. As Nature suggests, our results confirm

that lateral vision is essential for coordinating the movements of individuals. Moreover, agents

benefit from omnidirectional vision to avoid collisions. We achieve the results presented in this

paper through extensive Monte-Carlo simulations and integrate them with the use of genetic

algorithm optimization.

The work presented in this chapter is adapted from [26]:

• E. Soria, F. Schiano, and D. Floreano, “The influence of limited visual sensing on the

Reynolds flocking algorithm,” in IEEE Third International Conference on Robotic Com-

puting (IRC), 2019, pp. 138-145, doi: 10.1109/IRC.2019.00028.

5.1 Introduction

An evidence from nature is that several animals rely on visual information to achieve naviga-

tion, collision avoidance, and remain connected with the other individuals of the group [83,

84, 20, 85]. Although visual organs are limited in range and angular span, birds fly in perfect

choreographed synchronization. Sensor limitations are seldom taken into account in the

study of aerial swarms since they can be hard to model [86]. However, understanding their

effects can be fundamental to bring aerial swarms from lab-conditions to real-world scenarios.

71

Chapter 5. Reynolds swarms with limited visual sensing

The visual processes of animals include several aspects. In particular, a distinction can be made

between physical and perceptual properties. Examples of the former include the geometric

field that the eyes can perceive, their rapidity to adapt to light and environmental changes and

the range of the detected light wavelengths. The visual perception, instead, is defined as the

ability of animals to assimilate information from the surroundings and it is an open field of

research for psychologists, neuroscientists, and molecular biologists.

In this thesis chapter, we focus on analyzing the impact of the physical geometric properties

of visual sensing, specifically the width angle of the field of view (FOV) and its orientation,

on the performance of a Reynolds flocking. Because the aimed behavior of a swarm is often

application-dependent, we quantify the effects of the two aforementioned visual properties

with different metrics that can be relevant to different scenarios. In some applications, the

central interest can be to remain connected [64, 65], while in others, it may be more crucial

to control the number of subgroups that originate during the operation. An example of the

second case is patrolling [87], where the swarm is allowed to split, but a minimum number of

agents per cluster is needed to enable stereo vision.

The rest of the section is organized as follows. Section 5.2 reviews the notation, the concepts

of limited sensing and the Reynolds swarming model, and the metrics used for the evaluation

of the swarm with limited visual sensing. Then, Section 5.3 presents the results of our work,

followed by Section 5.4 that concludes the chapter and outlines possible future directions.

5.2 Method

5.2.1 Notation

In this work, we consider a set of N point-mass agents labeled by i ∈ {1,2,3, . . . , N }. The

position, velocity and acceleration of the agent i are denoted by pi , vi , ai ∈ R2, respectively.

In order to keep our notation concise we let di j = ‖p j −pi‖ where ‖ · ‖ denotes the Euclidean

norm, and p̄i j = pi j /d 2
i j . We then let IN ∈RN×N represent the identity matrix of dimension

N , 0N ∈ RN a vector of all zeros and 0N×N ∈ RN×N a matrix of all zeros. The operator diag(·)
returns a square diagonal matrix with the elements of the input vector on the main diagonal

and the operator [(·)] returns a matrix containing a vertical stacking of the arguments.

We model the swarm with a directed sensing graph G = (V , E), where the vertex set V = {1 . . . N }

represents the agents, and the edge set E ⊆ V ×V contains the pairs of agents (i , j) ∈ E for

which agent i can sense agent j . We denote as Ni = { j ∈V | (i , j) ∈ E} ⊂V the set of neighbors

of an agent i in G and as |Ni | its cardinality1. We also define δi j , a function of two agents i

and j , which takes value 0 if j ∉Ni and 1 if j ∈Ni . Another concept borrowed from algebraic

graph theory is algebraic connectivity [63], also known as connectivity eigenvalue. This is

the second smallest eigenvalue of the Laplacian matrix [63] associated with the undirected

1Note that both the set of edges E and the one of neighbors Ni of a specific agent i are time-varying. However,
we will omit their time dependency throughout the chapter for brevity.

72

5.2. Method

graph G′ obtained from G and it is usually denoted by λ2. The algebraic connectivity has been

extensively used in swarm robotics [64, 65] because the magnitude of this value reflects crucial

qualities of the graph. However, its mathematical details are beyond the scope of this thesis.

5.2.2 Limited field of view

Figure 5.1 – Illustration of the width and azimuth angles for an agent with limited FOV.
Width α and azimuth θ. In particular, this configuration is associated with values α= 120° and
θ = 90°. ẋ corresponds to the agent velocity and is aligned to its heading.

In this chapter, we study the influence of geometric visual constraints on the ability of swarm-

ing. For the sake of an easier visualization and interpretability of the results, we choose to

implement our model in two dimensions. We endow every agent with two eyes, each having

sight over a portion of the surroundings, i.e. a circular sector centered on the agent’s position.

The eyes are symmetrically placed about the direction of the agent’s velocity. Since we are

interested in dense swarms, we assume that the radius of perception is bigger than the size of

the swarm, therefore we do not add a constraint on the visual range. To model the described

configuration, we define two distinct parameters:

• the FOV width (α) is the angular span that an eye can detect and it ranges from 0° to

180°. On a UAV this would correspond to the FOV of an on-board camera;

• the FOV azimuth (θ) describes the visual direction of the eye and it varies from α/2 to

90°. The choice to limit θ to 90° is justified by the analogy with the orientation of the

birds eyes [88]. On a UAV this would correspond to the angle at which the camera center

is placed w.r.t. the x-axis of the body-frame of the robot.

Fig. 5.1 provides an illustration for the two parameters, while Fig. 5.2 shows different configu-

rations of the FOV for varying values of width α and azimuth θ.

Because of its limited FOV, an agent i can only sense a portion of the surrounding space. This

defines the set of swarm members that i can perceive at time t , namely its neighborhood Ni .

73

Chapter 5. Reynolds swarms with limited visual sensing

Figure 5.2 – Sensing configurations of an agent with different width and azimuth values.
Note that the positive values on the θ-axis refer to the right eye, while respective values for the
left eye have a negative sign for the hypothesis of symmetry that we assume. When θ =α/2 the
two sensed regions overlap on one edge and merge in a unique circular sector. For every other
azimuth value, the agent perceives two non-intersecting sectors and for θ = 90° (first row) the
eyes face opposite directions.

Fig. 5.3 illustrates an example of the neighborhood of i , for a sensor configuration of α= 120°

and θ = 90°.

Figure 5.3 – Reynolds swarm with limited-FOV agents. The highlighted agent i has a visual
sector of width α = 120° and azimuth θ = 90°. The swarm members in blue are the ones
perceived by i (the neighbors Ni), while the unperceived members are in red.

74

5.2. Method

5.2.3 Reynolds swarm model

For the mathematical definition of the Reynolds model, we refer to 2.2. In the Reynolds

model, the choice of the parameter values (i.e., ccoh, csep, and calign) is not unique and in many

situations it is application-dependent. For instance, in operations of maximal area coverage,

increasing the separation gain could help to amplify the spreading of the drones. Instead, in

operations that require the swarm to squeeze through narrow canyons, the cohesion could be

increased to make the group fit into a reduced space.

We restrict the gain values to the range 1 to 10. Notice that a separation gain equal to 1, csep = 1,

means that whenever two agents are situated at 1 m of distance from each other, they are

repulsed from each other with an acceleration of magnitude 1 m/s2. Similar considerations

can be done for the other gains.

Let us denote p = [p1, p2, · · ·pN], v = [v1, v2, · · ·vN], u = [u1,u2, · · ·uN] ∈ R2N respectively

containing the positions, velocities, and commands of the agents of the swarm. The equation

defining the motion of the swarm can be written as:

u = calign Av + ccoh Ap − csepH (5.1)

where A ∈R2N×2N is a matrix composed by blocks Ai j = (δi j /|Ni |)I2 ∈R2×2 if i 6= j and Ai j =
−I2 ∈ R2×2 if i = j , and H ∈ R2N×2N is composed by blocks Hi j = (1/|Ni |)diag(p̄i j) ∈ R2×2 if

i 6= j and Hi j = 02×2 if i = j .

5.2.4 Agents dynamics

In our simulations, the dynamics of the agents are reproduced in discrete time according to a

double integrator model [58]. For every time step tk = k ·d t , k ∈ {1,2,3 . . . ,K } and every agent

i , it holds

ak
i = uk

i (5.2)

v k
i = v k−1

i +ak
i d t (5.3)

pk
i = pk−1

i +v k
i d t (5.4)

(5.5)

where d t represents the step used for the temporal discretization of the system, and pk
i ∈ IR2,

v k
i , and ak

i are the position, velocity, and acceleration of the i -th agent at time tk , respectively.

To narrow the gap between simulation and reality we consider physical constraints on the

magnitudes of velocities and accelerations, expressed by ‖v k
i ‖ ≤ vmax and ‖ak

i ‖ ≤ amax.

75

Chapter 5. Reynolds swarms with limited visual sensing

5.2.5 Swarm performance metrics

When limiting the FOV, the guarantee that the agents form a single group where all components

move at the same speed in the same direction does not hold anymore. Indeed, two agents

that do not perceive each other act independently. Under this condition, the swarm can

split into multiple subgroups that do not affect each other’s movements, and collisions can

occur. To evaluate the collective performance, four relevant metrics are introduced. Several

metrics for describing the correlation of the agents’ movements and the collision risk have

been adopted in the literature for describing both robotic systems and animal groups [13],

[89], [17]. Furthermore, in swarm robotics, algebraic connectivity has proven to be useful in

many applications, especially the ones where a flow of information has to be ensured among

all the robots of the swarm (e.g., exploration and target tracking). By taking into account a

metric directly related to this quantity we aim to make our analysis relevant also for those

users who are interested in maintaining the connectivity of the graph while swarming with

limited sensors. In this work, all metrics are scaled to be equal to 1 in the best-case scenario.

Namely, they are:

• the instantaneous order metric,Φk
order;

• the instantaneous safety metric,Φk
safety;

• the instantaneous union metric,Φk
union;

• the instantaneous connectivity metric,Φk
connectivity.

For the definition, please refer to 2.6.

To evaluate the global performance of the swarm during the time T of a simulation, the metrics

that have been defined above for a generic time instant tk are averaged over the time window.

Then, the order metric of the swarm referred to a simulation of length T is

Φorder =

K∑
k=1
Φk

order

K
(5.6)

and the same holds for the other metrics.

5.3 Results

In this section, we present the results about the effects of limited visual sensing (modeled

using the two parameters of width and azimuth introduced in Section 5.2.2) on the swarm

performance metrics described in Section 5.2.5. An extensive analysis of their influence is

carried out by running the Reynolds algorithm at different sensor configurations.

76

5.3. Results

Besides depending on the visual configuration, the performance results also vary w.r.t. the

Reynolds gains calign, ccoh and csep. As we mentioned in Section 5.2.2, the choice of the right

combination of those constants can be application-dependent and, therefore, non-unique.

Consequently, we study how the performance metrics vary according to this choice.

In the first place, we select fixed triplets for the Reynolds gains and we analyze the metrics

when the alignment, the cohesion, or the separation effect are privileged, once at a time. An

additional case is studied for equal values of the gains.

Another approach can be preferred when we are aware of the metric w.r.t. our swarm should

be optimized. Therefore, in a subsequent study, we analyze the results for Reynolds gains

that are optimized for each of the metrics considered, one at a time. Genetic algorithms are

applied to find the optimal swarm parameters. In the following, we present the simulation

setup we used.

All simulations have been run in MATLAB R2017b. The workflow we used is summarized in

Fig. 5.4. Specifically, we consider a swarm of N = 50 agents. The width angle α is varied with

constant steps of 10° in the from 10° to 180°, while θ is increased with steps of 5° in the range

from α/2 to 90°. For each sensor configuration (α,θ) we apply a Monte-Carlo method that

repeatedly selects random samples of the initial conditions for the swarm, i.e. initial positions

and velocities of the agents (x0, ẋ0). A batch of 100 simulations is run, and the final score is the

average over the batch.

At t0 = 0 s the agents are initialized with random positions and velocities. The former follow a

uniform distribution over a cube of 10 m edge, while the latter obey a multi-normal law with

mean 02N m/s and covariance 3I2N m2/s2. The discretization time step used in simulation is

δt = 0.05 s and the total time is T = 50 s.

Figure 5.4 – Simulation workflow for testing sensor configurations with Reynolds model.
Reynolds gains are calign, ccoh, and csep. The outputs of the workflow are the performance
metrics Φorder, Φsafety, Φunion and Φconnectivity, averaged over the r = 100 repetitions of the
Monte-Carlo method.

77

Chapter 5. Reynolds swarms with limited visual sensing

5.3.1 Fixed Reynolds coefficients

In this section, we evaluate the swarm flight properties when the Reynolds gains are fixed to

triplets that privilege one effect over the others: alignment, cohesion, or separation. Finally, a

triplet with equal gains is evaluated. The values applied in our simulations as summarized in

Table 5.1.

calign ccoh csep

10 1 1
1 10 1
1 1 10
1 1 1

Table 5.1 – List of the different Reynolds gain triplets used in the simulation.

As a general consideration, we may reasonably expect that a decline in the performance of the

swarm is proportional to a diminution of the width angle α. Indeed, a decrease in the visual

angle of the agents determines a reduction in the information that they can capture from the

surroundings. This tendency is generally confirmed by the union and the connectivity metrics

for all the choices of gains, in Fig. 5.6(I-IV,C-D). Instead, this is not the case for the order and

the safety metrics in Fig. 5.6(I-IV,A-B), for which the trends shown are more complex.

If we observe the order metricΦorder in Fig. 5.6(I), it is immediately noticeable that the config-

urations on the half-diagonals (from top left to the center) perform better than the average

(the yellow color in the figures corresponds to high scores), and this fact is independent of

the choice of gains. Fig.5.5 presents a graphical excerpt of the sensor configurations corre-

sponding to these diagonal regions, from which we can infer the visual portions that they

have in common: two thin lateral sectors. High values in order metric are also present in the

upper regions of the figures, where the azimuth angle is θ = 90°. Again, this holds for every

choice of the Reynolds gains. These upper regions correspond to visual configurations with

diametrically opposed sensors, having sight on the lateral sides. These results corroborate the

hypothesis that lateral vision is important in biology, especially for those species exhibiting

collective motion. Indeed, the majority of birds in nature present a narrow binocular sector

that varies on average between 20° and 30° and a wide FOV that covers well the two lateral

regions [88].

The results about the safety metric Φsafety are highly dependent on the Reynolds gains. In

fact, in Fig. 5.6(I-IV,B) we can observe very different patterns. Moreover, it can be noticed that

this metric takes values in a very limited range. This is partly due to the normalization factor,

which counts the number of all possible pairs of agents. Therefore, for a large swarm, the

addition of one collision would correspond to a very limited decrease in the safety value. As

intuition suggests, our results confirm that the safety metric deteriorates when the cohesion

gain increases (see Fig. 5.6(II,B)). However, unexpectedly, the lowest safety values correspond

to the biggest FOV widths. This can be explained by referring to the union metric Φunion in

78

5.3. Results

Figure 5.5 – Visual configurations with high order scores. Configurations of the FOV corre-
sponding to the left half-diagonal of the (α, θ)-space (from top left to the centre) and associated
with high scores in the order metric. In particular, from left to right, they are: (α= 10,θ = 90),
(30,80), (50,70), (70,60) and (90,50), where the width and azimuth angles are expressed in
degrees [°]. The intersection between all of them is highlighted in red.

Fig. 5.6(II,C). High values ofΦunion correspond to the tendency of the agents to create a unique

group, thereby increasing the chance of collision.

One non-trivial remark about the union metric in Fig. 5.6(III,C), is that for very small values of

width α the values of the azimuth θ performing the best are the extreme ones, either close to

0° or to 90°. The explanation of this phenomenon involves more analysis of the system and it

will be part of our future work.

As anticipated, a non-zero value of the connectivity metricΦconnectivity is only possible when

Φk
union takes the maximum value, 1, at least at some time instants. During a simulation,

the swarm may split and rejoin. In such instances, the instantaneous connectivity met-

ric Φk
connectivity passes from positive to null values and vice versa, and the global value of

Φconnectivity is the average over time. Globally, we notice that the larger the width angle, the

higher the score.

5.3.2 Optimized Reynolds coefficients

The approach of finding optimal Reynolds parameters through genetic algorithms has been

applied in previous work [13] and it is justified by the high non-linearity of the relationship

that links the parameters to the performance function.

In Table 5.2 we resume the parameters used in the genetic algorithm.

Fig. 5.6(V,A-D) shows the results of the four metrics associated with the swarm simulations with

optimized parameters. One consideration is that the plots display more discontinuities over

the configuration-space (α,θ) compared to the previous results. A motivation for this is that

genetic algorithms rely on a stochastic approach and they do not guarantee the convergence to

the global optima. In addition, to keep the total simulation time affordable, our optimization

algorithm involved a reduced number of individuals and generations.

In general, the trends highlighted in Section 5.3.1 are confirmed in this section. Indeed,

similarly to the previous cases, the order metricΦorder shows the best performing values on

the diagonal and in the upper area. To a more accurate analysis, it seems that in the diagonal

region the genetic algorithm led to some improvements, i.e. the yellow portion in Fig. 5.6(V,A)

79

Chapter 5. Reynolds swarms with limited visual sensing

Parameter Value
Variables calign,ccoh,csep

Range for the variables [1,10]× [1,10]× [1,10] ∈R3

Fitness function Φorder,Φsafety,Φunion,Φconnectivity

Population size 10
Number of generations 10

Scaling operator ’proportional’
Selection operator ’tournament’
Crossover operator ’scattered’
Mutation operator ’gaussian’

Table 5.2 – Parameters of the genetic algorithm used to determine the optimal Reynolds
gains for swarms with limited FOV. The algorithm is part of the built-in functions in MAT-
LAB. The optimization is performed w.r.t. each of the metric functions and for every sensor
configuration (α,θ).

is wider. The safety metricΦsafety globally presents high values, with some outliers in the upper

region, where poorer results were already present for fixed Reynolds gains. The union metric

Φunion varies in a smaller range, indicating a global enhancement. Finally, the connectivity

metric Φconnectivity does not display substantial modifications and presents positive scores

only on the right corner where the width angle is wide.

5.4 Discussion

In this chapter, we presented a numerical analysis of the impact of limited visual sensing on

swarm systems, from the perspective of different and complementary performance metrics.

We believe that the results presented in this thesis chapter can be a starting point for filling the

gap between simulations and reality when implementing swarm algorithms. Moreover, this

analysis could be used to solve the problem of optimal sensor placement, when the application

of the swarming system is known a priori and a choice of the sensors and their orientation has

to be made.

The results presented are promising and create new avenues of research that are worth investi-

gating. More complex models should be taken into account to observe the effects of different

drone dynamics on the Reynolds model, e.g. fixed-wing or quadrotor drones, and how the

sensory limitations affect their flight in swarms. Moreover, noise modeling and delays should

be taken into account to narrow the gap between simulation and reality.

In addition to the limited FOV, we would like to consider other limitations of the visual sensors

such as limited range and possible occlusions generated by other agents [86]. Indeed, in the

real-world, visual perception is influenced by the distance. Higher definition measurements

are obtained for nearby neighbors and worse for far-away ones. Moreover, every object

detected by a camera generates a blind cone behind it, occluding the view over a part of the

80

5.4. Discussion

(A) Order (B) Safety (C) Union (D) Connectivity

(I) Reynolds gains: calign = 10, ccoh = 1, csep = 1

(II) Reynolds gains: calign = 1, ccoh = 10, csep = 1

(III) Reynolds gains: calign = 1, ccoh = 1, csep = 10

(IV) Reynolds gains: calign = 1, ccoh = 1, csep = 1

(V) Reynolds gains: optimized for each configuration

Figure 5.6 – Simulation results of swarms with limited FOV and different Reynolds gains.
Every row is associated with a triplet of the Reynolds gains, whose values are specified in
the first column. The columns are referred to the different performance metrics. From left
to right, order (Φorder), safety (Φsafety), union (Φunion), and connectivity (Φconnectivity). The
bottom row shows the results of the swarm performance when the Reynolds gains of every
sensor configuration are optimized w.r.t. a given metric. In the plots, the x axis represents the
width angle α [°], varying from 0° to 180°, while the y axis represents the azimuth angle θ [°],
varying from 0° to 90°. (Continue on the next page.)

81

Chapter 5. Reynolds swarms with limited visual sensing

Figure 5.6 – Simulation results of swarms with limited FOV and different Reynolds gains.
(Continued from the previous page.) Every bin is computed as the average of 100 simulations
with randomized initial conditions, i.e. positions and velocities of the swarm’s agents. Notice
that the color maps are rescaled according to the ranges of the metrics values.

surrounding space. Finally, in order to make our approach more realistic, we think that is

important to add obstacles along the navigation path and analyze how the behavior of the

swarm adapts

82

6 Scalable vision-based swarms in the
presence of occlusions

This chapter addresses the scalability of vision-based drone swarms in terms of group size and

density. For this, we consider swarm navigation in open environments without obstacles and we

employ a potential-field-based model. We evaluate the visibility model with up to one thousand

point mass agents, showing that occlusions have adverse effects on the inter-agent distances and

velocity alignment as the swarm scales up, both in terms of group size and density. In particular,

we find that small agent displacements have considerable effects on neighbor visibility and lead

to control discontinuities. We show that the destabilizing effects of visibility switches, i.e., agents

continuously becoming visible or invisible, can be mitigated if agents select their neighbors from

adjacent Voronoi regions. The results show that Voronoi-based interactions enable vision-based

swarms to remain collision-free, ordered, and cohesive in the presence of occlusions. These

results are consistent across group sizes and agent densities.

The work presented in this chapter is adapted from [90]:

• F. Schilling, E. Soria, and D. Floreano, “On the scalability of vision-based drone swarms

in the presence of occlusions,” in IEEE Access, vol. 1, no. 1, pp. 1–13, (submitted) Aug.

2021.

