
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Symmetry in design and decoding of polar-like codes

Kirill IVANOV

Thèse n° 8989

2022

Présentée le 4 mars 2022

Prof. M. C. Gastpar, président du jury
Prof. R. Urbanke, directeur de thèse
Dr J.-P. Tillich, rapporteur
Prof. I. Dumer, rapporteur
Prof. E. Abbé, rapporteur

Faculté informatique et communications
Laboratoire de théorie des communications
Programme doctoral en informatique et communications

Dedicated to my family

Acknowledgments

First and foremost, I would like to express the deep gratitude to my advisor,
Rüdiger Urbanke. He gives me a lot of freedom in my research. Some chapters
of this thesis come from the topics that he advised me to look at and the others
from the ideas that I developed on my own, and I am immensely thankful for
the opportunity to do both types of research. It happened many times that
I come to his office with some troublesome question I’m thinking about and
he is almost immediately ready to give a good advice that helps me to look at
the problem from a different perspective and get a valuable insight. He also
gives full support and encouragement in my activities. Whenever I ask if I
should publish some of my results, go to the internship in Huawei Moscow or
to the summer school in Brazil, the most common answer is ’yes, absolutely’.
Without him, I would not stand here with this thesis.

I am thankful to the IPG personnel who made my life and work substantially
easier. Muriel Bardet, our benevolent secretary, is one of the main reasons
why we are able to fully enjoy our time in IPG, focusing on research and
fun and being able to travel without getting lost in the bureaucracy. She is
always here to help with whatever stupid question that we can potentially have.
Damir is another reason why everything works so well. Thanks to him, our
cluster, workstations and laptops run smoothly. Sometimes he might look quite
intimidating but is always helpful nevertheless.

I would also like to thank past and present IPG people. Nicolas Macris
kindly introduced me to the world of quantum computing and its brillianses
and mysteries. We shared an office with Pierre for the significant part of my
PhD time and before the pandemic we spent a lot of time climbing at Totem,
playing table football and even skiing. We also had many good times with
Erixhen, Eric, Clément, Daria, Reka, Yunus, Amedeo, Andreas and the others.
With some of these people we also had fun during ISIT in Paris and ITW in
Visby.

Another acknowledgment goes to my friends. Without you, my PhD days
would be much more boring and adventureless. Artem is one of the few
friends that I know since my first year in Lausanne and we had a lot of fun
together. Boris is the main driving force behind the most beautiful and the
most dangerous hikes I ever did in Switzerland. Thanks to Valeriya and Polina,

i

ii Acknowledgments

I’ve got the motivation to master skiing and started enjoying it. I would also
like to thank Jenya, Kirill, Matt and our various Russian communities for hikes,
skiing trips, parties, barbecues, travels and many other activities. A special
round of gratitude is for my Russian friends who live in my homeland. Grisha,
Stas, Katya, Kolya, Sonya and Anya, you are the reason why I am always
happy to fly home.

Finally, I thank my parents and my sister. They always offer their love and
support and believe in me. This thesis is dedicated to you.

Lausanne, 2022

Abstract

Channel coding has rapidly developed since the landmark 1948 paper of Claude
Shannon, "A Mathematical Theory of Communication"; it established the
largest rate of reliable data transmission through various channels. The main
challenge since then has been to find the error-correcting codes that come close
to the asymptotic limits. This has been a long journey which includes many
brilliant minds making many beautiful theoretical and practical discoveries.

The beginning of 21st century provided us with many answers about how to
reach these limits. Irregular low-density parity-check codes achieve a capacity
of the binary erasure channel. Polar codes became the first class of codes that
provably achieves capacity of any binary memoryless symmetric channel under
a low-complexity successive cancellation decoding algorithm. Spatially coupled
low-density parity-check (SC-LDPC) codes subsequently followed, being not
only capacity-achieving under low-complexity belief propagation decoding but
also universal, i.e., good for any channel with the same capacity, which is
a stark contrast to polar codes that have channel-dependent construction.
Interestingly, polar and SC-LDPC codes take completely different roads to
capacity, specifically the polarization effect in channel combining and splitting,
and the threshold saturation in iterative message-passing decoding of spatially
coupled codes.

Recent developments give us another way that comes from the code sym-
metry. The Reed-Muller (RM) and extended Bose–Chaudhuri–Hocquenghem
(BCH) codes, which are among the oldest families of error-correcting codes with
rich algebraic structure, achieve capacity of erasure channels (and are likely to
achieve capacity universally) under maximum a posteriori (MAP) decoding.
And one of the main ingredients of the proof is the automorphism group of
these codes. It is known that short RM and eBCH codes demonstrate excellent
performance under optimum decoding that is close to the finite-length limits.
However, due to the intractability of MAP decoding for non-erasure channels,
we need to develop low-complexity error-correction algorithms. A potentially
fruitful way is to consider these codes as polar-like, although the straightfor-
ward application of successive cancellation decoding algorithm demonstrates
unsatisfactory performance.

In the first part of this thesis, we talk about the performance improvements

iii

iv Abstract

that an automorphism group of the code brings on board. We propose two
decoding algorithms for the Reed-Muller codes, which are invariant under a
large group of permutations and are expected to benefit the most. The former
is based on plugging the codeword permutations in successive cancellation
decoding, and the latter utilizes the code representation as the evaluations
of Boolean monomials. However, despite the performance improvements, it
is clear that the decoding complexity grows quickly and becomes impractical
for moderate-length codes. In the second part of this thesis, we provide an
explanation for this observation. We use the Boolean polynomial representation
of the code in order to show that polar-like decoding of sufficiently symmetric
codes asymptotically needs an exponential complexity. The automorphism
groups of the Reed-Muller and eBCH codes limit the efficiency of their polar-like
decoding for long block lengths, hence we either should only focus on short codes
or find another way. We demonstrate that asymptotically same restrictions
(although with a slower convergence) hold for more relaxed condition that we
call partial symmetry. The developed framework also enables us to prove that
the automorphism group of polar codes cannot include a large affine subgroup.

In the last part of this thesis, we address a completely different problem.
A device-independent quantum key distribution (DIQKD) aims to provide
private communication between parties and has the security guarantees that
come mostly from quantum physics, without making potentially unrealistic
assumptions about the nature of the communication devices. After the quantum
part of the DIQKD protocol, the parties share a secret key that is not perfectly
correlated. In order to synchronize, some information needs to be revealed
publicly, which makes this formulation equivalent to the asymmetric Slepian-
Wolf problem that can be solved using binary linear error-correction codes. As
any amount of the revealed information reduces the key secrecy, the utilized code
should operate close to the finite-length limits. The channel in consideration is
non-standard and, due to its experimental nature, it can actually slightly differ
from the considered models. In order to solve this problem, we designed a
simple scheme using universal SC-LDPC codes and used in the first successful
experimental demonstration of DIQKD protocol.

Keywords: polar codes, Reed-Muller codes, eBCH codes, capacity-achieving
codes, maximum likelihood decoding, list decoding, device-independent quan-
tum key distribution, spatially-coupled codes, asymmetric Slepian-Wolf prob-
lem.

Résumé

Le codage des canaux s’est rapidement développé depuis l’article historique de
Claude Shannon de 1948, "A Mathematical Theory of Communication" ; il a
établi le plus grand taux de transmission fiable de données par divers canaux.
Le principal défi depuis lors a été de trouver les codes correcteurs d’erreurs
qui se rapprochent des limites asymptotiques. Ce fut un long voyage au cours
duquel de nombreux esprits brillants ont fait de belles découvertes théoriques
et pratiques.

Le début du 21e siècle nous a apporté de nombreuses réponses sur la manière
d’atteindre ces limites. Les codes irréguliers à contrôle de parité à faible densité
atteignent une capacité du canal d’effacement binaire. Les codes polaires sont
devenus la première classe de codes qui atteint de manière prouvée la capacité de
tout canal binaire symétrique sans mémoire sous un algorithme de décodage à
annulation successive de faible complexité. Les codes à contrôle de parité à faible
densité et à couplage spatial (SC-LDPC) ont ensuite suivi, car ils permettent
non seulement d’atteindre la capacité dans le cadre d’un décodage à propagation
de convictions à faible complexité, mais ils sont également universels, c’est-à-
dire qu’ils sont bons pour tout canal ayant la même capacité, ce qui contraste
fortement avec les codes polaires dont la construction dépend du canal. Il
est intéressant de noter que les codes polaires et SC-LDPC empruntent des
voies complètement différentes pour atteindre la capacité, notamment l’effet
de polarisation dans la combinaison et le fractionnement des canaux, et la
saturation du seuil dans le décodage itératif par passage de message des codes
à couplage spatial.

Des développements récents nous donnent une autre voie qui provient de la
symétrie du code. Les codes de Reed-Muller (RM) et les codes étendus de Bose-
Chaudhuri-Hocquenghem (BCH), qui font partie des plus anciennes familles de
codes correcteurs d’erreurs avec une structure algébrique riche, atteignent la
capacité des canaux à effacement (et sont susceptibles d’atteindre la capacité
universelle) dans le cadre d’un décodage maximum a posteriori (MAP). Et
l’un des principaux ingrédients de la preuve est le groupe d’automorphisme de
ces codes. On sait que les codes RM et eBCH courts présentent d’excellentes
performances sous décodage optimal proche des limites de longueur finie.
Cependant, en raison de l’intractabilité du décodage MAP pour les canaux non

v

vi Résumé

effacés, nous devons développer des algorithmes de correction d’erreur à faible
complexité.Une voie potentiellement fructueuse est de considérer ces codes
comme étant de type polaire, bien que l’application directe de l’algorithme de
décodage par annulation successive démontre une performance insatisfaisante.

Dans la première partie de cette thèse, nous parlons des améliorations de
performance qu’apporte un groupe d’automorphisme du code. Nous proposons
deux algorithmes de décodage pour les codes de Reed-Muller, qui sont invariants
sous un grand groupe de permutations et qui devraient en bénéficier le plus.
Le premier est basé sur l’insertion des permutations de mots de code dans
le décodage par annulations successives, et le second utilise la représentation
du code comme les évaluations de monômes booléens. Cependant, malgré
les améliorations de performance, il est clair que la complexité du décodage
croît rapidement et devient peu pratique pour les codes de longueur moyenne.
Dans la deuxième partie de cette thèse, nous fournissons une explication à
cette observation. Nous utilisons la représentation polynomiale booléenne du
code afin de montrer que le décodage de type polaire de codes suffisamment
symétriques nécessite asymptotiquement une complexité exponentielle. Les
groupes d’automorphisme des codes de Reed-Muller et eBCH limitent l’efficacité
de leur décodage de type polaire pour les grandes longueurs de bloc, et nous
devons donc nous concentrer sur les codes courts ou trouver une autre solution.
Nous démontrons que les mêmes restrictions asymptotiques (bien qu’avec une
convergence plus lente) sont valables pour une condition plus relaxée que nous
appelons symétrie partielle. Le cadre développé nous permet également de
prouver que le groupe d’automorphisme des codes polaires ne peut pas inclure
un grand sous-groupe affine.

Dans la dernière partie de cette thèse, nous abordons un problème complète-
ment différent. Une distribution quantique de clé indépendant du pérephérique
(DIQKD) a pour but de fournir une communication privée entre les parties
et a les garanties de sécurité qui proviennent principalement de la physique
quantique, sans faire des hypothèses potentiellement irréalistes sur la nature
des pérephérique de communication. Après la partie quantique du protocole
DIQKD, les parties partagent une clé secrète qui n’est pas parfaitement corrélée.
Afin de se synchroniser, certaines informations doivent être révélées publique-
ment, ce qui rend cette formulation équivalente au problème asymétrique de
Slepian-Wolf qui peut être résolu à l’aide de codes correcteurs d’erreurs linéaires
binaires. Comme toute quantité d’information révélée réduit le secret de la
clé, le code utilisé doit fonctionner près des limites de longueur finie. Le canal
considéré n’est pas standard et, en raison de sa nature expérimentale, il peut en
fait différer légèrement des modèles considérés. Afin de résoudre ce problème,
nous avons conçu un schéma simple utilisant des codes SC-LDPC universels
et utilisé dans la première démonstration expérimentale réussie du protocole
DIQKD.

Mots clés : codes polaires, codes eBCH, codes de Reed-Muller, le déco-
dage par probabilité maximale, décodage en liste, codes à couplage spatial,
distribution quantique de clé indépendant du pérephérique, codes de capacité

Résumé vii

atteindre, problème asymétrique de Slepian-Wolf.

Contents

Acknowledgments i

Abstract (English/Français) iii

Contents ix

1 Introduction 1
1.1 Channel Coding: Main Concepts and Models 2
1.2 A Brief History of Error-Correcting Codes 4
1.3 Thesis Outline . 7

2 Preliminaries 9
2.1 Notations . 9
2.2 Boolean Functions . 9
2.3 Monomial and Polynomial Codes 10

2.3.1 From Generator Matrix to Generating Set 10
2.3.2 Reed-Muller Codes . 11
2.3.3 Polar Codes . 11
2.3.4 Extended BCH Codes 12

2.4 Symmetries . 12
2.4.1 Automorphism Groups 12
2.4.2 Projections and Derivatives 13

3 Symmetry-based Decoding of Reed-Muller Codes 17
3.1 Permutation-based List Decoding for Binary Erasure Channel . 18

3.1.1 Successive Cancellation List Algorithm 18
3.1.2 Factor Graph Permutations 19
3.1.3 Proposed Algorithm . 20
3.1.4 Simplified Version . 23
3.1.5 Performance . 23

3.2 Improved Decoding of Second-Order Reed-Muller Codes 27
3.2.1 Optimal Decoding of First-Order Reed-Muller Codes . . 27
3.2.2 Sidel’nikov-Pershakov Decoder 28

ix

x Contents

3.2.3 Loidreau-Sakkour’s Improvement 31
3.2.4 Recursive Projection-Aggregation Decoder 31
3.2.5 Proposed Improvement 32

4 Symmetry-Induced Constraints on Decoding Efficiency 43
4.1 Partial Derivatives and Decoding Efficiency 44
4.2 Fully Symmetric Codes . 46

4.2.1 Proof of Proposition 7 for Monomial Codes 47
4.2.2 Proof of Proposition 7 for Polynomial Codes 47
4.2.3 Proof of Proposition 8 49
4.2.4 Symmetry of RM and eBCH Codes 49
4.2.5 Interlude: Derivative-Constrained Polar Codes 51

4.3 Partially Symmetric Codes . 53
4.3.1 Proof of Proposition 12 54
4.3.2 Proof of Proposition 13 54
4.3.3 Code Construction . 55
4.3.4 Structure of Partially Symmetric Monomial Codes 57
4.3.5 Performance of Partially Symmetric Monomial Codes . . 58

4.4 Polar Codes Do Not Have Many Affine Automorphisms 61
4.4.1 Known Automorphisms of Polar Codes 62
4.4.2 New Restrictions on the Size of the Automorphism Group. 63
4.4.3 Proof of Theorem 2. 64

5 Coding for Device-Independent Quantum Key Distribution 67
5.1 Device-Independent Quantum Key Distribution 68
5.2 Data model . 71
5.3 Error Correction in DIQKD . 71

5.3.1 Concrete Setting . 73
5.4 Practical Coding Approaches 74

5.4.1 LDPC Codes . 75
5.4.2 SC-LDPC Codes . 76
5.4.3 Belief Propagation Decoding 77

5.5 Simulations . 78
5.5.1 Numeric Results . 79

6 Conclusions 85
6.1 Symmetries of Polar-Like Codes 85
6.2 Device-Independent Quantum Key Distribution 86

Bibliography 89

101Curriculum vitae

Introduction 1
The 21st century is an era of information and digital communication. Today,
the interaction with zillions of intelligent devices has become an essential part
of the daily routine of most human beings; these devices are hidden everywhere,
from mobile phones that we use to connect with each other to smart city
systems that control power plants, water supply, and transportation. Wireless
networks are one of the modern technology cornerstones. They extend our
freedom and broaden our mobility at the cost of being subjected to higher
noise in the communication links compared to wired configurations. There exist
many techniques operating on different abstraction layers of the communication
system model; these techniques target achieving the reliable interaction between
the parties and satisfy additional constraints such as high data throughput,
low latency, and energy consumption.

Channel coding is a crucial component when it comes to dealing with
noise. The general idea can be described as sending some additional data
along with the payload to compensate for the expected corruption during the
transmission. Theoretical foundations of coding date back to 1948 with Claude
Shannon and his landmark paper "A Mathematical Theory of Communication",
in which he established the possibility of virtually error-free transmission
through the noisy channel, as long as the data rate does not exceed a certain
characteristic of the channel, which is called the capacity. The key ingredient
to the recipe of achieving channel capacity is coding. In the remainder of this
chapter, we describe the core concepts and models that are actively used in this
thesis. We then describe the brief history of coding paradigms and conclude by
summarizing our contributions in this thesis.

1

2 Introduction

Source data Information splitting Encoder

Channel

DecoderInformation combiningDestination data

. . . 11010 . . . (u0, . . . , uk−1)

(c0, . . . , cn−1)

(y0, . . . , yn−1)

(u0, . . . , uk−1). . . 11010 . . .

Figure 1.1 – Point-to-point communication system model

1.1 Channel Coding: Main Concepts and
Models

Let us consider the following simple point-to-point communication model that
is demonstrated in Figure 1.1. We have the transmitter that seeks to reliably
send its data to the receiver via the noisy channel. In order to guarantee reliable
communication, the transmitter first splits the data bits into information blocks
of length k and then utilizes a block code C that is known to both parties.
Code C is essentially a rule that maps k-bit information blocks to distinct n-bit
sequences called codewords. A codeword length is often referred to as the block
length of code C, and R = log2 |C|/n is called the rate of C. The code rate is a
measure of how much information per codeword bit can be transmitted using C.
The job of the receiver is to recover, or decode, the original codeword from the
corrupted result of its transmission through the noisy channel. It is typically
assumed that the channel is perfectly known to the receiver.

The celebrated coding theorem of Shannon [1] says that for a channel W
there exists a sequence of rate-R codes C such that the receiver recovers the
original codeword with an arbitrary small probability of failure when the block
length goes to infinity. And this is always possible, as long as R < C(W), where
C(W) is the capacity of W and is sometimes referred to as the Shannon limit.
A channel W is characterized by its input X , output Y and the transitional
probabilities given by W (y|x), y ∈ Y , x ∈ X . It will be further assumed that
the channel input is binary and it is convenient to take X = {−1,+1}, instead
of {0, 1}, by mapping 0 to 1 and 1 to -1. We call a channel memoryless if

W (y0, . . . , yn−1|x0, . . . , xn−1) =
n−1∏
i=0

W (yi|xi),

and output-symmetric if W (y| − x) = W (−y|x).

Classic coding theory is mostly centered around three binary memory-
less symmetric (BMS) channel models. Binary erasure channel with erasure

1.1. Channel Coding: Main Concepts and Models 3

probability ε, or BEC(ε), has output alphabet Y = X ∪ {ε} and transition
probabilities

W (x|x) = 1− ε,

W (ε|x) = ε,

i.e., the transmitted symbol is left untouched with probability 1 − ε and is
replaced with an erasure symbol ε with probability ε. Binary symmetric
channel with crossover (or bit-flip) probability p, or BSC(p), has output
alphabet Y = X and transition probabilities

W (x|x) = 1− p,

W (−x|x) = p,

i.e., the transmitted symbol is left untouched with probability 1 − p and is
flipped with probability p.

Remark. The capacity of channels BEC(ε) and BSC(p) has very simple
expressions, namely C(BEC(ε)) = 1− ε and C(BSC(p)) = 1− h2(p), where
h2(p) = −p log2(p)− (1− p) log2(1− p) is a binary entropy function.

An Additive white-noise Gaussian channel with noise variance σ2, or
AWGNC(σ2), has output alphabet Y = R and transition probabilities given
by

W (y|x) = 1√
2πσ2

e
−(y−x)2

2σ2 ,

i.e., the received symbol can be expressed as y = x+ η, where x ∈ {−1,+1}
and η is a normally distributed random variable with zero mean and variance
σ2. The standard notation to express the noise level in binary-input AWGN
channel is given by a signal-to-noise ratio (SNR) per bit Eb/N0 that is defined
as

Eb

N0

= 10 log10
1

2σ2R
,

where R is the rate of code C which is used for the transmission.

The receiver wants to find the most likely codeword that corresponds to the
received sequence. The maximum a posteriori (MAP) decoding rule is defined
as

xMAP = argmax
x∈C

W (x|y)

and minimizes the decoding error probability that is sometimes referred to as
frame error rate (FER). In case of uniform distribution on codewords, which is
a typical assumption in the communication system model, MAP decoding is
equivalent to the maximum likelihood (ML) decoding rule that is given by

xML = argmax
x∈C

W (y|x). (1.1)

4 Introduction

In case of BSC and AWGN channels, ML decoding rules admit simpler
reformulations that can be utilized in order to develop practical decoding
algorithms. Specifically, for binary symmetric channel, the ML solution is given
by the codeword with the smallest Hamming distance from the received vector:

xML,BSC = argmin
x∈C

dH(x,y), dH(x,y) =
∑
i

�{xi �= yi},

and for the Gaussian channel the ML codeword has the smallest Euclidean
distance from the received vector:

xML,AWGN = argmin
x∈C

dE(x,y), dE(x,y) =

√∑
i

(xi − yi)
2.

In the case of AWGN channel, it is also convenient to assume that the
decoder does not operate with the received sequence but rather with the
log-likelihood ratios (LLRs) of the codeword bits

li =
logW (yi|1)

logW (yi| − 1)
.

1.2 A Brief History of Error-Correcting Codes

The works of Shannon established the theoretical limits of data transmission
but left unsolved the question of how to achieve them in practice. The practical
implementation of a coding scheme is also concerned with the storage space
needed for code description and the complexity of encoding and decoding
operations.

A binary linear (n, k, d) block code C is a k-dimensional linear subspace of
n-dimensional binary vector space, such that the Hamming distance between
its two distinct elements is at least d. Taking a basis of this subspace and
arranging it in k × n generator matrix G provides the compact description of
code C and the encoding operation simply becomes

c = uG.

Therefore, any linear code can be described with only kn bits instead of
storing all 2k codewords and the encoding with a linear code can be performed
in O(kn) time, which explains why linear codes are extensively used in com-
munications systems. The choice of G as k × n binary matrix with uniformly
distributed entries gives us a random linear code that achieves the Shannon
limit with high probability. Are we good? Unfortunately, the decoding problem
remains nontrivial and the maximum likelihood decoding of random linear codes

1.2. A Brief History of Error-Correcting Codes 5

needs time that is exponential in n. Moreover, the general decoding problem
for linear codes is NP-complete [2], hence the existence of polynomial-time
algorithm is unlikely.

The first nontrivial code is the (7, 4, 3) Hamming code that was invented
by Richard Hamming around 1947 and later generalized to the infinite family
of codes [3]. The Hamming codes became the beginning of the algebraic coding
era; algebraic coding remained the dominant research paradigm in coding
theory for many decades. The main focus was on seeking codes with a large
minimum distance: a measure of the worst-case performance of the code, i.e.,
the level of noise guaranteed to be tolerated. Algebraic codes are typically
characterized by the deterministic construction, which simplifies the estimation
of their minimum distance, and they have much internal structure, which is used
for efficient encoding and decoding. The Reed-Muller codes are a remarkable
infinite algebraic code family. They were introduced in 1954 by David Muller
[4], with the subsequent rediscovery by Irving Reed who also proposed an
efficient decoding algorithm based on the majority logic [5] that was appealing
for hardware implementation. Contrary to the Hamming codes, Reed-Muller
codes can be used for transmission with different data rates. However, the
Reed-Muller codes’ minimum distance grows only as a square root of the
block length, which is rather unimpressive. BCH codes, invented by Alexis
Hocquenghem in 1959 [6] and independently by Raj Chandra Bose and Dijen
Ray-Chaudhuri in 1960 [7], have better minimum distance and are an example
of cyclic codes, the class of linear block codes such that a circular shift of any
codeword is again a codeword of the same code. A class of non-binary BCH
codes, the Reed-Solomon codes, were independently discovered by Irving Reed
and Gustave Solomon in 1960 [8]. Since then, they found their applications in
many spheres. It is worth noting the all aforementioned algebraic codes have a
large group of automorphisms, i.e., there exist many permutations on codeword
indices that map codewords to other codewords.

In 1993, there was a significant breakthrough in coding theory, when Claude
Berrou presented the turbo codes [9]. Combining two simple convolutional
codes with an interleaver demonstrated the performance near the Shannon
limit under low-complexity iterative decoding. Turbo codes started the era
of iterative decoding paradigm. Concurrently, MacKay [10] and Spielman [11]
rediscovered low-density parity-check codes, or LDPC codes; originally invented
by Gallager in 1960s [12] but forgotten due to the limits of computing power
at the time. LDPC codes can also be decoded with an iterative algorithm.
Wiberg, Loeliger and Kötter put turbo and LDPC codes together as instances
of sparse-graph codes and their iterative decoding algorithms are instances of
belief propagation [13]. They also rediscovered a paper by Tanner; it introduces
a bipartate graph representation of LDPC codes, currently known as Tanner
graph [14]. A further development of message-passing algorithms on graphs is
due to Kschischang, Frey, and Loeliger [15].

6 Introduction

The beginning of the new century came with a capacity-achieving result.
Luby, Mitzenmacher, Shokrollahi and Spielman constructed irregular LDPC
codes and showed that these codes can asymptotically approach the capacity
of binary erasure channel with low complexity[16, 17]. Meanwhile, Richardson
and Urbanke developed density evolution, a powerful tool for the analysis of
the performance of LDPC code under iterative message-passing decoding [18]
when the transmission takes place over general channels. They demonstrated
the excellent performance of optimized LDPC codes [19] and, for the case of
AWGN channel, Chung, Forney, Richardson and Urbanke designed irregular
codes that achieve 0.0045 dB from the Shannon limit [20].

