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In anything at all, perfection is finally attained not
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but when there is no longer anything to take way,
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Abstract
Advances in scanning systems have enabled the digitization of pathology slides into Whole-

Slide Images (WSIs), opening up opportunities to develop Computational Pathology (Comp-

Path) methods for computer-aided cancer diagnosis and prognosis. CompPath has been

primarily developed using models based on Convolutional Neural Networks (CNNs), building

on the recent successes in Computer Vision. A series of promising approaches have been

proposed for nuclei segmentation and classification, tumor detection, tumor grading, among

others. However, CNN-based methods suffer from several limitations. First, it is challenging

to model both fine-grained nuclei-level information and long-range inter-glandular depen-

dencies. Second, there is a discrepancy between the pixel-based analysis of CNNs and the

histological entity-centered analysis employed for pathological diagnosis, which in turn can

hinder model transparency. Third, the inherent complexity of training networks on large

histology images with limited annotations constrains its learning capabilities.

Instead, we propose an analytical paradigm shift, where we view and analyze histology images

as a set of biological entities interacting with each other. Specifically, an image is represented as

an entity-graph where nodes depict biological entities and edges encode interactions between

these entities. Entity-graphs are further processed by a Graph Neural Network (GNN) model

to jointly encode the entity morphological attributes and topological distribution, towards

tissue phenotyping. In this thesis, we study three research directions in CompPath, namely,

scalability, interpretability and explainability, and weakly-supervised learning.

First, histology images are orders of magnitude larger than natural images, where diagnos-

tically relevant regions can represent only a fraction of the image. We propose a scalable

hierarchical cell-to-tissue representation (HACT) and GNN model, HACT-Net, for learning on

arbitrary large inputs. We show the capabilities of HACT-Net on our proposed BRACS dataset,

the largest cohort to date for breast tumor Regions-of-Interest subtyping.

Second, computer-aided diagnostic tools must be transparent and their decision-making

process justified. By shifting the analysis from pixel- to entity-based, we make the input space

interpretable for pathologists that can better relate to the model input. We further propose

entity-centric graph explainers, exemplified with cell-graph model explainability, along with

novel metrics to evaluate explanations based on entity-level pathological concepts.

Third, acquiring ground-truth data to train deep learning systems requires pathologists to

provide specific annotations, which is time-consuming, expensive, and subject to inter- and

intra-observer variability. We therefore propose WHOLESIGHT, a method that reduces an-

notation requirements to WSI-level labels only, for joint classification and segmentation of
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Abstract

WSIs. We show the capabilities of WHOLESIGHT for Gleason pattern segmentation and grad-

ing on multi-source WSI prostate datasets. The generalization properties of WHOLESIGHT

are further evaluated on unseen cohorts, and compared to Bayesian variants to strengthen

the estimation of the model uncertainty. Finally, we introduce HISTOCARTOGRAPHY, a novel

python library designed to accelerate the development of graph analytics in CompPath.

Keywords: computational pathology, graph neural network, whole-slide image classifica-

tion, gleason grading, graph representation learning, deep learning, cancer grading, cancer

subtyping.
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Résumé
Les progrès réalisés dans les systèmes de numérisation permettent désormais de convertir

les lames de pathologie en images (WSIs), ouvrant la voie au développement de méthodes de

pathologie computationnelle (CompPath) pour le diagnostic du cancer assisté par ordinateur.

Jusqu’à présent, la CompPath a été développé à l’aide de modèles basés sur les réseaux

neuronaux convolutifs (CNNs), en capitalisant sur les récents succès de la vision par ordinateur.

Une série d’approches prometteuses ont par exemple été proposées pour la segmentation

et la classification des noyaux cellulaires, ou la détection et la classification de tumeurs.

Cependant, les méthodes basées sur les CNNs présentent plusieurs limitations. Premièrement,

il est difficile de modéliser à la fois des détails de l’image et son contexte. Deuxièmement,

il existe une inadéquation entre l’analyse basée sur les pixels des CNNs et l’analyse centrée

sur les entités histologiques utilisée pour le diagnostic pathologique, ce qui peut affecter

la transparence du modèle. Troisièmement, la complexité inhérente à l’entraînement des

réseaux sur de grandes images histologiques avec des annotations peu détaillées limite leurs

capacités d’apprentissage.

A contrario, nous proposons un changement de paradigme analytique, où nous représentons

les images histologiques comme un ensemble d’entités biologiques interagissant les unes avec

les autres. Un graphe d’entités est créé où les noeuds représentent des entités biologiques et les

arêtes symbolisent les interactions entre ces entités. Les graphes d’entités sont ensuite analysés

par un réseau de neurones de graphe (GNN) afin d’encoder les attributs morphologiques

des entités et leur distribution topologique. Plus précisément, dans cette thèse, nous nous

penchons sur trois axes de recherche en CompPath, à savoir la scalabilité, l’interprétabilité et

l’explicabilité, ainsi que l’apprentissage faiblement supervisé.

Premièrement, les images histologiques sont nettement plus grandes que les images ordinai-

rement utilisées en vision par ordinateur. Nous proposons une représentation hiérarchique et

scalable des tissus pour l’apprentissage sur des données de grande taille. Nous démontrons

ses capacités sur les données BRACS, une cohorte d’images pour le sous-typage de tissus

mammaires.

Deuxièmement, les outils de diagnostic assistés par ordinateur doivent être transparents. En

passant d’une analyse basée sur les pixels à une analyse basée sur les entités, nous rendons

l’espace d’entrée interprétable pour les pathologistes. Nous proposons en outre des explica-

teurs de graphes, illustrés par l’explicabilité des modèles de graphes cellulaires, ainsi que de

nouvelles métriques.

Troisièmement, l’acquisition d’annotations pour entraîner les systèmes d’apprentissage est
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Résumé

longue, coûteuse et sujet à la variabilité inter- et intra-observateur. Nous proposons une

méthode qui réduit les exigences d’annotation aux seules mentions du type de la WSI, en vue

de sa classification et segmentation. Nous démontrons ses capacités sur des ensembles de

données prostatiques pour la prediction du grade de Gleason. Les propriétés de généralisation

du modèle sont ensuite évaluées sur des cohortes externes, et comparées à des variantes bayé-

siennes pour renforcer les estimations d’incertitude. Enfin, nous présentons Histocartography,

une nouvelle bibliothèque python conçue pour accélérer le développement des graphes en

CompPath.

Mot-clés : pathologie computationnelle, réseau neuronal de graphe, classification d’images

de lames entières, classification de gleason, apprentissage de la représentation de graphes,

apprentissage profond, gradation du cancer, sous-typage du cancer.
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Introduction

Motivation

Advances in scanning systems have enabled the digitization of pathology slides into high-

resolution Whole-Slide Images (WSIs), heralding the era of Digital Pathology (DigPath) (Mukhopad-

hyay et al., 2017). In parallel, Deep Learning (DL) has revolutionized Computer Vision (CV),

with the development of algorithms capable of detecting, classifying and, segmenting images

with unprecedented accuracy (Deng et al., 2009a; Krizhevsky et al., 2012; He et al., 2016). These

breakthroughs are at the root of Computational Pathology (CompPath), which paves the way

for the creation of Artificial Intelligence (AI)-powered tools for objective cancer diagnosis and

prognosis, as well as for the prediction of treatment response and resistance.

The stakes are high. Almost four in ten Americans will be diagnosed with cancer in their

lifetime. Prostate cancer, the second most frequently diagnosed cancer in men in the U.S.,

has registered 250,000 new cases in 2021 and is responsible for 35,000 deaths. Over the same

period, 280,000 new cases of invasive breast cancer were diagnosed in the U.S., causing 43,000

deaths, the highest number of deaths among women with cancer (Duggan et al., 2021). In

addition, the overall incidence rate of cancer cases per year is increasing. In the U.S., the

incidence rate of breast cancer is steadily increasing by 0.5% per year (Siegel et al., 2020) to the

figure of approximately 1 in 8 women who will develop invasive breast cancer in their lifetime.

Moreover, the number of pathologists, who play a central role in diagnosing and treating

cancer patients, is gradually decreasing. In the U.S., a decrease of 18% has been observed

between 2007 and 2017, resulting in a 42% increase in average workload (Wilson et al., 2018).

Additionally, the practice of pathology is subject to its own challenges. In particular, even

though diagnostic criteria for cancer are established (Tan et al., 2019), the continuous nature of

histologic features phenotyped across the diagnostic spectrum leaves room for inconsistencies,

with significant intra- and inter-observer variability (Gomes et al., 2014; Elmore et al., 2015).

Moreover, manual slide inspection is a tedious and time-consuming process, which would

benefit from automation and standardization, thus reducing the workload for pathologists.

The aforementioned factors are therefore motivating the development of computer-aided

diagnosis tools (Bulten et al., 2021; Campanella et al., 2019).

Advances in DL have already enabled the development of clinically-relevant pathology tasks (Ibrahim

et al., 2020), such as nuclei segmentation (Kumar et al., 2017; Graham et al., 2019a), nuclei

1



Introduction

classification (Verma et al., 2021), gland segmentation (Graham et al., 2019b; Binder et al.,

2019), tissue segmentation (Mehta et al., 2018; Mercan et al., 2019b), tumor detection (Aresta

et al., 2019; Bejnordi et al., 2019; Pati et al., 2018), WSI tumor grading (Lu et al., 2020; Shaban

et al., 2020; Tellez et al., 2019a), and tumor staging (Aresta et al., 2019; Mercan et al., 2019a).

Recent work even showed that AI-assisted diagnosis could yield better cancer grading than

that performed by pathologists alone (Bulten et al., 2021; Campanella et al., 2019).

These advances are based on the advent of Convolutional Neural Networks (CNNs), which

have been originally developed to operate on natural images. Histology images, however,

possess unique features that make them challenging to be modeled. First, histology images

are large. WSIs, obtained by digitizing a tissue specimen, can be as large as 100′000×100′000

pixels (see Figure 1). Even Tissue-Micro Arrays (TMAs) and Tumor Regions-of-Interest (TRoIs)

remain orders of magnitude larger than ImageNet images (Deng et al., 2009a). Second, a tumor

region represents a hierarchical composition, where nuclei will form tissue regions that further

form large glandular structures. Consequently, the diagnosis should be based on a multi-scale

analysis, where fine-grained information should be related to coarser high-level patterns. It

also means that, in cases where large non-informative benign regions are present, only a

fraction of the image is relevant for diagnosis. To address the aforementioned challenges,

most previous CNN-based methods adopt a patch-based processing approach. Specifically, a

(large) input image is tiled into small fixed-size patches, that are individually processed by a

pre-trained CNN. Then, an aggregation function pools the information from each patch to

build an image-level embedding used for downstream tasks, e.g., tumor grading.

While being applicable, these approaches suffer from several limitations. First, there is a trade-

off between operation resolution and how much context is included in a patch. In other words,

context and resolution cannot be optimally leveraged in this setting. Second, the aggregation

operation would typically discard the relational information between the patches by treating

patch embeddings as independent units. Third, patch-level processing cannot efficiently

combine multi-scale information, making it hard to incorporate tissue compositionality in the

model. Fourth, pixel-based processing is wholly detached from biological reasoning, making

these approaches hard to interpret.

Instead, the core idea of this thesis is a paradigm shift, where histology images are analyzed as

an interacting set of biological entities. Specifically, we propose to use graph representations,

as a means to encode the tissue-to-function relationship, where nodes represent biological

entities, and edges represent entity-entity interactions. The nodes, i.e., the entities, can be

encoded at the appropriate scale, depending on the task at hand. The edges act as support

to efficiently propagate information from one entity to another and highlight higher-level

patterns relevant for modeling tissue compositionality. Also, as the nodes are biologically

defined, pathologists can make the link with their own understanding of the problem. Thus,

this representation allows better adequacy with the way pathologists reason and enables more

transparency in the algorithm’s operation.
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Figure 1 – Examples of histology images. (a) a tissue resection prostate WSI, (b) a TMA obtained
from a core needle biopsy of prostate tissue, (c) a TRoI extracted from a breast biopsy.

We build on recent advances in graph representation learning and the development of Graph

Neural Networks (GNNs). Today, GNNs are an integral part of the DL toolbox and have been

successfully applied to various applications, e.g., for antibiotic discovery (Stokes et al., 2020)

or prediction of polypharmacy side effects (Zitnik et al., 2018). The flexibility of GNNs enables

the modeling of complex histological structures, with an arbitrarily large number of biological

entities and interactions, as well as entity descriptors.

In this thesis, we show that entity-centric graph representations of histology images combined

with GNNs present significant advantages over traditional CNN-based methods. Specifically,

analyzing histology images through the lens of graphs allows us to explore three research

directions in CompPath, namely: (i) scalability to build models that can operate on images of

arbitrary size and shape, (ii)interpretability, to devise transparent and explainable methods,

and (iii)weakly-supervised training settings to work with limited annotations, which are often

expensive and time consuming to acquire.

Thesis outline

This thesis is outlined as follows:

Part I: The first part of the dissertation covers graph representation learning and GNNs. It lays

down the theoretical foundations to learn and understand graph models in different training

scenarios.

Chapter 1: This chapter introduces graphs and GNNs, along with necessary notation, defini-
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tions, and graph theory to start working with graph models confidently. An overview of the

main graph learning tasks is provided. Then, by presenting a set of graph models desiderata,

we introduce and justify the Message Passing Neural Network (MPNN) framework, which lies

at the heart of most GNN models. We also present a spectral view of GNNs, where we highlight

that some formulations of GNN layers amount to a convolution operation generalized to

graph-structured data.

Chapter 2: One of the main questions in graph representation learning is to find the GNN

architecture that would lead to the best graph model. An approach is to study the expressive

power of the resulting GNN, with the end goal of being as expressive as graph isomorphism,

i.e., having a GNN model that can infer an injective mapping between the graph space and the

embedding space. This chapter builds on recent work that established that some instances of

MPNNs can be as powerful as the Weisfeiler-Lehman test of isomorphism for distinguishing

node-attributed graphs. We generalize these results to directed, node- and edge-attributed

graphs, and show that the resulting provably powerful method, EDGNN, competes with state-

of-the-art methods.

Chapter 3: The ability to interpret DL predictions is crucial for real-world deployment, es-

pecially in high-risk settings such as computer-aided diagnosis. This chapter introduces a

setting based on node-centric post-hoc interpretability to explain GNN models. Specifically,

four graph explainers are introduced, based on gradient importance (GRAPHGRAD-CAM and

GRAPHGRAD-CAM++), node pruning (GNNEXPLAINER), and layer-wise relevance propaga-

tion (GRAPHLRP). The proposed graph explainers provide node-level scores that characterize

their importance towards the prediction of a given graph. Complementary mathematical

derivations are included in Appendix A.

Part II: The second part of this thesis focuses on the analysis, understanding, and classification

of histology images using entity-graphs. Graph representations and graph learning algorithms

are employed to address three central challenges in computed-aided pathological diagnosis.

Namely, (i) scaling to giga-pixel images without the need for tile-based representations, (ii)

interpretable and explainable models to build trust between all stakeholders involved, i.e., the

medical staff, the patients and the algorithm, and (iii) weakly-supervised settings for learning

with limited annotations. The core contributions of this thesis are included in this part.

Chapter 4: This chapter introduces preliminaries about pathology, DigPath and CompPath.

An overview of the pathological diagnosis procedure is provided to further motivate the

digitization and automation of pathology in clinical routine. An introduction to basic DigPath

tools and image processing used in most CompPath projects, e.g., stain normalization, is also

provided. Finally, this chapter provides a high-level overview of the current state-of-the-art in

graph-based histological image analysis, with methods ranging from cell-graph modeling, to

hierarchical representations and patch-graph processing.

Chapter 5: This chapter presents HACT and HACT-Net, a HierArchical Cell-to-Tissue repre-
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sentation and model, respectively, for learning on histology images. HACT includes a low-level

cell-based representation of the image, combined with a high-level tissue-based represen-

tation and cell-to-tissue hierarchy to efficiently encode the tissue morphology. This chapter

also introduces BRACS, the largest to date, dataset for breast carcinoma subtyping of TRoIs.

In the proposed study, HACT-Net outperforms state-of-the-art DL approaches. HACT-Net

even proves to outperform pathologists, especially in challenging atypical TRoI classification.

This work marks an important step towards the use of DL algorithms for clinical diagnostic

purposes.

Chapter 6: This chapter emphasizes the need for explainable and interpretable models, which

provide sample-level explanations that are intuitive to pathologists. Specifically, a series of

entity-graph explainers are proposed that produce sparse and accurate explanations in the

node-space, i.e., at nuclei-level. By shifting the analysis from pixels to nuclei, prior pathological

knowledge can be leveraged to better understand what the algorithm is focusing on. This study

concludes that graph explainers highlight important morphological, e.g., nuclei chromatin,

and topological concepts, e.g., nuclei density, in agreement with pathologists’ diagnostic

criteria. This work is the first of its kind to prove the relevance of entity-graph representations

for Explainable AI (XAI). Complementary qualitative experiments are provided in Appendix C.

Chapter 7: Segmenting histopathology images into diagnostically relevant regions is imper-

ative to support timely and reliable decisions by pathologists. In this chapter, we propose

WHOLESIGHT, a weakly-supervised semantic segmentation method using tissue-graphs, to

jointly segment and classify whole-slide histopathology images of arbitrary shape and size.

WHOLESIGHT first constructs a tissue-graph representation for an input image, where the

nodes depict tissue regions, and the edges describe interactions among tissue regions. Sub-

sequently, the method employs a graph-classification head to classify WSIs, followed by a

post-hoc feature attribution technique to derive node-level pseudo labels. Finally, a node clas-

sification head is trained using the pseudo labels to segment WSIs. WHOLESIGHT is evaluated

on three public prostate cancer WSI datasets from three pathology labs, proving its classifica-

tion and segmentation capabilities. Further, two Bayesian variants, WHOLESIGHT-MCD and

WHOLESIGHT-DE, are proposed based on MC-dropout and deep ensembles, which improve

the generalization of WHOLESIGHT over external test datasets. The generalization capabili-

ties of the methods are quantified in terms of segmentation and classification performance,

uncertainty estimations, and model calibration analyses. Complementary experiments are

provided in Appendix D. In addition, Appendix B presents HistoCartography, a library de-

signed to ease the development of graph-based CompPath tools, and used to implement the

pipelines described in Chapter 5,6,7.

Chapter 8: This chapter summarizes the main contributions of the thesis by discussing

the findings and their limitations. Furthermore, a perspective on future challenges and

opportunities is provided, concluding the thesis.
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Contributions

The main contributions of this thesis are summarized as (in order of appearance):

• EDGNN, a novel GNN for learning on the directed node- and edge-labeled graphs;

• An expressivity analysis of EDGNN, concluding that EDGNN can be as expressive as the

1-dimensional Weisfeiler–Lehman test of graph isomorphism;

• A set of four architecture-agnostic graph explainers that produce node-level importance

scores for GNN interpretability;

• HACT and HACT-Net, a novel representation and neural network, respectively, for

learning on histology images with entity-based processing;

• BRACS, the largest to date dataset of breast carcinoma tumor Regions-of-Interest for

tumor subtyping;

• A method to analyze graph explanations with interpretable entity-level concepts, exem-

plified with a nuclei-level analysis of BRACS samples;

• WHOLESIGHT, a novel pipeline for joint classification and segmentation of prostatic

WSIs using weakly-supervised learning;

• A study of generalization, uncertain estimation and calibration of WHOLESIGHT and

Bayesian variants on in-domain and out-of-domain cohorts;

• HistoCartography, a Python library that includes image processing tools, graph building

helpers, graph models, and graph explainers unified under a user-friendly API.

Publications

Publications integrated in the thesis

• Chapter 2: "EDGNN: A Simple and Powerful GNN for Directed Labeled Graphs", Guil-

laume Jaume*, An-phi Nguyen*, Maria Rodriguez Martinez, Jean-Philippe Thiran, Maria

Gabrani. In International Conference on Learning Representations (ICLR) workshop on

Representation Learning on Graphs and Manifolds, 2019 (Jaume et al., 2019).

• Chapter 3 and Chapter 6: "Quantifying Explainers of Graph Neural Networks in Compu-

tational Pathology", Guillaume Jaume*, Pushpak Pati*, Behzad Bozorgtabar, Antonio

Foncubierta, Anna Maria Anniciello, Florinda Feroce, Tilman Rau, Jean-Philippe Thiran,

Maria Gabrani, Orcun Goksel. In Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2021 (Jaume et al., 2021b).
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• Chapter 3 and Chapter 6: "Towards Explainable Graph Representations in Digital Pathol-

ogy", Guillaume Jaume*, Pushpak Pati*, Antonio Foncubierta, Florinda Feroce, Gio-

sue Scognamiglio, Anna Maria Anniciello, Jean-Philippe Thiran, Orcun Goksel, Maria

Gabrani. In International Conference on Machine Learning (ICML), ICML Workshop on

Computational Biology, 2020, [Best Paper Award] (Jaume et al., 2020).

• Chapter 5: "Hierarchical Graph Representations in Digital Pathology", Pushpak Pati*,

Guillaume Jaume*, Antonio Foncubierta, Florinda Feroce, Anna Maria Anniciello, Gio-

suè Scognamiglio, Nadia Brancati, Maryse Fiche, Estelle Dubruc, Daniel Riccio, Maurizio

Di Bonito, Giuseppe De Pietro, Gerardo Botti, Jean-Philippe Thiran, Maria Frucci, Orcun

Goksel, Maria Gabrani. In Medical Image Analysis, 2021 (Pati et al., 2021a).

• Chapter 5: "HACT-Net: A Hierarchical Cell-to-Tissue Graph Neural Network for Histopatho-

logical Image Classification", Pushpak Pati*, Guillaume Jaume*, Lauren Alisha Fernan-

des, Antonio Foncubierta-Rodríguez, Florinda Feroce, Anna Maria Anniciello, Giosue

Scognamiglio, Nadia Brancati, Daniel Riccio, Maurizio Di Bonito, Giuseppe De Pietro,

Gerardo Botti, Orcun Goksel, Jean-Philippe Thiran, Maria Frucci, Maria Gabrani. In

International Conference on Medical Image Computing and Computer Assisted Inter-

vention (MICCAI), MICCAI Workshop on Graphs in Medical Imaging, 2020, [Best Paper

Award] (Pati et al., 2020).

• Chapter 7: "Learning Whole-Slide Segmentation from Inexact and Incomplete Labels

using Tissue Graphs", Valentin Anklin*, Pushpak Pati*, Guillaume Jaume*, Behzad

Bozorgtabar, Antonio Foncubierta-Rodríguez, Jean-Philippe Thiran, Mathilde Sibony,

Maria Gabrani, Orcun Goksel. In Medical Image Computing and Computer Assisted

Interventions (MICCAI), 2021 (Anklin et al., 2021).

• Chapter 7: "Weakly Supervised Learning for Joint Whole-Slide Segmentation and Clas-

sification in Prostate Cancer", Guillaume Jaume*, Pushpak Pati*, Behzad Bozorgtabar,

Jean-Philippe Thiran, Orcun Goksel Maria Gabrani. In Preprint, 2021 (Jaume et al.,

2021c).

• Appendix B: "HistoCartography: A Toolkit for Graph Analytics in Digital Pathology",

Guillaume Jaume*, Pushpak Pati*, Valentin Anklin, Antonio Foncubierta, Maria Gabrani.

In International Conference on Medical Image Computing and Computer Assisted Inter-

vention (MICCAI), Third MICCAI workshop on Computational Pathology, 2021, [Best

Software Paper Award](Jaume et al., 2021a).

External publications

Several publications published during the thesis do not appear in this manuscript. For the

sake of completeness, we provide the list below:

• "Image-Level Attentional Context Modeling Using Nested-Graph Neural Networks",
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Guillaume Jaume, Behzad Bozorgtabar, Hazim Kemal Ekenel, Jean-Philippe Thiran,

Maria Gabrani. In Conference on Neural Information Processing Systems (NeurIPS),

Workshop on Relational Representation Learning, 2018.

• "FUNSD: A Dataset for Form Understanding in Noisy Scanned Documents", Guillaume

Jaume, Hazim Kemal Ekenel, Jean-Philippe Thiran. In International Conference on

Document Analysis and Recognition (ICDAR), 2019.

• "BRACS: A Dataset for BReAst Carcinoma Subtyping in H&E Histology Images", Nadia

Brancati, Anna Maria Anniciello, Pushpak Pati, Daniel Riccio, Giosuè Scognamiglio, Guil-

laume Jaume, Giuseppe De Pietro, Maurizio Di Bonito, Antonio Foncubierta, Gerardo

Botti, Maria Gabrani, Florinda Feroce, Maria Frucci. In Under review, 2021.
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1 The Graph Neural Network Model

A graph is a mathematical structure that can represent entities, or nodes, and the way they

interact with each other, in the form of edges. Graphs are ubiquitous data as they can represent

any complex system. For instance, molecules can be represented as graphs, where atoms

represent nodes that are connected to each other via chemical bonds that represent the edges.

Social networks are composed of users that represent the nodes, and the user interactions

represent the edges. Differently, physical systems can also be represented as graphs where

objects, i.e., the nodes, interact with each other through physical forces, i.e., the edges.

Learning to model graphs is of high significance to encode, understand, and predict the

behavior of complex systems. Such models can be used to predict molecular properties

associated to chemical compounds, recommend new connections to a user in a social network,

identify communities to control the spread of a virus in a population, etc.

The advent of deep learning has brought significant breakthroughs in AI research with the

development of neural network models able to learn on large-scale datasets in CV (Krizhevsky

et al., 2012; He et al., 2017; Ren et al., 2017), Natural Language Processing (NLP) (Kenton et al.,

2017), among others. In parallel, several research groups started to extend these successful

neural approaches to graph-structured data, leading to the development of Graph Neural

Networks.

In this chapter, we start by formally introducing graphs and some of their properties. We

present an overview of the tasks that can benefit from the development of neural network-

based graph models. Then, GNNs and the MPNN framework are introduced as universal

graph models that can be used to encode any graph dataset. Finally, we provide a theoretical

motivation justifying the design of MPNNs using graph spectral theory. We emphasize that

graph representation learning is an extensively discussed topic in the field of DL today, and

that this chapter is by no means a review of all existing approaches. Rather, it is intended to

provide sufficient background knowledge to understand the contributions of this thesis. The

reader can refer to Wu et al. (2020); Zhou et al. (2021, 2019b); Hamilton et al. (2020) for a review

of GNN taxonomy and graph representation learning.
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1.1 Graphs: definition and notation

A graph G is a pair (VG ,EG ), where VG is the set of nodes and EG is the set of edges. The number

of nodes and edges in G are denoted as |VG | and |EG |, respectively. The directed edge (u, v) ∈ EG

for u, v ∈VG is an edge starting in u and ending in v . The graph edges can be represented by

an adjacency matrix, denoted as A ∈R(|VG |×|VG |), where Au,v = 1, if (u, v) ∈ EG . When there is

no ambiguity, the node and edge sets will simply be denoted as V and E , respectively.

For each node v ∈VG , we define its neighborhood as N (v) := {u ∈VG | (v,u) ∈ EG ∨ (u, v) ∈ EG }.

When we are dealing with directed graphs, we distinguish between incoming neighbors

N I (v) := {u ∈VG | (u, v) ∈ EG } and outgoing neighbors N O(v) := {u ∈VG | (v,u) ∈ EG }. Natu-

rally, N (v) =N I (v)∪N O(v). The cardinalities |N (v)|, |N I (v)| and |N O(v)| of the neighbor-

hoods are referred to as the degree, the in-degree and the out-degree of node v , respectively,

and are denoted as dv , d I
v , dO

v .

In this thesis, we are concerned with attributed graphs G := (VG ,EG , H) where each node is

associated to attributes that characterize it. Node attributes are denoted as H ∈ R|V |×d , or

at the node-level as Hv,. := h(v) ∈ Rd . In some cases, we will also consider graphs with edge

attributes, G := (VG ,EG , H , HE ), where the edge attributes are denoted as HE ∈ R|E |×dE , or

H(u,v),. := hE (u, v) ∈Rd
E at edge-level. We refer to discrete node- and edge-attributes as labels,

e.g., atoms in a molecule, company names in a knowledge graph, etc. Multi-dimensional

continuous node- and edge-attributes are referred to as features. Note that the graph signal

processing community usually employs the term signal to refer to attributes. Processed labels

and features are referred to as node- and edge-embeddings.

In the literature, the terms graph and network are often used interchangeably. In order to

avoid confusion with neural networks, and in agreement with the deep graph community, we

will only use the term graph. Similarly, nodes and vertices are both accepted terminologies. In

this work, we will only be using the term node for its intuitive character.

1.2 Main tasks to learn on graphs

In this section, we provide an overview of common graph machine learning tasks (see Fig-

ure 1.1).

Graph classification: This task is based on supervised learning where we are given a set of

graphs associated to a label that needs to be inferred. Graph classification is analogous to

supervised image classification, e.g., MNIST, CIFAR and ImageNet classification. For instance,

molecular property predictions are popular graph classification tasks e.g., mutagenicity or car-

cinogenicity characterization of chemical compounds. In CompPath, graph classification can

be used to predict the aggressiveness of tumor regions represented as graphs (see Chapter 5).

Node classification: This task is defined in a semi-supervised learning setting, where we are
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1.3. Graph Neural Networks

given a large, partially annotated graph. Nodes and edges are typically associated to additional

attributes. During training, known node labels are used to train a model, then during inference,

unknown nodes from the same graph are predicted. This setting breaks the i.i.d assumption of

DL as the nodes to classify are connected to each other, and therefore influence the prediction

of their neighbors. While theoretically limiting, such system can still be trained on large graphs

without issue, when the receptive field of the network is smaller than the graph diameter

(which is a reasonable assumption in knowledge graphs, social networks, etc.). Applications

range from citation network labeling to user’s preference prediction on social networks or

recommender systems of retail websites.

Link prediction: This task is also referred to as graph completion or relational inference. As

its name suggests, the task is to infer missing connections in a large, incomplete graph. The

setting is similar to node classification, with the difference that the system is trained to predict

the presence of edges between pairs of nodes. Applications in social networks can be the

recommendation of new connections, pages, content, which are evaluated as appropriate for

a given user.

Community detection: Community detection is the task of identifying clusters of nodes that

belong to the same category, i.e., community. This task can be trained in a supervised setting

with ground truth node-level labels (similar to node classification), or in an unsupervised

manner by computing a graph partitioning.

All these tasks require to be able to build node- and graph-level embeddings that encode graph

attributes and topological patterns in a unified way.

1.3 Graph Neural Networks

1.3.1 The need for deep graph networks

A question that emerges when modeling graph-structured data with neural networks is to

understand whether existing architectures can work on graphs, as well as to grasp their

limitations.

A first widely-employed class of neural networks are Recurrent Neural Networks (RNNs) that

are designed to operate on sequences. A sequence is a special type of graph, called a directed

path graph, that can be represented such that all its nodes and (directed) edges lie on a single

straight line. This type of graphs implicitly assumes a pre-defined ordering of its nodes. This

does not hold in the generic case, where the nodes are not numbered and ordered. Therefore,

RNNs can be used to model certain types of graphs, i.e., directed path graph, or when graphs

can be approximated by directed path graphs, e.g., in chemistry, molecular graphs can be

transformed into sequences using the SMILE representation (Weininger et al., 1988), and

further processed by a RNNs (Schwaller et al., 2018). RNNs are said to enforce a sequential

inductive bias in the network.
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Figure 1.1 – Overview of the main deep graph learning tasks. Graph classification, or regression,
learns graph-level representations for predicting graph-level properties. Node classification,
or regression, operates in a semi-supervised setting where some unknown node labels need to
be inferred from known ones. Link prediction predicts missing connections in an incomplete
graph. Community detection identifies clusters of similar nodes according to the graph
topology and optional node- and edge-attributes.

Another wide-spread neural network architecture are CNNs. CNNs were initially designed

to operate on images, and more generally on grid-like structures. Grids can also be seen as

graphs, with a fixed node neighborhood where each node is connected to its eight closest

neighbors. Fixed node neighborhoods allow to apply a fixed-size convolutional kernel to the

entire grid, therefore inducing a local inductive bias in the network. Naturally, such property

does not hold in general for graphs. In Section 1.4, we will see how 2D convolution defined on

grids can be extended to graphs with arbitrary node neighborhoods.

Finally, feed-forward neural networks, or Multi-Layer Perceptrons (MLPs), operate on vector-

ized inputs and induce a weak inductive bias to the network by building all-to-all connections

between the input features. MLP input features end up being all "connected", and can be seen

as a fully-connected graph.

These considerations highlight that (i) existing architectures are insufficient to learn on arbi-

trary graph structures, hence motivating the need to develop a novel class of neural networks,

and (ii) developing a generic deep neural framework will generalize some existing neural

architectures, as all the aforementioned data structures can be represented as graphs.

1.3.2 Desiderata for a neural graph model

We provide a list of properties that a neural graph model should fulfil to efficiently learn on

graph-structured data.
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1.3. Graph Neural Networks

1. Permutation invariant: The node ordering of a graph is arbitrary, re-ordering them does

not change the graph itself, but only its representation. Therefore, a graph model should

be invariant to node permutation, thus ensuring that different graph representations

provide the same graph embedding.

2. Scalable and adaptive: A graph model should be scalable to an arbitrary large input

graph, with an arbitrary number of nodes, edges, node-, and edge-attributes. Moreover,

all the graphs (as defined in Definition 1.1), i.e., w/ and w/o directed edges, w/ and w/o

node- and edge-attributes, should be able to be encoded by the same type of model, i.e.,

only minor architectural changes should be needed to adapt to different graph types.

Also, no prior knowledge beyond the mathematical description of the graph should be

required to train the graph model, i.e., the model should remain application-agnostic.

3. Local: A graph model should follow a locality principle that states that nearby nodes

and edges share more information than distant ones. Intuitively, a graph model should

aggregate information from local topological patterns, similarly to the concept of convo-

lution in image representation learning. The connection between CNNs and GNNs will

be discussed in this chapter. To build arbitrary deep networks, a graph model should

also be composed of layers that can be stacked, thus increasing the network receptive

field.

4. Encode all graph properties: A graph model should leverage all the information en-

coded in the graph, i.e., the graph adjacency that encodes the graph topological proper-

ties along with the graph attributes. Both information should be jointly encoded in a

single neural network.

1.3.3 Message Passing Neural Networks

We are first presenting MPNNs (Gilmer et al., 2017), a generic framework to build node em-

beddings of node-attributed graphs. Then, we discuss its generalization to generic attributed

graphs. The theoretical foundations justifying this formulation will be presented in Section 1.4

and in Chapter 2. As we present the framework, we put it in relation with the aforementioned

list of graph model desiderata.

The node features h(v), ∀v ∈ V are iteratively updated via a two-step procedure, denoted

as the i) AGGREGATE, and ii) UPDATE steps. In the AGGREGATE step for node v , the features

of neighboring nodes N (v) are aggregated into a single feature representation, denoted as

a(v). In order to be invariant to node permutation (see Desideratum 1), the AGGREGATE step

is chosen to be a permutation invariant function, e.g., a sum, mean, etc. In the UPDATE step,

the node embeddings of node v are updated by using the current node embeddings and the

aggregated features from the AGGREGATE step. Typically, the UPDATE step will be a trainable

feed-forward neural network. This step is building local (see Desideratum 3) representations

by jointly encoding the graph topology and attributes, herein fulfilling Desideratum 4. A

series of T such iterations, denoted as GNN layers, are employed to obtain updated node
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(b) GCN

Figure 1.2 – Overview of MPNN (left) and the GCN (right).

embeddings ∀v ∈V , incorporating information up to T -hops from each node. Therefore, by

increasing the number of layers, we increase the receptive field of the network, analogously to

CNNs, and addressing Desideratum 3. Finally, we build a fixed-size graph-level embedding,

denoted as hG , by pooling the node features h(T )(v) in a READOUT step. Naturally, this step is

only employed for graph classification tasks, where a graph embedding is needed. Similarly to

the AGGREGATE step, the READOUT needs to be a permutation invariant function. In this way,

the algorithm can provide graph embeddings of the same dimension, irrespective of the graph

size, in accordance with Desideratum 2. To allow for back-propagation and GNN training, the

AGGREGATE, UPDATE, and READOUT operations must be differentiable. Formally, the three

steps are presented as,

a(t+1)(v) = AGGREGATE ( {h(t )(u) : u ∈N (v) } ) (1.1)

h(t+1)(v) = UPDATE (h(t )(v), a(t+1)(v) ) (1.2)

hG = READOUT ( {h(T )(v) : v ∈V } ) (1.3)

Figure 1.2 (left) presents an overview of the MPNN framework by highlighting a node update

iteration.

A straightforward MPNN is to use a sum as AGGREGATE and READOUT, and a shallow MLP as

UPDATE function, which can be expressed as:

h(t )(v) =σ
(
h(t−1)(v)+ ∑

u∈N (v)
h(t−1)(u)

)
W (t ) (1.4)

where σ is the Rectified Linear Unit (ReLU) activation function, W (t ) ∈ Rd (t )×d (t+1)
are train-
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1.3. Graph Neural Networks

able parameters, and d (t ), d (t+1) are the node embedding dimensions at layer t and t +1,

respectively.

1.3.4 Generalized Message Passing

MPNNs are widely used and most of the popular GNN architectures can be expressed with

this framework, e.g., Kipf and Welling (2017); Xu et al. (2019b); Morris et al. (2018); Hamilton

et al. (2017); Velickovic et al. (2018). These architectures share in common that they operate at

node-level. However, graphs can also include edge- and graph-level information that should

be modeled by the GNN. To address this limitation, and fulfil Desiderata 2, Battaglia et al.

(2018) proposed the generalized message passing where the edges and the graph are also

represented by embeddings that are updated at each layer. Formally, the generalized MPNN is

expressed as:

h(t+1)
E (u, v) = UPDATEE

(
h(t )

E (u, v),h(t )(u),h(t )(v),h(t )
G

)
(1.5)

a(t+1)(v) = AGGREGATE

(
{h(t+1)

E (u, v) : u ∈N (v) }
)

(1.6)

h(t+1)(v) = UPDATEV

(
h(t )(v), a(t+1)(v),h(t )

G

)
(1.7)

h(t+1)
G = UPDATEG

(
h(t )

G , {h(t+1)
E (u, v), ∀(u, v) ∈ E }, {h(t+1)(v), ∀v ∈V }

)
(1.8)

An overview of the generalized MPNN is provided in Figure 1.3. Chapter 2 will present a GNN

that takes inspiration from this formalism.
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Figure 1.3 – Overview of the generalized MPNN framework.
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1.4 Theoretical foundations of GNNs

MPNNs and GNNs can be justified and derived from three different theoretical standpoints.

First, GNNs were developed based on graph signal processing (Shuman et al., 2013; Bron-

stein et al., 2017; Ortega et al., 2018), as a generalization of the convolution operation to

graphs (Bruna et al., 2014; Defferrard et al., 2016; Kipf and Welling, 2017). In parallel, Dai

et al. (2016) established a parallel between MPNNs and the message passing algorithm used

for probabilistic inference in graphical models, i.e., believe propagation. Finally, Hamilton

et al. (2017) and Kipf and Welling (2017) highlighted the similarities between GNNs and the

Weisfeiler-Lehman test of graph isomorphism. This connection was further studied by Morris

et al. (2018); Xu et al. (2019b); Jaume et al. (2019) to characterize the expressivity of GNNs

(see Chapter 2). In this section, we provide the key steps that led to the Graph Convolutional

Network (GCN) formulation from the graph spectral theory.

The GCN aims to extend the concept of convolution to graphs, with the objective to enforce a

locality principle with locally spatialized operations. Our starting point is the property that

a convolution in the spatial domain corresponds to a multiplication in the spectral domain.

Therefore, we need to define a spectral transformation of graphs.

