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Abstract—Power-Hardware-in-the-Loop (PHIL) setups have
gained high importance in validation of the performance of
newly developed instruments and devices with low risk and
implementation cost. However, the interconnection of a power
hardware with a simulated model via a feedback loop using
measured signals may make the closed-loop system unstable. In
this paper, a systematic method is proposed to design a digital
filter such that the closed-loop stability of the PHIL setup is
guaranteed and its performance is optimized. The design of the
filter is formulated as a specific controller synthesis problem that
minimizes the deviation in measured feedback current and en-
sures a certain robustness margin. The design problem is written
as a convex optimization and solved efficiently using available
solvers. Due to the data-driven characteristic of the proposed
method, there is no need for the model of the Hardware Under
the Test (HUT) to guarantee stability and performance. Since the
design is done in a systematic fashion using advanced control
design techniques with a rigorous mathematical guarantee for
stability, a high-performance filter can be designed with no need
for laborious manual tuning that may lead to low-performance
filters. This method is also extended to a multi-scenario case
including different combinations of hardware and simulated
systems. The PHIL experimental results validate the effectiveness
of the proposed method while satisfying the required stability
margin and improving the performance significantly compared
to conventional filters.

Index Terms—Power-hardware-in-the-loop, data-driven con-
trol, robust control, stabilization, convex optimization.

I. INTRODUCTION

ARDWARE-in-the-Loop (HIL) test is a flexible and

efficient method to study the behavior of an instrument
(i.e. HUT) and its interactions with the environment by
measuring its states. HIL tests are usually conducted when
a part of the system needs to be scaled-up [1] or when the
objective is to study various normal and/or extreme and rare
conditions [2]. The main objective of a HIL test is to be able to
measure the states of the instrument with high fidelity. Thus,
it is an important factor that the measurement data is not
deviated. However, the most important factor is to make the
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system stable because in an unstable system no measurement
is possible and the instruments may also be damaged. Since the
measured signal is used in the feedback loop in the HIL setup,
any filtering and process on this signal can directly affect the
stability of the system. The main challenge is to condition,
filter and process the measured signal such that the system
remains stable while the quality of measurement data is not
compromised.

A HIL setup can be seen as a complex measurement
setup which is composed of different subsystems. When the
environment is simulated by means of a Digital Real-Time
Simulator (DRTS), different operating conditions can be tested
with minimum cost and risk. If the HUT interacts with the
DRTS via signals with no (or negligible) real power exchange
and the controller is realized as the HUT, the HIL setup is
called Control-Hardware-in-the-Loop (CHIL) [3].

In power systems, when a new component is added, there
is a need for a series of tests to ensure the resiliency of
the system. These tests should not impose high risk and
cost. Using PHIL setups, different operation scenarios can
be studied with reduced cost and time [4]. Moreover, in a
tightly controlled laboratory environment, a PHIL setup can
facilitate testing conditions which may be very extreme and/or
dangerous in a power system [5]. In most applications, a
PHIL setup is a HIL setup that includes DRTS and HUT
which exchanges a considerable amount of power with the
environment (e.g. when a real battery should be charged with a
simulated synchronous generator) [6], [7]. In a PHIL setup, an
interface between DRTS and HUT is required which basically
includes a Power Amplifier (PA) and some sensors. PA can
be realized either as a voltage amplifier or a current amplifier
depending on the structure of the PHIL setup. However, in both
cases, it is common to be denoted as PA in the PHIL literature.
The general structure of a PHIL setup is shown in Fig. 1. In
PHIL setups, DRTS should run with short and deterministic



time steps which means that the time elapsed in the simulation
is exactly equal to the time measured by a real-world clock [4].
In an ideal case, the PA and sensors should act as fixed gains
in all frequencies with no delay and the simulation step time in
DRTS should be zero, which are not realizable in practice [8],
[9]. Moreover, depending on the combination of the system
in simulation and HUT, the open-loop structure of the system
may not necessarily be strictly proper which may result in high
gain at high frequencies. The combination of the delay and
the latter property may end up in PHIL instability that can put
the HUT and PA under severe stress and cause damage [10].
As a remedy, the loop frequency response can be attenuated
(more importantly at high frequencies) such that the closed-
loop system becomes stable. It can be realized by adding low-
pass filters on measured signals, simulated impedances inside
DRTS, physical impedances or a combination of those. How-
ever, these changes may result in the deviation of the measured
value from what it should truly be. Different implementation
methods and structures (a.k.a Interface Algorithms (IA)) are
proposed to provide stability while trying to keep measure-
ment signal deviation low. Some of the most well-known
IAs are Ideal Transformer Model (ITM) [11], Time-variant
First-order Approximation (TFA) [12], Transmission Line
Model (TLM) [11], Partial Circuit Duplication (PCD) [11]
and Damping Impedance Method (DIM) [10]. Among these
methods, PCD, DIM and TLM are essentially based on the
idea of using additional physical impedances which is not
practically desirable because it is harder to implement, less
flexible and has higher maintenance costs specifically in high-
power applications [13]. Moreover, when the added hardware
includes inductance, the performance in high frequencies is
considerably affected [14]. TFA does not require an extra
impedance, however, it has numerical stability problems and
high sensitivity to noise [10]. The performance of some of the
interface algorithms and their impact on the stability margin
are compared in [15]. Among the mentioned methods, ITM
is the best method in terms of implementation and is widely
used in practice [9], [16]-[21]. However, stabilization is the
main challenge using this method [10].