6.1 Introduction

Vision-based relative localization methods rely entirely on local information to detect other

agents, thus removing the dependence on external localization systems and additional com-

munication infrastructure. Moreover, vision is arguably the ideal sensory modality for lo-

calization on aerial robots since cameras are small, lightweight, and provide extremely high

information density at comparatively low power consumption [91]. Multi-robot systems that

use a vision-based approach to mutual localization have recently emerged in the form of

leader-follower formations [92, 47, 93, 94] and the first aerial flocks [95, 96, 97]. Important

perceptual factors such as visual occlusions, i.e., agents that are obstructed by others, are

usually neglected in these swarms because of their small group size. However, these factors

83

Chapter 6. Scalable vision-based swarms in the presence of occlusions

become a deterrent for larger swarms, especially when they have to fly in dense configurations.

While some swarm roboticists explicitly make use of visual occlusions to solve collaborative

transport problems [98] and robotic shepherding tasks [99], the most thorough treatment

of visibility constraints can be found in the collective motion literature. Using computer

vision techniques, researchers are able to reconstruct the poses and visual fields of individual

animals and show that visual perception best explains how information about food sources

and predators transfers within the group [19, 20, 100, 101]. How individuals select and react

to their neighbors is one of the fundamental questions in the study of collective motion

and agent-based swarm models provide an indispensable tool to test and verify different

hypotheses [102, 103, 15, 104]. Notable examples of neighbor selection methods include

metric (i.e., within a metric radius) [22], topological (i.e., the set of n nearest neighbors) [61],

or voronoi-based (i.e., from adjacent Voronoi regions) [105] interactions. Recently, different

forms of visual neighbor selection have gained popularity due to their biological plausibility

[19, 20, 100, 101]. For example, research on swarm models with a limited field of view shows

that lateral vision is crucial for collision-free collective motion [106, 26] and may explain why

flocking birds have almost omnidirectional vision [88]. Simulations of large schools of fish

show that visual obstructions lead to more realistic group shapes and densities than purely

metric interactions [107]. Simulations of large vision-based flocks show that bird density can

be regulated effectively if individuals only react to the projection of their neighbors [108].

Other researchers show that many natural behaviors such as milling and polarized flocking

emerge from purely visual interactions even in the absence of a spatial representation of

neighbors [109]. Although these models offer interesting collective behaviors, they often make

modeling choices that are geared towards a particular species or result in undesirable behavior

for robotic swarms since they lead to frequent collisions.

In this chapter, we tackle visibility constraints arising from occlusions from a robotics per-

spective with the goal of synthesizing large and compact vision-based drone swarms. In

particular, we study the effect of occlusions on the performance (i.e., collision avoidance,

cohesion, and velocity alignment) of vision-based swarms as they scale from low densities

and a handful of agents to high-density swarms with thousands of individuals. To this end,

we propose a visual neighbor selection model that offers a perceptually plausible alternative

to the ubiquitous but unrealistic metric selection of neighbors, i.e., methods that assume

agents can sense all neighbors within a given radius. We simulate vision-based swarms of

up to one thousand point mass agents and program them to perform collective waypoint

navigation using a simple attractive/repulsive swarm algorithm. The results show that swarms

in which agents react to all visible neighbors perform poorly, especially at high densities and

as the group size increases beyond tens of agents. However, by limiting visual interactions to

their Voronoi neighbors, we can successfully synthesize collision-free, cohesive, and ordered

vision-based swarms. A comparison of Voronoi interactions with other common neighbor

selection methods (i.e., metric and topological) reveals their superiority in large, high-density

swarms. We validate the scalability of the resulting swarm algorithm at different densities

and group sizes with quadcopter dynamics using a simulator with realistic physics and noise

84

6.2. Method

levels. The analysis shows that visually-constrained Voronoi interactions are both perceptually

plausible and highly effective for the coordination of large aerial robot swarms in which agents

rely purely on local visual information for control.

6.2 Method

We aim to synthesize a vision-based swarm that remains as compact as possible and collision-

free while performing collective waypoint navigation. We define this objective since it enables

many practical applications such as cooperative mapping, aerial deliveries, and search &

rescue. In the following, we restrict ourselves to swarms that operate in two-dimensional

planar configurations.

For the navigation of the swarm, we use a variant of the Reynolds algorithm that synthesizes

cohesion and collision avoidance, as well as a migration behavior (Sec. 6.2). To obtain a swarm

algorithm that is plausible for vision-based swarms, we define the notion of agent visibility in

the form of a neighbor selection strategy that is based on a realistic occlusion model (Sec. 6.2.1).

Since vision-based detection is an inherently stochastic process, we further model sensing

noise on the range and bearing measurements (Sec. 6.2.2).

The motion of each agent can be described by single-integrator dynamics of the form

pk+1
i = pk

i +v k
i d t (6.1)

where k denotes the index of the discrete-time step with duration d t .

In the remainder of the section, we skip the dependence on the discrete-time step k for

notational brevity and clarity. However, all computations in this section are performed at

every time step without exception.

Swarm algorithm

The objective of the swarm is to perform waypoint navigation while avoiding inter-agent colli-

sions and staying together as a group. We formulate this objective as an artificial potential field

that is inspired by the Reynolds swarm algorithm [21]. The motion of an agent is composed

of an attractive/repulsive potential that provides separation and cohesion between agents

(Sec. 6.2), as well as a migratory potential responsible for goal-directed navigation (Sec. 6.2).

The motion of an agent is composed of a social term that captures agent-to-agent interactions

and a migration term that introduces the navigation objective. The velocity command of an

agent can be written as

ṽi = vsoc,i +vmig,i (6.2)

where vsoc,i and vmig,i denote the respective social (Eq. 6.3) and migration terms (Eq. 6.4). In

order to obtain a final velocity command that is feasible even under the actuation constraints

85

Chapter 6. Scalable vision-based swarms in the presence of occlusions

of a physical robot, we limit the maximum speed as vi = ṽi /‖ṽi‖min(‖ṽi‖, vmax). The velocity

command vi can then be used directly for the motion update to obtain the agent positions of

the next time step (Eq. 6.1).

Separation and cohesion

Cohesion and collision avoidance can be achieved with an attractive/repulsive potential that

keeps the agents at an equilibrium distance. The cohesion term keeps the swarm together

by attracting agents to the average position of their neighbors. The separation term leads to

collision avoidance by repulsing nearby agents from each other. We can express these rules

more formally as:

vsoc,i = ccoh
1

|Ni |
∑

j∈Ni

di j︸ ︷︷ ︸
cohesion

−csep
∑

j∈Ni

di j

‖di j‖2︸ ︷︷ ︸
separation

(6.3)

where ccoh and csep are gains that regulate the strength of the attraction and repulsion, respec-

tively.

Note that we do not scale the separation velocity command by the number of agents. This

formulation has the advantage that minimum inter-agent distances remain quasi-constant as

the group size increases and thus reduces the need for readjusting the control gains (Fig. 6.1).

We further use the analytical solution to the above equations for three agents as a first ap-

proximation of the desired inter-agent distance dref. This allows us to express an approximate

reference distance by using a separation gain of the form csep = (dref)
2/2 m/s and keeping

the cohesion gain fixed at ccoh = 1 m/s. Note that in general, the separation gain slightly

overestimates the reference distance for larger swarms since it does not take the number of

neighbors into account. It is nevertheless a useful approximation that spares us the tedious

task of finding the reference distance empirically for each agent swarm scale separately.

Migration

The purpose of the migration term is to give the agents a navigation goal by steering them

towards a waypoint. The migration term can be written as

vmig,i = cmig
pmig −pi

‖pmig −pi‖
(6.4)

where cmig denotes the gain for modulating the migration speed.

6.2.1 Neighbor selection

Neighbor selection methods define the set of neighbors of an agent i , Ni ⊆V , and are defined

in Chap. 2. We summarize in Table 6.1 the different methods used in this chapter. In particular,

86

6.2. Method

0.5

2.0

4.5

8.0

se
pa

ra
tio

n
ga

in
 k

se
p [

m
s

1]

3 10 30 100 300 1000
number of agents N

1.0

2.0

3.0

4.0

m
in

. d
ist

an
ce

 d
m

in
 [m

]

Figure 6.1 – Scalability of nearest neighbor distance for varying group sizes and densities.
Scalability of minimum nearest neighbor distances to increasing numbers of agents using the
baseline metric neighbor selection model, i.e. agents within the perception radius are detected
irrespective of whether they are occluded. Each line represents the minimum equilibrium
distance between nearest neighbors obtained from different separation gains as the swarm
size increases (mean and std. dev. over ten trials, all other parameters constant). Aside from a
noticeable increase of inter-agent distances between ten and thirty agents that occurs due to
the saturation of the perception range with agents, the inter-agent distances remain constant
across different group sizes (note the logarithmic scale).

Name Set notation

metric N metric
i (r)

visual N visual
i (r,ragent)

visual + myopic N visual
i (2dref,ragent)

visual + topological N visual
i (r,ragent)∩N topo

i (n)
visual + voronoi N visual

i (r,ragent)∩N voronoi
i

Table 6.1 – Neighbor selection methods used for the experiments.

we call metric method the selection method based on the Euclidean distance. We define as

visual method the combination of the metric and the occlusion-based methods. In other

words, the visual method only counts the neighbors within a perception radius r which are

also fully unoccluded.

Note that the adjacency matrix is not necessarily symmetric and the resulting graph may be

directed. The metric and voronoi neighbor selection mechanism result in an undirected graph

and a symmetric adjacency matrix, whereas visual and topological neighbor selection are

generally asymmetric and directed. In other words, the visibility between a pair of agents i ∼ j

does not imply that the inverse relationship j ∼ i is true

87

Chapter 6. Scalable vision-based swarms in the presence of occlusions

(a) Metric (b) Visual (c) Topological (d) Voronoi

Figure 6.2 – Neighbor selection strategies. Schematic visualization of different neighbor
selection strategies: (a) metric, (b) visual, (c) topological, and (d) Voronoi-based. We take the
perspective of a focal agent within a swarm (central red disk) that selects agents (blue disks)
and discard others (gray disks) depending on the following selection criteria: (a) metric selects
all agents within a metric perception radius, (b) visual selects all visible agents within a metric
radius, i.e., all agents that appear large enough and are not occluded by others, assuming
agents are equally sized and have an omnidirectional camera at their center, (c) topological
selects only the n closest agents (here n = 6), irrespective of their distance, and (d) voronoi
selects only those agents that belong to a neighboring Voronoi region.

6.2.2 Sensing noise

We model the visual relative localization inaccuracies in two independent components: range

and bearing. We model range noise as a function that varies linearly with relative distance

from the observer whereas the bearing noise is constant over the field of view [110, 111, 93, 97].

More formally, we define the noisy version of range and bearing with which agent i detects

agent j as:

d̂i j = di j (1+ωd), ωd ∼N (0,σd) (6.5)

ψ̂i j =ψi j +ωψ, ωψ ∼N (0,σψ) (6.6)

where ωd and ωψ are independent and identically distributed white noise with zero mean

and standard deviation of σd and σψ, respectively. The noisy relative position can then be

constructed from polar coordinates as

d̂i j =
[

d̂i j cos(ψ̂i j)

d̂i j sin(ψ̂i j)

]
(6.7)

where d̂i j can serve directly as an input to the social term of the swarm algorithm (Eq. 6.3). The

exact values for range and bearing noise depend on several factors such as camera resolution,

lens quality, calibration accuracy, and target deformation.

88

6.3. Experimental setup

6.3 Experimental setup

We briefly describe the experimental setup and parameters (Sec. 6.3.1), as well as the simula-

tion environments that are used to obtain the experimental results (Sec. 6.4).

6.3.1 Experimental parameters

We perform ten repeated runs of migration experiments to make statistical statements about

the scalability of the swarm using different neighbor selection methods, group sizes, swarm

densities, agent dynamics, and noise levels.

The specific parameter values we use are informed by our previous experiments with real

vision-based quadcopters in indoor [47] and outdoor environments [97], as well as the litera-

ture on vision-based drone localization [110, 95, 111, 112, 74, 113, 114, 115, 92]. We choose

the radius of an agent as ragent = 0.25 m since it reflects a common physical size of quadcopter

platforms used in robotic experiments. The perception radius r = 10 m is chosen as the dis-

tance at which other drones were no longer reliably detected during outdoor experiments. The

time delta d t = 0.1 s is chosen as a reasonable amount of time to solve the visual perception,

state estimation, and control problems in real-time. The desired inter-agent distance is set

to dref = 1 m to generate the most compact formation that simultaneously provides enough

safety margin against potential collisions.

In order to provide a fair comparison of the visual neighbor selection methods, we choose

parameter values that result in comparable numbers of neighbors as the group size increases

(Fig. 6.3d). In particular, we set the maximum number of agents for topological neighbor

selection to n = 6 since it reflects the average number of Voronoi neighbors for planar configu-

rations [62]. We further let r = 2dref for myopic interactions since it approaches an average

number of six neighbors as the group size increases. We provide an overview of the neighbor

selection methods used during the experiments in Table 6.1.

At the beginning of each experiment, the agents are spawned randomly within a circular region.

The initial positions are sampled uniformly in a non-overlapping fashion using rejection

sampling such that no pair of agents are closer than their desired reference distance dref. The

area of the circular region is chosen such that the agent density ρN remains constant for

different numbers of agents. The agents exhibit no motion at the beginning of the experiment,

i.e., their initial velocities are set to zero. The agents are given a constant navigation direction

dmig = [1,0] along the horizontal axis which can be seen as a migratory route along the

magnetic field [16]. We let the swarm develop its collective motion for a total of T = 200 s

composed of 2000 isochronous discrete time steps k with duration d t = 0.1 s. At each time

step, the agents select their neighbors according to the indicated neighbor selection function

(Fig. 6.2) and compute their motion command (Sec. 6.2). We set the separation and cohesion

gains to csep = 1 m/s and ccoh = 1 m/s to provide an approximate nearest neighbor distance of

dref = 1 m. The separation gain is set to cmig = 0.5 m/s which provides goal-directed motion

89

Chapter 6. Scalable vision-based swarms in the presence of occlusions

Description Notation Value

Agent radius ragent 0.25 m
Reference distance dref 1 m
Perception radius r 10 m
Bearing noise σβ 1°
Range noise σd 0.05 m
Maximum topological neighbors n 6
Maximum speed vmax 1 m/s
Separation gain csep 1 m/s
Cohesion gain ccoh 1 m/s
Migration gain cmig 0.5 m/s
Time step d t 0.1 s
Simulation duration T 200 s

Table 6.2 – Parameters used during the experiments.

without overpowering the attractive/repulsive commands. We set the maximum speed an

agent can sustain to vmax = 1 m/s. A concise overview of the experimental parameters is

provided in Table 6.2.

In order to provide a fair comparison across vastly different group sizes, we compute the

metrics over the last quarter of the simulation, i.e. considering only the final 500 time steps.

Particularly for large swarm sizes, we avoid computing metrics during an initial transient

period in which agents have not yet aggregated to their final configuration. We refer to the

time range during which we compute the metrics as the equilibrium period for convenience.

We report the minimum nearest neighbor distances as a minimum over time over the equi-

librium period since it reveals whether collisions occur. For the order and union metrics, we

report time averages over the equilibrium period. The mean and standard deviations are

computed over the ten independent runs with random initial conditions.

6.4 Results

We report results on two sets of complementary simulation experiments: (i) we compare

several neighbor selection methods with increasing numbers of agents to show their perfor-

mance for different swarm sizes (Sec. 6.4.1), (ii) we evaluate the neighbor selection methods

for increasing inter-agent distances to show the effect of varying agent number densities on

the swarm performance (Sec. 6.4.2).

90

6.4. Results

6.4.1 Performance across swarm sizes

We assess the performance of the swarm for all neighbor selection methods and six increasing

group sizes N ∈ {3,10,30,100,300,1000}. We set the reference distance dref = 1m constant

throughout the experiments to keep the agent number density fixed and to allow a direct

comparison of the effect of group size.

Visual neighbor selection

Purely visual neighbor selection shows the overall lowest performance as the group size

increases. There is a considerable performance penalty in the distance and order metrics

(Fig. 6.3a and 6.3b). The minimum distance is tracked well only for a group size of 3 agents

(dmin = 1.0±0.0m; Fig. 6.3a). The distance gradually approaches the collision threshold of

2ragent = 0.5m and reaches its minimum at 1000 agents (dmin = 0.58±0.0m; Fig. 6.3a). The

order metric shows a similar trend since the agents start out perfectly ordered for 3 agents

(Φorder = 1.0± 0.0; Fig. 6.3b). However, for larger group sizes, the order metric decreases

monotonously until reaching its minimum at 1000 agents (Φorder = 0.87±0.0; Fig. 6.3b). The

swarm stays cohesive as a single unit across all group sizes (Φunion = 1.0±0.0m; Fig. 6.3c).

Generally, using visual neighbor selection, the swarm performance decreases as soon as occlu-

sions start to emerge (Fig. 6.3d; Fig. 6.3d). There is no performance penalty for 3 agents using

visual neighbor selection since they predominantly occur in equilateral triangle formations in

which there are no occlusions (i.e., Ni = 2). For larger group sizes, an increasing number of

agents within the perception radius is occluded (32% occluded for N = 10; up to 90% occluded

for N = 1000).

Qualitatively, the trajectories of agents using purely visual neighbor selection are jittery

(Fig. 6.4a). The agents migrate with considerable deviations from the optimal linear tra-

jectory in the migration direction. In particular, the relative positions of the agents within the

swarm are not fixed but rather subject to frequent topology switches. For instance, agents that

initially belong to the swarm periphery move towards the swarm center (Fig. 6.4a; blue line)

and vice versa.

The topology switches can be explained by considering that an agent within the swarm is

exposed to constant changes of its neighbor set (Fig. 6.6). Small agent displacements result in

considerable changes of perspective that cause neighbors to appear and disappear from the

visible set (Fig. 6.6a and 6.6b: 11 agents appear and 4 disappear, for example). Here, the focal

agent is exposed to a total of 32 visibility switches (8±1.22 switches per timestep) over the

course of four consecutive seconds of the experiment.

Alternatives to purely visual neighbor selection

Neighbor selection based on the Voronoi tesselation shows the highest performance of all

neighbor selection methods across group sizes. The minimum distance, order, and union

91

Chapter 6. Scalable vision-based swarms in the presence of occlusions

3 10 30 100 300 1000
number of agents N

0.0

0.2

0.4

0.6

0.8

1.0

1.2

m
in

. d
ist

an
ce

 d
m

in
 [m

]

metric
visual
visual + myopic
visual + topological
visual + voronoi

(a) Distance

3 10 30 100 300 1000
number of agents N

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

av
g.

 o
rd

er

or
de

r

metric
visual
visual + myopic
visual + topological
visual + voronoi

(b) Order

3 10 30 100 300 1000
number of agents N

0.5

0.6

0.7

0.8

0.9

1.0

av
g.

 u
ni

on

un
io

n

metric
visual
visual + myopic
visual + topological
visual + voronoi

(c) Union

3 10 30 100 300 1000
number of agents N

3

10

30

100

300

1000

av
g.

 n
um

be
r o

f n
ei

gh
bo

rs
 N

i

metric
visual
visual + myopic
visual + topological
visual + voronoi

(d) Neighbors

Figure 6.3 – Swarm performance of neighbor selection methods for varying group sizes. We
show the effect of different neighbor selection methods on the (a) minimum nearest neighbor
distance dmin, (b) average orderΦorder, (c) average unionΦunion, and (d) the average number
of neighbors Ni , expressed as a function of the number of agents N (note the logarithmic
scale). Here, dref = 1m. The neighbors are selected as follows: 1) metric selects all agents
within the perception radius r = 10m, 2) visual selects all visible agents, 3) visual + myopic
selects all visible agents within a smaller radius r = 2m, 4) visual + topological selects the
n = 6 topologically closest visible neighbors, and 5) visual + voronoi selects the neighbors from
adjacent Voronoi regions. The Voronoi neighbor selection method scales most predictably
with the number of vision-based agents, i.e., distance, order, and union remain quasi-constant
as the swarm size increases.

metrics show performance comparable to metric neighbor selection (Fig. 6.3a, 6.3b, and

6.3c). In particular, the minimum distance is tracked even closer to the reference distance

of dref = 1m for increasing group size (for 1000 agents: dmin = 1.13±0.02m for visual and

92

6.4. Results

0 10 20 30 40 50
x position [m]

5

0

5
y

po
sit

io
n

[m
]

visual (focal) visual (others)

(a) Visual

0 10 20 30 40 50
x position [m]

5

0

5

y
po

sit
io

n
[m

]

visual + voronoi (focal) visual + voronoi (others)

(b) Visual + voronoi

Figure 6.4 – Swarm trajectories using visual and Voronoi neighbor selection methods. Ex-
ample trajectories of a swarm of thirty agents during a single run of the collective migration
experiment using (a) visual and (b) Voronoi neighbor selection mechanisms. We use the same
random seed to create equal initial conditions and highlight an arbitrary focal agent (colored,
thick line) to reveal its motion among the other agents (grey, thin lines). The agents start
from their initial positions (solid squares) on the left and migrate along the horizontal axis
(solid triangles) to the right side of the virtual arena (solid disks). (a) Visual neighbor selection
leads to control discontinuities and disorder; agents frequently change positions inside the
swarm. (b) Visual and Voronoi neighbor selection together result in collision-free, ordered,
and cohesive migration (see Fig. 6.5 for continuation).

dmin = 1.21±0.02m for metric, for example; Fig. 6.3a). This can be explained by considering

that metric swarms have a significantly larger number of neighbors compared those based on

visual + voronoi neighbor selection for group sizes N > 3 (Fig. 6.3d). For example, at N = 1000

agents, the metric neighbor set contains around 22 times the number of agents than it does for

visual + topological neighbor selection (on average 11.2±8.5 times the number of neighbors

for all group sizes; Fig. 6.3d). Recall that the swarm algorithm computes the separation term as

a sum of reciprocal distances (Eq. 6.3). Therefore, each neighbor has an additive contribution

towards the repulsion (albeit a very small one for distant agents) that explains the slightly larger

distances. The agents are perfectly ordered and cohesive for all group sizes (Φorder = 1.0±0.0

andΦunion = 1.0±0.0, respectively; Fig. 6.3b and 6.3c). Qualitatively, the paths taken by visual

+ voronoi swarms are generally linear and smooth (Fig. 6.4b). The swarm performs collision-

free, ordered, and cohesive collective migration. Switches in the neighbor set do occur but

are infrequent and do not lead to unsafe situations or disorder (e.g., changes in neighbor

93

Chapter 6. Scalable vision-based swarms in the presence of occlusions

0 10 20 30 40 50
x position [m]

5

0

5

y
po

sit
io

n
[m

]

visual + myopic (focal) visual + myopic (others)

(a) Visual + myopic

0 10 20 30 40 50
x position [m]

5

0

5

y
po

sit
io

n
[m

]

visual + topological (focal) visual + topological (others)

(b) Visual + topological

Figure 6.5 – Swarm trajectories using myopic and topological neighbor selection methods.
Example trajectories of a swarm of thirty agents during a single run of the collective migration
experiment using (a) myopic and (b) topological neighbor selection mechanisms (see Fig. 6.4
for description). (a) Myopic visual interactions mitigate the discontinuities but lead to frag-
mentation. (b) Visuo-topological interactions mitigate strong discontinuities but swarms are
not well-ordered, especially for peripheral agents.

configuration at x ≈ 23m; Fig. 6.4b).