Formally, let us define the (continuous) convolution operation of two functions f and g as:

( f ? g )(x) =
∫
Rn

f (x)g (x−y)dy (1.9)

where x and y are n-dimensional vectors. One of the main results of signal processing is that

convolution can be defined using the Fourier transform as:

( f ? g )(x) =F−1(F ( f (x))F (g (x))) (1.10)

where the Fourier transform is defined as F ( f (x)) = f̂ (ξ) = ∫
Rn f (x)exp(−2πxT ξi )dx. In signal

processing terminology, convoluting a signal f by another h can be seen as filtering the

individual elements in f (x) by h.

To apply this principle to graphs, we introduce the laplacian operator defined as L = D − A,

where D is the diagonal degree matrix computed as di i =∑
j di j and A is the graph adjacency

matrix. Intuitively, the multiplication of a signal by the laplacian corresponds to computing

the difference between the signal at a node v and its neighbors N (v). A central result of

graph signal processing theory is that the eigenfunctions of the laplacian are the same as the

frequency modes of the Fourier transform (Shuman et al., 2013). Therefore, we can generalize

the Fourier transform of a graph by looking at the eigendecomposition of the graph laplacian.

Formally, by taking an eigenvalue decomposition of L, we obtain the "frequencies" of the

graph, which can be expressed as L =U TΛU , where U are the eigenvectors andΛ is a diagonal
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1.4. Theoretical foundations of GNNs

matrix with the eigenvalues on its diagonal. The convolution of a function f ∈R|V | by a filter h

is then given by:

f ?h =U (U T f U T h) (1.11)

While this formulation is valid, computing the eigenvalue decomposition is expensive and

does not scale to large graphs. To overcome this limitation Defferrard et al. (2016) proposed to

approximate it with a Chebyshev polynomials expansion as:

f ?h ≈
K∑

k=0
θ′k Tk (L̃)h (1.12)

where L̃ = 2
λmax

L+ IN , θ′ ∈RK and Tk is the Chebyshev polynomial of order k. Kipf and Welling

(2017) proposed to further simplify this formulation by using 1-hop convolutions, i.e., by

setting K = 1, and to apply several layers, thereby increasing the receptive field. We end up

with the GCN formulation that defines how node embeddings are updated:

H (t+1) =σ(D̃− 1
2 ÃD̃− 1

2 H (t )W (t )) (1.13)

where σ is an activation function (e.g., ReLU), W (t ) is the weight matrix at layer t , Ã = A+ I|V |,
D̃ =∑

j Ãi j and H (t ) ∈R|V |×d are the node features at layer t .

Equation (1.13) can be rewritten at the node-level as:

h(t+1)(v) =σ
( ∑

u∈v
⋃

N (v)

1

dudv
h(t )(u)W (t )

)
(1.14)

A block diagram of the GCN is provided in Figure 1.2. We observe that Equation (1.14) is a

particular case of MPNN, where the AGGREGATE step is a degree normalized sum, and the

UPDATE step is a one-layer feed-forward neural network.

In this chapter, we provided an overview of deep graph learning, the MPNN framework, and

theoretical justifications based on graph spectral theory. The reader should have acquired

necessary prerequisites about graphs and GNNs to confidently understand the graph-related

contributions of this thesis.

19





2 Expressitivity of Graph Neural Net-
works

The ideas, methods and results presented in this chapter are published in:

• "EDGNN: A Simple and Powerful GNN for Directed Labeled Graphs", Guillaume Jaume*,

An-phi Nguyen*, Maria Rodriguez Martinez, Jean-Philippe Thiran, Maria Gabrani, Inter-

national Conference on Learning Representations (ICLR) workshop on Representation

Learning on Graphs and Manifolds, 2019 (Jaume et al., 2019).

GJ (the author of this thesis) is sharing first co-authorship with AN. The ideas, concepts and

experiments were designed by GJ and AN. GJ was responsible for implementing the code

used to run the experiments, such as the GNN models, the dataloaders, and the experiment

manager. AN defined the mathematical description, GJ and AN derived the proofs. JPT, MRM

and NG supervised and supported GJ in organizing his research. The manuscript was written

by GJ and AN.

2.1 Introduction

MPNNs define a framework for learning on graph-structured data based on a series of node

aggregations and updates. The design choices behind the selection of AGGREGATE, UPDATE

and READOUT functions will change what the model can or cannot learn, which we refer to as

model expressivity. Powerful models are expected to be expressive, as they can represent any

input in a distinct embedding location. In the context of graphs, a GNN is said to be expressive

if it can distinguish any pair of non-isomorphic graphs. In other words, if the GNN induces

an injective mapping between the space of graphs and some embedding space. Xu et al.

(2019b) and Morris et al. (2018) independently proved that certain formulations of MPNNs

can be as powerful as the Weisfeiler–Lehman (WL) test of graph isomorphism (Weisfeiler and

Lehman, 1968). This result is similar, in spirit, to the Universal Approximation Theorem for

neural networks (Cybenkot, 1989). In practice, this means that there exist MPNNs able to learn

unique representations for (almost) all undirected node-labeled graphs.
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In this chapter, we present the main results in Morris et al. (2018), by introducing a GNN

that can provably be as powerful as the 1-dimensional WL test of graph isomorphism. Then,

we extend this result to directed graphs with both node- and edge-labels. In particular, by

extending the theoretical framework provided by Morris et al. (2018), we show that there

exist MPNNs as powerful as the 1-dimensional WL algorithm for directed labeled graphs.

Although previous work proposed GNNs that can operate on directed node- and edge-labeled

graphs, e.g., Li et al. (2016); Niepert et al. (2016); Simonovsky et al. (2017); Beck et al. (2018);

Schlichtkrull et al. (2018), we present a theoretically-grounded GNN formulation. This class

of graphs is encountered in many applications, including scene graph generation (Xu et al.,

2017a; Li et al., 2018b; Zellers et al., 2017), link prediction on knowledge graphs (Schlichtkrull

et al., 2018) or molecule classification (Xu et al., 2019b; Morris et al., 2018). Specifically, our

contributions are:

• We propose EDGNN, a GNN able to operate on graphs with both node- and edge-labels,

and directed edges;

• We show that EDGNN can be as powerful as the (extended) 1-dimensional WL test for

directed labeled graphs;

• We experimentally show the power of this new formulation on node and graph classifi-

cation tasks.

2.2 Theoretical framework

2.2.1 Notation and setup

We re-use the notation introduced in Chapter 1, i.e., a graph G is defined as a pair (VG ,EG ),

where VG is the set of nodes and EG is the set of edges.

In this work, we are interested in graphs with both node- and edge-labels, and directed edges.

We therefore assume that, given a graph G , there exist a node-labeling function lV : VG →X

and an edge-labeling function lE : EG →Z that assign to each node and edge of G a label from

countable sets X and Z , i.e., a set whose cardinality |X | is a subset ofN. For the rest of this

paper, we will refer to graphs with node- and edge-labels simply as labeled graphs.

As we are dealing with directed graphs, the node neighborhood N (v) := {u ∈ V | (v,u) ∈
E ∨ (u, v) ∈ E } is split between incoming neighbors N I (v) := {u ∈V | (u, v) ∈ E } and outgoing

neighbors N O(v) := {u ∈V | (v,u) ∈ E }.

Definition 2.2.1. Two directed and labeled graphs G and H are isomorphic if there exists

a bijection f : VG → VH such that (u, v) ∈ EG if and only if ( f (u), f (v)) ∈ EH with lVG (v) =
lVH ( f (v)) and lEG (u, v) = lEH ( f (u), f (v)).

Definition 2.2.2. We define a multiset as an ordered pair, denoted as X = {{S,m}}, where S is the
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2.2. Theoretical framework

underlying set of X that is formed from its distinct elements, and m : S →N≥1 is the multiplicity

of each element in S.

2.2.2 The Weisfeiler–Lehman algorithm

The Weisfeiler–Lehman (WL) test (Weisfeiler and Lehman, 1968) is an algorithm to distinguish

whether two graphs are non-isomorphic. We present the test in its 1-dimensional variant,

also known as the naive vertex refinement. We will start by presenting the WL test on node-

labeled graphs, and later discuss its extension to directed labeled graphs. Finally, we discuss

its generalization to k-dimensions, i.e., k-dimensional WL test.

1-dimensional WL test of node-labeled graphs

The goal is to define an algorithm that can discriminate isomorphic from non-isomorphic

graphs. The test processes as follows. At initialization, the nodes are labeled consistently with

the node-labeling function lV . We call this the initial coloring of the graph and we denote it

as c(0)
l (v) := lV (v), ∀v ∈ V . The algorithm then proceeds in a recursive fashion. At iteration

t , new labels are computed for each node from the current labels of the node itself and its

neighbors, i.e.,

c(t+1)
l (v) = g

(
c(t )

l (v),
{{

c(t )
l (u) : u ∈N (v)

}})
, (2.1)

where g is an injective hashing function. Each iteration is performed in parallel for the two

graphs to be tested, G and H . If at some iteration t , the number of nodes assigned to a label

l ∈X differs for the two graphs, then the algorithm stops, concluding that the two graphs are

not isomorphic. Otherwise, the algorithm will stop whenever a stable coloring is achieved, i.e.,

whenever c(t )
l (vG ) = c(t )

l (vH ) for all t ≥ T and for any pair (vG , vH ) with vG ∈VG , vH ∈VH , and

c(T )
l (vG ) = c(T )

l (vH ). This is guaranteed to happen at most after T = max{|VG |, |VH |} iterations.

In this case, G and H are considered isomorphic. Figure 2.1 exemplifies the node coloring

process used in the WL test.

Even tough the WL test is able to distinguish a wide range of graphs, there exists a class of

(fully-characterized) graphs that cannot be discriminated by the WL test. The reader can

refer to Cai et al. (1992) for a detailed description. Some efficient implementations were

also introduced, for instance Grohe et al. (2017) proposed a flavor with quasi-linear runtime

complexity w.r.to the number of nodes.

1-dimensional WL test of labeled graphs

The extension of the WL test to a directed graph with edge labels is straightforward (Grohe

et al., 2017; Orsini et al., 2016). During the recursive step, for each node v , we need to include

the in-degree and out-degree of v separately in the hashing function w.r.to each edge label.
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Figure 2.1 – Example of the 1-dimensional WL test in an undirected node-labeled graph. At
step t = 0, the node colors are assigned to the node labels (all 0s in this example). At step t = 1,
new colors are assigned according to the neighborhood of each node, i.e., four nodes have two
neighbors with label 0, and two with three neighbors with label 0. At step t = 2, this procedure
is producing a stable coloring, and the algorithm stops.

Let us denote an edge label as e ∈Z . For each node v , we then define n I
v (e) := |{u ∈N I (v) | lE (u, v) =

e}| as the number of edges incoming to v with label e. Similarly, nO
v (e) is defined for outgoing

edges. Then, Equation (2.1) can be adapted to directed labeled graphs as:

c(t+1)
l (v) = g

(
c(t )

l (v),
{{

c(t )
l (u) : u ∈N (v)

}}
,{(

n I
v (e),e

)
: ∃(u, v) ∈ E with lE (u, v) = e

}
,{(

nO
v (e),e

)
: ∃(v,u) ∈ E with lE (v,u) = e

})
.

(2.2)

The rest of the algorithm is executed in the same way as in the standard scenario.

k-dimensional WL test

While this work focuses on the 1-dimensional WL test, high-order variants exist, referred to as

k-dimensional WL tests, that are strictly more powerful than the 1-dimensional version. It can

be shown that the pairs of graphs that can be discriminated by the k-dimensional WL test form

a superset of the ones that are discriminated by the (k −1)-dimensional version (Kiefer et al.,

2020). Specifically, higher-order tests color k-tuples of nodes, instead of nodes themselves

(see Morris et al. (2018)). The hashing function is modified accordingly to operate at tuple-

level. While gaining in expressive power, the algorithm complexity is increasing with k. The

reader can refer to Kiefer et al. (2020) for a thorough description.

2.2.3 Provably powerful GNNs

Graph neural networks architectures implement a neighborhood aggregation strategy. Sev-

eral designs exist, where different AGGREGATE, UPDATE, READOUT functions (satisfying the

properties presented in Chapter 1) lead to different model expressivities. In other words, the
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2.2. Theoretical framework

GNN architectural properties influence the resulting functions it can represent and learn. In

particular, Morris et al. (2018) studied the expressivity of the GNN with a node update function

defined as:

h(t+1)(v) =σ
(
h(t )(v)W (t )

1 + ∑
u∈N (v)

h(t )(u)W (t )
2

)
(1-GNN)

where h(t )(v) ∈ Rd (t )
and W (t )

1 ,W (t )
2 ∈ Rd (t )×d (t+1)

are weight matrices. Note that the initial

representation h(0)(v) is set to be consistent with the node-labeling function lV , i.e., h(0)(v) =
h(0)(u) if and only if lV (v) = lV (u) for all v,u ∈V . This GNN flavor, referred to as 1-GNN, was

initially proposed by Hamilton et al. (2017).

GNN expressivity in node-labeled graphs

Theorem 2.2.1 (Theorem 1 in Morris et al. (2018)). Let G be a node-labeled graph. Then for all

t ≥ 0 and for all choices of initial colorings h(0) consistent with lV , and weights W (t )
1 ,W (t )

2

c(t )
l (v) = c(t )

l (u) ⇒ h(t )(v) = h(t )(u) ∀u, v ∈V (2.3)

with c(t )
l and h(t ) defined in Equation (2.2) and Equation (1-GNN), respectively.

In other words, the GNN described by Equation (1-GNN) cannot have more expressive power

in terms of being able to discriminate between non-isomorphic graphs than the 1-dimensional

WL algorithm.

Theorem 2.2.2 (Theorem 2 in Morris et al. (2018)). Let G be a node-labeled graph with finite

node degree. Then there exists a sequence (W (t )
1 ,W (t )

2 ) with t ≥ 0 such that

c(t )
l (v) = c(t )

l (u) ⇔ h(t )(v) = h(t )(u) ∀u, v ∈V (2.4)

Which translates to the observation that there exists a sequence of parameters (W (t )
1 ,W (t )

2 )

such that the GNN implemented as in Equation (1-GNN) has exactly the same expressive

power as the 1-dimensional WL test.

The reader can refer to the supplementary material of Morris et al. (2018) for detailed proofs.

Intuitively, the proof is based on the relation between a WL test iteration and a GNN layer. The

hashing function in Equation (2.1) is "replaced" by the projections induced by the weights

(W (t )
1 ,W (t )

2 ), that can, by using the Universal Approximation Theorem (Cybenkot, 1989) of

neural networks, approximate the hashing function.

The results derived by Morris et al. (2018) were also concurrently obtained by Xu et al. (2019b),

that proposed the Graph Isomorphism Network (GIN) model, an alternative GNN with the
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(b) 1-GNN

Figure 2.2 – Overview of a GNN and 1-GNN layer, two architectures that can be as powerful as
the 1-dimensional WL test of graph isomorphism.

same expressive power. Specifically, the GIN node update function is defined as:

h(t+1)(v) = MLP
(
(1+ε(t ))h(t )(v)+ ∑

u∈N (v)
h(t )(u)

)
, (GIN)

where ε(t ) is an optional trainable parameter.

An overview of the GIN and 1-GNN architecture is provided in Figure 2.2.

Extension to directed labeled graphs

The extension of the (1-GNN) to directed labeled graphs follows the WL test extension. We

need to augment the equation with embeddings for the labeled edges with incoming and

outgoing edges considered separately, i.e.,

h(t+1)(v) =σ
(
h(t )(v)W (t )

1 + ∑
u∈N (v)

h(t )(u)W (t )
2 +

+ ∑
(u,v)∈E

hE
(
lE (u, v)

)
W (t )

3 + ∑
(v,u)∈E

hE
(
lE (v,u)

)
W (t )

4

)
,

(2.5)

where hE
(
lE (v,u)

) ∈RdE is the dE -dimensional embedding of the edge (v,u) with label lE (v,u).

The embeddings hE should be defined such that
∑

(u,v)∈E hE
(
lE (u, v)

)=∑
(u,v ′)∈E hE

(
lE (u, v ′)

)
if and only if

{(
n I

v (e),e
)

: ∃(u, v) ∈ E with lE (u, v) = e
}= {(

n I
v ′(e),e

)
: ∃(u, v ′) ∈ E with lE (u, v ′) =

e
}
. The same should hold for outgoing edges. In practice, this can be achieved by using a

one-hot encoding of the edge labels. An EDGNN layer is presented in Figure 2.3.
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Figure 2.3 – Overview of the EDGNN architecture.

We can now extend Theorem 2.2.1 and Theorem 2.2.2 to directed labeled graphs.

Theorem 2.2.3 (Extension of Theorem 1 in Morris et al. (2018)). Let G be a directed labeled

graph. Then for all t ≥ 0 and for all choices of initial colorings h(0) consistent with lV and of

edge embeddings fE consistent with lE , and weights W (t )
1 ,W (t )

2 ,W (t )
3 ,W (t )

4

c(t )
l (v) = c(t )

l (u) ⇒ h(t )(v) = h(t )(u) ∀u, v ∈V (2.6)

with c(t )
l and h(t ) defined in Equation (2.2) and Equation (2.5), respectively.

Morris et al. (2018) proved this theorem by induction. The proof is essentially the same for

our extended case. In fact, as neither the labels lE nor the embeddings hE change over the

iterations, there is no need to include them in the induction step.

Theorem 2.2.4 (Extension of Theorem 2 in Morris et al. (2018)). Let G be a directed labeled

graph with finite node degree. Then there exists a sequence (W (t )
1 ,W (t )

2 ,W (t )
3 ,W (t )

4 ) with t ≥ 0

such that

c(t )
l (v) = c(t )

l (u) ⇔ h(t )(v) = h(t )(u) ∀u, v ∈V (2.7)

Proof: For a given node v , we define E I
v := {lE (u, v) : ∃(u, v) ∈ E } as the set of labels of edges

incoming into the node v . We then define LI
v := Concat

({(
n I

v (e),e
)

: ∀e ∈ E I
v

})
. That is, for each

node v , we create a label by concatenating all the labels of the incoming edges together with

their multiplicities n I
v (e). Similarly, we define EO

v and LO
v for the outgoing edges. Note that the

pairs
(
n I

v (e),e
)

and
(
nO

v (e),e
)

take values in L :=N×Z . Therefore, LI
v (or LO

v , respectively)

can take values in L |E I
v | (or L |EO

v |, respectively), where × denotes the Cartesian product.
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For all nodes v , we can construct a function gv : X ×L |E I
v |×L |EO

v | →Yv that bijectively maps

a tuple
(
c(t−1)

l (v),LI
v ,LO

v

)
to a label y ∈Yv .

Note that, as we are considering graphs with finite node degree, |N I (v)| and |N O(v)| (and,

consequently, |E I
v | and |EO

v |) are finite. Therefore, X ×L |E I
v |×L |EO

v | is a countable set because

the finite Cartesian product of countable sets is itself countable. Thus, as we built the function

gv to be bijective, the sets Yv , and their countable union Y := ⋃
v∈V Yv , are also countable

(for results on countable sets, refer to Patterson et al. (1967)).

We can then construct an injective hash function g ′ such that

g ′
(

y,
{
c(t−1)

l (u) : u ∈N (v)
})= g

(
c(t−1)

l (v),
{
c(t−1)

l (u) : u ∈N (v)
}
,LI

v ,LO
v

)
. (2.8)

where the right-hand side is the relabeling function defined in Equation (2.2). These construc-

tions highlight the fact that an iteration of the WL algorithm on a directed labeled graph is

the same as performing an iteration of the WL algorithm on a undirected node-labeled graph,

where node labels take values in an appropriately augmented label set Y .

The same equivalence can be highlighted between the GNN update functions in Equa-

tion (1-GNN) and Equation (2.5). In fact, Equation (2.5) can be rewritten as

h(t )(v) =σ
(
h(t−1)

Y
(v)W (t )

1,3,4 +
∑

u∈N (v)
h(t−1)(u)W (t )

2

)
, (2.9)

where h(t )
Y

(v) ∈R1×(d (t )+2dE ) is the embedding resulting from the (horizontal) concatenation of

h(t )(v),
∑

(u,v)∈E hE
(
u, v, lE (u, v)

)
, and

∑
(v,u)∈E hE

(
v,u, lE (v,u)

)
, whereas W (t )

1,3,4 is the (vertical)

concatenation of W (t )
1 , W (t )

3 , and W (t )
4 .

The reformulations presented in Equation (2.8) and Equation (2.9) allow us to treat our prob-

lem as one of undirected graphs with labels only for nodes. We can therefore prove this

theorem by directly using the proof of Theorem 2 in Morris et al. (2018).

Graph classification

For graph classification tasks, a graph-level representation hG is needed. We build it from the

node representations h(t )(v) following the formulation in Xu et al. (2019b):

hG = Concat
({ ∑

v∈VG

h(t )(v)
∣∣∣ t = 0, . . . ,T

})
. (2.10)

It can be shown (see Xu et al. (2019b)) that Equation (2.10) builds graph embeddings that

preserve the expressive power of the GNN. Intuitively, this is guaranteed by the fact that

the sum operator is injective over the multiset induced by the node embeddings. Note that,

although T should theoretically be at least |VG | (Section 2.2.2), only a few layers (i.e., iterations)
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are used in practice to update the node representations. An MLP classifier is finally applied to

the graph representation to perform classification (or regression).

2.2.4 Extension to continuous node features

In many real-world applications, the node features take values inRn , and are therefore not

drawn from a countable set. For instance, CNN-based deep features and location-based

features represent continuous feature spaces where Theorem 2.2.3 and Theorem 2.2.4 do not

hold.

Extensions of the work by Morris et al. (2018) and Xu et al. (2019b) showed that for continuous

node features, the use of multiple permutation-invariant aggregators, such as sum and max,

allows to increase the model expressiveness (Dehmamy et al., 2019; Corso et al., 2020). To

this end, Corso et al. (2020) proposed the Principal Neighborhood Aggregation (PNA) network

that employs a combination of aggregators, which are generalizing the sum operator used in

GIN, and degree-scalers, used to scale neighboring aggregated-messages according to the node

degree. They showed that to discriminate multisets of size n whose underlying set is R, at least

n aggregators are needed, where an aggregator is defined as f : {{.}} →R.

Specifically, Corso et al. (2020) propose a node update defined as,

a (t +1)(v) =⊕u∈N (v) M (t )
(

h (t )(v), h (t )(u)
)

h (t +1)(v) =U (t )

(
h (t )(v), a (t +1)(v)

)
(2.11)

where t = 0, . . . ,T is the iteration index. As shown in Figure 2.4, for a node v , first, the neighbor-

ing node embeddings {h(t )(u)},∀u ∈N (v) are concatenated with h(t )(v), and processed by

M (t ), a MLP, to produce a set of neighborhood-aware embeddings. Then, multiple aggregators

with degree-scalers denoted by⊕ operate on the set of MLP embeddings to extract a set of

multivariate information that expresses the neighborhood distribution of node v . Finally,

these representations are concatenated to produce the aggregated message a(t+1)(v). After-

wards, a(t+1)(v) and h(t )(v) are concatenated and processed by U (t ), a MLP, to update the

node embedding h(t+1)(v). Details of⊕ are presented as,

⊕=
[

I ,S (D,α= 1),S (D,α=−1)
]⊗[

µ,σ,max,min
]

S (D, α) = log (D +1)α

δ
, δ= 1

|Vtr ai n |
∑

v ∈Vtr ai n

log (dv +1)
(2.12)

where I is the identity matrix, S is the degree-scaler matrix, D is the node degree matrix, δ

is a normalization constant, α is a scaling variable, and Vtr ai n represents the set of nodes

used for training. [I ,S (D,α= 1),S (D,α=−1)] and
[
µ,σ,max,min

]
denote the list of scalers

and the list of aggregators, respectively. The aggregators compute statistics about the node

neighborhood, and the injective scalers discriminate between the multisets. α = {−1,0,1}
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Figure 2.4 – Overview of the PNA architecture.

allows to attenuate, remove, or amplify the scaling. ⊗ denotes the tensor product between

scalers and aggregators, and produces twelve operations that extract the set of multivariate

information.

2.3 Experiments

All the experiments described in this section are conducted on node- and edge-labeled graphs

with countable labels to show the power of our proposed method, EDGNN. GNNs based on

GIN and PNA will be used in Chapter 5,6,7.

2.3.1 Datasets and baselines

We benchmark our algorithm EDGNN on graph and node classification tasks.

Graph classification

Graph classification is evaluated on two datasets, (i) MUTAG (Debnath et al., 1991; Kriege et al.,

2012), a dataset of nitroaromatic compounds, where the task is to predict their mutagenicity on

salmonella typhimurium, and (ii) PTC (Helma et al., 2003), a dataset of chemical compounds

and their associated carcinogenicity on rats Dataset statistics are shown in Table 2.1.
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2.3. Experiments

Dataset Graphs Classes Avg nodes Avg edges Node labels Edge labels

MUTAG 188 2 17.9 19.8 6 3
PTC FM 349 2 14.1 14.5 18 4
PTC FR 351 2 14.6 15.0 19 4
PTC MM 336 2 14.0 14.3 20 4
PTC MR 344 2 14.3 14.7 18 4

Table 2.1 – Graph classification dataset statistics providing the number of graphs (Graphs), the
number of classes (Classes), the average number of nodes per graph (Avg nodes), the average
number of edges per graph (Avg edges), the number of node labels (Node labels) and the
number of edge labels (Edge labels).

We benchmark our proposed model, EDGNN, against the Subgraph Matching Kernel (CSM) (Kriege

et al. (2012)), the Weisfeiler–Lehman Shortest Path Kernel (Shervashidze et al. (2011)) and

R-GCN (Schlichtkrull et al. (2018)). As R-GCN was designed for node classification tasks, the

original paper does not specify how to build graph embeddings. We therefore re-use the

formulation in Xu et al. (2019b) to build a graph-level representation.

Graph classification experiments were run with a batch size of 8 and a learning rate of 10−4

with 5×10−4 weight decay. We then performed a parameter search over the number of layers

and node embedding size. The best performance was reached by using two GNN layers with

64 hidden units and ReLU activation. The system was trained for at most 40 epochs with early

stopping w.r.to the validation set cross-entropy loss. The GNN was initialized with a one-hot

encoding of the node and edge features.

R-GCN (adapted for graph classification) was also trained with a batch size of 8, 10−4 learning

rate with 5×10−4 weight decay. We used three layers with 64 hidden units with learnable nodes

embeddings. We used a basis decomposition with the number of basis set to the number of

edge types. Results for CSM (Kriege et al., 2012) and WLSP (Shervashidze et al., 2011) are based

on the re-implementation of Kriege et al. (2012). All our experiments were performed with

10-fold cross validation as in Kriege et al. (2012).

Node classification

Node classification is tested on two datasets. First, AIFB Ristoski et al. (2016), a semantic

Web dataset that represents the organizational structure of the AIFB research institute at the

University of Karlsruhe. The task is to predict the research group associated to each person in

the institute. And, Mutagenicity, a dataset that contains complex molecules that are potentially

carcinogenic, characterized by their mutagenicity.

We benchmark EDGNN against R-GCN (Schlichtkrull et al., 2018), RDF2Vec (Ristoski et al.,

2016) and WL (Shervashidze et al., 2011; De Vries et al., 2015)).
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Similar to the graph classification setting, we initialize the node and edge features with a

one-hot encoding of their input label. When no node label is provided, we use the in-degree.

Dataset statistics are presented in Table 2.2.

The node classification experiments were run with a learning rate of 5×10−3 without weight

decay. We used dropout 0.5 on each layer with ReLU activation. The best performance was

achieved by using two GNN layers with 64 hidden units. The maximum number of epochs

was set to 400 with early stopping w.r.to the validation set cross-entropy loss. Results with

R-GCN (Schlichtkrull et al., 2018), RDF2Vec (Ristoski et al., 2016) and WL (Shervashidze et al.,

2011) are based on the re-implementation of Schlichtkrull et al. (2018).

Dataset Classes Nodes Edges Edge labels

AIFB 4 8,285 29,043 45
MUTAGENICITY 2 23,644 74,227 23

Table 2.2 – Node classification dataset statistics highlighting the number of classes (Classes),
the total number of nodes (Nodes), the total number of edges (Edges) and the number of edge
labels (Edge labels).

2.3.2 Results and discussion

Table 2.3 presents graph classification average accuracy results together with standard de-

viation obtained over ten training runs. Our provably powerful model, EDGNN, reaches

comparable performance with the state-of-the-art. We observe that the kernel-based and

GNN-based methods (R-GCN and EDGNN) perform similarly without being able to clearly

identify better models. We conjecture that the relatively small size of the datasets (e.g., only

188 graphs in the MUTAG dataset) does not allow to fully explore the potential of the most

expressive models.

Model MUTAG PTC FM PTC FR PTC MM PTC MR

CSM 85.4±1.2 63.8±1.0 65.5±1.4 63.3±1.7 58.1±1.6
WLSP 85.4±1.2 60.4±1.32 65.7±1.3 66.6±1.1 59.7±1.6
R-GCN 81.5±2.1 60.7±1.7 65.8±0.6 64.7±1.7 58.2±1.7

EDGNN (avg) 86.9±1.0 59.8±1.5 65.7±1.3 64.4±0.8 56.3±1.9
EDGNN (max) 88.8 62.2 68.0 66.1 59.4

Table 2.3 – Graph classification results in accuracy obtained with 10-fold cross validation.
Results are expressed as %. EDGNN is compared with the Subgraph Matching Kernel
(CSM) (Kriege et al. (2012)), Weisfeiler–Lehman Shortest Path Kernel (Shervashidze et al.
(2011)) and R-GCN (Schlichtkrull et al. (2018)).

For node classification (see Table 2.4), EDGNN also achieves comparable performance with

the state-of-the-art without outperforming it. This does not contradict our theoretical findings.
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In fact, the power of a learnable model does not guarantee its generalization nor that the

best model can be learned. However, it is true that, in the best-case scenario, a more powerful

model should perform better than a less powerful one, as shown by the results regarding the

best-learned EDGNN model (max).

Model AIFB MUTAG

WL 80.5±0.0 80.9±0.0
RDF2Vec 88.9±0.0 67.2±1.2
R-GCN 95.8±0.6 73.2±0.5
EDGNN (avg) 91.1±2.4 80.0±3.2
EDGNN (max) 97.2 85.3

EDGNN (emb) 91.1±1.7 77.2±2.6
EDGNN (reg) 89.4±1.7 80.4±3.4

Table 2.4 – Node classification results in accuracy averaged over ten runs. Results are expressed
as %. EDGNN is compared with WL (De Vries et al. (2015)), RDF2Vec (Ristoski et al. (2016))
and R-GCN (Schlichtkrull et al. (2018)).

2.4 Conclusion

In this chapter, we studied the expressive power of GNNs, by establishing a parallel between

message passing and the WL test of graph isomorphism. This study provides the theoretical

tools to build various GNN architectures depending on the application at hand. When dealing

with node-labeled graphs with discrete features, the GIN architecture is a natural design choice.

For better expressivity when graphs have continuous node labels, PNA can be used. Finally,

when graphs have node- and edge-labels, our proposed EDGNN can be as powerful as the

1-dimensional WL algorithm for graph isomorphism, and has empirically shown to produce

promising performance.
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3 Interpretability of Graph Neural Net-
works

The ideas and methods presented in this chapter are partially derived and adapted from:

• "Quantifying Explainers of Graph Neural Networks in Computational Pathology", Guil-

laume Jaume*, Pushpak Pati*, Behzad Bozorgtabar, Antonio Foncubierta, Anna Maria

Anniciello, Florinda Feroce, Tilman Rau, Jean-Philippe Thiran, Maria Gabrani, Orcun

Goksel. In Conference on Computer Vision and Pattern Recognition (CVPR), 2021 (Jaume

et al., 2021b).

• "Towards Explainable Graph Representations in Digital Pathology", Guillaume Jaume*,

Pushpak Pati*, Antonio Foncubierta, Florinda Feroce, Giosue Scognamiglio, Anna

Maria Anniciello, Jean-Philippe Thiran, Orcun Goksel, Maria Gabrani. In International

Conference on Machine Learning (ICML), ICML Workshop on Computational Biology,

2020 (Jaume et al., 2020).

GJ (the author of this thesis) is sharing first co-authorship with PP on both publications. A

detailed description of each author’s contribution is provided in Chapter 6.

3.1 Introduction

Deep learning on graphs has emerged as one of the most active topics in DL. In particular,

GNNs, introduced in Chapter 1, have shown to be ideal neural candidates for efficiently

learning on graph-structured data. While the development of GNNs has primarily focused

on improving performance, interpretability of GNNs remains an open research question.

Similarly to other popular neural architectures, e.g., CNN, RNN, etc., GNNs are “black-box"

models, where the exact process leading to a prediction is too complex to be grasped by

humans. This lack of transparency can hinder the deployment of GNNs in real-life settings,

especially for applications that demand explainable and trustable predictions. For instance, in

a medical setting, trust between a doctor and an AI can only be established if there is a way

to interrogate the model to justify its prediction. The model explanation for a given sample
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can then take various forms, e.g., a saliency map (Pope et al., 2019; Baldassarre and Azizpour,

2019), or can be expressed as a representative input subset (Ying et al., 2019).

XAI is an extensively studied field in NLP (Danilevsky et al., 2020) and CV (Selvaraju et al., 2017;

Chattopadhay et al., 2018). In particular, post-hoc methods, designed to explain intrinsically

uninterpretable models, have gained a lot of attention with the development of gradient-

(Baldassarre and Azizpour, 2019; Selvaraju et al., 2017), feature- (Zhou et al., 2016), surrogate-

(Ribeiro et al., 2016), and decomposition-based (Bach et al., 2015) methods, among others.

These methods provide local instance-level explanations, i.e., one explanation per sample,

that are highlighting the most important parts of the input, e.g., a set of pixels in an image,

for making a prediction. This class of algorithms is referred to as feature attribution methods.

However, when extended to graph-structured data, XAI faces new challenges. In particular,

graphs represent complex and entangled relationships between entities, therefore, evaluating

the explanation relevance is not straightforward. For instance, while a cat-vs-dog classifier

focusing on the cat’s whiskers will easily convince us as a good explanation, extending it

to brain connectivity networks or protein interaction networks requires domain-specific

expertise. Additionally, finding the appropriate units of explanation, i.e., what is used to define

the explanation, of a graph is challenging. In text or image analysis, the units of explanation

can trivially be defined at word- and pixel-level, respectively. In graphs, deciding if the units

should be at node-, edge-, node feature-, or edge feature-level is a design choice, that the

explanation model should be able to adapt to.

In this chapter, we propose four graph explainers that provide sample-level explanations,

expressed as a set of the most important nodes for making the prediction at hand. By focusing

on node importance, we reduce the explanation complexity by treating the node features

characterizing a node as a single unit of explanation. While the proposed methods do not

explicitly encode edge-level importance scores, they remain implicitly used as part of the GNN

computational graph. Specifically, our contributions are:

• We introduce four graph explainers, GNNEXPLAINER, GRAPHGRAD-CAM, GRAPHGRAD-CAM++,

and GRAPHLRP that operate in a similar setting and provide comparable explanations,

thereby allowing for qualitative and quantitative benchmarks;

• We propose GRAPHGRAD-CAM++, an extension of GRAD-CAM++ that can operate on

graph-structured data;

• We reformulate the GNNEXPLAINER to be directly applicable to graph classification tasks,

instead of node classification. Our formulation allows to build compact explanations,

without the need for post-processing, or assuming priors about the task at hand.
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3.2 Background

Interpretability is a broad topic in machine learning, with sometimes inconsistent defini-

tions and goals. In this section, we first present a set of desiderata related to deep graph

interpretability, before providing an overview of existing approaches.

3.2.1 Graph explanation requirements

The goal of deep graph interpretability is to identify the nodes, edges, node features and edge

features that are important for making a certain prediction. Informally, an explanation is said

to be “good" if the identified subgraph matches our expectations and our own understanding

of the task. Specifically, we define four requirements for building graph explainers:

• Fidelity: the explanation, i.e., the graph subset, needs to have consistent prediction with

the original graph. In other words, processing the original graph or the explanation to

the model should lead to the same prediction;

• Sparsity: the explanation needs to be as small as possible, i.e., we should prune as many

graph components while ensuring fidelity;

• Stability: the graph explainer should provide similar explanations for similar input

graphs, i.e., small modifications to the input graph should only marginally affect the

explanation;

• Accuracy: the explanation needs to be aligned with the ground truth. However, in

many real-world cases, ground truth explanation is not accessible, nor uniquely defined,

e.g., several convincing explanations can attest of the presence of a cat in an image.

Therefore, we relax this requirement by stating that the explanation needs to match our

understanding of the task. The development of robust metrics when ground truth is not

available will be further discussed in Chapter 6.

3.2.2 Taxonomy of deep graph learning interpretability

Deep graph interpretability can be defined at instance- or model-level. In instance-level

interpretability, a graph explainer identifies important input features of a given query graph,

e.g., a node subset, responsible for the prediction. Differently, model-level interpretability

aims to extract representative graph patterns that model certain behaviors. In this work, we

focus on instance-level methods, that we can further categorize in four groups:

• Gradient-based methods: These approaches define node importance by measuring

the gradient of an output class, e.g., the predicted class, w.r.to the input or some deep

representation. A positive and high gradient value indicates that the query feature has

a positive impact on the prediction, while a negative or low gradient value indicates a
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negative or no influence, respectively, of that feature (Baldassarre and Azizpour, 2019;

Pope et al., 2019). GRAPHGRAD-CAM and GRAPHGRAD-CAM++, presented hereafter,

are both gradient-based methods;

• Perturbation-based methods: This class of approaches study the effect of small in-

put perturbations on the output. Intuitively, when removing discriminative graph

components, the predictions should change, whereas nodes and edges conveying no

information should not impact the prediction. By characterizing these changes, one can

derive sample-level explanations as proposed in Ying et al. (2019); Luo et al. (2020); Yuan

et al. (2020); Schlichtkrull et al. (2021). GNNEXPLAINER and our proposed extension are

both perturbation-based methods;

• Decomposition-based methods: By decomposing the original model prediction from

the predicted logits back to the input features, one can understand the relationship be-

tween the input- and prediction-space, and derive feature-level importance scores (Bal-

dassarre and Azizpour, 2019; Pope et al., 2019; Schwarzenberg et al., 2019). GRAPHLRP,

which decomposes the output with layerwise relevance propagation rules, belongs to

this category;

• Surrogate methods: Differently, these approaches explain a (complex) model predic-

tion with a simple and interpretable surrogate model, e.g., a linear model, to approximate

the original model prediction around some query sample (Huang et al., 2021; Vu et al.,

2020).

The reader can refer to Yuan et al. (2021) for a thorough and detailed review of deep graph

interpretability.

3.3 Methods

In this section, we formally present four post-hoc graph explanation techniques: GRAPHLRP,

GRAPHGRAD-CAM, GRAPHGRAD-CAM++, and GNNEXPLAINER. These methods form the

theoretical foundations of Chapter 6, where (i) we will show the potential of deep graph

interpretability for explaining predictions made on histology images, and (ii) we will emphasize

on the importance of developing metrics in the absence of ground truth explanations.

3.3.1 Notation

Following the notation introduced in Chapter 1, we define an attributed graph G := (V ,E , H ) as

a set of nodes V , edges E , and node attributes H ∈R|V |×d . d denotes the number of attributes

per node, and |.| denotes set cardinality. The graph topology is defined by a graph adjacency

matrix, A ∈R|V |×|V |, where Auv = 1 if (u, v) ∈ E . Hn,k expresses the k-th attribute of the n-th

node. The forward prediction of a graph G is denoted as, y = M (G), where M is a model

operating on graphs, and y ∈R|C | are output logits. Notation y(c), c ∈C denotes the output
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logit of the c-th class. We refer to the logit of the predicted class as ymax = maxc∈C y(c), and

the predicted class as kmax = argmaxc∈C y(c).

