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Nuclear fusion using magnetic confinement, in particular in the tokamak configuration, is a promising
path towards sustainable energy. A core challenge is to shape and maintain a high temperature plasma
within the tokamak vessel. This requires high dimensional, high frequency, closed-loop control using
magnetic coils as actuators, made evenmore demanding by the diverse requirements across a wide range
of plasma configurations. In this work, we introduce a novel architecture for tokamakmagnetic controller
design that autonomously learns to command the full set of control coils. This architecture can meet
control objectives specified at a high level, while satisfying physical and operational constraints. This
approach has unprecedented flexibility and generality in problem specification and yields a significant
reduction in design effort to produce new plasma configurations. We use this to successfully produce
and control a diverse set of plasma configurations on the Tokamak à Configuration Variable (TCV) [1,
2], including elongated, conventional shapes as foreseen for ITER, as well as advanced configurations,
such as negative triangularity and “snowflake” configurations. Our approach achieves accurate tracking
of the location, current, and shape for these configurations. We additionally demonstrate the first ever
sustained “droplets” on TCV where two separate plasmas are maintained simultaneously within the
vessel. This represents the first use of reinforcement learning for feedback control on a tokamak, showing
potential to accelerate research in the fusion domain, and is one of the most challenging real-world
systems to which reinforcement learning has been applied.
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Tokamaks are torus-shaped devices for nuclear fusion research, and are a leading candidate for the2

generation of sustainable electric power. A major direction of research is to study the effects of shaping3

the distribution of the plasma into different configurations [3–5] to optimize the stability, confinement4

and energy exhaust, and in particular to inform the first burning plasma experiment, ITER. Confining5

each configuration within the tokamak requires designing a feedback controller than can manipulate6

the magnetic field [6] through precise control of multiple coils which are magnetically coupled to the7

plasma to achieve the desired plasma current, position and shape, a problem known as the tokamak8

magnetic control problem.9

The conventional approach to this time-varying, nonlinear, multivariate control problem is to first10

solve an inverse problem to precompute a set of feedforward coil currents and voltages [7, 8]. Then,11

a set of independent single-input single-output PID controllers are designed to stabilize the plasma12

vertical position, control the radial position, and plasma current, all of which must be designed to not13

mutually interfere [6]. Most control architectures are further augmented by an outer control loop for14

the plasma shape, which involves implementing a real-time estimate of the plasma equilibrium [9,15
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10] to modulate the feedforward coil-currents [8]. The controllers are designed based on linearized16

model dynamics, and gain scheduling is required to track time-varying control targets. While these17

controllers are usually effective, they require substantial engineering effort, design effort, and expertise18

whenever the target plasma configuration is changed, together with complex real-time calculations for19

equilibrium estimation.20

A radically new approach to controller design is made possible by employing reinforcement learn-21

ing (RL) to generate nonlinear feedback controllers. The RL approach, already used successfully in a22

number of challenging applications in other domains [11–13], enables intuitive setting of performance23

objectives, shifting the focus towards what should be achieved, rather than how. Furthermore, RL24

greatly simplifies the control system. A single computationally inexpensive controller replaces the25

nested control architecture, and an internalized state reconstruction removes the requirement for26

independent equilibrium construction. These combined benefits reduce the controller development27

cycle and accelerate the study of alternative plasma configurations. Indeed, artificial intelligence (AI)28

has recently been identified as a “Priority Research Opportunity” for fusion control [14], building on29

demonstrated successes in reconstructing plasma shape parameters [15, 16], accelerating simulations30

using surrogate models [17, 18], and detecting impending plasma disruptions [19]. RL has not,31

however, been used for magnetic controller design, which is challenging due to high dimensional32

measurements and actuation, long time horizons, rapid instability growth rates, and the need to infer33

the plasma shape through indirect measurements.34

In this work, we present the first experimental application of an RL-designed magnetic controller in35

a tokamak. The control policies are learned solely through interaction with a tokamak simulator, and36

are shown to be directly capable of tokamak magnetic control on hardware, successfully bridging the37