One of the main contributions of this paper is that the
closed-loop stability of the PHIL setup is guaranteed without
any knowledge about the parameters of the hardware. There
are two important points, namely, stability guarantee and data-
driven property.

Stabilization is the primary goal of almost all of the
proposed methods in this area due to its safety hazards for
the operators and the economic costs. Consequently, closed-
loop stability should be guaranteed in the design process.
However, in contrast to most of the proposed methods, it
is not enough to guarantee stability only for the nominal
system. Uncertainty, as one of the main characteristics of PHIL
systems, should also be considered in the proposed solution.
The simulated system may not only have a single operating
condition but instead a set of different possible conditions. For
example, a power grid may have different typologies based
on the status of the breakers or the HUT can have different
possible modes which can be addressed by considering multi-
model uncertainty. Moreover, the behaviour of the system

may slightly and gradually change during the operation. For
example, the resistive part may slightly change during a test
which can be dealt with by a proper stability margin.

Using the measurement data directly for the design and
bypassing the modeling step is another important character-
istic of the proposed method. Conventionally, the data was
used to construct a model (a.k.a system identification [22])
by an optimization and based on that model the controller
was designed by another optimization. However, it should
be assumed that the structure of the system is known (e.g.
order) and a good low-order model can be obtained from the
data which is not necessarily a valid assumption in practice.
Specifically, in PHIL applications, it is not realistic to assume
the availability of a reliable and accurate low-order model of
the system because the unavailability of such a model is the
major motivation behind conducting a PHIL experiment [13].
As an alternative, in direct-data-driven methods, the controller
is designed directly from the data via only one optimization. In
these methods, there is no need to put any assumption on the
structure of the system which makes it suitable for PHIL appli-
cations. Basic direct-data-driven methods are reviewed in [23].
Recently, thanks to the advancements in solver technology and
computation power, these methods have gained more attention
[24]1-[33]. The data used for synthesizing the controller may be
in time-domain [24]-[26] or in frequency-domain [27]-[33].
One of the advantages of the latter is that the closed-loop
sensitivity functions can be shaped directly in the frequency
domain. However, in the application of controller design for
PHIL setup, in addition to closed-loop functions, the controller
itself should also be shaped which is not easily possible with
the data-driven methods that are proposed in the literature.

Conventionally, in PHIL applications a parametric model
(based on physical parameters of the system or identifying
a low-order parametric model) of each element in the loop,
such as PA, HUT, sensors, etc. are generated separately [34]-
[36]. There are a limited number of researches addressing
this problem by trying to use the data of PHIL systems [34],
[37]-[41]. In [37]-[39], authors use the measured data and
perform parametric identification of the input impedance of
HUT. In [40], a similar method for impedance identification
is used and a passivity criterion is considered for providing
stability. However, for stabilization, the DIM method is used
which has its own limitations as mentioned earlier. In [34], by
considering the general structure of the system as a resistive
voltage divider, it is assumed that the elements in the PHIL
setup can be approximated by a first-order parametric model
and the delay is approximated for a PHIL setup and then the
stability is checked by the Routh criterion. Apart from the error
introduced from the low order assumption and approximation
of the delay, the studied structure is limited to a resistive
voltage divider along with a very basic compensator that leads
to low performance.