3.3.2 Graph explainer setting

Each graph explainer operates in a similar setting. Namely,

• The input is a node-attributed graph G , as defined in Chapter 1;

• We assume that a model M was trained a priori and can be used for inference. In the

sequel, we assume M is a GNN model as introduced in Chapter 1. Note that different

graph learning models could also be combined with the presented graph explainers, but

this is beyond the scope of this work;

• An explanation is always generated by explaining the contribution of a single logit,

denoted as the query logit e.g., the predicted class ymax;

• Each explainer returns normalized node-level importance scores that characterizes the

relevance of each node for classifying a certain class, e.g., for classifying tmax;

• Node importance scores can be thresholded to define the graph explanation, denoted

as Gs = (Vs ,Es , Hs) ⊂G . The explanation graph topology is trivially derived by keeping

all the edges connected to the remaining nodes, i.e., Es = {(u, v)|u, v ∈Vs , (u, v) ∈ E }.

3.3.3 Layerwise relevance propagation: GRAPHLRP

Layerwise Relevance Propagation (LRP) (Bach et al., 2015) is a decomposition-based method.

LRP explains an output logit, defined as the relevance of a class, by decomposing the individual

contributions of each input element. LRP was initially formulated for operating on fully

connected layers (LRP-FC), and works as follows. Given a pre-trained weight matrix W ∈
Rz1×z2 between layer 1 and layer 2, where z1 and z2 are the number of neurons in layer 1

and layer 2, respectively, we define the z+ propagation rule (Montavon et al., 2015) that

back-propagates the positive neuron contributions from layer 2 to layer 1 as:

Ri =
z2∑
j

fi |wi j |∑z1

k fk |wk j |
R j (LRP-FC)

where |wi j | is the absolute value of the weight between i -th and j -th neuron in layer 1 and 2,

respectively, and fi denotes the activation of the i -th neuron in layer 2.

The extension from LRP-FC to LRP for GNNs (GRAPHLRP) is achieved by following the obser-

vations in Schwarzenberg et al. (2019). The aggregate step in a GNN corresponds to projecting

the graph’s adjacency matrix on the node embedding space. Assuming a GNN of the form:

H (t+1) =σ
(
W (t )(I + Ã)H (t )

)
(3.1)
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where Ã is the degree-normalized graph adjacency matrix, i.e., Ãi j = 1
|N (i )| Ai j , σ is the ReLU

activation function. The GNN in Equation (3.1) corresponds to a GIN layer with a 1-layer MLP

as an update function, and a mean aggregator.

This representation allows us to treat the term (I + Ã) as a regular, fully connected layer. We

can then apply the z+ propagation rule with weights wi j defined as:

wi j = 1 if i = j (3.2)

wi j = 1

|N (i )| if (i , j ) ∈ E (3.3)

wi j = 0 otherwise (3.4)

LRP outputs an importance score for each node i in the graph. The final explanation is derived

by thresholding node-level importance scores, thereby enforcing explanation sparsity.

3.3.4 Gradient-based: GRAPHGRAD-CAM

GRAD-CAM (Selvaraju et al., 2017) is a gradient-based method that identifies salient regions

in the input space. It assigns importance scores to each element of the input to produce a

Class Activation Map (CAM) (Zhou et al., 2016). While originally developed for explaining

CNNs operating on images, GRAD-CAM can be extended to GNNs (Pope et al., 2019).

GRAPHGRAD-CAM processes in two steps. First, it assigns an importance score to each

channel of the GNN, i.e., along each node embedding dimension. The importance of channel

k in layer t is computed by measuring the gradient intensity of the logit y(c) w.r.to node

attributes H (t )
n,k . Formally expressed as:

w (t )
k = 1

|V |
|V |∑

n=1

∂y(c)

∂H (t )
n,k

(3.5)

Intuitively, large positive gradient values are evidences of the presence of the class under

consideration, while small gradient values have no influence on its presence. A formal mathe-

matical description is presented in Appendix A, where we show that this formulation can be

seen as a generalization of CAM (Zhou et al., 2016).

Then, node-wise importance scores are computed using the forward node feature activations

H (t ) as:

L(t , v) = ReLU
(d (t )∑

k
w (t )

k H (t )
n,k

)
(3.6)

where L(t , v) denotes the importance of node v ∈V in layer t , and d (t ) denotes the number of

node attributes w.r.to layer t . Since we are only interested in the positive node contributions,

i.e., nodes that positively influence the class prediction, we apply a ReLU activation to the
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node importance scores. Following prior work by Pope et al. (2019), we take the average scores

obtained over all the GNN layers to obtain smoother representations, i.e.,

L(v) = 1

T

∑
t∈{1,...,T }

L(t , v), ∀v ∈V (GRAPHGRAD-CAM)

As in GRAPHLRP, the node-level importance scores can be thresholded to define the explana-

tion.

3.3.5 Gradient-based: GRAPHGRAD-CAM++

GRAPHGRAD-CAM++ extends GRAD-CAM++ (Chattopadhay et al., 2018) to graph-structured

data. It improves the node importance localization of GRAD-CAM by introducing node-wise

contributions to the channel importance score computation. It builds on the work by Zhou

et al. (2016), that empirically proved to have localization properties. Specifically, Equation (3.5)

is modified as:

w (t )
k =

|V |∑
n=1

α(t )
n,k ReLU

( ∂y(c)

∂H (t )
n,k

)
(3.7)

where α(t )
n,k are node-wise weights expressed for each channel k of layer t .

We show that α(t )
n,k can be computed as:

α(t )
n,k =

∂2 ymax

(∂H (t )
n,k )2

2 ∂2 ymax

(∂H (t )
n,k )2

+∑|V |
n=1 H (t )

n,k

( ∂3 ymax

(∂H (t )
n,k )3

) (3.8)

The proof is provided in Appendix A, and is analogous to the derivation proposed in Chat-

topadhay et al. (2018), where the number of nodes represents the “spatial" dimensions.

The subsequent node importance computation in GRAPHGRAD-CAM++ follows the one in

GRAPHGRAD-CAM, i.e., we use Equation (3.6) to derive L(t , v) and Equation GRAPHGRAD-CAM

to get the final L(v).

Note that the explanation fidelity is implicitly ensured in GRAPHLRP, GRAPHGRAD-CAM and

GRAPHGRAD-CAM++ as the retained input elements are the ones used by the network to

increase a given logit value.

3.3.6 Graph pruning: GNNEXPLAINER

GNNEXPLAINER is a post-hoc perturbation technique based on graph pruning and originally

proposed by Ying et al. (2019). GNNEXPLAINER is model-agnostic and can explain any flavor
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of GNN. Intuitively, the GNNEXPLAINER tries to find the minimum sub-graph Gs ⊂G , i.e., the

minimum set of edges and nodes, hence enforcing explanation sparsity such that the model

prediction is retained, i.e., while ensuring explanation fidelity. The inferred sub-graph Gs is

then regarded as the explanation for the graph G .

Formally, we aim to find a sub-graph Gs = (Vs ,Es , Hs) ⊂G such that the mutual information

between the original prediction ymax and the sub-graph Gs is maximized, i.e.,

max
Gs

MI(Ŷ ,Gs) =H (Ŷ )−H (Ŷ |G =Gs) (3.9)

which is equivalent to minimizing the conditional entropy:

min
Gs

H (Ŷ |G =Gs) =−EŶ |Gs
[log(PM (Ŷ |Gs))] (3.10)

Intuitively, we seek to extract the sub-graph Gs that maximizes the probability of ymax. Ex-

haustively searching Gs in the space created by nodes V and edges E is infeasible due to the

combinatorial nature of the task. Instead, GNNEXPLAINER formulates the task as an optimiza-

tion problem that learns a mask to activate or deactivate parts of the graph. In this regard,

this approach can be seen as a feature attribution method with binarized node and edge

importance scores, i.e., a node v ∈V , edge (u, v) ∈ E , has importance one if v ∈Vs , (u, v) ∈ Es ,

respectively, and zero otherwise.

GNNEXPLAINER for node classification

The initial formulation by Ying et al. (2019) was developed for explaining node classifiers,

where we wish to explain the classification prediction of a query node. Specifically, a mask

ME ∈R|V |×|V | is learned over the edges, i.e., over the adjacency matrix A. Masking edges will

cut connections between the query node we wish to explain and its neighbors. Formally, we

search for the mask such that:

min
ME

−
C∑

c=1
1[y=c] log(PM (Ŷ |G = A¯σ(ME ), H))) (3.11)

where C denotes the number of classes, σ is the sigmoid activation, and ¯ denotes element-

wise multiplication. Heuristically, these constraints can be enforced by minimizing:

L =LKD(ymax, y (l ))+αME

|E |∑
i
σ(M (l )

Ei
)+αH H e (σ(M (l )

E )) (3.12)

where, l denotes the optimization step. The first term is a knowledge-distillation loss LKD

between the new logits y (l ) and the original prediction ymax, ensuring explainer fidelity. The

second term enforces explainer sparsity by minimizing the mask size ME . The third term

binarizes ME by minimizing its element-wise entropy H e . Following Hinton et al. (2015),

42



3.3. Methods

LKD is defined as a combination of distillation and cross-entropy loss:

LKD =λLCE + (1−λ)Ldist whereλ= H e (y (l ))

H e (ymax)
(3.13)

As the element-wise entropy H e (y (l )) increases, LCE gains importance and avoids predicting

a different label. ME , produced by optimizing Equation (3.12), is learned with iterative gradient

descent until convergence is reached. An overview of GNNEXPLAINER optimization process is

highlighted in Figure 3.1.

Note that the original formulation can be extended to prune features along the node dimension

as well. As this extra step is not relevant for the proposed downstream tasks, we let the reader

refer to Section 2.1 in Ying et al. (2019) for an in-depth formulation.

GNNEXPLAINER for graph classification

In order to be used for graph classification tasks, GNNEXPLAINER needs to be adapted. Indeed,

the READOUT step in a graph classification GNN pools all the nodes to derive a graph-level

representation. Therefore, even in the extreme case where all the edges are masked, the

explanation would still include all the nodes, which does not fulfil the sparsity desiderata. The

original paper proposes to use the largest connected sub-component induced by the masked

graph as the explanation. However, this is a strong assumption and in many applications, the

optimal explanation will be a disconnected graph. Furthermore, it is common that the nodes

offer better units of explanations than edges, as they are often more intuitive and substantial

information, e.g., atoms are more informative than chemical bonds for molecular property

prediction. To address these limitations, we propose to learn a mask that will directly operate

at node-level .

Formally, we aim to learn a mask MV that satisfies:

min
MV

−
C∑

c=1
1[y=c] log(PM (Ŷ |G = A,σ(diag(MV ))H))) (3.14)

where diag :R|V | →R|V |×|V | is the diagonal matrix of the weight vector MV . As before, we

intend the explanations to be as compact as possible, with binarized weights, while providing

the same prediction as the original graph, which can be formulated as:

L =LKD(ymax, y (l ))+αMV

|V |∑
i
σ(M (l )

Vi
)+αH H e (σ(M (l )

V )) (3.15)

As for the node classification setting, MV is learned by gradient descent. After convergence,

the mask weights define the node-level importance scores. A thresholding is further applied
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Figure 3.1 – Overview of GNNEXPLAINER iterative node pruning. A query graph is passed
through a pre-trained GNN model where the graph prediction is stored. A node-level mask
is learned to update the graph, i.e., by deactivating some nodes, using the original label and
the current prediction, the mask size, and the mask entropy. The masked graph is then re-
processed by the GNN model for another iteration. The process is repeated until convergence.

on the node weights to extract only the most important ones.

3.4 A glimpse into qualitative results

This chapter focuses on the methodological aspects of deep graph interpretability. Applica-

tions of these methods will be provided in Chapter 6. Figure 3.2 provides node-level impor-

tance scores obtained to explain the prediction of a benign tumor region in an H&E histology

image. This example is there to give the reader an intuition of how graph explainers work. An

in-depth analysis will be conducted in Chapter 6.
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Figure 3.2 – Examples of post-hoc feature attribution methods to explain a Benign histology
image. Important nodes are marked in red, and least important ones in blue.

45





Part IIGraph Representation and Modeling
in Computational Pathology

47





4 Computational Pathology Background

In this chapter, we present basic concepts related to pathology, digital pathology and compu-

tational pathology. We begin by introducing pathological background required to understand

the clinical relevance of the main contributions of this thesis. Next, we introduce DigPath

and its potential to transform the way pathology is practiced. Finally, CompPath notions like

stain normalization and entity-graph representations are presented. A reader familiar with

CompPath can dispense with reading this chapter.

4.1 Pathology prerequisites

Pathology refers to the understanding of the causes and effects of diseases, based primarily

on the analysis of tissue, cell and body fluid samples. When the study of biological tissues

is performed at a microscopic level, that is, the study of microscopic anatomy, it is referred

to as histology. Specifically, the examination of tissue biopsies or surgical specimens by a

pathologist for medical diagnosis is referred to as histopathology. All the data used in this thesis

are histopathology data acquired for cancer diagnosis and tumor detection. Tissue processing

follows three steps. Namely, tissue specimen acquisition for tissue sample extraction, tissue

specimen preparation in objective to highlight certain biomarkers, and tissue analysis for

patient diagnosis and prognosis (see Figure 4.1).

4.1.1 Tissue specimen acquisition

Tissue specimen acquisition, or biopsy, involves extraction of tissue samples for examination

to determine the presence and extent of a tumor. Depending on the organ to analyse and

complementary diagnosis information, different biopsy types are performed. Fine needle

aspiration biopsy are used to remove small samples of cells, for example if swellings or lumps

were detected just under the skin. When larger tissue regions need to be extracted, core needle

biopsies are employed. They use wider needles allowing for larger tissue sample extraction.

This commonly employed technique is used for finding abnormalities, e.g., detection of
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Figure 4.1 – Overview of a traditional ((a), (b), (c)) and AI-assisted ((a), (b), (d), (e)) diagnosis
workflow. In (a), a tissue specimen is extracted with a biopsy. In (b), the tissue is prepared
for microscopic analysis, including tissue fixation, thin slicing and mounting on a glass slide.
In (c), a pathologist is conducting a diagnosis by analysing the tissue morphology towards
grading and stating. Alternatively, in (d), the tissue is scanned to render a WSI, before being
processed in (e) with a CAD tool.

malignant patterns, and to test for the presence of biomarkers, e.g., hormone receptor status

(ER, PR) in breast cancer. When tumorous regions have been detected and require surgery,

surgical biopsies are employed, either to remove part of an abnormal tissue region (incisional

biopsy), or to remove an entire abnormal region (excisional biopsy). In complement to the

aforementioned techniques, sentinel lymph node biopsies can be required to find out if the

tumor has spread to the nearest axillary lymph nodes.

4.1.2 Tissue specimen preparation

Before analysis, the extracted tissue samples need to be prepared. First, the tissue specimen

is cut into thin sections, then it is mounted on a glass slide and stained with dyes before

examination under a microscope.
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As fresh tissue samples can be easily distorted and damaged, they need to be chemically

preserved and fixed. Two methods exist to ensure the tissue is firm enough to be cut into thin

sections: permanent paraffin-embedded sections and frozen sections. Permanent sections

are prepared by placing the tissue in fixative, e.g., in formalin, and then further processed with

additional task-dependent solutions. The tissue is then placed in paraffin wax, in order to

be cut into thin slices, which are then placed on glass slides for staining. This whole process

is time-consuming and typically takes several days. Frozen sections are prepared by simply

freezing the tissue sample before slicing it. The process takes about 15 to 20 minutes, and can

be performed while a patient is in the operating room. Frozen sections are employed when an

immediate answer is needed, e.g., for tumor margin detection. While frozen sectioning is a

much faster process, permanent sections remain the preferred option as they provide better

quality for examination by pathologists.

In order for pathologists to visualize tissue morphology, i.e., the tissue structure, tissue sam-

ples need to be stained. The gold-standard staining protocol is based on a combination of

haematoxylin (H) dye to stain cell nuclei in blue and eosin (E) dye to stain extra-cellular

structures, e.g., stromal region, in pink and red. Hematoxylin & Eosin (H&E) staining allows for

high-quality visualization of tissue structure, and detection of abnormal and cancerous nuclei.

Even if H&E routine staining outcome forms an essential part of the diagnostic procedure,

it is often complemented with other stainings for biomarker-specific analysis, e.g., if H&E

nuclei organisation is representative of two tumor subtypes that need to be discriminated.

Complementary stainings include immunostaining based on immunohistochemistry, e.g.,

HER2 protein detection and estrogen/progesterone receptors (ER/PR) status for breast cancer

characterization.

4.1.3 Tissue analysis and diagnosis

In a clinical setting, pathologists begin the analysis of a tissue biopsy by discerning the mor-

phology and the spatial distribution of tissue parts, such as epithelium, stroma, necrosis, etc.

Then, they localize their analysis to specific tissue regions to evaluate nuclear phenotype, mor-

phology, topology, and tissue distribution among several other criteria for the classification.

In particular, pathologists examine samples to determine the tumor grade and tumor stage.

The purpose of tumor grading is to determine the appearance of abnormal tumor cells. It is a

prognosis marker for the rate at which the tumor can grow and spread. If the cells are close

to normal, they are referred to as well-differentiated, and correspond to slow cancer growth

and spread. If they look abnormal, they are said to be undifferentiated or poorly differentiated.

There exist different grading systems that are cancer- and organ-specific. For instance invasive

breast cancer can be graded with the Nottingham system (Rakha et al., 2008), which is based

on three observable features: (i) tubule formation (on a scale from 1 to 3) that describes

the amount of gland formation, (ii) the nuclear grade (1 to 3 scaling) that evaluates nuclei

pleomorphism, i.e., the size and shape of cancerous nuclei in tumor cells, and (iii) the mitotic
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rate (1 to 3 scaling) that represents how much the tumor cells are proliferating. By simply

summing up the score for each feature, we derive the final grade as: Grade 1 (low grade /

well differentiated) if score in [3,5], Grade 2 (Intermediate grade / moderately differentiated)

if score in [6,7], and Grade 3 (High grade or poorly differentiated) if score > 7. Differently,

prostate cancer is graded with the Gleason grading system (Chen et al., 2008), a 6 to 10 scale

that indicates cell differentiation, from well differentiated to anaplastic. Specifically, the

Gleason grade is derived by considering the two largest most aggressive cancer patterns in the

observed tissue sample, where each pattern can be of type benign, grade 3, 4, or 5.

The cancer grade is complemented by the cancer stage that describes the tumor size and if

the tumor has spread outside its origin organ. Most cancer types are staged using the TNM

system, and are based on three factors: Tumor (T), Node (N), and Metastasis (M). T quantifies

the primary tumor size on a 0 to 4 scale, where 0 denotes no cancer, and 1,2,3,4 larger cancer

regions. N indicates if the tumor has spread to the lymph nodes, and if yes it encodes the

number of affected axillary lymph nodes. Finally, M encodes if the cancer has spread to other

body parts. By summing up individual scores, the cancer stage is derived on a scale from 0

(non-invasive cancer) to 4 (metastatic cancer).

The cancer grade, stage, or specific biomarkers can be used as training targets for developing

Computer-Aided Diagnosis (CAD) tools, e.g., Gleason grade prediction from core needle

biopsies as presented in Chapter 7.

4.2 Prerequisites in Computational Pathology

Computational pathology refers to the use of computational methods to automate pathol-

ogy tasks. Developing computational approaches can be used for computer-aided diagno-

sis (Van der Laak et al., 2021; Campanella et al., 2019; Lu et al., 2021b; Litjens et al., 2017; Deng

et al., 2020) or discovering new cancer biomarkers (Lu et al., 2021a; Gamble et al., 2021). A

CompPath pipeline for CompPath is exemplified in Figure 4.1.

4.2.1 Digital Pathology

Recently, new medical imaging techniques have been developed to scan tissue slides, allowing

to transform a tissue specimen into a high-resolution image, called a WSI. Scanners have

consistently evolved in the past twenty years to today being able to digitize a slide in less than

30 seconds at multiple magnifications. WSI are typically giga-pixel images, e.g., a breast biopsy

can be as large as 100′000×100′000 pixels at 40× magnification. In 2017, the Federal Drug

Administration (FDA) has approved the first WSI system for routine diagnostic practice (Boyce

et al., 2017). Since, more and more labs are modernizing their infrastructure with digital

pipelines. Digitizing the clinical workflow offers several advantages. First, digitized slides

allow for efficient and scalable storage, and eliminate the need for costly and time-consuming

physical archiving. It also enables the development of centralized queryable databases that
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can be accessed from anywhere, for instance to easily compare slides. It also facilitates

communication between pathologists, oncologists and radiologists, e.g., to ask confirmation

and complementary information when working with challenging cases. The development

of friendly User Interface (UI) where pathologists can easily annotate diagnostically relevant

regions, e.g., for counting tasks, helps standardization and reproducibility. Pathology reports

also greatly benefits from digitization, by ensuring the use of standardized templates that can

automatically be added to hospital databases. Finally, and this is the focus of this thesis, a

digitized environment enables the integration of computational methods in the workflow, e.g.,

as being part of a UI or running cases in the background for enhanced diagnosis.

4.2.2 Tissue preprocessing and stain normalization

Due to the lack of standardized and automated staining procedures, stained tissue images

exhibit appearance variability, e.g., explained by different specimen preparation techniques,

staining protocols, fixation characteristics, different data acquisition methods (scanners,

digitization artifacts, etc.). Such variability adversely impacts computational methods for

downstream diagnosis (Veta et al., 2014; Tellez et al., 2019b). To alleviate the stain variability, a

stain normalization algorithm is often employed. In the context of H&E staining, two popular

techniques have been proposed by Macenko et al. (2009) and Vahadane et al. (2016).

Macenko stain normalization

Macenko stain normalization (Macenko et al., 2009) algorithm is based on the principle that

the RGB colors of each pixel is a linear combination of two unknown stain vectors, Hematoxylin

and Eosin, that need to be estimated. First, the algorithm estimates the stain vectors of a H&E

image by using a Singular Value Decomposition (SVD) of non-background pixels. Second,

the algorithm applies a correction to account for the intensity variations due to noise. The

algorithm requiring no model training is computationally inexpensive. In practice, the scalable

and fast pipeline proposed by Stanisavljevic et al. (2018) is often used.

Vahadane stain normalization

Vahadane stain normalization (Vahadane et al., 2016) builds on Macenko et al. (2009) work

to propose a solution for both stain separation and color normalization. Specifically, stain

vectors are evaluated by applying sparse non-negative matrix factorization of a reference

image. While providing a slightly better rendering, this approach is computationally more

expensive (see Appendix B).
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4.3 Graphs in Computational Pathology

Graphs in CompPath are proposed to realize the tissue composition-to-functionality relation-

ship in terms of the phenotypical and structural characteristics of the tissue. An overview of

the use of graph representation for CompPath is presented in Table 4.1 and a comprehensive

review is proposed in Ahmedt et al. (2021). The motivation justifying the pertinence of using

graph representations and graph learning methods for modeling histology images will be

detailed in the subsequent chapters. In the sequel, we provide complementary preliminary

notions for working with graphs in CompPath.

Cell-graphs: We define a cell-graph (see Figure 4.2(a)) as a graph representation of an histology

image, where the nodes depict nuclei, and edges encode nuclei-nuclei interactions. Cell-

graph representations were initially proposed by Demir et al. (2004) and were since used for

addressing various pathology tasks, including cancer grading, cancer stratification, neural

network interpretability, among others (Demir et al., 2004; Zhou et al., 2019a; Wang et al., 2020;

Chen et al., 2020; Pati et al., 2021a; Jaume et al., 2021b).

Tissue-graphs: We define a tissue-graph (see Figure 4.2(b)) as a graph-structured representa-

tion where nodes represent tissue components and edges tissue-tissue interactions. Tissue-

graphs can efficiently model large images by encoding consistently morphological regions as

graph nodes (Pati et al., 2021a; Zheng et al., 2019; Anklin et al., 2021; Lu et al., 2021a).

We refer to cell- and tissue-graphs as biological entity-graphs, as the nodes are biologically

defined and correspond to diagnostically relevant entities that pathologists can relate to and

reason with.

Patch-graphs: As the name suggests, patch-graphs (Anand et al., 2020; Adnan et al., 2020;

Aygunes et al., 2020; Zhao et al., 2020; Li et al., 2018a; Levy et al., 2021) are built by defining

patches as nodes and patch-to-patch relations as edges. Patch-graphs offer easy-to-use

representations for encoding large histology images (see Figure 4.2(c)).

Hierarchical-graphs: Uni-level graphs can be combined to form hierarchical graphs. For

instance, low-level cell information can be encoded in a cell-graph, intermediate-level infor-

mation in a tissue-graph and high-level information in a gland-graph (a graph where glands

represent nodes and glandular interactions encode edges).

All the aforementioned graph types would typically be associated with node features, e.g.,

handcrafted or DL features, to characterize the entities. The topology can depict the spatial

or semantic relationship among the entities, e.g., k-Nearest Neighbors (k-NN), region adja-

cency, or probabilistic models. The graphs can be processed using classic Machine Learning

(ML) (Sharma et al., 2016, 2017) or GNNs that proved to outperform state-of-the-art CNN-

based approaches for several pathology tasks across multiple organs (Garciá-Arteaga et al.,

2017; Zhou et al., 2019a; Zhao et al., 2020; Adnan et al., 2020; Pati et al., 2021a; Studer et al.,

2021; Anklin et al., 2021).
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Figure 4.2 – Examples of graph-based representations of histology images. Nodes can encode
biological entities, e.g., (a) nuclei in cell-graphs, (b) tissue components in tissue-graphs or
(c) patches in patch-graphs. (d) Graph representations can be hierarchical to encode tissue
composition in the form of a hierarchical-graph, e.g., by encoding a cell-graph, tissue-graph
and cell-to-tissue connections.
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Computational Pathology Background

Reference Task Organ Modality Image size Dataset size

C
el

l-
gr

ap
h

Zhou et al. (2019a) Cls. Breast TRoI 4,548×7,520 139

Wang et al. (2020) Cls. Prostate TMA - 886

Anand et al. (2020) Cls. Breast TRoI 2,048×1,536 400

Sureka et al. (2020)
Cls. Breast TRoI 2048×1536 400

Cls. Prostate TMA 3,100×3,100 1,506

Jaume et al. (2020) Cls. Breast TRoI 2000×2,000 2,080

Jaume et al. (2021b) Cls. Breast TRoI 1,900×1,900 4,391

Studer et al. (2021) Cls. Colon TRoI - 520

T
is

su
e-

gr
ap

h

Zheng et al. (2019) Cls. Breast WSI - 150

Lu et al. (2020) Cls. Breast WSI - 709

Anklin et al. (2021)
Seg. Prostate TMA 3100×3100 1,506

Seg. Prostate WSI 11,000×3,000 155

Jaume et al. (2021c)
Seg. Prostate WSI 11000×3000 155

Seg. Prostate WSI 11,000×11,000 5,759

Seg. Prostate WSI 11,000×11,000 5,662

Pa
tc

h
-g

ra
p

h

Li et al. (2018a)
Cls. Lung WSI - 535

Cls. Lung WSI - 491

Cls. Lung WSI - 425

Wu et al. (2019) Cls. Skin WSI - 1241

Ozen et al. (2020) Cls. Breast TRoI - 1,080

Aygunes et al. (2020) Cls. Breast TRoI - 1,030

Zhao et al. (2020) Cls. Colon WSI - 425

Raju et al. (2020) Cls. Colon WSI - 1,345

Ding et al. (2020) Cls. Colon WSI - 421

Adnan et al. (2020) Cls. Lung WSI - 1,026

H
ie

ra
rc

h
ic

al
-g

ra
p

h

Pati et al. (2020) Cls. Breast TRoI 2,000×2,000 2,080

Zhang et al. (2020) Cls. Breast TRoI 2,048×1,536 400

Chen et al. (2020)
Cls. Renal TRoI - -

Cls. Brain TRoI - -

Shi et al. (2020)
Cls. Cervical TRoI - 4,039

Cls. Cervical TRoI 128×128 25,378

Pati et al. (2021a) Cls. Breast TRoI 1,900×1,900 4,391

Levy et al. (2021)
Reg. Colon WSI - 172

Reg. Lymphoma WSI - 84

M
is

c Jaume et al. (2021a) Helpers Agnostic - - -

Ahmedt et al. (2021) Review - - - -

Table 4.1 – Overview of graph representations and models in CompPath, grouped by graph
type: cell-graphs, tissue-graphs, patch-graphs and hierarchical-graphs. Publications included
in this thesis are highlighted in bold. Cls., Reg., Seg. stands for a classification, regression and
segmentation, respectively.
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5 Hierarchical Graph Representations of
Histology Images

The ideas, methods and results presented in this chapter are published in:

• "Hierarchical Graph Representations in Digital Pathology", Pushpak Pati*, Guillaume

Jaume*, Antonio Foncubierta, Florinda Feroce, Anna Maria Anniciello, Giosuè Scog-

namiglio, Nadia Brancati, Maryse Fiche, Estelle Dubruc, Daniel Riccio, Maurizio Di

Bonito, Giuseppe De Pietro, Gerardo Botti, Jean-Philippe Thiran, Maria Frucci, Orcun

Goksel, Maria Gabrani. In Medical Image Analysis, 2021 (Pati et al., 2021a).

• "HACT-Net: A Hierarchical Cell-to-Tissue Graph Neural Network for Histopatholog-

ical Image Classification", Pushpak Pati*, Guillaume Jaume*, Lauren Alisha Fernan-

des, Antonio Foncubierta-Rodríguez, Florinda Feroce, Anna Maria Anniciello, Giosue

Scognamiglio, Nadia Brancati, Daniel Riccio, Maurizio Di Bonito, Giuseppe De Pietro,

Gerardo Botti, Orcun Goksel, Jean-Philippe Thiran, Maria Frucci, Maria Gabrani. In

International Conference on Medical Image Computing and Computer Assisted Inter-

vention (MICCAI), MICCAI Workshop on Graphs in Medical Imaging, 2020 (Pati et al.,

2020).

GJ (the author of this thesis) is sharing first co-authorship with PP. The ideas, concepts and

experiments were designed by GJ and PP. GJ was responsible for implementing the graph

neural network models, some of the image-to-graph modules and an experiment manager. GJ

executed the experiments with the help of PP and LAF. FF, AMA, GS, MF, ED, MDB generated

and annotated the BRACS data. They also served as a medical guarantee to justify the problem

statement, ensure the use of appropriate metrics, and for the evaluation of the AI models. AF,

NB, DR, MDB, GDP, GB and MG were responsible for coordination and management of the

project. JPT and OG supervised and supported GJ in organizing his research. The manuscript

was written by GJ and PP and subsequently revised by LAF, OG and MG.
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5.1 Introduction

Deep learning techniques primarily use CNNs (Madabhushi and Lee, 2016; Parwani, 2019)

to process histology images in a patch-wise manner. CNNs extract representative patterns

from patches and aggregate them to perform image-level tasks, e.g., tumor detection, tumor

staging, tumor subtyping. However, patch-wise processing suffers from the trade-off between

the resolution of operation and the utilization of adequate context (Bejnordi et al., 2017; Sir-

inukunwattana, 2018). Operating at a higher resolution captures local cellular information

but limits the field-of-view due to computational burden and limits the access to global tissue

microenvironment information. In contrast, operating at a lower resolution hinders resolvabil-

ity of cells and access to cellular properties. Bejnordi et al. (2017); Sirinukunwattana (2018);

Tellez et al. (2019a) have proposed CNN methods to address such trade-off by leveraging visual

context, however, CNNs, which operate on fix-sized input patches, are confined to a fixed

field-of-view and are restricted to incorporate information from varying spatial distances.

Further, pixel-based processing in CNNs disregards the notion of histologically meaningful

entities (Hagele et al., 2020), such as cells, glands, and tissue types. The inattention to histolog-

ical entities severely limits the interpretability of CNNs by pathologists, and any utilization

of established entity-level prior pathological knowledge in the CNN-based diagnostic frame-

works. Additionally, CNNs disregard the structural composition of tissue, where fine entities

hierarchically constitute to form coarser entities, such as, epithelial cells organize to form

epithelium, which further constitutes to form glands. Such a hierarchical structure analysis is

of high value for the diagnosis and prognosis.

In this chapter, we address the aforementioned limitations by shifting the analytical paradigm

from pixel to entity-based processing. In an entity paradigm, a histology image is described as

an entity-graph, where nodes and edges of a graph denote biological entities and inter-entity in-

teractions, respectively. An entity-graph can be customized in various aspects, e.g., in terms of

the type of entity set, entity attributes, and graph topology, by incorporating any task-specific

prior pathological knowledge. Thus, the graph representation enables pathology-specific

interpretability and human-machine co-learning. In addition, the graph representation is

memory efficient compared to images and can seamlessly describe a large tissue region. Demir

et al. (2004) first introduced cell-graphs using cells as the entity type. Though a cell-graph

efficiently encodes the cell microenvironment, it cannot extensively capture the tissue mi-

croenvironment, i.e., the distribution of tissue regions such as necrosis, stroma, epithelium,

etc. Similarly, a tissue-graph comprising of the set of tissue regions cannot depict the cell mi-

croenvironment. Therefore, an entity-graph representation using a single type of entity set is

insufficient to comprehensively describe the tissue composition. To address this, we propose

a multi-level entity-graph representation, i.e., HierArchical Cell-to-Tissue (HACT), consisting

of multiple types of entity sets, i.e., cells and tissue regions, to encode both cell and tissue

microenvironment. The multiset of entities is inherently coupled depicting tissue composition

at multiple scales. The HACT graph encodes individual entity attributes and intra- and inter-

entity relationships to hierarchically describe a histology image. Upon the graph construction,
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a GNN processes the entity-graph to perform image analysis. Specifically, we introduce a

hierarchical GNN, HierArchical Cell-to-Tissue Network (HACT-Net), to sequentially operate

on the HACT graph, from fine-level to coarse-level, to provide a fixed dimensional embedding

for the image. The embedding encodes morphological and topological distribution of the

multiset of entities in the tissue. Interestingly, our proposed methodology resembles the tissue

diagnostic procedure in clinical practice, where a pathologist hierarchically analyzes a tissue.

We propose a methodology that consists of HACT graph construction and HACT-Net based

histology image analysis. We characterize breast Tumor Regions-of-Interest (TRoIs) to evaluate

our methodology. Specifically, the contributions presented in this chapter are:

• A novel hierarchical entity-graph representation (HACT) and hierarchical learning

(HACT-Net) methodology for analyzing histology images;

• Introducing a public dataset, BReAst Carcinoma Subtyping (BRACS1), a large cohort of

breast TRoIs annotated with seven breast cancer subtypes. BRACS includes challenging

atypical cases and a wide variety of TRoIs representing a realistic breast cancer analysis;

• An evaluation of our proposed methodology on the BRACS dataset where an extensive

assessment demonstrates our classification performance outperforming several recent

CNN and GNN approaches for cancer subtyping. On an independent study, HACT-

Net even outperforms three independent pathologists on per-class and aggregated

classification tasks.

5.2 Related work

5.2.1 Cancer subtyping

Several deep learning algorithms have been proposed to categorize histopathology images into

cancer subtypes (Komura and Ishikawa, 2018; Srinidhi et al., 2021; Deng et al., 2020; Spanhol

et al., 2016; Araujo et al., 2005; Aresta et al., 2019). For this task, most algorithms employ CNNs

in a patch-wise manner: In Araujo et al. (2005); Bardou et al. (2018); Roy et al. (2019); Mercan

et al. (2019a), CNNs are used to classify breast histology images. These methods use single

stream patch-wise approaches to capture local patch-level context, aggregate the patch-level

information, and classify the image using aggregated information. For instance, Mercan

et al. (2019a) aggregate the patch-wise CNN generated embeddings and class-probabilities to

construct a class-probability weighted TRoI-level feature representation, and subsequently

classifies the TRoI. However, single-stream approaches do not capture adequate context from

the tissue microenvironment to aptly encode a patch. Sirinukunwattana (2018) address this

issue by including multi-scale information from concentric patches across different magnifi-

cations. Tellez et al. (2019a) propose neural image compression, where WSIs are compressed

using a neural network trained in an unsupervised fashion, followed by a CNN trained on

1BRACS dataset for breast cancer subtyping: https://www.bracs.icar.cnr.it
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Hierarchical Graph Representations of Histology Images

the compressed representations to classify the images. Shaban et al. (2020) include an atten-

tion module with an auxiliary task to improve neural image compression for histology image

classification. Yan et al. (2020) propose a hybrid convolutional and RNN to utilize spatial

correlations among patches for analyzing histology images. Bejnordi et al. (2017) propose a

stacked CNN architecture to capture large contexts and perform end-to-end processing of

large histology images. Pinckaers et al. (2020) propose a streaming CNN to accommodate

multi-megapixel images. Campanella et al. (2019) utilize a Multiple Instance Learning (MIL)

approach to process whole-slide images in an end-to-end manner. Though the aforemen-

tioned methods use different strategies to encode a tissue, they all operate on a square and

fix-sized patches. However, actual TRoIs can be of highly varying dimensions and shapes

depending on the cancer subtype and the site of tissue extraction. In contrast, our proposed

entity-graph methodology can acquire both local and global context from arbitrary-sized

TRoIs.

The approaches followed by researchers to circumvent this limitation have been to either

downsample the WSI image to a smaller resolution or dividing the WSI in many small patches

and aggregating results later on. Cid et al. (2018) have shown that the tumor stroma environ-

ment correlates with prognosis, and patch-based techniques would not be able to capture this.

On the other hand there are specific breast cancer subtypes like flat epithelial atypia (FEA)

that are characterized by patterns that are best distinguished at larger resolutions as described

in (Lerwill, 2008).

5.2.2 Graphs in computational pathology

Entity graph-based tissue representations can effectively describe the tissue composition by

incorporating morphology, topology, and interactions among biologically comprehensible

entities, unlike CNNs. Using cells as entities, Demir et al. (2004) introduced a cell-graph (CG)

representation of a tissue, where cell morphology can be embedded in the nodes via hand-

crafted (Demir et al., 2004; Zhou et al., 2019a; Pati et al., 2020) or deep-learning based features

(Chen et al., 2020). The graph topology is often heuristically defined, e.g., using k-Nearest

Neighbors, probabilistic modeling, or a Waxman model (Sharma et al., 2015). Subsequently,

a CG is processed by classical machine learning techniques (Sharma et al., 2016, 2017) or

GNNs (Zhou et al., 2019a; Pati et al., 2020; Chen et al., 2020; Anand et al., 2020) for mapping

to tissue function. Recently, graph representations using patches (Aygunes et al., 2020) and

tissue regions (Pati et al., 2020; Anklin et al., 2021) as entities have been proposed for better

tissue representation. Other graph-based applications in computational pathology include

cellular community detection (Javed et al., 2020), WSI classification (Zhao et al., 2020; Adnan

et al., 2020), WSI segmentation (Anklin et al., 2021). Notably, entity-graphs consist of biological

entities to which the pathologists can readily relate. So, the entity-graph paradigm enables to

incorporate pathologically-defined, task-specific entity-level prior knowledge in constructing

“meaningful” tissue representations. This implicitly enables interpretability and explainability

of graph-based networks for pathologists as detailed in Chapter 3. For instance, Zhou et al.
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(2019a) analyzes the clustering of nodes in a CG to group cells according to their appearance

and tissue types. Sureka et al. (2020) employs robust spatial filtering that utilizes an attention-

based GNN and node occlusion to highlight cell contributions.

5.3 Methodology

In this section, we detail our proposed methodology for hierarchical tissue analysis, as il-

lustrated in Figure 5.1. For an input H&E stained histology TRoI image, first, we apply pre-

processing to standardize the input. Then, we identify pathologically relevant entities and

construct a HACT graph representation of the TRoI by incorporating the morphological and

topological distribution of the entities. Finally, HACT-Net, a hierarchical GNN, is devised to

map the HACT graph to a corresponding category, e.g., cancer subtype.

5.3.1 Notation

Following the notation introduced in Chapter 1, we define an attributed entity-graph G :=
(V ,E , H) as a set of nodes V , edges E , and node features H . Each node v ∈V is represented

by a feature vector h(v) ∈ Rd , thus, H ∈ R|V |×d . d denotes the number of features per node,

and | . | denotes set cardinality. The graph topology is described by an adjacency matrix

A ∈ R|V |×|V |, where Au,v = 1 if (u, v) ∈ E . The neighborhood of a node v ∈ V is denoted as

N (v) := {u ∈V | v ∈V , (u, v) ∈ E }.