Swarms that use visual + myopic or visual + topological neighbor selection do not perform

as well as those using visual + voronoi selection for different group sizes. Generally, visual +

myopic swarms exhibit low cohesion and easily fragment into several subgroups (Fig. 6.3c).

Fragmentation occurs because agents that exit the perception radius are usually found within

small subgroups or entirely isolated due to their limited perception range (see subgroups and

isolated agent; Fig. 6.5a). The fragmentation phenomenon also skews the minimum distance

metric towards lower values with large standard deviations compared to other neighbor

selection methods (average of dmin = 0.82±0.12m across group sizes; Fig. 6.3a). This occurs

because isolated agents are usually far away from any other agent (see isolated agent; Fig. 6.5a).

We verified that minimum distances to nearest neighbors are usually well-tracked within

subgroups of at least three agents. The union metric is always belowΦunion < 1 which indicates

that fragmentation occurs for all group sizes (Fig. 6.3c). Cohesion is lowest for small groups

and approaches, but never reaches, a value of Φunion = 1 that would indicate a single-unit

cohesive swarm (Φunion = 0.7±0.25 for N = 3, up toΦunion = 0.98±0.0 for N = 1000; Fig. 6.3c).

Note that larger groups exhibit higher union performance since the metric is normalized by

94

6.4. Results

15 10 5 0
x [m]

0

5

10

15

y
[m

]

(a) t = 1s

15 10 5 0
x [m]

0

5

10

15

y
[m

]

(b) t = 2s

15 10 5 0
x [m]

0

5

10

15

y
[m

]

(c) t = 3s

15 10 5 0
x [m]

0

5

10

15
y

[m
]

(d) t = 4s

Figure 6.6 – Schematic representation of the switching topologies caused by visual occlu-
sions. Visual representation of the switching topologies caused by occlusions during a collec-
tive migration experiment. We show the perspective of an arbitrary focal agent (central red
disk) over the course of four isochronous time steps t ∈ {1s,2s,3s,4s}. The focal agent uses
visual neighbor selection and therefore perceives only agents within its perception radius
that are in a direct line of sight (blue disks), whereas occluded agents are invisible (grey disks).
We further highlight visibility switches, i.e., when an agent that has been occluded since the
previous time step becomes visible (green disks) and when a previously visible agent becomes
occluded (brown disks). A total of 32 visibility switches occur over the course of four seconds.

group size, i.e., larger groups consist of fewer subgroups relative to the overall group size.

Swarms with visual + myopic neighbor selection are effectively ordered (Φorder = 1.0±0.0;

Fig. 6.3b) Qualitatively, apart from fragmentation, larger subgroups tend to have irregular

shapes that are less circular compared to other neighbor selection methods (see the largest

subgroup; Fig. 6.5a).

95

Chapter 6. Scalable vision-based swarms in the presence of occlusions

Swarms that use visual + topological neighbor selection do not exhibit consistent performance

accross swarm sizes. Especially for intermediate group sizes of 10, 30, and 100 agents, both

minimum distances and order metrics suffer a decrease in performance (Fig. 6.3a and 6.7b,

respectively). For the respective distances and order metrics, the minimum performance oc-

curs at 30 agents (dmin = 0.85±0.04m andΦorder = 0.97±0.01; Fig. 6.3a and 6.3b, respectively).

We can explain this behavior by considering that agents always select the six closest visible

neighbors, irrespective of where they are located. Agents that belong to the swarm center tend

to have six neighbors that are spaced around them at approximately equal angles from each

other. Conversely, agents on the periphery consider only neighbors in one direction which are

subject to occlusions. This leads to similar visual switching topologies as for the purely visual

neighbor selection, albeit less severe since even the most distant nearest neighbor for n = 6

is usually in close proximity. The effect of occlusions is mostly mitigated for larger swarm

sizes N > 100 since a smaller proportion of agents is located on the periphery relative to the

swarm center. We do not observe fragmentation with visual + topological neighbor selection

for any group size (Φunion = 1.0±0.0; Fig. 6.3c). Qualitatively, visual + topological interactions

generate paths that are not perfectly straight (Fig. 6.5b). We also observe swarms that exhibit

rotations, as well as ones that periodically switch between a set of recurring configurations.

6.4.2 Performance across swarm densities

We evaluate the swarm performance for all neighbor selection methods and for five levels

of increasing inter-agent distances dref ∈ {1m,2m,3m,4m,5m}. We let N = 100 to fix the

group size and to enable a direct comparison between agent number densities. We define the

normalized minimum nearest neighbor distance as dnorm = dmin/dref to make the minimum

distances more easily comparable for different agent densities.

Visual neighbor selection

Purely visual neighbor selection does not show consistent performance for different swarm

densities. The performance penalty in distance and order is especially severe for agents in

high-density configurations with small reference distances (Fig. 6.7a and 6.7b, respectively).

The normalized distance is much lower than the desired reference of dnorm ≥ 1 and has

its minimum for dref ∈ {1m,2m} (dnorm = 0.66± 0.01 and dnorm = 0.67± 0.02, respectively;

Fig. 6.7a). For larger reference distances, dref ∈ {3m,4m}, the normalized distance stabilizes

again to larger values (dnorm = 0.97±0.03 and dnorm = 0.94±0.09, respectively; Fig. 6.7a) Note

that the minimum distance, order, and union metrics for large reference distances dref = 5m

decrease for all neighbor selection methods. A reference distance of dref = r /2 = 5m effectively

renders all neighbor selection methods myopic and fragmentation starts to occur. The union

metric indicates that this is indeed the case for dref = 5m since all neighbor selection methods

show comparable mean performance to myopic swarms (average of all neighbor selection

methodsΦunion = 0.97±0.01; Fig. 6.7c). The order metric reaches its minimum at dref = 2m

(Φorder = 0.78± 0.01; Fig. 6.7b). The minimum order coincides with the maximum of the

96

6.4. Results

1 2 3 4 5
reference distance dref [m]

0.4

0.6

0.8

1.0

1.2
no

rm
. m

in
. d

ist
an

ce
 d

no
rm

metric
visual
visual + myopic
visual + topological
visual + voronoi

(a) Distance

1 2 3 4 5
reference distance dref [m]

0.70

0.75

0.80

0.85

0.90

0.95

1.00

av
g.

 o
rd

er

or
de

r

metric
visual
visual + myopic
visual + topological
visual + voronoi

(b) Order

1 2 3 4 5
reference distance dref [m]

0.90

0.92

0.94

0.96

0.98

1.00

av
g.

 u
ni

on

un
io

n

metric
visual
visual + myopic
visual + topological
visual + voronoi

(c) Union

1 2 3 4 5
reference distance dref [m]

3

10

30

100
av

g.
 n

um
be

r o
f n

ei
gh

bo
rs

 N
i

metric
visual
visual + myopic
visual + topological
visual + voronoi

(d) Neighbors

Figure 6.7 – Swarm performance of neighbor selection methods for varying group density.
Swarm performance during the collective migration experiment for different neighbor se-
lection methods and group size N = 100. We show the effect of different neighbor selection
methods on the (a) normalized minimum nearest neighbor distance dnorm, (b) average order
Φorder, (c) average union Φunion, and (d) average number of neighbors Ni , expressed as a
function of the reference distance dref. The neighbors are selected as follows: metric selects
all agents within the perception radius r = 10m, visual selects all visible agents, visual + my-
opic selects all visible agents within a smaller radius r = 2m, visual + topological selects the
n = 6 topologically closest visible neighbors, and visual + voronoi selects the neighbors from
adjacent Voronoi regions. With the exception of myopic conditions (at dref = 5m), the Voronoi
neighbor selection method scales most predictably with the density of the vision-based swarm
and the performance remains quasi-constant as the reference distance increases.

average number of visible neighbors at dref = 2m (Ni = 22.62± 0.04). This indicates that

order follows an inverse relationship with the number of visible neighbors: if more agents

97

Chapter 6. Scalable vision-based swarms in the presence of occlusions

are visible, the likelihood of visual topology switches that lead to disorder increases (Fig. 6.6).

The neighbor graph also highlights that the effect of occlusions is maximized at intermediate

densities. At high densities, the nearest neighbors occlude most agents in all directions (87%

occluded for dref = 1m; Fig. 6.7d). Conversely, the effect of occlusions diminishes at lower

densities since the agents are not large enough to break the line of sight (5% occluded for

dref = 3m, for example; Fig. 6.7d).

Alternatives to purely visual neighbor selection

The Voronoi-based neighbor selection provides the highest and most consistent performance

across different group densities. The distance, order, and union metrics remain stable for all

but the lowest density level (dref = 5m) at which interactions are rendered myopic (Fig. 6.7a,

6.7b, and 6.7c; Sec. 6.4.2 for discussion of myopic interactions). The normalized distance,

order, and union remain stable for high and intermediate swarm densities (average dnorm =
1.12±0.03m,Φorder = 1.0±0.0, andΦunion = 1.0±0.0; Fig. 6.7a, 6.7b, 6.7c, respectively).

Swarms with visual + myopic and visual + topological interactions perform comparatively

poorly to visual + voronoi neighbor across group densities. The visual + myopic neighbor

selection method shows consistently low performance in terms of distance and union metrics

(Fig. 6.7a and 6.7c). Myopic interactions effectively reduce the negative impact of occlusions.

However, they also induce low distances and fragmentation (average dnorm = 0.84±0.02 and

Φunion = 0.97± 0.01 across reference distances; Fig. 6.7a and 6.7c, respectively). Swarms

with visual + topological interactions can avoid the fragmentation issues but their minimum

distances fluctuate for different densities (e.g., dnorm = 1.05±0.04 for dref = 2m and dnorm =
0.95±0.10 for dref = 4m; Fig. 6.7a).

6.5 Conclusions

Methods for multi-agent coordination often make unrealistic assumptions about the in-

formation that is available to the individual agent. One of the most pervasive simplifying

assumptions is that vision-based agents can sense the state of all surrounding neighbors

within a metric perception radius, even if they are obstructed by closer ones. Here, we break

this common assumption and construct a simple yet realistic model of visibility that selects

neighbors only if (i) they appear large enough in the field of view, and (ii) are not occluded

by other agents. Extensive swarm simulations with the visual occlusion model show that

perfectly ordered metric-based swarms become disordered and unsafe when agents react

to all of their visible neighbors. These adverse effects can be attributed to small perspective

changes that continuously influence the set of visible neighbors, thus causing the agents to

move in reaction to the new neighbor configuration. We show that this interplay between

visibility constraints and collective motion can lead to severe instabilities for vision-based

swarms, especially for large numbers of agents and high swarm densities.

98

6.5. Conclusions

Selecting a subset of visible neighbors from adjacent Voronoi regions significantly improves

the swarm performance (i.e., collision avoidance, velocity alignment, and group cohesion)

across group sizes and densities. Controlled experiments with subsets of the visual neighbors

show that Voronoi-based interactions are a more effective countermeasure against occlusions

than metric and topological ones. The main drawback of metric and topological neighbor

selection methods is their dependence on specific parameters, namely the perception range

and the number of nearest neighbors, respectively. Choosing favorable values for these

parameters that provide high performance at all group sizes and densities may be impossible

for vision-based swarms. In particular, swarms that select too many neighbors suffer from the

adverse effects of occlusions, and selecting too few neighbors inevitably leads to fragmentation.

Voronoi-based interactions provide an elegant solution to this problem since they are both

parameter-free and spatially balanced [61].

The occlusion model presented here is undoubtedly useful but it neglects an important aspect

of vision-based relative localization: errors due to misdetections. False positives (i.e., detecting

an agent that is not there) and false negatives (i.e., not detecting an agent that is defacto there)

inevitably occur in real-world conditions but are notoriously difficult to model. The main

difficulty is that the distribution of misdetections depends not only on the used hardware and

detection algorithm but also on environmental conditions such as background clutter and

lighting conditions. Multi-target filtering algorithms can alleviate errors due to sensing noise

and false positive detections to some extent but are largely ineffective against false negatives

[97].

We argue that occlusions should not be neglected when designing algorithms for vision-based

swarms since they are comparatively easy to model. We consider the occlusion model pre-

sented here simple enough to be a drop-in replacement for algorithms that would otherwise

default to purely metric interactions. Simple agent-based simulations can thus prevent signifi-

cant hardware damage by considering occlusions early in the algorithm design and before they

are implemented on real robots. The validation presented here is specifically geared towards

drones but we expect the results to translate well to other types of vision-based robots.

99

7 Sensor-based predictive control of
aerial swarms

In this chapter, we extend our previous work on predictive swarm models to purely sensor-

based agents. While removing the communication requirements between agents, we make

use of a simple but perceptually realistic neighbor selection method that discards occluded

agents. Instead of communicating their future trajectories, the agents predict them based on

the local knowledge of the environment. We evaluate our model in simulation in a forest-like

environment at different swarm sizes and we show the swarm can avoid collisions, while the

flight synchrony worsen and the trajectory lengths increase compared to the communication-

based DMPC model. We also compare the sensor-based swarm performance with a potential-

field model from the state of the art and show that the DMPC swarm has overall better flight

performance across different sizes.

7.1 Introduction

In communication-based swarms, drones are typically equipped with wireless communication

devices that allow the exchange of state information such as positions and velocities with

each other [23, 14, 10]. While this approach has enabled successful swarm deployments, it

presents inherent limitations. Firstly, it lacks scalability since the bandwidth requirement of

wireless communication scales quadratically with the number of individuals [116]. As a result,

its utilization in large swarms leads to compounding delays whose durations are difficult to

estimate and thus require dampening and interpolation [12, 13]. Secondly, this approach

lacks flexibility since all agents must adhere to the same communication protocol and localize

themselves in the same reference frame.

Decentralized multi-robot systems that do not rely on communication have recently emerged

and are generally based on visual or depth on-board sensing [47, 117, 95, 96, 118]. When using

these sensor modalities, occlusions become an important factor to be considered. Occlusions

make some agents to be obstructed and hence not perceivable by others. While in swarms

with low density they can be neglected without consequences, in large swarms flying in dense

configurations their effects can become fatal.

101

Chapter 7. Sensor-based predictive control of aerial swarms

Among the most popular decentralized models for the collision-free navigation of drone

swarms that do not necessarily involve communication we find Potential Field (PF)-based

methods. They are based on the design of artificial forces that replicate the behaviors of

biological swarms such as cohesion, collision avoidance, and migration to a common destina-

tion [21, 22]. Their implementation only requires the knowledge of momentary information on

neighboring agents, and specifically relative positions and, in some cases, velocities [23, 13, 96].

Both variables can be estimated on-board with visual sensors [118, 96]. Other models are

based on optimization techniques such as Optimal Reciprocal Collision Avoidance (ORCA) and

Sequential Convex Programming (SCP). They provide a safer framework since they explicitly in-

clude anti-collision constraints. ORCA computes the set of non-colliding velocities for an agent

and then selects the robot command to optimize its path towards the final destination [51, 52].

SCP methods solve sequential optimization problems with convex approximations of collision

constraints. They can explicitly consider the robot actuation constraints in the model [48, 49].

Both require the knowledge of neighbor positions and velocities. Buffered Voronoi Cells gener-

ate more conservative paths but use only relative positions [54]. Finally, end-to-end learning

has provided a novel alternative for the generation of safe swarm trajectories by imitation of

the techniques above, both in the absence and presence of obstacles [47, 57].

In previous work [10], we show that future state prediction can improve the safety and syn-

chrony of flying agents when navigating cluttered environments as compared to other ap-

proaches. Our method is based on Distributed Model Predictive Control (DMPC) and incor-

porates the swarm behaviors of cohesion, migration, and collision avoidance within a con-

strained quadratic problem. However, this method makes use of local-based communication.

In this work, we remove the communication requirement between agents, and we elaborate

a DMPC swarm model that requires only line-of-sight sensor-based detection. Hence, our

neighbor selection method discards occluded agents. We compare the communication-based

model with the new sensor-based model in simulation and we quantify the performance

drop at different swarm sizes. Then, we compare the sensor-based DMPC model to a popular

PF-based swarm model from the state of the art and we show the benefits of state prediction.

7.2 Method

We consider a set of N homogeneous agents labeled by i ∈V = {1, . . . , N } and a set of M static

obstacles labeled by m ∈M= {1, . . . , M }. The swarm can be modeled with a directed sensing

graph G = (V , E), where the vertex set V represents the agents, and the edge set E ⊆ V ×V
contains the pairs of agents (i , j) for which agent i can access the state information of agent j

by either communication or local state estimation. The state of the i -th agent is represented

by xi = (pi , vi) ∈ R6 and is made of its position pi ∈ R3 and velocity vi ∈ R3. The input ui

represents a position command. In the following, k denotes the index of a discrete time step

with duration d t , Od denotes the zero matrix of dimension d , and Id denotes the identity

matrix of the same dimension d .

102

7.2. Method

(a) Visual neighbors (b) Topological neighbors

Figure 7.1 – Neighbor selection methods. On the left, vision-based neighbor selection. On the
right, communication-based neighbor selection. Both figures show a top view of the swarm
flying in the forest-like environment. Cylindrical obstacles (green) appear as circles. In the
vision-based method, the focal agent (red) can localize only non-occluded agents within the
perception range r = 2 m (blue). Instead, the state of agents occluded by obstacles or other
agents (light blue) can not be inferred. In the communication-based method, neighbors are
selected according to the topological metric (i.e., the n-nearest agents to the focal agent).

7.2.1 Model of a flying agent

Every agent is approximated by a point-mass model that can be written as:

xi (k +1) = Ai xi (k)+Bi ui (k) (7.1)

where Ai = [03 03;−I3/d t 03] and Bi = [I3; I3/d t] are constant matrices. To account for the

environment boundaries and the dynamic feasibility, we limit the position commands and the

acceleration by constant vectors, i.e., pmin ≤ ui (k) ≤ pmax and amin ≤ ai (k) ≤ amax. We model

the agents’ trajectories with l Bezier curves in R3 of duration Tl , in the same spirit as [32, 78].

This parameterization allows us to define continuous input trajectories to the drones from a

finite set of control points. A 3-dimensional Bezier curve of order d is uniquely characterized

by a set of d +1 control points Ũ = {ũ0, ..., ũd } ∈R3(d+1) and the trajectory of agent i is defined

by l (d +1) control points Ũi ∈R3l (d+1). In the following, xi and ui are considered as function

of the new unknown Ũi .

7.2.2 Inter-agent collision avoidance

A critical aspect of swarm flight is collision avoidance between agents. With sensor-based

DMPC, agents compute their neighbor trajectories at every time step, but they are not guar-

anteed that these predictions are correct. Hence, safety constraints have to be conservative

to prevent collisions in all situations. For this, we use conservative constraints that account

for the the maximum braking distance dbrake of an agent. In particular, if we approximate the

volume of an agent with a sphere of radius ragent, the constraint that an agent should satisfy to

103

Chapter 7. Sensor-based predictive control of aerial swarms

(a) Trajectories (b) Time: 2s

(c) Time: 4s (d) Time: 8s

Figure 7.2 – Snapshots of predicted trajectories of the sensor-based DMPC swarm. 7.2a top
view of the trajectories of a swarm of 9 agents. 7.2b, 7.2c, and 7.2d, snapshots of the predicted
trajectories of the swarm agents at 2, 4, and 8 s. Approximations of the neighbor predicted
trajectories are dashed. The predicted trajectories can sometimes intersect obstacles because
only the first obstacle on the collision course in time order is included in the optimization
problem.

avoid collisions with a neighbor j is:

di j (k +π|k) ≥ 2(ragent +dbrake) (7.2)

where dbrake = 1
2 amind t 2+vmaxd t is the braking time for an agent flying at its maximum speed.

7.2.3 DMPC swarm model

In the DMPC swarm model, every drone i calculates its desired trajectory at each time step k

over a fixed time window called the prediction horizon and denoted as TP = P d t , P ∈N+.

The constrained optimization problem aims at minimizing a cost function that encodes the

swarm behavior and comprise a term for migration J k
mig,i , which steers the agents towards a

common goal, the regulation of the inter-agent distance, which consists of cohesion J k
coh,i and

agents’ reciprocal avoidance J k
saf-agent,i , and the obstacle avoidance J k

saf-obs,i , which steers the

104

7.2. Method

agents away from obstacles. Additionally, the control effort term minimizes the energy spent

on maneuvering J k
effort,i . The problem is expresses by:

min
Ũ k

i ,Ek
i ,∆k

i ,Zk
i

J k
mig,i + J k

saf-agent,i + J k
coh,i + J k

saf-obs,i + J k
effort,i

subject to:

Adyn,iŨ k
i ≤ bdyn,i

Acont,iŨ k
i = bcont,i

Ak
saf-agent,i [(Ũ k

i)T , (Ek
i)T]T ≤ bk

saf-agent,i

Ak
coh,i [(Ũ k

i)T , (∆k
i)T]T ≤ bk

coh,i

Ak
saf-obs,i [(Ũ k

i)T , (Zk
i)T]T ≤ bk

saf-obs,i

−Ek
i ≤ 0

−∆k
i ≤ 0

−Zk
i ≤ 0

(7.3)

where Ũi is the parameterized trajectory of agent i to be optimized. The constraints include

dynamic limitations of the agents, trajectory continuity and smoothness, soft constraints

on the inter-agent safety, safety against obstacles, and cohesion. Ek
i , ∆k

i , and Zk
i are slack

variables that relax corresponding hyperplane constraints and make it more likely for the

optimization problem to find a viable path.