LDPC convolutional codes, or spatially coupled LDPC (SC-LDPC) codes,
are constructed by coupling together several copies of LDPC codes; they were
initially proposed by Felström and Zigangirov [21]. Lentmaier, Sridharan,
Zigangirov and Costello observed numerically that the properly constructed
SC-LDPC codes perform substantially better than LDPC codes under belief
propagation decoding when the transmission takes place over the binary era-
sure channel or the AWGN channel [22]. Kudekar, Richardson and Urbanke
formalized these observations and proved that, for the case of BEC [23], the
belief propagation threshold of SC-LDPC codes asymptotically coincides with
the maximum a posteriori threshold of the underlying LDPC codes. Later, they
proved that the same phenomenon occurs in any BMS channel, hence spatially
coupled codes are universal, i.e., simultaneously achieve the capacity of all
channels with the same capacity [24], under low-complexity iterative decoding.
However, despite SC-LDPC being the first universal codes, they were not the
first to reach the Shannon limit for general BMS channels under low-complexity
decoding..

The polar codes, introduced by Arikan in his 2009 paper [25], target the
Shannon limit from the completely different perspective. Arikan used channel-
combining and channel-splitting techniques to show that a certain transforma-
tion induces synthetic bit channels that are all asymptotically either completely
noisy or completely noiseless, which is the essence of the polarization effect.
Arikan used this to prove that polar codes achieve the capacity of any BMS
channel with low-complexity encoding and successive cancellation decoding
algorithms. Later, it was demonstrated in [26] that the optimized codes for
bitwise multistage decoding, studied by Stolte [27], coincide with polar codes.
Stolte did not prove or conjecture, however, the capacity-achieving property.
Consequently, his work was largely forgotten.

The development of good finite-length polar coding solutions has been a
hot topic ever since their discovery. Tal and Vardy proposed the list version
of successive cancellation decoding in order to reach ML performance [28],
although, due to the small minimum distance of polar codes, this was insufficient
to be competitive with LDPC and turbo codes. The subsequent attempts

1.3. Thesis Outline 7

to design improved polar-like codes include CRC-aided polar codes [29, 28],
parity-check-concatenated polar codes [30] and polar subcodes [31, 32, 33] and
polarization-adjusted convolutional codes [34] that outperform other coding
schemes and played a crucial role in the adoption of polar codes to a 5G radio
standard [35]. The need for reducing the decoding latency gave birth to various
ides on utilizing different permutations of the received sequence in order to
improve the performance [36, 37, 38, 39, 40, 41, 42, 43, 44].

The success of polar codes brought much attention to the Reed-Muller codes
that can be described in the similar way as polar codes. Remarkably, Kudekar,
Kumar, Mondelli, Pfister, Şaşoğlu and Urbanke proved that Reed-Muller codes
as well as extended BCH codes achieve capacity of erasure channels under
bitwise MAP decoding [45]. This result comes from the automorphism group
of these codes. Furthermore, Reeves and Pfister recently proved that Reed-
Muller codes achieve the capacity of BMS channels but only in terms of bit
error probability [46] that used another aspect of the algebraic structure of
Reed-Muller codes. Despite the significant progress [47, 48, 49], the complete
proof regarding the block error probability remains unknown, as well as any
results regarding eBCH codes for general BMS channels. The design of new
decoding algorithms for Reed-Muller codes is still an open problem and attracts
much research interest. The most notable ideas include [50, 51, 52, 53], where
authors take completely different perspectives on the decoding problem.

1.3 Thesis Outline

This thesis can be split essentially into two parts. In the first part, we introduce
the framework of Boolean polynomial representation of error-correcting codes
in Chapter 2 and study many well-known codes, including the polar, and
the Reed-Muller and eBCH codes. This framework is related to a polar-like
representation of binary linear codes and a polar-like decoding of these codes.
We also introduce the general affine group of permutations; it fits nicely into
the Boolean polynomial framework and plays a crucial rule in further analysis.
Some of these permutations are useful in the context of polar-like decoding and
some of them are not. We follow this road further in Chapters 3 and 4.

Chapter 3 is more practical-oriented, and we focus on the Reed-Muller codes
with their invariance under a large group of permutations. We propose two
decoding algorithms that exploit the rich algebraic structure of these codes and
outperform the standard approaches. The former is for binary erasure channel
and achieves an extra acceleration, due to the fact that in erasure channel any
non-erasure symbol is perfectly known. The latter is for general channels, but
its use is restricted to the subclass of the Reed-Muller codes.

Chapter 4 is more theory-oriented, and we focus on the potential efficiency
of polar-like decoding for various codes. We use our framework to define a

8 Introduction

specific type of partial code symmetry that serves as a signal that the maximum
likelihood performance can be achieve with complexity that grows exponentially
with the code length. In the case of the Reed-Muller and eBCH codes, we
connect their automorphism groups with this notion of symmetry to prove that
these codes are asymptotically ill-suited for polar-like decoding. If we try to
construct long codes tailored for polar-like decoding with permutations, the
similar effect occurs. By also relating the partial symmetry with the dynamics
of polar-like decoding, we can prove that polar codes asymptotically do not
have many automorphisms that can be utilized for improving the decoding
performance.

Chapter 5 contains the second part of this thesis. We go outside the classic
channel coding and talk about the problem of establishing provably secure
communication between two parties. The crucial component of this process
is the key distribution, and we want to develop the protocol that enables the
parties to end up with the identical copies of a secret key, even in the presence
of a potential eavesdropper. Device-independent quantum key distribution
(DIQKD) provides an elegant solution to this problem; it relies on quantum
mechanics with the classical post-processing. We took part in the development
of DIQKD protocol that has been successfully implemented in practice. After
the quantum part of the protocol, one of the parties has the secret key that is
slightly corrupted compared to another. This issue is resolved by revealing some
information followed by an error-correction step, and the amount of revealed
information reduces the protocol security. We develop a custom coding scheme
based on SC-LDPC codes in order to achieve the performance close to the
Shannon limit.

Preliminaries 2
2.1 Notations

We use [n] to denote the set {0, . . . , n− 1}. Fq denotes the finite field with q
elements, and F

m
q is the m-dimensional vector space over Fq. Note that we can

consider the vector space Fm
q as the finite field Fqm and vice versa. F∗q = Fq \{0}

is the multiplicative group of Fq. Bold letters are used for matrices and vectors,
e.g., A and b. Given a binary vector v = (v0, . . . , vm−1), we consider it as
an integer v =

∑m−1
i=0 vi2

i where needed. For c = (c0, . . . , cn−1), we define
cba = (ca, . . . , cb), 0 ≤ a ≤ b < n. R(C) denotes the rate of a binary linear code
C. Hamming weight wt(v) of vector v is defined as the number of its nonzero
entries.

2.2 Boolean Functions

Let {x0, . . . , xm−1} be a collection of m variables taking their values in F2 and
let v = (v0, . . . , vm−1) ∈ F

m
2 be any binary m-tuple. Then,

xv =
m−1∏
i=0

xvi
i

denotes a monomial of degree wt(v).

A function f(x) = f(x0, . . . , xm−1) : F
m
2 → F2 is called Boolean. Any such

function can be uniquely represented as an m-variate polynomial:

f(x0, . . . , xm−1) =
∑
v∈Fm

2

avx
v,

9

10 Preliminaries

where av ∈ {0, 1} [54]. Its evaluation vector ev(f(x)) ∈ F
2m

2 is obtained by
evaluating f at all points αi of Fm

2 . Note that any length-2m binary vector c
can be considered as an evaluation vector of some function f . For the rest of
the paper, we assume the standard bit ordering of points, i.e., αi being the
binary expansion of integer i.

2.3 Monomial and Polynomial Codes

Consider a binary linear (n = 2m, k, d) code C with generator matrix G. Its
generating set is given by

MC = {fi, 0 ≤ i < k| ev(fi) = Gi,∗},

where Gi,∗ are rows of G. The code C is called monomial if there exists MC that
contains only monomials and polynomial otherwise. The minimum distance of
a monomial code can be calculated [55, Proposition 3] as

dmin(C) = 2m−maxxv∈MC wt(v). (2.1)

2.3.1 From Generator Matrix to Generating Set

One can now ask how to construct the generating set from a given generator
matrix. The task of determining if a code is monomial also seems nontrivial
from the first glance.

Consider the matrix Am =

(
1 1
0 1

)⊗m
, where ⊗m denotes an m-fold

Kronecker product of the matrix with itself. It is easy to verify that
(
1 1

)
and

(
0 1

)
are the evaluations over F2 of the constant monomial 1 and the

monomial x0, respectively, and from the induction on m it follows that the
v-th row of Am is an evaluation vector over Fm

2 of the monomial xv. Therefore,
an evaluation vector of function f(x) =

∑
v∈Fm

2
avx

v can be computed as

ev(f) = u(f)Am,

where u
(f)
v = av. Matrix Am is a Kronecker product of a full-rank matrix

with itself and therefore invertible, hence we can uniquely recover vector u(f)

that contains the coefficients of the polynomial representation of f from ev(f).
Applying this procedure to Gi,∗ gives the generating set of C. Note that there
are many generator matrices of C that give different generating sets. In order to
get a unique generating set, we can use the technique similar to the one proposed
in [31]. Namely, we use that Am is non-singular to get the decomposition

G = QAm, (2.2)

2.3. Monomial and Polynomial Codes 11

for some precoding matrix Q. Applying the Gaussian elimination to Q and
transforming it to the reduced row echelon form Q̃ makes it unique. If the
code C is monomial, the only nonzero columns of the corresponding matrix Q̃
are the columns of the identity matrix, which can be easily verified. Otherwise,
we can write the generating set of C as

M̃C =

{∑
j

Q̃i,jx
j|0 ≤ i < k

}
. (2.3)

2.3.2 Reed-Muller Codes

A Reed-Muller code [5, 4] RM(r,m) of order r is spanned by the evaluations of
m-variate monomials of degree at most r. The RM(r,m) code has length 2m,
dimension

∑r
i=0

(
m
i

)
and minimum distance 2m−r. By definition, Reed-Muller

codes are monomial with the generating set Mr,m = {xv|wt(v) ≤ r}.

2.3.3 Polar Codes

Consider a binary memoryless symmetric (BMS) channel W : X → Y and
define the symmetric capacity I(W) as

I(W) =
∑
y∈Y

∑
x∈X

1

2
W (y|x) log2

W (y|x)
1
2
(W (y|0) +W (y|1)) ,

that is the highest rate of reliable communication through W given the uniform
distribution on its inputs and is equal to the Shannon capacity for BMS channels.
Consider the following channel transformation that takes two copies of W and
produces two synthetic channels W (−) and W (+):

W (−)(y0, y1|u0) =
1

2

∑
u1∈{0,1}

W (y0|u0 ⊕ u1)W (y1|u1), (2.4)

W (+)(y0, y1, u0|u1) =
1

2
W (y0|u0 ⊕ u1)W (y1|u1). (2.5)

Arikan in [25] proved that the transformation (2.4) preserves the capacity,
i.e., I(W (−)) + I(W (+)) = 2I(W), and applying it recursively on W (−)) and
W (+) leads to the channel polarization effect. Namely, depth-m recursion
induces n = 2m synthetic channels W (i), where i ∈ {−,+}m, with the following
properties:

lim
n→∞

|{i|I(W (i)) /∈ {0, 1}}|
n

= 0,

lim
n→∞

|{i|I(W (i)) = 1}|
n

= I(W).

12 Preliminaries

Transmitting the information through perfectly reliable channels W (i) guar-
antees the error-free communication with any rate smaller than I(W) and
therefore polar codes achieve the capacity of W .

In the finite-length regime, a (n = 2m, k) polar code with the set of frozen
symbols F is a binary linear code generated by rows of Am with indices
i ∈ [n] \ F . The set F contains the indices of synthetic channels W (i) with
the smallest capacities. Our definition of polar codes is slightly different from

the conventional, that uses the matrix
(
1 1
0 1

)⊗m
, but as already noted in [55],

both definitions are equivalent and ours simplifies the polynomial notation. It
follows from the correspondence between rows of Am and m-variate monomials
that polar codes are monomial with the generating set MF = {xi|i /∈ F}.

2.3.4 Extended BCH Codes

A (2m − 1, k, d ≥ δ) primitive narrow-sense Bose–Chaudhuri–Hocquenghem
(BCH) code [56] with design distance δ has a parity check matrix H with
elements

Hj,i = αj
i , 0 < i < 2m, 0 ≤ j < δ − 1,

where αi are distinct elements of F∗2m . An extended code is formed by adding
an overall parity check symbol.

2.4 Symmetries

2.4.1 Automorphism Groups

Consider a permutation π on [2m] and define its action on the Boolean function
f as another Boolean function g obtained by permuting its evaluation points,
namely π(f) = g : ev(g) = (f(π(α0)), . . . , f(π(α2m−1))). The set of permuta-
tions that leave code C invariant, i.e., map its codewords to other codewords,
forms the automorphism group of a code denoted by Aut(C).

Automorphisms and permutations have been studied for many years. The
main focus of this thesis is on the general affine group GA(m,F2) as well as
some of its subgroups. The action of GA(m,F2) on the binary representation
of αi can be expressed as the following mapping from F

m
2 to itself:

x→ Ax+ b,

where A ∈ F
m×m
2 is an invertible matrix and b ∈ F

m
2 . The result of the action

of an element of GA(m,F2) on Boolean polynomial f(x) can also be expressed
as a change of variables [55]

yi =
∑
j

Ai,jxj + bi. (2.6)

2.4. Symmetries 13

Consider now the coordinates αi as the elements of finite field F2m . A
general affine group GA(1,F2m) consists of permutations

x→ ax+ b,

where x, a, b are treated as the elements of finite field F2m , a ∈ F
∗
2m and the ax

is a finite field multiplication.

The notable subgroups of GA(m,F2) include the group of translations Tm
that consists of transpositions x → x + b,b ∈ F

m
2 and is also a subgroup

of GA(1,F2m), and the group of variable permutations Pm. The elements of
Pm have form x → Px, where P is a permutation matrix. The action of
Pm permutes bits in the binary representation of the evaluation points αi,
or, as follows from (2.6), permutes variables {x0, . . . , xm−1} in the polynomial
representation of function f(x).

Let us now present some known results regarding the automorphism groups
of Reed-Muller and eBCH codes, that are utilized later in the thesis.

Proposition 1 ([56], Ch. 13, Theorem 24). Reed-Muller codes are invariant
under the action of GA(m,F2).

Proposition 2 ([56], Ch.8, Theorem 16). eBCH codes are invariant under the
action of GA(1,F2m).

2.4.2 Projections and Derivatives

The derivative in direction b of the Boolean function f is defined as

(Dbf)(x) = f(x+ b)− f(x). (2.7)

Given that g is the evaluation vector of f , from (2.7) it follows that evaluation
vector of Dbf can be computed as

ev(Dbf) = (g0 + g0⊕b, . . . , gn−1 + gn−1⊕b).

For monomials, the expression (2.7) becomes

Dbx
v =

m−1∏
i=0

(xi + bi)
vi −

m−1∏
i=0

xvi
i .

When wt(b) = 1, i.e., when b = ei, the directional derivative coincides with
the partial derivative ∂f

∂xi
. Note that a partial derivative of a monomial code is

also a monomial code.

The derivative in direction b of the code C is a binary linear code with
generating set

MC→b = {Dbfi|fi ∈MC} . (2.8)

14 Preliminaries

By definition, Dbfi has identical values at coordinates x and x + b for all
x ∈ F

m
2 , so we can write its generator matrix as G =

(
G(b) G(b)

)
P ′, where

P ′ is a column permutation matrix and G(b) is a generator matrix of some
(n(b) = 2m−1, k(b) = dimMC→b, d

(b)) code C(b). The codes C(b) are called the
projected codes or the projections. In what follows, we also refer to the codes
C(ei) as the partial derivatives or the derivative codes of C.

Observe that the function f(x + b) can be considered as the action of
the element of Tm on f , which swaps the evaluation points x and x+ b (and
hence the corresponding entries in ev(f)). Therefore, if Aut(C) includes the
permutation x→ x+ b, then DbC is a subcode of C. Legeay proved that this
also puts an upper bound on the dimension of the projected code:

Theorem 1 ([57], Corollary 1). Consider a binary linear code C and some
permutation π of its codewords. Define the code

Cπ = {c+ π(c)|c ∈ C}.

If π is in the automorphism group of C and can be decomposed as a product of
transpositions, then dim Cπ ≤ 1

2
dim C.

Remark. Rewriting Theorem 1 in terms of the code rate, we get

R(Cπ) ≤ R(C). (2.9)

All codes considered in this thesis include Tm in their automorphism group and
therefore (2.9) serves as a universal upper bound for the rates of the projected
codes.

The partial derivatives of Boolean functions are inherently connected with
the Plotkin construction. Namely, any function f can be decomposed as

f(x0, . . . , xm−1) = g(x1, . . . , xm−1) + x0h(x1, . . . , xm−1), (2.10)

where g(x1, . . . , xm−1) takes identical values for x0 = 0 and x0 = 1, whereas
x0h(x1, . . . , xm−1) is nonzero only when x0 = 1. It is straightforward to see that
h is a partial derivative of f w.r.t. x0. This decomposition can be performed
w.r.t. any variable xi.

Proposition 3. Consider the code C. If all functions f ∈ MC can be decom-
posed in form (2.10) such that either g ≡ 0 or h ≡ 0, then C can be represented
in (u|u+ v) form.

Proof. By assumption the generating set of C contains only functions that
either have identical values for x0 = 0 and x0 = 1 or are nonzero only when
x0 = 1. The former generate codewords of type (u|u) and the latter generate
codewords of type (0|v), which concludes the proof.

2.4. Symmetries 15

It follows immediately that any monomial code can be decomposed as
(u|u + v). Moreover, in case of Reed-Muller codes this decomposition again
brings us Reed-Muller codes. Recall that the generating set of code RM(r,m)
contains all monomials up to degree r. Plugging its elements into (2.10) allows
us to conclude that the set of all possible functions h is given by RM(r−1,m−1)
and the set of all possible functions g by RM(r,m− 1) (with the only exception
being the case r = m when the code RM(m,m) is decomposed into two codes
RM(m− 1,m− 1)).

Remark. It might happen that Proposition 3 does not hold for the code of
interest for all variables xi. For example, eBCH codes in general do not admit
(u|u+ v) representation. In such cases we can consider the generalized Plotkin
decomposition (GPD), introduced in [31]. For any binary linear (n = 2m, k)
code there exist the following decomposition of its generator matrix:

G =

(
G0 + ĨG2 ĨG2

G1 G1

)
, (2.11)

where Gi are ki × 2m−1 matrices, k0 + k1 = k, k2 ≤ k0 and Ĩ is obtained by
stacking (k0 − k2)× k2 zero matrix and k2 × k2 identity matrix. If k2 = 0, we
get the standard (u|u+ v) construction. In the framework of GPD, a partial
derivative ∂/∂x0 corresponds to the code generated by G0, and therefore we
can proceed as usual.

Symmetry-based Decoding
of Reed-Muller Codes 3
Reed-Muller codes are among the oldest known error-correcting codes and
among many notable properties, they are invariant under the action of large
permutation group. For many years, there have been many successful at-
tempts to utilize their automorphism group in order to achieve better decoding
performance.

When trying to classify the main ideas behind various algorithms, it can
be seen that they mostly fall into one of three main avenues. The first two
correspond to running several successive cancellation or belief propagation
decoders with different permutations of the input vector. The former was
initially studied by Stolte [27] as well as Dumer and Shabunov [51], with further
development for BEC in [40, 58, 59] and for AWGN channel in [41, 60, 61, 62].
The latter was first mentioned in [40], followed by a series of other works
[42, 39, 38, 62, 37, 63]. The last avenue can be described as projecting the
codeword on multiple lower-order codes and combine the results in order
to obtain the solution to the decoding problem. The initial idea is due to
Sidel’nikov and Pershakov [50], which was later improved in [64, 65] for the case
of second-order codes. Lately Ye and Abbe unbeknownst of works of Sidel’nikov
and Pershakov developed the recursive projection-aggregation (RPA) algorithm,
which is based on similar principles [52].

The main practical advantages of the symmetry-based decoding paradigm
lie in the large degree of parallelization and the simplicity of hardware im-
plementation. All algorithms that are described in this chapter allow the
independent processing of permutations or projections and consequently the
most computationally demanding steps become simpler in the presence of
parallel computing units. The decoding latency can be reduced as well.

17

18 Symmetry-based Decoding of Reed-Muller Codes

This chapter is organized as follows. Section 3.1 begins with the successive
cancellation list (SCL) decoder and the factor graph representation of the
encoding and decoding process, which is then followed by the description of the
permutation-based algorithm that operates in erasure channel and works more
efficiently. The proposed algorithm is published in [59]. Section 3.2 describes
two state-of-the-art projection-based decoders for the second-order Reed-Muller
codes and presents the improvement for the former, which is published in [65].

3.1 Permutation-based List Decoding for
Binary Erasure Channel

3.1.1 Successive Cancellation List Algorithm

Assume that a codeword c is transmitted through the BMS channel W and the
received vector is y. The successive cancellation (SC) algorithm [66] performs
bit-by-bit estimation of the vector u s.t. uAm = c as

ũi =

{
argmaxui∈{0,1}W

(i)
m (yn−10 , ũi−1

0 |ui), i /∈ F ,
0 i ∈ F ,

(3.1)

where W
(i)
m = W ({−,+}m) is computed by the recursive application of channel

transformations (2.4) and the initial values of the recursion are W (yi|ui). In
erasure channel, each bit of u is either perfectly decoded or erased. If any
non-frozen bit is erased, a SC decoding failure is declared. The algorithm runs
in O(n log n) time and needs O(n) space.

The performance of successive cancellation algorithm in finite-length regime
is poor since any single failure in the estimation of input bits ruins the decoding
process. List decoding algorithm (SCL) [28] overcomes this issue by keeping L
most likely continuations. If the current information bit is erased, the decoding
path splits in two and the process goes further for both possible values. Paths
with nonzero estimations of frozen bits are eliminated. It should be noted
that any erasure event happens for all paths and therefore the list size always
remains a power of 2. List decoding failure is declared if more than L paths
need to be stored at some step. In case of channels with errors, one simply
keeps L paths with the best reliability metric value (e.g., Hamming distance,
ellipsoidal weight, etc.). The algorithm has time complexity O(L · n log n) and
occupies O(L · n) memory. Note that SCL algorithm is essentially the same
as the recursive lists algorithm of Dumer and Shabunov [51] and has similar
performance. However, for the sake of convenience with polar coding literature
we will stick to SCL notation.

3.1. Permutation-based List Decoding for Binary Erasure Channel 19

c0

c1

c2

c3

c4

c5

c6

c7

u0

u1

u2

u3

u4

u5

u6

u7

Figure 3.1 – Example of factor graph, m = 3

3.1.2 Factor Graph Permutations

The propagation of values during the encoding and decoding process can be
represented with an m-layer factor graph [40], which gives a graphical way
to represent the action of matrix Am. Example of this graph for m = 3 is
presented at figure 3.1. Bit values are propagated left-to-right to form codeword
bits ci from input bits ui, and probabilities are propagated right-to-left to form
bit estimates ũi from the received values yi. Red dots represent the XOR nodes.
A permutation π of the layers of such factor graph changes the order in which
the bits are combined. The encoding result remains unchanged since the overall
operation is still the multiplication by Am. However, the things are different
when it comes to the successive cancellation decoding since the bit reliabilities
depend on the order in which the bits of u are processed. Figure 3.2 illustrates
the change. A permutation π of the factor graph layers corresponds to the
change in the processing order of u, defined by

ui → uπ(i), (3.2)

where we assume by the slight abuse of notation that π(i) permutes bits in
the binary representation of i. The standard SC decoding corresponds to
π∗ = (0, 1, . . . ,m − 1). Note that the same result can be achieved by either
permuting vector y (and consequently u) according to (3.2) or by changing the
processing rules in the decoder. Namely, at layer l the channel transformation
is given by combining the indices that differ only in bit πl.

Denote by Pe(i) the probability that SC decoder makes an erroneous estima-
tion of bit ui. Applying any layer permutation also permutes these probabilities,
i.e., P π

e (i) = Pe(π(i)). In case of polar codes this becomes a problem since
the frozen symbols set in the permuted vector u may no longer contain the
indices of subchannels with the largest SC error probabilities and therefore
the decoding performance when using π is significantly worse compared to
π∗. However, it is not an issue for Reed-Muller codes. The action of π can
be expressed as x→ Px where P is a permutation matrix and consequently
the set of all layer permutations π coincides with the group Pm of variable

20 Symmetry-based Decoding of Reed-Muller Codes

c0

c1

c2

c3

c4

c5

c6

c7

u0

u1

u2

u3

u4

u5

u6

u7

π = (0, 1, 2) : u0, u1, u2, u3, . . .

c0

c1

c2

c3

c4

c5

c6

c7

u0

u1

u2

u3

u4

u5

u6

u7

π = (2, 0, 1) : u0, u4, u1, u5, . . .

c0

c1

c2

c3

c4

c5

c6

c7

u0

u1

u2

u3

u4

u5

u6

u7

π = (1, 2, 0) : u0, u2, u4, u6, . . .

Figure 3.2 – Different factor graph permutations, m = 3

permutations, which is a subgroup of GA(m,F2). Thus, Reed-Muller codes
remain invariant under the factor graph layer permutations and therefore the
successive cancellation decoding with any such permutation is expected to have
the same error probability.

Remark. The statement regarding SC error probability only implies the
similar average decoding performance. A particular noise pattern might be
uncorrectable with one permutation and correctable with another and there
are many such patterns, which is the reason why permutation decoding works
well.