An efficient way to solve the design problem is to formulate
it as a convex optimisation problem because there are very
well-established numerical methods for convex programming
which can handle a problem with a large number of variables
and constraints [42]. Moreover, there are advanced solver
technologies available to solve this type of problems (e.g.
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Fig. 2: PHIL circuit with ITM interface algorithm

[43]). Consequently, the main challenge is not to solve the
convex programming problem, but instead, to formulate the
practical problem at hand as a convex programming problem.
To the best knowledge of the authors, there is no published
literature that proposes a systematic, flexible and comprehen-
sive controller design method for PHIL setups that guarantees
closed-loop stability based on the data of the system without
any assumption on the system structure (order, delay, etc.). In
this paper, the problem of designing a high-performance filter
that guarantees the closed-loop stability of a PHIL system is
converted to a specific data-driven controller design method
using convex optimization which can be solved fast and
efficiently. It should be mentioned that the objective here is
to put some constraints on the controller (filter) instead of
the closed-loop transfer function which is usually done in
the classical controller design methods. Only the frequency
response of the loop is required to optimize the controller
(filter) parameters under a predefined robust stability margin
constraint. The proposed method is used to design a robust
controller for the multi-scenario case as well.

The rest of the paper is organized as follows: In Section II,
the structure of the PHIL setup is defined and in Section III,
the controller design method using convex optimization is
detailed. In Section IV, the process of data measurement and
controller design for a case study is explained and finally in
Section V, some concluding remarks are mentioned.

II. PHIL SYSTEM STRUCTURE

ITM can be implemented using a current source or a voltage
source on the PA side which are dual structures. In this
paper, the voltage source ITM (simply denoted as ITM) is
used and its general structure is depicted in Fig. 2, which is
similar to the structure used in [4], [9], [10], [13], [21], [44],
[45]. The results can be used straightforwardly for the current
source ITM as well. The Thévenin theorem is applied in
PHIL system analysis as the key modelling principle [46] and
linear approximation of the system at different operating points
enables the use of linear control system theory [4]. In fact,
linear assumption and using linear techniques are common in

the literature (e.g. [4]-[6], [13], [15], [15], [38], [44], [46]-
[48]). However, multi-model structures or Linear Parameter
Varying (LPV) methods [31], [49] can be used in some cases
if this assumption is not valid. In the structure shown in Fig. 2,
Vg, and Zp are equivalent voltage and impedance of the
grid simulated in DRTS. This part is connected in series to
a controlled current source which reflects the image of the
current in the hardware side to the DRTS side. On the other
hand, the voltage over the controlled current source (i.e. Vi) is
amplified by PA to generate voltage V,,, and, Zy represents
the HUT.

Feedback current filtering is a well-known solution for
stabilizing the closed-loop system [14], [45]. In this method,
K as an extra element is added to the loop in order to make
it stable, while it should not deteriorate the signals and in
an ideal case, it should act as a unity gain. In fact, the
more K is different from the unity the more deviation is
imposed on the PHIL results. Besides, in the ideal case, PA
should generate exactly what is asked for (i.e. Vz, = Vg).
However, it does not happen due to the delay and non-ideal
elements. The PHIL block diagram is shown in Fig. 3. In this
figure, Gp represents the transfer function of the PA while
its input is the reference voltage and its output is Vz,, which
includes the delay and usually has a low pass characteristic.
Gy represents the transfer function corresponding to Zy with
its voltage and current as the input and output, respectively.
Gs denotes the transfer function of the current sensor. K is
the controller (filter) which acts on the feedback current in
order to stabilize the closed-loop system. Gy is the transfer
function corresponding to Zr with the input /5 and the output
Vz,. DRTS is run at step Tr which is limited by the DRTS
technology and the complexity of the simulated system. Since
the simulation in DRTS is in discrete-time and the hardware
is in continuous-time, there is a need for ADC and DAC
to connect these parts, which in the block diagram can be
seen as a Zero-Order-Hold (ZOH) block and a sampler. One
common method to assess the stability of the system is to
model each part of the system separately and determine a
simplified transfer function for the whole loop where some
blocks may be ignored. For example, the dynamics of PA
is ignored in [10] or modelled as a mixture of delay and a
low-pass filter in [46]. For Gy, the first principles modeling
(based on the assumption of known parameters and known
physical equations governing the system) is common which is
prone to uncertainty due to unknown parameters and physical
interactions. Moreover, in many cases, the system is only
analyzed in continuous-time ignoring the impact of the ZOH
and the sampler. The mentioned issues may lead to an invalid
understanding of the loop behavior which can end up in an
incorrect stability analysis.

In this paper, a fully data-driven controller design method
is proposed where the measured data is directly used for
the design with no parametric identification step. To do so,
the frequency response of the system from Vi and to Ip
can be computed by applying a sine-sweep or a Pseudo-
Random Binary Sequence (PRBS) to Vg. This system is
denoted as G;y which includes the ZOH, Gp, Gy, Gs and
the sampler. Since G i is known from the simulation, the total
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plant frequency response, (G, can be considered as a series
connection of Gy and Gpg.