5.3.2 Graph representation

Figure 5.1 – Overview of the proposed hierarchical entity-graph based tissue analysis method-
ology. Following some pre-processing, a hierarchical entity-graph representation of a tissue
is constructed, and it is processed via a hierarchical GNN to learn the mapping from tissue
compositions to respective tissue categories. (Figure is best viewed in color.)

We first apply Macenko’s stain normalization algorithm (see Chapter 4) to an input image in

order to reduce stain variability across different samples. Then, the stain normalized TRoI is
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processed to identify relevant entities and construct a hierarchical entity-graph representation.

In this work, we consider nuclei and tissue regions as the entities. Therefore, the HACT

graph consist of three components: 1) a low-level cell-graph, capturing cell morphology and

interactions, 2) a high-level tissue-graph, capturing morphology and spatial distribution of

tissue regions, and 3) cells-to-tissue hierarchies, encoding the relative spatial distribution of

cells with respect to the tissue distribution. The details of the components are presented in

the following subsections.

Figure 5.2 – Overview of hierarchical cell-to-tissue (HACT) graph construction for a TRoI.
Our HACT graph representation consists of a cell-graph, a tissue-graph, and cell-to-tissue
hierarchies, while encoding the phenotypical and topological distributions of tissue entities to
describe the cell and tissue microenvironments. (Figure is best viewed in color.)

Cell-graph representation

A cell-graph (CG) characterizes the cell microenvironment, where nodes denote cells and

encode cellular morphology, and edges denote cellular interactions and encode cellular

topology. It is constructed in three steps, i) nuclei detection, ii) nuclei feature extraction, and

iii) topology configuration, as shown in Figure 5.2.

Precise nuclei detection enables reliable CG representation. To this end, we use HoVer-Net, a

nuclei segmentation network proposed by (Graham et al., 2019a), pre-trained on MoNuSeg

dataset (Kumar et al., 2017). HoVer-Net leverages the instance-level information encoded in

the vertical and horizontal distances of nuclear pixels to their centers of mass. These distances

are used to accurately segment clustered nuclei, particularly in areas with overlapping nuclei.

The centroids of the segmented nuclei form the spatial coordinates of nodes in the CG.
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Following nuclei detection, morphological features are extracted by processing patches of size

h ×w centered around nuclei centroids with a ResNet network (He et al., 2016) that was pre-

trained on the ImageNet dataset (Deng et al., 2009a). Spatial features of the nuclei are extracted

as the spatial coordinates of the nuclei, normalized by the TRoI dimensions. Morphological

and spatial features together constitute the nuclei features, which are collocated for all nodes

as the node-feature matrix HCG ∈R |VCG|×dCG .

The CG topology ECG is based on the fact that spatially close cells have stronger interac-

tions (Francis and Palsson, 1997) while distant cells having weaker cellular interactions. Ac-

cordingly, we connect nearby cells with edges to model their interactions. To this end, we

use the k-NN algorithm to build an initial topology, that we subsequently prune by remov-

ing edges longer than a threshold distance dmin. We use the Euclidean distances between

nuclei centroids in the image space to quantify cellular distances. The resulting CG topol-

ogy is represented by a binary adjacency matrix ECG ∈ R |VCG| × |VCG|. Figure 5.2 illustrates

the CG representation for a sample TRoI. Formally, a CG representation is formulated as

GCG :={VCG,ECG, HCG}.

Tissue-graph representation

A tissue-graph (TG) depicts a high-level tissue microenvironment, where the nodes and

edges denote tissue regions and their interactions, respectively. A TG is constructed by first

identifying tissue regions (e.g., epithelium, stroma, lumen, necrosis etc.), followed by encoding

the tissue regions, and finally the topology building. The steps are illustrated in Figure 5.2. A

parallel approach involving superpixel detection and neighborhood information aggregation

is adopted by (Mercan et al., 2018) to semantically segment tissue regions in histology images.

Tissue regions are identified in two steps. First, we oversegment the tissue to detect non-

overlapping homogeneous superpixels. We operate at a low magnification to avoid noisy

pixels and reduce computational cost. Specifically, we use the Simple Linear Iterative Clus-

tering (SLIC) algorithm (Achanta et al., 2012). SLIC follows an unsupervised approach by

associating each pixel with a feature vector and merging the pixels using a localized version

of k-means clustering. Next, we iteratively merge neighboring superpixels that have similar

color attributes, i.e., channel-wise mean, to create superpixels that capture meaningful tissue

information. A sample tissue-region instance-map is shown in Figure 5.2.

To extract feature representations of tissue regions, we follow a two-step procedure: first, we

extract CNN-based features for oversegmented superpixels, i.e., patches of size h×w centered

around the superpixel centroids are processed by ResNet. Second, morphological features of a

tissue region are obtained by averaging the deep features of its constituting superpixels. Similar

to CG, we include spatial features as the normalized centroids of the tissue region. For a TRoI

with a set of VTG tissue regions, we denote the TG node-feature matrix as HTG ∈R |VTG|×dTG .

We assume adjacent tissue regions to biologically interact the most, and thus connect in

63



Hierarchical Graph Representations of Histology Images

the TG topology. To this end, we construct a Region Adjacency Graph (RAG) (Potjer, 1996)

where an edge is built between adjacent tissue regions. The topology is presented by a binary

adjacency matrix ETG ∈ R |VTG|×|VTG|. Formally, a TG representation is formulated as GTG :=
{VTG,ETG, HTG}.

Figure 5.3 – Overview of the proposed HACT-Net architecture. The network processes an
input HACT graph representation in a hierarchical manner, from fine cell-level to coarse
tissue-region level, to obtain a contextualized graph embedding, and consequently classify
the input graph. (Figure is best viewed in color)

Hierarchical Cell-to-Tissue graph representation

Tissues in histopathology can be viewed as a hierarchical organizations of biological entities

ranging from fine-level, i.e., cells, to coarse-level, i.e., tissue regions. There exist intra- and

inter-level coupling based on topological distributions and interactions among the entities.

Following this motivation, we propose HACT, a HierArchical Cell-to-Tissue (HACT) graph

representation to jointly represent low-level CG and high-level TG. Intra-level topology is

already captured by the cell- and tissue-graphs. Inter-level topology is presented by a binary

assignment (cell-to-tissue hierarchy) matrix ACG→TG ∈ R |VCG| × |VTG| that utilizes the relative

spatial distributions of nuclei with respect to tissue regions. For the i th nucleus and j th tissue

region, the corresponding assignment is given as,

ACG→TG[ i , j ] = 1, if i th nucleus centroid ∈ j th tissue region

ACG→TG[ i , j ] = 0, otherwise
(5.1)

Cell-to-tissue hierarchies for a tissue region are presented in Figure 5.2. Each nucleus is

assigned to one and only one tissue region. If a segmented nucleus is at the border of mul-

tiple tissue regions, the nucleus is assigned to the tissue region that it has the maximum

overlap with. Formally for a given TRoI, a HACT representation is formulated as GHACT :=
{GCG,GTG, ACG→TG}.

64



5.3. Methodology

5.3.3 Graph learning

The HACT graph for a TRoI is processed by a hierarchical GNN to map a TRoI to the corre-

sponding TRoI subtype. To this end, we propose the HierArchical Cell-to-Tissue Network

(HACT-Net), a hierarchical GNN architecture described in Figure 5.3.

HACT-Net architecture & learning

HACT-Net intakes GHACT as input and outputs a graph-level representation hHACT ∈ RdHACT .

Subsequently, a MLP categorizes hHACT, e.g., to a cancer subtype. Formally, HACT-Net consists

of two GNNs, i.e., Cell-GNN (CG-GNN) and Tissue-GNN (TG-GNN), to hierarchically process

the HACT graph from fine to coarse level. In this work, we leverage the advances in GNNs and

model HACT-Net using PNA layers (Corso et al. (2020)). A thorough description of the PNA

architecture is presented in Chapter 2.

First, CG-GNN intakes GCG := {VCG,ECG, HCG}, and applies TCG PNA layers to build contex-

tualized cell-node embeddings h(t )
CG(v), ∀v ∈ VCG. After TCG PNA layers, an LSTM-based

jumping knowledge technique (Xu et al., 2018) is employed to adapt to different CG sub-graph

structures, i.e.,

h (TCG+1)
CG (v) = LSTM

({
h (t )

CG(v)
∣∣∣ t = 1, . . . ,TCG

})
(5.2)

Following the CG-GNN, the cell-node embeddings, h TCG+1
CG (v) | v ∈VCG, and the assignment

matrix ACG→TG are used to incorporate hierarchical information and initialize the tissue-node

features in the TG, i.e.,

h (0)
TG(w) = CONCAT

(
H TG(w),

∑
v ∈M (w)

h (TCG+1)
CG (v)

)
(5.3)

where CONCAT denotes concatenation and M (w) := { v ∈VCG | ACG→TG (v, w) = 1} is the set

of nodes in GCG mapping to a node w ∈VTG. Analogous to CG, GTG is processed by TG-GNN

to compute tissue-node embeddings h(t )
TG(w), ∀w ∈VTG. At t = TTG, the embedding of each

tissue-node w encodes the cell and tissue information up to TTG-hops from w .

Similar to CG, the tissue-node embeddings in TG are processed via an LSTM-based jumping

knowledge technique to combine the intermediate tissue-node embeddings. Finally, the

graph-level embedding hHACT is produced by summing all the tissue-node embeddings. A

MLP and a softmax operation follows to map hHACT to respective TRoI label. HACT-Net is

trained end-to-end by minimizing the cross-entropy loss between the softmax output and the

ground-truth TRoI label.

Following Dwivedi et al. (2020), after each PNA layer we include graph normalization (Graph-

Norm) followed by a batch normalization (BatchNorm). Graph normalization scales the node

features by the number of nodes in the graph. Intuitively, it prevents the node representa-
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Metric N B UDH ADH FEA DCIS I Total

Im
ag

e

Number of images 512 758 471 568 783 749 550 4391

Number of pixels (in million) 2.8 5.7 2.4 2.2 1.2 5.0 8.02 3.9

±2.7 ±4.5 ±2.9 ±2.0 ±1.1 ±5.0 ±5.4 ±4.3

Max/Min pixel ratio 75.3 97.9 180.1 75.3 58.3 128.6 62.4 235.6

C
G

Number of nodes 994 1826 903 863 470 1723 3609 1468

±732 ±1547 ±910 ±730 ±352 ±1598 ±2393 ±1642

Number of edges 3759 6103 3371 3098 1738 5728 12490 5102

±2643 ±5420 ±3675 ±2781 ±1395 ±5811 ±10011 ±6089

Max/Min node ratio 71.9 126.6 133.3 104.2 45.2 161.3 113.6 256.4

T
G

Number of nodes 107 217 88 100 45 225 423 172

±106 ±233 ±93 ±91 ±32 ±217 ±317 ±217

Number of edges 509 1012 393 480 194 1111 2025 815

±545 ±1236 ±450 ±474 ±159 ±1123 ±1741 ±1125

Max/Min node ratio 169.5 312.5 125.0 178.6 416.7 312.5 101.0 434.8

Im
ag

e
sp

li
t Train 342 586 303 405 599 562 366 3163

Validation 86 87 88 77 85 97 82 602

Test 84 85 80 86 99 90 102 626

W
SI

sp
li

t Train 67 86 59 38 37 33 41 198

Validation 28 24 24 28 17 21 19 68

Test 15 16 20 17 12 16 16 59

Table 5.1 – Key statistics of the BRACS dataset.

tions from being at different scales, for graphs of different sizes. This normalization helps

the network to learn discriminative topological patterns when the number of nodes varies

significantly within a class.

5.4 Datasets

BRACS dataset

As part of this work, we introduce a new dataset termed as BReAst Cancer Subtyping (BRACS).

It contains 4391 TRoIs from 325 H&E breast carcinoma WSIs. The WSIs were selected from

the archives of the Department of Pathology at National Cancer Institute- IRCCS-Fondazione

Pascale, Naples, Italy. They are scanned with an Aperio AT2 scanner at 0.25µm/pixel resolution.

The TRoIs were selected and annotated using QuPath (Bankhead et al., 2017) as:

• Normal tissue (N): they include two types of epithelial cells, namely luminal and basal

myoepithelial cells, and two types of stromal cells, namely interlobular and intralobular

stroma.

• Benign tissue (B): they include non-proliferative lesions and proliferative lesions with

the exception of UDH, FEA and ADH, which are considered as independent subtypes
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(see below). Specifically, benign samples include cyst, apocrine metaplasia, ductal

ectasia, squamous metaplasia, atrophy, stromal fibrosis, mastitis, sclerosing adenosis,

papilloma, radial scar, and simple and complex fibroadenoma.

• Usual Ductal Hyperplasia (UDH): UDH is characterized by a cohesive proliferation of

disorderly distributed but oriented cells. It can have different architectural aspects, e.g.,

solid pattern, fenestrated pattern and micropapillary pattern. UDH has architectural

similarities to ADH and DCIS, although it is not an atypical pattern.

• Flat Epithelial Atypia (FEA): FEA is a proliferative lesion characterized by low grade

cytological atypia, cell monomorphism, loss of polarity and orientation with respect to

the basement membrane, presence of apical snout, endoluminal secretion and frequent

calcification.

• Atypical Ductal Hyperplasia (ADH): ADH is a proliferation of monomorphic cells, which

partially fill the ductal space. The possible architectural patterns are solid, cribriform

and papillary. Cytologic atypia are similar to those of low-grade DCIS (see below), but

the lesion does not extend beyond 2mm or has insufficient architectural atypia involving

only partial ducts and lobules.

• Ductal Carcinonma in Situ (DCIS): DCIS is a malignant proliferation of epithelial cells

that fills the entire duct, without evidence of stroma invasion. Typically it involves mul-

tiple adjacent ductal space. It can have cribriform, solid, papillary and micropapillary

patterns.

• Invasive Carcinoma (I): they are characterized by the invasion of tumor cells infiltrating

the breast stroma with loss of peripheral myoepithelial cells.

Figure 5.4 presents sample TRoIs from all cancer subtypes in BRACS. Each TRoI was first anno-

tated independently by three pathologists. TRoIs with disagreement were further discussed

and annotated by the consensus. Note that the pathologists used the entire WSI context

during annotation. Figure 5.5 presents some DCIS samples in BRACS dataset, and highlight the

included appearance variability. Such TRoI variability is typical in practice, and were included

in BRACS to mimic the real world diagnosis. It ensures a realistic and representative evaluation

set, with results readily applicable in the field.

Table 5.1 presents category-wise statistics of the TRoIs in BRACS. The statistics demonstrate

a high variation in TRoI dimensions. We also include the statistics for the CG and TG repre-

sentations constructed by our framework, which indicate a large variation in the size of the

entity-graph representations. For evaluations on BRACS, we partition the TRoIs into train,

validation, and test sets at the WSI-level, such that two TRoIs from the same WSI do not fall

in different sets. The WSI-level splitting was performed randomly, ensuring a comparable

number of TRoIs per cancer subtype. Such partitioning aimed for a fair evaluation of the

compared methods.
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BACH dataset

We evaluated the proposed methodology also on the publicly available Grand Challenge on

BreAst Cancer Histology images BACH (Aresta et al., 2019). It consists of 400 training and 100

test images from four breast cancer subtypes, i.e., Normal, Benign, DCIS, and Invasive. All

images are acquired using a Leica DM 2000 LED microscope and a Leica ICC50 HD camera.

These images are in RGB TIFF format and have a fixed size of 2048×1536 pixels and a pixel

scale of 0.42×0.42µm. Notably, the proposed BRACS presents three major advantages over

BACH:

• Number of images: The train and test sets of BRACS are nearly 10 times and 6 times the

size of the train and test sets of BACH, respectively. The large test set ensures a robust

evaluation of the methods.

• Diverse subtypes: BRACS includes diagnostically complex precancerous atypical cate-

gories, namely ADH and FEA, which represent a major diagnostic challenge because of

their high risk of progression to cancer. The seven cancer subtypes in BRACS represent a

broad spectrum of breast cancer in histopathology.

• Large variability: The aforementioned high variability in BRACS in terms of TRoI ap-

pearances and dimensions is clinically more representative, and corresponds to a more

realistic scenario of breast cancer subtyping.

5.5 Results

In this section, we comparatively assess the proposed method for breast cancer subtyp-

ing. First, we introduce state-of-the-art CNN and GNN baselines, and their implementation

schemes. Second, we conduct ablations on BRACS to examine the impact of various compo-

nents in our framework. Third, we evaluate the classification performance of our method and

compare with the baselines, on BRACS and BACH datasets for different classification settings.

Finally, we include a comparison of HACT-Net with three independent expert-pathologists.

5.5.1 CNN and GNN baselines for comparative evaluation

• Single-scale CNN processes TRoIs at a single magnification. A CNN is trained to predict

patch-wise cancer subtypes, and we aggregate the patch-wise predictions to produce a TRoI-

level prediction. We experiment with images at three magnifications, i.e., 10×, 20×, and 40×,

denoted herein as CNN(10×), CNN(20×), and CNN(40×), using the same network architecture

and training scheme. For each scale, we extract patches of size 128×128 pixels with a stride of

64 pixels. The CNN follows the single-scale training procedure by Sirinukunwattana (2018),

and patch-wise predictions are aggregated using the Agg-Penultimate strategy by Mercan et al.

(2019a). We use transfer learning with a ResNet-50 architecture, pre-trained on ImageNet,

as the CNN backbone. Following feature extraction by ResNet-50, a two-layer MLP with 128

68



5.5. Results

channels classifies the patches. To improve the classification, the ResNet-50 parameters are

fine-tuned. Adam optimizer (Kingma and Ba (2015)) with 10−3 learning rate, a batch size of 16,

and a dropout of 0.2 is used to optimize the categorical cross-entropy objective.

•Multi-scale CNN processes the TRoIs at multiple scales. We extract concentric patches of size

128×128 pixels from multiple magnifications and follow the “Late fusion with single-stream

+ LSTM" training procedure from Sirinukunwattana (2018). We operate at two settings, i.e.,

(10×+20×) and (10×+20×+40×), and denote by prepending Multi-scale CNN in front of each.

The patch-wise predictions are aggregated using the Agg-Penultimate strategy by Mercan

et al. (2019a). On the concatenated features from the LSTM, we use a two-layer MLP of 128

channels to classify the patches. The training strategy and hyperparameters are the same as

Single-scale CNN.

• CGC-Net denotes the Cell Graph Convolutional Network (CGC-Net) proposed by Zhou et al.

(2019a), and it is the state-of-the-art in classifying CG representations for TRoIs. We construct

the CG topology for a TRoI using thresholded kNN strategy presented in Section 5.3.2. We

initialize the CG nodes with hand-crafted features, employ the Adaptive GraphSage-based

CGC-Net architecture, and follow the training strategy proposed by Zhou et al. (2019a).

• Patch-GNN implements the method proposed by Aygunes et al. (2020), which is the state-of-

the-art GNN method for classifying patch-graph representations of TRoIs. It incorporates local

inter-patch context through a GNN to construct a graph-level features, which is then processed

by an MLP to classify the TRoIs. We experiment with Patch-GNN at three scales, i.e., 10×, 20×,

and 40×, denoted herein as Patch-GNN (10×), Patch-GNN (20×), and Patch-GNN(40×). At

each magnification, we extract patches of size 128×128 to construct a TRoI-specific patch-

graph. We employ the network architecture and training strategy proposed by Aygunes et al.

(2020).

• CG-GNN is provided as a standalone CG-based learning baseline, to compare with our pro-

posed hierarchical learning. CG-GNN uses PNA layers, an LSTM-based jumping knowledge,

sum readout, and a two-layer MLP classifier. We follow the CG representation strategy as

described in Section 5.3.2.

• TG-GNN is provided as a standalone TG-based learning baseline, to compare with our

proposed hierarchical learning. TG-GNN uses the same architecture as the CG-GNN, with the

node features directly initialized by H TG instead of Equation (5.3).

• CONCAT-GNN is provided to evaluate the impact of hierarchical graph representation and

learning. CONCAT-GNN utilizes standalone CG and TG representations, respectively, as

input to standalone CG-GNN and TG-GNN to produce hCG and hTG graph-level embeddings.

The TRoI level embedding is constructed by concatenating the graph-level embeddings, i.e.,

h CONCAT = CONCAT(hCG, h TG). Finally, a two-layer MLP classifies h CONCAT into a cancer

subtype.
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5.5.2 Implementation

Graph representations: CG representations use, i) patches of size 72×72, and ii) a CNN of

ResNet-34 or ResNet-50 to initialize the node features. TG representations (Section 5.3.2) use,

i) patches of size 144×144, and ii) a CNN of ResNet-34 or ResNet-50 to initialize the node

features.

Graph architecture and learning: Hyper-parameter search was run to find the optimal CG-

GNN, TG-GNN, CONCAT-GNN, and HACT-Net parameters:

• # PNA layers in GNN: [3, 4, 5]

• # MLP layers in a PNA layer: 2

• # channels in a PNA-layer MLP: 64

• Graph-level embedding dimension: 128

• # MLP layers in output classifier: 2

• # channels in output MLP classifier: 128

• Training parameters: Adam optimizer (Kingma and Ba, 2015) with a learning rate of

10−3, batch size of 16, and a categorical cross-entropy objective.

Evaluation metrics: Considering the imbalanced number of TRoIs per class in train, valida-

tion, and test sets (see Table 5.1), we evaluate the classification performance using weighted

F1-score, an average weighted by the number of true instances for each class. The best

weighted F1-scores on the validation set is used as the model selection criteria during the

training of each method. To present any sensitivity to initialization, we report the mean and

standard deviation of each model on the test set by training them three times using random

weight initialization. Further, we present precision, recall, and confusion matrices to indicate

the distribution of class predictions.

Computational resources: All the experiments were conducted using PyTorch (Paszke et al.,

2019) and the Deep Graph Library (DGL) (Wang et al., 2019a), on NVIDIA Tesla P100 Graphics

Processing Unit (GPUs) and POWER9 processors.

5.5.3 Ablation studies

We conduct ablation to evaluate the impact of three major components of our methodology

on TRoI classification performance, i.e., (i) node feature initialization, (ii) GNN layer type, and

(iii) jumping knowledge technique. Each component is analyzed individually, while fixing the

other ones. Ablations are performed on BRACS for classifying the TRoIs into 7-classes.
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Impact of node feature initialization

The performance of GNNs eminently rely on the initial node features (Kipf and Welling, 2017).

In our context, we analyze the impact of initial morphological features of the nodes with the

following three feature initialization schemes:

• No morphological features: The nodes of an entity-graph are initialized with only the spatial

features. Experiments with this setting demonstrate the impact of standalone graph topology

on the classification performance.

• Hand-crafted morphological features: The entity-graph nodes are initialized with hand-

crafted morphological features as suggested by Zhou et al. (2019a), i.e., (i) texture features:

difference of average foreground to background; standard deviation, skewness, and mean

entropy of intensities; dissimilarity, homogeneity, energy, and angular second moment from

Gray-Level Co-occurrence Matrix; and (ii) shape features: eccentricity, area, maximum and

minimum axis lengths, perimeter, solidity, and orientation. Note that, the hand-crafted

features for CG and TG are computed, respectively, from the segmented instances of nuclei

and tissue regions.

• CNN morphological features: The morphological features of the entity-graph nodes are

initialized with CNN features (ResNet-34 pre-trained on ImageNet) extracted from patches

around the centroids of the nuclei and tissue regions.

Experimental results in Table 5.2 indicate that the standalone CG topology is more discrim-

inative for cancer subtyping than TG topology. The combination of CG and TG topologies

further improves discriminative ability. The best performance achieved with the HACT topol-

ogy confirms the strength of hierarchical representations. Further, including morphological

features significantly improves the classification. The superiority of graphs with CNN-based

morphological features indicate the richness of morphological information acquired by CNNs,

compared to hand-crafted measures.

Impact of GNN layer type

We investigate the impact of two state-of-the-art GNN layers, i.e., GIN and PNA, on the

classification performance. The experiments use CNN-based node feature initialization and

LSTM-based jumping knowledge. Results in Table 5.3 demonstrate that GNNs with PNA layers

outperform GNNs with GIN layers, for all the four GNN constructions. This can be explained

by the higher expressive power of the PNA layer, which is designed to operate on graphs with

continuous node features.
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Weighed F1

CG-GNN: No morphological features 45.24±1.51

CG-GNN: Hand-crafted morphological features 48.34±5.22

CG-GNN: CNN morphological features 55.94±1.01

TG-GNN: No morphological features 36.81±0.71

TG-GNN: Hand-crafted morphological features 51.62±2.11

TG-GNN: CNN morphological features 56.62±1.35

CONCAT-GNN: No morphological features 47.62±1.56

CONCAT-GNN: Hand-crafted morphological features 51.55±1.32

CONCAT-GNN: CNN morphological features 57.01±2.27

HACT-Net: No morphological features 48.70±0.16

HACT-Net: Hand-crafted morphological features 52.46±0.19

HACT-Net: CNN morphological features 61.53±0.87

Table 5.2 – Ablation: Impact of node features. Mean and standard deviation of 7-class weighted
F1-scores. Results expressed in %.

Weighed F1

CG-GNN: GIN 55.70±0.51

CG-GNN: PNA 55.94±1.01

TG-GNN: GIN 55.33±1.36

TG-GNN: PNA 56.62±1.35

CONCAT-GNN: GIN 56.20±2.12

CONCAT-GNN: PNA 57.01±2.27

HACT-Net: GIN 59.73±1.20

HACT-Net: PNA 61.53±0.87

Table 5.3 – Ablation: Impact of GNN layer. Mean and standard deviation of 7-class weighted
F1-scores. Results expressed in %.

Impact of jumping knowledge technique

To investigate the impact of jumping knowledge, we experiment with three settings: no

jumping knowledge, CONCAT-based, and LSTM-based. LSTM-based technique follows Equa-

tion (5.2). Based on this, CONCAT-based technique replaces the LSTM operation with the

concatenation operation. The experiments use CNN-based node feature initialization and

PNA layers. Results in Table 5.4 demonstrate a generally positive impact of the jumping

knowledge technique. Compared to CONCAT, the LSTM-based technique learns better de-

pendencies between GNN layers, thus generates better graph embeddings.

Ablation summary

The ablation experiments conclude the following choice of components for designing our

methodology, i) CNN-based initialization of node-level morphological features, ii) use of PNA
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Weighed F1

CG-GNN: No aggregator 55.53±0.75

CG-GNN: Concatenation 55.82±0.97

CG-GNN: LSTM 55.94±1.01

TG-GNN: No aggregator 55.30±0.81

TG-GNN: Concatenation 56.07±0.80

TG-GNN: LSTM 56.62±1.35

CONCAT-GNN: No aggregator 57.67±4.66

CONCAT-GNN: Concatenation 56.28±2.75

CONCAT-GNN: LSTM 57.01±2.27

HACT-Net: No aggregator 49.16±1.15

HACT-Net: Concatenation 59.78±1.59

HACT-Net: LSTM 61.53±0.87

Table 5.4 – Ablation: Impact of GNN jumping knowledge technique. Mean and standard
deviation of 7-class weighted F1-scores. Results expressed in %.

layers, and iii) an LSTM-based jumping knowledge technique.

5.5.4 Classification results on BRACS dataset

We evaluate our proposed methods, comparatively with CNN and GNN baselines. To analyze

the performance for different clinical applications and histopathological needs, we evaluate

and report the results separately in the following three settings:

• Setting 1: 7-class classification: Here, we classify the TRoIs into 7-classes, i.e., Normal,

Benign, UDH, ADH, FEA, DCIS, and Invasive, for the differentiation of a large spectrum of

breast cancer subtypes. Table 5.5 tabulates the classification performance of the compared

methods.

Among single-scale CNNs, CNN(10×) performs the best, indicating the importance of global

context information for TRoI classification. Multi-scale CNNs using both global and local

context outperform single-scale CNNs. Such benefit from context is significant for ADH, FEA,

and DCIS categories, which all require both local and global context for the diagnosis. Multi-

scale CNNs also outperform CGC-Net and Patch-GNNs. Interestingly, at each magnification,

Patch-GNN outperforms single-scale CNN, which affirms the importance of relational and

topological information incorporated in the graphs.

Comparing our proposed GNN solutions, we observe that CG-GNN significantly outperforms

CGC-Net, indicating the superiority of CNN-based node feature initialization over handcrafted

features, and the significance of GNNs with expressive PNA layers over Adaptive GraphSage

in CGC-Net. We notice that CG-GNN and TG-GNN provide comparable performance overall.

However, they outperform each other for Normal, Benign, UDH, ADH, and FEA categories,

displaying the importance of complementary information captured by standalone TG and
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Method Normal Benign UDH ADH FEA DCIS Invasive WF1

C
N

N

CNN (10×) 48.67 44.33 45.00 24.00 47.00 53.33 86.67±2.64 50.85

±1.71 ±1.89 ±4.97 ±2.83 ±4.32 ±2.62 ±2.64 ±2.64

CNN (20×) 42.00 42.33 39.33 22.67 47.67 50.33 77.00 46.85

±2.16 ±3.09 ±2.05 ±2.49 ±1.25 ±3.09 ±1.41 ±2.19

CNN (40×) 32.33 39.00 23.67 18.00 37.67 47.33 70.67 39.41

±4.64 ±0.82 ±1.70 ±0.82 ±2.87 ±2.05 ±0.47 ±1.89

Multi-scale CNN (10+20×) 48.33 45.67 41.67 32.33 46.33 59.33 85.67 52.27

±2.05 ±0.47 ±4.99 ±0.94 ±1.41 ±2.05 ±1.89 ±1.93

Multi-scale CNN (10+20+40×) 50.33 44.33 41.33 31.67 51.67 57.33 86.00 52.83

±0.94 ±1.25 ±2.49 ±3.30 ±3.09 ±0.94 ±1.41 ±1.92

G
N

N

CGG-Net 30.83 31.63 17.33 24.50 58.97 49.36 75.30 43.63

±5.33 ±4.66 ±3.38 ±5.24 ±3.56 ±3.41 ±3.20 ±0.51

Patch-GNN (10×) 52.53 47.57 23.67 30.66 60.73 58.76 81.63 52.10

±3.27 ±2.25 ±4.65 ±1.79 ±5.35 ±1.15 ±2.17 ±0.61

Patch-GNN (20×) 43.86 43.37 19.47 25.73 55.57 52.86 79.20 47.10

±4.23 ±3.21 ±2.31 ±2.87 ±2.08 ±1.85 ±1.04 ±0.70

Patch-GNN (40×) 41.70 32.93 25.07 25.63 49.47 48.60 71.57 43.23

±3.06 ±1.04 ±3.74 ±2.01 ±3.46 ±4.23 ±5.15 ±0.57

O
u

rs

CG-GNN 58.77 40.87 46.82 39.99 63.75 53.81 81.06 55.94

±6.82 ±3.05 ±1.95 ±3.56 ±10.48 ±3.89 ±3.33 ±1.01

TG-GNN 63.59 47.73 39.41 28.51 72.15 54.57 82.21 56.62

±4.88 ±2.87 ±4.70 ±4.29 ±1.35 ±2.23 ±3.99 ±1.35

CONCAT-GNN 60.97 43.06 41.96 26.10 71.29 60.83 85.42 57.01

±4.54 ±2.26 ±4.67 ±3.73 ±2.09 ±3.71 ±2.70 ±2.27

HACT-Net (Proposed) 61.56 47.49 43.60 40.42 74.22 66.44 88.40 61.53
±2.15 ±2.94 ±1.86 ±2.55 ±1.41 ±2.57 ±0.19 ±0.87

Table 5.5 – Mean and standard deviation of per-class F1-scores and weighted F1-scores (WF1)
for 7-class classification setting. Results are expressed in %. The best result is in bold and the
second best is underlined.

CG representations. Further, both HACT-Net and CONCAT-GNN provide overall superior

performance compared to all CNN and GNN baselines. HACT-Net significantly outperforms

CONCAT-GNN showing the significance of hierarchical modeling and learning. CONCAT-

GNN produces overall comparable or superior performance to CG-GNN and TG-GNN, al-

though for individual classes, CONCAT-GNN is rarely better than the two, suggesting that

it may be using complementary information from CG and TG. Such complementary infor-

mation is indeed best utilized by HACT-Net, with high per-class and overall classification

performance. Though HACT-Net achieves the third best result for the UDH category, it uses

the complementarity of CG and TG to provide better classification than TG-GNN. Moreover,

the misclassified UDH samples are predominantly categorized as Benign due to the expected

ambiguity between Benign and UDH classes. All the proposed GNNs often outperform all

CNN baselines, establishing the potential of entity-based analysis.

Figure 5.6 and Figure 5.7 present per-class precision and recall for CG-GNN, TG-GNN, CONCAT-
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Method Normal Non-cancerous Precancerous Cancerous Weighted F1
C

N
N

CNN (10×) 54.33±3.68 56.00±0.82 56.33±1.25 83.67±0.94 64.36±1.37

CNN (20×) 45.33±4.64 55.33±0.47 52.33±1.89 81.67±2.05 61.18±1.93

CNN (40×) 42.00±4.89 51.00±0.82 47.67±4.11 77.67±2.05 56.99±2.72

Multi-scale CNN (10×+20×) 51.67±5.79 55.33±1.25 52.67±2.87 80.67±1.89 61.82±2.53

Multi-scale CNN (10×+20×+40×) 51.33±3.27 56.33±2.05 57.00±1.64 81.33±3.68 63.52±2.59

G
N

N

CGG-Net 34.53±2.93 47.23±3.72 62.90±2.81 82.20±1.04 59.87±2.30

Patch-GNN (10×) 53.13±4.40 46.23±2.45 63.96±3.82 77.43±3.22 61.93±2.51

Patch-GNN (20×) 53.46±1.81 47.16±2.81 63.20±3.78 74.90±3.36 61.26±2.90

Patch-GNN (40×) 40.90±2.75 38.67±2.76 56.77±3.91 72.20±2.61 54.60±1.90

O
u

rs

CG-GNN 52.95±12.11 56.55±3.70 61.53±3.03 84.47±0.87 66.10±2.58

TG-GNN 52.96±6.81 56.52±2.85 64.36±1.05 82.21±0.78 66.24±1.11

CONCAT-GNN 54.54±1.64 56.63±1.68 62.58±1.45 81.80±0.77 65.83±0.04

HACT-Net (Proposed) 66.08±3.69 55.28±1.74 66.21±0.87 84.91±0.79 69.04±0.46

Table 5.6 – Mean and standard deviation of per-class F1-scores and weighted F1-scores for
4-class classification setting. Results are expressed in %. The best result is in bold and the
second best is underlined.

GNN, and HACT-Net. HACT-Net produces the highest precision values for most of the classes.

The recall ranking between CG-GNN and TG-GNN varies across classes, whereas HACT-Net

consistently yields good recall values. Further, standard deviation of class-wise precision and

recall values are the lowest for HACT-Net, for most classes. Figure 5.8 presets row-normalized

aggregated 7-class confusion matrix across three runs for HACT-Net. It indicates ambiguities

between (i) Normal and Benign, (ii) UDH and ADH, and (iii) ADH and DCIS. Notably, these

pair-wise classes bear high pathological ambiguity and are diagnostically challenging.

• Setting 2: 4-class classification: This setting categorizes TRoIs into 4-classes as per cancer

risk: Normal, Non-cancerous (Benign + UDH), Precancerous (ADH + FEA), and Cancerous

(DCIS + Invasive). Classification performance of CNN and GNN baselines, and HACT-Net are

presented in Table 5.6. Single scale CNNs exhibit the same behavior as in the 7-class setting.

However, combining multiple magnifications in multi-scale CNNs does not improve the

classification over the single-scales. Among the baselines, CGC-Net and Patch-GNNs perform

comparable or inferior to the CNNs, with a low-magnification CNN(10×) outperforming the

others. Similarly to the 7-class setting, our proposed methods are superior to the baselines.

HACT-Net produces the best overall performance, with the best classification performance

for Normal, Precancerous, and Cancerous categories. To highlight, HACT-Net achieves ≈ 66%

F1-score for the diagnostically challenging Precancerous category.

• Setting 3: Binary classifications: In this setting, we replicate the typical decision process of

a pathologist for breast cancer subtyping which follows a diagnostic decision tree as presented

in Figure 5.9. It is inspired by the classification scheme presented by Mercan et al. (2018). Note

that such individual binary decisions are less constrained compared to multi-class classifi-

cation, thus allows for better discrimination between a selected pair of classes. The binary
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Method I vs N+B+U vs N vs B vs A+F vs A vs Aggregated
N+B+A+U+F+D A+F+D B+U U D F

C
N

N

CNN (10×) 95.66 81.24 69.83 76.12 73.44 77.59 78.90

±0.48 ±0.42 ±0.38 ±1.13 ±2.56 ±1.73 ±1.38

CNN (20×) 92.39 80.84 66.52 74.75 67.87 71.78 75.69

±0.37 ±0.36 ±2.14 ±1.51 ±1.82 ±2.53 ±1.68

CNN (40×) 90.74 79.92 62.36 68.13 64.86 66.91 72.15

±0.59 ±1.66 ±2.14 ±4.30 ±2.98 ±1.68 ±2.51

Multi-scale CNN (10+20×) 94.31 80.89 67.99 75.58 72.07 76.91 77.96

±1.26 ±1.31 ±1.86 ±2.06 ±1.85 ±2.22 ±1.80

Multi-scale CNN (10+20+40×) 95.12 82.21 70.87 72.89 72.08 75.47 78.11

±1.15 ±0.34 ±2.07 ±2.26 ±3.17 ±3.69 ±2.40

G
N

N

CGG-Net 91.60 79.73 63.67 62.37 81.56 73.80 75.46

±2.09 ±1.53 ±3.12 ±3.00 ±1.56 ±5.41 ±3.09

Patch-GNN (10×) 95.80 76.53 72.57 72.87 77.17 78.26 78.87

±0.43 ±0.32 ±1.10 ±3.07 ±0.85 ±2.60 ±1.75

Patch-GNN (20×) 93.70 76.63 70.10 69.77 74.10 81.03 77.55

±0.36 ±1.40 ±1.90 ±3.13 ±0.10 ±1.85 ±1.78

Patch-GNN (40×) 92.40 74.43 71.10 67.40 72.97 76.40 75.78

±0.95 ±0.64 ±1.74 ±2.46 ±0.66 ±1.95 ±1.56

O
u

rs

CG-GNN (Ours) 94.52 83.79 75.71 73.15 77.48 84.33 81.50

±0.43 ±0.31 ±1.68 ±3.32 ±1.68 ±0.54 ±1.70

TG-GNN 96.00 80.38 69.51 76.12 80.67 84.18 81.14

±0.80 ±3.12 ±0.99 ±0.22 ±3.56 ±2.02 ±1.34

CONCAT-GNN 95.91 83.210 71.84 75.67 80.14 88.88 82.61

±0.56 ±0.68 ±1.46 ±1.81 ±2.60 ±3.86 ±2.15

HACT-Net (Proposed) 96.32 83.63 76.84 77.66 81.11 89.35 84.15
±0.64 ±0.73 ±0.68 ±0.37 ±0.72 ±0.26 ±0.60

Table 5.7 – Mean and standard deviation of weighted F1-scores for binary classification setting.
Further, the aggregated mean and standard deviation for the six binary tasks are reported.
Results are expressed in %. The best result is in bold and the second best is underlined.

classifiers can assist pathologists in categorizing ambiguous cases at different bifurcations

of the decision tree. Table 5.7 presents the results for six individual binary classifications,

at the bifurcations in the decision tree. Results are consistent with the 7-class and 4-class

classification settings, with HACT-Net consistently outperforming all baselines and providing

the best aggregated score.