Although the problem formulation is the same for both communication and sensor-based

models, they present two key differences. The first concerns the neighbor selection method,

the second is how trajectories of neighboring drones are obtained. We explain both of them in

the following.

7.2.4 Neighbor selection

In the communication-based swarm model, we assume that each agent can exchange infor-

mation with its local neighbors by explicit communication. We define the neighborhood of

agent i , Ni
k = { j ∈V | (i , j) ∈ E} as the set of the n nearest neighbors of agent i at time k [19].

Instead, in the sensor-based swarm, the agents cannot explicitly communicate their state or

their optimized trajectories, but they infer their neighbors’ state with on-board line-of-sight

sensors, such as for example omnidirectional cameras. It is, therefore, reasonable to consider

that only the state of the agents within a perception range r can be measured, while the state

of agents outside this area can not. For the sensor-based model, we define the neighborhood

of an agent i , Ni
k , as the subset of the agents which are visible from i (Fig. 7.1). With the

assumption that all agents are homogeneous and equally sized, we can use the perception

range to represent visual acuity, i.e., the minimum size that another agent spans on the

retina of the focal agent before it can no longer be perceived. In addition, full or partially

105

Chapter 7. Sensor-based predictive control of aerial swarms

occluded agents are considered invisible, i.e., only agents with an uninterrupted line of sight

are contained in the visible set. This assumption is reasonable for monocular vision since the

relative distance to other agents can only be reliably estimated if all of their spatial extent is

visible. The neighbor set of the communication-based method has a fixed cardinality, while

the neighbor set of the vision-based method has a variable cardinality.

7.2.5 Neighbor predicted trajectory

In the communication-based model, the neighbors of agent i , N k
i , are communicated its

predicted trajectory at time k and use it for computing their desired trajectory. Specifically,

the neighbors predicted trajectory intervenes in the cohesion and agent collision avoidance

behaviors. Instead, in the vision-based model, agents are not allowed to communicate. The

agents predict the trajectory of their neighbors by solving a DMPC problem for each of them.

This approximated problem considers only the behaviors of migration, obstacle avoidance,

and control effort. The cohesion and inter-agent avoidance are excluded because they would

require recursive knowledge on the neighbor set, while due to the local sensing agent i can

not exhaustively infer the set of neighbors N j of its neighbor j . This is equivalent to solving

the problem where only agent j would be present in the environment.

7.2.6 PF swarm model

We implement Vasarhelyi’s model as presented in [13] to which we add a cohesion term. The

command to agent i , expressed as a velocity, is:

ui =vflock,i +vrep,i +vfric,i +
∑

w∈Wi

vwall,i m + ∑
m∈Mi

vobs,i m +vcoh,i (7.4)

where the terms are self-propulsion, to match a preferred velocity, repulsion, to avoid inter-

agent collisions, our cohesion term, to maintain the agents close, friction, to reduce agent

oscillations in dense configurations, repulsion from the boundaries of the environments (i.e.,

walls), and repulsion form obstacles. The cohesion formula is:

vcoh,i j =
ccoh(di j −dcoh)

pi−p j

di j
if di j > dref

0 otherwise
(7.5)

where ccoh is the constant weight of the cohesion term, dcoh is the cohesion inter-agent

distance, and di j is the scalar distance between agents i and j . The total repulsion term is

given by the sum of individual terms:

vcoh,i =
∑

j∈Ni

vcoh,i j (7.6)

106

7.2. Method

Table 7.1 – Swarm model parameters. Description and values of the DMPC swarm model
parameters used in our simulation experiments.

Parameter Description Unit Value
d t Control time step s 0.2
dτ Simulation time step s 0.2

Tmax Simulation time s 30
TP Prediction horizon s 3
l Number of Bezier curves − 3
d Bezier curve order − 5
Tl Bezier curve duration s 1

pmig Migration point m [14,0,1]
pmin Minimum allowed position m [0,−7,0]
pmax Maximum allowed position m [0,7,2]
amin Minimum acceleration m/s2 [−1,−1,−1]
amax Maximum acceleration m/s2 [1,1,1]
dcoh Cohesion distance m 2

ragent Agent radius m 0.07
n Number of nearest neighbors − 5

Exx Distance scaling in x − 1
Ey y Distance scaling in y − 1
Ezz Distance scaling in z − 0.5
robs Cylindrical obstacle radius m 0.35

7.2.7 Swarm performance metrics

We assess the performance of the swarm’s flight according to six different metrics. The mission

completion time T measures the time that the swarm requires to complete a mission. A

mission is completed if the swarm average position reaches the migration point up to a

tolerance distance dtol and if, at the same time, all the drones are within the distance dcoh

from their neighbors. The trajectory length Ltraj measures the average of the agents’ flown

distances until they complete the mission. The minimum and the maximum inter-agent

distances, min(di j) and max(di j), measure the minimum and the maximum distance among

neighboring couples of drones over the mission. The minimum distance to the obstacles

min(di m) measures the minimum distance between all agents and all obstacles. Finally, the

orderΦorder measures the average correlation of the agents’ directed movements. It is often

used to quantify the synchronization of the agents’ flight [13, 17], and in formula it is:

Φorder =
∑

k∈{1,...,K }

∑
i∈V

∑
j∈N k

i

vi (k)T ·v j (k)

K N n‖vi (k)‖‖v j (k)‖ (7.7)

where K = min(dT /d te,dTmax/d te) and d·e is the ceiling function.

Additionally, for the DMPC swarm models we measure the replanning variance Vp and for

107

Chapter 7. Sensor-based predictive control of aerial swarms

the sensor-based DMPC we measure the neighbor prediction error Ep. The first measures the

discrepancy between consecutive planned trajectories and it is expressed by:

Vp = 1

N K

∑
i∈V

∑
k∈{1,...,K }

∑
π={1,...,P−1}

[pi (k +π|k +1)T ·pi (k +π|k +1)+
−pi (k +1+π|k)T ·pi (k +1+π|k)]

(7.8)

where (·)(k +π|k) represent the predicted value of (·)(k +π) with the information available at

time step k. The second measures the squared difference between the neighbors approximated

and exact predicted trajectories, and it is expressed by:

Ep = 1

N K

∑
i∈V

∑
k∈{1,...,K }

∑
π={1,...,P }

[p̂ j
i (k +π|k)T · p̂ j

i (k +π|k)+
−pi (k +π|k)T ·pi (k +π|k)]

(7.9)

where (̂·) j
i represent the value of (·)i of i predicted by j .

7.3 Results

7.3.1 Scalability in the swarm size

We run simulations for 8 swarm sizes N ∈ {8, 12, 16, 20, 24, 28, 32, 36} in a forest-like environ-

ment with cylindrical obstacles. For every configuration, we average the performance of 10

random simulations of length Tmax = 30 s and we show the aggregated results in Fig. B.5.

First, focusing the attention on the sensor-based DMPC swarm model, we can see that the

mission completion time increases with the number of agents and, inversely, the trajectory

length decreases ((Fig. 7.3b and 7.3a)). This implies that the average speed of the agents

decreases when the swarm is more packed. While the agents look for a free path, they slow

down to avoid collisions. Similarly, also the order decreases at higher swarm sizes. This phe-

nomenon is due to changes in the swarm topology to fit the morphology of the environment.

While some agents avoid the obstacle on the right, others fly to its left and the swarm topology

varies. Once they pass the obstacle, they reunite and update their neighbor sets. Changes

in the neighbor sets are frequently accompanied by variations in the flight direction and

hence decreased order. Up to 36 agents, we observe zero collisions between agents and with

obstacles (Fig. 7.3d), which means that both distances stay above the collision value (Fig. 7.3f).

However, the average inter-agent distance between agents decreases when the swarm size

increases (Fig. 7.3e).

108

7.3. Results

(a) Mission completion time (b) Trajectory length (c) Order

(d) Number of missions with-
out collisions

(e) Average inter-agent dis-
tance

(f) Minimum inter-agent distance

Figure 7.3 – Aggregated performance at different swarm sizes. Aggregated simulation results
on the swarm performance in a forest-like environment and at different swarm sizes (i.e.,
8, 12, 16, 20, 24, 28, 32, and 36 agents). We compare three swarm models: communication-
based DMPC (orange), sensor-based DMPC (blue), and sensor-based PF (yellow). For each
configuration (i.e, swarm size and model), we run 10 random simulations. In the plots of the
mission completion time (7.3a), trajectory length (7.3b), order (7.3c), average inter-agent
distance (7.3e), and minimum inter-agent distance (7.3f) we report average and standard
deviation of the same metrics. Additionally, we plot in dashed red the collision threshold.
In 7.3d, we report the total number of missions without inter-agent nor obstacle collisions.

7.3.2 Comparison between swarm models

The parameters for the sensor-based PF model were optimized for the absence of collisions

and the fastest mission time with a swarm size of 16 agents in the same environment.

When comparing the three swarm models (communication-based DMPC, sensor-based

DMPC, and sensor-based PF), we observe that the communication-based DMPC model

present the best performance for all the metrics considered. This result conforms to expec-

tations since the communication-based model uses perfect information on the neighbors

predicted trajectory and not an approximation based on local sensor information like the

other two models. While the two DMPC models present simular results in terms of mission

completion time, and trajectory length, the PF model presents visibly longer mission times

and trajectories at all swarm sizes. The longer mission completion times of the PF model is

due to the fact that the swarm tries to match the preferred speed and slows down around

obstacles because of the negative artificial collision avoidance forces. Hence, the agents sel-

dom fly at the maximum speed. Although the preferred speed can be increased within the

maximum boundary, having a value too close to the maximum value leaves little room for

positive adjustments that may be necessary for avoiding collisions. Longer agents’ trajectories

109

Chapter 7. Sensor-based predictive control of aerial swarms

(a) (b)

(c) (d)

(e) (f)

(g) N = 8 agents (h) N = 36 agents

Figure 7.4 – Size scalability of the sensor-based DMPC swarm. Simulation results on the
swarm flight in a forest-like environment and at two different swarm sizes (i.e., 8 and 36 agents,
from left to right). From top to bottom, top-view of the trajectories, inter-agent distance
envelope, speed envelope, and closest distance to obstacles.

are due to the difference in the avoidance maneuvering. The agents of the DMPC models

take less-conservative paths which almost touch the obstacles, while the PF model agents

make more prominent turns which increase the total travelled distances. As for the order,

differently from DMPC swarms, PF swarms have comparable performance at different swarm

sizes. However, order performance is overall lower for PF swarms than for DMPC swarms.

The DMPC models result in safe trajectories, sensor-based PF model presents collisions for

swarms larger than 16 agents, the size for which the parameters were selected. Collisions

happened mostly between agents and obstacles. Inter-agent distances are on average shorter

for PF swarms than DMPC swarms. Although PF swarms try to match a reference distance

dref = 0.8 m, agents often move closer apart to avoid collisions with obstacles. It is important

to notice that the inter-agent safety constraints of both the communication-based and the

110

7.4. Discussion

(a) (b)

Figure 7.5 – Replanning variance and neighbor prediction error. On the left, replanning
variance, Vp. On the right, neighbor prediction error, Ep.

sensor-based DMPC models are often relaxed for swarm size larger than 12 agents. However,

the standard deviation of the minimum inter-agent distance is larger for the sensor-based

DMPC model due to the approximation of the neighbors predicted trajectories (Fig. 7.5).

7.4 Discussion

In this chapter, we described a DMPC swarm model that replaces explicit communication

with local sensing and neighbors’ trajectory prediction. We compared the flight performance

of this model with the performance of the communication-based DMPC model and showed

its drawbacks for the application to large drone swarms in cluttered environments. However,

the results show that at all sizes the sensor-based DMPC model can provide zero-collision

trajectories, differently from the PF approach. It is important to notice that, to avoid collisions,

we set the minimum distance between any pair of agents to be larger than twice the maximum

braking distance. This condition depends on the agents’ maximum speed, acceleration, and

the update time of the control loop. In particular, larger swarm’s speeds determine longer

braking distance, and hence the anti-collision conditions require larger minimum inter-agent

distances. As a result, also the maximum allowed density of the swarm depends on these

factors. If the swarm can travel fast, then the density allowing safe flight lowers. In other words,

the swarm requires more free volume to avoid collisions.

In the future, we would like to extend the sensor-based DMPC model and consider strategies

for emergency braking to avoid collisions at high swarm densities, when the constraints

relaxation could potentially infringe the safety boundaries. This imply the use of adaptive

parameters that adapt the swarm laws relative importance in different phases of the swarm

flight. Besides, we hardware implementation will be a necessary step to validate the usage of

this model for real-world swarm missions.

111

8 Conclusion

In this thesis, we investigated the conditions under which current state-of-the-art approaches

to aerial swarm navigation break. In particular, we showed that the state-of-the-art swarm

models based on artificial potential fields are unlikely to generate safe flight in cluttered

environments, especially when the obstacle density varies along the way (Chap. 3 and 7). In

this situations, empirical parameter adjustment is necessary although inconvenient for the

quick deployment of aerial swarms. Moreover, we analyzed the used of potential field-based

algorithms for the deployment of agents with limited field-of-view sensing (Chap. 5). From the

results, we concluded that parameter instantiations adapted to the robots’ sensor configura-

tion can marginally improve specific performance metrics. However, omnidirectional sensors

certainly present comparatively larger performance advantages.

To remove the difficulties specific to these state-of-art models, we proposed novel algorithms

that can safely steer swarms of flying robots in cluttered environments of the real world. These

algorithms are based on the prediction of the future state of the agents’ neighbors. In particular,

we showed that a centralized NMPC swarm model improves the swarm’s speed when flying in

the presence of obstacles. Instead of slowing down when approaching obstacles, the agents

can track the preferred speed better and end their mission faster. Due to the anticipatory

behavior of the agents, their synchronization is better than for potential field-based methods.

As a result, the swarm is safer and can fly in a range of different environment without requiring

parameter adjustments for each of them. Finally, the presented approach is robust to changes

in the swarm inter-agent distance and speed, up to a certain extent (Chap. 3). This property

increases the versatility of the swarm, giving it the ability to fly coarsely over large areas for

terrain mapping or fly more compactly in confined spaces for indoor exploration. We also

showed that a distributed version of the MPC swarm model maintains these advantages with

the additional benefit of being scalable in the agent number (Chap. 4). Then, we proposed

and analyzed the use of the DMPC swarm model for agents that rely on sensors and cannot

communicate information with their neighbors (Chap. 7). Reducing the amount of available

information necessarily results in a poorer performance. However, although the swarm is

less synchronized, collisions can still be avoided for all the considered swarm sizes. Instead,

113

Chapter 8. Conclusion

PF-based models did not generate a safe flight for all the sizes.

In the following, we address the limitations of the predictive approaches presented in this

thesis (Sec. 8.1) and discuss possible directions for future work (Sec. 8.2).

8.1 Limitations of the predictive control approach

In general, centralized optimization problem has the advantage of presenting better conver-

gence properties than their distributed counterpart. The optimality of the solution to the

problem including the full state system information is equal or better than the solution to the

problem having only partial information. Furthermore, the setup and update of the system is

easier and less time consuming. However, centralized formulations like the one in Chap. 3 are

not scalable in the swarm size. This means that despite an increase in the hardware and soft-

ware capabilities of the central node and communication bandwidth, the number of agents

supported will not increase appreciably. On the other side, we showed that a decentralized

algorithm can be scalable in the agent number while still providing similar qualitative flight

properties as the centralized counterpart.

A limitation of our work regards the simplification assumptions that we made on the environ-

ment. While the forest and the funnel-like environments represent two common use cases,

they do not cover all environmental configurations that a swarm may encounter while flying

in urban or natural real-world environments. The latter may present obstacles of different

sizes and concave shapes. To fly around concave obstacles without freezing into local minima,

strategies such as topological planning [42, 119, 120] could replace our obstacle avoidance

strategy, which is purely based on the closest distance to an obstacle and disregards the ob-

stacle shape. In addition, some missions may involve more complex navigation tasks than

going straight to a goal destination, as we assume in our work. For example, swarms may

have to navigate maze-like environments like the complex road network surrounded by high

buildings [121]. A higher-level planning strategy could compute short-term position goals

in these scenarios, and a predictive controller could steer the swarm to those goals. Hence,

it would be the high-level planner’s responsibility to resolve conflicting situations such as

dead-ends or keep a record of already explored paths.

Our systematic experiments on the DMPC swarm model concluded that our algorithm is

robust to positional sensor noise. However, soft constraints on collision avoidance can be

violated in favor of lower control effort or when a solution can not be otherwise found. Hence,

a theoretical analysis of convergence would help understand the situations in which collisions

may occur and define operating conditions under which collision avoidance is theoretically

guaranteed [38, 122, 123].

Although sensor-based MPC must be envisaged in conditions when communication is not

available or possible, communication-based MPC provides better performance and should

hence be preferred when possible. Communication can be combined with state estimation

114

8.2. Possible directions for future work

from other sensor measurements to reduce the downsides of communication, such as delays

or package drops. The combination of the two methods can add resilience against faults.

8.2 Possible directions for future work

This thesis has covered the case of collective navigation in environments with static obstacles.

The extension of the presented techniques to dynamic obstacles would allow more flexibility

to swarm applications. Indeed, most of the environments include moving obstacles, and

some of them require special care not to be hit or injured by flying vehicles. Moving obstacles

can not be treated like other swarm members because they presumably do not follow the

same behavioral rules. However, their state, i.e., momentary position and velocity, can be

estimated with the same techniques. Since we first started our work, many studies have

been published on precise pose estimation of flying vehicles [118, 117, 110]. Therefore, we

would find interesting to extend this research to swarm navigation in the presence of dynamic

obstacles.

All the models developed in this thesis assume that all the swarm agents have the same mor-

phology and sensors, or in other words, that the swarm is homogeneous. To extend their

applicability, future work could consider heterogeneous swarms [124, 125]. The extension of

predictive models to heterogeneous swarms implies specific considerations on the swarm

safety when different agents have different sizes, dynamics, and physical limitations. Intu-

itively, an agent with higher inertia and requiring more time to brake should fly more cautiously

than a highly agile agent to avoid collisions in dangerous scenarios. Since collaborative swarm

algorithms assume that individuals of the same swarm share the responsibility for collision

avoidance, this consideration is not only individual. Instead, agents of heterogeneous swarms

can either exchange extra information on their dynamics or infer it from the observation of

their flight.

Touching on another aspect, the presented swarm models have constant parameters. However,

in certain situations, adaptive parameters could increase the safety and flexibility of the

swarm [126]. For example, while flying in the presence of humans, safety may be preferred

over time efficiency. In contrast, time optimality may be privileged over energy consumption

and safety once past the inhabited region. Adapting the swarm parameters in function of

the mission and environment may be convenient on these occasions. The task of parameter

selection could be granted to a high-level classifier algorithm, deciding on the context-specific

needs of the swarm.

All the presented predictive algorithms have been implemented on a ground computer, includ-

ing the distributed algorithm. Future work should concentrate on embedding the computation

on the drone controllers [14, 127, 128, 129]. Given the limited computational power of the

selected platform (i.e., Crazyflie 2.1), we expect a direct implementation of the proposed

algorithms on the drone microcontroller to be hardly achievable. For this reason, different

and more complete hardware solutions should be explored. An alternative approach could

115

Chapter 8. Conclusion

involve the simplification of the algorithm to get a computationally lighter solution. Works in

these two directions are presented in [42] and [14].

Finally, variants of the presented algorithms could enable a wider range of applications. While

we consider drone swarms flying to the same destination, most applications such as last-

centimeter delivery, crop monitoring, surveillance, etc., would benefit from assigning different

intermediate goals to each agent to distribute packages or maximize an area coverage. In these

tasks, the agents’ density would be reduced as compared to cohesive swarm flight although

trajectory crossing is still possible and require specific attention. Transitions from this state

to cohesive flight may happen for homing purposes once that the individual missions are

completed. Another application where cohesive and individual flight may coexist is when

flying in densely packed areas. Recent work [130] has shown that in those situations, lining

improves the travel time, similarly to how the road traffic is managed [126, 131]. While cars

have individual destinations, they mainly travel in convoys and follow other vehicles’ flow.

8.3 Closing remarks

This thesis would not have been possible without relying on third-party software tools and

libraries, and the importance of free software in research cannot be understated. Notable

examples include the crazyswarm software [82], the Robot Operating System (ROS) [132],

the Gazebo physics simulator [133], the RotorS drone simulation framework [134], the PX4

open-source drone autopilot [135], the CrazyS extension for simulating Crazyflies [136], the

MRS UAV system [137], and many others.

This work represents a step towards the future that have depicted in the prelude to Chap. 1.

Although an infinity of applications of this work are possible, we invite the readers of this

document to think critically about their pertinence and consequences for our society.

116

A Waypoint navigation of vision-based
drone swarms

Vision-based drone swarms have recently emerged as a biologically plausible and scalable

alternative to swarms that rely on wireless communication for motion coordination. Instead of

sharing absolute positions wirelessly, vision-based swarms rely on visual perception to infer the

relative positions of neighboring drones and transform them into motion commands. Here, we

show that a simple swarm model that operates directly on a segmentation of the visual field of

view can provide collision-free and goal-directed flight without estimating relative positions.

We extensively study this approach in simulation for goal-oriented navigation missions. We

compare the results with a position-based swarm model and we validate our approach with a

swarm of four drones flying in a controlled indoor environment.

The work presented in this chapter is adapted from []:

• E. Soria, H. Birch, F. Schilling, D. Floreano, “Waypoint Navigation of Vision-based Aerial

Swarms without Estimation of Relative Positions,” in IEEE International Conference on

Robotics and Automation (ICRA), (under review).

A.1 Introduction

Reynolds rules are at the basis of many robotics implementations [23, 12, 13]. However, in

these works, drones communicate their positions to their neighbors.

Researchers have attempted to relax the dependence on communication between agents and

to instead rely entirely on visual inputs for real-world control of swarms. Visual sensors are

ideal for the deployment of small, autonomous drones since they can passively extract a large

amount of information from a scene, all while being low-cost, lightweight, and power-efficient.