Example 1. Consider the transmission of all-zero codeword of RM(1, 3) through
the erasure channel and assume that the received vector is y = (0, 0, ε, ε, ε, ε, 0, 0).
Recall that RM(1, 3) is a Plotkin concatenation of RM(0, 2) which is a (4, 1, 4)
repetition code and RM(1, 2) which is a (4, 3, 2) single parity check code.

If we take π = {0, 1, 2}, then we get y(−) = (y0+y4, y1+y5, y2+y6, y3+y7) =
(ε, ε, ε, ε). This pattern is uncorrectable in RM(0, 2) and SC decoding fails. On
the other hand, π = {2, 1, 0} gives y(−) = (y0 + y1, y2 + y3, y4 + y5, y6 + y7) =
(0, ε, ε, 0), which can be corrected in RM(0, 2) and SC decoding succeeds.

3.1.3 Proposed Algorithm

In this section, we present a novel decoding algorithm for Reed-Muller codes
when the transmission takes place through binary erasure channel. The algo-
rithm is based on factor graph permutations and utilized the idea similar to
the one described in [42]. We pre-select P distinct factor graph permutations
π(j), j ∈ [P]. Given the received vector y, we generate P its permuted copies
y(j), y

(j)
i = π(j)(i), and use them to initialize P SCL decoders Dj with list size

L. The choice of π(j) and the impact of P on the decoding process is discussed
in section 3.1.5. Since in erasure channel any decoded symbol ũi is correct,
these symbols can be shared among all Dj.

The decoding is performed in an iterative fashion. At each iteration, we

3.1. Permutation-based List Decoding for Binary Erasure Channel 21

try to find a decoder Dj that can estimate some unknown symbol ũi. The
straightforward way is to simply go over all decoders. Due to the different bit
estimation orders, it may happen that symbol currently estimated by some Dj

is already known. We treat this symbol as frozen with the corresponding value.
Decoding stops when all entries of vector ũ are successfully obtained, and the
corresponding codeword is returned. A failure is declared if no decoder Dj can
go further.

A pseudocode of the described permutation-based successive cancellation
list (PSCL) decoder is presented at algorithm 1. Subroutine Initialize is used
to initialize a SCL decoder copy with the permutation of the received vector,
i.e., sets the initial values for the recursion (2.4) as W (y

(j)
i |0) = W (y

(j)
i |1) = 0.5

if y(j)i is erased and W (y
(j)
i |y

(j)
i) = 1,W (y

(j)
i |1−y

(j)
i) = 0 otherwise. Subroutine

GetNextSymbol performs the standard SCL decoding as described in [28] until
some new symbol ũi is decoded or a list decoding failure is declared. In the
latter case, we say that the decoder is stuck. The obtained value (or the erasure
symbol ε if the decoder is stuck) is returned to the main processing cycle.

Algorithm 1 Permutation-based list decoder

1: procedure PSCL(y,F , {π(j)}, {Dj}, L, P)
2: for j ← 0 to P − 1 do
3: for i← 0 to n− 1 do
4: y

(j)
i ← yπ(j)(i)

5: Dj.Initialize(L,y(j),F)
6: for all ũi do
7: ũi ← ε

8: repeat
9: for j ← 0 to P − 1 do

10: uij ←Dj.GetNextSymbol()
11: if uij �= ε then
12: ũij ← uij

13: break
14: if all Dj returned ε then
15: return Failure
16: until all ũi are decoded
17: return ũAm

The algorithm runs in O(LP · n log n) time and needs O(LP · n) memory.
However, for many erasure patterns only a fraction of decoders Dj is actually
used, so the actual number of iterations might be significantly less than LP .

The performance of the proposed algorithm can be further improved. A
position i is unresolved if one can find two paths u(l) and u(l′) such that
u
(l)
i �= u

(l′)
i . Let us keep for any decoder D its set of unresolved positions J . It

22 Symmetry-based Decoding of Reed-Muller Codes

may happen that some of these symbols become resolved by another decoder
D′ at some point. Hence, if D is stuck, it can go over entries of J and check if
some symbols are actually resolved. In such occasion, they are removed from
J and the corresponding paths are eliminated, thus allowing the decoder to
take another step forward. Moreover, path elimination may resolve some other
symbols as well.

In order to implement this feature, for any unresolved position i, we keep
two sets

U
(0)
i = {l|u(l)

i = 0},
U

(1)
i = {l|u(l)

i = 1}.
The path cloning and killing procedures from [28] need to be modified accord-
ingly, as demonstrated in algorithms 2 and 3. Algorithm 4 implements the
resolution procedure, which is called whenever the decoder is stuck.

Algorithm 2 Kill path and check potential symbol resolutions
1: procedure KillPathChk(l)
2: KillPath(l)
3: for i ∈ J do
4: if l ∈ U

(0)
i then

5: U
(0)
i .Remove(l)

6: if |U (0)
i | = 0 then

7: ũi ← 1

8: else
9: U

(1)
i .Remove(l)

10: if |U (1)
i | = 0 then

11: ũi ← 0

12: if ũi �= ε then
13: J .Remove(i)

Algorithm 3 Clone path
1: procedure ClonePathChk(l)
2: l′ ←ClonePath(l)
3: for i ∈ J do
4: if l ∈ U

(0)
i then

5: U
(0)
i .Add(l′)

6: else
7: U

(1)
i .Add(l′)

Consider now the decoding failure event. No decoder D can go further
and any unknown symbol ũi is either unresolved for D or it is stuck before
reaching it. We can conclude that we cannot do better in the framework of
SCL decoding with the current set of permutations.

3.1. Permutation-based List Decoding for Binary Erasure Channel 23

Algorithm 4 Check symbol resolutions
1: procedure CheckResolutions()
2: for i ∈ J do
3: if ũi �= ε then
4: J .Remove(i)
5: for l ∈ U

(ũi)
i do

6: KillPathChk(l)

3.1.4 Simplified Version

The running time of the algorithm described in the previous section can be
significantly reduced. During the simulations we observe that the main loop
of algorithm 1 does many redundant operations since many decoders do not
contribute to the decoding process, i.e., they recover no symbols ũi.

It turns out that if we prohibit going backwards in the main loop, we obtain
a great decrease in the average decoding time. More precisely, we start the
decoding process with D0 and proceed until it gets stuck or succeeds. If it is
stuck, we keep the decoded symbols and move to D1, then to D2, . . . ,DP−1
until all entries of vector ũ are successfully obtained. A decoding failure is
declared if some symbols still remain unknown.

It is easy to notice that the complexity of the simplified algorithm in terms
of the big O notation remains identical to the one from the previous section.
However, our experiments showed more than 10x speedup in the software
simulations with negligible performance degradation, so we will present numeric
results only for the simplified version.

3.1.5 Performance

Achievability of MAP decoding

The proposed PSCL decoder can be considered as an ensemble of SCL de-
coders working together and we know that it is possible to reach (near-)MAP
performance with list decoding for sufficiently big list size. We also know
that permutations can improve the overall performance since for a particular
permutation one can find an erasure pattern that is uncorrectable with this
permutation but is correctable with some other [58]. On the other hand, the
erasure events for different permutations correlate with each other. The theo-
retic analysis of these correlations goes beyond the scope of this work, yet we
can present some numeric results. It should be noted that Kamenev in [67]
proposed a method to estimate the failure probability of permutation decoding.
However, this method only works for L = 1 and sufficiently small values of
P , i.e., when the correlations between different permutations can be neglected
under the random selection strategy.

24 Symmetry-based Decoding of Reed-Muller Codes

10−4

10−3

10−2

10−1

100

 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44

D
ec

od
in

g
fa

ilu
re

 p
ro

ba
bi

lit
y

Erasure probability

L=1
L=4

L=16
L=64

Figure 3.3 – RM(3, 7) with all 7! permutations

Figure 3.3 demonstrates the performance of proposed algorithm for different
values of L when all 7! = 5040 permutations are used. For a small L, even
using all permutations is not sufficient to get close to MAP decoding. However,
when the list size is increased it is possible to reach MAP performance. For
code RM(3, 7), permutation-based decoding achieves near-MAP performance
with L = 16, whereas pure SCL decoding needs at least L = 256.

Selection strategies

The running time and memory consumption of our algorithm for the fixed
list size L depend on the number of permutations P . Therefore, one needs to
develop a rule on how to choose P permutations so that the performance is
maximized. It can be easily shown that taking P first permutations in the
lexicographic order is a bad strategy. Indeed, if two permutations π and π′ have
common length-l suffix, the corresponding decoders have identical estimations
of first 2l symbols of vector ũ and therefore if the first decoder is stuck while
processing these symbols, the second gets stuck as well. Thus, it is reasonable to
select permutations that are sufficiently ’different’ from each other to maximize
the number of correctable erasure patterns. In the literature, we can find the
following:

• Cyclic shifts of factor graph layers [40];

• Permutations with distinct first r factor graph layers [51];

• Random permutations [39].

3.1. Permutation-based List Decoding for Binary Erasure Channel 25

10−2

10−1

100

 1 4 16 64 256 1024 4096

D
ec

od
in

g
fa

ilu
re

 p
ro

ba
bi

lit
y

Num of permutations

L=1
L=4

L=16
L=64
MAP

Figure 3.4 – RM(3, 7), ε = 0.36

Our experiments showed that all these strategies provide comparable per-
formance for the same number of permutations. In the literature, some good
heuristic strategies for AWGN channel are proposed in [41] and [42]. However,
our attempts to develop similar ideas for the erasure channel were unsuccessful
and hence we resort to the random selection rule.

Figure 3.4 shows how the performance improves with the number of random
permutations being used. Different values of the list size L are considered and
the erasure probability ε is selected so that the probability of MAP decoding
failure is around p∗ = 0.01.

It can be seen that even the small number P of random permutations sig-
nificantly improves the performance for any fixed list size. However, correlation
effects between different permutations start to play more crucial role when P
grows. This leads to the performance saturation effect that can be seen at the
figure. The saturation threshold goes down with the list size until the MAP
performance is reached.

L-P tradeoff

In previous sections we demonstrated that for a fixed list size it is possible to
improve the performance with permutations. Now we show how our algorithm
performs in comparison to the conventional SCL decoder given the same
asymptotic complexity. Since for the given code length the product λ = LP
defines the time and space complexity of the algorithm, it is reasonable to
define (L, P)-PSCL and explore its behavior for the fixed λ.

26 Symmetry-based Decoding of Reed-Muller Codes

10-4

10-3

10-2

10-1

 1 2 4 8 16 32 64 128

D
ec

od
in

g
fa

ilu
re

 p
ro

ba
bi

lit
y

Num of permutations

LP=256
LP=512

LP=1024

(a) RM(4, 9), ε = 0.28

10−5

10−4

10−3

10−2

10−1

 1 2 4 8 16 32 64 128 256 512

D
ec

od
in

g
fa

ilu
re

 p
ro

ba
bi

lit
y

Num of permutations

LP=1024
LP=2048
LP=4096

(b) RM(5, 11), ε = 0.19

Figure 3.5 – Performance of (L, P)-PSCL

Figure 3.5 shows how the performance of the proposed algorithm changes
with the number of random permutations. Standard SCL decoding, which
can be considered as (λ, 1)-PSCL, corresponds to the leftmost points (with
P = 1) of the curves. Erasure probability ε is selected so that SCL decoding
performance of the upper curves is approximately p∗ = 0.02.

It is clear that our algorithm provides the significant performance gain for
different code lengths, which only grows when λ is increased. Whereas for code
RM(4, 9) and λ = 256, the algorithm performs similarly to SCL with L = 512,
but for code RM(5, 11) and λ = 4096 we get the improvement around two
orders of magnitude and SCL even with list size L = 65536 cannot achieve
such performance. However, it can be seen that value P needs to be properly
adjusted in order to obtain such a substantial improvement and it is unclear
how to find the optimum value. In the beginning, when P is increased the gain
from combining multiple permutations is rather high. After a certain point we
reach the saturation area for small values of L and the overall performance
drops down.

Note that (1, λ)-PSCL demonstrates substantially worse error correction
capability compared to (λ, 1)-PSCL, which is a stark contrast to the AWGN
channel, where the permutation-based algorithms without any list are com-
parable with the conventional SCL decoder or even outperform it [60, 62].
We attribute this difference to the fact that in BEC the list size can also go
down by a factor of 2. Namely, when the decoder arrives at the frozen symbol
and W

(i)
m (yn−10 , ũi−1

0 |ui) �= 0.5, half of the paths has W
(i)
m (yn−10 , ũi−1

0 |0) = 1 and
another half has W

(i)
m (yn−10 , ũi−1

0 |0) = 0, so we can safely discard the latter.
Another interesting conclusion from the figures is the existence of a single value
P which is the best option for all list sizes under the fixed λ.

3.2. Improved Decoding of Second-Order Reed-Muller Codes 27

3.2 Improved Decoding of Second-Order
Reed-Muller Codes

The second-order Reed-Muller code RM(2,m) has generating set

M2,m = {1} ∪ {xi|0 ≤ i < m} ∪ {xixj|0 ≤ i < j < m},

and therefore any codeword can be considered as an evaluation of polynomial

f2(x) =
∑

0≤i<j<m

Bi,jxixj +
∑

0≤i<m

bixi + b,

where Bi,j, bi, b ∈ F2 are the information symbols. A directional derivative of
f2 can be expressed as

Dαf2 = f2(x) + f2(x+α) =
∑
i<j

Bi,jαiαj +
∑
i

biαi +
∑
i<j

Bi,j(αixj + αjxi)

(3.3)

= b(α) +αTBx, (3.4)

which is an affine polynomial and consequently is a codeword of RM(1,m). In
fact, from Section 2.4.2 we know that Dαf2 consists of two identical copies of
RM(1,m− 1) which is used in the practical implementations of the decoder to
speed up the computations. There exists an efficient algorithm, which solves
the maximum likelihood decoding problem for the first-order codes [68], and it
is tempting to utilize it in order to decode the second-order codes.

In this section, we study the efficient algorithms for decoding of RM(2,m)
that make use of the projected codes C(α) and run in O(n2 log n) time. The
first approach is focused on the recovery of information bits and was initially
proposed more than 20 years ago by Sidel’nikov and Pershakov [50] with the
subsequent improvement by Sakkour in mid-2000s [69]. The second is focused
on the recovery of codeword bits and was recently proposed by Min Ye and
Emmanuel Abbé [52]. We begin by presenting both algorithms and then
propose the improvement of the former.

3.2.1 Optimal Decoding of First-Order Reed-Muller
Codes

The first-order Reed-Muller code RM(1,m) has dimension m + 1, minimum
distance 2m−1 and its generating set is given by

M1,m = {1} ∪ {xi|0 ≤ i < m},

i.e., any its codeword is as an evaluation of polynomial

f1(x) =
∑

0≤i<m

gixi + g,

28 Symmetry-based Decoding of Reed-Muller Codes

where gi, g ∈ F2 are the information symbols.

Consider 2m × 2m Hadamard matrix

H(m) =

(
H(m−1) H(m−1)

H(m−1) −H(m−1)

)
,H(1) =

(
1 1
1 −1

)
,

and define the mapping

η(x) =

{
0, x ≥ 0

1, x < 0.
(3.5)

Applying η to the rows of H(m) gives us half of the codewords of RM(1,m), and
the other half can be obtained by taking complements [56]. Therefore, given
the received LLR vector y, the maximum likelihood solution of the decoding
problem is given by the row of H(m) with the largest absolute value of the
correlation ρ(y,h), which is defined as

ρ(y,h) =
∑
i

yihi.

Fast Hadamard transform (FHT) allows to compute the correlations of y
with all rows of H(m) in O(n log n) time as shown in Algorithm 5. Entries of the
returned vector v satisfy vi = ρ(y,H

(m)
i,∗). It remains to obtain î = argmaxi |vi|

and return the corresponding codeword ĉ = η(H
(m)

î,∗) in order to complete the
ML decoding.

Algorithm 5 Fast Hadamard trasform
1: procedure FHT(y)
2: v← y
3: for i← 0 to m− 1 do
4: for j ← 0 to n/2 do
5: sj ← v2j + v2j+1

6: sj+n/2 ← v2j − v2j+1

7: v← s
8: return v

Remark. The modification of this procedure to return l > 1 most likely
codewords is straightforward.

3.2.2 Sidel’nikov-Pershakov Decoder

Assume that the received LLR vector y corresponds to the noisy codeword of the
second-order Reed-Muller code RM(2,m). Sidel’nikov and Pershakov proposed
the decoding algorithm, which is based on taking all possible derivatives Dα and

3.2. Improved Decoding of Second-Order Reed-Muller Codes 29

applying the FHT-based decoder from the previous section for the first-order
codes [50]. The general procedure is summarized in Algorithm 6 and all steps
are explained below. First, for each nonzero α the LLR vector

y(α) = (yα0 � yα0+α, . . . , yα2m−1
� yα2m−1+α)

that corresponds to the derivative Dα is computed, where � denotes a box-plus
operator

ya � yb = log
1 + exp(ya + yb)

exp(ya) + exp(yb)

[70] or its min-sum approximation

ya � yb ≈ sgn(ya) sgn(yb)min(|ya|, |yb|).

Remark. The decoder was originally proposed for the binary symmetric
channel, whereas in this chapter we consider the AWGN channel. The only
difference is in how we compute the elements of y(α).

Algorithm 6 Sidel’nikov-Pershakov decoder
1: procedure SP2(y)
2: for α ∈ F

m
2 \ {0} do

3: for β ∈ F
m
2 do

4: y
(α)
β ← yβ � yβ+α

5: (v(α),g(α))←RM1Decode(y(α))
6: for i← 0 to m− 1 do
7: for α ∈ F

m
2 \ {0} do

8: t
(i)
α ← (−1)g(α)

i v(α)

9: (zi,Bi,∗)←RM1SubcodeDecode(i, t(i))
10: for i← 0 to m− 1 do
11: for j > i do
12: if zi > zj then
13: Bi,j ← Bj,i

14: ĉ← ev(
∑

i<j Bi,jxixj)
15: for i← 0 to 2m − 1 do
16: ŷi ← (−1)ĉiyi
17: (v,g)←RM1Decode(ŷ)
18: return B,g

The projected codes are RM(1,m), so we use the maximum likelihood
decoding algorithm from Section 3.2.1. Assume that the information vector,
corresponding to the most likely codeword, is given by (g(α), g

(α)
0 , . . . , g

(α)
m−1), and

v(α) denotes its correlation. Let us also denote by g(α) the vector (g(α)
0 , . . . , g

(α)
m−1)

30 Symmetry-based Decoding of Reed-Muller Codes

of information symbols that correspond to the non-constant monomials. It
follows from (3.3) that for every α we have g(α) = αTB.

We will proceed with the recovery of matrix B in a column-wise fashion. The
entry g

(α)
i = αTB∗,i can be considered as the value of polynomial fi(x) = xTB∗,i

at point α and consequently the whole vector (g
(α0)
i , . . . ,g

(α2m−1)
i) can be

viewed as the evaluation vector of fi. It is a linear polynomial and therefore
is a subcode of RM(1,m), so we can efficiently perform its ML decoding to
recover the column B∗,i. Value v(α) is considered as the reliability of element
g
(α)
i . Let us denote the correlation of the corresponding codeword as zi. We

know that the true matrix B is symmetric and therefore for each pair (i, j)
the entries Bi,j and Bj,i should have identical values. We pick the value that
corresponds to the largest value between zi and zj.

After second-order coefficients are obtained, we subtract their impact from
vector y, which is done by computing the evaluation vector of polynomial
fB(x) =

∑
i<j bi,jxixj and changing the signs of elements y accordingly, and

then proceed to decoding first-order code to get the remaining data symbols.

Proposition 4. Algorithm 6 runs in O(n2 log n) time.

Proof. Subroutines RM1Decode and RM1SubcodeDecode run in O(n log n) time.
The former is called n− 1 times in lines 2-5 and the latter is called m = log n
times in lines 6-9. The complexity of the subsequent lines is dominated by line
17, which is another call to RM1Decode. Therefore, the overall complexity is
O((n− 1 + log n+ 1)n log n) = O(n2 log n).

Sidel’nikov and Pershakov also proposed an improvement to Algorithm 6 in
the same paper. Observe that for all nonzero α �= β holds the relation

βTB+ (αT + βT)B = αTB, (3.6)

and therefore g(α) should be equal to g(β) + g(α+β). Authors modify the
procedure RM1Decode to return s most likely pairs (v(α),k,g(α),k), 0 ≤ k < s
instead of the single ML solution in line 5. Finally, they propose the heuristic
procedure, which is repeated h times before the line 6 of Algorithm 6. This
procedure is presented below.

The purpose of these computations is to increase the reliability of the correct
values and decrease the probability of the incorrect ones. It is straightforward to
verify that it takes O(hn2s3) steps and therefore the overall decoder complexity
is increased to O(n2(log n+ hs3)).

3.2. Improved Decoding of Second-Order Reed-Muller Codes 31

1: for α ∈ F
m
2 \ {0} do

2: for k ← 0 to s− 1 do
3: ṽ(α),k ← 0
4: for α ∈ F

m
2 \ {0} do

5: for β ∈ F
m
2 \ {0,α} do

6: for k ← 0 to s− 1 do
7: v̂(β),k ← 0
8: φ← 0
9: for 0 ≤ k0, k1, k2 < s do

10: if g(α),k0 = g(β),k1 + g(α+β),k2 then
11: v̂(α),k0 ← max(v̂(α),k0 , (v(α),k0 + v(β),k1 + v(α+β),k2)/3)
12: φ← 1

13: if φ = 0 then
14: v̂(β),k0 ← v(β),k0/2

15: ṽ(α),k ← 1
n−2

∑
β v̂

(β),k

16: v(α),k ← ṽ(α),k for α ∈ F
m
2 , 0 ≤ k < s

3.2.3 Loidreau-Sakkour’s Improvement

The key point of Algorithm 6 is the recovery of matrix B, which crucially
depends on the number of correct values g(α). In order to increase this number,
authors of the original paper proposed to exploit the relation (3.6) as described
in the previous section. Loidreau and Sakkour in [64] proposed a simpler
procedure, which also turns out to be more efficient in terms of error correction
performance. Namely, the idea is to replace the values g(α) by their majority
estimates, i.e., set

g̃(α) = Maj
β∈Fm

2

(g(β) + g(β+α)), (3.7)

where Maj is the function that returns the most frequent value, and proceed with
g = g̃ in the subsequent steps. Note that the majority voting has complexity
O(n2) and therefore the overall running time of the algorithm is not affected.
Numeric results from [69, 71] demonstrate that the Loidreau-Sakkour’s SPM
algorithm outperforms the Sidel’nikov-Pershakov decoder even in its improved
version.

3.2.4 Recursive Projection-Aggregation Decoder

Recursive projection-aggregation (RPA) decoder, which utilizes the similar
ideas as the one of Sidel’nikov and Pershakov but is conceptually simpler was
recently proposed by Ye and Abbe [52]. Algorithm 7 presents its pseudocode for
the decoding of second-order Reed-Muller codes in AWGN channel. The initial
step is similar, i.e., for all nonzero α the LLR vector y(α) of the corresponding
derivative is computed and the FHT-based ML decoder is used to recover the
codeword c(α) of the first-order code. However, whereas Sidel’nikov-Pershakov

32 Symmetry-based Decoding of Reed-Muller Codes

Algorithm 7 Projection-aggregation decoder for RM(2,m) in AWGN channel
1: procedure RPA2(y, Nit, θ)
2: for i← 0 to Nit − 1 do
3: v← 0
4: for α ∈ F

m
2 \ {0} do

5: for β ∈ F
m
2 do

6: y
(α)
β ← yβ � yβ+α

7: c(α) ←RM1Decode(y(α))
8: for β ∈ F

m
2 do

9: if c
(α)
β = 0 then

10: vβ ← vβ + yα+β

11: else
12: vβ ← vβ − yα+β

13: ỹ← y
14: for β ∈ F

m
2 do

15: vβ ← vβ
n−1

16: if |yβ − vβ| > θ|yβ| then
17: ỹβ ← vβ

18: if ỹ = y then
19: break
20: else
21: y← ỹ

22: return (η(y0), . . . , η(yn−1))

algorithm tries to recover the information symbols, RPA targets at the codeword
symbols. The LLR vector corresponding to the codeword of RM(2,m) is
estimated as

vα =
1

n− 1

∑
β
=α

(−1)c
(α)
β yα+β,

and the coordinate yα is updated if the relative change in magnitude of vα
w.r.t. yα is at least θ. These steps are repeated iteratively until a stable point
is reached or the maximum number of iterations Nit is exceeded. According to
[52], setting Nit = �m2 � and θ = 0.05 is sufficient to achieve good performance
in most cases. The running time of RPA is O(Nitn

2 log n) ≈ O(n2 log n).

3.2.5 Proposed Improvement

Efficiency of majority voting

Let us take a closer look at the majority voting procedure. Consider the
transmission of all-zero codeword and assume that for each directional derivative
y(α), its s most likely values g(α),j are returned. The expected number of votes

3.2. Improved Decoding of Second-Order Reed-Muller Codes 33

for the correct value g̃(α) can be expressed as

E[# votes for g̃(α)] =

E[# votes for g̃(α)|g(β) = g(β+α) = 0]

+E[# votes for g̃(α)|g(β) = g(β+α) �= 0].

Assume that there are d correct entries among the returned s(n− 1). The

first term on the r.h.s. is equal to (d2)
n−1 . The second term, which we will further

denotes as collision votes, can be estimated using the following proposition:

Proposition 5. Assume that the incorrect values of g(α) are uniformly dis-
tributed. Then

E[# votes for g̃(α)|g(β) = g(β+α) �= 0] ≈ O(s2).