Domain expert comparison on BRACS dataset

To further benchmark our proposed methodology as well as to assess the quality of the

introduced BRACS dataset, we acquired annotations of the BRACS test set from additional

independent pathologists. For such comparison with domain experts, we follow the evaluation

protocol in Elmore et al. (2015). We recruited three board-certified pathologists (other than the

three pathologists who provided the initial annotations, namely our ground truth labels), from
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Normal Benign UDH ADH FEA DCIS Invasive WF1 Acc

Pathologist 1 67.53 53.92 41.90 36.00 19.13 71.59 94.00 55.30 56.71

Pathologist 2 47.83 52.94 25.00 35.37 65.22 68.00 94.00 57.07 57.99

Pathologist 3 39.66 49.59 49.43 42.29 54.12 65.19 89.47 56.71 56.55

Pathologist statistics 51.57 52.15 38.78 37.89 46.16 68.26 92.49 56.36 57.08

±11.70 ±1.85 ±10.22 ±3.12 ±19.64 ±2.62 ±2.14 ±0.76 ±0.64

HACT-Net statistics 61.56 47.49 43.60 40.42 74.22 66.44 88.40 61.53 63.21
±2.15 ±2.94 ±1.86 ±2.55 ±1.41 ±2.57 ±0.19 ±0.87 ±0.27

Table 5.8 – Comparison between HACT-Net and domain expert pathologists for 7-class breast
cancer subtyping on BRACS dataset. Per-class F1-scores, weighted F1-scores (WF1) and
accuracy (Acc) for 7-class classification are presented. Results are expressed in %. The best
results are in bold.

Pathologist 1 Pathologist 2 Pathologist 3 Ground truth

Pathologist 1 - 47.60 50.96 56.71

Pathologist 2 - - 64.38 57.99

Pathologist 3 - - - 56.55

Table 5.9 – Concordance among three independent pathologists for annotating BRACS test
dataset. Results are expressed in %.

three different medical centers, to further ensure independence. Namely, National Cancer

Institute- IRCCS-Fondazione Pascale, Naples, Italy; Lausanne University Hospital, CHUV,

Lausanne, Switzerland; and Aurigen, Centre de Pathologie, Lausanne, Switzerland. These

experts are specialized in breast pathology and have been in practice for over twenty years.

The pathologists independently and remotely annotated BRACS test set TRoIs, without having

access to respective WSIs. This protocol ensures equal field-of-view for all the pathologists as

well as our methodology.

The independent pathologists’ annotations are compared to the ground truth, with the results

shown in Table 5.8. We present per-class F1-scores, overall weighted F1-score, and overall ac-

curacy for each pathologist. We also include the aggregated statistics of the three pathologists

for benchmarking HACT-Net with domain experts. Table 5.8 indicates that HACT-Net outper-

forms the domain experts in distinguishing TRoIs of diagnostically challenging classes, i.e.,

atypia and hyperplasia, while yielding comparable performance for the normal and cancerous

categories. Per-class standard deviations of pathologists’ statistics show the expected high

inter-observer variability in breast cancer diagnosis. Compared to the pathologists, HACT-Net

yields a superior weighted accuracy and weighted F1 given the ground truth diagnoses for the

7-class classification.

To benchmark the BRACS dataset with respect to the dataset by Elmore et al. (2015), we

compare the aggregated pathologist statistics on both datasets for the same set of classes, i.e.,

Benign without atypia (Normal + Benign + UDH), Atypia (ADH + FEA), DCIS, and Invasive.

Note that the dataset by Elmore et al. (2015) consists of 240 breast biopsy slides, while BRACS
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consists of 626 TRoI images. For the dataset by Elmore et al. (2015), class-wise concordance

rates (class-weighted average accuracy of 115 pathologists to a three-expert consensus) are

87%, 48%, 84%, and 96%, respectively for the four aforementioned classes. For BRACS, the

similar class-wise concordance rates are 87%, 50%, 72%, and 90%, respectively. The class-wise

concordance rates exhibit a similar trend in both datasets. Differences can be attributed to

differing fields-of-view, i.e., TRoI vs. WSI, accessible to the pathologist during annotation.

Table 5.9 presents the inter-observer concordance rates for the BRACS test set. We notice

significant differences in the concordance rates between pathologists 2 vs.3̇ and pathologist

1 vs. the other two. This can be reasoned to differing histopathology practices across different

regions.

Computational time analysis

We report computational time for processing a tumor RoI of size 1000× 1000 pixels on a

single-core POWER8 processor combined with an NVIDIA P100 GPU. Stain normalization

with the Macenko method takes 0.8 seconds (Central Processing Unit (CPU)-only), CG gen-

eration 2.51 seconds, and TG generation 4.14 seconds. Overall, the computational time for

transforming the Region-of-Interest (RoI) into HACT representation is 7.92 seconds. The

superpixel extraction for constructing the graph representation can be further optimized by

using fast GPU implementations, e.g., as proposed by Jampani et al. (2018). Provided the HACT

representation, HACT-Net provides near real-time inference by requiring 34.11 milliseconds.

5.5.5 Classification results on BACH dataset

We evaluate the methods on the public BACH dataset. Considering its smaller training set

of 400 images, we employ different image augmentation techniques for training HACT-Net.

To this end, we employ rotation, mirroring, and color augmentations on the training images

before extracting HACT graph representations. We do not use other graph augmentation tech-

niques, such as random node and edge dropping, since these augmentations may hamper the

meaningful topological distribution of the biological entities. The implementation strategies

and hyperparameters in Section 5.5.2 are employed for training HACT-Net. Classification

performance of HACT-Net and the current state-of-the-art results on the BACH dataset are

listed in Table 5.10. Our predictions have been evaluated independently by the organizers

of the BACH challenge, ensuring a fair comparison. HACT-Net results in comparable classifi-

cation accuracy with the state-of-the-art methods. The difference in the accuracies are not

significant considering only 100 TRoIs in the test set. Notably, our methodology employs a

single, unified network, where the other listed competitors employ an ensemble strategy with

multiple networks during inference.
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Methods Accuracy

Ensemble
networks

Wang et al. (2019) 95.00

Marami et al. (2018) 94.00

Yang et al. (2019) 93.00

Chennamsetty et al. (2018) 87.00

Kwok et al. (2018) 87.00

Brancati et al. (2018) 86.00

Single net-
work

HACT-Net 91.00

Table 5.10 – Accuracy of 4-class breast cancer subtyping in BACH dataset. Results are expressed
in %.

5.5.6 Qualitative analysis

Qualitative assessment of a few TRoIs from the BRACS dataset using HACT-Net, CG-GNN,

and TG-GNN is presented in Figure 5.10. In Figure 5.11, we use GRAPHGRADCAM (Pope

et al., 2019; Jaume et al., 2021b), as presented in Chapter 3, a post-hoc gradient based feature

attribution technique, to highlight the nuclei and tissue-region nodes in CG and TG, respec-

tively, which our model focuses on while classifying the TRoIs. Given the DCIS examples

in Figure 5.11(a-c&g-i), HACT-Net is seen to focus on the diagnostically relevant tumorous

epithelium and necrotic regions in TG, while ignoring the less important stroma and lumen,

cf. Figure 5.11(b,h). Further, within the relevant tissue regions, HACT-Net focuses on a subset

of tumorous epithelial nuclei in CG, as shown in Figure 5.11(c,i). Interestingly, we observe

in Figure 5.11(h,i) that HACT-Net uses complementary information from the necrotic region

captured by TG, but not by CG. Similar observations of HACT-Net considering the diagnosti-

cally relevant regions can be made for FEA and Benign examples shown in Figure 5.11(d-f&j-l).

Noticeably, such feature attribution analysis of GNNs localizes and highlights the focus of deep

networks in the given entity-paradigm, which is both more interpretable and more explainable

compared to feature attribution strategies in a pixel-paradigm (Jaume et al., 2020, 2021b) (see

Chapter 6). Interestingly, we also analyze the impact of tissue or slide preparation artifacts on

the model performance. In Figure 5.12, we present a DCIS image with tissue-tear and blur

artifacts. We observe that the detected superpixels do not aptly depict the tissue in the blur

region, and consequently the TG-GNN using standalone TG misclassifies it. However, the

nuclei detection is less impacted by the artifact, which allows the CG to appropriately encode

the cell microenvironment and correctly classify the sample. To highlight, HACT-Net utilizing

the complementary information from both CG and TG compensates for the issue in TG, and

correctly identifies the subtype.

5.6 Conclusion

Pixel-based processing of pathology images suffers from the context-resolution trade-off, and

misses the notion of biological entity and tissue composition. In this chapter, we presented an
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entity-based tissue representation and learning to address these issues. To that end, our two

specific contributions are: (i) a hierarchical entity-graph representation of a tissue image by

incorporating multisets of pathologically intuitive biological entities, and (ii) a hierarchical

graph neural network for sequentially processing the entity-graph representation for mapping

tissue compositions to tissue subtypes. Further, we introduced BReAst Cancer Subtyping

(BRACS), a large cohort of breast tumor regions-of-interest, annotated with breast cancer

subtypes. BRACS encompasses seven breast cancer subtypes to present a realistic breast cancer

diagnosis scenario. Using BRACS as well as a public breast cancer subtyping dataset BACH, we

demonstrated herein the superior performance of our proposed methodology for classifying

breast tumor regions-of-interest into cancer subtypes. Under various experimental settings,

our methodology is shown to outperform state-of-the-art pixel-based and entity-graph based

classification approaches. Furthermore, we benchmarked our methodology on the BRACS

dataset by comparing it to three independent pathologists. Notably, our method achieved

better performance for per-cancer subtype and overall aggregated classification. Although we

have evaluated our method for breast cancer classification, the technology is easily extendable

to other tissue types and diseases. Notably, the proposed hierarchical graph methodology

can also be adapted to other image modalities, such as natural images, multiplexed images,

hyperspectral images, satellite images, and other medical imaging domains, by utilizing

domain and task-specific entities.
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Figure 5.4 – Samples of class-wise TRoI in BRACS dataset. (Figure is best viewed in color.)
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Figure 5.5 – Overview of the variability for DCIS category in BRACS. The samples depict
variations in, (a, b, c) tumor size, (d, e) staining appearance, sub-patterns: (f) low-grade
papillary, (g) moderate-grade cribriform, (h, i) high-grade solid and comedo, (j, k) number of
glandular regions per TRoI, and artifacts due to tissue and slide preparation: (l) tissue-folding
or tear, (m) ink stain, (n) blur. Similar variability also persists in other categories in BRACS.
(Figure is best viewed in color.)
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Figure 5.6 – Mean and standard deviation of per-class precision for 7-class classification with
HACT-Net. (Figure is best viewed in color.)

Figure 5.7 – Mean and standard deviation of per-class recall for 7-class classification with
HACT-Net. (Figure is best viewed in color.)
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Figure 5.8 – Mean and standard deviation of row-normalized 7-class confusion matrix for
HACT-Net.

Figure 5.9 – Decision tree used by pathologists for breast cancer diagnosis. The 7-class classifi-
cation is simplified to a series of binary decision tasks, through which the diagnosis becomes
more and more specific until the leaves, i.e., the 7 diagnostic decision classes, are reached.
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Figure 5.10 – Qualitative comparison of CG-GNN, TG-GNN, and HACT-Net for 7-class classifi-
cation. Predictions by the classifiers are noted below each example. Red and Green denote
incorrect and correct classification, respectively. (a,b) TRoI which TG-GNN misclassifies, while
CG-GNN and HACT-Net classify correctly by using the nuclei characteristics. (c,d) TRoI mis-
classified by CG-GNN, while correctly classified by TG-GNN and HACT-Net by using context
information from necrotic regions. (e,f,g,h) TRoI which both CG-GNN and TG-GNN misclas-
sify, where HACT-Net classifies correctly by utilizing both cell and tissue microenvironments
together. (Figure is best viewed in color.)

Figure 5.11 – Feature attribution (FA) maps of HACT-Net on TG and CG for four sample TRoIs
for 7-class classification: Sample TRoIs of (a,g) DCIS, (d) FEA, and (j) Benign classes, with their
corresponding feature attribution maps on (b,h,e,k) TG and (c,i,f,l) CG. (Figure is best viewed
in color.)
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Figure 5.12 – (a) A DCIS sample including tissue-tear and blur artifacts. (b) Detected superpix-
els. (c) Detected nuclei. The classifications by CG-GNN, TG-GNN and HACT-Net are indicated,
where Red and Green denote incorrect and correct classification.
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6 Quantifying Explainers of Graph
Neural Networks in Computational
Pathology
The ideas, methods and results presented in this chapter are published in:

• "Quantifying Explainers of Graph Neural Networks in Computational Pathology", Guil-

laume Jaume*, Pushpak Pati*, Behzad Bozorgtabar, Antonio Foncubierta, Anna Maria

Anniciello, Florinda Feroce, Tilman Rau, Jean-Philippe Thiran, Maria Gabrani, Orcun

Goksel. In Conference on Computer Vision and Pattern Recognition (CVPR), 2021 (Jaume

et al., 2021b).

• "Towards Explainable Graph Representations in Digital Pathology", Guillaume Jaume*,

Pushpak Pati*, Antonio Foncubierta, Florinda Feroce, Giosue Scognamiglio, Anna

Maria Anniciello, Jean-Philippe Thiran, Orcun Goksel, Maria Gabrani. In International

Conference on Machine Learning (ICML), ICML Workshop on Computational Biology,

2020 (Jaume et al., 2020).

GJ (the author of this thesis) is sharing first co-authorship with PP. The ideas, concepts and

experiments were designed by GJ and PP. AMA, FF and TR shaped the medical aspects of the

work, in order to define appropriate nuclei-level attributes, understand the expected nuclei

appearance, and to study the agreement between the pathologists and the AI model. JPT and

OG supervised and supported GJ in organizing his research. The manuscript was written by

GJ and PP and subsequently revised by BB, AF and OG.

6.1 Introduction

Histopathological image understanding has been revolutionized by recent machine learning

advancements, especially DL (Bera et al., 2019; Serag et al., 2019). DL has catered to increasing

diagnostic throughput as well as a need for high predictive performance, reproducibility and

objectivity. However, such advantages come at the cost of a reduced transparency in decision-

making processes (Hagele et al., 2020; Holzinger et al., 2017; Tizhoosh and Pantanowitz,

2018). Considering the need for reasoning any clinical decision, it is imperative to enable the
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explainability of DL decisions to pathologists.

Figure 6.1 – Sample explanations produced by pixel- and entity-based explainability tech-
niques for a ductal carcinoma in situ (DCIS) TRoI.

Inspired by the explainability techniques (explainers) for DL model decisions on natural

images (Selvaraju et al., 2017; Chattopadhay et al., 2018; Simonyan et al., 2013; Zeiler and

Fergus, 2014; Yosinski et al., 2015; Bach et al., 2015; Montavon et al., 2015; Kindermans et al.,

2015; Zintgraf et al., 2017; Kim et al., 2018), several explainers have been implemented in

digital pathology, such as feature attribution (Hagele et al., 2020; Bruno et al., 2017; Binder

et al., 2018), concept attribution (Graziani et al., 2020), and attention-based learning (Lu

et al., 2021b). However, pixel-level explanations, as shown in Figure 6.1, pose several notable

issues, including: (i) a pixel-wise analysis disregards the notion of biological tissue entity,

their topological distribution, and the inter-entity interactions; (ii) a typical patch-based DL

processing and explainer fail to integrate complete tumor macro-environment information;

and (iii) pixel-wise visual explanations, i.e., heatmaps of salient regions, tend to be blurry

and hard to interpret. Explainability in entity space is thus a natural choice to address the

aforementioned issues. To that end, we propose to transform the original histology image

into an entity-graph representation, where nodes and edges denote biological entities and

inter-entity interactions, respectively. The choice of entities, such as cells (Gunduz et al.,

2004; Zhou et al., 2019a; Pati et al., 2021b), tissues (Pati et al., 2021b) or others, can be task-

dependent. Then, we learn a GNN (Kipf and Welling, 2017; Xu et al., 2019b) to model the

entity-graph. Subsequently, explainers for graph-structured data Pope et al. (2019); Ying et al.

(2019); Baldassarre and Azizpour (2019) applied to the entity-graphs highlight responsible

entities for the concluded diagnosis, thereby generating intuitive explanations for pathologists.

In the presence of various graph explainers producing distinct explanations for an input, it

is crucial to discern the explainer that best fits the explainability definition (Arrieta et al.,

2020). In the context of CompPath, explainability is defined as making the DL decisions

understandable to pathologists (Holzinger et al., 2017). To this end, the qualitative evalua-

tion of explainers’ explanations by pathologists is the candid measure. However, it requires

evaluations by task-specific expert pathologists, which is subjective, time-consuming, cum-
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bersome, and expensive. Additionally, though the explanations are intuitive, they do not relate

to pathologist-understandable terminologies, e.g., “How big are the important nuclei?", “How

irregular are their shape?" etc., which toughens the comprehensive analysis. These bottle-

necks undermine not only any qualitative assessment but also quantitative metrics requiring

user interactions (Mohseni et al., 2018). Furthermore, expressing the quantitative metrics in

user-understandable terminologies with the appropriate units of explanations (Arrieta et al.,

2020) is fundamental to achieve interpretability (Doshi-Velez and Kim, 2017; Nguyen and

Rodriguez Martinez, 2020). Moreover, graph explainers usually intrinsically maintain high-

fidelity, e.g., GNNEXPLAINER (Ying et al., 2019) produces an explanation to match the GNN’s

prediction on the original graph. As a consequence, ensuring explainer fidelity (Mohseni et al.,

2018; Pope et al., 2019; Ribeiro et al., 2016; Dhurandhar et al., 2017; Samek et al., 2017; Hoffman

et al., 2018), while imperative, is not sufficient to characterize the explanation quality.

In this chapter, we present a set of novel user-independent quantitative metrics expressing

pathologically-understandable concepts. The proposed metrics are based on class separa-

bility statistics using such concepts. They are also applicable in other domains by incor-

porating domain-specific prior knowledge. We use the proposed metrics to evaluate three

types of graph-explainers, (i) graph pruning: GNNEXPLAINER (Ying et al., 2019; Jaume et al.,

2020), (ii) gradient-based saliency: GRAPHGRAD-CAM (Selvaraju et al., 2017; Pope et al.,

2019), GRAPHGRAD-CAM++ (Chattopadhay et al., 2018), (iii) layer-wise relevance propaga-

tion: GRAPHLRP (Bach et al., 2015; Montavon et al., 2015; Schwarzenberg et al., 2019), for

explaining cell-graphs (Gunduz et al., 2004) towards the task of breast cancer subtyping.

Figure 6.1 exemplifies a graph explanation derived from the GRAPHGRAD-CAM feature attri-

bution method. The specific contributions presented in this chapter are:

• A set of novel quantitative metrics based on the statistics of class separability using

domain-specific concepts to characterize graph explainability techniques. To the best of

our knowledge, our metrics are the first of their kind to quantify explainability based on

domain-understandable terminologies;

• Explainability in computational pathology using pathologically intuitive entity-graphs;

• Extensive qualitative and quantitative assessment of various graph explainability tech-

niques in computational pathology, with a validation of the findings by expert patholo-

gists.

6.2 Related work

Explainability is an integral part of pathological diagnosis. Though DL solutions have achieved

remarkable diagnostic performance, their lack of explainability is unacceptable in the med-

ical community (Tizhoosh and Pantanowitz, 2018). Recent studies have proposed visual

explanations (Hagele et al., 2020) and salient regions (Bruno et al., 2017; Hagele et al., 2020)
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Figure 6.2 – Overview of the proposed framework. (a) presents pathologist, and entity-based
(cell-graph + GNN) diagnosis of a histology image. (b) presents nuclei-level pathologically
relevant concept measure D , a post-hoc graph explainability technique to derive nuclei-level
importance I for concepts C , measurable attributes Ac , and classes T . D, I and prior
pathological knowledge defining concepts’ relevance are utilized to propose a novel set of
quantitative metrics to evaluate the explainer quality in pathologist-understandable terms.

using feature-attribution techniques (Selvaraju et al., 2017; Chattopadhay et al., 2018). Dif-

ferently, concept-attribution technique (Graziani et al., 2020) evaluates the sensitivity of

network output w.r.to quantifiable image-level pathological concepts in patches. Although

such explanations are pathologist-friendly, image-level concepts are neither fit nor meaningful

for real-world large histology images that contain many localized concepts. Furthermore,

attention-based learning (Lu et al., 2021b), and multimodal mapping between image and

diagnostic report (Zhang et al., 2019) are devised to localize network attention. All the afore-

mentioned techniques are based on pixel- and patch-level processing, thus ignoring the

notion of biological entity which makes them difficult to interpret by pathologists. Separately,

the earlier stated entity graph-based processing provides an intuitive platform for pathologists.

However, research on explainability and visualization using entity-graphs has been scarce:

CGC-Net (Zhou et al., 2019a) analyzes cluster assignment of nodes in CG to group them

according to their appearance and tissue types. Robust spatial filtering Sureka et al. (2020)

utilizes an attention-based GNN and node occlusion to highlight cell contributions. No previ-

ous work has comprehensively analyzed and quantified graph explainers in computational

pathology while expressing explanations in a pathologist-understandable form to the best

of our knowledge. This gap between the existing and desired explainability of DL outputs in

digital pathology motivates our work herein.
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6.3 Method

In this section, we present the entity-graph processing, the set of considered explainability

methods, and our proposed evaluation metrics. First, we transform a histology TRoI into a

biological entity-graph. Second, we introduce a “black-box" GNN that maps the entity-graph

to a corresponding class label. Third, we employ a post-hoc graph explainer to generate

explanations. Finally, we perform a qualitative and quantitative assessments of the generated

explanations. An overview of the methodology is shown in Figure 6.2.

6.3.1 Entity-graph construction

Following the notation introduced in Chapter 1, we define an attributed entity-graph G :=
(V ,E , H) as a set of nodes V , edges E , and node attributes H ∈R|V |×d . d denotes the number

of attributes per node, and |.| denotes set cardinality. The graph topology is defined by the

adjacency matrix, A ∈ R|V |×|V |, where Au,v = 1 if euv ∈ E . We denote the neighborhood of a

node v ∈V as N (v) := {u ∈V | v ∈V , euv ∈ E }. Finally, we denote a set of graphs as G .

Our methodology begins with transforming TRoIs into entity-graphs. It ensures the method’s

inputs are pathologically interpretable, as the inputs consist of biologically-defined objects

that pathologists can directly relate-to and reason-with. Thus, image-to-graph conversion

moves from an uninterpretable to interpretable input space. In this chapter, we consider cells

as entities, thereby transforming TRoIs into cell-graphs (CGs). A CG nodes and edges capture

the morphology of cells and cellular interactions. A CG topology acquires both tissue micro

and macro-environment, which is crucial for characterizing cancer subtypes.

The CG construction is based on the work presented in Chapter 5. We herein provide the key

steps - the reader may refer to Chapter 5 for a thorough description. First, we detect nuclei in

a TRoI at 40× magnification using Hover-Net (Graham et al., 2019a), a nuclei segmentation

algorithm pre-trained on MoNuSeg (Kumar et al., 2017). We process patches of size 72×72

pixels around the nuclei by ResNet34 (He et al., 2016) pre-trained on ImageNet (Deng et al.,

2009b) to produce nuclei visual attributes. We further concatenate spatial attributes obtained

by min-max normalization of nuclei centroids by the TRoI dimension. The nuclei and their

attributes (visual and spatial) define the nodes and node attributes of the CG, respectively.

We construct the CG topology by employing a thresholded k-NN algorithm. We set k = 5,

and prune the edges longer than 50 pixels (12.5 µm). The CG-topology encodes how likely

two nearby nuclei will interact (Francis and Palsson, 1997). A CG example is presented in

Figure 6.1.

6.3.2 Entity graph learning

Given the set of CGs G , the aim is to infer the corresponding cancer subtypes. This is a graph

classification task that can be accurately modeled with a GNN. In this work, we use a flavor
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of Graph Isomorphism Network (GIN) Xu et al. (2019b), that uses mean and a multi-layer

perceptron (MLP) in the aggregation and update step respectively. Formally, a layer is defined

as,

h(v)(t+1) = MLP(t )
(
h(v)(t ) + 1

|N (v)|
∑

u∈N (v)
h(u)(t )

)
(6.1)

where h(v) denotes features of node v , and t ∈ {1, ...,T }. Our GNN consists of 3-GIN layers, with

each layer including a 2-layer MLP. The dimension of latent node embeddings is fixed to 64 for

all layers. We use a mean operator as readout step, and feed the graph embedding to a 2-layer

MLP classifier. The GNN is trained end-to-end by minimizing the cross-entropy loss between

the predicted logits and the target cancer subtypes. We emphasize that the entity-based

processing follows a pathologist’s diagnostic procedure that identifies diagnostically relevant

nuclei and analyzes cellular morphology and topology in a TRoI, as shown in Figure 6.2.

Figure 6.3 – Overview of the proposed quantitative assessment pipeline. (a) presents the input
CG dataset D, the set of concepts C and corresponding measurable attributes Ac , the set of
classes T , and the set of importance thresholds K . For simplicity |Ac | = 1,∀c ∈ C in this
figure. (b) shows histogram probability densities for ∀a ∈ Ac ,∀k ∈ K ,∀t ∈ T . (c) displays
the algorithm for computing the class separability scores S. (d) presents the algorithm for
computing the proposed class separability-based risk-weighted quantitative metrics.

6.3.3 Post-hoc graph explainer

We generate an explanation per entity-graph by employing post-hoc graph explainers. The

explanations allow to evaluate the pathological relevance of black-box neural network reason-

ing. Specifically, we aim to evaluate the agreement between the pathologically relevant set

of nuclei in a TRoI, and the explainer identified set of important nuclei, i.e., the set of nuclei

driving the prediction in a given cell-graph. In this work, we consider three types of graph

92



6.3. Method

explainers for explaining CGs, which follow similar operational setting: (1) the input data are

attributed graphs, (2) a GNN is trained a priori to classify the input entity-graph, and (3) each

data point can be inferred independently to produce an explanation.

We succinctly present the graph explainers in the following sections. A detailed mathematical

description was presented in Chapter 3.

GRAPHLRP

Layerwise relevance propagation (LRP) (Bach et al., 2015) propagates the output logits back-

ward in the network using a set of propagation rules to quantify the contribution of each input

pixel. Specifically, LRP assigns an importance score to each neuron such that the output logit

relevance is preserved across layers. While initially developed for explaining fully-connected

layers, LRP can be extended to GNN by treating the GNN aggregation step as a fully connected

layer that projects the graph adjacency matrix on the node attributes as in (Schwarzenberg

et al., 2019). LRP outputs per-node importance scores.

GRAPHGRAD-CAM

GRAD-CAM (Selvaraju et al., 2017) is a feature attribution approach designed for explaining

CNNs operating on images. It produces class activation explanation following two steps. First,

it assigns weights to each channel of a convolutional layer t by computing the gradient of the

targeted output logit w.r.to each channel in layer t . Second, importance of the input elements

are computed by the weighted combination of the forward activations at each channel in

layer t . The extension to GNNs is straightforward Pope et al. (2019), and only requires to

compute the gradient of the predicted logits w.r.to a GNN layer. Following prior work Pope

et al. (2019), we take the average of node-level importance-maps obtained from all the GNN

layers t ∈ {1, ...,T } to produce smooth per-node importance scores.

GRAPHGRAD-CAM++

GRAD-CAM++ (Chattopadhay et al., 2018) is an increment on GRAD-CAM that includes

spatial contributions into the channel-wise weight computation of a convolutional layer. The

spatial locations in a convolutional layer are analogous to the size of the graph in a GNN layer.

With this additional consideration, we derived an extension of GRAD-CAM++ applicable to

graph-structured data (see Appendix A).

GNNEXPLAINER

GNNEXPLAINER (Ying et al., 2019; Jaume et al., 2020) is a graph pruning approach that aims

to find a compact sub-graph Gs ⊂G such that the mutual information between Gs and the

GNN prediction of G is maximized. The sub-graph Gs is regarded as the explanation for the
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input graph G . GNNEXPLAINER can be seen as a feature attribution technique with binarized

node importance scores. To address the combinatorial nature of finding Gs , GNNEXPLAINER

formulates it as an optimization problem that learns a mask to activate or deactivate parts of

the graph. Jaume et al. (2020) reformulates the initial approach in Ying et al. (2019) to learn a

mask over the nodes instead of edges. The approach in Jaume et al. (2020) is better suited for

pathology as the nodes, i.e., biological entities, are more intuitive and substantial for disease

diagnosis than the edges that remain heuristically-defined. The optimization for an entity

graph results in per-node importance.

RANDOM

We further introduce a RANDOM explainer to assess a lower bound per quantitative metric.

The RANDOM baseline is simply implemented by using a random nuclei selection.

6.3.4 Quantitative metrics for graph explainability

In the presence of several graph explainers producing distinct explanations for an input, it is

primordial to discern the explainer that produces the most pathologically-aligned explana-

tions. Considering the limitations of existing qualitative and quantitative measures presented

at the beginning of the chapter, we propose a novel set of quantitative metrics based on class

separability statistics using pathologically relevant concepts. Intuitively, a good explainer

should emphasize the relevant concepts that maximize the class separation. Details of the

metric evaluations are presented as follows.

Input: A graph explainer outputs an explanation, i.e., node-level importance scores I , for

an input CG. To quantify a concept c ∈C , C denoting the set of concepts, we measure a set

of nuclear attributes a ∈ Ac for each nucleus in CG. For instance, in order to represent the

concept c=nuclear shape, we measure the attribute set Ac ={perimeter, roughness, eccentricity,

circularity}. We create a dataset D = ⋃
t∈T Dt , T denoting the set of cancer subtypes. We

define Dt := {(D t
i ,I t

i )|i = 1, . . . , Nt }∀t ∈T , where Nt is the number of CGs for tumor type t . I t
i

and D t
i are, respectively, the sorted importance matrix for a CG indexed by i and corresponding

node-level attribute matrix. To perform inter-concept comparisons, we conduct attribute-

wise normalization across all samples D t
i ∀t , i . In order to compare different explainers, we

conduct CG-wise normalization of importance scores I . The structure of input the generated

dataset D is presented in Figure 6.2(a).

Note that the notion of important nuclei vary (1) per-CG since the number of nodes vary

across CGs, and (2) per-explainer. Hence, selecting a fixed number of important nuclei per-CG

and per-explainer is not meaningful. To overcome this issue, we assess different number of

important nuclei k ∈K , selected based on node importances, per-CG and per-explainer. In

the following sections we will show how to aggregate the results for a given explainer.

Histogram construction: Given the input dataset D, and K ,C ,Ac ,T , we apply a threshold
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k ∈ K on I t
i ,∀t ∈ T ,∀i ∈ Nt to select the CG-wise most important nuclei. The cancer

subtype-wise selected set of nuclei data from D are used to construct histograms H (k)
t (a),∀a ∈

Ac , ∀c ∈C and ∀t ∈T . For a given histogram H (k)
t (a), bin-edges are defined by quantizing

the complete range of attributes a, i.e., D(a), by a fixed step size. We further convert each

H (k)
t (a) into a probability density function. Similarly, sets of histograms are constructed by

applying different thresholds k ∈K . Examples of histograms are shown in Figure 6.2(b).

Separability scores (S): Given two classes tx , ty ∈ T and corresponding probability density

functions H (k)
tx

(a) and H (k)
ty

(a), we compute a class separability score s(k)
a (tx , ty ) based on

optimal transport as the Wasserstein distance between the two density functions. We average

s(k)
a (tx , ty ) over all the attributes a ∈Ac to obtain a unique score s(k)

c (tx , ty ) for concept c and

threshold k. Finally, we compute the area-under-the-curve (AUC) over the threshold range K

to get the aggregated class separability scores S(tx ,ty ),c for a concept c. The class separability

score indicates the significance of a concept c for the purpose of separating the classes tx

and ty . Thus, separability scores can be used to compare different concepts and to identify

relevant ones for differentiating tx and ty . A pseudo-algorithm is presented in Algorithm 1,

and illustrated in Figure 6.2(c). Finally, a separability matrix S ∈RΩ×|C | is built by computing

class separability scores for all pairs of classes, i.e., ∀ (tx , ty ) ∈Ω := (|T |
2

)
and ∀c ∈C .

Statistics of separability scores: Since the notion of explainability is not uniquely defined, we

define multiple metrics highlighting different facets and providing different insights. We

compute three separability statistics ∀(tx , ty ) ∈ Ω using S as given in Equation (6.2), i.e.,

(1) maximum: the utmost separability, (2) average: the expected separability. These two

metrics encode (model+explainer)’s focus, i.e., “how much the black-box model implicitly

uses the concepts for class separability?" (3) correlation: encodes the agreement between

(model+explainer)’s focus and pathological prior P . P ∈RΩ×|C | signifies the relevance ∀c ∈C

for differentiating (tx , ty ) ∈Ω, e.g., nuclear size is highly relevant for classifying benign and

malignant tumor as important nuclei in malignant are larger than important nuclei in benign.

Specifically, the metrics are defined as:

smax(tx , ty ) = max
c∈C

S(tx ,ty ),c

savg(tx , ty ) = 1

|C |
∑

c∈C

S(tx ,ty ),c

scorr(tx , ty ) = ρ(S(tx ,ty ),c=1,..,|C |,P(tx ,ty ),c=1,..,|C |)

(6.2)

where ρ denotes Pearson correlation. smax, savg∈[0, 8) show separation between unnormalized

class-histograms; and scorr ∈ [-1, 1] shows agreement between S and P . We build Smax, Savg and

Scorr by computing Equation (6.2) for all pairs of classes ∀(tx , ty ) ∈Ω. Metrics’ complementary

may lead to relevant concepts different to pathological understanding.

Risk: We further introduce the notion of risk as a weight to indicate the cost of misclassifying

a sample of class tx , erroneously as class ty (Thai-Nghe et al., 2010; He and Ma, 2013). Indeed,

misclassifying a malignant tumor as a benign tumor is riskier than misclassifying it as an
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atypical tumor. Thus, we construct a risk vector R ∈RΩ. In this work, each entry in R defines

the symmetric risk of differentiating tx from ty measured as the number of class-hops needed

for a tumor type to progress from tx to ty .

Metrics: Finally, we propose three quantitative metrics based on class separability to assess

an explainer quality. The metrics are computed as the risk weighted sum of the statistics of

separability scores. Namely, we define:

• the maximum separability Smax,R := Smax ¯R;

• the average separability Savg,R := Savg ¯R;

• and the correlated separability Scorr,R := Scorr ¯R, where ¯ defines the Hadamard prod-

uct.

The first two metrics are pathologist-independent, and the third metric requires expert pathol-

ogists to impart the domain knowledge in the form of pathological prior P . Such prior can be

defined individually by a pathologist or collectively by consensus of several pathologists, and

it is independent of the algorithm generated explanations.

Algorithm 1: Class separability computation.

Input: D = {(D t
i ,I t

i )}, t ∈T , i ∈ Nt

Parameter :T , C , Ac , K

Result: S ∈R(|T |
2 )×|C |

for c ∈C do // go over concepts
for k ∈K do // go over nuclei thresh

for a ∈Ac do // go over attributes
for t ∈T do // go over classes

var ← D t
i (a)[: k] // sorted I t

i

H (k)
t (a) ← histogram(var)

for (tx , ty ) ∈ (|T |
2

)
do // go over class pairs

s(k)
a (tx , ty ) ← d(H (k)

tx
(a), H (k)

ty
(a))

s(k)
c (tx , ty ) ← 1

|Ac |
∑

a∈Ac
s(k)

a (tx , ty )

S(tx ,ty ),c ← AUCk∈K (s(k)
c (tx , ty ))

6.3.5 Concepts and attributes

For cancer subtyping, relevant concepts are nuclear morphology and topology (Rajbongshi

et al., 2018; Kashyap et al., 2018; Nguyen et al., 2017; Allison et al., 2016).

In this work, we focus on pathologically-understandable nuclear concepts C pertaining to

nuclear morphology for breast cancer subtyping. To quantify each c ∈ C , we use several
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Concept (C ) Attribute (A ) Computation Benign Atypical Malignant

Size Area A(x) Small Small-Medium Medium-Large

Shape

Perimeter P (x)

Smooth Mild irregular IrregularRoughness
PConvHull(x)

P (x)

Eccentricity
aminor(x)
amajor(x)

Circularity 4πA(x))
P (x)2

Shape
Shape factor

4πA(x)
P 2

ConvHull
Monomorphic Monomorphic Pleomorphic

variation

Spacing
Mean spacing mean(dy |y ∈ kNN(x))

Evenly crowded Evenly spaced Variable
Std spacing std(dy |y ∈ kNN(x))

Chromatin

GLCM dissimilarity
∑

i
∑

j |i − j |p(i , j )

Light Hyperchromatic Vesicular

GLCM contrast
∑

i
∑

j (i − j )2p(i , j )

euchromatic
GLCM homogenity

∑
i
∑

j
p(i , j )

1+(i− j )2

GLCM ASM
∑

i
∑

j p(i , j )2

GLCM entropy −∑
i
∑

j p(i , j ) log(p(i , j ))

GLCM variance
∑

i
∑

j (i −µi )2p(i , j )
with µi =

∑
i
∑

j i p(i , j )

Table 6.1 – Pathologically-understandable nuclear concepts, corresponding measurable at-
tributes, and computations are shown in Columns 1, 2, 3, respectively. The expected concept
behavior for three breast cancer subtypes is shown in Columns 4, 5, 6, respectively.

measurable attributes Ac . Table 6.1 presents the list of concepts and corresponding attributes

used to perform the proposed quantitative analysis in this work. Also, Table 6.1 includes

the class-wise expected criteria for each concept. The attributes of the nuclei in a TRoI are

computed as presented in Table 6.1. It uses the TRoI and corresponding nuclei segmentation

map, denoted as Iseg. Area of a nucleus x, denoted as A(x), is defined as the number of pixels

belonging to x in Iseg. P (x), the perimeter of x, is measured as the contour length of x in Iseg.

PConvHull(x), the convex hull perimeter of x, is defined as the contour length of convex hull

induced by x in Iseg. The major and minor axis of x, noted as amajor(x) and aminor(x), are the

longest diameter of x and the longest line segment perpendicular to amajor(x), respectively.

The chromatin attributes are computed from the normalized gray level co-occurrence matrix

(GLCM) (Haralick et al., 1973), which captures the probability distribution of co-occurring

gray values in x. In all our experiments, we select K = {5,10, ...,50} nuclei per CG.

6.4 Results

This section describes the analysis of CG explainability for breast cancer subtyping. We

evaluate three types of graph explainers and quantitatively analyze the explainer quality using

the proposed class separability metrics.
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6.4.1 Dataset

We experiment on the BRACS dataset, introduced in Chapter 5. The dataset consists of 4391

TRoIs at 40× resolution from 325 H&E stained breast carcinoma whole-slides. In order to

simplify the analysis, the TRoIs are grouped under three classes as, (1) Benign (B): normal (N),

benign (B) and usual ductal hyperplasia (UDH), (2) Atypical (A): flat epithelial atypia (FEA)

and atypical ductal hyperplasia (ADH), and (3) Malignant (M): ductal carcinoma in situ (DCIS)

and invasive (I).

6.4.2 Training

We conducted our experiments using PyTorch (Paszke et al., 2019) and DGL (Wang et al.,

2019a). The GNN architecture for CG classification is presented in Section 6.3.2. The CG

classifier was trained for 100 epochs using the Adam optimizer (Kingma and Ba, 2015), 10−3

learning rate and 16 batch size. The best CG-classifier achieved 74.2% weighted F1-score on

the test set for the three-class classification. The average time for processing a 1K×1K TRoI on

a NVIDIA P100 GPU is 2s for the CG generation and 0.01s to run the GNN inference.

6.4.3 Qualitative assessment

Graph explainer qualitative comparison

Figure 6.4 presents explanations, i.e., nuclei importance maps, from four studied graph explain-

ers. We observe that GRAPHGRAD-CAM and GRAPHGRAD-CAM++ produce similar impor-

tance maps. The GNNEXPLAINER generates almost binarized nuclei importances. Interestingly,

the gradient and pruning-based techniques consistently highlight similar regions. Indeed, the

approaches focus on relevant epithelial region and discard stromal nuclei and lymphocytes

outside the glands. Differently, GRAPHLRP produces less interpretable maps through high

spatial localization (Figure 6.4(d)) or less spatial localization (Figure 6.4(h,l)).