III. CONTROLLER (FILTER) DESIGN

In this section, a data-driven controller design method is
introduced to design a low-pass filter for a PHIL system that
guarantees the closed-loop stability and performance of the
system in terms of accuracy and disturbance rejection. For
the practical ease of implementation, the controller (filter) is
defined in discrete-time, however, since the design method
is in the frequency-domain, it can readily be rewritten for
continuous-time controllers as well.

The system to be controlled is a Linear Time-Invariant
(LTT) single-input single-output system. It is assumed that
the frequency response of the system is computed based on
a finite set of sampled measurement data and represented
by a transfer function G(e’*) € C and is available for all
w € Q = [~wn, wy], where w,, = 7/Ts is the Nyquist
frequency and T is the sampling period.

A. Performance

As mentioned previously, K is an added element to the
system to make the closed-loop system stable. However, it
should not change the results of the experiment in an ideal
case. Assume that the relative error between Ix and I is
defined as follows:

Ix — IR
Ir
which has a close connection to the ripple concept in filter
design (see [50]). Consequently, the design problem can be
defined as follows:

=K1 (1)

: 12
mlénHK 13 (2)

Note that, this type of objective is not common in the classical
controller design methods, where usually a norm of a closed-
loop transfer function is minimized. Therefore, a standard H
or Hoo controller design method cannot be used here. Using
the definition of the two-norm of a transfer function, it can be
shown that the problem (2) is equivalent to
Wn,
min / ‘K(ej“’) — 1’2 dw 3)
K ) .
In order to have an upper bound on the gain of the filter, the
following constraint can be used:

|K(e79)] < Wy(w) YweQ (4)

Similarly, a lower bound is required to guarantee the signal
passes up to a predefined value which can be written as:

|K(e7*)] > Wi(w) Yw e N )

In addition, it is clear that the result of this optimization does
not necessarily stabilize the closed-loop system. Particularly,
since (G is not necessarily strictly proper and may have a very
large gain at high frequencies, for closed-loop stability the
controller (filter) K should have frequency roll-off at high
frequencies. In the following part, a constraint for stability
margin will be discussed.

B. Robustness

In order to make the system robustly stable, a guaranteed
stability margin is crucial. In this paper, the modulus margin
(M) has been used as the stability margin which guarantees
the well-known gain margin and phase margin simultaneously.
Modulus margin is the minimum distance of the open-loop
transfer function from the critical point (i.e. —1 4 0j) in the
Nyquist diagram, which can be defined as:

—1
M= (sup|8(ej“’)|) (6)

where S = (1 + L)~! is the output sensitivity function and
L = GK is the open-loop transfer function. For a closed-loop
stable system, the modulus margin can be guaranteed by:

IS(e?)| < M Yw e Q (7

where M is the desired lower-bound for the modulus margin
M. The above constraint guarantees a minimum distance from
the critical point in the Nyquist diagram but it does not
guarantee that the Nyquist diagram will not turn around the
critical point. This problem is studied at the end of this section.

C. Disturbance Rejection

In addition to the previous constraints, the output distur-
bance rejection can also be considered as a performance in
the controller design. The transfer function from the output
disturbance to I is U/ = K(1 + L)™', where U is the input
sensitivity function and its magnitude can be limited using the
following constraint:

U < U, YweQ ®)

where U, is the desired upper bound for the input sensitivity
function.

D. Controller Design Problem

The controller design problem can be cast as the following
nonlinear constrained optimization problem:

min / (K = 1)(K = 1)*dw (9a)
st. KK* <W,W} VYwe (9b)
KK*>WW; YweQ (9¢)

SS* < M;? VYweQ (9d)

UU* < U? Yw e Q. (%e)



In this optimization problem, the objective (i.e. (9a)) is equiv-
alent to (3). The first and the second constraint (i.e. (9b)
and (9b)) are equivalent to (4) and (5), respectively. The
third constraint (i.e. (9d)) is equivalent to (7) and provides a
predefined stability margin. And finally, the fourth constraint
(i.e. (9e)) is equivalent to (8) and is added to limit the
magnitude of the transfer function from the disturbance to the
I in order not to let the measurement noise and disturbance
be amplified in the simulation. Basically, from the control
point of view, the input and output closed-loop sensitivity
functions (i.e. S and U) act toward disturbance rejection and
help the quality of the signals not to be affected by disturbance
and noise. For the sake of simplicity in notation, the functions’
arguments are omitted in the above problem and in the rest of
the paper and are only reiterated when deemed necessary. This
problem is a non-standard control problem, non-convex and
with an infinite number of constraints. In the sequel, the steps
required to change this problem into a convex optimization
are explained.