Proof. From the uniformity assumption it follows that for any nonzero g′ the
expected number of elements g(β) = g′ is s(n−1)−d

n−1 . Thus, we get

E[# votes for g̃(α)|g(β) = g(β+α) �= 0] =

(s(n−1)−d
n−1
2

)
≈

(
s− d

n− 1

)2

≈ O(s2).

Sakkour in [71] states that the expected maximum number of votes for the
incorrect value for the case s = 1 is logn

log logn
. We can expect that with s > 1 it

will grow as O(s logn
log logn

) under the uniformity assumption.

Remark. The statements above are made under the assumption of the uni-
formity of the returned values g(α) and their independence from each other.
Strictly speaking, both assumptions do not hold in reality. The derivatives
clearly correlate with each other and there are no guarantees that the results
of their (list) decoding is uniform.

Let us now demonstrate what actually happens in the decoding process.
Figure 3.6 demonstrates how the number of collision votes for the correct
value changes with d for different values of s for RM(2, 8) and Eb/N0 = 1dB.
Although it is clear that its distribution of collision votes is rather far from
uniform and has a larger tail towards the higher number of votes, its mean scales
quadratically with s. Figures 3.7-3.8 demonstrate how the total number of
votes for the correct value and the maximum number of votes for the incorrect
value, which we denote as the best competitor, changes with d for different
values of s. Although the distribution is not uniform with a large tail towards
larger values, its mean scales linearly with s. Table 3.1 contains the computed
mean values for the collision and the best competitor votes for s ∈ {1, 2, 3, 4}.

34 Symmetry-based Decoding of Reed-Muller Codes

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200 250 300

V
ot

es

Number of correct entries

s=1, collisions
s=2, collisions
s=3, collisions
s=4, collisions

Figure 3.6 – RM(2, 8), collision votes for the correct value

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300

V
ot

es

Number of correct entries

Correct votes
Best competitor votes

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250 300

V
ot

es

Number of correct entries

Correct votes
Best competitor votes

Figure 3.7 – s = 1 and s = 2

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300

V
ot

es

Number of correct entries

Correct votes
Best competitor votes

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300

V
ot

es

Number of correct entries

Correct votes
Best competitor votes

Figure 3.8 – s = 3 and s = 4

3.2. Improved Decoding of Second-Order Reed-Muller Codes 35

Table 3.1 – Mean votes for the correct value due to collisions and for the best
incorrect value.

s Collision votes, mean Best competitor votes, mean
1 0.5 7.3
2 4.8 21.3
3 11.9 35.1
4 20.9 48.8

Note that by increasing s we also implicitly increase d since the larger decoder
list size increases the chance of returning the correct codeword.

Figure 3.9 demonstrates another aspect of majority voting, namely how the
ratio of correct coefficients changes after the voting is completed. Again we
consider the code RM(2, 8) and set s = 1. We observe that even through the
majority voting is often unable to recover all correct values g(α), the procedure
increases their proportion as long as the initial number d of the recovered values
is not too small.

 0.1

 1

 0.1 1

R
at

io
 o

f c
or

re
ct

 e
nt

rie
s

af
te

r
m

aj
or

ity
 v

ot
in

g

Ratio of correct entries before majority voting

N=256, Eb/N0=−1dB

Figure 3.9 – Correction capability of majority voting

Repeated majority voting

We observed in the previous section that returning s > 1 most likely values of
each g(α) increases the number of correct entries among them and therefore
the chances of majority voting succeed. Moreover, the majority voting tends
to increase the number of correct entries. This gives an intuition behind the
following idea:

36 Symmetry-based Decoding of Reed-Muller Codes

• In the first stage, s most likely values g(α),j, 0 ≤ j < s are returned.
This step increases the number of correct coefficients d among s(n− 1)
candidates

• Do the majority voting with O(s2n) checks per coordinate

• Repeat the majority procedure h times with O(n) checks using the values
obtained on the previous step

Complexity of this procedure is O(n2(s2 + h)), thus the whole decoding runs in
O(n2(log n+ s2+h)) time. The repeating majority vote is performed with only
best estimates because of the complexity concerns, but our experiments also
confirm that using all estimates does not improve the performance. Pseudocode
of the procedure is given in Algorithm 8.

We also noticed that after a few iterations the majority voting converges,
so the process can be stopped after i < h steps if no values g̃(α) were changed
in order to speed up the algorithm.

List decoding

The second improvement can be done at the last stage of the decoding process.
When a row Bi,∗ of matrix B is obtained, the correct value does not necessarily
correspond to the ML estimate. Hence, one can instead return s its most likely
values B

(j)
i,∗ along with their correlations z

(j)
i for 0 ≤ j < s. Any candidate

matrix is associated with a vector w so that its rows are B(wi)
i,∗ and the reliability

score of the matrix is μ(w) =
∑

i z
(wi)
i . We propose to construct L candidate

matrices with the largest scores. For each matrix B(l), the algorithm proceeds
further and produces a list of candidate codewords c(l). The closest codeword
to the received vector is returned as the decoding result.

Observe that for every fixed i the sequence {z(j)i }s−1j=0 corresponds to the
outputs of the procedure RM1SubcodeDecode, which are sorted in the decreasing
order. Therefore, vector w = (w0, . . . , wm−1) has larger score μ(w) than any
vector w′ s.t. w′i ≥ wi for all 0 ≤ i < m and there exists an index i′ s.t.
w′i′ > wi′ . This property is exploited in order to efficiently construct L matrices
with the largest scores one-by-one using the priority queue. We start from
the matrix associated with an all-zero vector and after processing the matrix
(w0, . . . , wm−1) we add all vectors (w0+1, . . . , wm−1), . . . , (w0, . . . , wm−1+1) to
the priority queue, discarding duplicates. Thus we ensure that at most m new
entries are added to the priority queue and hence the complexity of the candidate
matrix generation step is dominated by O(n log n) term from the decoding
of first-order code and therefore the overall complexity is O((L + n)n log n).
Algorithm 9 demonstrates the pseudocode of this procedure.

Let us also briefly mention other attempted strategies:

3.2. Improved Decoding of Second-Order Reed-Muller Codes 37

Algorithm 8 Improved SPM decoder
1: procedure SPMImproved(y, h, s)
2: for α ∈ F

m
2 \ {0} do

3: for β ∈ F
m
2 \ {0} do

4: y
(α)
β ← yβ � yα+β

5: {(v(α),j,g(α),j)|0 ≤ j < s} ←RM1Decode(y(α))
6: for α ∈ F

m
2 \ {0} do

7: g̃(α) ← Maj
β∈Fm

2
0≤j1,j2<s

(g(β),j1 + g(β+α),j2)

8: for i← 2 to h do
9: for α ∈ F

m
2 \ {0} do

10: g(α) ← g̃(α)

11: for α ∈ F
m
2 \ {0} do

12: g̃(α) ← Maj
β∈Fm

2

(g(β) + g(β+α))

13: for i← 0 to m− 1 do
14: for α ∈ F

m
2 \ {0} do

15: t
(i)
(α) ← (−1)g̃(α)

i v(α),0

16: (zi,Bi,∗)←RM1SubcodeDecode(i, t(i))
17: for i← 0 to m− 1 do
18: for j > i do
19: if zi > zj then
20: Bi,j ← Bj,i

21: ĉ← ev(
∑

i<j Bi,jxixj)
22: for i← 0 to 2m − 1 do
23: ŷi ← (−1)ĉiyi
24: (v,g)←RM1Decode(ŷ)
25: return B,g

• Combine Algorithm 8 and 9. The simulations show that the error-
correction capability does not improve. When the repeating majority
voting is applied, it pushes vectors ti closer to the codewords of first-order
code. During this procedure, either the vector is pushed towards the
right direction (in this case ML decoding of the subcode returns correct
value of Bi,∗), or it is brought too far from the correct estimate and has
sufficiently small correlation to not appear among the several most likely
values.

• Replace hard votes in the majority voting by soft estimates v(β) � v(α+β).
No observed impact on performance.

38 Symmetry-based Decoding of Reed-Muller Codes

Algorithm 9 List SPM decoder
1: procedure SPMList(y, s, L)
2: for α ∈ F

m
2 \ {0} do

3: for β ∈ F
m
2 \ {0} do

4: y
(α)
β ← yβ � yα+β

5: (v(α),g(α))←RM1Decode(y(α))
6: for α ∈ F

m
2 \ {0} do

7: g̃(α) ← Maj
β∈Fm

2

(g(β) + g(β+α))

8: for i← 0 to m− 1 do
9: for α ∈ F

m
2 \ {0} do

10: t
(i)
α ← (−1)g(α)

i v(α)

11: {(z(j)i ,B
(j)
i,∗)|0 ≤ j < s} ←RM1SubcodeDecode(i, t(i))

12: Q.Push(
∑

i z
(0)
i ,0)

13: for l ← 0 to L− 1 do
14: (z,w)←Q.ExtractMax()
15: for i← 0 to m− 1 do
16: w′ ← w
17: w′i ← w′i + 1
18: if w′i < s− 1 then
19: Q.Push(

∑
i z

(w′i)
i ,w′)

20: for i← 0 to m− 1 do
21: B

(l)
i,∗ ← B

(wi)
i,∗

22: for i← 0 to m− 1 do
23: for j > i do
24: if z

(wi)
i > z

(wj)
j then

25: B
(l)
i,j ← B

(l)
j,i

26: ĉ(l) ← ev(
∑

i<j B
(l)
i,jxixj)

27: for i← 0 to 2m − 1 do
28: ŷ

(l)
i ← (−1)ĉ(l)i yi

29: (v,g(l))←RM1Decode(ŷ(l))
30: return B(l),g(l) that correspond to the codeword closest to y.

3.2. Improved Decoding of Second-Order Reed-Muller Codes 39

Table 3.2 – Decoding algorithms for RM(2,m)

Algorithm Complexity
1 Recursive/SCL [51, 28] O(Ln log n)
2 RPA [52] O(n2 log n)
3 SPM [69] O(n2 log n)
4 Proposed improved SPM O(n2(log n+ s2 + h))
5 Proposed list SPM O((L+ n)n log n)

Performance

In this section, the performance of proposed algorithms is illustrated. We
consider the transmission through AWGN channel with BPSK modulation.
The performance of proposed methods is compared with other efficient RM
decoding algorithms that can be found in the literature. Frame error rate
(FER) is used as a performance metric. All participants of this comparison are
presented in table 3.2. The lower bound on the ML performance was computed
by running the SCL decoder with sufficiently large list so that whether an
incorrect codeword is returned, it is closer to the received vector than the correct
codeword and therefore the ML decoder would also be erroneous. We also
adjust the parameters of all algorithms so that the complexity is approximately
O(n2 log n).

Figures 3.10 and 3.11 illustrate the results for codes RM(2, 8) and RM(2, 9),
respectively. It can be seen that for the former code, all algorithms perform
sufficiently close to each other and within less than 0.25 dB from the simulated
ML lower bound. However, for the latter code we get a different picture.
SCL algorithm with list size L = 512 demonstrates significantly worse results
compared to the other algorithms and SPM algorithm also falls behind. On
the other hand, both proposed algorithms as well as RPA perform equally well.
SCL is outperformed by 0.5 dB and SPM by 0.2 dB.

Remark. A permutation-based version of SCL decoder closes the gap and
performs similarly to RPA and the proposed decoders.

Complexity reduction

The dominant factor in the complexity of the projection-based algorithms is
the number of decoded projections. One can now ask whether it is possible to
take a smaller subset B of the derivative directions without losing too much in
performance. We studied two possible strategies for selecting B:

• Any coordinate g(α) has the same number of check relations (3.6) (which
decreases quadratically with |B|). Choosing the elements of B uniformly
at random gives the similar result;

40 Symmetry-based Decoding of Reed-Muller Codes

10-4

10-3

10-2

10-1

 0.5 1 1.5 2 2.5

FE
R

Eb/N0

SCL, L=256
RPA, L=1

SPM
SPM-improved, s=3, h=3

SPM-list, s=2, L=256
ML, lower bound

Figure 3.10 – Performance of decoding RM(2, 8)

10-4

10-3

10-2

10-1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

FE
R

Eb/N0

SCL, L=512
RPA, L=1

SPM
SPM-improved, s=4, h=4

SPM-list, s=2, L=512
ML, lower bound

Figure 3.11 – Performance of decoding RM(2, 9)

3.2. Improved Decoding of Second-Order Reed-Muller Codes 41

10-3

10-2

10-1

100

 16 32 64 128 256 512

FE
R

Decoded projections

SPM-list, s=2, L=512
RPA, L=1

Figure 3.12 – RM(2, 9), projection-based performance degradation

• Some coordinates g(α) have large number of check relations and some
have very small; we treat the latter as erasures.

Our experiments showed that the first outcome gives better performance.
Figure 3.12 demonstrates how the performance of RPA and the proposed list
SPM decoder degrades with |B| with the uniform selection rule. The code in
consideration is RM(2, 9) and the transmission takes place over the AWGN
channel with Eb/N0 = 1.5dB.

It can be seen that frame error rate of the proposed decoder grows signifi-
cantly faster. We attribute it to the iterative fashion of RPA algorithm which
makes it more robust to the less reliable estimates.

Remark. The recent paper [72] tackles this problem by running several
instances of RPA algorithm with randomly selected sets B and returning the
closest codeword to the received vector, which for second-order codes allows to
even outperform the original RPA algorithm and reach the ML performance
while having the smaller complexity.

Symmetry-Induced
Constraints on Decoding
Efficiency 4
In the previous chapter we discussed the decoding of Reed-Muller codes based
on their automorphism group and presented two algorithms. Although it is
clear that some gain can be achieved compared to the conventional decoders,
the experiments demonstrate that near-ML performance quickly becomes com-
putationally unfeasible for large block lengths except the low- and high-rate
regimes. The successive cancellation decoding of eBCH codes needs even
larger list size to achieve near-ML performance [73]. The similar phenomenon
is observed when trying to design codes that are efficiently decodable with
permutation-based methods.

In this chapter, we demonstrate that the invariance under general affine
group makes the code asymptotically ill-suited for successive cancellation
decoding or its variations. We also present the first proof that eBCH and Reed-
Muller codes need an exponential list size for near-ML decoding. Moreover,
the similar result holds even under significantly milder conditions, i.e., when
we only require that several partial derivatives of the code have small rates. In
the last section we apply our partial symmetry framework to show that the
automorphism group of polar codes cannot include many affine permutations
besides the lower-triangular group.

The initial version of this work, which only considers monomial codes,
appears in [74] and its further refinement and generalization for the case of
arbitrary binary linear codes is published in [75]. This chapter is based on the
preprint version [76] of the latter manuscript.

43

44 Symmetry-Induced Constraints on Decoding Efficiency

C

C(−) C(+)

y
(−
) c

(−
)

y (+
)

c (+
)

c

y

Figure 4.1 – Recursions in successive cancellation decoding

4.1 Partial Derivatives and Decoding
Efficiency

Let us begin by explaining the dependence between the rates of the derivative
codes and the complexity of the optimal decoding with SCL algorithm.

Proposition 6. Consider a code C of length n = 2m and the transmission
through a BMS channel W . If for all i ∈ [m] holds R(C(ei)) > I(W (−)), SC list
algorithm needs the list size L = 2Ω(n) to achieve ML performance.

Proof. Consider a vector y that corresponds to the output of BMS channel
W after the codeword of C was transmitted. The recursive application of
channel transformations (2.4) in the SC decoding process can be reformulated
as follows:

1. Recover c(−) = c
n/2−1
0 ⊕ cn−1n/2 from vector y(−) that corresponds to the

output of channel W (−).

2. Recover c(+) = cn−1n/2 = c(−) ⊕ c
n/2−1
0 from vector y(+) that corresponds

to the output of channel W (+), assuming that c(−) is correct.

3. Return c = (c(−) ⊕ c(+)|c(+)).

In this perspective, the decoding is a two-stage process, when we first recover
c(−) ∈ C(−), assuming the transmission through the synthetic channel W (−),
and then use it to recover c(+) ∈ C(+), assuming the transmission through the
synthetic channel W (+). Figure 4.1 illustrates this process.

4.1. Partial Derivatives and Decoding Efficiency 45

Observe now that any codeword of the code C(−) = {cn/2−10 ⊕ cn−1n/2 |c ∈ C}
that appears at the first step of the SC recursions can be written as

c(−) = (c0 + c0⊕e0 , . . . , cn/2−1 + cn/2−1⊕e0),

and therefore the code C(−) is a partial derivative of C w.r.t. x0. Consequently,
at each level of the SC recursions we pick a variable xi and perform the
decomposition of C into codes C(−) and C(+), where the former is a partial
derivative w.r.t. variable xi and the latter has generating set MC(+) = {f ∈
C| ∂f

∂xi
= 0}. The standard SC decoding implies the selection of variable xi at

level i, where level 0 is the recursion start and at level m we have length-1
codes that correspond to the information and frozen bits.

The SCL decoder ensures that at every step of the recursion there are at
most L distinct vectors c(−) or c(+) and therefore the decoder can only succeed
if the correct codeword is in the list. Now, if R(C(−)) > I(W (−)), we are
trying to decode above the capacity and therefore need the list at least of size
2n(R(C(−))−I(W (−))) to succeed [77, eq. (1.6)]. It remains to recall that code C(−)
is a partial derivative C(ei), where i depends on the chosen ordering.

Remark. In case of SC decoding of an arbitrary polynomial code using the
GPD framework (2.11), the final codeword has the form c = (c(−) ⊕ c(+) ⊕
ĉ|c(+) ⊕ ĉ), where ĉ = u

n/2−1
0 ĨG3. Since u

n/2−1
0 is known after the recovery of

c(−), the required corrections at steps 2 and 3 are trivial.

Remark 2. The condition R(C(ei)) > I(W (−)) in Proposition 6 implies that
the code C(ei) is capacity-achieving and can be safely replaced with R(C(ei)) > Î,
where Î is the largest capacity of the channel from the same family as W (−) so
that the ML decoding of C(ei) almost always succeeds.

As follows from Proposition 6, in order to have good performance with
small list size a code should have a derivative with sufficiently small rate. For
example, we know that a polar code of rate R = I(W) achieves capacity of W
under SC decoding and since by construction it is a (u|u+ v) concatenation
of two polar codes for the corresponding channels W (−) and W (+), there is
a derivative C(ei) of rate R̂(−) ≈ I(W (−)). By convention we have i = 0 (or
i = m− 1 if the bit-reversal permutation is utilized in the code construction).

The case of permutation-based SCL decoding is significantly more demand-
ing in terms of the code structure. In section 3.1.2 we demonstrated that
applying a variable permutation on the received vector changes the order of
partial derivatives in the SC recursions. Consequently, different codes C(−) and
C(+) appear during the decoding process and in order to get good performance
we need several derivatives C(ei) with sufficiently small rates.

46 Symmetry-Induced Constraints on Decoding Efficiency

C(16, 8)

C(−)(8, 1) C(+)(8, 7)

C(−−)(4, 0) C(+−)(4, 1) C(−+)(4, 3) C(++)(4, 4)

(a) π = (0, 1, 2, 3)

C(16, 8)

C(−)(8, 3) C(+)(8, 5)

C(−−)(4, 1) C(+−)(4, 2) C(−+)(4, 2) C(++)(4, 3)

(b) π = (3, 2, 1, 0)

Figure 4.2 – Different decompositions of (16, 8) code with MC =
{1, x0, x1, x2, x3, x1x2, x1x3, x2x3}.

Example 2. Consider (16, 8, 4) code C with

MC = {1, x0, x1, x2, x3, x1x2, x1x3, x2x3}.

In case of standard SC decoding we have C(−) = C(e0) = ∂
∂x0
C that is a (8, 1, 8)

code with generating set MC(e0) = {1}. On the other hand, variable permutation
π = (3, 2, 1, 0) corresponds to C(−) = C(e3) = ∂

∂x3
C that is a (8, 3, 4) code with

generating set MC(e3) = {1, x1, x2}. Figure 4.2 demonstrates one more step of
the SC recursions.

4.2 Fully Symmetric Codes

Definition 1. A (2m, k) code C is fully symmetric if all its partial derivatives
have equal dimensions.

Let us denote the dimension of the derivatives as k̃. In this section, we
demonstrate that for fully symmetric codes k̃ is bounded from below and in
fact becomes of order k/2. We also show that the Reed-Muller and eBCH codes
are fully symmetric.

Proposition 7. Consider a (2m, k) fully symmetric code C. If its dimension
can be expressed as k =

∑l−1
i=0

(
m
i

)
+ j lcm(l,m)

l
, where 0 ≤ j lcm(l,m)

l
<

(
m
l

)
, then

k̃ ≥
l−2∑
i=0

(
m− 1

i

)
+ j

lcm(l,m)

m
(4.1)

We get lcm in the expression due to the full symmetry constraint, which is
further explained below. We call the code optimal if it satisfies (4.1) with an
equality.

Proposition 8. Consider a sequence of optimal fully symmetric codes C of
fixed rate and increasing length 2m. Then for i ∈ [m]

lim
m→∞

R(C(ei)) = R(C). (4.2)

4.2. Fully Symmetric Codes 47

Proposition 7 implies that list or permutation decoding in any channel W
s.t. k̃

2m−1 > I(W (−)) needs an exponential complexity to achieve the ML per-
formance, and proposition 8 states that this condition asymptotically becomes
R(C) > I(W (−)).

4.2.1 Proof of Proposition 7 for Monomial Codes

Let us start from the rate-1 code Cm. All its derivatives are also rate-1 codes
and therefore Cm is fully symmetric. Any monomial code C can be constructed
by removing 2m − k monomials from MCm and we would like to do it in a
way such that C is fully symmetric and k̃ is minimized. Observe that ∂xv

∂xi
is

nonzero iff vi = 1 and hence removing xv from the generating set decreases the
dimensions of wt(v) = deg(xv) partial derivatives by 1 (or equivalently, the
dimensions of all derivatives are decreased on average by wt(v)

m
). This implies

that the optimum strategy is to remove 2m−k monomials of the largest degrees.

If k =
∑l

i=0

(
m
i

)
, 0 ≤ l ≤ m, we simply remove all monomials of degree

larger than l and consequently each derivative contains all monomials on m− 1
variables of degree at most l − 1, which gives k̃ =

∑l−1
i=0

(
m−1
i

)
. Otherwise, we

can write k =
∑l−1

i=0

(
m
i

)
+ p, 0 < p <

(
m
l

)
, and remove p monomials of degree l

in addition. It follows that the dimensions of all derivatives are decreased on
average by pl

m
, and since the code is fully symmetric the actual decrease for any

derivative should also be pl
m

. Therefore, pl
m

must be an integer, which is true
only if p is a multiple of lcm(l,m)

l
, which implies the bound (4.1).

The bound coincides with the parameters of Reed-Muller codes when j = 0.
Otherwise, the set of monomials to remove can be found by considering a
bipartite graph G = (VL, VR, E) with left vertices hi ∈ VL isomorphic to
variables xi, 0 ≤ i < m and right vertices hv ∈ VR isomorphic to all degree-l
monomials xv. We draw an edge between hi and hv if the monomial xv contains
variable xi. This graph is (

(
m−1
l−1

)
, l)-biregular and we want to remove all but

j lcm(l,m)
l

of its right vertices so that the graph remains biregular, i.e., find its
(·, l)-biregular subgraph G ′.

Figure 4.3 demonstrates an example of graph G for m = 4, l = 2 and one
of its possible (1, 2)-regular subgraphs G ′ (in red). Such G ′ can be found as a
maximum flow solution for the network with the source connected to all left
vertices with capacity- lcm(l,m)

l
edges, the sink connected to all right vertices

with capacity-m edges and all e ∈ E having the unit capacity.

4.2.2 Proof of Proposition 7 for Polynomial Codes

We start from a simple case and consider an (2m, k) code Cr ⊆ span{xv|wt(v) =
r} for some fixed r. By definition, 0 ≤ k ≤

(
m
r

)
, and consequently 0 ≤ k̃ ≤

48 Symmetry-Induced Constraints on Decoding Efficiency

x3

x2

x1

x0

x2x3

x1x3

x1x2

x0x3

x0x2

x0x1

Figure 4.3 – (3, 2)-regular G and (1, 2)-regular G ′

(
m−1
r−1

)
. Code Cr by definition is spanned by k degree-r linearly independent

homogeneous polynomials fs, 0 ≤ s < k. Assume now a certain ordering on
monomials xv(j) , e.g., lexicographic w.r.t. v(j), and consider the k×

(
m
r

)
matrix

M such that Ms,j = 1 if fs includes v(j). M is a basis of the linear space of all
polynomials whose evaluations are codewords of Cr and therefore has full row
rank, so we can use Gaussian elimination to transform it into M̃ =

(
I ∗

)
P,

where P is a column permutation matrix. Let us further define a vector φ s.t.
φj = 1 if j-th column of M̃ is a columnd of the identity matrix.

Similarly, the generator of the linear space corresponding to the partial
derivative ∂

∂xi
is a matrix M̃i obtained by removing all columns of M̃ but the

ones that correspond to monomials that include xi = 1. Its dimension is equal to
rank M̃i. From the construction it follows that rank M̃i ≥ |{j|φj = 1∧v(j)i = 1}|.
In case of monomial codes we have rank M̃i = |{j|φj = 1∧ v

(j)
i = 1}|, so it only

remains to see that the bound (4.1) minimizes maxi |{j|φj = 1 ∧ v
(j)
i = 1}|.

The extension to the general case is straightforward.