In recent years, vision-based swarms have therefore become an active area of research. Most

works are based on extracting relevant state variables such as relative positions from visual

inputs, which are then used for control [115, 97]. However, the interpretation of the image data

and the extraction of useful information, such as the relative range and bearing to other robots,

117

Appendix A. Waypoint navigation of vision-based drone swarms

Figure A.1 – Vision-based swarm experiment in our motion tracking hall. The behavior of
each agent depends on the projection of its visual FOV and the waypoint position (in red). The
visual FOVs are simulated on the ground control station by processing the agents’ positions
and velocities. For convenience, we highlight in pink agent A and its FOV.

is highly challenging. Some researchers have proposed to ease this task by equipping the

drones with easily detectable visual markers [110, 95, 112]. This approach requires the use of

specialized hardware. Moreover, the complexity of multi-agent state tracking depends on the

size and density of the swarm, hence motivating the exploration of alternative vision-based

approaches that avoid this task.

Bastien et al. recently demonstrated that collective motion can be originated with a model-

based approach operating directly on the visual Field of View (FOV) [109]. Differently from

other swarm models [21, 22, 10, 13, 12], their model does not require the agents to compute

their neighbors’ relative positions. Depending on the parameter values, this model can

generate polarized movements, rotating configurations, or disordered motion around an area.

However, to be suitable for robotics swarm implementations, this model should consider the

limited actuation of the robots and account for the navigation towards a preferred direction.

Most importantly, only parameter configurations producing collision-free movements are

viable.

In this chapter, we extend Bastien’s method to produce goal-directed flight in vision-based

aerial swarms without estimation of relative positions (Fig. A.1). We add realistic limitations of

drones by bounding the linear and angular components of the computed motion commands.

Then, we add a migration rule that orients the agents’ motion towards known waypoints.

We optimize the parameters of the vision-based swarm model for collision-free waypoint

navigation with the use of a particle swarm optimization algorithm. Then, we extensively

analyze the flight performance in simulation and we compare it to a state-of-the-art method

118

A.2. Method

based on the visual inference of the neighbors’ relative positions. This comparison allows us to

highlight and quantify the differences between swarms that operate directly on the visual FOV

and swarms that rely on the computation of intermediate state variables. To assess the validity

of the proposed method for real-world swarm deployment, we perform hardware experiments

with a swarm of 4 drones in an indoor facility. The results confirm that the swarm is capable of

collision-free and cohesive flight while transitioning between common target destinations.

A.2 Method

In this work, we consider N identical drones of radius R labeled by i ∈V = {1,2,3, . . . , N }. To

simplify the description, we consider two-dimensional flight in a horizontal plane, which

is also the case for many real-world applications like monitoring and area coverage. The

position, velocity and acceleration of agent i are denoted by pi , vi , and ai , respectively, while

the heading and the angular speed are indicated with ψi ∈ [−π,π] and ωi , respectively. The

agents’ state variables are discretized with a constant time step d t , and k denotes the index of

the time step.

In the following, we introduce the modeling of the visual FOV and the equations of motion for

two swarm models: (a) the swarm model operating directly on the FOV, and (b) the swarm

model using relative positions. For convenience, we call the former vision-based model and

the latter position-based model. Both models use visual inputs and produce the same swarm

behaviors: cohesion and repulsion, resulting from a virtual force component based on vision,

and migration, resulting from a virtual force component based on individual factors.

A.2.1 The visual field of view

We consider that each agent is endowed with a visual sensor centered w.r.t. the x-axis of

the body-frame, and we assume that the robot’s heading is aligned with the velocity vector

(Fig. A.2, top left). To model the visual configurations, we define the FOV width φmax as half

of the angular span that the sensor can sense. The visual angle φi spans [−φmax,φmax] and

φi = 0 coincides with the heading angle ψi . The FOV width can range from 0 (absence of

vision) to π (omidirectional vision). For this work, we consider omnidirectional vision. In our

implementation, we discretize the visual angle φi with a constant discrete step dφi .

Vi (ψi ,k) is a scalar function that represents the projection of the visual FOV experienced

by agent i at time k in one dimension, and ψi is the swiping angle of this field. As hinted

by [109], in order to produce collective motion a minimalist swarm model based on visual

interactions only accounts for the presence or absence of agents and not their identity. Hence,

Vi (ψi ,k) takes values in {0,1} (Fig. A.2, top right). The neighborhood of an agent i at time step

k, indicated with Ni (k), is the set of agents which are not visually occluded w.r.t. i . Only the

neighbors j ∈Ni (k) influence the movements of i . For clarity, in the following, we will omit

the dependency on time k when clear from the context.

119

Appendix A. Waypoint navigation of vision-based drone swarms

A.2.2 Vision-based swarm model

The equations of the swarm model that operates directly on the visual FOV are inspired

by [109]. According to this model, the motion of an agent i is defined by the sum of two forces,

a visual force F vis
i , that is the reaction of an agent to its FOV, and an individual force F ind

i , that

depends on individual factors. It holds:

ãi = F vis
i (Vi)+F ind

i (vi) (A.1)

Both forces are represented by a linear and an angular component, separately determining

the linear and angular components of the agent input command ãi and ω̃i .

The visual force accounts for the agents’ response to the perceived neighbors and produces a

short-range repulsion and a long-range attraction. Its components are:

F vis
v,i =αv

∫ π

−π
(−Vi (φi)+βv (∂φi Vi (φi))2)cos(φi)dφi (A.2)

F vis
ψ,i =αψ

∫ π

−π
(−Vi (φi)+βψ(∂φi Vi (φi))2)sin(φi)dφi (A.3)

These formulas indicate that the agents react to the angular area and edges of the objects in

their visual projection, with strength given by the coefficients αv and βv for the linear compo-

nent and αψ and βψ for the angular component. A representation of the linear component of

the visual force is shown in Fig. A.2, at the bottom right. The parameters βv and βψ determine

the front-back and left-right equilibrium distance, respectively, at which two agents would

converge if no other force was acting. For symmetry, we choose βv =βψ, and the equilibrium

distance d0 can therefore be computed as d0 = R/βv = R/βψ.

The individual force defines the so-called migration behavior of the agents. Differently

from [109], we encode a preferred headingψ0 and a preferred agents’ speed v0. The parameter

ψ0 orients the motion of the swarm in a preferred direction and it is useful for applications

like collective exploration, where the destination to be visited is known by the swarm. It holds:

F ind
v,i = γv (v0 − vi) (A.4)

F ind
ψ,i = γψ(ψ0 −ψi) (A.5)

where γv and γψ are constant weights for the linear and angular components of the individual

force.

Goal-oriented flight is obtained by computing the preferred flight direction of an agent i , ψ0,i ,

from the coordinates of a waypoint pwp = (xwp, ywp) as:

ψ0,i = atan
(ywp − yi

xwp −xi

)
(A.6)

This strategy allows the swarm to visit a sequence of goal destinations pwp
m ∈ {pwp

1 , pwp
2 , ..., pwp

M }

120

A.2. Method

and we say that one waypoint is reached when the center of the swarm attains it up to a

tolerance distance d tol.

Since the agents react to the projected angular areas in their FOV, their behavior depends on

the inter-agent distances with their neighbors and their size. To remove the dependency of the

swarm behavior on the latter, we can divide the parameters v0 and αv and the agents’ initial

positions by the characteristic length of the agent R (i.e., ν := v0/R and χ :=αv /R).

To account for the limited actuation of the robots, we bound the linear and angular compo-

nents by amax and ωmax:

ai = sign(ãi) max
(|ãi |, amax) (A.7)

ωi = sign(ω̃i) max
(|ω̃i |,ωmax) (A.8)

Figure A.2 – Schematic representation of the vision-based swarm method that operates
directly on the visual FOV. All robots are endowed with an omnidirectional visual sensor. The
1D projection of the agents’ visual FOV is used to compute their motion commands through a
set of equations that accounts for both visual and individual factors. As a whole, the agents’
motion commands result in cohesive and collision-free collective flight.

121

Appendix A. Waypoint navigation of vision-based drone swarms

(a) Visible neighbors (b) Relative positions

Figure A.3 – Neighbors detection and estimation of the relative positions. In the swarm
model using intermediate state variables, each agent i detects the visible neighbors (dark blue)
within the area defined by r (light blue). These are the neighbors for which it will compute
relative positions. Notice that occluded neighbors within the visible area are excluded from
the neighbor set.

A.2.3 Position-based swarm model

We present here an alternative model that uses vision to compute intermediate state variables,

i.e. relative positions to neighboring agents, instead of operating directly on the visual FOV.

This model is inspired by [22]. However, for the position-based model, we define the FOV

range r as the maximum distance for which a robot can detect another robot. We assume that

agent i can detect a neighbor j and estimate its relative position only if j lies within a distance

r from i (i.e., di j = ‖p j −pi‖ < r) and j is entirely visible from i . Hence, in this model partially

occluded agents are excluded from Ni (Fig. A.3).

The visual component regulates the inter-agent distances to an equilibrium value d0 based

on the detected neighbors’ positions. It is defined by an artificial potential field U vis
i as

F vis
i =∇U vis

i . The formula for U vis
i is:

U vis
i = 1

|Ni (k)|
∑

j∈Ni

ρ(di j /r)σ(di j −d0) (A.9)

where ρ(·) is a weight function defining the influence of neighbor j on i , while σ(·) is a scalar

function defining the intensity of cohesion or repulsion to neighbor j , depending on whether

the two agents are closer or farther than d0. Their definitions are:

ρ(z) =

1, z ∈ [0,δ]

1/22[1+cos
(
π (z−δ)

(1−δ)

)
]2, z ∈ [δ,1]

0, otherwise

(A.10)

122

A.2. Method

0.0
0
0.0

1
0.0

2
0.0

5
0.1

0
0.2

0
0.5

0
1.0

0
2.0

0
5.0

0
10

.00

v/R

0.00
0.01
0.02
0.05
0.10
0.20
0.50
1.00
2.00
5.00

10.00

70

75

80

85

90

M
ission tim

e [s]

0.0
0
0.0

1
0.0

2
0.0

5
0.1

0
0.2

0
0.5

0
1.0

0
2.0

0
5.0

0
10

.00

v/R

0.00
0.01
0.02
0.05
0.10
0.20
0.50
1.00
2.00
5.00

10.00

0.1

0.2

0.3

0.4

0.5

Avg closest distance [m
]

0.0
0
0.0

1
0.0

2
0.0

5
0.1

0
0.2

0
0.5

0
1.0

0
2.0

0
5.0

0
10

.00

v/R

0.00
0.01
0.02
0.05
0.10
0.20
0.50
1.00
2.00
5.00

10.00

0.05

0.10

0.15

0.20

M
in closest distance [m

]

0.0
0
0.0

1
0.0

2
0.0

5
0.1

0
0.2

0
0.5

0
1.0

0
2.0

0
5.0

0
10

.00

v/R

0.00
0.01
0.02
0.05
0.10
0.20
0.50
1.00
2.00
5.00

10.00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Order

0.0
00
0.0

01
0.0

02
0.0

05
0.0

10
0.0

20
0.0

50
0.1

00
0.2

00
0.5

00
1.0

00

v

0.000
0.001
0.002
0.005
0.010
0.020
0.050
0.100
0.200
0.500
1.000

50

55

60

65

70

75

80

85

90

M
ission tim

e [s]

0.0
00
0.0

01
0.0

02
0.0

05
0.0

10
0.0

20
0.0

50
0.1

00
0.2

00
0.5

00
1.0

00

v

0.000
0.001
0.002
0.005
0.010
0.020
0.050
0.100
0.200
0.500
1.000

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

Avg closest distance [m
]

0.0
00
0.0

01
0.0

02
0.0

05
0.0

10
0.0

20
0.0

50
0.1

00
0.2

00
0.5

00
1.0

00

v

0.000
0.001
0.002
0.005
0.010
0.020
0.050
0.100
0.200
0.500
1.000

0.05

0.10

0.15

0.20

0.25

M
in closest distance [m

]

0.0
00
0.0

01
0.0

02
0.0

05
0.0

10
0.0

20
0.0

50
0.1

00
0.2

00
0.5

00
1.0

00

v

0.000
0.001
0.002
0.005
0.010
0.020
0.050
0.100
0.200
0.500
1.000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Order

Figure A.4 – Performance of the vision-based swarm model. On top, results for different
visual parameters. At the bottom, results for different individual parameters. From left to right,
we show: mission time T , average of the closest inter-agent distances d , minimum inter-agent
distance d min, and swarm’s orderΦorder. Each performance value is the average of 10 random
simulations.

σ(z) = (a +b)/2
[√

1+ (z + c)2 −
√

1+ c2
]

+ ((a −b)z)/2 (A.11)

where the constant parameters δ defines the the weighting function ρ(·), while a, b, and c

define the shape of σ(·).

The individual force F ind
i steers the agents towards a waypoint pwp with preferred speed v0:

F ind
i (vi) = γ(‖pwp −pi‖

)
(v0uwp

i −vi) (A.12)

where γ(·) is a function weighting the individual force, i.e. γ(z) = min(1, z/d tol), and uwp
i =

(pwp −pi)/‖pwp −pi‖ is the unit vector directed from agent i to waypoint pwp. As before, we

bound the acceleration commands (Eq. A.7).

A.2.4 Swarm performance metrics

We assess the performance of the swarm’s flight with five metrics. The mission completion time

T measures the time that the swarm requires to reach the final destination pwp
M . We consider a

mission completed if the swarm reaches the last waypoint before the experiment end time

T max. The average trajectory length Ltraj measures the agents’ average flown distances until

the mission completion. The average and minimum closest inter-agent distance d and dmin

measure the average and minimum of the closest inter-agent distance of all agents over time,

123

Appendix A. Waypoint navigation of vision-based drone swarms

Parameter Description Unit Value

d t Discretized time step s 0.1
dφ Discretized visual angle − 0.00613
N Number of agents − 16
R Agent radius m 0.1
v0 Preferred speed m/s 0.2

amax Maximum acceleration m/s2 0.75
ωmax Maximum angular speed 1/s π/3
αv Linear visual coeff. 1/s2 0.64
αψ Angular visual coeff. 1/s2 8.37
βv Linear visual coeff. − 1/12.5
βψ Angular visual coeff. − 1/12.5
γv Linear drag 1/s 0.83
γψ Angular drag 1/s 0.37
d tol Tolerance distance m 0.5

Table A.1 – Optimal parameters for the vision-based swarm model. Parameters description
and values for the swarm model operating directly on the visual FOV. The values are obtained
from an optimization process that minimizes two metrics, numbers of collisions and mission
completion time.

respectively. It holds:

d = 1

K

∑
k

min
i j

(
di j (k)

)
(A.13)

d min = min
i j k

(
di j (k)

)
(A.14)

where K = min(dT /d te,dT max/d te) is the number of time steps of an experiment and d·e is

the ceiling function. The average orderΦorder measures the average correlation of the agents’

directed movements and it is used to quantify the synchronization of the agents flight [13, 17].

It holds:

Φorder = ∑
k∈{1,...,K }

∑
i∈V

∑
j∈Ni (k)

vi (k) ·v j (k)

K N |Ni (k)|‖vi (k)‖‖v j (k)‖ (A.15)

.

A.3 Results

To study the flight performance of the vision-based model, we define a mission where the

swarm visits four waypoints located at the corners of a square. Parameters associated with the

agents’ radius, the equilibrium inter-agent distance, and the preferred speed are chosen to fit

a plausible deployment scenario for a swarm of mini-drones (i.e., R = 0.1 m, d0 = 1.25 m, and

v0 = 0.2 m/s), while the remaining ones are optimized with a particle swarm optimization

algorithm over a continuous parameter space (Table A.1). The optimization is aimed at

124

A.3. Results

minimizing the mission time and the number of collisions between agents. The cost of the

populations in our particle swarm algorithm was determined by a 90 s simulation of the

system. The parameter set retained was the best of three independent runs. In all runs, we

used a population size of 40 and terminated after 40 generations. The initial positions of the

agents are randomly sampled from a uniform distribution over a squared region with the

additional constraint of being non-colliding (i.e., di j > 2R).

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Agents number

65

70

75

80

85

90

T
[s

]

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Agents number

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

d
[m

]

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Agents number

0.2

0.4

0.6

0.8

1.0

dm
in

 [m
]

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Agents number

0.4

0.5

0.6

0.7

0.8

0.9

or
de

r

Figure A.5 – Scalability of the vision-based swarm. Performance results of the vision-based
swarm for different swarm sizes. For each swarm size, we plot the average and standard
deviation of 20 random simulations.

2 0 2 4 6
X position [m]

4

2

0

2

4

Y
po

sit
io

n
[m

]

0 20 40 60 80
Time [s]

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Di
st

an
ce

 [m
]

max
avg
min

0 20 40 60 80
Time [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Sp
ee

d
[m

/s
]

max
avg
min

0 20 40 60 80
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Or
de

r

2 0 2 4
X position [m]

2

0

2

4

Y
po

sit
io

n
[m

]

0 20 40 60 80
Time [s]

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Di
st

an
ce

 [m
]

min
avg
max

0 20 40 60 80
Time [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Sp
ee

d
[m

/s
]

min
avg
max

0 20 40 60 80
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0
Or

de
r

Figure A.6 – Goal-oriented flight of the two swarm models. On top, vision-based swarm
model. At the bottom, position-based swarm model. From left to right, trajectories of 16
agents waypoints positions in red, envelope of the closest inter-agent distance (i.e., minimum,
average, and maximum) with d0 in gray and collision distance 2R in red, speed envelope, and
swarm order. The experiments last for T max = 90 s. The trajectories of the agents fade over
time.

A.3.1 Vision-based swarm model: the effect of individual and visual parameters

To analyze the effect of single parameters on the swarm’s behavior, we run stochastic simula-

tions for varying values of the visual (αv , αψ) and individual (γv , γψ) parameters, separately.

While we vary visual parameters, individual parameters are set to their optimal values and

vice versa. We summarize the results of the performance metrics in Fig. A.4.

Only small values of the visual parameters, αv and αψ, make the swarm complete the mission.

However, the inter-agent distance decreases and the number of collisions rises. This effect

125

Appendix A. Waypoint navigation of vision-based drone swarms

can be interpreted as a decrease in the agents’ reaction strength to their neighbors. On the

contrary, high values of the visual parameters allow the swarm to avoid collisions, and this

effect holds for both the linear and angular components αv and αψ. We conclude that small

values of the visual parameters lead to an ordered swarm that flies straight to the waypoints,

while high values of the visual parameters (and especially αv) lead to a more disordered flight.

High values of the linear drag (i.e., γv = 0.5 or 1) lead to the completion of the mission and

improved order. The inter-agent distance seems to be independent of the linear drag. Instead,

the angular drag reveals a strong connection with the inter-agent distance. The higher is the

angular drag, the higher the minimum and average inter-agent distance are.

A.3.2 Vision-based swarm model: goal-oriented flight

To analyze the scalability of the vision-based model with the number of agents, we run 20

random simulations for increasing swarm sizes N , from 2 to 20. Aggregated results are reported

in Fig.A.5. While the mission time increases with the swarm size, the average and minimum

closest inter-agent distances decrease dramatically with an increase in the number of agents.

Specifically, with two agents, the average closest distance approaches the reference distance

value (d ≈ d0 for N = 2), while for larger swarms its value drops (d = 0.48 m for N = 20). Finally,

small swarm sizes present a well ordered flight (Φorder ≈ 0.9 for N = 2), while for larger swarms

the order decreases with a linear trend.

We present here the simulation results of a goal-oriented flight with 16 agents for the vision-

based swarm model (see Fig. A.6, top). The agents’ positions are initialized about the origin,

then the swarm flies through the four waypoints clockwise. While the closest inter-agent

distances vary significantly over time, the average stays about 0.8 m and the minimum does

not cross the safety value. Hence, we register zero collisions. At the simulation start (t = 0 s),

the agents’ speeds rapidly raise and the average converges to the preferred value v0. The

fluctuations account for the visual inputs to keep cohesion and avoid collisions. We can notice

four major drops in the order. The first, at the beginning of the simulation, corresponds to the

initial transient where the agents try to match the preferred inter-agent distance and speed

values. The other three drops correspond to the moments when the swarm change of goal

destination. The swarm completes the mission time in T = 74.6 s and the average trajectory

length is Ltraj = 16.95 m.

A.3.3 Swarm models comparison

In the vision-based model, agents avoid collisions by turning, which causes a continuous

reorganization in their topology and low overall order (Fig. A.6, top). However, these con-

tinuous movements allow a smoother transition between waypoints and do not necessitate

a slowdown. Instead, in the position-based model, the agents translate in a rigid structure

(Fig. A.6, bottom). Their trajectories are shorter, but the swarm slows down to reach the

126

A.4. Discussion

Metric Unit Vision-based model Position-based model

T s 79.42±4.56 77.08±0.59
Ltraj m 17.34±0.81 12.25±0.08
Φorder − 0.52±0.05 0.95±0.00

d m 0.52±0.01 0.60±0.01
d min m 0.25±0.04 0.31±0.09

Table A.2 – Comparison of the swarm performance with the two models. Aggregated perfor-
mance results (average and standard deviations) for a swarm of 16 agents and 20 random
simulations.

waypoint position, hence completing the mission in comparable times. Both models guaran-

tee collision avoidance (i.e, d min > 2R), although the position-based model achieves higher

minimum distances. As expected, the knowledge of relative positions helps to stabilize the

minimum inter-agent distance. Aggregate results for simulations with 16 drones are presented

in Table A.2.

A.3.4 Hardware experiments

For the hardware validation, we flew a swarm of 4 Crazyflie 2.1 drones in our indoor flying

arena. The room is equipped with a motion capture system to detect the drones’ positions

(Fig. A.1). The vision was simulated by our ground control station, which computed the visual

inputs by processing the agents’ positions and estimated velocities. The agents’ commands

were also computed by the ground station online, and broadcast to each agent as position

commands in Cartesian coordinates. The model parameters are the same as in the simulation

experiments. Although the speed and order oscillate more in hardware than in simulation

experiments with the same configuration, the swarm achieved cohesive and collision-free

flight (Fig. A.7).