1) Controller Structure and problem formulation: The con-
troller is defined as:

K(z) = )Y(((g (10)

where both X and Y are polynomials in z as follows:
X(2) = (w0 + w12+ ... + 20y, 2"F) (11a)
Y(2)=Wo+ 12+ ...+ Yng—12" " +2"€)  (11b)
where x; fori =0,1,...,ngand y; fort =0,1,...,ng — 1

are the controller parameters. Let @ = X —Y and P =Y +
G X, then obviously

Q 1 Y £ X
Y’S 1+GTX P,and,l/l 1+GTX 5
Consequently, problem (9) can be written as:
Q. Q
lgg}g/_ (Y)(Y) w (12a)
X X
.t * Q 12
s.t (Y)(Y) < W, W} Vwe (12b)
X X
(FNF) > W) VweQ (12¢)
Y Y _
(P)(P) <M? YweQ (12d)
X X 9
Q 12
(P)(P) <U? Vwe (12€)

This problem is still non-convex and its convexification is
explained in the next part.

2) Convex Controller Design Problem: It can be shown that
(12a) is equivalent to:

min / " W) (13a)
s.t. (g)(g) <y(w) YweQ (13b)

where y(w) > 0 for all w € Q is an unknown function.
Moreover, as a general procedure, constraints of the problem

(12) are written in the convex-concave form and then, the con-
cave part is linearized around an initial stabilizing controller
K.(2) = X.(2)Y,71(2) to obtain a convex constraint. To start
with (12b), it can be written as:

- W.YY'Wr <0 VYweQ. (14)

It should be noted that left hand side of (14) has quadratic
from in X and Y and according to (11), X and Y are linear
in controller parameters (i.e. x; for ¢ = 0,...,ng and y; for
i=0,...,ng —1).

Let F := W,Y and F. := W,Y,. By developing (F —
F.)(F — F;)* >0, it can be shown that:

XX*—F,F*—FF'+F.F*<0 Ywe (15)

is a sufficient convex constraint for (14). Similarly, other
constraints in the problem can be convexified.

3) Semi-definite Controller Design Problem: In general, the
frequency response that is obtained from the sampled data can
be calculated as [51]:

> e 0 "y (k)e I Tk
Zk: o u(k)e=dwTsk
where u(k) is the input and y(k) is the output which are
assumed equal to zero for £ > N and k < 0. As it can be seen,
this function is continuous in frequency and can be calculated
at any arbitrary frequency. If the plant obtained in (16) is used
to construct the problem in (12), it will be a semi-infinite pro-
gramming (i.e. with an infinite number of constraints). In order
to make the problem tractable, the frequency response can be
sampled at a finite set of frequencies, Qn = {w1,...,wN}
(since the constraints are symmetric, non-negative frequen-
cies are considered). As a result, the semi-infinite problem
would be changed to a tractable semi-definite programming.
Following the same convexification procedure for all of the
constraints, the controller design problem can be written as a
semi-definite programming as follows:

G(e?¥) =

(16)

win %v(w) (17a)

st. Qv M w)QF =YY —YYF 4+ Y.V <0 (17b)
XX* - F.F*—FF'+F.F* <0 (17¢)
WYY*W) — X X* - XX+ X.X:<0 (17d)
YY*M}? — P.P* — PP} + P.P’ <0 (17e)
XX*U;? - P.P*— PP+ P.P’ <0 (17)

for all w in Qn where P, = Y, + GX,. In this algorithm,
v(w1) to y(wn) are N positive dummy variables that make
the objective function linear. Constraint set (17b) using Schur
complement lemma has convex form and constraint sets (17c)-
(17f) have quadratic-convex from. Consequently, this problem
has a linear objective function with convex constraints which
is a convex programming and can be solved efficiently and
fast by available convex-optimization solvers. Problem (17) is
obtained based on the convexification of the original problem
around the initial controller. Consequently, even though the
stability will be kept anyway, the performance will highly
depend on the choice of the initial controller. To improve the



performance an iterative approach can be used that considers
the optimal controller from the previous iteration as the initial
controller for the next iteration. This way, the stability property
will be preserved while the performance will converge to that
of a local minimum or a saddle point of the original non-
convex problem [30].