Example 3. Consider m = 4, r = 2, k = 4 and assume φ = (0, 1, 1, 1, 1, 0),
where the ordering on degree-2 monomials is (x0x1, x0x2, x2x3, x1x2, x1x3, x2x3).
This vector corresponds to the matrix

M̃ =

⎛
⎜⎜⎝
∗ 1 0 0 0 ∗
∗ 0 1 0 0 ∗
∗ 0 0 1 0 ∗
∗ 0 0 0 1 ∗

⎞
⎟⎟⎠ ,

where ∗ can be any binary value. The partial derivatives correspond to the

4.2. Fully Symmetric Codes 49

matrices

M̃0 =

⎛
⎜⎜⎝
∗ 1 0
∗ 0 1
∗ 0 0
∗ 0 0

⎞
⎟⎟⎠ M̃1 =

⎛
⎜⎜⎝
∗ 0 0
∗ 0 0
∗ 1 0
∗ 0 1

⎞
⎟⎟⎠ ,

M̃2 =

⎛
⎜⎜⎝
1 0 ∗
0 0 ∗
0 1 ∗
0 0 ∗

⎞
⎟⎟⎠ M̃3 =

⎛
⎜⎜⎝
0 0 ∗
1 0 ∗
0 0 ∗
0 1 ∗

⎞
⎟⎟⎠ .

We have maxi rank M̃i ≥ 2 and we know that the code spanned by monomials
{x0x2, x0x3, x1x2, x1x3} has maxi rank M̃i = 2.

4.2.3 Proof of Proposition 8

Let m be an odd number and consider an optimal fully symmetric code of
rate 1/2. Its dimension can be expressed as k = 2m−1 =

∑�m/2�
i=0

(
m
i

)
and its

derivatives have dimension

k̃ =

�m/2�−1∑
i=0

(
m− 1

i

)
.

Now consider
∣∣∣ k̃
2m−1 − 1

2

∣∣∣ = ∣∣∣∣(m−1
�m/2�)
2m

∣∣∣∣, which goes to 0 with m → ∞, and to

finish the proof it remains to notice that the bound (4.1) is convex, which
gives the same convergence for all values of k. Assume now that ∂C

∂xi
is a

subcode of C, i.e., Aut(C) contains the permutation x → x + ei. Since any
permutation x→ x+ b can be decomposed into a product of transpositions,
we have dim ∂C

∂xi
≤ k/2 due to Theorem 1 and therefore the lower bound on the

derivative code rate converges to the worst-case value.

4.2.4 Symmetry of RM and eBCH Codes

Proposition 9. If C is invariant w.r.t. a swap of variables (xi, xj), then its
partial derivatives w.r.t. these variables are permutation equivalent.

Proof. Consider Boolean functions f and f̃ , where f̃ is obtained from f by
swapping variables xi and xj. It follows that ∂f̃

∂xj
can be obtained from ∂f

∂xi
by

swapping variables xi and xj.

Proposition 10. Reed-Muller codes are fully symmetric

Proof. Indeed, by construction Mr,m includes all m-variate monomials up to
degree r and the generating set of any partial derivative consists of all (m− 1)-
variate monomials up to degree r − 1.

50 Symmetry-Induced Constraints on Decoding Efficiency

Lemma 1. If Aut(C) contains permutation π s.t. π(x + b̃) = π(x) + b for
some nonzero b, b̃ ∈ F

m
2 , then the codes induced by the direction derivatives

Db and Db̃ are permutation equivalent.

Proof. Consider some function f(x) which is a codeword of C and its permuta-
tion g(x) = f(π(x)). Take the derivatives in directions b and b̃:

Dbf(x) = f(x) + f(x+ b)

Db̃g(x) = g(x) + g(x+ b̃)

= f(π(x)) + f(π(x+ b̃)) = f(π(x)) + f(π(x) + b)

It follows that Db̃g can be obtained from Dbf by map x → π(x). Since
both f and g are codewords of C, we can conclude that any codeword of Db̃C
can be obtained from a codeword of DbC by permutation and vice versa and
consequently the derivatives of C in directions b and b̃ lead to permutation
equivalent codes.

Proposition 11. Affine-invariant codes are fully symmetric

Proof. A code is called affine-invariant if it is invariant under GA(1,F2m). Any
permutation x→ ax ∈ GA(1,F2m) satisfies the conditions of Lemma 1 for all
pairs (b, b̃) s.t. bb̃−1 = a and it follows that all derivative codes are permutation
equivalent.

Corollary 1. eBCH codes are fully symmetric

Proof. Indeed, by Proposition 2 eBCH codes are affine-invariant and therefore
fully symmetric.

Figure 4.4 shows the actual derivative code rates for eBCH codes of length
512 along with the lower bound (4.1) on the derivative rates for fully symmetric
codes (recall that RM codes achieve this bound) compared to the smallest
derivative rate for polar codes constructed using the Gaussian approximation
[78] for Eb/N0 = 2dB. By convention, the derivative code of polar code with
the smallest rate is C(e0). The capacity transformation for BEC is given as a
reference (if I(W) = (1 − ε), I(W (−)) = (1 − ε)2). Observe that the bound
is rather loose for eBCH codes, that are in fact close to an upper bound
k/2. Potentially a better bound might be derived by taking more structural
properties into consideration rather than just full symmetry, which we leave
as a direction for the future research. However, this plot provides a good
demonstration why the list size for near-ML decoding of the eBCH codes grows
substantially faster than for the Reed-Muller codes (and why for both codes it
quickly becomes impractical). An interesting observation is that the smallest
derivative rate for polar codes is close to the capacity of the erasure channel
W (−) despite being constructed for the Gaussian channel.

4.2. Fully Symmetric Codes 51

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

je
ct

io
n

ra
te

Code rate

fully symmetric codes, min
polar codes, best, 2dB

eBCH codes
BEC

Figure 4.4 – Bounds on the derivative code rates for fully symmetric codes,
n = 512

4.2.5 Interlude: Derivative-Constrained Polar Codes

Let us now pay a little bit more attention to the fact that the best projection
C(e0) for polar codes constructed for Gaussian channel has much smaller rate
compared to the capacity of the underlying channel. We know that polar
codes are optimized for the case of SC decoding without list (L = 1) and we
can expect that any other code will have inferior performance. However, the
situation changes when we consider list decoding with L > 1. Reed-Muller
codes represent the trivial example, outperforming polar codes by far if the list
size is unbounded. Whereas the analysis of the error probability of list decoder
for any finite list size L > 1 remains an open problem, we propose a simple
heuristic construction of polar codes with improved performance under SCL
decoding, which can be described as follows.

Consider the construction of (n, k) polar code and assume that we have
the vector r of reliabilities of the corresponding synthetic bit subchannels.
In order to obtain a vanilla polar code, we take the frozen set F as indices
of n − k smallest entries of r. The dimension of C(e0) can be computed as
|{i ∈ F c|i < n/2}|, i.e., the number of non-frozen indices in the first half
of vector r. Let us denote this dimension as k̃∗. A derivative-constrained
(n, k) polar code with constraint parameter s is constructed by imposing the
restriction on set F so that dim C(e0) = k̃∗ + s. Such restriction can be easily
implemented by replacing s indices i′j < n/2 in F with the largest reliabilities
with s indices i′′j ≥ n/2 of non-frozen symbols with the smallest reliabilities.

Figures 4.5 and 4.6 demonstrate the performance of derivative-constrained

52 Symmetry-Induced Constraints on Decoding Efficiency

10−3

10−2

10−1

100

 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

F
E

R

Eb/N0

Codes (256,128), Gaussian approximation at 2dB

polar codes, L=32
polar codes, s=4, L=32
polar codes, s=8, L=32

polar codes, s=12, L=32
polar codes, s=16, L=32

10−3

10−2

10−1

100

 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

F
E

R

Eb/N0

Codes (256,128), Gaussian approximation at 2dB

polar codes, L=128
polar codes, s=4, L=128
polar codes, s=8, L=128

polar codes, s=12, L=128
polar codes, s=16, L=128

Figure 4.5 – Derivative-constrained polar codes, L = 32 and L = 128

10−3

10−2

10−1

100

 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

F
E

R

Eb/N0

Codes (256,128), Gaussian approximation at 2dB

polar codes, L=512
polar codes, s=4, L=512
polar codes, s=8, L=512

polar codes, s=12, L=512
polar codes, s=16, L=512

10−3

10−2

10−1

100

 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

F
E

R

Eb/N0

Codes (256,128), Gaussian approximation at 2dB

polar codes, L=2048
polar codes, s=4, L=2048
polar codes, s=8, L=2048

polar codes, s=12, L=2048
polar codes, s=16, L=2048

Figure 4.6 – Derivative-constrained polar codes, L = 512 and L = 2048

(256, 128) codes for s ∈ {4, 8, 12, 16}, where Gaussian approximation at Eb/N0 =
2dB is used to estimate the subchannel reliabilities and SCL algorithm with
L ∈ {32, 128, 512, 2048} is used for decoding. The performance plots confirm the
intuition behind the construction: whereas for L = 32, derivative-constrained
codes only for s = 4 and s = 8 perform strictly better, when L is increased the
similar thing happens to the codes with larger values of s, reaching s = 16 when
the list size L = 2048 is used during the decoding. Therefore, we can expect
that the optimal value s should grow with L and for unbounded list size the
optimal dim C(e0) for the derivative-constrained code most likely coincides with
the dimension of the corresponding Reed-Muller code (if k can be expressed as∑

0≤i≤r
(
m
r

)
for some r ≥ 0) since Reed-Muller codes in simulations demonstrate

the best ML performance among all monomial codes.

Remark. The construction of derivative-constrained polar codes with CRC or
polar subcodes has inferior performance compared to the vanilla constructions.

Remark 2. The essentially similar idea (although coming from somewhat
different motivation) was recently investigated in [79]. Whereas the idea of
derivative-constrained codes is based only on the topmost SC recursion step and
just the dimension of code C(e0) is modified, authors in [79] perform extensive

4.3. Partially Symmetric Codes 53

simulations combined with the dynamic programming approach to optimize
the dimensions of codes C(−) and C(+) at all levels of SC recursion. They
achieve the performance of CRC-concatenated polar codes without using CRC.
However, even after combining with CRC, there is no improvement over vanilla
CRC-concatenated codes.

4.3 Partially Symmetric Codes

We demonstrated that the full symmetry puts a rather restrictive lower bound
on the dimensions of the derivatives. In this section, we show what happens if
we demand fewer symmetries and derive the corresponding bound.

Definition 2. A (2m, k) code C is t-symmetric if t of its partial derivatives
have equal dimensions, which we denote as k̃t, and m − t have dimensions
strictly greater.

In other words, there exists a set of target derivatives Ht, |Ht| = t, such that
∀ei ∈ Ht dim C(ei) = k̃t and ∀ei /∈ Ht dim C(ei) > k̃t. A code is fully symmetric
if t = m, non-symmetric if t = 1 and partially symmetric otherwise. Reed-
Muller codes are fully symmetric and polar codes are in general non-symmetric.
Without loss of generality, we assume Ht = {ei|i ∈ [t]}.

Proposition 12. If a t-symmetric code C has dimension k =
∑l−1

i=0

(
t
i

)
2m−t +

j lcm(l,t)
l

, then

k̃t ≥
l−2∑
i=0

(
t− 1

i

)
2m−t + j

lcm(l, t)

t
(4.3)

We get lcm in the expression due to the t-symmetry constraint, which is further
explained below. Again we call a partially symmetric code optimal if it satisfies
(4.3) with an equality.

Proposition 13. Consider a sequence of optimal t-symmetric codes C of fixed
rate and increasing length 2m, where t is an increasing function of m. Then
for i ∈ [t]

lim
m→∞

R(C(ei)) = R(C). (4.4)

Therefore, even in more relaxed setting we get the lower bound similar to
the one for fully symmetric codes and identical asymptotic result. However,
the speed of convergence is different and depends on t. Using the result of
Reeves and Pfister that upper bounds the rate difference between RM(r,m)
and RM(r,m+ 1) [46, Lemma 7], we can conclude that

54 Symmetry-Induced Constraints on Decoding Efficiency

Table 4.1 – Impact of monomials on the dimension of code and its target
derivatives

l Change in dim Cm,t Change in ∂
∂xi

dim Cm,t #{xv : τv = l}
t 1 1 2m−t

t− 1 lcm(t,t−1)
t−1

lcm(t,t−1)
t

(
t

t−1
)
2m−t

...
...

...
...

1 t 1 t2m−t

R(C)−R(C(ei)) ≤ O

(
1√
t

)
(4.5)

4.3.1 Proof of Proposition 12

Define τv = |{i ∈ [t]|vi = 1}|, i.e. the number of variables {x0, . . . , xt−1} in the
monomial xv. We start from rate-1 code Cm and using the same argument as
in section 4.2.1 we conclude that removing 2m − k monomials of the largest τv
gives the optimal t-symmetric code. The number of monomials xv s.t. τv = l is(
t
l

)
2m−t since l of the variables {x0, . . . , xt−1} can be selected in

(
t
l

)
ways with

any combination of the remaining m− t.

Figure 4.7 demonstrates the lower bound (4.3) on the derivative rates of
partially symmetric codes for t > 2 and n = 512. In case of 3-symmetric codes,
the bound is close to the BEC curve, which is similar to the best derivative for
polar codes, so we can expect rather good list decoding performance. However,
it quickly grows with t, so we expect the large list size for near-ML decoding
except for the low- and high-rate regions.

Similarly to the section 4.2.2, the bound for monomial codes also holds for
polynomial codes.

4.3.2 Proof of Proposition 13

Let t be an odd number and consider an optimal t-symmetric code of rate 1/2.
Its dimension can be expressed as k = 2m−1 = 2m−t

∑�t/2�
i=0

(
t
i

)
and its target

derivatives have dimension

k̃t = 2m−t
�t/2�−1∑

i=0

(
t− 1

i

)
.

If t is an increasing function of m, similarly to section 4.2.3 the expression
k̃t/2

m−1 converges to 1/2 and due to convexity of bound (4.3), the same holds
for all values of k. Therefore, any sequence of (2m, k) binary linear codes
with the partial symmetry growing with m is asymptotically bad for polar-like
decoding.

4.3. Partially Symmetric Codes 55

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

je
ct

io
n

ra
te

Code rate

t=3
t=4
t=5
t=6
t=7
t=8
t=9

BEC

Figure 4.7 – Lower bounds on the derivative code rates for partially symmetric
codes, n = 512

4.3.3 Code Construction

The construction of the optimal t-symmetric monomial codes, i.e., achieving
(4.3) with equality, is summarized in Algorithm 10.

Algorithm 10 Construction of optimal partially symmetric code
Take MC = MCm , k′ = |MCm | = 2m

l̂ ← t
while k′ − 2m−t

(
t
l̂

)
≥ k do

Remove from MC all monomials with τv = l̂
l̂ ← l̂ − 1, k′ ← k′ − 2m−t

(
t
l̂

)
d̂← m− t+ l̂
while k′ −

(
t
l̂

)(
m−t
d̂−l̂

)
≥ k do

Remove from MC all degree-d̂ monomials with τv = l̂
d̂← d̂− 1, k′ ← k′ −

(
t
l̂

)(
m−t
d̂−l̂

)
while k′ −

(
t
l̂

)
≥ k do

Pick a degree-(d̂− l̂) monomial xs s.t. τs = 0
Remove from MC all degree-d̂ monomials with τv = l̂ that contain xs

k′ ← k′ −
(
t
l̂

)
return MC

We can use Algorithm 10 to establish an upper bound on the minimum
distance of codes achieving k̃∗m,t.

56 Symmetry-Induced Constraints on Decoding Efficiency

Table 4.2 – Monomials to remove.

l Impact on dimension Monomials
3 Remove 1 monomial x0x1x2x3

k̃ decreases by 1 x0x1x2

2 Remove 3 monomials x0x1x3, x0x2x3, x1x2x3

k̃ decreases by 2 x0x1, x0x2, x1x2

1 Remove 3 monomials x0x3, x1x3, x2x3

k̃ decreases by 1 x0, x1, x2

Proposition 14. Consider a code Cm,t which achieves the lower bound and
assume that Algorithm 10 stopped at some l = l̂. Then the minimum distance
of Cm,t is at most 2m−z, where z = l̂ + m − t if less than

(
t
l̂

)
first entries at

stage l = l̂ were removed and z = l̂ − 1 +m− t otherwise.

Proof. For any l, the maximal total degree of monomials considered in this
stage is l +m− t (l variables from Mt and all m− t from Mc

t), and there are(
t
l

)
such monomials. Plugging this into (2.1) completes the proof.

Remark Algorithm 10 constructs codes with poor minimum distance for
small values of t. For example, in case of 2-symmetric codes with dimension
k ≥ 2m − 2m−2 only at most 2m−2 monomials of τv = 2 are removed and from
Proposition 14 it follows that the code has minimum distance at most 2.

In practice, one can construct t-symmetric codes as subcodes of some Reed-
Muller codes RM(r,m) to guarantee that the minimum distance is at least
2m−r. In this case, at step 1 we start from Mr,m instead of MCm , at step 2
the term 2m−t is replaced with

(
t
l̂

)∑min(m−t,r−l̂)
i=0

(
m−t
i

)
and at step 3 the initial

value of d̂ becomes min(m− t+ l̂, r) (since after step 1 all monomials with the
degree greater than r are already removed and therefore out of consideration).

Example 4. Consider m = 4, t = 3 and k = 8. All monomials with nontrivial
τv are listed in Table 4.2 sorted in the removal order. Start from M4, k

′ = 16
and go to step 2. Set l̂ = 3. 16 − 24−3

(
3
3

)
= 14 ≥ 8, so we remove all

monomials that contain x0x1x2 (x0x1x2x3 and x0x1x2), now k′ = 14 and l̂ = 2.
14 − 24−3

(
3
2

)
= 8 ≥ 8, so we remove all monomials that contain x0x1, x0x2

or x1x2 (x0x1x3, x0x2x3, x1x2x3 and x0x1, x0x2, x1x2), now k′ = 8 and the
construction procedure is terminated since k′ = k.

The constructed (16, 8, 4) code has generating set

MC4,3 = {x0x3, x1x3, x2x3, x0, x1, x2, x3, 1}

and all of its target derivatives have the generating set {x3, 1} of cardinality 2.

4.3. Partially Symmetric Codes 57

Assume that k satisfies proposition 12 and Algorithm 10 ends with k′ > k.
This means that for some fixed degree-(d̂ − l̂) monomial xs, τs = 0 we need
to remove k′ − k degree-d̂ monomials with τv = l̂ that contain xs so that
the dimensions of all target derivatives are decreased by (k′−k)l̂

t
. The set of

monomials to remove can be found using the same bipartite graph formulation
as in section 4.2.1.

4.3.4 Structure of Partially Symmetric Monomial Codes

Let us define Čm,t as the code obtained from Algorithm 10.

Proposition 15. For any Čm,t holds Tm ∈ Aut(Čm,t).

This property follows directly from the code construction. Consider a
monomial xv ∈MČm,t

and assume it has l̃ variables in Mt. Any divisor xs of
xv has τs ≤ l̃ and smaller degree, so it cannot be removed from MČm,t

before
xv in the construction process.

Proposition 16. Čm,t is invariant w.r.t. any permutation on sets {x0, . . . , xt−1}
and {xt, . . . , xm−1}.

It is sufficient to observe that for any d, l all degree-d monomials with τv = l
are either in MČm,t

or its complement.

Note that in some cases codes Čm,t might coincide with the ones from [36]
(which are for some choice of parameters invariant w.r.t. {x0, . . . , xt−1}, but
are optimized for SC decoding error probability rather than the projected
code dimensions), but contrary to them the construction of Čm,t is channel-
independent.

Proposition 17. For any ei ∈ Ht code Č(ei)m,t achieves k̃∗m−1,t−1.

Consider the generating set of code Čm,t. It contains all monomials of two
types:

1. With τv < l̂;

2. With τv = l̂ and total degree less than d̂

for some l̂, d̂. When we take the derivative in the direction ei ∈ Ht, the
monomials of first type now have less than l̂− 1 variables in Mt \ {xi} and the
monomials of second type now have exactly l̂ − 1 variables in Mt \ {xi} and
total degree less than d̂− 1. The only thing left here is to notice that matches
the description of code Čm−1,t−1.

58 Symmetry-Induced Constraints on Decoding Efficiency

10−5

10−4

10−3

10−2

10−1

100

 0.5 1 1.5 2 2.5 3 3.5

F
ra

m
e

er
ro

r
ra

te

Eb/N0

5−symmetric, P=8
5−symmetric, L=8
5−symmetric, ML

3−symmetric, P=8
3−symmetric, L=8
3−symmetric, ML

Figure 4.8 – List and permutation decoding performance, (256, 127) 3-symmetric
and (256, 128) 5-symmetric monomial codes

4.3.5 Performance of Partially Symmetric Monomial
Codes

We consider the transmission via additive white Gaussian noise (AWGN)
channel with binary phase shift keying (BPSK) modulation. We compare
the list and permutation decoding of optimal (256, 127) 3-symmetric and
(256, 128) 5-symmetric monomial codes that are subcodes of RM(4, 8), which
are constructed with the proposed algorithm. The set of permutations πi is
selected as in [36], namely by sorting all m! factor graph layer permutations
by the SC decoding error probability and picking P smallest such that the
Hamming distance between any pair (πi′ , πi′′) is at least 5 so that they are
more likely to correct different error patterns. We observed that this method
performs better than randomly choosing from t! layer permutations.

The results are presented at figure 4.8. Despite almost identical ML per-
formance, 3-symmetric codes perform better under SCL decoding. In case
of 5-symmetric codes, permutation decoding is as efficient as SCL. A similar
behavior for partially symmetric codes is also observed in [43] and [44], where
a larger group of permutations is used for the decoding.

We also demonstrate the performance of partially symmetric monomial
codes in BEC(ε), where the polynomial-time ML decoding is available. Figure
4.9 shows the frame error rate of codes of length 512 and rate 1/2, constructed
for different values of t such that the minimum distance of the constructed
codes for t ≤ 7 is equal to 16 (for t = 8 = 9 we get the Reed-Muller code with
dmin = 32). The polar code at the figure is constructed for each value of ε. Its

4.3. Partially Symmetric Codes 59

10-6

10-5

10-4

10-3

10-2

10-1

100

 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48

F
ra

m
e

er
ro

r
ra

te

Erasure probability

Polar
t=2
t=3
t=4
t=5
t=6
t=7

t=8=9 (=RM(4,9))

Figure 4.9 – ML performance in BEC, n = 512, k = 256.

minimum distance depends on the target erasure probability and jumps from 8
to 16 between ε = 0.36 and ε = 0.38.

One conclusion that can be made from the picture is that the ML perfor-
mance does not strictly improve with t. However, partially symmetric codes
for some values of t demonstrate better performance compared to the polar
code, although the gap is not large.

In order to further illustrate the limitations of the projection-based decod-
ing, let us consider a variation of RPA algorithm [52] for decoding arbitrary
error-correcting codes in the binary erasure channel, which is summarized in
Algorithm 11. For a code C, consider some set B of the directions. Then in
order to recover the erased positions in codeword (c0, . . . , c2m−1) of C, for each
α ∈ B we compute the corresponding vectors y(α) and use the bitwise MAP
decoder based on the Gaussian elimination in order to (partially) recover the
codewords c(α). Any recovered position of c(α) can be written as cβ ⊕ cβ+α, so
if only one of the positions cβ, cβ+α was erased, we can always recover another
one. The process is iteratively repeated until all erasures are recovered. In case
if no erasures were corrected in the current iteration, one erasure gets randomly
resolved and the decoding proceeds further.

Figure 4.10 shows the performance of the same partially symmetric codes
(n = 512, rate-1/2, dmin ≥ 16). We choose the set B to contain 16 (out of
511 total) projections with the smallest dimensions (which we expect are more
likely to be decoded successfully). If the ML performance is not achieved, we
also plot the corresponding curve.

60 Symmetry-Induced Constraints on Decoding Efficiency

Algorithm 11 PA decoder for BEC
1: procedure PADecodeBEC(y,B)
2: while There are erasures in y do
3: for α ∈ B do
4: for β ∈ F

m
2 do

5: if yβ = ε or yβ+α = ε then
6: y

(α)
β ← ε

7: else
8: y

(α)
β ← yβ + yβ+α

9: c(α) ←DecodeMAP(C(α),y(α))
10: for β ∈ F

m
2 do

11: if yβ = ε and yβ+α �= ε and c
(α)
β �= ε then

12: yβ ← c
(α)
β + yβ+α

13: if No erasures were corrected and there exists an erased position yei
then

14: Randomly resolve yei
15: return y

10−6

10−5

10−4

10−3

10−2

10−1

100

 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46

Fr
am

e
er

ro
r r

at
e

Erasure probability

Polar
t=2
t=4
t=6

t=6, ML
RM(4,9)

RM(4,9), all projections
RM(4,9), ML

Figure 4.10 – Projection-based decoding in BEC, n = 512, k = 256.

It can be seen that for small values of t the projection-based decoding
can achieve near-ML performance. However, the projections’ dimensions grow
with t, so the efficiency of this approach drops down. This is particularly
noticeable for the larger values of ε. For the Reed-Muller codes (which are fully
symmetric), ML performance is unreachable even when all 511 projections are
utilized. Note that the presented partially symmetric codes demonstrate the

4.4. Polar Codes Do Not Have Many Affine Automorphisms 61

10−5

10−4

10−3

10−2

10−1

100

 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44

F
ra

m
e

er
ro

r
ra

te

Erasure probability

Polar
t=2
t=3
t=4
t=5
t=6
t=7
t=8

(256,128) codes

Figure 4.11 – Performance under PA-BEC, part 1

performance superior to the polar code, although the gap is not large.