GNNEXPLAINER qualitative analysis

As GNNEXPLAINER provides (almost) binarized importance weights, we can easily visualize

all the important nuclei. By modifying the class assignment of the BRACS dataset, we can

define three different scenarios of increasing complexity: (i) a 2-class problem: benign (N+B)

and malignant (D+I) categories, a (ii) a 3-class problem: benign (N+B), atypical (A), and ma-

lignant (D+I) categories, and (iii) a 5-class problem: normal (N), benign (B+UDH), atypical

(ADH+FEA), carcinoma in situ (DCIS) and invasive (I). These scenarios allow to study the

relation between the task complexity and the generated explanations. Combining the CG

explanations in Figure 6.5 and the nuclei types annotation in Figure 6.6, we infer that the expla-

nations retain relevant tumor epithelial nuclei for DCIS diagnosis. For the 2-class scenario, the

CG includes tumor nuclei in the central region of the gland. Few tumor nuclei are sufficient to
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Figure 6.4 – Qualitative results. The rows represent the cancer subtypes, i.e., Benign, Atyp-
ical and Malignant, and the columns represent the graph explainability techniques, i.e.,
GNNEXPLAINER, GRAPHGRAD-CAM, GRAPHGRAD-CAM++, and GRAPHLRP. Nuclei-level im-
portance ranges from blue (the least important) to red (the most important).

differentiate (DCIS) from (N+B). For the 3-class scenario, the CG includes more tumor nuclei

in the central region and the periphery of the gland and does not consider atypical nuclei.

This pattern differentiates (DCIS) from (A). For the 5-class scenario, the CG includes more

tumor nuclei distributed within and around the gland, and some lymphocytes around the

gland. The CG also includes more cellular interactions to identify a large cluster of tumor

nuclei. Pathologically this behavior differentiates (DCIS) from (I) which has small clusters

of tumor nuclei scattered throughout the TRoI. Additionally, the retained tumor nuclei and

their interactions are consistent with increasing task complexity, i.e., all the important nuclei

selected in the 2-class scenario are kept in the 3-class and 5-class ones. While consistent, this

analysis does not provide insight into the underlying mechanism that results in the nuclei

selection.

Qualitative visual assessment of Figure 6.4 and Figure 6.5 conclude that, (i) fidelity preserving

explainers result differently based on the underlying explainability technique, (ii) high fidelity

does not guarantee straightforward pathologist-understandable explanations, (iii) qualitative

assessment cannot rigorously compare explainers’ quality, and (iv) large-scale pathological

evaluation is inevitable to rigorously rank the explainers.
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Figure 6.5 – Qualitative comparison of original CG and GNNEXPLAINER CGs for 2, 3 and 5-class
scenarios for a DCIS TRoI.

6.4.4 Quantitative analysis

Histogram analysis

Histogram construction is a key component in the proposed quantitative metrics. Figure 6.7

presents per-class histograms for each explainer and the best attribute per concept. We set

the importance threshold to k = 25, i.e., for each TRoI, we select 25 nuclei with the highest

node importance scores. The best attribute for a concept is the one with the highest average

pair-wise class separability.

The row-wise observation exhibits that GNNEXPLAINER and GRAPHLRP provide, respectively,

the maximum and the minimum pair-wise class separability. The histograms for a concept

and for an explainer can be analyzed to assess the agreement between the selected important

nuclei concept, and the expected concept behavior as presented in Table 6.1, for all the classes.

For instance, nuclear area is expected to be higher for malignant TRoIs than benign ones. The

area histograms for GNNEXPLAINER, GRAPHGRAD-CAM and GRAPHGRAD-CAM++ indicate

that the important nuclei set in malignant TRoIs includes nuclei with higher area compared to

benign TRoIs. Similarly, the important nuclei in malignant TRoIs are expected to be vesicular,
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Figure 6.6 – Nuclei types annotation. Overlaid segmentation masks of nuclei from 5-class
explanation in green.

i.e., high texture entropy, compared to light euchromatic, i.e., moderate texture entropy,

in benign TRoIs. The chromaticity histograms for GNNEXPLAINER, GRAPHGRAD-CAM and

GRAPHGRAD-CAM++ display this behavior. Additionally, the histogram analysis can reveal

the important concepts and important attributes. For instance, nuclear density proves to be

the least important concept for differentiating the classes.

Influence of threshold value on separability scores

Multiple importance thresholds K are required to address the varying notion of important

nuclei across different cell-graphs and explainers. Figure 6.8 presents the behavior of the

pair-wise class separability for using various k ∈K = {5,10, ...,50}. For simplicity, we present

the behavior for the best attribute per concept. In general, the pair-wise class separability is

observed to decrease with decreasing k. Intuitively, decreasing k results in including more

unimportant nuclei into the evaluation, thereby gradually decreasing the class separability.

The degree of agreement between the difference in the expected behavior per concept and

the pair-wise class separability in Figure 6.8, for all pair-wise classifications and various

k ∈ K can be used to assess the explainer’s quality. For instance, according to Table 6.1,

the difference in the expected nuclear size can be considered as benign–atypical < benign–

malignant, and atypical–malignant < benign–malignant. GNNEXPLAINER, GRAPHGRAD-CAM

and GRAPHGRAD-CAM++ display these behaviors ∀k ∈ K . GNNEXPLAINER provides the

highest class separability in each pair-wise classification, thus proving to be the best explainer

pertaining to size concept. Detailed inspection of Figure 6.8 shows that all the differences in the

expected behavior, per concept for all pair-wise classifications, is inline with the concept-wise

expected behavior in Table 6.1, ∀c ∈C and ∀k ∈K . Overall, GNNEXPLAINER is seen to be the
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Figure 6.7 – Per-class histograms for different concepts across different graph explainers. For
simplicity, histograms are presented for the best attribute per concept at fixed importance
threshold k = 25.

best explainer as it agrees to the majority of the expected differences ∀c ∈C for all pair-wise

classifications, while providing high-class separability. Furthermore, size proves to be the

most important concept that provides the maximum class separability across all pair-wise

classifications.

Separability score analysis

Table 6.2 presents the statistics of pair-wise class separability and aggregated separability w/

and w/o risk to assess the studied explainers quantitatively. Also, for each class pair (tx , ty ), we

compute classification accuracy by using the CGs of type tx , ty .
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Tasks (Ω) B vs. A B vs. M A vs. M B vs. A vs. M
Accuracy (in %) 77.19 90.29 80.42 74.92
Explainer Metric ∀ (tx , ty ) ∈Ω (↑) Agg. Metric w/o Risk (↑) Agg. Metric w/ Risk (↑)
GNNEXPLAINER

s m
ax

(t
x

,t
y

) 3.26 6.24 3.48

S
m

ax

12.98

S
m

ax
,R

19.22
GRAPHGRAD-CAM 1.24 4.41 3.36 9.01 13.42
GRAPHGRAD-CAM++ 1.27 4.42 3.40 9.09 13.51
GRAPHLRP 2.33 2.46 1.28 6.07 8.53
RANDOM 1.02 1.26 1.11 3.39 4.65
GNNEXPLAINER

s a
vg

(t
x

,t
y

) 1.54 2.78 1.93

S
av

g

6.25

S
av

g,
R

9.03
GRAPHGRAD-CAM 1.15 2.57 2.08 5.80 8.37
GRAPHGRAD-CAM++ 1.18 2.58 2.09 5.85 8.43
GRAPHLRP 1.38 1.59 1.47 4.44 6.03
RANDOM 1.05 1.00 0.95 3.00 4.00
GNNEXPLAINER

s c
o

rr
(t

x
,t

y
) −0.02 0.36 0.38

S
co

rr

0.72

S
co

rr
,R

1.08
GRAPHGRAD-CAM −0.01 0.57 0.58 1.14 1.71
GRAPHGRAD-CAM++ −0.01 0.58 0.59 1.16 1.74
GRAPHLRP −0.15 −0.49 −0.23 −0.87 −1.36
RANDOM −0.37 −0.31 −0.18 −0.86 −1.17

Table 6.2 – Quantitative assessment of graph explainers: GNNEXPLAINER, GRAPHGRAD-CAM,
GRAPHGRAD-CAM++ and GRAPHLRP, using proposed maximum, average, and correlated
separability metrics. Results are provided for each pair-wise breast subtyping tasks, and are
aggregated w/o and w/ risk weighting, i.e., Smax and Smax,R . The first and second best values
are indicated in bold and underline.

Noticeably, GNNEXPLAINER achieves the best maximum and average separability for the major-

ity of pair-wise classes. GRAPHGRAD-CAM++ and GRAPHGRAD-CAM followed GNNEXPLAINER

except for (B vs. A), where GRAPHLRP outperforms them. All explainers outperform the

RANDOM baseline which conveys that the quality of the explainers’ explanations are all better

than random. Notably, GRAPHGRAD-CAM and GRAPHGRAD-CAM++ quantitatively perform

very similarly, which is consistent with our qualitative analysis in Figure 6.4. Interestingly, a

positive correlation is observed between pair-wise class accuracies and average separability

for the explainers, i.e., better classification leads to better concept separability, and thus pro-

duces better explanations. Further, the observation does not hold for the randomly generated

explanations, which highlight undifferentiable average concept separability.

To obtain the pathological prior used to compute the correlation separability, we consulted

three pathologists to rank the concepts in terms of their relevance for discriminating each

pair of classes. For instance, given an atypical TRoI, we asked how important is nuclear

shape to classify the TRoI as not benign and not malignant. To this end, a dataset of 100

TRoIs per class is employed. The ranked concepts are averaged across TRoIs belonging to

a pair of classes, followed by a min-max normalization across all concepts. The outcome is

a normalized prior matrix P ∈ RΩ×|C |. We observe that GNNEXPLAINER, GRAPHGRAD-CAM

and GRAPHGRAD-CAM++ have positive correlated separability for (B vs. M), (A vs. M), and

nearly zero values for (B vs. A). It shows that the explanations for (B vs. M) and (A vs. M) bear

similar relevance of concepts as the pathologists, and focus on a different relevance of concepts

for (B vs. A). GRAPHGRAD-CAM++ has the best overall agreement at the concept-level with

the pathologists, followed by GRAPHGRAD-CAM and GNNEXPLAINER. The RANDOM baseline

agrees significantly worse than the three explainers, and GRAPHLRP has the least agreement.

103



Quantifying Explainers of Graph Neural Networks in Computational Pathology

Concept (Attributes) / Tasks (Ω) B vs. A B vs. M A vs. M w/o risk (↑) w/ risk (↑)
Size 3.26 6.24 3.47 12.97 19.21
Shape 1.27 2.23 1.60 5.10 7.34
Shape variation 0.69 2.30 1.99 4.97 7.28
Density 1.01 0.80 0.52 2.33 3.14
Chromaticity 1.44 2.31 2.07 5.82 8.13
Average separability (↑) 1.54 2.78 1.93 6.25 9.03

Table 6.3 – Quantification of concepts for pair-wise and aggregated class separability in
GNNEXPLAINER. The first and second best values are indicated in bold and underline. The
per-concept attributes are presented in the first column. A comprehensive description of
per-concept attributes is presented in Table 6.1.

Table 6.3 provides more insights by highlighting concept-level scores of GNNEXPLAINER. The

nuclear size is the most relevant concept, followed by the chromaticity and the shape variation.

Comparatively, the nuclear density is the least relevant concept.

6.5 Conclusion

In this chapter, we presented an approach for explaining black-box DL solutions in Comp-

Path. We advocated for biological entity-based analysis instead of conventional pixel-wise

analysis, thus providing an intuitive space for pathological understanding. We employed

four graph explainability techniques, i.e., graph pruning (GNNEXPLAINER), gradient-based

saliency (GRAPHGRAD-CAM, GRAPHGRAD-CAM++) and layerwise relevance propagation

(GRAPHLRP), to explain “black-box" GNNs. We proposed a novel set of user-independent

quantitative metrics expressing pathologically-understandable concepts to evaluate the graph

explainers, which relaxes the exhaustive qualitative assessment by expert pathologists. Our

analysis concludes that the explainer bearing the best class separability in terms of concepts

is GNNEXPLAINER, followed by GRAPHGRAD-CAM++ and GRAPHGRAD-CAM. GRAPHLRP is

the worst explainer in this category while outperforming a randomly created explanation.

We observed that the explainer quality is directly proportional to the GNN’s classification

performance for a pair of classes. Furthermore, GRAPHGRAD-CAM++ produces explanations

that best agrees with the pathologists in terms of concept relevance, and objectively highlights

the relevant set of concepts. Considering the expansion of entity graph-based processing,

such as radiology, computation biology, satellite and natural images, graph explainability and

their quantitative evaluation is crucial. The proposed method encompassing domain-specific

user-understandable terminologies can potentially be of great use in this direction. It is a

meta-method that is applicable to other domains and tasks by incorporating relevant entities

and corresponding concepts. For instance, with entity-graph nodes denoting car/body parts

in Stanford Cars (Krause et al., 2013)/ Human poses (Andriluka et al., 2014), and expert knowl-

edge available on car-model/ activity, our method can infer relevant parts by quantifying their

agreement with experts.
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Figure 6.8 – Visualizing the variation of pair-wise class separability score (Y-axis) w.r.to various
nuclei importance thresholds in K (X-axis). The analysis is provided for different graph
explainers, and for the best attribute per concept.
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7 Weakly Supervised Learning for Joint
Whole-Slide Segmentation and Classi-
fication in Prostate Cancer
The ideas, methods and results presented in this chapter are published in:

• "Learning Whole-Slide Segmentation from Inexact and Incomplete Labels using Tissue

Graphs", Valentin Anklin*, Pushpak Pati*, Guillaume Jaume*, Behzad Bozorgtabar, An-

tonio Foncubierta-Rodríguez, Jean-Philippe Thiran, Mathilde Sibony, Maria Gabrani,

Orcun Goksel. In Medical Image Computing and Computer Assisted Interventions (MIC-

CAI), 2021 (Anklin et al., 2021).

• "Weakly Supervised Learning for Joint Whole-Slide Segmentation and Classification in

Prostate Cancer", Guillaume Jaume*, Pushpak Pati*, Behzad Bozorgtabar, Jean-Philippe

Thiran, Orcun Goksel, Maria Gabrani. In Preprint, 2021 (Jaume et al., 2021c).

GJ (the author of this thesis) is sharing first co-authorship with VA and PP on the first publica-

tion, and with PP on the second one. The ideas and concepts were conceived by GJ and PP and

executed by GJ, PP and VA. The experiments were designed by GJ, VA and PP. MS validated the

clinical soundness of the work. JP, OF, BB, AF, MG supervised and supported GJ in organizing

his research. Both manuscripts were written by GJ and PP and subsequently revised by BB and

OG.

7.1 Introduction

With the advancements in CompPath, several supervised CAD tools have been proposed

proposed to assist pathology diagnosis across various tissue types and histopathology appli-

cations, e.g., nuclei segmentation (Graham et al., 2019a; Verma et al., 2021), gland segmen-

tation (Sirinukunwattana et al., 2017; Binder et al., 2019), tumor region detection (Bejnordi

et al., 2019; Aresta et al., 2019), etc. Although these DL-based tools achieve remarkable per-

formance, they often require task- and tissue-specific pixel or patch annotations on large

datasets. Acquiring such annotations is laborious, time-consuming, and often infeasible.

To alleviate the burden of annotation requirements, weakly-supervised methods are proposed
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that can leverage readily available WSI-level annotations. Most of these weakly-supervised

methods, that are scalable to WSIs, focus on classification tasks, e.g., MIL (Tellez et al., 2019a;

Shaban et al., 2020) or compression-based representation learning (Tellez et al., 2019a; Shaban

et al., 2020). Though methods classifying WSIs are important, their applicability is limited due

to their poor ability to assist pathologists’ focus during diagnosis (Wang et al., 2019b). To ad-

dress this limitation with classification methods, semantic segmentation methods are desired

that can delineate diagnostically relevant regions in WSIs and save pathologists’ diagnosis

time by directly guiding their focus to informative regions. A segmentation can enable the

quantification of tumor regions for better patient stratification and tailored treatment selec-

tion. Further, complementing a WSI classification method by a pixel-level segmentation can

ascertain the relevance of the WSI-level classification, thereby strengthening trust between the

DL methods and pathologists. However, semantic segmentation of WSIs is more annotation-

demanding, i.e., requiring pixel-level labeling, compared to WSI classification. Therefore,

weakly-supervised semantic segmentation (WSS) methods are imperative in histopathology

diagnosis.

While WSS methods have shown great successes on natural images, they encounter several

challenges when applied to histopathology images (Chan et al., 2021), as histopathology im-

ages (i) contain finer-grained objects with large intra-class variations (Xie et al., 2019); (ii) often

include ambiguous boundaries among different histology components (Xu et al., 2017b); (iii)

can be as large as several giga-pixels with arbitrary tissue shapes, such as WSIs. For instance,

the methods by Xu et al. (2014); Hou et al. (2016); Jia et al. (2017); Xu et al. (2019a); Ho et al.

(2021) perform WSS at patch-level. These methods are limited by their requirement of patch-

level labels and their inability to incorporate global tissue microenvironment information for

performing contextualized WSI segmentation. While Chan et al. (2019); Silva-Rodríguez et al.

(2021) propose to analyse larger image-tiles compared to patches, they are constrained in

terms of computational complexity and memory requirements to operate on WSIs in an end-

to-end manner. The WSS method by Chan et al. (2019) requires exact fine-grained tile-level

annotations, i.e., a precise denomination of the presence of each lesion type in an image-tile

during model training, which requires pathologists to annotate images beyond standard clini-

cal needs and norms. On a different note, recent WSI classification methods propose to use

learned attention weights or feature attribution techniques to highlight salient regions in a

WSI that drive the model’s prediction (Lu et al., 2021b; Tellez et al., 2019a). The identified

salient regions are informative for visual assessment, but are insufficient, incomplete, and

blurry for accurately delineating diagnostically relevant regions. Further, the saliency of a

region signifies its relevance towards the model prediction, but do not always convey the

class label of the region. In addition, these methods typically require densely overlapping

patch-level predictions to obtain a granular saliency map, which is computationally expensive

while working with WSIs.

In addition to the above shortcomings, the aforementioned approaches do not include uncer-

tainty estimate analyses, which are crucial to understand when to trust the model predictions.

Indeed, DL methods typically tend to produce overconfident predictions and do not indicate
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when they are likely to be incorrect (Fort et al., 2019), especially when generalizing predictions

to unseen cohorts. This can be partially explained by the lack of confidence and uncertainty

estimates in neural network parameters, also known as epistemic uncertainty. Intuitively, epis-

temic uncertainty can be correlated to the inter-observer variability in pathology diagnosis,

which is known to be high for challenging tasks. Each pathologist, with his/her experience,

develops an own understanding of the task. Thus, pathologists can be considered as different

“models”, with different decision boundaries that induce uncertainty in challenging cases.

Further uncertainty can be induced due to data, also known as aleatoric uncertainty. In

pathology, aleatoric uncertainty is caused by, the difficulty of matching the continuum of

histologic features to the diagnostic spectrum, intra- and inter-patient tumor heterogeneity,

and visualization artifacts that create ambiguous cases. Consequently, aleatoric and epis-

temic uncertainty are inherently part of pathology practice and should be considered when

developing CAD tools.

Given the above, it is imperative to develop a WSS method that can (i) operate on arbitrary and

large histopathology images, e.g., on WSIs; (ii) utilize both local and global context to conduct

precise segmentation; (iii) perform simultaneous classification and segmentation; (iv) leverage

readily available annotations in a clinical setting, without any task-specific assumptions or

post-processing; and (v) provide reliable uncertainty estimates as confidence to diagnostic

predictions as well as to detect any domain shifts when applied to new datasets.

To address the aforementioned requirements, we propose WHOLESIGHT, “Whole-slide Seg-

mentatIon using Graphs for HisTopathology”. Formally, WHOLESIGHT represents a histopathol-

ogy image using a superpixel-based tissue-graph (TG), and transforms the segmentation

task into a node-classification task. WHOLESIGHT incorporates both local and global inter-

tissue-region relationships to perform contextualized segmentation. To account for epistemic

uncertainty, we further propose two Bayesian variants of WSS based on MC-dropout (Gal and

Ghahramani, 2016; Kendall and Yarin, 2017) (MCD) and deep ensembles (Lakshminarayanan

et al., 2017; Fort et al., 2019) (DE), respectively. Our major contributions are:

• WHOLESIGHT, a novel weakly-supervised semantic segmentation and classification

method that can scale to WSIs. WHOLESIGHT directly predicts the Gleason pattern

associated to each pixel, i.e., Benign (B), grade 3 (G3), grade 4 (G4) and grade 5 (G5), along

with the WSI-level grade defined as the combination of the most common (primary,

P) and the second most common (secondary, S) cancer growth patterns found in the

image.

• A thorough evaluation of WHOLESIGHT on three prostate cancer datasets for Gleason

pattern segmentation and Gleason grading, and comparison against state-of-the-art

WSI classification algorithms.

• A study of the generalizability of WHOLESIGHT, WHOLESIGHT-MCD and WHOLESIGHT-DE

when tested on in-domain and out-of-domain cohorts, including segmentation and
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classification performance, uncertainty estimations and neural network calibration

analyses.

7.2 Related work

7.2.1 Weakly-supervised histopathology image classification

Most of the weakly-supervised methods in CompPath are proposed to classify histopathology

images, i.e., tissue microarrays and whole-slides. EM-CNN is introduced in Hou et al. (2016),

a patch-based method that is trained using image-level labels. It employs an Expectation

Maximization (EM)-based method to identify discriminative patches by utilizing the inter-

patch spatial relationships, and subsequently uses a decision fusion model to aggregate the

patch-level predictions. A two-step approach is proposed in Campanella et al. (2019), which

first identifies informative patches using a patch-level MIL framework, and then adopts a

RNN-based strategy to aggregate patch-level predictions for WSI classification. Another MIL

approach, CLAM, is proposed in Lu et al. (2021b) that learns class-level attention weights

to discriminate diagnostically relevant regions. CLAM is further optimized by learning an

instance-level clustering over the patches to constrain and refine the learned feature space.

Differently, two-step compression-based procedures are proposed in Tellez et al. (2019a) and

Shaban et al. (2020) to analyse WSIs. First, they extract patch-level embeddings using a network

pre-trained on an auxiliary task (Tellez et al., 2019a; Shaban et al., 2020), e.g., contrastive

learning, or using unsupervised learning (Tellez et al., 2019a), e.g., a Variational Auto-Encoder

(VAE). Then, they build a compressed feature cube representation of the input WSI, which

is further processed by a CNN classifier. Despite the success of these weakly-supervised

classification approaches, they cannot directly be extended for semantic segmentation.

7.2.2 Weakly-Supervised histopathology image segmentation

A few methods in literature have been proposed to perform WSS of histopathology images.

DWS-MIL is proposed in Jia et al. (2017), which trains a binary-classifier to generate pixel-

level predictions, and then produces an image-level prediction using a softmax function.

The network is trained to optimize the image-level prediction, and thereby improving the

pixel-level predictions. A MIL-based label enrichment method, CAMEL, is proposed in Xu

et al. (2019a) for WSS. It splits an image into latticed instances and automatically generates

instance-level labels. After label enrichment, the instance-level labels are further assigned

to the corresponding pixels, producing the approximate pixel-level labels and making fully

supervised training of segmentation models possible. A deep multi-magnification network

is introduced in Ho et al. (2021) which performs patch-wise multi-class tissue segmentation

by using concentric patches across multiple magnifications. This method leverages scribble

annotations of regions in WSIs during the training phase. HistoSegNet, proposed in Chan

et al. (2019), performs WSS of histological tissue types in two steps. First, a CNN is trained
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at tile-level using tile-level annotations to predict the presence of different tissue types in a

tile. Then, GRAD-CAM, a feature attribution technique is employed to derive pixel-level class

predictions. To further improve the segmentation, HistoSegNet employs a complex hand-

crafted class-specific post-processing steps. As a main limitation, the aforementioned methods

cannot perform WSS on giga-pixel WSIs using only image-level labels, and cannot adapt to

WSIs of different sizes. Comparatively, WeGleNet proposed in Silva-Rodríguez et al. (2020) is

scalable to WSIs. WeGleNet includes a multi-class segmentation layer and a global-aggregation

layer to perform image-level classification during training and pixel-level prediction during

inference. It aggregates class-wise pixel-level softmax activations to perform image-level task,

and significantly upsample the pixel-level activations to segment an image. However, the

method is insufficient to precisely delineate different lesions in an image, and is incomplete to

highlight multiple occurrings of lesions. Further, it also requires to extract densely-overlapping

patches to render fined-grained segmentation. In contrast, our proposed WSS approach can

perform WSS by leveraging image-level labels, while efficiently scaling to WSIs with arbitrary

shape and size.

7.2.3 Domain shift, generalization, and uncertainty in computational pathology

Domain shift and generalization

Building models that are in the same time robust to domain shifts and able to provide reliable

uncertainty estimates is fundamental to deploy CAD tools in the real-world (Tellez et al.,

2018, 2019b). Domain shifts are known to be challenging to model and detect in DL. This is

prevalent in CompPath, where domain-level, e.g., hospital-level, biases are introduced due to

a variety of reasons, such as different staining protocols, manufacturing devices, materials,

and scanning devices with respective color response (Aubreville et al., 2021). Nevertheless,

several approaches have been proposed to reduce such domain shifts by developing data- and

model-level adaptation mechanisms.

Stain normalization (Reinhard et al., 2001; Macenko et al., 2009; Vahadane et al., 2016; Ren

et al., 2019) is a widely employed technique that reduces appearance variability across sam-

ples by using a reference image. It directly operates at data-level by standardizing the input

in a reproducible way. Stain normalization is model-agnostic and has been shown to im-

prove generalization performance of DL models (Tellez et al., 2018, 2019b). Differently, color

augmentations are proposed to model staining variations, e.g., by adding additive and mul-

tiplicative noise to the input (Tellez et al., 2018; Faryna et al., 2021). These techniques offer

good compromise between ease of integration in DL pipelines and performance gain.

In another scenario, when (unlabeled) samples from the target domain are available in the

training phase, domain adversarial training (Ganin et al., 2016; Aubreville et al., 2020) have

been proven effective in domain adaptation. However, the availability of target domain

samples for training is often impractical due to the lack of knowledge about where the model

will be used, and limitations related to data privacy and regulations. Further, a pre-trained
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model on a source domain can be fine-tuned by leveraging a few labeled target domain

samples, but at the cost of compromising the generalization capabilities of the model.

Uncertainty estimation

While the aforementioned approaches propose various mechanisms to alleviate the impact

of the distribution shifts, they do not address the scenario where the distribution on unseen

cohorts is drastically changing. In this case, accurate uncertainty estimates are crucial to

know when to trust the model – a task known to be challenging for neural networks that often

provide over-confident predictions, as studied in (Guo et al., 2019; Lakshminarayanan et al.,

2017; Fort et al., 2019). This may hinder real-life deployment in clinics, where CAD must be

transparent.

However, CompPath research in uncertainty is scarce and remains an unexplored direction.

Thagaard et al. (2020) benchmarked the detection of adenocarcinoma in H&E lymph node sec-

tions from breast cancer under various real-life distribution shifts. Their work concluded that

Bayesian neural networks based on deep ensembles (Fort et al., 2019) and MC-dropout (Gal

and Ghahramani, 2016; Kendall and Yarin, 2017; Fort et al., 2019) provide better uncertainty

estimates than classical approaches. Our proposed generalization and uncertainty analysis

further ascertains the findings of Thagaard et al. (2020) for WSI-level Gleason grading.

7.3 Methods

This section presents the proposed WHOLESIGHT methodology for scalable WSS of histopathol-

ogy images. First, an input image is transformed into a tissue-graph (TG) representation, where

the nodes and edges of the graph denote tissue regions and their interactions, respectively.

Then, a GNN learns node-level embeddings that contextually characterize the tissue regions.

The resulting node embeddings are processed by a graph-classification head for primary and

secondary Gleason classification. At intermediate epochs during the training phase, a feature

attribution technique and a node selection strategy are employed to determine pseudo labels

for a subset of the nodes, which are further used to train a node-classification head. The

outcomes of the node-head is used to segment the Gleason patterns in the image. An overview

of WHOLESIGHT is provided in Figure 7.1.

7.3.1 Notation and preliminaries

Following the notation introduced in Chapter 1, we define an attributed graph G ∈ G as a

triplet (VG ,EG , H ), where VG and EG represent the set of nodes and edges, H ∈R|V |×d are node

attributes, and G represents the set of graphs.

GNNs (Kipf and Welling, 2017; Xu et al., 2019b; Hamilton et al., 2017; Velickovic et al., 2018)

are a class of neural architectures that can learn from graph-structured data. In a typical
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Figure 7.1 – Overview of the proposed WHOLESIGHT method. (a) In the preprocessing step,
superpixels are detected to divide the input WSI into morphologically consistent tissue regions.
Each tissue region is passed into a feature extractor to derive instance-level embeddings. The
tissue regions and respective embeddings define the nodes and node features, respectively, of
the TG. Adjacent tissue regions are further connected to each other to define the TG topology.
(b) Graph-classification head to classify the TG representation of the WSI. The TG is passed
to a GNN Fθ, followed by a readout, and MLP classifier Fφ to predict the corresponding
primary and secondary Gleason pattern. In a post-hoc step, a feature attribution method,
followed by an importance-based node selection strategy derives node-level pseudo-labels. (c)
Node-classification head to segment the WSI. The GNN Fθ is re-used to obtain contextualized
node-level embeddings. Afterwards, the pseudo-labels, derived from the graph-head, are
used to train a node-level MLP classifier Fψ. The segmentation output is trivially obtained by
mapping the node predictions to the input WSI.

message-passing GNN, the node features are iteratively updated via a two-step procedure

to contextualize their feature representation in accordance with their neighborhood node

information. In this work, we use a version of the GIN architecture Xu et al. (2019b), where the

AGGREGATE step is based on a mean-operator, and the UPDATE step combines the aggregated

features with the current node features h(v) via a MLP. Formally, the AGGREGATE and the

UPDATE steps are given as,

h(t+1)(v) = MLP
(
h(t )(v)+ 1

|N (v)|
∑

u∈N (v)
h(t )(u)

)
(7.1)
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The GNN is denoted as Fθ that maps the graph nodes to embeddings, where θ are learnable

parameters. For a graph classification, a fix-sized graph-level embedding hG is derived by

pooling the node-level feature representations hT (v), ∀v ∈ VG by a READOUT step, e.g., a

mean-READOUT operation. Subsequently, the graph-level embeddings can be mapped to

target classes by a neural network classifier Fφ, where φ are learnable parameters. Similarly,

for a node classification task, the node-level feature representations hT (v), ∀v ∈VG can be

classified by a neural network classifier Fψ, where ψ are learnable parameters.

Formally, classification aims to predict a target label y ∈ K for an input x ∈ X , where K

and X denote the set of classes and the set of inputs, respectively. Given a set of sample

pairs {(xi , yi )}N
i=1, where N is the number of samples and (xi , yi ) ∼ p(x, y), the data likeli-

hood can be expressed as p(Y |X ,θ,φ) = ΠN
i=1p(yi |xi ,θ,φ). The optimal parameters (θ̂, φ̂)

are obtained by Maximum Likelihood Estimation (MLE), or equivalently by minimizing the

Negative Log-Likelihood (NLL) −∑N
i=1 log p(yi |xi ,θ,φ). In practice, NLL is expressed as a

cross-entropy loss, where the model weights are updated by Stochastic Gradient Descent

(SGD), or a similar gradient-based optimizer. In a graph classification setting, a sample pair

is denoted as (yG ,G), yG ∈ KG , G ∈ G . In node classification, a sample pair is denoted as

(yV , v), yV ∈ KV , v ∈ V . For the considered task at hand, the set of graph- and node-level

classes are the same, simplifying notation to K :=KG =KV .

We further introduce the notion of model calibration. Intuitively, the probability of outcomes,

i.e., confidence scores, of a calibrated model should match its performance. For example, the

samples predicted with an average confidence of 60% by a model should have an average

accuracy of 60%. Formally, for a given network, f : X →K , and p(X ,Y ) a joint distribution

over the data and the labels, f (x) is said to be calibrated with respect to p if, Ep [Y | f (X ) =β] =β,

∀β ∈ [0,1]. The calibration can be visualized with a reliability diagram (DeGroot et al., 1983).

Namely, all the samples in the dataset are assigned to bins according to their predicted

confidence scores by the network. Then, the network performance, e.g., accuracy, is computed

for all the samples in each bin. The network performance is plotted against the binned

confidence scores, where deviations from the diagonal represent uncalibrated bins.

7.3.2 Preprocessing and tissue-graph construction

The input H&E stained images in the dataset are first stain-normalized using the algorithm

proposed by Vahadane et al. (2016) to reduce any appearance variability across the images due

to tissue preparation, such as different specimen preparation techniques, staining protocols,

fixation characteristics, and imaging device characteristics. In the next step, a stain normalized

image is transformed into a TG (Figure 7.1(a)), where the nodes and the edges of the TG denote

tissue regions and inter-tissue interactions, respectively. Motivated by Bejnordi et al. (2015),

we consider superpixels as the visual primitives to encode the tissue regions for this work. In

comparison to rectangular patches, superpixels are flexible units to accommodate arbitrary

shapes in accordance with the local homogeneity of the tissue in an image. The homogeneity
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constraint also restricts the superpixels to span across multiple distinct structures and include

different morphological regions.

We briefly remind the key steps for constructing a TG: (i) the construction of superpixels to

define the nodes VG , (ii) characterization of the superpixels to define the node features H ,

and (iii) the construction of the graph topology to define the edges EG . For identifying the

superpixels in an input image, a two-step procedure is adopted. First, unsupervised SLIC

algorithm (Achanta et al., 2012) emphasizing on space proximity is employed on the image to

produce over-segmented superpixels. The SLIC algorithm is applied on a low magnification of

the image to capture homogeneity, while offering a good compromise between granularity and

smoothing-out noise. In the second step, the over-segmented superpixels are hierarchically

merged according to their channel-wise color similarity at high magnification. The color

similarity is quantified in terms of channel-wise 8-bin color histograms, mean, standard-

deviation, median, energy, and skewness. The resulting merged tissue regions form the nodes

of the TG. The merging allows to semantically group the superpixels and render meaningful

tissue regions. In addition, the merging reduces the node complexity of the TG, thereby

enabling the scaling of TG to large dimensional histopathology images and contextualization

to distant nodes.

To characterize the nodes of the TG, we extract morphological and spatial features from the

tissue regions constituting the nodes. Considering the arbitrary dimensions of the superpixels,

a two-step process is adopted to extract deep learning-based morphological features. First,

patches of size 144×144 pixels are extracted from a superpixel, resized to 224×224 size, and en-

coded into 1280-dimensional features by processing through a MobileNetV2 network (Sandler

et al., 2018) pre-trained on ImageNet (Deng et al., 2009a). Then, the corresponding node-level

morphological features are computed as the mean of the individual patch-level features. Fur-

ther, spatial features of the nodes are computed by normalizing the superpixel centroids by

the image dimensions. The normalization ensures the invariability of the spatial features with

respect to the varying dimensions of the input histopathology images. Finally, the TG topology

is defined by constructing a RAG (Potjer, 1996) using the spatial connectivity of superpixels.

To this end, we assume that adjacent tissue regions biologically interact the most, and thus

should be connect in the TG topology.

7.3.3 Contextualized node embeddings

Given a TG, we aim to learn discriminative node embeddings (see Figure 7.1(b)) by utilizing

the context information of the nodes, i.e., the tissue micro-environment and the inter-tissue

interactions. The contextualized node embeddings are subsequently used for WSI classifica-

tion and WSS. To contextualize the node embeddings, we use a GIN (Xu et al., 2019b) graph

neural network, denoted as Fθ and parametrized by the learnable parameters θ. Since GNNs

can operate on graphs of arbitrary and varying sizes, they allow to encode histopathology

images represented in the form of TGs without the need for tile-based processing. As the
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discriminative information, dependent on the sub-graph structures, can lie at different ab-

straction levels in the GNN, we employ a Jumping Knowledge (JK) strategy to incorporate

multi-level node representations. Namely, the final node-level embedding after T GIN-layers

is defined as,

h(T )(v) = CONCAT(h(t )(v), ∀t ∈ {1, ...,T }) (7.2)

where, CONCAT denotes a concatenation operation.

7.3.4 WSI classification

Following the contextualized node embeddings, a graph-classification head is employed

to classify the TG by leveraging image-level inexact labels. To this end, first, a READOUT

averages out the information from all the nodes h(T )(v), ∀v ∈ VG to build a fix-sized graph-

level embedding hG . Subsequently, the graph-level embedding is fed to a multi-task classifier

for primary and secondary Gleason grading. Specifically, the classifier is composed of two

parallel MLPs, denoted as Fφ = {Fφ1 ,Fφ2 }, which are parametrized by trainable parameters

φ= {φ1,φ2}. The two MLPs individually predict the primary, i.e., the worst Gleason pattern,

and secondary, i.e., the second worst Gleason pattern, in the WSI. Each MLP solves a multi-

class problem with |K | Gleason pattern classes, i.e., benign, grade 3, grade 4, and grade

5. The final Gleason grade is derived as the sum of the predicted primary and secondary

Gleason patterns. Fθ and Fφ are optimized jointly by minimizing the weighted multi-label

cross-entropy loss,

LG =λLC E (yGP , ŷGP )+ (1−λ)LC E (yGS , ŷGS ) (7.3)

where, P and S denote the primary and the secondary labels of ground truth yG and prediction

ŷG , and λ ∈ [0,1] is a hyper-parameter used to balance the two terms. Gleason grading is

typically imbalanced, where WSIs with higher grade patterns are less frequent. To address this,

we define class-weights as w := {log(
∑

i Ni

Ni
), i = {1, ..., |K |}}, where Ni is the count of class-wise

Gleason patterns. The weights are designed such that a higher value is assigned to classes with

lower frequency.

7.3.5 Weakly supervised semantic segmentation

The nodes in a TG are identified by superpixels that denote morphologically homogeneous

tissue regions. Since each Gleason pattern is characterized by distinct morphological patterns,

we assume that each tissue region, depicted by a node of the TG, includes a unique Gleason

pattern. Thereby, the WSI segmentation task is transformed into a classification task of the

nodes in the TG. In the presence of only image-level labels, the node classification task is

achieved in two steps. First, pseudo-node labels are generated by leveraging the image-level

annotations, and subsequently the pseudo-node labels are used to train a node classifier.

116



7.3. Methods

Pseudo node label generation

Following the image-level classification in Section 7.3.4, a post-hoc feature attribution tech-

nique is employed to measure the importance of each node for the TG classification. Specif-

ically, we use GRAPHGRAD-CAM (Pope et al., 2019; Jaume et al., 2021b), an extension of

GRAD-CAM (Selvaraju et al., 2017) technique to operate with GNNs. For a graph G , GRAPHGRAD-CAM

produces class-wise node attribution maps, Ak , ∀k ∈K . The attribution maps highlight the

importance ∀v ∈VG towards the classification of G into |K | categories, as demonstrated in

Figure 7.1. Given the importance scores of a node v ∈VG towards |K | classes, a simple and

straightforward approach is to assume that the class label of v is k ∈K if the highest impor-

tance score corresponds to class k. At this stage, an argmax operation across the class-wise

importance scores ∀v ∈ VG can be considered to classify the nodes. However, such node

classification strategy carries several disadvantages.

• An argmax operation for a node greedily selects the class label with the highest impor-

tance score. However, some nodes only marginally contribute to the graph classification,

e.g., background nodes, and bear low importance scores for all k ∈ K . An argmax

operation would confidently label such nodes into one of the K classes, which reduces

confidence in the node classification.

• The class labels of the nodes, that highly contribute towards a certain class, cannot not

be guaranteed to be the same as the corresponding class label. Formally, if the set of

nodes Vk ⊂ V have high importance scores for class k, then the class labels of Vk are

not ensured to be k, e.g., a node v ∈Vk can be an evidence of the absence of all classes

K \ {k}, thus bearing high importance for classifying the graph as k, while not being of

this class.