4) Closed-loop stability: If P.P*+ PP* > 0,Y # 0 and
Y. # 0 for all w € € and the order of Y equals the order
of Y., then the number of encirclements of GK around the
critical point will be equal to that of GK_. (see Theorem 2
in [30] for multivariable systems). It can be shown that (17¢)
or (17f) ensures that P.P* 4+ PP} > 0 and (17b) is sufficient
for Y # 0 and Y. # 0. Consequently, the closed-loop system
will be stable if the initial controller K is stabilizing and the
order of Y equals the order of Y,.. It should be noted that
assuming the availability of an initial stabilizing controller is
not a strong assumption for stable plants since a sufficiently
small gain always stabilizes the output-feedback closed-loop
system.

E. Controller Design for Multi-Scenario case

In this section, the problem of encountering different sce-
narios in the PHIL setup is addressed. For example, when
different topologies of a grid or testing more than one type
of HUT are considered. All these scenarios may amount to
different Zp and Zy which eliminates all the stability and
performance guarantees. As the number of scenarios increases,
designing without a systematic method becomes more time
consuming and may lead to an unnecessary conservative result.
Assume there are ng scenarios each of which corresponds to
one PHIL setup configuration (i.e. one (Zg, Zp)). The set
of all models is defined as G = {G1,Gs....,G,,} where
G denotes frequency response corresponding to i-th scenario.
Consequently, (17) can be extended to:

min %'y(w) (18a)

st Qv N w)QF — Y. Y —YYF+Y.Y <0  (I18b)
XX* - F.F* -~ FF'+F.Fr <0 (18¢)
WYY* W — X X* - XX+ X.X<0 (18d)
YY*M? — P.,Pf — P;P.; + P.;P.; <0 (18e)
XX*U,?~P.,Pf — PP.; + P;P.; <0 (18

for all w in Qu and for all G; in G.

IV. CASE STUDY

The controller design problem explained in Section III is
applied on a PHIL setup. In this case study, Opal-RT OP5600
and Puissance plus AC amplifier PA-3x1000-AB/260V-7.7A
are used as DRTS and PA, respectively. The PHIL test setup
is shown in Fig. 4. It should be noted that the results presented
in this section do not aim to reflect the characteristics of
any specific system or device. In this case study, resistive-
inductive impedances for both Zr and Zj are selected which
is common in PHIL system studies (e.g. [6], [21], [44], [52]).
For the base-case scenario, Lrp =9mH, Ly =6mH, and
Rr = Ry =110 It should be emphasized again that these

HUT

Host Computer

Fig. 4: PHIL setup

parameters are used neither for the stability analysis nor for
the design and are just mentioned for the completeness of the
representation.

A. Data Measurement

A PRBS signal with order 10 and magnitude of 10V,
which is generated in DRTS is used to excite the system
and the response of the system is logged. In practice, the
measurement data is contaminated with noise whose impact
on the frequency response can be considered with an additive
uncertainty as G(e/%) = G(e/*)+ W, (e7*) A where W, (e7%)
is the uncertainty filter and A is the uncertainty disk [53]. W,
can be calculated using an estimate of the noise spectrum from
the input-output data [22]. A very practical method to reduce
the impact of the noise is to use periodic signals [51]. In this
case study, 4 periods of measured data are used to calculate
the frequency responses. In Fig. 5, one period of the excitation
signal and the measured Iy are shown. It can be seen that
based on the order of the PRBS signal and the sampling time
of DRTS, the whole data measurement process takes less the
one second. The Fourier transform of input and output data
is calculated and Gyg is obtained. Since Zgr is known, its
frequency response and consequently the frequency response
of the plant GG can be obtained as shown in Fig. 6. In Fig. 7, the
Nyquist diagram shows one encirclement of the critical point,
meaning that without a controller (filter) the PHIL becomes
unstable.
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B. Controller (filter) Design

Finding a stabilizing controller for this system is very
easy since even a small gain provides closed-loop stability.
However, this is not practical since for K < 1, the current
Ix < Ir and the precision would be very low. In the
literature, a common practice is to use a simple first-order
([9], [13], [19], [20], [44]-[47]) or a second-order Butterworth
( [5], [48]) low-pass filter for PHIL stabilization.