Figures 4.11 and 4.12 further illustrate the performance of partially symmet-
ric codes with parameters (256, 128) and (1024, 638) when Algorithm 11 is used.
As before, 16 projections with the smallest dimensions are selected for decoding.
The performance of polar code with the same parameters, constructed for
each erasure probability, is also plotted as a reference. All considered codes
have dmin = 16 except 9-symmetric code that is identical to RM(5, 10) with
dmin = 32 and polar code that has dmin = 8. We can observe that symmetry-
based decoding achieves ML performance for n = 256. On the other hand, the
larger code length leads to near-ML performance only for small values of t and
is highly suboptimal for large values of t, especially in the more noisy region.
An interesting observation is that polar codes demonstrate ML performance,
which implies that a few other projections besides C(e0) also contribute to the
decoding process.

4.4 Polar Codes Do Not Have Many Affine
Automorphisms

Over the past few years, various researchers have studied the automorphism
group of polar codes as well as the construction of codes for permutation
decoding. These works mostly focus on the subgroups of GA(m,F2). In this
section, we show how the automorphism groups of polar codes fit into our
framework and consequently derive that polar codes cannot be invariant under
many affine automorphisms.

62 Symmetry-Induced Constraints on Decoding Efficiency

10−4

10−3

10−2

10−1

100

 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34

F
ra

m
e

er
ro

r
ra

te

Erasure probability

Polar
t=2
t=4

t=4, MAP
t=6

t=6, MAP
t=8

t=8, MAP
t=9=10 (=RM5,10)

t=9=10 (=RM5,10), MAP

(1024,638) codes

10−4

10−3

10−2

10−1

100

 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34

F
ra

m
e

er
ro

r
ra

te

Erasure probability

Polar
t=3
t=5

t=5, MAP
t=7

t=7, MAP
t=9=10 (=RM5,10)

t=9=10 (=RM5,10), MAP

(1024,638) codes

Figure 4.12 – Performance under PA-BEC, part 2

4.4.1 Known Automorphisms of Polar Codes

Definition 3 ([55], Definition 3). Two monomials of the same degree are
ordered as xi0 . . . xis−1 � xj0 . . . xjs−1 if and only if for all l ∈ [s] holds il ≤ jl.
This partial order is extended to the monomials of different degrees through
divisibility.

A monomial code C is called decreasing if for any monomial xv from MC all
monomials xs � xv are also in MC. Theorem 2 in [55] states that an automor-
phism group of any decreasing monomial code contains the lower-triangular
affine group LTA(m,F2), which is a subgroup of GA(m,F2) that includes only
matrices A that are lower-triangular, and polar codes are decreasing monomial
codes [55, Theorem 1]. This is an important result that allows to compute
the number of minimum-weight codewords of polar codes. However, all per-
mutations from LTA(m,F2) correct identical error patterns in the context of
SC decoding and therefore cannot bring any performance improvement [62,
Theorem 2]. In other words, the group LTA(m,F2) is absorbed by SC decoder.

The next important step on this road can be attributed to Geiselhart et
al., who introduced a larger automorphism group that appears in decreasing
monomial codes and is actually useful for the permutation decoding [43].
Namely, decreasing monomial codes are invariant under block lower-triangular
affine group BLTA(s,m) for s = (s0, . . . , sl−1),

∑
i si = m, which is another

subgroup of GA(m,F2), where the matrix A has form

A =

⎛
⎜⎜⎜⎝

A0,0 0
A1,0 A1,1

...
... . . .

Al−1,0 · · · Al−1,l−1

⎞
⎟⎟⎟⎠ , (4.6)

where Ai,j are sj × si submatrices and all entries that lie above the blocks Ai,i

are zero. The entries of vector s can be determined from MC.

4.4. Polar Codes Do Not Have Many Affine Automorphisms 63

Li et al. later proved that BLTA(s,m) is equal to the group of affine
automorphisms of decreasing monomial codes [80]. Pillet et al. also proved that
if s0 > 1, then the group BLTA((2, 1, . . . , 1),m) is absorbed by SC decoder
[81]. The size of BLTA(s,m) can be computed as

|BLTA(s,m)| = 2m
l−1∏
i=0

(
2siγi

si−1∏
j=0

(
2si − 2j

))
, (4.7)

where γi =
∑

j<i si [43]. In case of s = (1, . . . , 1) it is equal to |LTA(m)| =
2

m(m−1)
2

+m and for s = (m) it coincides with |GA(m,F2)| ≈ 0.29 · 2m2+m [56].

4.4.2 New Restrictions on the Size of the
Automorphism Group.

The existing results state that the group of affine automorphisms of polar codes
is BLTA(s,m), although no constraints on the values si are reported. In this
section, we demonstrate that the diagonal blocks cannot grow with m. More
precisely, we prove the following result:

Theorem 2 (Polar codes do not have many affine automorphisms). Consider
a BMS channel W and the sequence of polar codes {Cm} of rate R = I(W)
with increasing block lengths n = 2m. Then codes Cm cannot be invariant under
BLTA(s,m) s.t. there exists a block of size si that is an increasing function of
n.

Let us first show the correspondence between the invariance under permu-
tations from BLTA(s,m) and our framework of partially symmetric monomial
codes. Consider the matrix A′ which has block-permutation-diagonal form
diag(P0, . . . ,Pl−1), i.e., all its non-diagonal blocks are zero and all submatrices
A′

i,i are some si × si permutation matrices Pi:

A′ =

⎛
⎜⎜⎜⎝
P0 0

P1
...

... . . .
0 · · · Pl−1

⎞
⎟⎟⎟⎠ .

Matrix A′ belongs to BLTA(s,m). Observe that it has a block-permutation
structure and consequently is an element of the group Pm of m×m permutation
matrices. Authors in [43] and [81] already noted that if a code is invariant
under BLTA(s,m), it is sl−1-symmetric, which corresponds to the topmost
step of the SC recursion. In fact, we can prove even stronger result:

Theorem 3. Consider the code C which is invariant under BLTA(s,m) and
define the set of codes that appear at level νi =

∑
j>i sj of the SC recursion

φ(C, i) = {C({−,+}νi)}.

64 Symmetry-Induced Constraints on Decoding Efficiency

1, x0, x1, x2, x3, x0x2, x0x3

1, x2, x3 1, x1, x2, x3

∅ 1, x2, x3 1 1, x2, x3

Figure 4.13 – Code decomposition tree

Then for i < l any element of φ(C, i) is a si-symmetric code.

Proof. Recall that the standard SC schedule implies that the recursion starts
from the derivative ∂/∂x0 and ends with the length-1 codes after taking the
derivative ∂/∂xm−1 and the action of group Pm corresponds to the permutation
of variables {x0, . . . , xm−1} or, equivalently, to the change of order in which the
SC decoder takes the derivatives. At level νi of the standard SC schedule we
have a code C({−,+}νi) that is by definition an element of φ(C, i) and we need to
take the derivative w.r.t. variable xνi+1. The invariance under permutations of
form diag(I0, . . . , Ii−1,Pi, Ii+1, . . . , Il−1) tells us that the derivative w.r.t. any
of si variables {xνi+1, . . . , xνi+si} gives the same code and therefore C({−,+}νi)
is a si-symmetric code.

Example 5. Consider the (16, 9) code C with

MC = {1, x0, x1, x2, x3, x0x2, x0x3},

which is invariant under BLTA((2, 1, 1), 4). Figure 4.13 demonstrates the
generating sets of codes C(−−), C(−+), C(+−) and C(++) that appear at the second
level of SC recursions and form the set φ(C, 0). We have s0 = 2 and it is easy
to verify that all these codes are invariant under the permutations on variables
x2 and x3, i.e., are 2-symmetric.

Now we use this result in order to prove Theorem 2.

4.4.3 Proof of Theorem 2.

We prove by contradiction. Assume that code C is invariant under the action
of group BLTA(s,m) with a diagonal block of size si that grows with m.
Then from Theorem 3 it follows that any code C(j) ∈ φ(C, i), j ∈ {−,+}νi is
si-symmetric and using (4.5) we conclude that the rate of C(−,j) is smaller that
the rate of C(j) by at most O

(
1√
si

)
.

Recall that a polar code by construction is a Plotkin concatenation of two
polar codes for the corresponding synthetic channels W (−) and W (+), where

4.4. Polar Codes Do Not Have Many Affine Automorphisms 65

I(W (−)) < I(W) and I(W (−)) > I(W) when I(W) /∈ {0, 1}. Applying this
definition recursively, we get that code C(j) needs to be a polar code constructed
for the channel W (j) and its derivative w.r.t. xνi is a polar code for the channel
W (−,j). We know from [82] that the ratio of non-perfectly polarized synthetic
channels scales as Θ(2−m/μ), where μ is a polar scaling exponent. The code C(j)
has length 2m−νi and therefore the difference between R(C(−,j)) and I(W (−,j))
is at most Θ(2−(m−νi)/μ).

Let us now compare the statements from two paragraphs. Partial symmetry
of code C(j) gives us an upper bound

R(C(j))−R(C(−,j)) ≤ O

(
1√
si

)
. (4.8)

On the other hand, from the nested property of polar codes it follows that

R(C(j))−R(C(−,j)) ≥ I(W (j))− I(W (−,j))−Θ(2−(m−νi)/μ). (4.9)

We can use again the result from [82] that states that for any interval [a, b],
where a, b ∈ (0, 1), the number of channels with capacities that fall into this
interval is Θ(2m(1−1/μ)). Therefore, for any interval [a, b] there exists a channel
W (j) s.t. I(W (j)) ∈ [a, b] and consequently

I(W (j))− I(W (−,j)) ≥ min
Ŵ :I(Ŵ)∈[a,b]

(
I(Ŵ)− I(Ŵ (−))

)
> 0,

where the second inequality holds trivially for any fixed pair of values a, b ∈
(0, 1). Hence, we have an upper bound (4.8) that converges to zero because by
assumption si is an increasing function of m and a lower bound (4.9) that is
bounded away from zero, which gives us the contradiction.

Coding for
Device-Independent
Quantum Key Distribution5
This is a joint work with D. P. Nadlinger, P. Drmota, B. C. Nichol, G. Araneda,
D. Main, R. Srinivas, D. M. Lucas, C. J. Ballance, E. Y-Z. Tan, P. Sekatski, R.
Renner, N. Sangouard and J-D. Bancal. The preprint version of this work can
be found in [83].

Private communication over shared network infrastructure is of fundamental
importance to the modern world. Classically, shared secrets cannot be created
with information-theoretic security; real-world key exchange protocols rely
on unproven conjectures about the computational intractability of certain
operations. Quantum theory, however, promises that measurements on two
correlated quantum systems can yield identical outcomes that are fundamentally
unpredictable to any third party. This possibility of generating secret correlated
outcomes at a distance forms the basic idea of quantum key distribution (QKD)
[84, 85, 86]. Importantly, the security guarantees provided by QKD are unique
in that they do not rely on the assumption that the adversary has limited
computational power. Rather, the only required assumptions are that (i)
quantum theory is correct, (ii) the parties can isolate their systems to prevent
information leaking to an adversary, (iii) they can privately choose random
classical inputs to their quantum devices, and (iv) they can process classical
information on trusted computers.

Existing QKD systems rely on an additional assumption that is hard to
satisfy in practice: they require the devices used to distribute the key to be
accurately characterised [85, 86]. Generally, both the structure of the quantum
states involved (e.g., their dimension) and the nature of the measurements
[87] must be accurately known, i.e., the quantum devices are assumed to be
trusted and to maintain perfect calibration. Deviations from the expected

67

68 Coding for Device-Independent Quantum Key Distribution

behaviour can be difficult to detect, which has been exploited in a number
of demonstrations where real-world QKD systems were compromised [88, 89,
90, 91, 92]. So-called measurement-device-independent QKD protocols permit
untrusted measurement devices to be used as part of the system but still require
well-characterised sources [93, 94, 95, 96, 97].

Device-independent QKD (DIQKD) protocols [98, 99, 100, 101] make no
additional assumptions about the physical apparatus. According to Bell’s
theorem, we can guarantee that two systems produce outcomes that share
exclusive correlations without knowing how these outcomes are produced, while
preventing a third party from knowing these results [102]. This remarkable fact
can be used to construct key distribution protocols with security guarantees
independent of any assumption about the inner workings of the quantum devices.
Imperfections, which might lead to key leakage in conventional QKD, instead
just result in the protocol aborting. This enhanced security, however, comes at
the cost of far more stringent experimental requirements. The certifiable amount
of private information directly depends on the size of a Bell inequality violation,
necessitating a platform capable of distributing and measuring high-quality
entangled states and closing the detection loophole. To successfully extract a
shared key by using state-of-the-art devices, a tight theoretical analysis and an
efficient classical post-processing pipeline are needed, in particular, regarding
finite-size effects resulting from practical limits on the number of measurements.
Despite significant theoretical progress [103, 99, 104, 105, 100, 101, 106, 107,
108, 109, 110, 111] a practical demonstration of these protocols has remained
out of reach.

The work [83] reports the first experimental demonstration of device-
independent quantum key distribution with a concrete protocol. Our con-
tribution is the design of an error-correction scheme that is required at the
post-processing step in order to ensure that both parties have the identical
keys. In the subsequent sections, we first introduce the DIQKD protocol then
proceed to the description of the error-correction scheme.

5.1 Device-Independent Quantum Key
Distribution

Our DIQKD protocol is summarized in Fig. 5.1. It follows a similar general
structure, as most DIQKD protocols proposed thus far [112, 113, 101]. The
protocol involves two distant parties, Alice and Bob, who initially share a secret
key K0. The purpose of the protocol is to create a shared secret key K1 that is
longer than K0 by performing n ∈ N successive measurements on distributed
quantum systems that are followed by post-processing steps. The protocol is
successful when both parties are confident that their copy of K1 is sound. The
protocol depends on the following parameters that are fixed before its start: the

5.1. Device-Independent Quantum Key Distribution 69

Verify Bell violation

Key activation

Authentication

Privacy amplification

Protocol parameters

Private randomness

Data acquisition

Pre-shared key

Basis revelation

Error correction

Verify error correction

Bob computes an encrypted tag GB for T using K0 and an unconditionally
secure message authentication code and sends it to Alice.

Alice verifies the tag and sends C = 1 to Bob if it matches the earlier
communication, C = 0 if it does not.

Alice similarly computes a tag GA for (X, GEC, C) and sends it to Bob.
Bob defines F = 1 if the tag matches and C = 1, F = 0 otherwise.

Alice and Bob apply a strong randomness extractor with a seed from K0

to A and Ã to obtain KA and KB.

Alice computes syndrome M of A (length m) and sends it to Bob.
Bob reconstructs a guess Ã of A.

Fix protocol parameters n, , m, thr before starting.

Alice and Bob share a key K0.

Alice holds X = (Xi)i sampled according to P(Xi = 0) = P(Xi = 1) = 1/2.
Bob holds Y = (Yi)i with P(Yi = 0) = P(Yi = 1) = /2 and P(Yi = 2) = 1 −

For every round i {1, …, n}:
» Alice and Bob wait for the heralding signal, then disconnect the link.
» Bob computes Ti = (Yi ≠ 2) and sends Ti to Alice.

If Ti = 0, Alice overrides Xi and sets it to 0.
» Alice and Bob apply settings Xi and Yi and record the

measurement results as Ai and Bi .

Alice sends X to Bob.

Alice computes an encrypted hash GEC of A using K0 and sends it to Bob.
Bob computes the hash G̃EC of Ã. If G̃EC ≠ GEC, the protocol aborts.

Bob sends F to Alice.

Bob computes a tag GF for F using K0 and sends it to Alice.
Alice verifies the tag; if it does not match or F = 0, the protocol aborts.

If Bob, considering only rounds i with Ti = 1, finds that
∑i (Ai Bi ≠ Xi · Yi) > n (1 − thr), the protocol aborts.

Alice Bob

K0

X
Y

× n

X

M

GEC

GA

Ti

F

C

Key concatenation Alice removes the used bits from K0 and defines K′A by appending KA.
Bob does the same to get K′B.

Xi

Ai

Yi

Bi

GB

GF

Figure 5.1 – DIQKD protocol structure. Before the protocol begins, the
number of rounds n, the probability γ of each round being chosen to be Bell
test round, an acceptance threshold ωthr for the CHSH winning probability,
and the length m of the error-correction syndrome are fixed. An initial key K0,
mostly reusable, is required to seed the privacy amplification and authentication
algorithms and is also used as a one-time pad to encrypt a few short messages
(indicated using a key symbol). The arrows indicate the classical messages
exchanged between the parties, bold-letter strings consisting of multiple bits,
χ the indicator function with χ(P) = 1 if P is true and 0 otherwise. Alice’s
input Xi = 0 is chosen both for the key and test generation rounds, whereas
Bob’s input Yi = 2 is used exclusively for the key generation rounds.

testing probability γ ∈ (0, 1), the total number of rounds n ∈ N, the threshold
CHSH winning probability ωthr ∈

(
3
4
, 1+1/

√
2

2

]
, and the syndrome length m.

The protocol has three phases that are denoted in Fig. 5.1 in different colors.

The first phase of the protocol is the data acquisition, which consists of n
sequential rounds. Any round is either a Bell test round or a key generation

70 Coding for Device-Independent Quantum Key Distribution

round. For the former, Alice and Bob randomly select inputs Xi, Yi ∈ {0, 1}
that are implemented so that the outcomes Ai, Bi ∈ {0, 1} maximize the
probability of winning the CHSH game[114] Ai ⊕ Bi = Xi · Yi. A winning
probability ω, customarily expressed in terms of the CHSH score S = 4 (2ω−1),
tightly bounds the information any adversary can have about the outcomes.
For the latter, the inputs are fixed to Xi = 0 and Yi = 2, maximising output
correlations as quantified by a low quantum bit error rate Q = P (Ai �=
Bi|Xi = 0, Yi = 2). Bell test rounds contribute to the security of the protocol,
but the corresponding outcomes Ai, Bi are weakly correlated, which increases
the amount of information that needs to be revealed. On the contrary, key
generation rounds do not participate in the security but have a much higher
correlation between Ai and Bi, hence less information is needed for the successful
reconciliation. Bob randomly chooses between the round types after the links are
disconnected, choosing Bell test rounds with probability γ, and communicates
this choice to Alice, which avoids sifting (discarding of rounds with mismatched
measurement bases). The parties keep private records of their measurement
settings X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn), as well as the outcomes
A = (A1, . . . , An) and B = (B1, . . . , Bn).

In the second phase, Alice and Bob need to verify the CHSH score and to
extract a shared key from the noisy output correlations. Alice openly sends
her inputs X to Bob, along with an extra string M, which enables Bob to
reconstruct a copy Ã of Alice’s outcomes A. Now holding XYÃB, Bob is able
to verify whether the CHSH score achieved during the Bell test rounds exceeds
a pre-agreed threshold. If this is not the case, or if the reconstruction of Ã
fails, the security might be compromised, hence the protocol aborts. Otherwise,
the parties proceed to the third phase and locally process the outcomes A and
Ã to extract identical final keys, with a guaranteed, arbitrarily low, bound on
the information leaked to any adversary.

The length of the final key depends on the amount of information revealed,
as part of the protocol, through the classical messages exchanged by the parties.
Therefore, the length of string M should be as small as possible. Asymptotically,
the cost of reconciliation per round is given by H(A|XYB); this is the entropy
of Alice’s outcomes conditioned on the knowledge of inputs and Bob’s outcomes.
This reconciliation is in the presence of finite statistics. However, it comes at
a high price, and the best algorithms are often not realizable in practice. In
fact, all finite-statistics DIQKD analyses have, so far, assumed computationally
intractable error-correction schemes with decodings involving hash pre-image
computations [100, 101, 115, 116].

5.2. Data model 71

Xi

Yi 0 1 2

0
(

0.415(1) 0.0688(5)
0.0961(6) 0.420(1)

) (
0.439(1) 0.0805(6)
0.0735(5) 0.4068(10)

) (
0.5017(5) 0.00339(6)
0.0110(1) 0.4839(5)

)

1
(
0.3928(10) 0.0916(6)
0.0851(6) 0.431(1)

) (
0.0820(6) 0.437(1)
0.3970(10) 0.0841(6)

)
—

Table 5.1 – Empirical probabilities of observing classical outcome (Ai, Bi)
for measurements settings (Xi, Yi). Matrix rows represent Alice’s outcomes,
and columns those of Bob. The probabilities are estimated from the 1 920 000
total characterisation rounds, with the multinomial standard errors given
in parentheses. Alice’s classical outcomes were inverted, giving maximum
correlations for the key generation settings X = 0, Y = 2 and maximizing the
probability that Ai ⊕ Bi = Xi · Yi in Bell test rounds.

5.2 Data model

Table 5.1 demonstrates the experimental results after 1 920 000 data acquisition
rounds. We have four distributions P (A,B|0, 0), P (A,B|0, 1), P (A,B|1, 0)
and P (A, 1 − B|1, 1) corresponding to the test rounds and one distribution
P (A,B|0, 2) that corresponds to the key rounds. It is reasonable, from practical
point of view, to make a simpler model. The distributions corresponding to the
key rounds are similar to each other, and we condense them, i.e., we assume
that samples during the key rounds come from the same distribution

P ′(A,B) = (P (A,B|0, 0) + P (A,B|0, 1) + P (A,B|1, 0) + P (A, 1− B|1, 1))/4,

and we also define P ′′(A,B) = P (A,B|0, 2). For numeric simulations, we also
consider even simpler model, which is characterized two parameters S and Q,
respectively, corresponding to the CHSH Bell violation and quantum bit error
rate (QBER). In this model, we assume that the statistics in the test rounds
satisfy

P (A,B|0, 0) = P (A,B|0, 1) = P (A,B|1, 0) = P (A, 1−B|1, 1) = 1 + (−1)A⊕BS/4

4
(5.1)

and that the statistics in the key rounds are sampled according to

P (A,B|0, 2) = δA,B − (−1)A⊕BQ

2
. (5.2)

5.3 Error Correction in DIQKD

In the second phase of the DIQKD protocol, described in Section 5.1, Alice
and Bob end up with their measurements Ai and Bi, and Alice sends her
measurement settings Xi. We also assume that Alice also sends a single
message M of length m, and the goal of Bob is to recover the string A from
the knowledge of B,X,Y and M. The length m of the communicated message

72 Coding for Device-Independent Quantum Key Distribution

IID Source
Alice Bob

Syndrome
encoder

Error-free
transmission

Decoding

Figure 5.2 – Overall error-correction setting: asymmetric Slepian-Wolf coding.
Strings A and B are jointly sampled from a distribution P (A,B) and given to
two distinct parties, Alice and Bob. The purpose is for Bob to end up with a
copy of Alice’s string A, while exchanging only a ‘short’ message M.

has to be as small as possible, as it is revealed in public hence reduces the
Alice’s key secrecy.

The setting is equivalent to a Slepian-Wolf scheme with asymmetric coding
[117], which also states that the overhead η = m/n can be as small as H(A|B).
In [118] it is shown that this limit is achievable with binary linear codes by
using the simple procedure presented at Fig. 5.2. A and B are considered
as samples from the correlated source, which is described by the joint prob-
ability distribution P (A,B). Consider a noisy channel transforming A into
B, described by the conditional distribution P (B|A) = P (A,B)

P (A)
and a binary

linear code C, which achieves the capacity of this channel, of length n and
rate R = 1 − m/n. The message M is generated by taking a m × n parity
check matrix H of C and computing the syndrome M = HA. Then A can
be almost always recovered from the pair (B,M). Note that this formulation
was initially proved for the case, when P (B|A) corresponds to a symmetric
channel and the input distribution P (A) is uniform. However, the recent result
[119] confirms the achievability of H(A|B) limit for the general setting, i.e., for
arbitrary distributions P (A) and P (B|A).

The challenge here is to develop an error-correcting code for the given
P (A,B) that performs close to the asymptotic limits under low-complexity
decoding algorithm. In Section 5.2, we introduce the simplified model for
describing P (A,B). Therefore, another requirement is that the code is rather
insensitive to the noise specificities. The universality of the code, which makes
it optimal for all distributions P (A,B) with the same value of H(A|B), is
highly desirable.

5.3. Error Correction in DIQKD 73

5.3.1 Concrete Setting

As discussed in Sec. 5.2, the honest model for our setup includes five sources
of outcomes for Alice and Bob, corresponding to each choice of measurement
setting; and the corresponding distributions are combined so that we have only
P ′(A,B) that corresponds to the test rounds and P ′′(A,B) that corresponds
to the key rounds. In the case when P ′ and P ′′ are parameterized in terms of
the Bell value S and the QBER Q only, this model defines the transmission
through a mixture of two BSCs with different crossover probabilities. The Bell
test rounds correspond to a BSC with crossover probability δ′ = 4−S

8
and are

on average sampled γn times. Key generation rounds correspond to a BSC
with crossover probability δ′′ = Q that is on average sampled (1− γ)n times.
Therefore, we need to deal with the transmission of approximately γn samples
through a BSC with bit flip probability δ′ and with approximately (1 − γ)n
samples through a BSC with bit flip probability δ′′. Although the exact number
of samples transmitted through each channel is a random variable, the total
number of the transmitted samples is guaranteed to be n.

Remark. Note the difference with a classical coding setting, where a fixed-
length bit string is transmitted through the channel.