• GRAPHGRAD-CAM does not necessarily highlight all the nodes that belong to a class in

the corresponding class attribution map. Depending on the complexity of a classifica-

tion task, a classifier may utilize only a subset of the informative nodes corresponding

to a class to predict the label of the graph. Formally, if the set of nodes Vk ⊂V have high

importance scores for class k, then Vk may not include all the nodes in Vk ⊂V that have

the actual label k, i.e., Vk ⊂ Vk .

• There are several feature attribution techniques in literature that can be employed

to assign node-wise importance scores and perform node classification. However, as

demonstrated in Jaume et al. (2021b), differences in the underlying mechanisms of these

techniques lead to different node-wise importance scores. Therefore, a single feature

attribution technique, e.g., GRAPHGRAD-CAM, may not be trusted for a score-based

node classification.

Therefore, we devise a strategy to use the highlighted nodes by GRAPHGRAD-CAM as pseudo-

labels to train a node-classification head. The strategy aims to create pseudo-labels while
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minimizing the class-wise false positives and false negatives. Specifically, for a graph G with

Gleason score P +S, such that P,S ∈K , we compute the node importance scores IP and IS

∀v ∈ VG . IP and IS are computed by using un-normalized GRAPHGRAD-CAM on the P-th

class and the S-th class in the primary and secondary graph-classification heads. Since the

importance scores by GRAPHGRAD-CAM are unbounded, employing a fixed threshold on

the importance scores across all samples is sub-optimal. Therefore, we select the top n%

nodes, denotes as VP and VS , based on the respective importance scores IP and IS . n is a

hyperparameter, which is tuned on during the training phase. For a node v ∈VP and v ∈VS ,

we compute the argmax(IP (v), IS(v)) to assign v into either of the sets. This ensures that

VP ∩VS = ;. Subsequently, we label the nodes v ∈ VP as P and the nodes u ∈ VS as S. This

process ensures to select the most important set of nodes corresponding to the ground truth

image-level label of G , and create the pseudo-labels, denoted as yṼ . Continuing this process

for all the TGs in the dataset produces pseudo-node labels across all classes, denoted as YṼ .

Node classification

The pseudo-node labels YṼ are used to train a node-classification head, as shown in Figure 7.1.

Specifically for a graph G , we extract the node embeddings h(T )(v), ∀v ∈VG using Fθ̂, where θ̂

are the parameters from the graph classification in Section 7.3.4. Fθ̂ is kept frozen during the

node classification to ensure that the same GNN backbone can be used for both segmentation

and classification, thereby reducing the number of trainable parameters. The node embed-

dings are processed by an MLP classifier Fψ, parameterized by learnable parameters ψ, to

predict the pseudo-node labels. The node-classification head Fψ is trained by minimizing

a weighted multi-class cross-entropy objective. Similar to the graph classification setting,

class-weights are defined as w := {log(
∑

i Ni

Ni
), i = {1, ..., |K |}}, where Ni is the number of an-

notated nodes of class i . The node-wise predicted class labels are finally used to obtain the

segmentation prediction.

We refer to our proposed method, the simultaneous WSI classification and pseudo-node

labeling-based WSS, as WHOLESIGHT. Noticeably, unlike Chan et al. (2019), WHOLESIGHT

does not involve any customized post-processing, thus being a generic method that can be

applied to various organs, tissue types, segmentation tasks, etc.

7.3.6 Extension to Bayesian models

We propose two Bayesian variants of WHOLESIGHT to incorporate uncertainty estimates into

model predictions. We assume that aleatoric uncertainty, i.e., data uncertainty, is already

modeled during network training and reflected in the predicted probabilities of WHOLESIGHT.

Since epistemic uncertainty is not explicitly captured by WHOLESIGHT, we propose to model

it using WHOLESIGHT-MCD based on MC-dropout (Gal and Ghahramani, 2016; Kendall and

Yarin, 2017) as well as WHOLESIGHT-DE based on deep ensembles (Lakshminarayanan et al.,

2017; Fort et al., 2019). These methods are built on the fact that there exist several sets of
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parameters that can explain a given dataset equally well, i.e., a set of WSIs and WSI labels. The

underlying principle of these methods aims to utilize multiple optimal models to capture the

variations in the decision boundaries of the individual models, thereby accounting for the

epistemic uncertainty. These methods are also crucial when generalizing to unseen cohorts,

including distribution shifts in the data.

Deep Ensembles

Deep ensembles are realized by training several models with different network initializations,

herein exploring diverse modes in function space. In our case of graph classification, recall

that the conditional distribution p(yG |G ,θ,φ) is approximated by our proposed network

Fφ(Fθ(G)), which learns an optimal set of parameters (θ̂, φ̂) with MLE. Using different network

weight initializations, we can learn different optimal parameters {θ̂(m), φ̂(m)}M
m=1, where m ∈

{1, ..., M } refers to different models. Then, for a test sample G∗ ∈G , WHOLESIGHT-DE output

is obtained by computing the average prediction from all the models, i.e.,

p̂(y∗
G |G∗) := 1

M

M∑
m=1

p(y∗
G |G∗, θ̂(m), φ̂(m)) (7.4)

For node classification and WSI segmentation, a similar approach is employed where p(yV |v,θ,ψ)

is approximated by Fψ(Fθ(v)).

MC-dropout

MC-dropout (Gal and Ghahramani, 2016; Gustafsson et al., 2019) follows the same principle to

propose a modification of the use of dropout layer in the network. Unlike the standard DL net-

works which utilize dropout only during training, MC-dropout proposes to retain the dropout

layers during inference as well. Owing to the dropout layer that randomly switches off some

neurons in the network, during inference, each forward pass operates on a different network

defined as a random subset of the original network. The randomly sampled networks can be

viewed as an ensemble of networks that provide different decision boundaries and thereby

different predictions. As in deep ensembles, the output WHOLESIGHT-MCD predictions are

obtained by averaging the network predictions over N passes with different dropout patterns.

7.4 Experiments

7.4.1 Datasets

We evaluate our proposed method on three prostate cancer datasets acquired from three inde-

pendent data sources, consisting of whole-slide prostate cancer needle biopsies. We use these

datasets for simultaneously segmenting Gleason patterns in the WSIs and classify the WSIs

into different Gleason grades. The Gleason patterns range from grade 3 (G3), characterized by

119



Weakly Supervised Learning for Joint Whole-Slide Segmentation and Classification in
Prostate Cancer

moderately differentiated nuclei and the presence of poorly-formed and cribriform glands, to

grade 4 (G4), that include poorly differentiated nuclei and irregular masses, to grade 5 (G5),

characterized by even less differentiated nuclei and lack or only occasional glands. Normal

glands and non-epithelial tissue regions are categorized as benign (B). The Gleason grade is

estimated from a Gleason score which is presented as primary + secondary, where the primary

and the secondary denote the worst and the second worst Gleason patterns, respectively.

Details of the datasets are presented as follows:

Radboud dataset

The Radboud dataset (Bulten et al., 2020) is composed of 5,759 core needle biopsies extracted

from 1,243 patients. The data were acquired between January 1, 2012, and December 31,

2017, from patients who underwent prostate biopsy for suspected cancer at the Radboud

University Medical Center. All the slides were scanned with a 3D Histech Panoramic Flash II

250 scanner at 20× magnification (pixel resolution 0.24µm), and were further downsampled to

10×. The annotations include WSI-level Gleason grade extracted from patient records. Further,

noisy pixel-level segmentation masks of Gleason patterns on the WSIs were made available

as part of the Prostate cANcer graDe Assessment (PANDA) challenge. These segmentation

masks were cleaned for the purpose of Gleason pattern segmentation by using standard

image manipulation techniques, such as contextualized noise removal, hole filling, and edge

smoothing. In the absence of large public datasets that consist of pixel-level annotated

prostate cancer WSIs, we utilized the Radboud dataset for the development and evaluation of

our methods.

Karolinska dataset

The Karolinska dataset (Ström et al., 2019) comprises 5,662 core needle biopsies extracted

from 1,222 patients. The data were acquired on men aged between 50 and 69 years, between

2012 and 2015 in various hospitals in Stockholm, Sweden. The slides were scanned with a

Hamamatsu C9600-12 and an Aperio Scan Scope AT2 scanner at 20× magnification, with pixel

resolution of 0.45202µm and 0.5032µm, respectively. All the biopsies were annotated by an

expert uro-pathologist for Gleason grading.

Sicap dataset

The Sicap dataset (Silva-Rodríguez et al., 2020) contains 18,783 patches of size 512×512 with

complete pixel-level annotations and WSI-level Gleason grades from 155 WSIs extracted on

95 patients. As the original dataset is composed of patches, the original WSIs and annotation

masks were reconstructed by stitching the patches. The WSIs were scanned at 40× resolution

with a Ventana iS-can Coreo scanner, and further downsampled to 10× magnification for

processing. Pixel- and WSI-level annotations were acquired by a group of expert urogenital
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pathologists at the Hospital Clínico of Valencia.

Each dataset is split into train, validation, and test in a ratio of 60%, 20%, and 20% at Gleason

grade-level, using a random stratified partition that preserves the percentage of samples in

each class. No further sample-level analysis was performed to partition the data. The Gleason

grade-wise dataset distribution is displayed in Figure 7.2, which highlights the different class-

level imbalances across the three datasets. Karolinska dataset is more skewed towards benign

and low-grade Gleason categories. The Gleason grade-wise distribution is the most balanced

in the Radboud dataset. Notably, all three datasets contain a lower fraction of high-grade

Gleason categories.
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Figure 7.2 – Class distribution of the Karolinska, Radboud and Sicap datasets.

7.4.2 Implementation and metrics

We implemented our proposed method using PyTorch (Paszke et al., 2019), DGL (Wang et al.,

2019a), and Histocartography (Jaume et al., 2021a). The experiments were conducted on

NVIDIA Tesla P100 GPUs and POWER9 CPUs.

To develop the WHOLESIGHT network architecture, the GNN backbone Fθ, the graph-

classification head Fφ, and the node-classification head Fψ were developed by setting and opti-

mizing their respective hyperparameters. First, Fθ and Fφ were trained by using image/graph-

level labels, and afterwards pseudo-node labels were created to train Fψ. The segmentation

output was obtained via node classification from Fψ. The number of GIN layers in Fθ are

optimized for the values {3,4,5}, where the UPDATE function was defined as a 2-layer MLP

with 64 hidden units, and ReLU activations. The graph-classification head Fφ contains two

heads for classifying primary and secondary Gleason categories, where each head consists of a

2-layer MLP with 128 hidden units and ReLU activations. The node-classification head Fψ

contains a 2-layer MLP with 128 hidden units and ReLU activations.

For the Sicap dataset, which consists of a few WSIs, node-level augmentation techniques are

employed to augment the graph dataset. Specifically, random node rotations {90,180,270}

degrees, and horizontal and vertical mirroring are used for augmenting the nodes. The batch
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size and the learning rate were optimized from {4,8,16} and {10−4,5×10−4,10−3} set of values,

respectively. Dropout layers with dropout rates 0.2, 0.5, and 0.5 were included in the MLPs

belonging to Fθ, Fφ, and Fψ, respectively.

Following the hyperparameter tuning, eight WHOLESIGHT models were trained with different

network initializations. The reported WHOLESIGHT results correspond to the mean and

standard deviation obtained over these eight models. A similar approach was employed for

WHOLESIGHT-MCD, where each model was run 25 times on different sampled networks

created randomly by using the dropout layers. WHOLESIGHT-DE was defined by randomly

sampling five out of the eight trained models. This process was repeated eight times to

obtain different ensemble-based predictions. All the algorithms were trained with Adam

optimizer (Kingma and Ba, 2015).

The model selection criteria during training relied on the version of the WHOLESIGHT method.

For the first version, a model with the best Gleason grade weighted-F1 on the validation set

was selected. In contrast, the model with the best node-classification weighted-F1 score on

the validation set was selected for the other two versions. For creating the pseudo-node labels,

several percentages of the most important nodes were selected, where the experimented

percentage values were {5,10,15,20}.

Classification metrics

WSI classification performance is measured by the weighted-F1 score of the Gleason grade

between the ground truth and predicted labels. Additionally in accordance with the prior

work (Bulten et al., 2020, 2021), we report the quadratic kappa score (κ2) of the predicted

ISUP grade (Epstein et al., 2005, 2014). ISUP grading is an alternative grading system whose

correspondence with Gleason grading is defined as, Benign → ISUP-0, GG-(3+3) → ISUP-1, GG-

(3+4) → ISUP-2, GG-(4+3) → ISUP-3, GG-8 → ISUP-4, and GG≥9 → ISUP-5. κ2 incorporates

for the level of disagreement between the prediction and ground truth labels. For example, for

a sample with Gleason grade 6, predicting a grade 10 is penalized more compared to predicting

a grade 7.

Segmentation metrics

The segmentation performance is measured by the Dice score between the ground truth and

the predicted Gleason pattern segmentation masks. The Dice score is equivalent to F1-score

at pixel-level predictions. Given the imbalance of the Gleason patterns in the datasets, we also

report the per-pattern Dice score.
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Uncertainty metrics

Following the previous work of Gomariz et al. (2021), we evaluate the classification and

segmentation uncertainties by computing the Brier score sB (lower is better) and the NLL sNLL

(lower is better) over a set of N unseen test samples, expressed as,

sB = 1

N

N∑
n=1

|K |∑
i=1

(yi − ŷi )2, sNLL =− 1

N

N∑
n=1

|K |∑
i=1

p(yi ) log p̂(yi ) (7.5)

Intuitively, the uncertainty estimates will be good when the model performance is high, and

when the misclassified samples are not highly confident in their predictions.

Calibration metrics

Reliability diagrams provide an intuitive understanding of model calibration. To quantify the

observations in a reliability diagram, we use the Expected Calibration Error (ECE) metric (Ku-

mar et al., 2018). It computes the weighted average deviation of the confidence scores over all

the bins. Formally, it is expressed as,

cECE =
B∑

b=1

Nb

N
|acc(b)−conf(b)|, (7.6)

where nb represents the number of samples in bin b, acc(b) and conf(b) denote the accuracy

and average confidence of samples in the bin b, respectively.

7.4.3 Baselines

We compare our proposed WHOLESIGHT with state-of-the-art WSI classification and two ver-

sions of WHOLESIGHT. The variants of WHOLESIGHT are denoted as WHOLESIGHT(Graph,

GRAPHGRAD-CAM) and WHOLESIGHT(Multiplex, NC), which are trained using only image-

level supervision and multiplexed supervision (both image- and pixel-level labels), respec-

tively.

WHOLESIGHT(Graph, GRAPHGRAD-CAM)

We propose this variant of WHOLESIGHT that uses only image/ graph-level supervision during

training. Compared to the proposed WHOLESIGHT method, this baseline contains only the

GNN backbone Fθ and the graph-classification head Fφ. It does not create or utilize pseudo

labels, and the segmentation output is obtained by taking the argmax over the class-wise

GRAPHGRAD-CAM attribution maps.
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WHOLESIGHT(Multiplex, NC)

We propose this variant of WHOLESIGHT that leverages both inexact image- and complete

pixel-level supervision during training. It acts as the upper bound for WHOLESIGHT method.

As pixel-level annotations are available, the node-classification head is trained using ground-

truth node-level labels, instead of generated pseudo-node labels. It constitutes of the same

GNN backbone Fθ, graph-classification head Fφ, and node-classification head Fψ as the

WHOLESIGHT architecture. In this setting, Fθ, Fφ, and Fψ are trained jointly by optimizing

a multi-task objective, i.e., WSI-level primary and secondary Gleason score prediction along

with node-level Gleason pattern prediction. This variant of WHOLESIGHT was proposed in

our preliminary work, as described in Anklin et al. (2021).

CLustering-constrained Attention Multi Instance Learning (CLAM)

CLAM (Lu et al., 2021b) is a clustering-constrained attention MIL approach designed for

WSI classification. Our experiments are based on the publicly available implementation

of CLAM 1. Minor modifications were performed to adapt the algorithm for a multi-task

objective, i.e., primary and secondary Gleason score classification. Specifically, patches of size

256×256 were extracted from a WSIs. Each patch was further processed by a ResNet50 model

pretrained on ImageNet, where features after the third residual block were extracted with

an adaptive mean-spatial pooling operation, which resulted in a 1024-dimensional feature

representation. The attention module used a self-attention network with sigmoid activations

and a 0.25 dropout. The clustering module that learns class-level representations was trained

by using outputs of the attention network as pseudo-labels and a smooth top1 SVM loss. The

attention-weighted patch features were finally passed to a linear classifier for classifying the

primary and secondary Gleason scores.

Neural Image Compression (NIC)

NIC (Tellez et al., 2019a) creates feature cube representations of WSIs to learn a mapping

between deep patch features and WSI-level class labels. Our implementation and experiments

are partially based on the publicly available implementation 2, which required to be completed

with training utilities, data loaders, and model translation in PyTorch. Specifically, input

WSIs were resized to the dimensions of the largest WSI in our datasets with padding. It

allowed associating each WSI to WSI-level label without further processing. Different patch

feature extraction strategies were experimented to extract the compressed WSI representations.

In our experiments, we found that NIC with BiGAN features (see Tellez et al. (2019a) for

implementation details) led to the best performance. A custom CNN with eight convolutional

layers was trained from scratch, where each layer has 128 channels, a batch normalization

module, 0.2 dropout, and stride 1. As a significant portion of the input is background, the

1CLAM publicly available code: https://github.com/mahmoodlab/CLAM
2NIC publicly available code: https://github.com/davidtellez/neural-image-compression
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average pooling was replaced by max-pooling to extract the most relevant regions per channel.

Then, the primary and secondary Gleason pattern classifiers were implemented as 2-layer

MLPs with 128 channels and LeakyReLU activations. The network was trained with a multi-

class cross-entropy loss.

For all the baselines, a hyper-parameter search was conducted to find the best learning rate

and batch size, if applicable. Subsequently, eight models were re-trained from scratch with the

optimal set of parameters. For each experiment, we report the average and standard deviation

over these runs without further model selection.

7.4.4 WSS performance analysis

Training setting

We study the classification and segmentation performance of the proposed WHOLESIGHT

method, and compare against the aforementioned baselines on three datasets, i.e., Karolinska,

Radboud, and Sicap datasets. These evaluations measure the standalone applicability of the

WHOLESIGHT method across the independent train and test datasets.

Results analysis

Table 7.1 presents the classification and segmentation results on the Sicap dataset. The

analyses are performed under two supervision settings, namely complete (C ) and inexact (IE ).

The C setting utilizes both inexact image-level labels and the pixel-level annotations. Whereas,

the IE setting only uses the inexact image-level labels. WHOLESIGHT reaches 39.3% average

Dice score, which significantly outperforms WHOLESIGHT(Graph, GRAPHGRAD-CAM) by

+8.6% in absolute. Further, WHOLESIGHT significantly outperforms HistoSegNet in terms

of both classification and segmentation metrics. WHOLESIGHT(Multiplex, NC), which acts

as the upperbound, results in slight improvement in classification and a significant gain in

segmentation compared to WHOLESIGHT. The per-class Dice scores indicate that the benign

patterns, that constitute most of the tissue area, have a high detection rate compared to

less occurring Gleason patterns. For the classification task, WHOLESIGHT outperforms NIC

and CLAM methods both in terms of Gleason grade weighted-F1 and ISUP κ2. However,

considering the small size of the Sicap test set, the classification performance assessment on

the Radoud and Karolinka datasets reveal a more confident picture.

Table 7.2 presents the classification and segmentation results on the Radboud dataset. WHOLESIGHT

renders an absolute gain of+10.33% in average Dice score over WHOLESIGHT(Graph, GRAPHGRAD-CAM).

This confirms the utility of pseudo-node labels for a superior segmentation. WHOLESIGHT(Multiplex,

NC) remains a good upper-bound with an average Dice score of 64.99±0.4. The observations

of class-wise Dice scores are consistent with Sicap, where the benign patterns have a high

detection rate, followed by G3, G4, and G5 patterns. As the Radboud dataset includes more G5

patterns than Sicap, we observe a significant gain in detecting high-grade patterns. For the
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A
n

n
o

t. per-class Dice avg. Dice GG wF1 ISUP κ2

Method Benign Grade3 Grade4 Grade5

C

WHOLESIGHT 91.1±1.0 39.4±1.6 52.9±1.4 10.6±5.4 48.7±1.3 55.0±1.7 86.2±3.1
(Multiplex, NC)

I
E

NIC(Tellez et al., 2019a) - - - - - 35.3±5.0 44.5±14.2
CLAM(Lu et al., 2021b) - - - - - 53.8±3.5 61.8±5.5
HistoSegNet (Silva-Rodríguez et al., 2020) 71.5±1.4 1.5±0.7 8.4±0.9 1.6±0.3 22.4±0.3 16.7±4.3 36.7±2.8
WHOLESIGHT 65.5±2.3 23.3±4.2 30.0±5.5 4.1±1.4 30.7±2.1 54.1±4.1 79.2±2.9
(Graph, GRAPHGRAD-CAM)
WHOLESIGHT 73.0±3.1 34.7±1.2 43.8±5.3 5.7±0.4 39.3±1.4 54.7±4.6 81.4±5.2
(Graph + Pseudo, NC)

Table 7.1 – Classification and segmentation results on Sicap dataset. The best performances
for using image-level supervision are highlighted in bold.

classification task, the observations are consistent with the observations on the Sicap dataset.

Noticeably, the complementarity of the image- and pixel-level annotations results in a better

classification performance for WHOLESIGHT(Multiplex, NC) than WHOLESIGHT.

A
n

n
o

t. per-class Dice avg. Dice GG wF1 ISUP κ2

Method Benign Grade3 Grade4 Grade5

C

WHOLESIGHT 91.6±0.1 64.3±0.3 65.9±0.8 38.2±1.1 65.0±0.2 61.7±0.4 76.3±1.3
(Multiplex, NC)

I
E

NIC(Tellez et al., 2019a) - - - - - 35.1±1.2 45.0±2.2
CLAM(Lu et al., 2021b) - - - - - 55.8±1.1 73.7±1.7
WHOLESIGHT 63.8±2.3 23.8±3.8 22.6±1.9 12.1±0.7 30.6±1.0 58.0±0.8 73.8±1.6
(Graph, GRAPHGRAD-CAM)
WHOLESIGHT 83.8±0.6 36.3±1.1 23.1±2.3 20.6±0.3 40.9±0.5 58.0±0.8 73.8±1.6
(Graph + Pseudo, NC)

Table 7.2 – Classification and segmentation results on Radboud dataset. The best performances
for using image-level supervision are highlighted in bold.

Table 7.3 presents the classification results on the Karolinska dataset. In the absence of

ground truth pixel-level annotations, the segmentation performances could not be computed.

WHOLESIGHT outperforms NIC and produces comparable classification performance with

respect to CLAM. The Gleason grade weighted-F1 score is higher for the Karolinska dataset

compared to Radboud. This is due to the presence of more high-grade Gleason grade WSI in

the Karolinska dataset. This observation is substantiated by the confusion matrix of Gleason

grade classification for the WHOLESIGHT-DE method, as shown in Figure 7.3.

7.4.5 Generalization: performance, uncertainty, and calibration

Training setting

To study the generalization capability of WHOLESIGHT, we propose a modified training

setting. Specifically, we build a new training dataset that comprises Karolinska and Radboud

training WSIs. Thus, we create one large multi-source dataset encompassing better sample
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GG wF1 ISUP κ2

I
E

NIC(Tellez et al., 2019a) 44.0±1.0 45.7±2.4

CLAM(Lu et al., 2021b) 66.3±1.0 78.1±1.5

WHOLESIGHT 67.1±0.9 77.4±1.2

(Graph)

Table 7.3 – Classification results on Karolinska dataset. The best performances for using
image-level supervision are highlighted in bold.

A
n

n
o

t. Radboud Karolinska Sicap

Method avg. Dice GG wF1 ISUP κ2 GG wF1 ISUP κ2 avg. Dice GG wF1 ISUP κ2

C

WHOLESIGHT 64.8±0.6 58.5±1.4 74.0±1.5 67.6±1.4 78.8±1.2 55.8±0.6 75.0±3.9 92.8±3.0
(Multiplex, NC)

I
E

NIC(Tellez et al., 2019a) - 27.6±5.0 40.6±7.2 43.1±2.4 45.0±4.7 - 27.3±6.3 36.1±9.1
CLAM(Lu et al., 2021b) - 57.6±2.3 73.8±2.3 65.5±1.3 77.3±2.8 - 56.4±2.7 75.0±7.5
WHOLESIGHT 29.0±1.2 56.5±0.5 72.0±1.5 68.1±0.6 77.4±0.9 24.2±2.1 64.2±4.7 86.9±4.4
(Graph, GRAD-CAM)
WHOLESIGHT 46.0±0.4 56.5±0.5 72.0±1.5 68.1±0.6 77.4±0.9 41.6±0.5 64.2±4.7 86.9±4.4
(Graph + Pseudo, NC)

B
ay

es WHOLESIGHT-MCD 43.9±1.8 58.2±0.8 73.7±3.1 67.9±1.1 77.7±1.0 44.5±3.0 61.4±3.6 75.2±6.7
WHOLESIGHT-DE 46.3±0.2 60.6±0.6 76.5±0.7 68.6±0.4 78.1±0.6 46.6±1.7 66.0±1.5 84.5±1.2

Table 7.4 – Classification and segmentation results on Radboud, Karolinska, and Sicap datasets
for models trained using both Radboud and Karolinska datasets.

variability and more diagnostically challenging cases than their standalone counterparts. The

trained models on this curated dataset are tested individually on the Karolinska and Radboud

test WSIs, herein studying the in-domain performance. Further, we test on the entire Sicap

dataset, which constitutes of out-of-domain WSIs.

Performance analysis

Table 7.4 compares the classification performance of WHOLESIGHT, its Bayesian variants

WHOLESIGHT-MCD and WHOLESIGHT-DE, CLAM, and NIC. For the Gleason grade weighted-

F1 metric on the in-domain Karolinska and Radboud datasets, WHOLESIGHT reaches a

comparable performance with respect to CLAM, and significantly outperforms NIC. Similar

observations have prevailed for the ISUP κ2 metric for both the in-domain datasets. However,

the variances of Gleason grade weighted-F1 and ISUP κ2 of the CLAM models are much higher

than WHOLESIGHT. For testing on the out-of-domain Sicap dataset, WHOLESIGHT achieves

significantly better Gleason grade weighted-F1 and ISUP κ2 compared to competing CLAM

and NIC methods. Even though the WHOLESIGHT variance on Sicap is larger compared to

Karolinska and Radboud, it remains significantly lower than CLAM and NIC.

WHOLESIGHT-MCD performs comparable to WHOLESIGHT, without highlighting a clear

performance gain for any of the datasets. Further, the variances of WHOLESIGHT-MCD meth-
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ods are significantly higher than standalone WHOLESIGHT. However, WHOLESIGHT-DE

shows a significant gain in classification and segmentation performances for all datasets. The

deep ensemble-based methods result in clear advantages over MC-dropout-based methods,

which are consistent with the observations by Thagaard et al. (2020). Noticeably, the gain

in performances is higher on the out-of-domain dataset, compared to in-domain datasets.

This finding corroborates the conclusion of Gustafsson et al. (2019) which showed that deep

ensemble improves generalization to unseen cohorts. Overall, WHOLESIGHT-DE is the best

performer across all datasets for all the evaluation metrics. Figure 7.3 presents the Gleason

grading confusion matrices of WHOLESIGHT-DE on the three considered datasets. It can be

observed that most misclassifications lie close to the diagonal. The majority of the confusion

occurs between GG6 and GG7, i.e., GG(3+3) versus GG(3+4) and GG(4+3). Such ambiguity

is prevalent among pathologists, as presented in Ozkan et al. (2016); Salmo (2015). Further

confusion matrices for Gleason grading, ISUP grading, primary classification, and secondary

classification are presented in Figure D.3.
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Figure 7.3 – Confusion matrix of Gleason grade classification for the WHOLESIGHT-DE
method on the Karolinska, Radboud, and Sicap datasets.

Table 7.4 also presents the generalizability assessment of segmentation for WHOLESIGHT, and

its variants WHOLESIGHT-MCD, WHOLESIGHT-DE on Radboud and Sicap datasets. Both

WHOLESIGHT-MCD and WHOLESIGHT-DE significantly outperform the WHOLESIGHT method

by improving the mean Dice score by +2.9% and +5.0%, respectively. Consistently with the

observations for classification, WHOLESIGHT-DE is the best performer in terms of class-wise

and aggregated Dice scores and systematically reduces the model performance variance. Be-

nign regions, being the most common class in the dataset, reaches the highest Dice score.

Whereas the less encountered Gleason patterns, i.e., G3, G4, G5, have comparatively lower Dice

scores. The drop in the Dice scores for these patterns primarily occurs due to the ambiguities

among the cancerous patterns and false positive benign regions.
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Figure 7.4 – (a) Uncertainty analysis of WHOLESIGHT, WHOLESIGHT-MCD and
WHOLESIGHT-DE in terms of Brier and NLL metrics on the Sicap dataset. (b) Average and
per-class Dice scores obtained on the Sicap dataset.

Uncertainty estimate analysis

Figure 7.5 presents the classification uncertainty analysis of the WHOLESIGHT, WHOLESIGHT-MCD,

and WHOLESIGHT-DE methods, in terms of NLL (Figure 7.5(a)) and Brier score (Figure 7.5(b)),

on Karolinska, Radboud and Sicap. The Bayesian methods, i.e., WHOLESIGHT-MCD, and

WHOLESIGHT-DE, render a significantly lower NLL than WHOLESIGHT across all datasets,

for primary, secondary, and Gleason grade (P+S) classification. The relative gain of WHOLESIGHT-DE

is +34.1% for P+S on Karolinska, +44.71% on Radboud, and +51.59% on Sicap. Interestingly,

the gain is higher for the out-of-domain dataset, showing that Bayesian models, in particular

deep ensembles, provide better uncertainty estimates. These observations are also consistent

with the Brier score. WHOLESIGHT-DE consistently outperforms WHOLESIGHT, with a rela-

tive gain of +13.37% on Karolinska, +15.45% on Radboud, and +21.87% on Sicap. Noticeably,

the NLL and Brier scores are consistently higher for predicting the secondary Gleason patterns

compared to the primary patterns. This resonates with the fact that identifying secondary

patterns is a more challenging task with higher ambiguity.

A similar analysis for quantifying the uncertainty in segmentation for WHOLESIGHT, WHOLESIGHT-MCD,

and WHOLESIGHT-DE methods in terms of NLL and Brier scores on Sicap dataset, is pre-

sented in Figure 7.4(a). A relative gain of +21.49% and +1.44% in NLL and Brier score, respec-

tively, is achieved by WHOLESIGHT-MCD on average Dice metric. Though WHOLESIGHT-DE

outperforms WHOLESIGHT-MCD in terms of NLL, it performs inferior in terms of Brier score.
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Model calibration analysis:

A model with a good uncertainty estimate should be well-calibrated, i.e., the model con-

fidence should be close to the underlying model performance. Figure 7.5(c) presents the

reliability diagrams of the primary classification head on Karolinska and Radboud datasets.

WHOLESIGHT-DE shows significantly better calibration than WHOLESIGHT-MCD and WHOLESIGHT-DE

in accordance with the uncertainty estimate analysis. However, we observe that WHOLESIGHT-DE

remains over-confident as the model accuracy (in orange) is lower than the expected optimal

calibration (in blue). Figure 7.6 shows a detailed analysis of model calibration. We observe that

even if not perfectly aligned, the gap between model accuracy and model confidence, denoted

as dashed vertical lines in black, is reduced for the Bayesian methods. This gain is quantified

by computing the ECE. For instance, the Radboud secondary classification head calibration is

improved by +27.7% for WHOLESIGHT-MCD and +46.4% for WHOLESIGHT-DE.

7.4.6 Qualitative analysis

We qualitatively analyze the results of our proposed WHOLESIGHT method by (i) visualizing

overlaid segmentation masks on WSIs, (ii) analysing the t-distributed stochastic neighbor

(t-SNE) (Van der Maaten and Hinton, 2008) node embeddings, and (iii) correlating the seg-

mentation outputs with pathological reasonings.

Visualizing WHOLESIGHT segmentation masks

Figure 7.7 demonstrates segmentation predictions obtained with WHOLESIGHT and its vari-

ant, WHOLESIGHT(Multiplex, NC), on Sicap dataset. We can observe that WHOLESIGHT

correctly delineates the cancerous regions in the WSIs. Zooming into different regions con-

clude that the tissue regions of TG, i.e., the nodes of TG, (outlined in black in Figure 7.7)

encode meaningful units of homogeneous tissue. It substantiates the relevance of using TG

representations for segmenting the tissue regions into Gleason patterns. We further notice

that WHOLESIGHT, in a few cases, predicts benign regions adjacent to cancerous patterns as

cancerous. For example, the benign region, primarily consisting of stroma, in Figure 7.7(c) is

predicted as G5. We argue that these false positive detections do not inhibit the applicability

of the method, as neighboring cancerous regions are correctly detected. In a few other cases,

WHOLESIGHT correctly detects missed cancerous regions in the ground truth annotations.

For instance, in Figure 7.7(b), the missing G4 region in the upper part of the WSI is correctly

identified by WHOLESIGHT.

On comparing with WHOLESIGHT with WHOLESIGHT(Multiplex, NC), we observe that sev-

eral false positives are removed, e.g., in Figure 7.7(a), thereby offering more accurate segmen-

tation outputs. However, the improvements by WHOLESIGHT(Multiplex, NC) are achieved at

the cost of training with pixel-level annotations that are hardly available in real-world prac-

tice. Thus, WHOLESIGHT appears to be an appealing compromise between segmentation
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performance and annotation requirement for Gleason pattern segmentation.

Visualizing tissue-level t-SNE feature space

A t-SNE visualization of the learned tissue-level embeddings is demonstrated in Figure 7.8

for Sicap dataset. The t-SNE algorithm projects the GNN node embeddings onto a two-

dimensional feature space, allowing to analyse the connection between node embeddings

and the Gleason pattern distribution.

Figure 7.8(a) displays the t-SNE feature space for the correctly classified nodes, which highlights

demarcated clusters for each Gleason pattern. The large cluster of benign nodes indicates

the diversity of the benign tissue regions. Several patches from each Gleason pattern cluster

are presented in Figure 7.8(d). We can observe the reduced nuclei differentiation across the

patches from benign to Gleason grade 5. Further, Figure 7.8(b) and (c) display the t-SNE

feature space for the misclassified nodes. Specifically, Figure 7.8(b) represents the ground

truth node labels, and Figure 7.8(c) the predicted node labels. Different embedding locations

are further selected and highlighted by different colored rectangles and put in relation with

corresponding patches to indicate the inter-class ambiguities, as demonstrated in Figure 7.8(e).

For example, the first row in Figure 7.8(e) showcases patches that are benign but are predicted

as Gleason pattern-3. We can visually compare these patches with the Gleason pattern-3

patches in the third row of Figure 7.8(d). Similar ambiguities between other pairs of Gleason

patterns are also included in Figure 7.8(e).

Interpreting model outcomes via predicted segmentations

Predicted segmentations provide human-understandable interpretability maps. For researchers,

the segmentations allow to, (i) identify morphological patterns responsible for the WSI clas-

sification, (ii) analyse failure cases by inspecting the pixel-level predictions, and ultimately

(iii) better understand the model behavior towards biomarker discovery. For pathologists,

they assist to, (i) put in relation the predicted WSI-level Gleason scores and the highlighted

pixel-level Gleason patterns, (ii) confirm that the morphology of the identified cancerous

regions align with the pre-established diagnosis criteria.

Additionally, in the perspective of developing AI-assisted human-in-the-loop tools, a Gleason

grading system that can simultaneously classify and segment WSIs is closer to the latest

pathological standards. Indeed, recent revisions of the Gleason grading system (Epstein

et al., 2014) emphasized the importance of reporting the percentage of each grade for better

patient stratification and treatment selection (Cheng et al., 2007; Huang et al., 2014; Choy

et al., 2016; Sharma et al., 2020). These percentages can be trivially derived from the predicted

segmentation maps by counting the number of pixels belonging to each pattern. Naturally,

such information is not available in mere WSI classification systems. Reporting per-grade

percentage is particularly important in ambiguous and borderline cases. For instance, consider
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two patients with Gleason score 3+4. When a small percentage of pattern-4 is present, e.g., 10%,

the case can be considered as an intermediate risk cancer where active patient surveillance

is enough (Amin et al., 2014). However, a larger secondary pattern may require specific

treatments. Reporting percentages of each grade allows us to discriminate between these two

scenarios easily.

Similarly, consider a Gleason score 4+3 with a small secondary Gleason pattern, e.g., 90% and

10% area for primary and secondary patterns, respectively. This case will be scored as 4+3,

even though it is close to a score of 4+4, which would lead to a different treatment protocol. By

explicitly reporting the Gleason pattern percentages, such corner cases can be avoided.

7.5 Conclusion

Accurate delineation of patterns in a giga-pixel sized whole-slide histopathology image by

using a deep learning method typically demands pixel-level annotations. However, such

exhaustive annotations are often impossible to acquire in a real-world scenario due to time,

effort, and expense bottlenecks. Nonetheless, the semantic segmentation of diagnostically

relevant patterns is crucial for disease diagnosis and treatment selection. To this end, we have

proposed a novel weakly-supervised semantic segmentation method, WHOLESIGHT, that can

segment the relevant patterns of interest in histopathology images by leveraging only image-

level supervision. To the best of our knowledge, WHOLESIGHT is the first weakly-supervised

semantic segmentation method that can operate in an end-to-end manner on histopathology

images of arbitrary shape and size. First, WHOLESIGHT transforms a histopathology image

into a tissue-graph representation, where the nodes and edges of the graph denote tissue

regions and tissue-to-tissue interactions. Second, the method employs a graph neural network

to construct inter-tissue relationship-aware representations for the tissue regions. These

contextualized representations are further used to classify the tissue-graph. Subsequently,

pseudo-labels are generated for the tissue regions via a graph-feature-attribution technique,

which enables the classification of the tissue regions and segments the input histopathology

image. We evaluated our proposed method on three publicly available prostate needle biopsy

datasets for Gleason grade classification and the delineation of different Gleason patterns in

the biopsies. On comparing with state-of-the-art methods for histopathology applications, we

demonstrated the classification and segmentation superiority of our proposed WHOLESIGHT

method. Furthermore, we conducted extensive experimentation to assess the generalizability

of WHOLESIGHT on out-of-domain histopathology datasets. In addition, we proposed a

Bayesian extension of WHOLESIGHT, i.e., WHOLESIGHT-DE, to enhance the generalizability

of the method to images from different data sources. The generalizability is quantified in

terms of classification and segmentation performance metrics, uncertainty estimation, and

model calibration analysis. Notably, the proposed WHOLESIGHT method can utilize both

image-level and pixel-level supervision to simultaneously perform image classification and

segmentation tasks. Hence, WHOLESIGHT performance on both tasks can be enhanced in the

presence of pixel-level partial annotations from pathologists. Though we have evaluated our
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method for H&E stained prostate cancer needle biopsies, the technology is easily extendable

to other tissue types, e.g., breast, colon, lungs, etc., imaging techniques, e.g., tissue microarrays,

resection biopsies, etc., and image modalities, e.g., other staining types in histopathology,

multiplexed histopathology images, etc., and domains, e.g., natural images, hyperspectral

images, satellite images, other medical imaging domains, etc.
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Figure 7.5 – Uncertainty analysis of the proposed WHOLESIGHT, WHOLESIGHT-MCD, and
WHOLESIGHT-DE models. Each model was trained by combining Karolinska and Radboud
train sets, and subsequently individually tested on Karolinska and Radboud test sets and the
entire Sicap dataset. (a) Brier analysis (lower is better) on Karolinska, Radboud and Sicap. (b)
NLL analysis (lower is better) on Karolinska, Radboud and Sicap. (c) Reliability diagrams on
Karolinska and Radboud test sets for the primary Gleason classification head. The expected
calibration (blue) highlights a perfectly calibrated model, where the performance in each bin
matches the probability confidence. Calibrations of WHOLESIGHT, WHOLESIGHT-MCD,
and WHOLESIGHT-DE are highlighted in red, purple, and orange, respectively. The number
of samples (in %) in each bin is shown in red, purple and orange, respectively.
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Figure 7.6 – Reliability diagrams of WHOLESIGHT, WHOLESIGHT-MCD, and
WHOLESIGHT-DE tested on Karolinska and Radboud datasets for the primary and
secondary Gleason classification heads. The expected calibration (blue) highlights a perfectly
calibrated network, where the performance matches the probability confidence of the
network. The observed network calibrations are highlighted in red. The number of samples
(in %) in each classification bin is shown in orange. (a) Primary classification calibration on
Karolinska test set. (b) Primary classification calibration on Radboud test set. (c) Secondary
classification calibration on Karolinska test set. (d) Secondary classification calibration on
Radboud test set.
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Figure 7.7 – Example of segmentation maps from the Sicap dataset. The Ground truth
is shown in the left column, our proposed WHOLESIGHT in the middle column, and
WHOLESIGHT(Multiplex, NC) in the right column. The tissue regions, i.e., TG nodes, are
represented by a black overlay. (a.) Example of a GG(3+3) sample. (b.) Example of a GG(4+4)
sample. (c.) Example of a GG(5+5) sample. For better visualization, the benign areas are not
represented in the segmentation maps.
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7.5. Conclusion

Figure 7.8 – t-SNE visualization of node-level feature representations and example patches
corresponding to several regions on the two-dimensional t-SNE feature space for tissue-graphs
in Sicap dataset. (a) t-SNE visualization of correctly classified nodes. (b) and (c) display the
t-SNE visualization of misclassified nodes, where (b) and (c) highlight the ground truth and
predicted class labels of the nodes, respectively. (d) and (e) demonstrate square patches of size
224×224 at 10× magnification cropped around the node centroids selected from different
regions on the t-SNE embedding space. (d) and (e) highlight the correctly and incorrectly
classified node patches, respectively. The labels of the patches in (e) are formatted as Y → Ŷ ,
where Y and Ŷ denote the ground truth and the predicted class labels. The colored rectangles
around the patches in (d) and (e) correspond to respective colored rectangles in (a), (b), and
(c).
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Conclusion

In this chapter, we reformulate our contributions and main findings to highlight their strengths

and limitations. Then, we present a set of future research directions, both on the methodologi-

cal and clinical sides.