As the first step, the limitations of the conventional low-
pass filtering method is studied to see what can be achieved
using the simple filters proposed in the literature. Assume that
a set of first and second-order low-pass Butterworth filters

Imaginary Axis
o

-3 2 -1 0 1 2 3
Real Axis

Fig. 7: Nyquist plot of G

TABLE I: Controller Design parameters

Param. Value Freq. [Hz] w,
M, 0.5 [0,50] 0.9999
N 511 (50,300] 0.999
U, -3dB (300,900] 0.99
nK 17 (900,1800] 0.9
W 2 —W; | (1800,1/2T5] 0

are available with bandwidth varying from 0.5 kHz to 2 kHz
with steps of 0.5 kHz. The Nyquist plots of the open-loop
transfer functions using these filters are shown in Fig. 8a.
It can be seen that for both first-order and second-order
filters the Nyquist diagram approaches the critical point as
the bandwidth of the filter increases. In order to assess the
stability margin and output disturbance rejection in the control
signal, the bode diagrams of the output and input sensitivity
functions are depicted in Fig. 8b and Fig. 8c, respectively. As
shown in Fig. 8, there is a trade-off between the bandwidth
of the controller and the stability margin. In addition, it is
very important to note that simply increasing the order of
the filter affects the stability margin adversely. Consequently,
the stability issue is even more critical when the order is
increased (e.g. see Fig. 8a and Fig. 8b). In other words, when
there is no systematic method to take advantage of the added
capability and when the added complexity is not dealt with
correctly, it may end up in the system’s instability. The lack
of a systematic, efficient, and, advanced design method may
be the main reason why in the current literature the order
is kept low. Considering the mentioned items, a first-order
filter (which was used also in [9], [13], [19], [20], [44]-[47])
with a bandwidth of 1250 Hz, denoted by Ky, is selected and
compared with our controller in the sequel.

For designing the controller, the problem (17) is solved
using MOSEK [43] in less than 20 seconds on a conventional
desktop computer. A fast systematic design method is very
valuable, compared with the manual tuning when a large
number of tests should be carried out in a short time. The
design parameters are listed in Table I and the designed
controller is denoted as Kp. The Nyquist diagram of systems
using Ky and Kp are compared in Fig. 9. It can be seen
that both controllers have made the closed-loop system stable.
However, Kp has provided a farther distance from the critical
point, which results in higher robustness (M = 0.5 for Kp vs.
M = 0.39 for Kj). The disturbance rejection performance of
the closed-loop systems are compared in Fig. 10. As shown
in the figure, the input sensitivity function has not violated
the required limit and provides better disturbance attenuation
compared to K. Finally, the frequency response of Kp is
compared with that of Ky in Fig. 11, which shows consid-
erable improvement. Fig. 12 clearly shows the impact of the
constraints on the controller. In order to have a better overview,
the regions satisfying different accuracies are listed in Table II.
It can be seen that requirement set by the constraints are
met and the performance compared to the conventional filter
are improved significantly. To validate the performance of the
proposed method, the designed controller is implemented on
the PHIL setup and a sinusoidal sweep signal is applied as
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Vg,.. Fig. 13 compares Ir and I at different frequencies. In
the fundamental frequency (i.e. 50 Hz), Kp almost perfectly
tracks while K has a slight deviation. In 300 Hz, the deviation
using K is visible. The difference at 900 Hz is considerable
while at 1800 Hz, the response of K|, is significantly deviated.

Phase (deg)

Fig. 11:

Magnitude (abs)

Magnitude (dB)

-40
45

45t

-90

1.15

o
a

o
©
a

e
©
T

0.85

-20 -

-30 -

102

10° 10
Frequency (Hz)

102

Frequency (Hz)

Bode plot of the controllers K (red) and Kp (green)

Fig. 12: Bode magnitude plot of controllers (Kp (green) , Ky
(red), W; (dashed magenta) , W,, (dashed cyan))

TABLE II: Frequency regions for different error bounds

max |[K — 1| Upto Freq. Up to Freq. Up to Freq.
(Ko) (Expected) (realized by Kp)
[Hz] [Hz] [Hz]
0.0001 8 50 67
0.001 55 300 380
0.01 177 900 900
0.1 601 1800 1800




TABLE III: Multi scenario system parameters (Lg [mH],
Ly [mH], Rr [Q2], Ry [Q))

Sc. Param. Sc. Param. Sc. Param. Sc. Param.

1 1@33,11,22) || 5 |(B3,1L,11) || 9 |(3,6,11,22) || 13 | (3,6,11,11)
2 109,3,11,22) || 6 |(9,3,11,11) || 10 |(9,6,11,22) || 14 | (9,6,11,11)
3 1(3,3,22,22) || 7 |(3,3,22,11) || 11 | (3,6,22,22) || 15 | (3,6,22,11)
4 1(9,3,22,22) || 8 |(9,3,22,11) || 12 | (9,6,22,22) || 16 | (9,6,22,11)

C. Discussion on design parameters and problem constants

Because the proposed method is systematic and data-driven,
unlike most methods in the literature, it is independent of the
parameters of the problem. These values are selected as typical
values just to provide a showcase. In this paper, two distinct
sets of fixed values can be seen.