“sim-to-real” gap. This enables a fundamental shift from engineering-driven control of a pre-designed38

state to AI-driven optimization of objectives specified by an operator. We demonstrate the effectiveness39

of our controllers in experiments carried out on the Tokamak à Configuration Variable (TCV) [1, 2],40

where we demonstrate control of a variety of plasma shapes, including elongated ones, such as those41

foreseen in ITER, as well as advanced configurations such as negative triangularity and “snowflake”42

plasmas. Additionally, we demonstrate the first ever sustained configuration where two separate43

plasma “droplets” are simultaneously maintained within the vessel. Tokamak magnetic control is one44

of the most complex real-world systems to which reinforcement learning has been applied. This is a45

promising new direction for plasma controller design, with the potential to accelerate fusion science,46

explore novel configurations, and aid in future tokamak development.47

Deep Learning Control and Training Architecture48

Our architecture, depicted in Fig. 1, is a flexible approach for designing tokamak magnetic confinement49

controllers. The approach has threemain phases. First, a designer specifies objectives for the experiment,50

potentially accompanied by time-varying control targets. Second, a deep RL algorithm interacts with a51

tokamak simulator to find an approximately optimal control policy to meet the specified goals. Third,52

the control policy, represented as a neural network, is run directly (“zero-shot”) on tokamak hardware53

in real time.54

In the first phase, a set of objectives is specified to meet the experimental goals. A wide variety of55

desired properties can be specified in the objective set (Extended Data Table 3), ranging from basic56

stabilization of position and plasma current to sophisticated combinations of multiple time-varying57

targets including a precise shape outline with specified elongation, triangularity, and X-point location.58

These objectives are then combined into a “reward function” that assigns a scalar quality measure to59

the state at each time step. This function can also penalize the control policy for reaching undesired60
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Fig. 1 | Representation of the components of our controller design architecture.
a) Depiction of the learning loop. The controller sends voltage commands based on the current plasma
state and control targets. This data is sent to the replay buffer, which feeds data to the learner to
update the policy.
b) Our environment interaction loop, consisting of a power supply model, sensing model, environment
physical parameter variation, and reward computation.
c) Our control policy is an MLP with three hidden layers that takes measurements and control targets
and outputs voltage commands.
d) The interaction of TCV and the real-time deployed control system implemented using either (f) a
conventional controller composed of many sub-components or (e) our architecture using a single deep
neural network to control all 19 coils directly.
g) A depiction of TCV and the 19 actuated coils. The vessel is 1.5 m high, minor radius 0.88 m, vessel
half-width 0.26 m.
h) A cross section of the vessel and plasma, with the important aspects labelled.
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terminal states, as discussed below. Crucially, a well-designed reward function will be minimally61

specified, giving the learning algorithm maximum flexibility to find the best way to attain the desired62

outcome.63

In the second phase, a high performance RL algorithm collects data through interaction with an64

environment, as depicted in Fig. 1a and Fig. 1b. We employ a simulator that has enough physical fidelity65

to describe the evolution of plasma shape and current, while remaining sufficiently computationally66

cheap for learning. Specifically, we model the dynamics governing the evolution of the plasma state67

under the influence of the poloidal field coil voltages using a free-boundary plasma evolutionmodel [20].68

In this model, the currents in the coils and passive conductors evolve under influence of externally69

applied voltages from the power supplies as well as induced voltages from time-varying currents in70

other conductors and in the plasma itself. The plasma is in turn modelled by the Grad-Shafranov71

equation [21], which results from the balance between the Lorentz force and the pressure gradient72

inside the plasma on the time scales of interest. The evolution of total plasma current Ip is modeled73

using a lumped circuit equation. This set of equations is solved numerically by the FGE software74

package [22].75

An RL algorithm uses simulator data to find a near-optimal policy with respect to the specified76

reward function. The data rate of our simulator is significantly slower than that of a typical RL77

environment due to the computational requirements of evolving the plasma state. We overcome the78

paucity of data by optimizing the policy using Maximum a Posteriori policy Optimization (MPO) [23],79

a recently developed actor-critic algorithm. MPO supports data collection across distributed parallel80

streams, and is known to efficiently learn from collected data. We additionally exploit the asymmetry81

inherent to MPO’s actor-critic design to overcome the constraints of magnetic control. In actor-critic82

algorithms, the “critic” learns the discounted expected future reward for various actions using the83

available data, and the “actor” uses the critic’s predictions to set the control policy. The representation84

of the actor’s control policy is restricted as it must run on TCV with real-time guarantees, while,85

crucially, the critic is unrestricted as it is only used during training (in the learner). We thus use a fast86