The simplified model enables us to estimate the minimum achievable length
m of the syndrome M for a finite number of samples n. Assume that the
transmission takes place through BSC(δ) and that the error-correction scheme
fails with probability ε. Then, [120, Eq. (289)] gives the effective finite-size
channel capacity C(n, δ) as

n · C(n, δ) =n(1− h(δ))−
√
nδ(1− δ) log2

1− δ

δ
Q−1(ε)

+
1

2
log2(n) +O(1),

(5.3)

where n is the length of the “transmitted” bit string (which in our model is B),
h(x) is the binary entropy function, ε is the error-correction failure probability
and Q(x) =

∫∞
x

1√
2π
e−t

2/2dt = 1
2

(
1− erf(x/

√
2)
)
. The minimum length of the

syndrome is then
mBSC(n, δ) = n(1− C(n, δ)). (5.4)

Therefore, for our mixture of BSC(δ′) and BSC(δ′′), the estimated minimum
syndrome length is

m̃(n) = mBSC(γn, δ
′) +mBSC((1− γ)n, δ′′). (5.5)

In practice, we can choose one of two strategies. We can either construct two
codes C ′ and C ′′ to independently process strings that correspond to BSC(δ′)

74 Coding for Device-Independent Quantum Key Distribution

and BSC(δ′′), or we can use a single code C and jointly handle these strings.
From (5.3), it is clear that the larger length reduces the required overhead for
error-free performance, hence we can expect joint decoding to perform better
in practice. Moreover, in our protocol the number of samples corresponding to
BSC(δ′) is a random variable with mean γn hence, during the protocol after
the number of test rounds is established, we need to adapt the length of codes
C ′ and C ′′. Using a single code solves this problem since the total number of
rounds n is fixed and therefore the length of C.

5.4 Practical Coding Approaches

For a practical application, we need an error-correcting code that is capacity-
achieving under low-complexity decoding algorithm. As we operate in the
finite-length regime, we would also like to achieve a finite-length performance
close to theoretical limits. The simplicity of the code construction is an
additional advantage, due to the possible changes in the experimental setting.
There are three reasonable choices that we can use: low-density parity-check
(LDPC) codes, spatially-coupled LDPC (SC-LDPC) codes, and polar codes.

Polar codes [25] have low-complexity encoding and decoding procedures, but
the codes have several issues. Perhaps most importantly, the code construction
is channel-dependent, i.e., any change in γ,Q, S or the significant difference
in actual distributions P ′(A,B) and P ′′(A,B) from our model will require a
separate optimization step. Another problem is that, although the optimal code
has gap to the asymptotic value that scales as Θ(1√

n
) (it follows from (5.3)),

for polar codes it is at least of order Θ(1
n1/3.579) [121]. This is significantly worse

and implies that their finite-length performance is rather far from theoretical
limits.

The LDPC codes were introduced in the early 1960s [12]. They are de-
scribed as dual spaces of some sparse matrices that typically have a simple
structure. The sparsity of this matrix gives rise to a low-complexity iterative
belief propagation (BP) decoding algorithm. It is possible to compute the
asymptotic performance of LDPC codes under BP decoding [18]. Although
LDPC codes can achieve the capacity of BSC under computationally unfeasible
maximum likelihood (ML) decoding [122], their BP thresholds, i.e., the largest
channel error probability that can be corrected by BP decoder with infinite
number of iterations, are typically not capacity-achieving. There exist some
code constructions that come close to the asymptotic limits [123], but the
optimization for certain channels (such as a mixture of two BSCs in our setting)
might be nontrivial. In the case of the binary erasure channel (the receiver
either gets the transmitted bit correctly with probability 1− ε or receives an
erasure symbol "ε" with probability ε), the LDPC codes achieve capacity with
linear decoding complexity [124, 125, 126]. The optimal scaling behavior of

5.4. Practical Coding Approaches 75

the LDPC codes is established for the erasure channel and conjectured for the
general channels [127].

SC-LDPC codes are constructed as a chain of LDPC codes that are coupled
together. It was observed numerically in [22] and proved in [24] that the
BP threshold of the SC-LDPC codes converges to the ML threshold of the
underlying LDPC code. Furthermore, they achieve capacity universally, i.e., a
code of rate R enables the error-free transmission through any channel with
a capacity greater than R when the code length grows to infinity. Another
advantage of the SC-LDPC codes is the simplicity of the code construction,
as it is much easier to find the LDPC codes that are capacity achieving under
ML decoding than to optimize LDPC codes so that their BP threshold is close
to capacity. Concerning the scaling of the SC-LDPC codes, [128] gives an
estimate of Θ(1

n1/3) by using a heuristic argument, but nothing else is known.
As the SC-LDPC codes build on LDPC codes, in the following paragraphs, we
describe the LDPC codes then proceed to the SC-LDPC codes.

5.4.1 LDPC Codes

An LDPC code of length n and dimension k is defined as a dual space of binary
(n− k)× n full-rank parity-check matrix H that needs to be sparse. A code
is called (dv, dc)-regular if each row of H contains exactly dc ones and each
column exactly dv ones, otherwise it is irregular. The matrix H is typically
represented as a Tanner graph that is a bipartite graph that consists of check
and variable nodes that correspond to the rows and columns of H. If Hi,j = 1,
then check node i and variable node j are connected by an edge. In Tanner
graph representation, dv and dc become the degrees of variable and check nodes.

One way to construct good LDPC codes of variable length is to use a
protograph construction [129]. A protograph with design rate R = 1− nc/nv

is a small bipartite graph with partitions of size nc and nv that correspond to
check and variable nodes, respectively. A code of length n = Mnv is obtained
by applying a lifting procedure with lifting factor M . This procedure can be
described as follows. Take the nc × nv biadjacency matrix Z of the protograph
and replace its zeros with M ×M all-zero matrices and ones with random
M ×M permutation matrices Πi,j. The resulting code has length Mnv and
rate R ≥ 1−nc/nv. In practice, for random matrices Πi,j this inequality almost
always becomes an equality [129]. The advantage of the protograph-based
LDPC codes is that their properties, such as BP decoding threshold, can be
derived directly from protographs [129].

Example 6. Consider the (2, 3)-regular LDPC code. The corresponding pro-
tograph is given at Figure 5.3, and its biadjacency matrix can be written as

Z =

(
1 1 1
1 1 1

)
. The lifting process for M = 3 is given at figures 5.4a-5.4b.

76 Coding for Device-Independent Quantum Key Distribution

+ +

Figure 5.3 – (2,3)-regular protograph. Three vertices are connected to two
check nodes.

+ + + + + +

(a) Lifting with M = 3: vertices and check nodes are split into three copies, with
connections following the original topology.

+ + + + + +

(b) Tanner graph of lifted (2, 3)-regular LDPC code. The mapping between check
and variable nodes, within connections compatible with the protograph, is random.

5.4.2 SC-LDPC Codes

A spatially coupled protograph is obtained by chaining together L copies of
LDPC protographs, where L is called the coupling factor. We assign time index
t to each of these copies. Suppose a check node ci and a variable node vj in a
protograph are connected with Zi,j edges. Then we spread these edges forward,
i.e., we connect Zi,j edges from node vj at time t to check nodes cj at time
t, t+1, . . . , t+w, where w is called coupling width. For a regular protograph, it
is reasonable to take w = dv − 1. Figures 5.5 and 5.6 illustrate the process for
a (3,6)-regular protograph. An SC-LDPC code is then obtained by applying
the lifting procedure described earlier for a spatially-coupled protograph.

Let us now compute the rate of the obtained SC-LDPC code. We take L
copies of the original protograph and chain them together. The number of
variable nodes is now fixed hence the code length is Lnv. A coupling width w
means that variable nodes of the protograph at position t are also connected
to the check nodes of protographs at positions t+ 1, . . . , t+ w, hence we need
to add extra wnc check nodes in addition to the Lnc that we already have.
Therefore, the resulting SC-LDPC code has rate

R = 1− (L+ w)nc

Lnv

= 1− (1 + (dv − 1)/L)nc

nv

. (5.6)

5.4. Practical Coding Approaches 77

c0

v0

v1

+ + + . . .

Figure 5.5 – Uncoupled (3,6)-regular protographs. Each variable node has
degree 3 and each check node has degree 6. Although there are duplicate edges
in the protograph, there will be none in the code after the coupling and lifting
steps.

c0

v0

v1

+ + + . . .

Figure 5.6 – Spatially coupled (3,6)-regular LDPC ensemble, w = 2

5.4.3 Belief Propagation Decoding

Assume that we constructed some LDPC code C with a parity check matrix
H. Recall that, in our setting, Bob has the string B = (B1, . . . , Bn) and
wants to reconstruct the string A = (A1, . . . , An) from the knowledge of B, the
syndrome M = (M1, . . . ,Mm) = HA, and from the joint distribution P (A,B).
Therefore, the goal of the decoder is to find

Ã = arg max
Â: HÂ=M

n∏
i=1

P (A = Âi, B = Bi|Xi, Yi). (5.7)

The straightforward procedure is to check all possible codewords of C and
to return the most probable. However, the number of codewords increases
as 2k, where k is the code dimension. This quickly makes such a procedure
unfeasible, hence there is a need for low-complexity algorithms.

Belief propagation is an iterative algorithm that makes use of the sparsity of
the parity-check matrix H and, for constant (dv, dc), has running time O(Nit ·n),
where Nit is a number of decoding iterations performed. Let

l = (l1, . . . , ln), li = ln
P (Ai = 0, Bi)

P (Ai = 1, Bi)
(5.8)

be the logarithmic reliability ratios vector corresponding to the vector B. The
prior knowledge of which bits have error probability δ′ and which have error
probability δ′′ is incorporated in li by appropriately setting the corresponding
probabilities P (Ai = 0, Bi) and P (Ai = 1, Bi). The recovery of Ã can be

78 Coding for Device-Independent Quantum Key Distribution

performed by an iterative exchange of messages between variable and check
nodes of the Tanner graph of the code. The messages at iteration i are defined
as follows [130, 131]:

μ(i)
v→c =

{
lv, i = 0

lv +
∑

c′∈Cv\{c} μ
(i)
c′→v, i > 0

(5.9)

μ(i)
c→v = 2 tanh−1

⎛
⎝(−1)Mc

∏
v′∈Vc\{v}

tanh(μ
(i−1)
v′→c/2)

⎞
⎠ , (5.10)

where the set Cv contains indices of check nodes, incident to the variable node
v, and Vc contains indices of variable nodes, incident to the check node c. After
Nit iterations we can obtain the string Ã = (Ã1, . . . , Ãn) as follows:

Ãv =
1− xv

2
, xv = sgn(lv +

∑
c∈Cv

μ(Nit)
c→v), (5.11)

where xv are the hard-decision values corresponding to the posterior log-
likelihood ratios from the decoder. For the SC-LDPC codes with underlying
(dv, dc)-regular LDPC codes, if dv ≥ 3, the error probability is expected to
decrease doubly exponentially with decoding iterations [129]. There exist
various improvements of this algorithm in the literature for general LDPC
codes [132, 133], as well as for SC-LDPC codes [134, 135]. However, in the
literature, there is no analysis of the behaviour of the SC-LDPC codes under
such decoders for non-erasure channels, hence we use the standard BP algorithm,
which is provably good, for our experiments. The similar lack of theoretical
analysis exists with early termination schemes that seek to find a criterion
when the decoding process can be stopped.

5.5 Simulations

In the asymptotic setting with infinite block length, the smallest achievable
overhead is a Slepian-Wolf limit

η̃∞ = γH ′(A|B) + (1− γ)H ′′(A|B), (5.12)

where H ′ and H ′′ are the entropies corresponding to the distributions P ′(A,B)
and P ′′(A,B), defined in Section 5.2. Although the existing theory predicts good
asymptotic behaviour of the SC-LDPC codes, their finite-length performance
is well studied only for the case of the erasure channel. Our setting with the
transmission through a mixture of two channels makes the analysis even more
complicated. In case of our simplified model, using (5.5) we get

η̃(n) =
m̃(n)

n
. (5.13)

5.5. Simulations 79

Note that this is the best achievable overhead. The actual code construction can
have an overhead loss due to different factors, such as the length and overhead
adaptation. Therefore, we use numeric simulations in order to estimate its
performance.

The simulation setting for the error-correction part can be described as
follows. Assume that the length n and the error-correction overhead η = m/n
are fixed. Then we choose the base protograph with the design rate close
to 1− η; this is then followed by the coupling and lifting process, where the
coupling factor is fixed as L = 80 (SC-LDPC codes are optimal for L→∞, but
in practice we just choose a sufficiently high number). Note that the resulting
code has slightly larger length n′ (as it is a multiple of the lifting factor) and
overhead η′ (due to coupling). Hence, to finish the code construction, we need
to remove some variable and check nodes from the Tanner graph in a way that
keeps the spatial coupling advantage (which comes from low-degree check nodes
at the sides of the chain). We use the simple and rather efficient strategy that
can be described as follows:

1. Remove n′ − n variable nodes with the smallest degrees (the node is less
reliable if it has a small degree)

2. Choose two sets of (η′ − η)n checks with the largest degrees and perform
pairwise merging, i.e., replace every pair of nodes c, c′ with a new node
c′′ s.t. Vc′′ = Vc ∪ Vc′ .

Our experiments show that if the target values n and η are not too far from
n′ and η′, this construction performs rather well. Before the decoding process,
the string is shuffled so that noisier bits become more evenly distributed in the
codeword. Note that the shuffling pattern is known to the decoder, hence it
can correctly assign the reliabilities.

5.5.1 Numeric Results

The performance of the error-correction scheme is first tested for the simplified
model and then on the more realistic one. For the simplified model, we consider
two sets of parameters that will be further denoted as Ψ0 and Ψ1:

1. Ψ0: γ = 0.08, S = 2.6192, Q = 0.015

2. Ψ1: γ = 0.08, S = 2.6192, Q = 0.02.

80 Coding for Device-Independent Quantum Key Distribution

0.16 0.18 0.20 0.22 0.24

Overhead

0.0

0.2

0.4

0.6

0.8

1.0

S
u
c
c
e
s
s
 p

ro
b
a
b
il
it

y

n=5000000

n=1000000

n=300000

n=100000

n=30000

asymptotic

Figure 5.7 – Performance of the error-correction scheme for model Ψ0

The more realistic model, which we will denote as Ψ2, has γ = 13/256 and the
probability distributions for test and key rounds are

P ′(A,B) =

(
0.41638569 0.08054036
0.08811974 0.4149542

)
, (5.14)

P ′′(A,B) =

(
0.4906533 0.00669439
0.01720901 0.4854433

)
. (5.15)

The asymptotic overheads for the considered models are η̃∞0 ≈ 0.1565, η̃∞1 ≈
0.1832 and η̃∞2 ≈ 0.1847, respectively.

We performed numeric simulations to observe the performance of the de-
signed scheme for our models and total lengths n ∈ {30000, 100000, 300000,
1000000, 5000000}. We used two protographs, (9, 45)-regular code with design
rate 1 − 1/5 and (9, 36)-regular code with design rate 1 − 1/4, for the code
construction. The former is selected for model Ψi and length nj if the largest
simulated overhead for this scenario does not exceed 0.2 and the latter does so
otherwise. In our experiments, the simulated overheads did not exceed 0.25,
hence it is sufficient to consider only these two codes. The total number of BP
iterations was set to Nit = 3000.

Figures 5.7-5.9 demonstrate the results. Note that, whereas in typical coding
scenario we have a fixed code that is evaluated over a range of different channel
parameters, here we face an opposite situation, where the channel is fixed and
the code is evaluated for a range of different overhead values. The curves are
not very smooth, which we attribute to our overhead adaptation procedure. It
can be seen that the code performance gets very close to the asymptotic limit.

5.5. Simulations 81

0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25

Overhead

0.0

0.2

0.4

0.6

0.8

1.0

S
u
c
c
e
s
s
 p

ro
b
a
b
il
it

y

n=5000000

n=1000000

n=300000

n=100000

n=30000

asymptotic

Figure 5.8 – Performance of the error-correction scheme for model Ψ1

0.19 0.20 0.21 0.22 0.23 0.24 0.25

Overhead

0.0

0.2

0.4

0.6

0.8

1.0

S
u
c
c
e
s
s
 p

ro
b
a
b
il
it

y

n=5000000

n=1000000

n=300000

n=100000

n=30000

asymptotic

Figure 5.9 – Performance of the error-correction scheme for model Ψ2

82 Coding for Device-Independent Quantum Key Distribution

In particular, for the model Ψ2, we can see that the error-correction procedure
succeeds in most cases for overheads larger than η∗2 = 0.196. This is only 6%
larger than the asymptotic value η̃∞ ≈ 0.1847, given by Eq. (5.12), and it is
3.7% larger than η̃(5e6) ≈ 0.189, given by Eq. (5.13).

Let us now demonstrate the threshold performance of the considered code
construction, i.e., the amount of “extra” overhead we need, in addition to the
asymptotic value for the string reconstruction for finite block length n, and how
this amount decreases with n. As we are in the finite-length setting, we define
the threshold as the smallest overhead η such that the failure probability of
the error-correction scheme is smaller than some fixed value ε∗. Let us denote
the gap function as

g(η) = η − η̃∞. (5.16)

Figure 5.10 demonstrates the behavior of g(η) for our models Ψ0,Ψ1 and
Ψ2 for the failure probability ε∗ = 0.1. Observe that all models demonstrate a
similar convergence, despite the differences between them; this which confirms
the universality of our code construction. For reference, we also put the curve,
corresponding to (5.13) for the setting γ = 13/256, S = 2.6507, Q = 0.0239, that
we can consider as a lower bound on the achievable overhead. We also compare
our simulation results to the error-correction schemes previously considered for
DIQKD. These schemes do not admit a known efficient decoding algorithm
hence are not suited for practical purpose and represent only a theoretical
interest. We consider, in particular, the bound from [136, 115]:

mAFRV = n · η̃∞ + min
0≤ε′≤ε∗

4 log(2
√
2 + 1)

√
2n log

(
8

ε′2

)
+ log

(
8

ε′2
+

2

2− ε′

)
+ log

(
1

ε∗ − ε′

)
(5.17)

and the one from [116]:

mTSBSRSL = n·η̃∞+ min
0≤ε′≤ε∗

2 log(5)

√
n log

(
2

ε′2

)
+2 log

(
1

ε∗ − ε′

)
+4. (5.18)

It is clear, in Fig. 5.10, that our construction achieves overhead smaller than
the AFRV bound, and it achieves an overhead comparable to the TSBSRSL
bound, which is achieved with the actual numeric experiments and practical
low-complexity decoding algorithm. Note that it also follows from the figure
that the proposed SC-LDPC scheme has the scaling that is rather close to the
heuristic estimate of O(n−1/3).

Finally, we note that the results of our simulations in Fig. 5.10 yield a critical
threshold that is systematically shifted from the bound given in Eq. (5.13).
This can be attributed to the fact that scaling depends on the lifting factor M
more than on the total block length n.

5.5. Simulations 83

104 105 106 107

n, block length

10−3

10−2

10−1

G
a
p
 t

o
 a

s
y
m

p
to

ti
c
 v

a
lu

e

AFRV code

TSBSRSL code

Ψ0, η̃∞ = 0.1565

Ψ1, η̃∞ = 0.1832

Ψ2, η̃∞ = 0.1847

Finite-length limit. γ=13/256, Q=0.0239, S= 2.6507, η̃∞ = 0.1878

Figure 5.10 – Convergence of the code performance: gap to the asymptotic
limit as a function of the block length for the failure probability ε∗ = 0.1.

Conclusions 6
In this chapter, we conclude the thesis and discuss the potential research
directions.

6.1 Symmetries of Polar-Like Codes

In Chapters 3 and 4, we have studied the framework of polar-like codes; it
extends to all length-2m binary linear codes. Our main tools are the Plotkin
(u|u+ v) decomposition of the code and the Boolean polynomial representation
of the codewords. Both tools are interconnected via a notion of directional
derivative of the code; this notion is defined in the Boolean function framework
and each direction corresponds to the different (u|u+v) decomposition. Another
notable connection is that the invariance under a large subgroup of general
affine group of permutations implies the existence of many derivative directions
that induce the same code.

In Chapter 3, we have focused on the Reed-Muller codes and talked about
the design of low-complexity error-correcting algorithms that utilize the large
automorphism group of the code. We have presented a variation of successive
cancellation decoder with permutations; this variation operates over the erasure
channel and outperforms the vanilla approach. For the second-order codes, we
have presented the improved decoder for the general channels.

In Chapter 4, we have taken a more theoretical look at the decoding problem.
We have introduced the notion of code symmetry and have shown that it makes
the error probability polar-like decoding fall far from the maximum likelihood
performance. The most notable examples of the symmetric codes are the

85

86 Conclusions

Reed-Muller and eBCH codes that are well-known to have a rich algebraic
structure. However, our results extend beyond this and encompass the codes
with significantly smaller automorphism groups, which limits the attempts
to design long polar-like codes with good performance under permutation
decoding. The symmetry framework also enabled us to restrain the size of
automorphism group of polar codes. Specifically, it cannot be significantly
larger than the lower-triangular affine group.

It should be clear by now that the journey towards practical decoding
algorithms with excellent performance is far from being complete. Having a
large automorphism group is clearly beneficial for boosting the performance
of the Reed-Muller codes, compared to the standard approach, but this is
also limits the potential of their polar-like decoding. We also know that the
Reed-Muller and eBCH codes are great if we can do maximum likelihood
decoding. Therefore, the design of low-complexity algorithms that reach the
error probability of an optimal decoder remains a challenging but potentially
beneficial open problem. The second direction is related to the design of good
codes for permutation decoding. Our proof demonstrates that, in case of long
codes and affine permutations, there is not much hope. Nevertheless, the
cases of short and moderate block lengths remain feasible, as well as those of
non-affine automorphisms.

6.2 Device-Independent Quantum Key
Distribution

In Chapter 5, we have talked about the concept of device-independent quantum
key distribution. DIQKD enables the fully private communication between
parties, where the secrecy is guaranteed by quantum physics and there are no
assumptions about the structure and inner working of quantum devices being
in use. There has been much progress regarding the theoretical analysis of
various aspects of DIQKD, but the experimental demonstration remained out
of reach.

We have presented the DIQKD protocol that was successfully implemented
in practice. It was a result of collaboration with many physicists responsible
for the protocol design, security proofs, and the experimental implementation.
After the quantum part of the protocol, two parties have the bit strings that are
not perfectly correlated. The issue was solved by disclosing some information
and performing the error correction. The induced channel is non-standard and
closely resembles a mixture of two BSCs. The amount of revealed information
needs to be small in order to satisfy security guarantees. We designed the key
reconciliation solution based on SC-LDPC codes that are perfect candidates
due to their universality, to the simplicity of rate adaptation, and to the
performance close to numeric limits.

6.2. Device-Independent Quantum Key Distribution 87

The field of potential future research directions is vast concerning DIQKD.
Hence, we mention here just two that seem the most relevant to us. The most
important are probably related to the large-scale practical implementation
of the proposed protocol and to the further improvements of error-correction
performance. Despite being close to the finite-length coding limits, there
remains a noticeable gap that leaves an invitation for the development of more
powerful schemes.

Bibliography

[1] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[2] E. Berlekamp, R. McEliece, and H. van Tilborg, “On the inherent in-
tractability of certain coding problems (corresp.),” IEEE Transactions
on Information Theory, vol. 24, no. 3, pp. 384–386, 1978.

[3] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. 29, no. 2, pp. 147–160, 1950.

[4] D. E. Muller, “Application of Boolean algebra to switching circuit design
and to error detection,” Transactions of the I.R.E. Professional Group
on Electronic Computers, vol. EC-3, no. 3, pp. 6–12, Sept 1954.

[5] I. Reed, “A class of multiple-error-correcting codes and the decoding
scheme,” Transactions of the IRE Professional Group on Information
Theory, vol. 4, no. 4, pp. 38–49, September 1954.

[6] A. Hocquenghem, “Codes correcteurs d’erreurs,” Chiffres (Paris), vol. 2,
p. 147–156, Sep 1959.

[7] R. Bose and D. Ray-Chaudhuri, “On a class of error correcting binary
group codes,” Information and Control, vol. 3, no. 1, pp. 68–79, 1960.

[8] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of The Society for Industrial and Applied Mathematics, vol. 8,
pp. 300–304, 1960.

[9] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes. 1,” in Proceedings
of ICC ’93 - IEEE International Conference on Communications, vol. 2,
1993, pp. 1064–1070 vol.2.

[10] D. MacKay, “Good error-correcting codes based on very sparse matrices,”
IEEE Transactions on Information Theory, vol. 45, no. 2, pp. 399–431,
1999.

89

90 Bibliography

[11] D. Spielman, “Linear-time encodable and decodable error-correcting
codes,” IEEE Transactions on Information Theory, vol. 42, no. 6, pp.
1723–1731, 1996.

[12] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT
Press, 1963.

[13] N. Wiberg, H.-A. Loeliger, and R. Kotter, “Codes and iterative decoding
on general graphs,” in Proceedings of 1995 IEEE International Symposium
on Information Theory, 1995, pp. 468–.

[14] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans-
actions on Information Theory, vol. 27, no. 5, pp. 533–547, 1981.

[15] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-
product algorithm,” IEEE Transactions on Information Theory, vol. 47,
no. 2, pp. 498–519, 2001.

[16] M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman, “Efficient
erasure correcting codes,” IEEE Transactions on Information Theory,
vol. 47, no. 2, pp. 569–584, 2001.

[17] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Improved low-density parity-check codes using irregular graphs,” IEEE
Trans. Inf. Theory., vol. 47, pp. 585–598, Feb 2001.

[18] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Trans. Inf. Theory.,
vol. 47, pp. 599–618, Feb 2001.

[19] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Transactions
on Information Theory, vol. 47, no. 2, pp. 619–637, 2001.

[20] S.-Y. Chung, G. Forney, T. Richardson, and R. Urbanke, “On the design
of low-density parity-check codes within 0.0045 db of the Shannon limit,”
IEEE Communications Letters, vol. 5, no. 2, pp. 58–60, 2001.

[21] A. Jimenez Felstrom and K. Zigangirov, “Time-varying periodic convolu-
tional codes with low-density parity-check matrix,” IEEE Transactions
on Information Theory, vol. 45, no. 6, pp. 2181–2191, 1999.

[22] M. Lentmaier, A. Sridharan, D. J. Costello, and K. S. Zigangirov, “It-
erative Decoding Threshold Analysis for LDPC Convolutional Codes,”
IEEE Trans. Inf. Theory., vol. 56, pp. 5274–5289, Oct. 2010.