1) System constants: These constants stem from the PHIL
equipment and are not selected by the controller designer. For
example, T depends on the computation power of the DRTS
and is selected to be 50 us which is a typical value [54].
As another example, Lr and Rp depend on the simulated
grid and Ly and Ry are based on the HUT. In this paper,
the grid is assumed to be a distribution system in which the
X/R is relatively small. As the base case, the X/R— ratio
of the impedances in HUT and DRTS belong to the interval
[0.15,0.26] so do the lines 4c-70 and 4c-95-SAC-AC of the
IEEE of European low voltage test feeder [55].

2) Design parameters: These parameters are selected by
the controller designer based on the expected performance.
For example, the modulus margin is selected based on the
required robustness and is selected to be —6 dB(~ 0.5) which
is a typical value in the controller design. IV is the number of
sampled points in the frequency-domain which can be chosen
relatively large without severe impact on the solver time [30].
U, can be selected based on the measurement noise level and
is simply chosen to be —3 dB(~ 0.7). If the measurement is
highly noisy, this value can be set lower. nx determines the
flexibility of the controller, and in this problem, with nx = 17
a good performance has been achieved. W; and W,, determine
maximum deviation in the measured current and for the sake
of simplicity, are set to be symmetric. In this paper, it has been
required that |K — 1| must be less than 0.0001 up to the first
harmonic, less than 0.001 up to the 6th harmonic, less than
0.01 up to the 18th harmonic, and, less than 0.1 up to the 36th
harmonic. These values are selected as an example showing
how the design requirements can be met by this method. In
practice, these values should be selected based on the desired
performance of the problem.

D. Multi-Scenario Case

In this part, 16 different scenarios are considered whose
corresponding parameters are listed in Table. III and frequency
responses are shown in Fig. 14. The problem (18) is solved
considering all scenarios as one comprehensive programming
problem and the designed controller is denoted as K pj;. For
this design, a guarantee for |K — 1| to be less than 0.001 up
to the first harmonic, less than 0.01 up to the 6th harmonic,
and, less than 0.1 up to the 12th harmonic is considered.
The Nyquist diagram of systems using the Ky and Kpj, are
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compared in Fig. 15 which shows that K cannot stabilize all
scenarios, while Kp,s stabilizes all scenarios and provides
M = 0.5 for all of them. Fig. 16, shows that Kp)s has
satisfied the required attenuation for all scenarios. If one
wants to use the conventional method to design a controller
which stabilizes all models with comparable robustness and
disturbance rejection (named as Kj,,), the bandwidth should
be decreased to 400 Hz, which results in losing performance.
In Fig. 17, the bode diagram of Ky, is compared with
Kpy, Kp and K. As expected, the performance of Kpjs
is limited compared to Kp since challenging scenarios are
included (e.g. scenario No. 8 and scenario No. 6). However,
compared to the Ky, it shows considerable improvement. As
an example, scenario No. 8 is tested in PHIL setup using Kp
and Kpjs and the results are shown in Fig. 18. As expected,
K destabilizes the system while K pj; stabilizes and shows
good performance.

V. CONCLUSION

In this paper, the problem of PHIL setup stabilization and
performance improvement has been addressed and a data-
driven controller design method has been proposed. In this
method, in order to reduce the impact of the added controller
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on the feedback current signal, the two-norm of the difference
between controller and unity is considered as the objective
function. In addition, the constraints corresponding to the
stability, robustness, disturbance rejection and the frequency
dependent constraints corresponding to maximum allowable
signal amplification and attenuation are added to the synthesis
problem. These constraints are convexified by linearizing
around an initial stabilizing controller, which led to quadratic
convex constraints. Since the whole process of data collection
and controller design takes roughly less than 30 seconds, the
proposed method can be efficiently used as an automatic con-
troller design in PHIL setups. Because the proposed method
is in a data-driven framework, there is no need for knowledge
about the parameters, order or even structure of the hardware.
In addition, the proposed method is extended to a multi-
scenario case where using one controller, different topologies
in HUT or simulation can be tested. The results show that
the designed controller can improve the performance of the
simulation significantly compared to a conventional low-pass
filter. The implementation of the designed controller on the
PHIL setup validates the performance of the proposed method.
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