0 2 4
X position [m]

3

2

1

0

1

2

3

Y
po

sit
io

n
[m

]

0 20 40 60 80
Time [s]

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Di
st

an
ce

 [m
]

max
avg
min

0 20 40 60 80
Time [s]

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Sp
ee

d
[m

/s
]

max
avg
min

0 20 40 60 80
Time [s]

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Or
de

r

Figure A.7 – Hardware experiment of the vision-based swarm with four drones. On top, top
view of the drones’ trajectories and distance envelope. At the bottom, speed envelope and
order.

A.4 Discussion

In this chapter, we showed that a swarm model that operates directly on the visual field of view

can enable collision-free, goal-directed flight of drone swarms. We provided extensive simula-

127

Appendix A. Waypoint navigation of vision-based drone swarms

tion results and comparison with a more traditional approach that uses relative positions to

compute the motion commands.

The results show that the agents do not need knowledge on relative positions to avoid collisions

and navigate collectively through waypoints. Interestingly, when acting upon the visual field

directly, the agents move in a less ordered manner but complete the mission in a comparable

time. This approach presents a baseline for the development of autonomous swarms of drones

with limited computation capabilities. The only requirement is the ability to segment drones in

the images of the visual sensor. Future work should focus on acquiring and segmenting images

onboard to make the drones independent of the ground computer. A proper quantification of

the robustness against noise in the visual segmentation is necessary prior to further hardware

developments.

128

B Open-source software

This thesis has lead to the development of several software packages. Among these, one was

useful for the initial investigation on the different swarm models and has provided a code base

for the software practicals of the Aerial Robotics course (Spring 2021). We describe its structure

and functioning here. SwarmLab is a software entirely written in MATLAB, that aims at the

creation of standardized processes and metrics to quantify the performance and robustness of

swarm algorithms, and in particular, it focuses on drones. We showcase the functionalities

of SwarmLab by comparing two decentralized algorithms from the state of the art for the

navigation of aerial swarms in cluttered environments, Olfati-Saber’s and Vasarhelyi’s. We

believe that SwarmLab is relevant for the robotics research community and for education, since

it allows fast algorithm development, the automatic collection of simulated data, the systematic

analysis of swarming behaviors with performance metrics inherited from the state of the art.

The work presented in this chapter is adapted from [43]:

• E. Soria, F. Schiano, D. Floreano, “SwarmLab: a MATLAB Drone Swarm Simulator,” in

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020, pp.

8005-8011, doi: 10.1109/IROS45743.2020.9340854.

Supplementary video: https://youtu.be/xMXA9OWSxe8.

SwarmLab is available on Github: https://github.com/lis-epfl/swarmlab.

B.1 Introduction

The first step towards the deployment of drone swarm in real-world scenarios is simulation[138].

The development of algorithms and applications for autonomous aerial vehicles requires the

availability of a suitable simulation framework for rapid prototyping and simulation in re-

producible scenarios. This is desirable in all robotics fields, but it is especially relevant for

collective systems such as drone swarms, where errors can propagate through the individuals

and lead to catastrophic results [139]. Although multiple open-source frameworks exist for

129

https://youtu.be/xMXA9OWSxe8
https://github.com/lis-epfl/swarmlab

Appendix B. Open-source software

Figure B.1 – 3D swarm visualizations in SwarmLab. In (a), 5 quadcopter drones coordinate
in collective flight, while, in (b), a swarm of 15 drones simulated with point-mass dynamics
executes a collision avoidance maneuver around an obstacle. Both snapshots are captured at
10s of simulation.

simulating aerial robots [140, 141, 142, 143], the majority are focused on the realism of a single

robot and cannot manage a large number of drones in real-time. On the other side, simulators

that support multiple robots do not implement the nonlinear robot’s dynamics or they require

the interaction with several programming languages. Besides, there is no framework that

provides ready-to-use control algorithms, debugging tools and performance analysis function-

alities for aerial swarms. The potential user has to develop their own tools compatible with

the chosen framework, which are not standard and prone to error.

Figure B.2 – Aerial swarms publications. Number of publications containing the words ‘aerial
swarms‘ between the years 2000 and 2019. Source: http://apps.webofknowledge.com.

We propose SwarmLab, a simulator for single drones and drone swarms. Its main goal is

to propose an alternative to existing robotic simulation solutions, that is explicitly centered

on drone swarms (see Fig. B.1). We used MATLAB1, a scripting programming platform that

allows us to implement and debug algorithms rapidly, use a large database of built-in func-

tionalities, and create plots and videos with minimum effort. SwarmLab allows both accurate

simulation of one drone, and efficient simulation of swarming behaviors with hundreds of

agents. Concerning swarming, which is our focus, we provide support for fast instantiation

of drone swarms, and the creation of environments with obstacles. We also include control

algorithms from the state of the art, extensive plotting and debugging tools, 3D visualization

1https://mathworks.com/products/matlab.html

130

http://apps.webofknowledge.com
https://mathworks.com/products/matlab.html

B.2. Related Work

functionalities, and performance analysis tools. These features make our software relevant for

the booming biological and robotics research communities in the field of aerial swarms (see

Fig. B.2), and for education.

The rest of the chapter is organized as follows. We discuss available alternatives for robotic

and, more specifically, drone simulations, while highlighting the gap that we aim to fill with

SwarmLab. We describe the architecture of the software and guides potential users through its

main functionalities. Finally, we show how SwarmLab can be used for a comparative analysis

of swarm algorithms and analyzes the computational time required for different simulation

configurations.

B.2 Related Work

Currently, many robotic simulators are available on the market. A subset of them allows

drone swarm simulations, but still require a considerable amount of time and programming

languages for the prototyping and testing of aerial swarms algorithms, with the inconveniences

stated in Sec 4.1. A complete survey of the state of the art in robotic simulation is beyond

the scope of this work (see [144, 145, 146] for a more detailed overview and performance

comparison). Instead, we aim to highlight the main features they offer and point out the needs

that led to the development of SwarmLab.

Among the most well-known open-source 3D simulators for robots, we find Gazebo, WeBots,

V-REP, ARGoS, and, more recently, AirSim [133, 140, 141, 142, 147, 143]. Gazebo [133, 140] can

simulate the physics and dynamics of any mechanical structure modeled with joints, and it

offers a large library of ready-to-use models, drones included. Gazebo also allows integration

with flight controller stacks for Software-In-The-Loop (SITL) drone simulation [135]. Alter-

natively, RotorS is an extension to Gazebo designed for multirotors that includes example

controllers, besides additional models and simulated sensors [148, 149]. Users can code their

functionalities in C++ and interface through ROS. WeBots, recently released open-source, uses

the same physics engine of Gazebo, but provides APIs for a large number of programming lan-

guages and includes drone models [141] natively. The V-REP simulator, now continued under

the name of CoppeliaSim, offers features for easier editing of robots and other models [142].

Development can be performed by means of the built-in Lua interpreter or by using a C or

Python API. More oriented to swarm robotics, ARGoS represents a lightweight alternative

that offers a good tradeoff between scalability and extensibility [147]. It allows the user to

simulate a larger number of robots and it provides the possibility to use physics engines of

different types, but it does not include drone models natively. Robots can be programmed

either through Lua scripts or in C++. Specifically dedicated to drones and cars, AirSim [143] is

a more recent simulator built on Unreal Engine 2 and as Gazebo, it allows SITL integration

of flight controllers such as PX4. In AirSim, multi-agent simulations are easy to set up, and

custom functionalities can be coded thanks to C++ and Python APIs.

2https://www.unrealengine.com

131

https://www.unrealengine.com

Appendix B. Open-source software

All the simulators above are based on powerful 3D rendering engines, and they are mainly

coded in C++. As a consequence, they provide graphical realism. However, they often require

familiarity with more than one programming language. Also, they necessitate the addition of

custom features for simulating an aerial swarm, which makes these simulators unsuitable for

quick tests. V-REP and WeBots include drone models natively, but drone swarm control and

navigation algorithms must be designed, coded, and tuned by the user.

The simulators mentioned above are general-purpose robotic simulators. Instead, specific

to drone simulation, we find the work by Beard et al. [121]. They describe fixed-wing drone

systems with a waterfall architecture, where high-level blocks steer the drone to a goal destina-

tion, and lower-level blocks simulate physics and sensors. Driven by educational purposes,

the authors released open-source templates in MATLAB and Simulink3. However, this work

does not include quadcopter dynamics and swarming functionalities. However, it constitutes

the foundation of SwarmLab.

To the best of our knowledge, the only publicly available simulators geared towards aerial

swarms are robotsim4 [13] and the work of D’Urso et al. [150]. The first is a simulator written

in C and, although it goes in the direction of SwarmLab, no drone dynamics are implemented

and architectural modularity is missing. The second is a software middleware that coordinates

available tools (Gazebo, ArduCopter5 and ns-36) for the realistic simulation of the physics,

graphics, flight control stack, and communication of interconnected drones and computers.

This software is thought as a bridge towards a real-world implementation. However, its realism

comes at the expense of its ease of use. Indeed, this simulator does not have the advantage of

being contained within a single software such as MATLAB. Moreover, none of the simulators

mentioned in this section provide functionalities for plotting, analysis, and performance

assessment of the collective motion, which represents a limitation that we intend to overcome.

B.3 Software architecture

SwarmLab is written in MATLAB for several reasons. Firstly, this is a scripting language that

operates at a high level of abstraction and therefore does not require extensive programming

experience. Secondly, this framework provides several built-in toolboxes for design, control,

analysis, and visualization of the studied systems, that reduce even further the programming

effort and make it widely popular among the scientific community for education and research

applications. Moreover, code generation features are available to automatically translate the

code to C/C++ and reduce the computational time or embed the algorithms on the robots

controllers. SwarmLab follows the Object Oriented Programming (OOP) paradigm and its

modular structure is made of the following main components:

3https://github.com/randybeard/mavsim_template_files
4https://github.com/csviragh/robotsim
5https://ardupilot.org/copter/
6https://www.nsnam.org/

132

https://github.com/randybeard/mavsim_template_files
https://github.com/csviragh/robotsim
https://ardupilot.org/copter/
https://www.nsnam.org/

B.3. Software architecture

Figure B.3 – SwarmLab simulation workflow. From the top left, in clockwise order: (1) in the
GUI, the user sets the parameters related to the simulation, drone typology, swarm algorithm
and environment. Alternatively, parameters can be set in specific MATLAB scripts. Then, he
launches the simulation; (2) the main simulation loop computes control commands for the
drones, based on the information of the map and neighboring drones; (3) both real-time and
post-simulation plotting of the state variables help the user with the analysis and debugging
of the swarming behavior. Moreover, at the end of the simulation the user can inspect the
swarm performance metrics.

• parameter scripts for the single drone, swarm, and environment definitions;

• the Drone and Swarm classes;

• graphical classes that allow run-time and offline 3D visualization of the Drone/Swarm,

their state variables and performance;

• example scripts and a README file that guide the user through the main functionalities

of the simulator.

B.3.1 Drone

The Drone class represents the building block for simulating a swarm. This class supports

the definition of quadcopters or fixed-wing drones, based on the models in [151] and [121]

respectively. A Drone instance is defined by:

• parameters related to the chosen platform (e.g., mass, aerodynamic and control param-

eters),

133

Appendix B. Open-source software

• current state vector: (pn , pe , pd ,u, v, w,φ,θ,ψ, p, q,r) ∈R12. This vector is respectively

composed by the north, east and down position coordinates in the inertial frame, the

linear velocity measured along the x, y, z axes of the body frame, three Euler angles

describing the drone orientation, i.e. roll, pitch, and yaw, and the angular velocities

measured in the body frame,

• path planning variables, including a list of waypoints,

• graphic variables for the visualization of the drone and the plotting of the state variables.

The methods provided by this class allow the creation of new instances, the computation

of the kinematics and dynamics based on the physical parameters, and the control of the

drone thanks to one of the two autopilots tailored for either quadcopters or fixed-wing drones.

Moreover, for the simulation of a single-drone mission, high-level functionalities for path

navigation are provided, following the same structure of [121].

B.3.2 Swarm

The Swarm class contains the necessary properties and methods to instance, initialize and

manage Swarm objects. These objects are made of an ensemble of dynamic agents of type

Drone. Their fundamental properties are:

• drones: a vector of Drone objects,

• nb_agents: the number of agents included in the swarm,

• algorithm: the selected algorithm for swarm navigation.

The workflow of a swarm simulation is summarized in Fig. B.3. The user can start a simulation

either by running an example script or by interacting with a Graphical User Interface (GUI)

that accounts for real-time changes of the swarm parameters. When the simulation starts, a

number of Drone instances are created and added to the Swarm. Also, the user can decide to

instance a swarm viewer to visualize the evolution of the swarm state during the simulation

time. The main simulation loop computes at every iteration the control commands for

every drone of the swarm and updates their states. Control commands for a given drone i

only depend on its neighbors Ni . Depending on the user’s choice, the Swarm class uses a

different swarm algorithm to compute commands for every drone. Alternatively, the user can

implement and test their own control algorithm as a method of the Swarm class where the

drones’ states are accessible, by following the available examples.

B.3.3 Swarm algorithms

In SwarmLab, we implemented and adapted two representative algorithms belonging to

the category of decentralized swarming. The reason for this choice is that a decentralized

134

B.3. Software architecture

approach can make the system easily scalable and robust to the failures of a single individual.

The first algorithm is authored by Olfati-Saber, who proposes a formal theoretical framework

for the design and analysis of swarm algorithms based on potential fields and graph theory [22].

It is based on the construction of a collective potential that penalizes the deviation of the agents

from a lattice shape. In addition, a consensus term makes the agents agree on their speed

and velocity direction. At the equilibrium, in the absence of obstacles, the agents occupy

positions at a constant distance from their neighbors and translate with constant velocity.

The second algorithm we implemented is an adaptation of the recent Vasarhelyi’s algorithm,

defined by the following rules: repulsion to avoid inter-agent collisions, velocity alignment

to steer the agents to an average direction, and self-propulsion to match a preferred speed

value [13]. In addition, the algorithm includes friction forces that reduce oscillations and ease

the implementation on real robots. Finally, both algorithms propose an obstacle avoidance

behavior to deal with convex obstacles. In several engineering applications (e.g., mapping,

area coverage, search and rescue), we require the swarm to fly in a specific direction. To this

aim, we allow the selection between the consensus on velocity in Olfati-Saber’s algorithm, or

the velocity alignment in Vasarhelyi’s algorithm and a so-called migration term that penalizes

deviations from a given velocity.

In decentralized approaches, one agent’s movement is only influenced by local information

coming from its neighbors. Neighbors selection can be operated according to different met-

rics. Two widely adopted ones are the euclidean and the topological distances [20, 19]. The

euclidean distance defines Ni as the set of agents j 6= i within a constant radius of influence

r from agent i . The cardinality of this set depends on the density of the swarm. Instead, the

topological distance defines Ni as the number nn of nearest agents to i (see Chap. 2.5). In the

latter case, the cardinality does not depend on the density. In our software, both distances are

implemented, and they can be set before starting the simulation.

For the navigation in cluttered environments, we provide a map that generates cylindrical

obstacles with parametric size and density (see Fig. B.4). In both Olfati-Saber’s and Vasarhelyi’s

algorithms, the obstacle avoidance behavior is modeled via virtual agents. These are additional

agents to which we assign a position and velocity that depend on the obstacles configuration,

and they act on drones as if they were normal agents.

SwarmLab offers two modalities for swarm simulation: the high-fidelity mode simulates

quadcopter drones, where realistic dynamics and control are implemented, while the second

approximates the drone dynamics with the dynamics of a point mass, whose state is defined by

inertial position and velocity. This is meant to trade-off simulation fidelity and computational

efficiency (see Sec. B.5 for more details).

B.3.4 Graphical User Interfaces (GUIs)

For introducing the user to the simulator functionalities we provide two GUIs: one for selecting

the parameters related to single drones simulations and one for aerial swarms simulations. The

135

Appendix B. Open-source software

Figure B.4 – Maps with varying obstacle density. Cylindrical obstacles are distributed on the
map to reproduce a forest-like environment. The obstacle density increases from left to right.
Thanks to the obstacle avoidance behavior, the swarm agents are able to avoid collisions with
the environment.

latter is split into sections that allow the user to select the drone dynamics, either quadcopter

or point-mass, the main swarm parameters such as the number of drones, the preferred value

of the inter-agent distance, the speed and orientation of the swarm motion, and simulation

parameters such as the simulation time duration, the presence of debugging plots and the

creation of a map with obstacles.

B.3.5 Plotting tools

One of the most critical parts of programming is verifying the validity of the code and algo-

rithms. To this aim, a user needs tools to analyze the state of the system and find the origin

of potential faults. SwarmLab allows the tracking of: (i) inter-agent distance and distance to

obstacles, in order to detect collisions, (ii) swarm speed, useful for instance to monitor slow-

down effects in front of obstacles, (iii) acceleration, to observe its variability and, hence, the

efficiency of the algorithm. State plotting is possible both during the simulation, run-time, and

at the end, offline. Run-time is useful for debugging, while offline is practical when the user

does not want to slow down the simulation with the addition of graphic features. Single-drone

plotting can be used simultaneously to observe the state of a specific drone in the swarm.

B.3.6 Performance analysis

The presence of obstacles in the environment can threaten the ability of the agents to remain

cohesive during their mission and prevent them from flying smoothly in the migration direc-

tion. In these situations, the swarm may split into multiple subgroups with no influence on

one another, and collisions may occur. To evaluate the collective navigation performance

during flight, we use five metrics adopted in previous work [26]. These metrics were inspired

by robotic and biological studies of aerial swarms:

136

B.3. Software architecture

Figure B.5 – Comparison of two swarm algorithms in SwarmLab. Olfati-Saber’s plots are in
red, while Vasarhelyi’s plots are in blue. The simulation time is 100s for both algorithms. In
(a) we observe the top view of the trajectories of 25 agents, flying in an obstacle field from
lower to higher values of the x position. In (b) and (c) inter-agent distances and speeds are
compared, in terms of average, minimum, and maximum values. The reference values are in
dashed lines, while the collision threshold, the radius of influence r , and the maximum speed
are in dashdotted lines. Two of the presented performance metrics are compared in (d), the
order (Φo) and the connectivity (Φc). Finally, (e) shows the zoom in of the trajectories of the
agents around obstacles, from above.

• the order metric,Φorder: it captures the correlation of the agents’ movements and gives

an indication about how ordered the flock is.

• The safety metrics, Φsafe,agent and Φsafe,obs: they respectively measure the risk of colli-

sions among the swarm agents or between agents and obstacles.

• The union metric, Φunion: it counts the number of independent subgroups that origi-

nates during the simulation.

• The connectivity metric,Φconnectivity: it is defined from the algebraic connectivity of the

sensing graph that underlines the considered swarm configuration.

For the performance metric definition, please refer to 2.6.

137

Appendix B. Open-source software

B.4 Comparison of swarm algorithms and computational time anal-

ysis

In this section, we present the results of the comparison of two swarm algorithms enabled by

SwarmLab. Moreover, we present an analysis of the computational time of the simulator in

different modes.

To compare swarm algorithms, we present a use case where 25 agents fly in a cluttered environ-

ment. We select point-mass dynamics, and we perform the neighbor selection with nn = 10

and r = 150 m. The agents’ initial positions are randomly selected in a cubic volume, and the

swarm is let navigate over 100 s in the direction of increasing values of the x position. Both

swarm algorithms described in Sec. B.3.2 are tested and the graphical outputs are reported in

Fig. B.5. We notice that Olfati-Saber’s algorithm prioritizes the tracking of the speed reference

value (see Fig. B.5c), while Vasarhelyi’s one allows the agent to slow down in front of obstacles

to better match the reference inter-agent distance (see Fig. B.5b). The minimum distance

threshold in Fig. B.5b is never crossed with both algorithms, which means that no inter-agent

collisions occur. By examining the trajectories, in Fig. B.5a and Fig. B.5e, we see that the obsta-

cle avoidance behavior of the second algorithm allows a smoother interaction of the agents

with obstacles and reduces their oscillations, while in the first case, both in the trajectories and

speed we observe prominent oscillations. Concerning the orderΦorder, better performance

is obtained with Vasarhelyi’s algorithm (see Fig. B.5d). Indeed, oscillations around obstacles

prevent ordered flight in the case of Olfati-Saber’s swarming. On the contrary, at the end of

the simulation, Olfati-Saber’s swarm order is higher. Indeed, once that the agents quit the

obstacle field, in the free space, their velocity converges to the migration one. Contrarily, while

the agents fly among obstacles, connectivityΦconnectivity is slightly better in Olfati-Saber’s case,

and vice versa in the free space. Being connectivity related to the speed of the information

flow among the agents, good values are preferred in scenarios where information-sharing

among the agents is crucial (e.g., cooperative localization).

To evaluate the computational time, we run the two swarm algorithms with up to 1024 agents

without any graphical output. The simulation time is arbitrarily set to 20 seconds. The

hardware used is a DELL Precision Tower with a 3.6 GHz Intel Core i7-7700 processor and 16 GB

2400 MHz RAM. The results are reported in Fig. B.6, where the computational time is expressed

in terms of real-time factor. A real-time factor equal to one means that the computational time

required by the computer to run the simulation is equal to the simulation time. Instead, a

value equal to two indicates that the computational time is twice the simulation time. The

trend we notice is the same for both swarm algorithms and both drone typologies. As expected,

when modelling the drones as point-masses the real-time factor is significantly lower. For

instance, when we consider a swarm of 64 agents the real-time factor is close to 0.5 for the

Vasarhelyi’s algorithm and 0.9 for the Olfati-Saber’s algorithm. Instead, when a full nonlinear

quadcopter dynamics is used with the same amount of agents, the real-time factor increases

up to 4.6 for the Vasarhelyi’s algorithm and 5.2 for the Olfati-Saber’s one.

138

B.5. Conclusions and future work

Figure B.6 – Real-time factor for varying sizes of the swarm. The number of drones goes
from 2 to 1024. Two swarm algorithms (Vasarhelyi’s and Olfati-Saber’s) and two dynamics
(point-mass and quadcopter) are compared.

B.5 Conclusions and future work

We presented a versatile and scalable drone swarm simulator entirely written in MATLAB

that integrates built-in functionalities for collective navigation, debugging of the algorithms,

and performance analysis. We believe that this framework can serve as a development tool

and a comparative platform for the growing research community in aerial swarms, and for

education. With reduced coding effort, the user can change parameters, edit their code, run

and test it in a single scripted programming language. Regarding future work, we will focus

on the improvement of the computational time to allow faster simulation of large swarms.