(4-layer) feedforward neural network in the actor, Fig. 1c, and a much larger recurrent neural network87

in the critic. This asymmetry enables the critic to infer the underlying state from measurements, deal88

with complex state transition dynamics over different time-scales, and assess the influence of system89

measurement and action delays. The information from the coupled dynamics is then distilled into a90

real-time capable controller.91

In the third phase, the control policy is bundled with the associated experiment control targets into92

an executable using a compiler tailored toward real-time control at 10 kHz that minimizes dependencies93

and eliminates unnecessary computations. This executable is loaded as a block within the TCV control94

framework [24] (Fig. 1d). Each experiment begins with standard plasma formation procedures, where95

a traditional controller maintains the plasma’s location and total current. At a prespecified time,96

termed the “handover”, control is switched directly to our control policy which then actuates the 1997

TCV control coils to transform the plasma shape and current to the desired targets. Experiments are98

executed without further tuning of the control policy network weights after training, in other words,99

there is “zero-shot” transfer from simulation to hardware.100

The deployed control policies reliably transfer onto TCV through several key attributes of the101

learning procedure, depicted in Fig. 1b. We identified an actuator and sensor model that incorporates102

properties impacting control stability such as delays, measurement noise, and control voltage offsets.103

We applied targeted parameter variation during training across an appropriate range for the plasma104

pressure, current density profile and plasma resistivity through analysis of experiment data, to account105

for varying, uncontrolled, experimental conditions. This provides robustness while ensuring good106

performance. While the simulator is generally accurate, there are known regions where the dynamics107
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are known to be poorly represented. We built “learned region avoidance” into the training loop to108

avoid these regimes through the use of rewards and termination conditions (Extended Data Table 6),109

which halt the simulation when specified conditions are encountered. Termination conditions are also110

used to enforce operational limits. The control policies learn to stay within the specified limits, for111

example on maximum coil current or the edge safety factor [25].112

The controllers designed by our architecture are structurally significantly simplified compared with113

conventional designs, as depicted in Fig. 1e and Fig. 1f. Instead of a series of controllers, RL driven114

design creates a single nonlinear multiple-input multiple-output network controller.115

Results116

We demonstrate the capability of our architecture on a wide variety of control targets in real-world117

experiments on TCV. We first show accurate control of the fundamental qualities of plasma equilibria.118

We then control a wide range of equilibria with complex, time-varying objectives and physically relevant119

plasma configurations. Finally, we demonstrate first-of-its-kind control of a configuration with multiple120

plasma “droplets” in the vessel simultaneously.121

Fundamental Capability Demonstration122

We first test the fundamental tasks of plasma control through a series of changes representative of123

those required for a full plasma discharge. First, from the handover at 0.0872 s, take over and stabilize124

Ip at −110 kA. Next, ramp the plasma current to −150 kA, and then elongate the plasma from 1.24125

to 1.44, thereby increasing the vertical instability growth rate to 150 Hz. Next, demonstrate position126

control through shifting the vertical plasma position by 10 cm, and then divert the plasma with control127

of the active X-point location (see Fig. 1h). Finally, return the plasma to the handover condition, and128

ramp down Ip to −70 kA to shut down safely. While, in general, accuracy requirements will depend on129

the exact experiment, a reasonable aim is to control Ip to within 5 kA (3 % of the final 150 kA target)130

and the shape to within 2 cm (8 % of the vessel radial half-width of 26 cm).131

The performance of the control policy is depicted in Fig. 2. All tasks are performed successfully, with132

a tracking accuracy well below the desired thresholds. In the initial limited phase (0.1 s to 0.45 s), the133

Ip RMSE is 0.71 kA (0.59 % of the target) and the shape RMSE is 0.78 cm (3 % of the vessel half-width).134

In the diverted phase (0.55 s to 0.8 s), Ip and shape RMSE are 0.28 kA and 0.53 cm respectively (0.2 %135

and 2.1 %), yielding RMSE across the full window (0.1 s to 1.0 s) of 0.62 kA and 0.75 cm (0.47 % and136

2.9 %). This demonstrates that our RL architecture is capable of accurate plasma control across all137

relevant phases of a discharge experiment.138

Control Demonstrations139

We next demonstrate the capability of our architecture to produce complex configurations for scientific140

study. Each demonstration has its own specific time-varying targets but, otherwise, uses the same141

architectural setup to generate a control policy, including the training and environment configuration,142

with only minor adjustments to the reward function (shown in Extended Data Table 2). Recall that, in143

each experiment, the plasma has low elongation before the handover, and the control policy actively144

modulates the plasma to the configuration of interest. Selected time slices from these experiments are145

shown in Fig. 3 with additional detail in Extended Data Fig. 6.146

Elongated plasmas are desirable for their improved thermal confinement properties, but are difficult147

to control due to an increased vertical instability growth rate. We targeted a high elongation of 1.9 with148
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Fig. 2 | Demonstration of plasma current, vertical stability, position and shape control. Top: Target
shape points (green circles 2 cm radius) compared to (post-experiment) equilibrium reconstruction
(black continuous line in contour plot). Bottom Left: Target time traces (blue traces) compared to
reconstructed observation (orange traces). Right: Picture inside the vessel at 0.6 s showing the diverted
plasma with its legs.
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a considerable growth rate. The controller was able to produce and stabilize this elongation, as shown149

in Fig. 3a. We obtain a good match between the targeted and desired elongation, with an RMSE of150