[23] S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Threshold saturation
via spatial coupling: Why convolutional LDPC ensembles perform so
well over the BEC,” IEEE Transactions on Information Theory, vol. 57,
no. 2, pp. 803–834, 2011.

Bibliography 91

[24] S. Kudekar, T. Richardson, and R. L. Urbanke, “Spatially Coupled
Ensembles Universally Achieve Capacity Under Belief Propagation,” IEEE
Trans. Inf. Theory., vol. 59, pp. 7761–7813, Dec. 2013.

[25] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Transactions on Information Theory, vol. 55, no. 7, pp. 3051 –3073, June
2009.

[26] M. El-Khamy, H. Lin, and J. Lee, “Binary polar codes are
optimised codes for bitwise multistage decoding,” Electronics Letters,
vol. 52, no. 13, pp. 1130–1132, 2016. [Online]. Available: https:
//ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/el.2016.0837

[27] N. Stolte, “Recursive codes with the Plotkin construction and its decoding,”
Ph.D. dissertation, Technical University "a t, Darmstadt, January 2002.
[Online]. Available: http://tuprints.ulb.tu-darmstadt.de/183/

[28] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Transactions
on Information Theory, vol. 61, no. 5, pp. 2213–2226, 2015.

[29] K. Niu and K. Chen, “CRC-aided decoding of polar codes,” IEEE Com-
munications Letters, vol. 16, no. 10, pp. 1668–1671, 2012.

[30] T. Wang, D. Qu, and T. Jiang, “Parity-check-concatenated polar codes,”
IEEE Communications Letters, vol. 20, no. 12, pp. 2342–2345, 2016.

[31] P. Trifonov and V. Miloslavskaya, “Polar subcodes,” IEEE Journal on
Selected Areas in Communications, vol. 34, no. 2, pp. 254–266, Feb 2016.

[32] P. Trifonov and G. Trofimiuk, “A randomized construction of polar
subcodes,” in 2017 IEEE International Symposium on Information Theory
(ISIT), June 2017, pp. 1863–1867.

[33] P. Trifonov, “Randomized polar subcodes with optimized error coefficient,”
IEEE Transactions on Communications, vol. 68, no. 11, pp. 6714–6722,
2020.

[34] E. Arikan, “From sequential decoding to channel polarization and
back again,” CoRR, vol. abs/1908.09594, 2019. [Online]. Available:
http://arxiv.org/abs/1908.09594

[35] 3GPP, “NR; Multiplexing and channel coding,” 3rd Generation Partner-
ship Project (3GPP), Technical Specification (TS) 38.212, 01 2019, version
15.4.0. [Online]. Available: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=3214

[36] M. Kamenev, Y. Kameneva, O. Kurmaev, and A. Maevskiy, “Permutation
decoding of polar codes,” CoRR, vol. abs/1901.05459, 2019. [Online].
Available: http://arxiv.org/abs/1901.05459

92 Bibliography

[37] M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink,
“CRC-aided belief propagation list decoding of polar codes,” in 2020
IEEE International Symposium on Information Theory (ISIT), 2020, pp.
395–400.

[38] A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “Belief Propaga-
tion List Decoding of Polar Codes,” ArXiv e-prints, Jun. 2018.

[39] ——, “Belief Propagation Decoding of Polar Codes on Permuted Factor
Graphs,” ArXiv e-prints, Jan. 2018.

[40] N. Hussami, S. B. Korada, and R. Urbanke, “Performance of polar codes
for channel and source coding,” in 2009 IEEE International Symposium
on Information Theory, June 2009, pp. 1488–1492.

[41] S. A. Hashemi, N. Doan, M. Mondelli, and W. J. Gross, “Decoding
Reed-Muller and Polar Codes by Successive Factor Graph Permutations,”
ArXiv e-prints, Jul. 2018.

[42] N. Doan, S. A. Hashemi, M. Mondelli, and W. J. Gross, “On the Decoding
of Polar Codes on Permuted Factor Graphs,” ArXiv e-prints, Jun. 2018.

[43] M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. ten
Brink, “On the Automorphism Group of Polar Codes,” arXiv:2101.09679
[cs, math], Jan. 2021, arXiv: 2101.09679. [Online]. Available:
http://arxiv.org/abs/2101.09679

[44] C. Pillet, V. Bioglio, and I. Land, “Polar Codes for Automorphism
Ensemble Decoding,” arXiv:2102.08250 [cs, math], 2021. [Online].
Available: http://arxiv.org/abs/2102.08250

[45] S. Kudekar, S. Kumar, M. Mondelli, H. D. Pfister, E. Şaşoğlu, and
R. Urbanke, “Reed-Muller codes achieve capacity on erasure channels,”
in Proceedings of the Forty-eighth Annual ACM Symposium on Theory of
Computing, ser. STOC ’16. New York, NY, USA: ACM, 2016, pp. 658–
669. [Online]. Available: http://doi.acm.org/10.1145/2897518.2897584

[46] G. Reeves and H. D. Pfister, “Reed-Muller codes achieve capacity on
BMS channels,” arXiv:2110.14631 [cs, math], 2021, arXiv: 2110.14631.
[Online]. Available: http://arxiv.org/abs/2110.14631

[47] E. Abbe, A. Shpilka, and A. Wigderson, “Reed–Muller Codes for Random
Erasures and Errors,” IEEE Transactions on Information Theory, vol. 61,
no. 10, pp. 5229–5252, 2015.

[48] E. Abbe and M. Ye, “Reed-Muller Codes Polarize,” IEEE Transactions
on Information Theory, vol. 66, no. 12, pp. 7311–7332, 2020.

Bibliography 93

[49] J. Hązła, A. Samorodnitsky, and O. Sberlo, “On Codes Decoding
a Constant Fraction of Errors on the BSC,” in Proceedings
of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, ser. STOC 2021. New York, NY, USA: Association
for Computing Machinery, 2021, p. 1479–1488. [Online]. Available:
https://doi.org/10.1145/3406325.3451015

[50] V. M. Sidel’nikov and A. S. Pershakov, “Decoding Reed-Muller codes
with a large number of errors,” Problemy Peredachi Informatsii, vol. 28,
no. 3, pp. 80–94, 1992.

[51] I. Dumer and K. Shabunov, “Soft-decision decoding of Reed-Muller codes:
recursive lists,” IEEE Transactions on Information Theory, vol. 52, no. 3,
pp. 1260–1266, March 2006.

[52] M. Ye and E. Abbe, “Recursive projection-aggregation decoding of Reed-
Muller codes,” in 2019 IEEE International Symposium on Information
Theory (ISIT), July 2019, pp. 2064–2068.

[53] M. Kamenev, “On decoding of Reed-Muller codes using a local graph
search,” in 2020 IEEE Information Theory Workshop (ITW), 2021, pp.
1–5.

[54] C. Carlet, Boolean Functions for Cryptography and Error-Correcting
Codes, Y. Crama and P. L. Hammer, Eds. Cambridge: Cambridge
University Press, 2010. [Online]. Available: https://www.cambridge.org/
core/product/identifier/CBO9780511780448A022/type/book_part

[55] M. Bardet, V. Dragoi, A. Otmani, and J.-P. Tillich, “Algebraic proper-
ties of polar codes from a new polynomial formalism,” in 2016 IEEE
International Symposium on Information Theory (ISIT), July 2016, pp.
230–234.

[56] F. MacWilliams and N. Sloane, The Theory of Error-Correcting Codes,
3rd ed. North-holland Publishing Company, 1981.

[57] M. Legeay, “Permutation decoding: Towards an approach using algebraic
properties of the σ-subcode,” in WCC 2011 - Workshop on coding and
cryptography, Paris, France, Apr. 2011, pp. 193–202. [Online]. Available:
https://hal.inria.fr/inria-00608107

[58] A. Soro, J. Lacan, V. Roca, V. Savin, and M. Cunche, “Enhanced recursive
Reed-Muller erasure decoding,” in 2016 IEEE International Symposium
on Information Theory (ISIT), July 2016, pp. 1760–1763.

[59] K. Ivanov and R. Urbanke, “Permutation-based decoding of Reed-Muller
codes in binary erasure channel,” in 2019 IEEE International Symposium
on Information Theory (ISIT), July 2019, pp. 21–25.

94 Bibliography

[60] M. Kamenev, Y. Kameneva, O. Kurmaev, and A. Maevskiy, “A new
permutation decoding method for Reed-Muller codes,” CoRR, vol.
abs/1901.04433, 2019. [Online]. Available: http://arxiv.org/abs/1901.
04433

[61] N. Doan, S. A. Hashemi, M. Mondelli, and W. J. Gross, “Decoding
Reed-Muller codes with successive factor-graph permutations,” CoRR,
vol. abs/2109.02122, 2021.

[62] M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. ten
Brink, “Automorphism Ensemble Decoding of Reed-Muller Codes,”
arXiv:2012.07635 [cs, math], Dec. 2020, arXiv: 2012.07635. [Online].
Available: http://arxiv.org/abs/2012.07635

[63] C. Pillet, C. Condo, and V. Bioglio, “SCAN list decoding of polar codes,”
in ICC 2020 - 2020 IEEE International Conference on Communications
(ICC), 2020, pp. 1–6.

[64] B. Sakkour and P. Loidreau, “Modified version of Sidel’nikov-Pershakov
decoding algorithm for binary second order Reed-Muller codes.” Ninth
International Workshop on Algebraic and Combinatorial Coding Theory,
ACCT’2004, 06 2004.

[65] K. Ivanov and R. Urbanke, “Improved decoding of second-order Reed-
Muller codes,” in 2019 IEEE Information Theory Workshop (ITW), 2019,
pp. 1–5.

[66] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes,” in 2008 IEEE International Symposium on Information
Theory, July 2008, pp. 1173–1177.

[67] M. Kamenev, “An efficient block error probability estimation of Reed-
Muller codes under permutation decoding,” in 2020 IEEE Information
Theory Workshop (ITW), 2021, pp. 1–5.

[68] R. Green, “A serial orthogonal decoder,” JPL Space Programs Summary,
vol. 37, pp. 247–253, 1966.

[69] B. Sakkour, “Decoding of second order Reed-Muller codes with a large
number of errors,” in Proceedings of the IEEE ITSOC Information
Theory Workshop 2005 on Coding and Complexity, ITW 2005, Rotorua,
New Zealand, August 29 - September 1, 2005, 2005, pp. 176–178. [Online].
Available: https://doi.org/10.1109/ITW.2005.1531882

[70] A. Balatsoukas-Stimming, M. Bastani Parizi, and A. Burg, “Llr-based
successive cancellation list decoding of polar codes,” in 2014 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP),
2014, pp. 3903–3907.

Bibliography 95

[71] B. Sakkour, “Etude du décodage des codes de Reed-Muller
et application à la cryptographie. (Decoding of Reed-Muller
codes and applications to cryptography),” Ph.D. dissertation,
École Polytechnique, Palaiseau, France, 2007. [Online]. Available:
https://tel.archives-ouvertes.fr/pastel-00002412

[72] D. Fathollahi, N. Farsad, S. A. Hashemi, and M. Mondelli, “Sparse multi-
decoder recursive projection aggregation for Reed-Muller codes,” in 2021
IEEE International Symposium on Information Theory (ISIT), 2021, pp.
1082–1087.

[73] P. Trifonov, “A score function for sequential decoding of polar codes,” in
2018 IEEE International Symposium on Information Theory, ISIT 2018,
Vail, CO, USA, June 17-22, 2018. IEEE, 2018, pp. 1470–1474. [Online].
Available: https://doi.org/10.1109/ISIT.2018.8437559

[74] K. Ivanov and R. L. Urbanke, “On the dependency between the code
symmetries and the decoding efficiency,” in International Symposium on
Information Theory and Its Applications, ISITA 2020, Kapolei, HI, USA,
October 24-27, 2020. IEEE, 2020, pp. 195–199. [Online]. Available:
https://ieeexplore.ieee.org/document/9366151

[75] ——, “On the efficiency of polar-like decoding for symmetric codes,” IEEE
Transactions on Communications, vol. 70, no. 1, pp. 163–170, 2022.

[76] ——, “On the efficiency of polar-like decoding for symmetric
codes,” CoRR, vol. abs/2104.06084, 2021. [Online]. Available:
https://arxiv.org/abs/2104.06084

[77] C. E. Shannon, R. G. Gallager, and E. R. Berlekamp, “Lower
bounds to error probability for coding on discrete memoryless channels.
I,” Information and Control, vol. 10, no. 1, pp. 65–103, 1967.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0019995867900526

[78] P. Trifonov, “Efficient design and decoding of polar codes,” IEEE Trans-
actions on Communications, vol. 60, no. 11, pp. 3221–3227, 2012.

[79] G. Li, M. Ye, and S. Hu, “A Dynamic Programming Method to
Construct Polar Codes with Improved Performance,” arXiv:2111.02851
[cs, math], Nov. 2021, arXiv: 2111.02851. [Online]. Available:
http://arxiv.org/abs/2111.02851

[80] Y. Li, H. Zhang, R. Li, J. Wang, W. Tong, G. Yan, and Z. Ma, “The
complete affine automorphism group of polar codes,” arXiv:2103.14215
[cs, math], 2021. [Online]. Available: http://arxiv.org/abs/2103.14215

96 Bibliography

[81] C. Pillet, V. Bioglio, and I. Land, “Classification of Automorphisms
for the Decoding of Polar Codes,” arXiv:2110.14438 [cs, math], 2021.
[Online]. Available: http://arxiv.org/abs/2110.14438

[82] S. H. Hassani, K. Alishahi, and R. L. Urbanke, “Finite-length scaling for
polar codes,” IEEE Transactions on Information Theory, vol. 60, no. 10,
pp. 5875–5898, 2014.

[83] D. P. Nadlinger, P. Drmota, B. C. Nichol, G. Araneda, D. Main,
R. Srinivas, D. M. Lucas, C. J. Ballance, K. Ivanov, E. Y.-Z. Tan,
P. Sekatski, R. L. Urbanke, R. Renner, N. Sangouard, and J.-D. Bancal,
“Device-independent quantum key distribution,” CoRR, 2021. [Online].
Available: https://arxiv.org/abs/2109.14600

[84] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum
cryptography,” Rev. Mod. Phys., vol. 74, pp. 145–195, Mar 2002. [Online].
Available: https://link.aps.org/doi/10.1103/RevModPhys.74.145

[85] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek,
N. Lütkenhaus, and M. Peev, “The security of practical quantum key
distribution,” Rev. Mod. Phys., vol. 81, pp. 1301–1350, Sep 2009. [Online].
Available: https://link.aps.org/doi/10.1103/RevModPhys.81.1301

[86] H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,”
Nat. Photonics, vol. 8, p. 595–604, 2014. [Online]. Available:
https://doi.org/10.1038/nphoton.2014.149

[87] A. Acín, N. Gisin, and L. Masanes, “From Bell’s Theorem to Secure
Quantum Key Distribution,” Phys. Rev. Lett., vol. 97, p. 120405, Sep
2006. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.
97.120405

[88] Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo,
“Quantum hacking: Experimental demonstration of time-shift attack
against practical quantum-key-distribution systems,” Phys. Rev.
A, vol. 78, p. 042333, Oct 2008. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevA.78.042333

[89] L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and
V. Makarov, “Hacking commercial quantum cryptography systems by
tailored bright illumination,” Nat. Photonics, vol. 4, pp. 686–689, 2010.
[Online]. Available: https://doi.org/10.1038/nphoton.2010.214

[90] I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and
V. Makarov, “Full-field implementation of a perfect eavesdropper on a
quantum cryptography system,” Nat. Commun., vol. 2, no. 1, Jun 2011.
[Online]. Available: http://dx.doi.org/10.1038/ncomms1348

Bibliography 97

[91] H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter,
“Quantum eavesdropping without interception: an attack exploiting the
dead time of single-photon detectors,” New J. Phys., vol. 13, no. 7, p.
073024, 2011.

[92] J. C. Garcia-Escartin, S. Sajeed, and V. Makarov, “Attacking quantum
key distribution by light injection via ventilation openings,” PLoS ONE,
vol. 15, no. 8, p. e0236630, Aug. 2020.

[93] S. L. Braunstein and S. Pirandola, “Side-Channel-Free Quantum Key
Distribution,” Phys. Rev. Lett., vol. 108, p. 130502, Mar 2012. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevLett.108.130502

[94] H.-K. Lo, M. Curty, and B. Qi, “Measurement-Device-Independent
Quantum Key Distribution,” Phys. Rev. Lett., vol. 108, p. 130503, Mar
2012. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.
108.130503

[95] A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and
W. Tittel, “Real-World Two-Photon Interference and Proof-of-Principle
Quantum Key Distribution Immune to Detector Attacks,” Phys.
Rev. Lett., vol. 111, p. 130501, Sep 2013. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.111.130501

[96] T. Ferreira da Silva, D. Vitoreti, G. B. Xavier, G. C. do Amaral, G. P.
Temporão, and J. P. von der Weid, “Proof-of-principle demonstration
of measurement-device-independent quantum key distribution using
polarization qubits,” Phys. Rev. A, vol. 88, p. 052303, Nov 2013. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevA.88.052303

[97] Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang,
K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M.
Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental
Measurement-Device-Independent Quantum Key Distribution,” Phys.
Rev. Lett., vol. 111, p. 130502, Sep 2013. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.111.130502

[98] D. Mayers and A. Yao, “Self Testing Quantum Apparatus,” Quantum
Info. Comput., vol. 4, no. 4, p. 273–286, Jul. 2004.

[99] A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani,
“Device-Independent Security of Quantum Cryptography against
Collective Attacks,” Phys. Rev. Lett., vol. 98, p. 230501, Jun 2007. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevLett.98.230501

[100] U. Vazirani and T. Vidick, “Fully Device-Independent Quantum Key
Distribution,” Phys. Rev. Lett., vol. 113, p. 140501, Sep 2014. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevLett.113.140501

98 Bibliography

[101] R. Arnon-Friedman, F. Dupuis, O. Fawzi, R. Renner, and T. Vidick,
“Practical device-independent quantum cryptography via entropy accu-
mulation,” Nat. Commun., vol. 9, no. 1, p. 459, 2018.

[102] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell
nonlocality,” Rev. Mod. Phys., vol. 86, pp. 419–478, Apr 2014. [Online].
Available: https://link.aps.org/doi/10.1103/RevModPhys.86.419

[103] J. Barrett, L. Hardy, and A. Kent, “No Signaling and Quantum Key
Distribution,” Phys. Rev. Lett., vol. 95, p. 010503, Jun 2005. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevLett.95.010503

[104] L. Masanes, “Universally Composable Privacy Amplification from
Causality Constraints,” Phys. Rev. Lett., vol. 102, p. 140501, Apr 2009.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.102.
140501

[105] B. W. Reichardt, F. Unger, and U. Vazirani, “Classical command of
quantum systems,” Nature, vol. 496, pp. 456–460, 2013.

[106] M. Ho, P. Sekatski, E. Y.-Z. Tan, R. Renner, J.-D. Bancal,
and N. Sangouard, “Noisy Preprocessing Facilitates a Photonic
Realization of Device-Independent Quantum Key Distribution,” Phys.
Rev. Lett., vol. 124, p. 230502, Jun 2020. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.124.230502

[107] R. Schwonnek, K. T. Goh, I. W. Primaatmaja, E. Y.-Z. Tan, R. Wolf,
V. Scarani, and C. C.-W. Lim, “Device-independent quantum key
distribution with random key basis,” Nat. Commun., vol. 12, p. 2880,
2021. [Online]. Available: https://doi.org/10.1038/s41467-021-23147-3

[108] E. Woodhead, A. Acín, and S. Pironio, “Device-independent quantum key
distribution with asymmetric CHSH inequalities,” Quantum, vol. 5, p. 443,
2021. [Online]. Available: https://doi.org/10.22331/q-2021-04-26-443

[109] P. Sekatski, J.-D. Bancal, X. Valcarce, E.-Z. Tan, R. Renner, and
N. Sangouard, “Device-independent quantum key distribution from
generalized CHSH inequalities,” Quantum, vol. 5, p. 444, 2021. [Online].
Available: https://doi.org/10.22331/q-2021-04-26-444

[110] P. Brown, H. Fawzi, and O. Fawzi, “Device-independent lower bounds on
the conditional von Neumann entropy,” arXiv:2106.13692, 2021.

[111] M. Masini, S. Pironio, and E. Woodhead, “Simple and practical DIQKD
security analysis via BB84-type uncertainty relations and Pauli correlation
constraints,” arXiv:2107.08894, 2021.

[112] A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys.
Rev. Lett., vol. 67, no. 6, p. 661, 1991.

Bibliography 99

[113] S. Pironio, A. Acin, N. Brunner, N. Gisin, S. Massar, and V. Scarani,
“Device-independent quantum key distribution secure against collective
attacks,” New J. Phys., vol. 11, no. 4, p. 045021, 2009.

[114] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed
experiment to test local hidden-variable theories,” Phys. Rev. Lett., vol. 23,
no. 15, p. 880, 1969.

[115] G. Murta, S. B. van Dam, J. Ribeiro, R. Hanson, and S. Wehner, “Towards
a realization of device-independent quantum key distribution,” Quantum
Sci. Technol., vol. 4, p. 035011, 2019.

[116] E. Y.-Z. Tan, P. Sekatski, J.-D. Bancal, R. Schwonnek, R. Renner,
N. Sangouard, and C. C.-W. Lim, “Improved DIQKD protocols with
finite-size analysis,” arXiv:2012.08714, 2020.

[117] D. Slepian and J. Wolf, “Noiseless coding of correlated information
sources,” IEEE Transactions on Information Theory, vol. 19, no. 4,
pp. 471–480, 1973.

[118] S. Pradhan and K. Ramchandran, “Distributed source coding using
syndromes (DISCUS): design and construction,” IEEE Transactions on
Information Theory, vol. 49, no. 3, pp. 626–643, 2003.

[119] L. Wang and Y. Kim, “Linear code duality between channel coding and
Slepian-Wolf coding,” in 53rd Annual Allerton Conference on Communi-
cation, Control, and Computing (Allerton), Monticello, IL, USA, 2015,
pp. 147–152.

[120] Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel Coding Rate in the
Finite Blocklength Regime,” IEEE Trans. Inf. Theory., vol. 56, p. 2307,
2010.

[121] S. H. Hassani, K. Alishahi, and R. L. Urbanke, “Finite-Length Scaling
for Polar Codes,” IEEE Trans. Inf. Theory., vol. 60, pp. 5875–5898, Oct.
2014.

[122] I. Sason and R. Urbanke, “Parity-check density versus performance of
binary linear block codes over memoryless symmetric channels,” IEEE
Trans. Inf. Theory, vol. 49, pp. 1611–1635, Jul. 2003.

[123] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of
capacity-approaching irregular low-density parity-check codes,” IEEE
Trans. Inf. Theory., vol. 47, pp. 619–637, Feb 2001.

[124] A. Shokrollahi, “New sequences of linear time erasure codes approaching
channel capacity,” Proc. IEEE Int. Symp. Information Theory and its
Applications, Honolulu, HI, pp. 65–76, Nov. 1999.

100 Bibliography

[125] P. Oswald and A. Shokrollahi, “Cappacity-achieving sequences for the
erasure channel,” IEEE Trans. Inf. Theory, vol. 48, p. 3017–3028, Dec.
2002.

[126] H. D. Pfister, I. Sason, and R. Urbanke, “Capacity-achieving ensembles
for the binary erasure channel with bounded complexity,” IEEE Trans.
Inf. Theory, vol. 51, p. 2352–2379, July 2005.

[127] A. Amraoui, A. Montanari, T. Richardson, and R. Urbanke, “Finite-
Length Scaling for Iteratively Decoded LDPC Ensembles,” IEEE Trans.
Inf. Theory., vol. 55, pp. 473–498, Feb. 2009.

[128] M. Mondelli, S. H. Hassani, and R. L. Urbanke, “How to achieve the
capacity of asymmetric channels,” IEEE Transactions on Information
Theory, vol. 64, no. 5, pp. 3371–3393, 2018.

[129] D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, “Spatially Coupled
LDPC Codes Constructed From Protographs,” IEEE Trans. Inform.
Theory, vol. 61, p. 4866–4889, Sep. 2015.

[130] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge:
Cambridge University Press, 2008.

[131] J. Chen, D. He, and A. Jagmohan, “Slepian-Wolf Code Design via
Source-Channel Correspondence,” arXiv:cs/0607021, Jul. 2006. [Online].
Available: http://arxiv.org/abs/cs/0607021

[132] J. Zhang and M. Fossorier, “Shuffled iterative decoding,” IEEE Trans.
Commun., vol. 53, pp. 209–213, Feb. 2005.

[133] D. E. Hocevar, “A reduced complexity decoder architecture via layered
decoding of LDPC code,” Proc. IEEE Workshop Signal processing and
Systems (SIPS. 04), Austin, TX, pp. 107–112, Oct. 2004.

[134] M. Lentmaier, M. M. Prenda, and G. P. Fettweis, “Efficient message
passing scheduling for terminated LDPC convolutional codes,” Proc.
IEEE Int. Symp. Inf. Theory, St. Petersburg, Russia, p. 1826–1830,
Jul./Aug. 2011.

[135] A. Iyengar, M. Papaleo, P. Siegel, J. Wolf, A. Vanelli-Coralli, and
G. Corazza, “Windowed decoding of protograph-based LDPC convo-
lutional codes over erasure channels,” IEEE Trans. Inf. Theory, vol. 58,
p. 2303–2320, 2012.

[136] R. Arnon-Friedman, R. Renner, and T. Vidick, “Simple and Tight Device-
Independent Security Proofs,” SIAM J. Comput., vol. 48, p. 181, 2019.