For this, we will consider automatic C/C++ code generation from MATLAB. Moreover, noise

modeling and delays should be considered to narrow the gap between simulation and reality.

Finally, another challenge for future works is the integration of automatic parameter tuning

for the swarm algorithms as done in [13]. This will allow to optimize the swarming behavior

for a given environment or task with respect to the implemented performance metrics.

139

C Publications

Articles published in peer-reviewed journals:

• E. Soria, F. Schiano, D. Floreano, “Predictive control of aerial swarms in cluttered envi-

ronments,” in Nature Machine Intelligence, vol. 3, pp. 545-554, May 2021 [10].

• E. Soria, F. Schiano, D. Floreano, “Distributed predictive drone swarms in cluttered

environments,” in IEEE Robotics and Automation Letters (RA-L), vol. 7, no. 1, pp. 73-80,

Jan. 2022 [44].

• F. Schilling, E. Soria, D. Floreano, “On the Scalability of Vision-based Drone Swarms in

the Presence of Occlusions,” in IEEE Access, (under review).

Articles submitted to peer-reviewed conferences:

• E. Soria, F. Schiano, D. Floreano, “The influence of limited visual sensing on the Reynolds

flocking algorithm,” in The Third IEEE International Conference on Robotic Computing

(IRC), Naples, Feb. 2019 [26].

• E. Soria, F. Schiano, D. Floreano, “SwarmLab: a MATLAB drone swarm simulator,” in

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas,

Feb. 2020 [43].

• E. Soria, H. Birch, F. Schilling, D. Floreano, “Waypoint Navigation of Vision-based Aerial

Swarms without Estimation of Relative Positions,” in IEEE International Conference on

Robotics and Automation (ICRA), (under review).

141

Bibliography

[1] D. Floreano and R. J. Wood, “Science, technology and the future of small autonomous

drones,” Nature, vol. 521, no. 7553, pp. 460–466.

[2] S. Chung, A. A. Paranjape, P. Dames, S. Shen, and V. Kumar, “A Survey on Aerial Swarm

Robotics,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 837–855.

[3] G. Loianno and V. Kumar, “Cooperative Transportation Using Small Quadrotors Using

Monocular Vision and Inertial Sensing,” IEEE Robotics and Automation Letters (RA-L),

vol. 3, no. 2, pp. 680–687, 2018.

[4] M. Varga, “Fixed-wing drones for communication networks.”

[5] S. Hauert, “Evolutionary Synthesis of Communication-Based Aerial Swarms.”

[6] M. Coppola, K. N. McGuire, C. De Wagter, and G. C. H. E. de Croon, “A Survey on

Swarming With Micro Air Vehicles: Fundamental Challenges and Constraints,” Front.

Robot. AI, vol. 7, 2020.

[7] A. Kushleyev, D. Mellinger, C. Powers, and V. Kumar, “Towards a swarm of agile micro

quadrotors,” Autonomous Robots, vol. 35, no. 4, pp. 287–300.

[8] J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm: A large nano-

quadcopter swarm,” in IEEE International Conference on Robotics and Automation

(ICRA). IEEE, 2017, pp. 3299–3304.

[9] A. Weinstein, A. Cho, G. Loianno, and V. Kumar, “Visual Inertial Odometry Swarm:

An Autonomous Swarm of Vision-Based Quadrotors,” IEEE Robotics and Automation

Letters, vol. 3, no. 3, pp. 1801–1807.

[10] E. Soria, F. Schiano, and D. Floreano, “Predictive Control of Aerial Swarms in Cluttered

Environments,” Nat. Mach. Intell., vol. 3, pp. 545–554, 2021.

[11] C. Virágh, G. Vásárhelyi, N. Tarcai, T. Szörényi, G. Somorjai, T. Nepusz, and T. Vicsek,

“Flocking algorithm for autonomous flying robots,” Bioinspiration & Biomimetics, vol. 9,

no. 2, 2014.

143

Bibliography

[12] G. Vasarhelyi, C. Viragh, G. Somorjai, N. Tarcai, T. Szorenyi, T. Nepusz, and T. Vicsek,

“Outdoor flocking and formation flight with autonomous aerial robots,” in IEEE Int. Conf.

Intel. Rob. Sys. (IROS), 2014, pp. 3866–3873.

[13] G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A. E. Eiben, and T. Vicsek, “Optimized

flocking of autonomous drones in confined environments,” Science Robotics, vol. 3,

no. 20, 2018.

[14] K. N. McGuire, C. D. Wagter, K. Tuyls, H. J. Kappen, and G. C. H. E. de Croon, “Minimal

navigation solution for a swarm of tiny flying robots to explore an unknown environ-

ment,” Science Robotics, vol. 4, no. 35, p. eaaw9710, 2019.

[15] I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin, “Effective leadership and decision-

making in animal groups on the move,” vol. 433, p. 4.

[16] G. Dell’Ariccia, G. Dell’Omo, D. P. Wolfer, and H.-P. Lipp, “Flock flying improves pigeons’

homing: GPS track analysis of individual flyers versus small groups,” Animal Behaviour,

vol. 76, no. 4, pp. 1165–1172.

[17] M. Nagy, Z. Ákos, D. Biro, and T. Vicsek, “Hierarchical group dynamics in pigeon flocks,”

Nature, vol. 464, no. 7290, pp. 890–893.

[18] M. Yomosa, T. Mizuguchi, G. Vásárhelyi, and M. Nagy, “Coordinated Behaviour in Pigeon

Flocks,” PLOS ONE, vol. 10, no. 10, p. e0140558.

[19] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte,

A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic, “Interaction ruling animal

collective behavior depends on topological rather than metric distance: Evidence from

a field study,” Proceedings of the National Academy of Sciences, vol. 105, no. 4, pp. 1232–

1237, 2008.

[20] A. Strandburg-Peshkin, C. R. Twomey, N. W. F. Bode, A. B. Kao, Y. Katz, C. C. Ioannou, S. B.

Rosenthal, C. J. Torney, H. S. Wu, S. A. Levin, and I. D. Couzin, “Visual sensory networks

and effective information transfer in animal groups,” Current Biology, vol. 23, no. 17, pp.

R709–R711, 00144.

[21] C. W. Reynolds, “Flocks, Herds, and Schools: A Distributed Behavioral Model,” Computer

Graphics, vol. 21, pp. 25–43, 1987.

[22] R. Olfati-Saber, “Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory,”

IEEE Transactions on Automatic Control, vol. 51, no. 3, pp. 401–420, 2006.

[23] S. Hauert, S. Leven, M. Varga, F. Ruini, A. Cangelosi, J.-C. Zufferey, and D. Floreano,

“Reynolds Flocking in Reality with Fixed-Wing Robots: Communication Range vs. Max-

imum Turning Rate,” in 2011 IEEE/RSJ International Conference on Intelligent Robots

and Systems, p. 6.

144

Bibliography

[24] Y. Koren and J. Borenstein, “Potential field methods and their inherent limitations for

mobile robot navigation,” in IEEE International Conference on Robotics and Automation.

IEEE Comput. Soc. Press, 1991, pp. 1398–1404.

[25] H. Hildenbrandt, C. Carere, and C. K. Hemelrijk, “Self-organized aerial displays of

thousands of starlings: A model,” vol. 21, no. 6, pp. 1349–1359.

[26] E. Soria, F. Schiano, and D. Floreano, “The influence of limited visual sensing on the

Reynolds flocking algorithm,” IEEE Third International Conference on Robotic Comput-

ing (IRC), pp. 138–145, 2019.

[27] I. D. Couzin, “Synchronization: The Key to Effective Communication in Animal Collec-

tives,” Trends in Cognitive Sciences, vol. 22, no. 10, pp. 844–846, 2018.

[28] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear and Hybrid Systems:,

1st ed. Cambridge University Press, 2017.

[29] L. Grune and J. Pannek, Nonlinear Model Predictive Control. Theory and Algorithms.

Springer London, 2011.

[30] T. Baca, D. Hert, G. Loianno, M. Saska, and V. Kumar, “Model Predictive Trajectory

Tracking and Collision Avoidance for Reliable Outdoor Deployment of Unmanned Aerial

Vehicles,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 6753–6760.

[31] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “PAMPC: Perception-Aware Model

Predictive Control for Quadrotors,” IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), p. 8, 2018.

[32] C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online Trajectory Generation With

Distributed Model Predictive Control for Multi-Robot Motion Planning,” IEEE Robot.

Autom. Lett. (RA-L), vol. 5, no. 2, pp. 604–611, 2020.

[33] T. Keviczky, F. Borrelli, K. Fregene, D. Godbole, and G. J. Balas, “Decentralized Receding

Horizon Control and Coordination of Autonomous Vehicle Formations,” IEEE Transac-

tions on Control Systems Technology, vol. 16, no. 1, pp. 19–33.

[34] R. Van Parys and G. Pipeleers, “Distributed model predictive formation control with

inter-vehicle collision avoidance,” in Asian Contr. Conf. (ASCC), 2017, pp. 2399–2404.

[35] U. Eren, A. Prach, B. B. Koçer, S. V. Raković, E. Kayacan, and B. Açıkmeşe, “Model

Predictive Control in Aerospace Systems: Current State and Opportunities,” Journal of

Guidance, Control, and Dynamics, vol. 40, no. 7, pp. 1541–1566.

[36] W. B. Dunbar and R. M. Murray, “Distributed receding horizon control for multi-vehicle

formation stabilization,” Automatica, vol. 42, no. 4, pp. 549–558, 2006.

145

Bibliography

[37] R. Raffard, C. Tomlin, and S. Boyd, “Distributed optimization for cooperative agents:

Application to formation flight,” in 2004 43rd IEEE Conference on Decision and Control

(CDC) (IEEE Cat. No.04CH37601), vol. 3, pp. 2453–2459 Vol.3.

[38] T. Schouwenaars, J. How, and E. Feron, “Decentralized Cooperative Trajectory Planning

of Multiple Aircraft with Hard Safety Guarantees,” in AIAA Guidance, Navigation, and

Control Conference and Exhibit. American Institute of Aeronautics and Astronautics.

[39] Y. Kuwata and J. P. How, “Robust Cooperative Decentralized Trajectory Optimization

using Receding Horizon MILP,” in American Control Conference. IEEE, pp. 522–527.

[40] A. Richards and J. How, “Implementation of Robust Decentralized Model Predictive

Control,” in AIAA Guidance, Navigation, and Control Conference and Exhibit, ser. Guid-

ance, Navigation, and Control and Co-Located Conferences. American Institute of

Aeronautics and Astronautics.

[41] I. K. Erunsal, R. Ventura, and A. Martinoli, “Nonlinear model predictive control for 3d

formation of multirotor micro aerial vehicles with relative sensing in local coordinates,”

arXiv preprint arXiv:1904.03742, 2019.

[42] X. Zhou, J. Zhu, H. Zhou, C. Xu, and F. Gao, “EGO-Swarm: A Fully Autonomous and

Decentralized Quadrotor Swarm System in Cluttered Environments,” arXiv, 2020.

[43] E. Soria, F. Schiano, and D. Floreano, “SwarmLab: A Matlab Drone Swarm Simulator,” in

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,

pp. 8005–8011.

[44] E. Soria., F. Schiano, and D. Floreano, “Distributed predictive drone swarms in cluttered

environments,” IEEE Robot. Autom. Lett. (RA-L), vol. 7, no. 1, pp. 73–80, 2021.

[45] D. Bachman, Advanced Calculus Demystified. McGraw-Hill Professional, Jun 2007.

[46] J. E. Marsden and A. Tromba, Vector Calculus. W. H. Freeman, 2003.

[47] F. Schilling, J. Lecoeur, F. Schiano, and D. Floreano, “Learning Vision-based Flight in

Drone Swarms by Imitation,” IEEE Robotics and Automation Letters, 2019.

[48] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel, “Finding Locally Optimal,

Collision-Free Trajectories with Sequential Convex Optimization,” in Robotics: Science

and Systems IX. Robotics: Science and Systems Foundation, 2013.

[49] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of collision-free trajectories

for a quadrocopter fleet: A sequential convex programming approach,” in 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp. 1917–1922.

[50] Y. Chen, M. Cutler, and J. P. How, “Decoupled multiagent path planning via incremental

sequential convex programming,” in 2015 IEEE International Conference on Robotics

and Automation (ICRA), pp. 5954–5961.

146

Bibliography

[51] J. van den Berg, Ming Lin, and D. Manocha, “Reciprocal Velocity Obstacles for real-

time multi-agent navigation,” in 2008 IEEE International Conference on Robotics and

Automation. IEEE, 2008, pp. 1928–1935.

[52] J. Alonso-Mora, P. Beardsley, and R. Siegwart, “Cooperative Collision Avoidance for

Nonholonomic Robots,” IEEE Transactions on Robotics, vol. 34, no. 2, pp. 404–420, 2018.

[53] N. Dousse, G. Heitz, F. Schill, and D. Floreano, “Human-Comfortable Collision-Free

Navigation for Personal Aerial Vehicles,” vol. 2, no. 1, pp. 358–365.

[54] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager, “Fast, On-line Collision Avoid-

ance for Dynamic Vehicles Using Buffered Voronoi Cells,” IEEE Robotics and Automation

Letters, vol. 2, no. 2, pp. 1047–1054.

[55] B. Şenbaşlar, W. Hönig, and N. Ayanian, “Robust Trajectory Execution for Multi-robot

Teams Using Distributed Real-time Replanning,” in Distr. Auton. Rob. Sys. Springer

International, 2019, pp. 167–181.

[56] E. Tolstaya, F. Gama, J. Paulos, G. Pappas, V. Kumar, and A. Ribeiro. Learning Decentral-

ized Controllers for Robot Swarms with Graph Neural Networks.

[57] B. Rivière, W. Hoenig, Y. Yue, and S.-J. Chung, “GLAS: Global-to-Local Safe Autonomy

Synthesis for Multi-Robot Motion Planning with End-to-End Learning,” vol. 5, no. 3, pp.

4249–4256.

[58] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Stable Flocking of Mobile Agents, Part I:

Fixed Topology,” in Conference on Decision and Control, vol. 2, p. 8.

[59] B. T. Fine and D. A. Shell, “Unifying microscopic flocking motion models for virtual,

robotic, and biological flock members,” Autonomous Robots, vol. 35, no. 2-3, pp. 195–219,

00012.

[60] Y. Shang and R. Bouffanais, “Influence of the number of topologically interacting neigh-

bors on swarm dynamics,” Scientific Reports, vol. 4, no. 1, p. 4184, 2014.

[61] M. Camperi, A. Cavagna, I. Giardina, G. Parisi, and E. Silvestri, “Spatially balanced

topological interaction grants optimal cohesion in flocking models,” Interface Focus,

vol. 2, no. 6, pp. 715–725, 2012.

[62] A. Okabe, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd ed.,

ser. Wiley Series in Probability and Statistics. Wiley, 2000.

[63] M. Fiedler, “Laplacian of graphs and algebraic connectivity,” Banach Center Publications,

vol. 25, no. 1, pp. 57–70, 1989.

[64] T. Nestmeyer, P. R. Giordano, H. H. Bülthoff, and A. Franchi, “Decentralized simultaneous

multi-target exploration using a connected network of multiple robots,” Autonomous

Robots, vol. 41, no. 4, pp. 989–1011, 2017.

147

Bibliography

[65] P. Robuffo Giordano, A. Franchi, C. Secchi, and H. H. Bülthoff, “A passivity-based decen-

tralized strategy for generalized connectivity maintenance,” The International Journal

of Robotics Research (IJRR), vol. 32, no. 3, pp. 299–323, 2013.

[66] D. Hanover, P. Foehn, S. Sun, E. Kaufmann, and D. Scaramuzza, “Performance, Precision,

and Payloads: Adaptive Nonlinear MPC for Quadrotors,” vol. 7, no. 2, pp. 690–697.

[67] W. Zhao and T. H. Go, “Quadcopter formation flight control combining mpc and robust

feedback linearization,” Journal of the Franklin Institute, vol. 351, no. 3, pp. 1335–1355,

2014.

[68] W. Ren and N. Sorensen, “Distributed coordination architecture for multi-robot forma-

tion control,” Robotics and Autonomous Systems, vol. 56, no. 4, pp. 324–333, 2008.

[69] M. Kamel, J. Alonso-Mora, R. Siegwart, and J. Nieto, “Robust collision avoidance for

multiple micro aerial vehicles using nonlinear model predictive control,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp.

236–243.

[70] A. Strandburg-Peshkin, D. R. Farine, I. D. Couzin, and M. C. Crofoot, “Shared decision-

making drives collective movement in wild baboons,” Science, vol. 348, no. 6241, pp.

1358–1361, 2015.

[71] R. Verschueren, G. Frison, D. Kouzoupis, N. van Duijkeren, A. Zanelli, R. Quirynen, and

M. Diehl, “Towards a modular software package for embedded optimization,” IFAC-

PapersOnLine, vol. 51, no. 20, pp. 374–380, 2018.

[72] V. Kumar and N. Michael, “Opportunities and challenges with autonomous micro aerial

vehicles,” The International Journal of Robotics Research, vol. 31, no. 11, pp. 1279–1291,

2012.

[73] M. Petrlík, T. Báca, D. Hert, M. Vrba, T. Krajník, and M. Saska, “A robust uav system for

operations in a constrained environment,” IEEE Robotics and Automation Letters, vol. 5,

no. 2, pp. 2169–2176, 2020.

[74] K. R. Sapkota, S. Roelofsen, A. Rozantsev, V. Lepetit, D. Gillet, P. Fua, and A. Martinoli,

“Vision-based Unmanned Aerial Vehicle detection and tracking for sense and avoid

systems,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE, pp. 1556–1561.

[75] E. R. Hunt and S. Hauert, “A checklist for safe robot swarms,” Nat. Mach. Intell., vol. 2,

no. 8, pp. 420–422, 2020.

[76] H. Cheng, Q. Zhu, Z. Liu, T. Xu, and L. Lin, “Decentralized navigation of multiple

agents based on ORCA and model predictive control,” in 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 3446–3451.

148

Bibliography

[77] V. Kungurtsev and M. Diehl, “Sequential quadratic programming methods for paramet-

ric nonlinear optimization,” Computational Optimization and Applications, vol. 59,

no. 3, pp. 475–509, 2014.

[78] R. Van Parys and G. Pipeleers, “Online distributed motion planning for multi-vehicle

systems,” in 2016 European Control Conference (ECC). IEEE, 2016, pp. 1580–1585.

[79] C. E. Luis, “Distributed Trajectory Generation for Multiagent Systems,” Master Thesis,

2019.

[80] L. Hei, J. Nocedal, and R. A. Waltz, “A numerical study of active-set and interior-point

methods for bound constrained optimization,” in Modeling, Simulation and Optimiza-

tion of Complex Processes. Springer Berlin Heidelberg, 2008, pp. 273–292.

[81] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: an operator splitting

solver for quadratic programs,” Mathematical Programming Computation, vol. 12, no. 4,

pp. 637–672, 2020.

[82] J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm: A large nano-

quadcopter swarm,” in 2017 IEEE International Conference on Robotics and Automation

(ICRA). IEEE, pp. 3299–3304.

[83] G. R. Martin, “Understanding bird collisions with man-made objects: A sensory ecology

approach: Bird collisions,” Ibis, vol. 153, no. 2, pp. 239–254.

[84] R. Kern, N. Boeddeker, L. Dittmar, and M. Egelhaaf, “Blowfly flight characteristics are

shaped by environmental features and controlled by optic flow information,” Journal of

Experimental Biology, vol. 215, no. 14, pp. 2501–2514.

[85] N. Linander, M. Dacke, and E. Baird, “Bumblebees measure optic flow for position and

speed control flexibly within the frontal visual field,” Journal of Experimental Biology,

vol. 218, no. 7, pp. 1051–1059.

[86] F. Schiano and P. Robuffo Giordano, “Bearing Rigidity Maintenance for Formations of

Quadrotor UAVs,” in 2017 IEEE International Conference on Robotics and Automation

(ICRA), 2017.

[87] L. E. Parker, “Distributed algorithms for multi-robot observation of multiple moving

targets,” Autonomous Robots, vol. 12, no. 3, pp. 231–255, 2002.

[88] G. R. Martin, “Visual fields and their functions in birds,” Journal of Ornithology, vol. 148,

no. S2, pp. 547–562.

[89] U. Mehmood, N. Paoletti, D. Phan, R. Grosu, S. Lin, S. D. Stoller, A. Tiwari, J. Yang, and

S. A. Smolka, “Declarative vs Rule-based Control for Flocking Dynamics,” in IEEE/ACM

International Symposium on Applied Computing, 2018, pp. 816–823.

149

Bibliography

[90] F. Schilling, E. Soria, and D. Floreano, “On the Scalability of Vision-based Drone Swarms

in the Presence of Occlusions,” IEEE Access, p. (submitted), 2021.

[91] T. Qin, P. Li, and S. Shen, “VINS-Mono: A Robust and Versatile Monocular Visual-Inertial

State Estimator,” IEEE Transactions on Robotics (T-RO), vol. 34, no. 4, pp. 1004–1020,

2018.

[92] P. M. Wyder, Y.-S. Chen, A. J. Lasrado, R. J. Pelles, R. Kwiatkowski, E. O. A. Comas,

R. Kennedy, A. Mangla, Z. Huang, X. Hu, Z. Xiong, T. Aharoni, T.-C. Chuang, and H. Lip-

son, “Autonomous drone hunter operating by deep learning and all-onboard computa-

tions in GPS-denied environments,” PLOS ONE, vol. 14, no. 11, p. e0225092, 2019.

[93] M. Vrba and M. Saska, “Marker-Less Micro Aerial Vehicle Detection and Localization

Using Convolutional Neural Networks,” IEEE Robotics and Automation Letters (RA-L),

vol. 5, no. 2, pp. 2459–2466, 2020.

[94] Y. Tang, Y. Hu, J. Cui, F. Liao, M. Lao, F. Lin, and R. Teo, “Vision-aided Multi-UAV Au-

tonomous Flocking in GPS-denied Environment,” IEEE Transactions on Industrial Elec-

tronics, pp. 1–1, 2018.