Discussion and limitations

The core idea of this thesis is to represent histology images as entity-graphs where nodes

represent biological entities and edges interactions between these entities. This view is a

complete paradigm shift from the traditional CNN-based processing of histology images,

which are based on patch-level processing and aggregation. We showed that a number of

challenges encountered in traditional approaches, e.g., context–resolution trade-off, optimal

patch prediction aggregation, and multi-scale information extraction fusion, can be addressed

using our proposed entity-graph processing framework. Entity-graphs are built in three

steps, namely (i) entity selection and detection to form the nodes of the graph, (ii) entity

encoding to characterize the nodes, e.g., using deep features extracted from a ResNet network

or handcrafted morphological features, and (iii) a graph topology builder to define the edges,

e.g., k-NN graph. Entity-graphs are further processed by a GNN that can take different forms

depending on the application at hand, e.g., single-level PNA- or GIN-based GNNs, hierarchical

GNN, etc.

Entity-graph processing brings scalability as GNNs can operate on arbitrary large graphs.

To support this claim, we proposed the Hierarchical Cell-to-Tissue (HACT) representation

that combines cell-level information with tissue-level information in a hierarchical fashion.

Cell-level information is encoded as a cell-graph, where nodes are nuclei and edges nuclei-

nuclei interactions. Tissue-level information is represented as a tissue-graph, where nodes

are tissue regions and edges connect adjacent regions. To evaluate HACT, we created the

BRACS dataset, the largest cohort to date of H&E histopathologic images for breast tumor

classification. HACT combined with HACT-Net, a novel GNN designed for pathology, led to

state-of-the-art results for breast tumor RoI classification showing performance superior to

CNN methods and pathologists. While promising, this approach still suffers from several

limitations. First, on the modeling side, HACT-Net is not trained end-to-end. It relies on

pre-trained CNN models to encode the entity, e.g., ImageNet features with a ResNet backbone
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network. In its current shape, HACT-Net could in theory be trained end-to-end but at a

really high computational cost, as the graphs would need to be built on-the-fly in the batch

constructor. This limitation is common to most of the WSI-level approaches, e.g., (Tellez

et al., 2019a; Shaban et al., 2020; Lu et al., 2021b; Campanella et al., 2019). Some methods are

using pathology-related auxiliary tasks to pre-train the feature extractor, thereby reducing the

domain gap between pre-trained and downstream data (Tellez et al., 2019a). Other methods

proposed unsupervised pre-training based on GANs and VAEs (Tellez et al., 2019a; Shaban

et al., 2020). However, the gain compared to ImageNet pre-trained features remains marginal,

if not nonexistent. Another important aspect is to understand what is making the entity-

graph approach working, is it the structural entity-centric tissue decomposition, the entity

selection, or the graph connectivity patterns? We hypothesize that any topology enforcing

spatial connectivity would lead to similar performance, e.g., k-NN, radius graph, etc. This is a

reasonable assumption when the graphs are homophilous, i.e., when your neighbors are likely

to have the same functional property as you. This property is found in cell-graphs, where

all the nuclei located in the gland (epithelial nuclei) will share morphological features, and

nuclei outside the gland (e.g., stromal nuclei or lymphocytes) will have different ones. In this

sense, cell-graph GNNs can be seen as inducing a low-pass filtering over the nodes features,

that learn to represent discriminative nuclei phenotypes. A similar reasoning can hold for

tissue-graphs. When scaling to WSI-level, an unexplored tissue representation would be to use

glands as entity. A WSI can include hundreds of glands that convey different information about

the tissue. A major drawback of this representation is to develop a gland detector algorithm,

an unexplored and non-trivial task.

As studied in Chapter 6, entity-based analysis preserves the notion of histopathological entity,

which the pathologists can relate to and reason with. A main contribution of this thesis are

post-hoc explainability tools to provide pathologist-friendly explanations. Our approach is

using graph explainers to compare the focus of the model with prior pathological knowledge.

While our study concluded that the salient regions highlighted by the model were relevant,

there exist a number of limitations. First, what is important for a pathologist is not obviously

important for another one. Therefore, gathering a universal prior is not straightforward. Our

intuition is that attribute-wise histograms are the most reliable evidences of the relevance of

a given explainer to quantify the importance of a concept. An alternative when explaining a

prediction to a pathologist would be to provide per-attribute cursors, showing the average

value of the most important nuclei, normalized by some representative set. Another limitation

is that this analysis relies on domain-specific knowledge, that requires a deep understanding

of the task that only pathologists can provide. The main benefit of this method is also its main

limitation, it remains task-specific and require work to be adapted to other tasks, even in

related domains.

The development of scalable and explainable approaches is pivotal. However, they require

annotations that are scarce and expensive to acquire. Another line of research developed in

this thesis is concerned with weakly-supervised learning. We proposed WHOLESIGHT, an

algorithm that can perform segmentation and classification with training only from WSI-level
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labels. The core principle is to encode a WSI as a tissue-graph, to which we associate a label.

First, a GNN is trained for graph classification, followed by a post-hoc node-level feature

attribution to derive pseudo-labels, that are further used for node classification. The main

drawback of this approach is that tissue component detection is both a time-consuming and

sub-optimized process, that relies on basic image processing (SLIC superpixel). Ideally, a

dedicated tissue component detector would be employed but it would require expensive anno-

tations. Despite this limitation, WHOLESIGHT brings valuable complementary information

with the addition of a segmentation head.

Future work

A thesis is a never-ending job, as new projects are completed, a plethora of new ideas emerge,

some of which prove to be promising. Below we list some research directions and project

ideas that could be explored, if time, pathological expertise, and data availability were not

limitations.

Leverage pathology reports: First, weakly supervised algorithms have not yet expressed their

full potential in computational pathology. Zhang et al. (2017) showed that pathology reports

contain rich and complex information that is ready to be exploited. A non-exhaustive list

of extractable information comprises cancer staging information, e.g., tumor size, cancer

grading information, e.g., microscopic tumor description, tumor grade, patient identification

information, e.g., age, sex, ethnicity, and treatment response. This information can serve

as training targets for multi-task classification, regression or clustering of WSIs. Alternative

training signals can be extracted in other modalities e.g., radiology, genomics as proposed

in Chen et al. (2020). Following this approach, we reduce the annotation effort required by

pathologists, allowing more time to be spent on testing and analysis of AI behaviour. Entity-

graph processing can be leveraged as a backbone method to build WSI embeddings, e.g., with

WHOLESIGHT. The benefits of such training setting are three-fold. First, as some targets are

correlated, the overall training signal is stronger (keeping in mind the large input size). Second,

we can expect tasks to regularize each other. Indeed, correlated and complementary targets can

bring valuable information to each other, hence reducing inter- and intra-observer variability,

a notable challenge in pathology. Third, by training AI systems with multiple interpretable

and correlated targets, e.g., tumor grade and microscopy description, we can explore the

consistency of trained algorithms. For instance, an indicator of trustworthiness would be a

sample correctly classified as cancerous along with a predicted tumor description matching

the expected appearance of cancerous tumor regions. This idea could be further explored

by designing a consistency score based on prior pathological knowledge that would evaluate

the coherence of a multi-task prediction. This score can be used to detect out-of-distribution

samples in case of distribution shift, and therefore, improve model uncertainty prediction.

The main constraint of implementing such project relies in data availability: gathering a

large-scale WSIs dataset with associated digitized pathology report is hard. Even if public

dataset size is increasing (from 400 samples in BACH (Aresta et al., 2019), to 4,000 BRACS (Pati
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et al., 2021b), and 10,000 in PANDA (Bulten et al., 2020)), we are still far from having access to

large-scale, multi-organ, annotated datasets. We can mention ongoing efforts in this direction

like the IMI BigPicture project Moulin et al. (2021), a European initiative to build the largest

public repository of WSIs.

Breast cancer biomarker discovery: In this thesis, we focused on building computer-aided

diagnosis tools to develop both scalable and explainable methods. The field is reaching a ma-

ture enough state where several reliable DL-based algorithms exist to build WSI embeddings,

e.g., WHOLESIGHT. This technology can be leveraged towards the discovery of new cancer

biomarkers. The implementation of such a project requires close collaboration with patholo-

gists to identify a promising problem statement. For instance, in breast cancer, a cancer type

denoted as HER2 positive, i.e., if the patient tests positive to the human epidermal growth

factor receptor 2 protein, is still not fully understood, and some phenotypical patterns remain

unexplored. We know that the H&E modality encode information about HER2 status. A natural

first step towards better HER2 positive understanding would be to predict the HER2 status

from the H&E image directly. Then, by putting in relation H&E and HER2 modalities, we can

study their inter-dependence. This can be achieved, for instance, by studying the important

regions for predicting HER2 status given the HER2 and theH&E image, e.g., with a post-hoc

explainer. We can expect that some regions will be shared, while other ones, unexplored might

bring novel insights.

A beginner’s manual to pathology for computer scientists: This idea is not a research project

per se, but rather a community service. As the name suggests, CompPath aims to apply com-

putational methods to pathological data. The vast majority of the community is composed

of computational experts, without dedicated pathological training. As a consequence, the

required pathological knowledge is learned on-the-fly, with interactions with pathologists.

This is leading to incomplete understanding of the pathological workflow and basic diagnosis

principles. We argue that this situation can hinder the development of clinically relevant

methods, and even push the community to focus on inapplicable and unrealistic problems.

To address these concerns, we propose to write a beginner’s manual to pathology for com-

puter scientists that would include the minimum pathological knowledge to confidently start

working in computational pathology. Such manuscript would cover (i) tissue acquisition and

preparation, (ii) the different staining techniques and their usability, (iii) the main diagnosis,

prognosis and treatment response biomarkers for certain cancers, (iv) some of the main cancer

staging and grading systems, (v) a contextualized perspective of pathology in patient care and

its integration in the medical workflow, e.g., interactions with oncologists, radiologists, etc. (vi)

an overview of the WSI-scanning devices. This work needs to be conducted in collaboration

with pathologists and computer scientists, to connect the two fields.
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A Class Activation Maps: Intuition and
Justifications

A.1 Connection between CAM and GRAD-CAM

CAM, initially proposed by Zhou et al. (2016) aims to highlight important regions in images,

when a CNN model with Global Average Pooling (GAP) followed by a softmax classifier is

employed. GAP in CNN terminology is equivalent to a mean readout aggregation followed by

a softmax classifier in a GNN.

Formally, a mean readout with a softmax layer can be written as:

y(c) =
d (T )∑
k=1

w (T )
k,c

|V |∑
n=1

H (T )
n,k (A.1)

where y(c) denotes the logit value of the c th class, d (T ) is the node feature dimension at layer

T , i.e., equivalent to the number of channels in a CNN, w (T )
k,c is the k th channel importance

score of class c, and H (T )
n,k represents the k th node feature of node n at layer T , i.e., at the last

layer. We can further decompose Equation A.1 as:

Fk =
|V |∑

n=1
H (T )

n,k (A.2)

y(c) =
d (T )∑
k=1

w (T )
k,c Fk (A.3)

where we introduce the notation for the aggregated node features as Fk .

Computing the gradient of y(c) w.r.to Fk , and applying the chain-rule, we get:

∂y(c)

∂Fk
=

∂y(c)

∂H (T )
n,k

∂Fk

∂H (T )
n,k

(A.4)
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Now computing the partial derivative of Equation (A.2) w.r.to H (T )
n,k , as:

∂Fk

∂H (T )
n,k

= 1 (A.5)

which we can combine with Equation (A.4) as:

∂y(c)

∂Fk
= ∂y(c)

∂H (T )
n,k

(A.6)

By taking the partial derivatives of y(c) w.r.to Fk (see Equation A.3), we obtain:

∂y(c)

∂Fk
= w (T )

k,c (A.7)

By combining Equation (A.6) and Equation (A.7), we obtain:

w (T )
k,c = ∂y(c)

∂H (T )
n,k

(A.8)

Finally, we can sum on both sides over the graph nodes to derive that:

|V |∑
n=1

w (T )
k,c =

|V |∑
n=1

∂y(c)

∂H (T )
n,k

(A.9)

which leads to:

w (T )
k,c = 1

|V |
|V |∑

n=1

∂y(c)

∂H (T )
n,k

(A.10)

We obtain the GRAPHGRAD-CAM formulation where we explain class c w.r.to the last (graph-

)convolutional layer, as introduced in Chapter 3.

A.2 Derivation of channel-wise weights in GRAPHGRAD-CAM++

We modify GRAPHGRAD-CAM formulation as:

w (t )
k =

|V |∑
n=1

α(t )
n,k ReLU(

∂ymax

∂H (t )
n,k

) (A.11)

where the weightsα(t )
n,k aim to better localize node contributions. It was shown that CAM (Zhou

et al., 2016) have better localization properties than GRAD-CAM. Therefore, we would like to

derive a closed-form solution for α(t )
n,k based on the CAM formulation (see Equation (A.1)). By
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A.2. Derivation of channel-wise weights in GRAPHGRAD-CAM++

combining Equation (A.1) and Equation (A.11), we obtain:

y(c) =
d (T )∑
k=1

( |V |∑
n=1

α(t )
n,k

∂y(c)

∂H (t )
n,k

) |V |∑
n=1

H (t )
n,k (A.12)

where we have dropped the ReLU activation for simplicity. By taking the partial derivative of

y(c) w.r.to H (t )
n,l , we derive:

∂y(t )

∂H (t )
n,k

=
|V |∑

n=1
α(t )

n,k

∂y(c)

∂H (t )
n,k

+
|V |∑

n=1
H (t )

n,k

(
α(t )

n,k

∂2 y(c)

(∂H (t )
n,k )2

)
)

(A.13)

That can further be partially derived w.r.to H (t )
n,k , as:

∂2 y(c)

(∂H (t )
n,k )2

= 2α(t )
n,k

∂2 y(c)

(∂H (t )
n,k )2

+
|V |∑

n=1
H (t )

n,k

(
α(t )

n,k

∂3 y(c)

(∂H (t )
n,k )3

)
)

(A.14)

Finally leading to:

α(l )
n,k =

∂2 y(c)

(∂H (l )
n,k )2

2 ∂2 y(c)

(∂H (l )
n,k )2

+∑|V |
n=1 H (l )

n,k

(
∂3 y(c)

(∂H (l )
n,k )3

) (A.15)

We obtain that GRAPHGRAD-CAM++ channel-wise weights are computed as:

w (t )
k =

|V |∑
n=1

∂2 y(c)

(∂H (t )
n,k )2

2 ∂2 y(c)

(∂H (t )
n,k )2

+∑|V |
n=1 H (t )

n,k

(
∂3 y(c)

(∂H (t )
n,k )3

)ReLU
( ∂y(c)

∂H (t )
n,k

)
(A.16)

where y(c) is typically set to ymax.
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B Open-source Implementations, Li-
braries and Reproducibility

The ideas, results, and implementations presented in this section are published in:

• "HistoCartography: A Toolkit for Graph Analytics in Digital Pathology", Guillaume

Jaume*, Pushpak Pati*, Valentin Anklin, Antonio Foncubierta, Maria Gabrani. In Inter-

national Conference on Medical Image Computing and Computer Assisted Intervention

(MICCAI), Third MICCAI workshop on Computational Pathology, 2021, (Jaume et al.,

2021a).

GJ (the author of this thesis) is sharing first co-authorship with PP. The ideas and experiments

were designed by GJ and PP. The development of the library was led by GJ and implemented

by GJ, PP and VA. The experiments were conducted by GJ and PP. The manuscript was written

by GJ and PP and subsequently revised by MG and AF.

B.1 Introduction

Publishing code and providing enough information so that experiments and results can be

easily replicated are critical to advancing CompPath research. Notably, open-sourcing libraries

with production-level code facilitates the comprehension of publications and accelerate the

development of new methods. This is particularly true for the proposed entity-graph process-

ing presented in Chapter 5,6,7 that demands several prerequisites, such as entity detection,

entity encoding, constructing the graph topology etc., alongside standard preprocessing, such

as stain normalization, tissue detection etc. Additionally, our proposed workflow requires to

utilize recent advancements in DL for processing graph-structured data. All these obstacles

may prevent the adoption of entity-graphs in CompPath. In addition, the lack of a standard-

ized framework with the aforementioned functionalities urge the researchers to reinvent the

wheel, which is cumbersome, time-consuming, hampers reproducibility, and requires a wide

range of technical acumen.

To overcome these limitations, we introduce HISTOCARTOGRAPHY, an open-source python
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library that facilitates graph-analytics in CompPath. Specifically, the contributions presented

in this chapter are:

• A standardized python library that unifies a set of histology image manipulation tools,

entity-graph builders, GNN models, and model explainability tools;

• A benchmark assessment of performance and scalability on classification and segmen-

tation tasks in pathology;

• A review of extant libraries for histological image analysis.

B.2 Extant libraries in CompPath

Several open-source libraries have been proposed to develop CompPath pipelines. Most of

them include helper functions to perform standard preprocessing and visualization. HISTOLAB (Ar-

bitrio et al., 2020) includes WSI-level tissue detection and tile extraction modules. SYNTAX (By-

field et al., 2020) provides the same features with abstraction where modules can be stacked

and run in a pre-defined pipeline. STAINTOOLS (Byfield et al., 2019) provides tools for stain

normalization and augmentation. HISTOMICSTK (Beezley et al., 2021) enables to perform

tissue detection, object detection and segmentation, image filtering, stain normalization

and deconvolution, and handcrafted feature extraction. Further, HISTOMICSTK allows nuclei

segmentation and classification using classical ML approaches. It also provides a UI to run con-

tainerized modules and pipelines. Though HISTOMICSTK includes valuable functionalities, it

caters limited DL tools. Similarly, OPENSLIDE (Gilbert et al., 2020) provides a UI to read and

visualize histology images that supports most of the WSI formats. Finally, QUPATH (Bankhead

et al., 2021) offers a UI that allows to read, visualize and annotate WSIs. It also includes tools

to perform stain normalization, nuclei and tissue detection, and implement basic ML models.

However, QUPATH does not provide a python Application Programming Interface (API), which

makes it difficult to integrate into existing workflow and DL frameworks, e.g., PyTorch, Ten-

sorflow. Most importantly, none of the frameworks provide graph-related helpers. With the

advent of graph-techniques as a new paradigm for analyzing histology images, a standardized

library is desired for reinforcing the development.

B.3 Histocartography: graph analytics tools for CompPath

In this section, we highlight the core functionalities of HISTOCARTOGRAPHY, namely (i) a

preprocessing module that includes a set of histology image processing tools and entity-graph

builders, (ii) an ML module with helpers to learn from entity-graphs, (iii) an explainability

module, that includes a set of graph interpretability tools. The specific functionalities in each

module are summarized in Table B.1.
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Function Module Input Output Existing CPU GPU

P
re

p
ro

ce
ss

in
g

Vahadane Stain Norm I I 3 3 7

Macenko Stain Norm I I 3 3 7

Tissue Mask Detection I M 3 3 7

Nuclei Detection I M 3 3 3

Nuclei Concepts I, M M 3 3 7

Tissue Component Detection I M 7 3 7

Deep Feature Extraction I, M X 7 3 3

Feature Cube Extraction I X 7 3 3

k-NN Graph Building X, M G 7 3 7

RAG Graph Building X, M G 7 3 7

M
L

Cell-Graph Model G P 7 3 3

Tissue-Graph Model G P 7 3 3

HACT Model G, G, X P 7 3 3

E
xp

la
in

er
s GNNEXPLAINER G S 7 3 3

GRAPHGRAD-CAM G S 7 3 3

GRAPHGRAD-CAM++ G S 7 3 3

GRAPHLRP G S 7 3 3

Table B.1 – Overview of HISTOCARTOGRAPHY functionalities, with the i/o, CPU and GPU com-
patibility, and availability in extant libraries for individual module. I, M, X, G, P and S denote
an image (np.array (Harris et al., 2020)), a mask (np.array), features (torch.Tensor (Paszke et al.,
2019)), a graph (DGLGraph (Wang et al., 2019a)), predictions (torch.Tensor) and importance
scores (torch.Tensor), respectively.

B.3.1 Preprocessing module

Stain normalization: Variation in H&E staining protocols for tissue specimens induces ap-

pearance variability that adversely impacts computational methods (Tellez et al., 2019b). To

alleviate these variations, HISTOCARTOGRAPHY implements two popular normalization algo-

rithms proposed by Macenko et al. (2009) and Vahadane et al. (2016), similar to STAINTOOLS

and HISTOMICSTK, which supports both reference-based and reference-free normalization,

i.e., with manual stain vectors. Figure B.2 highlights a sample normalization output using

our API and Figure B.1 presents a code snippet to implement Vahadane stain normalization

following the HISTOCARTOGRAPHY syntax.

Tissue Detection: A WSI usually includes significant regions without tissue. Identifying the

tissue regions can confine the analysis and reduce computational effort. The tissue detector in

HISTOCARTOGRAPHY iteratively applies Gaussian smoothing and Otsu thresholding until the

mean of non-tissue pixels is below a threshold. The simple, yet effective tool ensures speed

and scalability. Figure B.1 presents the syntax for tissue detection in HISTOCARTOGRAPHY.

This module is common across HISTOLAB, SYNTAX, HISTOMICSTK and QUPATH.

Nuclei detection: This module enables to segment and locate nuclei in H&E images. Though

it is well-studied in CompPath, only a few public implementations are available. For instance,
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Figure B.1 – Implementation of Vahadane stain normalization (left) and tissue mask detection
(right) with the Preprocessing functionalities in the HISTOCARTOGRAPHY API.

QUPATH allows to detect nuclei but requires model training and fine-tuning. While providing

flexibility, the module includes only elementary ML methods. HISTOCARTOGRAPHY integrates

two checkpoints from the state-of-the-art HoVerNet model (Graham et al., 2019a) trained

on PanNuke (Gamper et al., 2019) and MoNuSac (Ruchika et al., 2020) datasets for nuclei

segmentation and classification. This module is used to build cell-graphs as presented in

Chapter 5.

Tissue Component Detection: HISTOCARTOGRAPHY includes an unsupervised superpixel-

based approach to segment tissue regions. First, the tissue is oversegmented into homoge-

neous superpixels using SLIC (Achanta et al., 2012) algorithm. Then, neighboring superpixels

are hierarchically merged using color similarity to denote meaningful tissue regions, e.g.,

epithelium and stroma regions. Superpixels depicting tissue regions are used by Bejnordi et al.

(2015); Pati et al. (2020, 2021a) and thoroughly introduced in Chapter 5.

Feature Extraction: HISTOCARTOGRAPHY includes two types of feature extractors, i.e., handcrafted-

and CNN-based, to encode the entity characteristics.

The handcrafted feature extractor computes entity-level morphological and topological prop-
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Figure B.2 – Overview of HISTOCARTOGRAPHY functionalities and modules.

erties. Morphological features include shape, size and texture properties, namely, entity area,

convex area, eccentricity, equivalent diameter, euler number, length of the major and minor

axis, orientation, perimeter, solidity, convex hull perimeter, roughness, shape factor, ellip-

ticity, roudness. Texture properties are based on gray-level co-occurrence matrices (GLCM).

Specifically, we extract the GLCM contrast, dissimilarity, homogeneity, energy, angular speed

moment and dispersion. The topological features are based on the entity density computed as

the mean and variance of entity crowdedness. Handcrafted features can be used for training

DL algorithms (Demir et al., 2004; Zhou et al., 2019a; Pati et al., 2020; Studer et al., 2021), or

concept-based post-hoc explainability as presented in Chapter 6.

The deep feature extractor allows to extract CNN features by using any pre-trained deep

architecture, e.g., ResNet, MobileNet, embedded in torchvision (Marcel et al., 2010). The

module intakes patches centered around the entity and extracts features from the penultimate

layer of the architectures. If the entity is larger than the specified patch size, then multiple

patches within the entity, w/ or w/o overlapping, are processed, and the final feature is

computed as the mean of the patch-level deep features, as used in Chen et al. (2020); Pati et al.

(2020, 2021a) and Chapter 5,6,7. Deep features can alternatively be extracted from the WSI to

build a feature-cube as suggested by Shaban et al. (2020); Tellez et al. (2019a).

Graph builders: HISTOCARTOGRAPHY presents two graph builders, i.e., the thresholded k-NN

and the RAG. The k-NN graph builder defines the graph topology by connecting each entity

to its k-closest neighbors. Connections between distant entities beyond a threshold can be

pruned to have spatial sparsity in the graph. We recommend this builder to connect single

entities, e.g., nuclei, glands. The RAG builder connects entities using spatial adjacency, i.e.,

entities sharing a common boundary. It builds a sound topology when dealing with dense
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segmentation maps, e.g., tissue regions. Figure B.2 presents samples of cell- and tissue-graphs.

Further, the module fuses the node features and the topological distribution to render a DGL

graph for an image. Figure B.3 presents the code to implement a CG (left) and a TG with the

HISTOCARTOGRAPHY API. Noticeably, these functionalities require only ten lines of code by

using HISTOCARTOGRAPHY, which could have otherwise required a few hundred lines.

Figure B.3 – Implementation of cell-graph (left) and tissue-graph (right) generation using the
graph builders in HISTOCARTOGRAPHY.

B.3.2 Graph machine learning module

HISTOCARTOGRAPHY includes a set of DL models, based on a GNN backbone to learn from

graph-structured tissue representations. It includes two state-of-the-art GNN layers, i.e.,

GIN (Xu et al., 2019b) and PNA (Corso et al., 2020). PNA proves to outperform GIN provided

more computational resources (Dwivedi et al., 2020) (see Chapter 2). HISTOCARTOGRAPHY

defines cell- and tissue-graph models, which are GNN-based abstractions to learn from

biological entity-graphs. They offer efficient (Pati et al., 2021a), scalable (Anklin et al., 2021;

Jaume et al., 2021c) and explainable (Jaume et al., 2020, 2021b) approaches to analyze histology

images. Further, the library includes models to jointly represent and learn from cell- and tissue-
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graphs (see Chapter 5). The models in HISTOCARTOGRAPHY are organized such that they

can be adapted to various GNN backbones, tasks (e.g., regression, clustering, classification,

segmentation), organs, and entity-types. These models provide blueprints to accelerate the

development of graph-based models in computational pathology. All the graph modules are

implemented using DGL (Wang et al., 2019a), a state-of-the-art library for GNNs built around

PyTorch. Figure B.4 presents the syntax to declare and run a cell- and tissue-graph model. All

the model parameters, e.g., GNN type, number of GNN layers, can be adapted and fine-tuned

using a configuration file.

Figure B.4 – Implementation of the cell- (left) and tissue- graph (right) model by using the ML
modules in the HISTOCARTOGRAPHY API

.

B.3.3 Explainability module

HISTOCARTOGRAPHY includes four post-hoc feature attribution graph explainers, that can

generate node-level saliency maps to highlight the node-wise contribution towards an output

task. Namely, the library includes two gradient-based explainers (GRAPHGRAD-CAM (Sel-

varaju et al., 2017; Pope et al., 2019) and GRAPHGRAD-CAM++ (Chattopadhay et al., 2018;

Jaume et al., 2021b)), a node pruning-based explainer (GNNEXPLAINER (Ying et al., 2019)),

and a layer-wise relevance propagation explainer (GRAPHLRP (Schwarzenberg et al., 2019)).

The saliency map can be visualized by overlaying the node importances on the input image

(see Figure B.6). Alternatively, entities with high importances can be extracted and studied

independently to assess their relevance (see Chapter 6). Figure B.5 shows code snippets to use

the graph explainability modules. All explainers follow a similar syntax with the same input

and output types, making implementation and integration straightforward.
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Figure B.5 – Implementation of graph explainers in HISTOCARTOGRAPHY. The most important
nodes are marked in red and the least important ones in blue.

B.3.4 Pipeline runner

To facilitate an easy-to-use and human-readable development, HISTOCARTOGRAPHY includes

a pipeline runner. It allows to define a series of pipeline steps along with loading and saving

utilities to reduce boilerplate code.

B.4 Benchmarking HISTOCARTOGRAPHY

We benchmark HISTOCARTOGRAPHY in terms of run-time and performance for various histopathol-

ogy tasks, i.e., stain normalization, tissue detection, tumor classification and segmentation

etc., on images of varying dimensions. The CPU and GPU compatible modules are assessed

on a single-core POWER9 processor and a NVIDIA P100 GPU, respectively.

B.4.1 Computational time

Analyzing the computational time for processing a histology image is imperative for deploying

applications in real-life settings. We thoroughly analyze the run-time of HISTOCARTOGRAPHY

modules on a set of RoIs and WSIs. The analyzes are presented in Table B.2. The preprocessing
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modules are observed to be the most time-consuming. For instance, Vahadane stain nor-

malization can take up to 3 minutes to process a 11′000×11′000 image, whereas Macenko

method is 2× faster for competitive result. The implementations are computationally similar

to HISTOLAB and STAINTOOLS, and scale linearly w.r.to image size. The cell- and tissue-graph

construction take 2.5 and 4.1 seconds, respectively, for a 1000×1000 image with the following

parameters. Nuclei detection is performed on patches of size 256×256 with an overlap of 164

pixels. Nuclei features are extracted from 72×72 patches centered around the nuclei, that are

resized to 224×224 and processed by ResNet34 pretrained on ImageNet (Deng et al., 2009a).

Finally, thresholded k-NN topology is built with k = 5 and a threshold distance of 50 pixels.

For the tissue-graph, SLIC is used to extract 400 superpixels per image, that are subsequently

merged to provide the tissue components. Tissue features are also extracted using ResNet34

with 144×144 size patches that are resized to 224×224. The graph buildings can be further

optimized as per the task by downsampling the input image, reducing the patch overlap, or by

using a lighter feature extractor. For extracting the feature cube representation, we process

patches of size 144×144 resized to 224×224 w/o overlap by pretrained ResNet34.

TRoIs are processed using a cell- and tissue-graph model, and the hierarchical cell-to-tissue

graph model as introduced in Chapter 5. They consist of three PNA layers with 64 hidden

units followed by an additional 2-layer MLP with 128 hidden units for classification. WSIs

are processed using WHOLESIGHT (see Chapter 7), which contains six GIN layers with 64

hidden units followed by a 2-layer MLP with 128 hidden units. The models process in near

real-time irrespective of the increment in the graph size. The graph explainers are based on

GNNs with 3 GIN layers, each having a 2-layer MLP with 32 hidden units, and a 2-layer MLP

head. GNNEXPLAINER is the slowest among all as it requires to optimize a mask to explain

each image.

Figure B.6 – Qualitative explanations of sample breast RoI: (a) Benign, (b) ADH, (c) DCIS. (d, e,
f) highlight the ten most important nuclei for the respective samples.

B.4.2 Performance benchmark

Table B.3 benchmarks the performance of HISTOCARTOGRAPHY for classification and seg-

mentation tasks. Classification is performed on BRACS (Pati et al., 2021a) and BACH (Aresta
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et al., 2019) datasets to characterize breast tumors using a cell-graph model, a tissue-graph

model, and HACT-Net. The performance is measured by weighted-F1 score. Segmentation

is performed using WHOLESIGHT to delineate Gleason patterns in prostate cancer images

from UZH (Zhong et al., 2017) and SICAPv2 (Silva-Rodríguez et al., 2020), and the perfor-

mance is measured by average Dice score. We evaluate on various image types, i.e., tumor

RoIs, tissue microarrays, and whole-slides, to highlight the scalability of entity-graphs in

HISTOCARTOGRAPHY to arbitrary image dimensions.

B.4.3 Qualitative explanations

Figure B.6 presents the outcome of GRAPHGRADCAM module in HISTOCARTOGRAPHY to

interpret a cell-graph model. This module renders per-image explanations in terms of node-

level saliency maps by applying post-hoc feature attribution methods on trained cell-graph

model. Further, the cell-graph model can be interpreted by characterizing the highlighted

important nuclei per-image, as shown in Figure B.6.
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Modality Tumor RoI WSI

Size 10002 25002 50002 50002 75002 110002

P
re

p
ro

ce
ss

in
g St

an
d

ar
d

Vahadane Normalization 1.77 6.46 29.03 30.67 68.27 186.10

Macenko Normalization 0.80 2.86 11.19 15.98 32.37 81.72

Tissue Mast Detection - - - 1.04 2.11 8.09

Feature Cube Extraction 0.24 1.61 5.92 6.27 11.97 29.79

C
G

Nuclei Detection 3.03 12.93 47.66 - - -

Nuclei Concept Extraction 2.95 6.52 27.94 - - -

Deep Nuclei Feature Extraction 0.10 0.30 1.28 - - -

k-NN Graph Building 0.06 0.20 1.35 - - -

T
G

Super-pixel Detection 3.32 17.84 68.99 31.50 68.99 183.54

Deep Tissue Feature Extraction 0.56 2.99 8.40 4.17 9.96 20.54

RAG Graph Building 0.12 2.04 25.6 6.33 19.98 85.73

M
L

Cell-Graph Model 0.028 0.033 0.040 - - -

Tissue-Graph Model 0.011 0.015 0.026 0.039 0.056 0.069

HACT Model 0.034 0.041 0.057 - - -

E
xp

la
in

er
s C

G

GNNEXPLAINER 12.00 13.09 35.33 - - -

GRAPHGRAD-CAM 0.011 0.022 0.035 - - -

GRAPHGRAD-CAM++ 0.011 0.023 0.035 - - -

GRAPHLRP 0.020 0.024 0.90 - - -

T
G

GNNEXPLAINER 11.23 11.28 11.38 - - -

GRAPHGRAD-CAM 0.011 0.012 0.018 0.025 0.030 0.033

GRAPHGRAD-CAM++ 0.011 0.013 0.018 0.026 0.030 0.033

GRAPHLRP 0.011 0.014 0.016 0.079 0.085 0.089

Table B.2 – Reported time to run HISTOCARTOGRAPHY core functionalities. CPU-only experi-
ments were run on a single-core POWER8 processor, and GPU-compatible experiments were
run on an NVIDIA P100 GPU. Time is reported in seconds.
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Task Dataset Model Image Type Avg. #pixels #classes Avg. Dice Weighted F1
C

la
ss

ifi
ca

ti
o

n

BRACS CG-GNN TRoI 3.9×106 (40×) 7 - 55.9±1.0

BRACS TG-GNN TRoI 3.9×106 (40×) 7 - 56.6±1.3

BRACS HACT-Net TRoI 3.9×106 (40×) 7 - 61.5±0.9

BACH HACT-Net TRoI 3.1×106 (20×) 4 - 90.7±0.5

SICAPv2 SEGGINI WSI 121×106 (10×) 6 - 62.0±3.6

UZH SEGGINI TMA 9.6×106 (40×) 6 - 56.8±1.7

Se
g.

SICAPv2 SEGGINI WSI 121×106 (10×) 4 44.3±2.0 -

UZH SEGGINI TMA 9.6×106 (40×) 4 66.0±3.1 -

Table B.3 – Benchmarking HISTOCARTOGRAPHY for classification and segmentation (in %).
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C Qualitative Assessment of Graph Ex-
plainers

Figure C.1 and Figure C.2 present cell-graph explanations produced by GNNEXPLAINER,

GRAPHGRAD-CAM, GRAPHGRAD-CAM++ and GRAPHLRP for benign, atypical and malignant

breast tumors. It can be observed that GNNEXPLAINER learns to binarize the explanations,

thereby producing the most compact explanations by retaining the most important nuclei set

of nuclei with high importance. However, GRAPHGRAD-CAM and GRAPHGRAD-CAM++ pro-

duce explanations with more distributed nuclei importance than GNNEXPLAINER. GRAPHLRP

produces the largest explanations by retaining most of the nuclei in the cell-graphs.
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Figure C.1 – Qualitative results. The rows represent breast cancer subtypes, and columns
represent graph explainers, i.e., GNNEXPLAINER, GRAPHGRAD-CAM, GRAPHGRAD-CAM++,
and GRAPHLRP. Nuclei level importance ranges from blue (the least important) to red (the
highest important).
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Figure C.2 – Qualitative results. The rows represent breast cancer subtypes, and columns
represent graph explainers, i.e., GNNEXPLAINER, GRAPHGRAD-CAM, GRAPHGRAD-CAM++,
and GRAPHLRP. Nuclei level importance ranges from blue (the least important) to red (the
highest important).
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D Extension of Weakly Supervised
Learning for Joint Whole-Slide Seg-
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Figure D.1 – (a) Gleason grade classification measured with weighted-F1 scores for
WHOLESIGHT, WHOLESIGHT-MCD, WHOLESIGHT-DE, CLAM, and NIC methods (higher
is better). (b) Quadratic Cohen’s Kappa scores (κ2) of ISUP classification obtained for
WHOLESIGHT, WHOLESIGHT-MCD, WHOLESIGHT-DE, CLAM, and NIC (higher is better).
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Figure D.2 – (a) Each hospital R, B, G (marked in red, blue and green) represents a different
dataset. Due to varying slide acquisition protocols and demographics variability, local hospital-
level biases are introduced in the data. (b) To address this variability, a dataset composed of
samples from different hospitals (R and B in this scenario) is created. A DL system is trained
until satisfying testing performance is reached on hospital R and B. In this toy example, the
benign class has lower aleatoric uncertainty than the malignant one. Even if models perform
similarly, the learned decision boundaries can differ (see orange and light blue models), which
is referred to as epistemic uncertainty. Good models should generalize as well as possible to
unseen data while providing accurate confidence estimates in case of domain shifts. In (c) and
(d), we study model generalization on hospital G. (c) Model 1 is showing poor generalization
capabilities and calibration, making it hard to detect the domain shift. (d) Model 2, with
smoother decision boundaries, results in both better performance and confidence predictions,
where misclassified samples are also not confident (i.e., they lie close to the decision boundary).
Overall, Model 2 leads to better calibration than Model 1 by offering more robust predictions.
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Figure D.3 – Gleason grade, ISUP grade, primary Gleason score classification, and sec-
ondary Gleason score classification confusion matrices obtained for WHOLESIGHT-DE on
the Karolinska, Radboud, and Sicap datasets.
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