[95] M. Saska, T. Baca, J. Thomas, J. Chudoba, L. Preucil, T. Krajnik, J. Faigl,

G. Loianno, and V. Kumar, “System for Deployment of Groups of Unmanned

Micro Aerial Vehicles in GPS-denied Environments Using Onboard Visual Relative

Localization,” Auton. Robots, vol. 41, no. 4, pp. 919–944. [Online]. Available:

https://doi.org/10.1007/s10514-016-9567-z

[96] P. Petracek, V. Walter, T. Baca, and M. Saska, “Bio-inspired compact swarms of unmanned

aerial vehicles without communication and external localization,” Bioinspir. Biomim.,

2020.

[97] F. Schilling, F. Schiano, and D. Floreano, “Vision-Based Drone Flocking in Outdoor

Environments,” IEEE Robotics and Automation Letters (RA-L), vol. 6, no. 2, pp. 2954–

2961, 2021.

[98] J. Chen, M. Gauci, W. Li, A. Kolling, and R. Groß, “Occlusion-Based Cooperative Trans-

port with a Swarm of Miniature Mobile Robots,” IEEE Transactions on Robotics (T-RO),

vol. 31, no. 2, pp. 307–321, 2015.

[99] J. Hu, A. E. Turgut, T. Krajník, B. Lennox, and F. Arvin, “Occlusion-Based Coordination

Protocol Design for Autonomous Robotic Shepherding Tasks,” IEEE Transactions on

Cognitive and Developmental Systems, pp. 1–1, 2020.

[100] S. B. Rosenthal, C. R. Twomey, A. T. Hartnett, H. S. Wu, and I. D. Couzin, “Revealing the

hidden networks of interaction in mobile animal groups allows prediction of complex

behavioral contagion,” vol. 112, no. 15, pp. 4690–4695, 2015.

150

https://doi.org/10.1007/s10514-016-9567-z

Bibliography

[101] J. D. Davidson, M. M. G. Sosna, C. R. Twomey, V. H. Sridhar, S. P. Leblanc, and I. D.

Couzin, “Collective detection based on visual information in animal groups,” Journal of

the Royal Society Interface, vol. 18, no. 180, p. 20210142, 2021.

[102] T. Vicsek and A. Zafeiris, “Collective motion,” Physics Reports, vol. 517, no. 3-4, pp.

71–140.

[103] I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R. Franks, “Collective Memory

and Spatial Sorting in Animal Groups,” Journal of Theoretical Biology, vol. 218, no. 1, pp.

1–11.

[104] A. E. Turgut, H. Çelikkanat, F. Gökçe, and E. Şahin, “Self-organized flocking in mobile

robot swarms,” Swarm Intelligence, vol. 2, no. 2-4, pp. 97–120, 2008.

[105] M. Lindhe, P. Ogren, and K. Johansson, “Flocking with Obstacle Avoidance: A New

Distributed Coordination Algorithm Based on Voronoi Partitions,” in IEEE International

Conference on Robotics and Automation (ICRA), 2005, pp. 1785–1790.

[106] J. Holland and S. K. Semwal, “Flocking Boids with Geometric Vision, Perception and

Recognition,” p. 8, 2009.

[107] H. Kunz and C. K. Hemelrijk, “Simulations of the social organization of large schools of

fish whose perception is obstructed,” Applied Animal Behavior Science, vol. 138, no. 3,

pp. 142–151, 2012.

[108] D. J. G. Pearce, A. M. Miller, G. Rowlands, and M. S. Turner, “Role of projection in the

control of bird flocks,” Proceedings of the National Academy of Sciences of the United

States of America (PNAS), vol. 111, no. 29, pp. 10 422–10 426, 2014.

[109] R. Bastien and P. Romanczuk, “A model of collective behavior based purely on vision,”

Science Advances, vol. 6, no. 6, p. eaay0792, 2020.

[110] S. Roelofsen, D. Gillet, and A. Martinoli, “Reciprocal collision avoidance for quadrotors

using on-board visual detection,” in 2015 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE, pp. 4810–4817. [Online]. Available:

http://ieeexplore.ieee.org/document/7354053/

[111] D. Dias, R. Ventura, P. Lima, and A. Martinoli, “Onboard vision-based 3D relative local-

ization system for multiple quadrotors,” in IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 2016, pp. 1181–1187.

[112] V. Walter, N. Staub, A. Franchi, and M. Saska, “UVDAR System for Visual Relative Lo-

calization with application to Leader-Follower Formations of Multirotor UAVs,” IEEE

Robotics and Automation Letters (RA-L), pp. 1–1, 2019.

[113] A. Rozantsev, V. Lepetit, and P. Fua, “Detecting Flying Objects Using a Single Moving

Camera,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),

vol. 39, no. 5, pp. 879–892, 2017.

151

http://ieeexplore.ieee.org/document/7354053/

Bibliography

[114] R. Opromolla, G. Fasano, and D. Accardo, “A Vision-Based Approach to UAV Detection

and Tracking in Cooperative Applications,” Sensors (Basel), vol. 18, no. 10, 2018.

[115] M. Vrba, D. Hert, and M. Saska, “Onboard Marker-Less Detection and Localization of

Non-Cooperating Drones for Their Safe Interception by an Autonomous Aerial System,”

IEEE Robotics and Automation Letters (RA-L), vol. 4, no. 4, pp. 3402–3409, 2019.

[116] T. Cieslewski, S. Choudhary, and D. Scaramuzza, “Data-Efficient Decentralized Visual

SLAM,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018,

pp. 2466–2473.

[117] M. Vrba and M. Saska, “Marker-Less Micro Aerial Vehicle Detection and Localization

Using Convolutional Neural Networks,” vol. 5, no. 2, pp. 2459–2466.

[118] F. Schilling, F. Schiano, and D. Floreano, “Vision-Based Drone Flocking in Outdoor

Environments,” IEEE Robot. Autom. Lett. (RA-L), vol. 6, no. 2, pp. 2954–2961, 2021.

[119] X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao. (2020) EGO-Planner: An ESDF-free Gradient-

based Local Planner for Quadrotors.

[120] X. Zhou, Z. Wang, X. Wen, J. Zhu, C. Xu, and F. Gao. Decentralized Spatial-Temporal

Trajectory Planning for Multicopter Swarms.

[121] R. W. Beard and T. W. McLain, Small Unmanned Aircraft: Theory and Practice. Princeton

University Press, oCLC: ocn724663112.

[122] E. J. Rodríguez-Seda, D. M. Stipanović, and M. W. Spong, “Guaranteed Collision Avoid-

ance for Autonomous Systems with Acceleration Constraints and Sensing Uncertainties,”

vol. 168, no. 3, pp. 1014–1038.

[123] A. Nikou and D. V. Dimarogonas, “Decentralized tube-based model predictive control of

uncertain nonlinear multiagent systems,” International Journal of Robust and Nonlinear

Control, vol. 29, no. 10, pp. 2799–2818, 2019.

[124] M. Debord, W. Hönig, and N. Ayanian, “Trajectory Planning for Heterogeneous Robot

Teams,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 7924–7931.

[125] G. Shi, W. Hönig, X. Shi, Y. Yue, and S.-J. Chung, “Neural-Swarm2: Planning and Control

of Heterogeneous Multirotor Swarms using Learned Interactions,” 2021.

[126] M. Bujarbaruah, X. Zhang, H. E. Tseng, and F. Borrelli, “Adaptive MPC for Autonomous

Lane Keeping,” arxiv, 2018.

[127] B. P. Duisterhof, S. Li, J. Burgués, V. J. Reddi, and G. C. H. E. de Croon, “Sniffy Bug: A Fully

Autonomous Swarm of Gas-Seeking Nano Quadcopters in Cluttered Environments,”

arxiv, 2021.

152

Bibliography

[128] S. Li, C. De Wagter, and G. C. H. E. de Croon, “Self-supervised Monocular Multi-robot

Relative Localization with Efficient Deep Neural Networks,” arxiv, 2021.

[129] D. Palossi, A. Loquercio, F. Conti, E. Flamand, D. Scaramuzza, and L. Benini, “A 64-mW

DNN-Based Visual Navigation Engine for Autonomous Nano-Drones,” IEEE Internet of

Things Journal, vol. 6, no. 5, pp. 8357–8371, 2019.

[130] B. Balazs and G. Vasarhelyi, “Coordinated Dense Aerial Traffic with Self-Driving Drones,”

in 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018,

pp. 6365–6372.

[131] W. Schwarting, J. Alonso-Mora, L. Pauli, S. Karaman, and D. Rus, “Parallel autonomy in

automated vehicles: Safe motion generation with minimal intervention,” in 2017 IEEE

International Conference on Robotics and Automation (ICRA), pp. 1928–1935.

[132] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and

A. Ng, “ROS - an open-source Robot Operating System,” in IEEE International Conference

on Robotics and Automation (ICRA). IEEE, 2009, p. 6.

[133] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an open-source

multi-robot simulator,” in IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), vol. 3. IEEE/RSJ, 2004, pp. 2149–2154 vol.3.

[134] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “RotorS: A Modular Gazebo MAV

Simulator Framework,” in Robot Operating System (ROS), ser. Studies in Computational

Intelligence. Springer, Cham, 2016, pp. 595–625.

[135] L. Meier, D. Honegger, and M. Pollefeys, “PX4: A node-based multithreaded open source

robotics framework for deeply embedded platforms,” in IEEE International Conference

on Robotics and Automation (ICRA). IEEE, 2015, pp. 6235–6240.

[136] G. Silano, E. Aucone, and L. Iannelli, “CrazyS: A Software-In-The-Loop Platform for the

Crazyflie 2.0 Nano-Quadcopter,” in 2018 26th Mediterranean Conference on Control and

Automation (MED). IEEE, pp. 1–6.

[137] T. Baca, M. Petrlik, M. Vrba, V. Spurny, R. Penicka, D. Hert, and M. Saska, “The MRS UAV

System: Pushing the Frontiers of Reproducible Research, Real-world Deployment, and

Education with Autonomous Unmanned Aerial Vehicles,” IEEE Transactions on Robotics

(T-RO), 2020.

[138] P. S. Andrews, S. Stepney, and J. Timmis, “Simulation as a scientific instrument,” in

Proceedings of the 2012 workshop on complex systems modelling and simulation, Orleans,

France, 2012.

[139] B. Huang, C. Yu, and B. D. O. Anderson, “Understanding Error Propagation in Multihop

Sensor Network Localization,” vol. 60, no. 12, pp. 5811–5819, 2013.

153

Bibliography

[140] J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf, and O. von Stryk, “Comprehensive

simulation of quadrotor uavs using ros and gazebo,” in 3rd Int. Conf. on Simulation,

Modeling and Programming for Autonomous Robots (SIMPAR), 2012.

[141] O. Michel, “Cyberbotics ltd. webots™: professional mobile robot simulation,” Interna-

tional Journal of Advanced Robotic Systems, vol. 1, no. 1, 2004.

[142] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: A versatile and scalable robot simula-

tion framework,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2013, pp. 1321–1326.

[143] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-Fidelity Visual and Physical Sim-

ulation for Autonomous Vehicles,” in Field and Service Robotics. Springer International

Publishing, 2018, pp. 621–635.

[144] L. Pitonakova, M. Giuliani, A. Pipe, and A. Winfield, Feature and Performance Com-

parison of the V-REP , Gazebo and ARGoS Robot Simulators. Springer International

Publishing, 2018.

[145] A. Staranowicz and G. L. Mariottini, “A survey and comparison of commercial and open-

source robotic simulator software,” in Proceedings of the 4th International Conference

on Pervasive Technologies Related to Assistive Environments, 2011.

[146] M. S. P. de Melo, J. G. da Silva Neto, P. J. L. da Silva, J. M. X. N. Teixeira, and V. Teichrieb,

“Analysis and comparison of robotics 3d simulators,” in 2019 21st Symposium on Virtual

and Augmented Reality (SVR). IEEE, 2019, pp. 242–251.

[147] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla, N. Mathews,

E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari, L. M. Gambardella, and M. Dorigo,

“ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems,” Swarm

Intelligence, vol. 6, no. 4, pp. 271–295, 2012.

[148] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, Robot Operating System (ROS): The

Complete Reference (Volume 1). Cham: Springer International Publishing, 2016, ch.

RotorS—A Modular Gazebo MAV Simulator Framework, pp. 595–625.

[149] C. McCord, J. P. Queralta, T. N. Gia, and T. Westerlund, “Distributed progressive forma-

tion control for multi-agent systems: 2d and 3d deployment of uavs in ros/gazebo with

rotors,” in 2019 European Conference on Mobile Robots (ECMR). IEEE, 2019.

[150] F. D’Urso, C. Santoro, and F. F. Santoro, “An integrated framework for the realistic sim-

ulation of multi-UAV applications,” Computers & Electrical Engineering, vol. 74, pp.

196–209.

[151] S. Bouabdallah and R. Siegwart, “Full control of a quadrotor,” in 2007 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems. Ieee, 2007, pp. 153–158.

154

Curriculum Vitae - Enrica Soria

First / last name: Enrica Soria

Date of birth: 10.11.1992

Place of birth: Nizza Monferrato

Nationality: Italian

Mobile: +41 (0) 76 372 23 61

Email: enrica.soria@epfl.ch /
enrica.s92@gmail.com

ORCID: 0000-0002-1364-6439

Education

● 01.2018 - 01.2022 (expected date of Ph.D. defense): Ph.D. Thesis, EPFL (Switzerland).
Advisor: Prof. Dario Floreano; doctoral school: Robotics, Control, and Intelligent Systems
(EDRS);

○ Thesis title: “Predictive control of aerial swarms with limited sensing”;

○ Courses: Business concepts training by Innosuisse; Design of experiments; Aerial
robotics; State-of-the-art techniques in neuroscience.

● 09.2014 - 12.2016: M.Sc. in Mathematical Engineering (double degree), Polytechnic of
Turin and Polytechnic of Milan (Italy). Advisors: Prof. Paolo Brandimarte and Prof. Luigi
Preziosi; score: 110/110 with honors;

○ Specialization in ‘Physical Modelling and Simulation’;

○ Main courses: Nonlinear systems for engineering applications; Linear systems and
control theory; Convex optimization; Object-oriented programming; Statistical models;
Discrete events models; Stochastic processes; Business analysis.

● 09.2014 - 12.2016: honor program Alta Scuola Politecnica (https://www.asp-poli.it/),
Polytechnic of Turin and Polytechnic of Milan (Italy);

○ Project: “Drone technology for monitoring glaciers and water resources”;

○ Tasks: collection and analysis of temporal and geographical data series; creation and
analysis of DSMs. Roles: team leader and budget supervisor;

○ Courses: Digital Innovations; Design methods and processes; The energy question.

● 09.2011 - 10.2014: BS.c. in Mathematics for Engineering Applications, Polytechnic of
Turin (Italy); score: 110/110 with honors.

Work experience

● 01.2018 - 01.2022: Ph.D. Research Assistant, EPFL (Lausanne, Switzerland). Advisor: Prof.
Dario Floreano;

● 04.2017 - 10.2017: R&D Engineer, Amadeus IT Group (Sophia Antipolis, France). Advisor:

1

Curriculum Vitae - Enrica Soria

Jeremie Barlet;

○ Definition of the security access system and computation of the services access
metrics;

○ Implementation of a big-data monitoring system based on ElasticSearch and Kibana.

● 05.2016 - 01.2017: R&D Intern, senseFly (Cheseaux-sur-Lausanne, Switzerland). Advisors:
Dr. Arnaud Gelas, Prof. Paolo Brandimarte;

○ M.Sc. thesis title: “Clustering algorithms for 3D surface splitting problems”;

○ Design and implementation of a C++ algorithm for optimally splitting a wide area to be
mapped by a professional drone for cartography.

Teaching activities

● Spring 2020 - 2021: teaching assistant; course: Aerial Robotics; EPFL;

○ Development of the software exercises on the drone’s dynamics, control, estimation,
and path-planning algorithms;

○ Teaching practicals;

○ Creation and management of the students’ Github repository for the course.

● Spring 2020 - 2021: semester project supervisor; student: Samuele Lanzanova; title:
“Communication-faulty drone swarms in heterogeneous environments”;

● Fall 2020 - 2021: semester project supervisor; student: Hugo Birch; title: “Vision-based drone
swarms with limited visual sensing”;

● Fall 2020 - 2021: semester project supervisor; student: Thomas Oliver Kimble; title:
“Predictive drone swarms with a limited field of view”;

● Spring 2019 - 2020: teaching assistant; course: Aerial Robotics; EPFL;

○ Maintenance of the Gazebo software exercises and creation of online documentation;

○ Teaching practicals.

● Fall 2019 - 2020: semester project supervisor; student: Andrea Giordano; title: “SwarmLab: a
user-friendly package for drone swarm simulation”;

● Spring 2018 - 2019: teaching assistant; course: Aerial Robotics; EPFL;

○ Teaching practicals.

● Fall 2018 - 2019: semester project supervisor; student: Yoann Lapijover; title: “Swarming
algorithms for quadcopters”;

● Fall 2018 - 2019: semester project supervisor; student: Victor Delafontaine; title: “Versatile
Simulator for a swarm of quadcopters”;

Participation in conferences, workshops, summer schools

● 06.2021: Summer School on “Foundations and mathematical guarantees of data-driven
control”, online due to COVID-19 restrictions;

2

Curriculum Vitae - Enrica Soria

● 10.2020: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
online due to COVID-19 restrictions;

● 11.2019: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Macau;

● 07.2019: IEEE RAS Summer School on Multi-Robot Systems (MRS), Prague (Czech
Republic);

● 02.2019: IEEE International Conference on Robotic Computing (IRC), Naples (Italy);

● 12.2018: BMI Symposium on “State-of-the-art techniques in neuroscience”; Lausanne
(Switzerland);

● 05.2018: ICTP Conference on “Collective behavior” (smr 3201), Trieste (Italy)

Technical skills

● Mathematical engineering: control of linear and nonlinear systems; statistical models;
discrete events models; stochastic processes; machine learning;

● Robotics: kinematics and dynamics; controller design; data acquisition and processing;
SITL/HITL experiments; crazyswarm infrastructure; Optitrack motion capture system;

● Video editing and illustration: Inkscape, Illustrator, Photoshop, Premiere Pro;

● Software: Linux/Windows; Python; Matlab; Simulink; Latex; MS Office; C++; C;

● Software packages: ROS, Gazebo, Casadi, acado, acados, OSQP.

Personal skills

● Effective communication and presentation;

○ One-year participation in speaking classes with Toastmasters (international clubs).

● Social commitment;

○ Participation in multiple humanitarian missions across Switzerland (2018-2020) and
Kenya (2019) with Drone Adventures (no-profit association based in Lausanne).

Languages

● English: full professional proficiency

● French: full professional proficiency

● Italian: native proficiency

● German: elementary proficiency

3

	Acknowledgments
	Abstract (English/Français)
	Table of contents
	List of figures
	List of tables
	Introduction
	Motivation
	General approach
	Thesis outline

	Algorithms for aerial drone swarms
	Preliminaries and notation
	Potential field-based models
	Potential field
	Reynolds swarm model
	Olfati-Saber model
	Vasarhelyi model

	Optimization-based models
	Sequential Convex Programming
	Optimal Reciprocal Collision Avoidance
	Buffered Voronoi Cells

	Learning-based models
	Local to local learning models
	Global to local learning models

	Neighbor selection
	Neighbor selection based on the Euclidean distance
	Neighbor selection based on the topological distance
	Neighbor selection based on Voronoi tessellation
	Neighbor selection based on line-of-sight occlusions

	Swarm performance metrics
	Order
	Agent-agent safety
	Agent-obstacle safety
	Union
	Connectivity
	Mission completion time
	Trajectory length

	Centralized predictive control of aerial drone swarms
	Introduction
	Method
	PF swarm model
	Agents' dynamics
	NMPC swarm model
	Simulation setup
	Drone experimental setup

	Results
	Comparison of PF and NMPC aerial swarms
	Environments with different obstacle densities
	Scalability to different inter-agent distances and speeds

	Discussion

	Distributed predictive control of aerial drone swarms
	Introduction
	Methods
	Model of a flying agent
	Trajectory parameterization
	Migration
	Agents' reciprocal avoidance
	Agents' cohesion
	Obstacle avoidance
	Control effort
	Desired trajectory
	Implementation of Bezier curves
	Swarm performance metrics

	Results
	Scalability in the agent number and noise robustness
	Adaptability to different environments
	Comparison of collision avoidance methods
	Computational complexity
	Hardware experiments

	Discussion

	Reynolds swarms with limited visual sensing
	Introduction
	Method
	Notation
	Limited field of view
	Reynolds swarm model
	Agents dynamics
	Swarm performance metrics

	Results
	Fixed Reynolds coefficients
	Optimized Reynolds coefficients

	Discussion

	Scalable vision-based swarms in the presence of occlusions
	Introduction
	Method
	Neighbor selection
	Sensing noise

	Experimental setup
	Experimental parameters

	Results
	Performance across swarm sizes
	Performance across swarm densities

	Conclusions

	Sensor-based predictive control of aerial swarms
	Introduction
	Method
	Model of a flying agent
	Inter-agent collision avoidance
	DMPC swarm model
	Neighbor selection
	Neighbor predicted trajectory
	PF swarm model
	Swarm performance metrics

	Results
	Scalability in the swarm size
	Comparison between swarm models

	Discussion

	Conclusion
	Limitations of the predictive control approach
	Possible directions for future work
	Closing remarks

	Waypoint navigation of vision-based drone swarms
	Introduction
	Method
	The visual field of view
	Vision-based swarm model
	Position-based swarm model
	Swarm performance metrics

	Results
	Vision-based swarm model: the effect of individual and visual parameters
	Vision-based swarm model: goal-oriented flight
	Swarm models comparison
	Hardware experiments

	Discussion

	Open-source software
	Introduction
	Related Work
	Software architecture
	Drone
	Swarm
	Swarm algorithms
	Graphical User Interfaces (GUIs)
	Plotting tools
	Performance analysis

	Comparison of swarm algorithms and computational time analysis
	Conclusions and future work

	Publications
	Bibliography
	Curriculum vitae