0.018 between 0.55 s and 1.0 s. We also control shape and plasma current to their target values, with Ip151

RSME of 1.2 kA and shape RMSE of 1.6 cm. This demonstrates the capability to stabilize a high vertical152

instability growth rate of over 1.4 kHz, despite acting at only 10 kHz (including an in-vessel coil).153

We next test applying auxiliary heating through neutral beam injection to enter “H-mode”, which154

is desirable for energy production (having higher energy confinement time) but causes significant155

changes to the plasma properties. We were provided a time-varying trajectory based on the proposed156

ITER configuration that uses such auxiliary heating. As the normalized pressure βp increases to 1.12,157

seen in Fig. 3b, the plasma position and current are maintained accurately, with Ip RMSE of 2.6 kA158

and shape RMSE of 1.34 cm between 0.1 s and 1.0 s. This shows our controller can robustly adapt to159

a changing plasma state, and can successfully work with high performance heated H-mode plasma160

under externally-specified configurations.161

Negative triangularity plasmas are attractive as they have favourable confinement properties without162

the strong edge pressure gradient typical of H-modes. We targeted a diverted configuration with163

triangularity of −0.8, and with X-points at both corners. We successfully achieve this configuration,164

shown in Fig. 3c. The triangularity is accurately matched, with an RMSE of 0.067 between 0.5 s165

and 0.9 s, as are the plasma current and shape with RMSE of 3.4 kA and 1.3 cm respectively. This166

demonstrates the ability to rapidly and directly create a configuration under active study [26].167

Snowflake configurations are promising as they distribute the particle exhaust across multiple strike168

points, and are also actively researched [27, 28]. A crucial parameter is the distance between the two169

X-points that form the divertor legs. We demonstrate our ability to control this distance, shown in170

Fig. 3d. The control policy first establishes a snowflake configuration with X-points separated by 34 cm.171

It then manipulates the far X-point to approach the limiting X-point, ending with a separation of 6.6 cm.172

The time-varying X-point target is tracked accurately with an RMSE of 4.1 cm between 0.6 s and 1.1 s.173

The plasma current and shape are maintained to high accuracy during this transition, with RMSE of174

0.52 kA and 0.62 cm respectively. This demonstrates accurate control of a complex time-varying target175

with multiple coupled objectives.176

In aggregate, these experiments demonstrate the ease with which new configurations can be177

explored, prove our architecture’s ability to operate in high-performance discharges, and confirm the178

breadth of its capability.179

Novel Multi-Domain Plasma Demonstration180

Lastly, we demonstrate the power of our architecture to explore novel plasma configurations. We test181

control of “droplets”, a configuration where two separate plasmas exist within the vessel simultaneously.182

While it is likely possible that existing approaches could stabilize such droplets, significant investment183

would be required to develop feedforward coil current programming, implement real-time estimators,184

tune controller gains, and successfully take control after plasma creation. In contrast, with our approach185

we simply adjust the simulated handover state (to account for the different handover condition from186

single-axis plasmas), and define a reward function to keep the position of each droplet component187

steady while ramping up the domain plasma currents. This loose specification gives the architecture188

the necessary freedom to choose how to best adapt the droplet shapes as Ip increases to maintain189

stability. The architecture was able to successfully stabilize droplets over the entire 200 ms control190

window, and individually ramp the current within each domain as shown in Fig. 4. This is the first time191

droplets have been sustained for such a control window in TCV, highlighting the significant advantage192

of a general, learning based control architecture with flexibly-defined objectives.193
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Fig. 3 | Control demonstrations obtained during TCV experiments. Target shape (green circles with
2 cm radius) compared to the equilibrium reconstruction plasma boundary (black continuous line).
In all figures the first time slice shows the handover condition. (a) Elongation of 1.9 with vertical
instability growth rate of 1.4 kHz. (b) Approximate ITER proposed shape with neutral beam heating
entering H-mode. (c) Diverted negative triangularity of −0.8. (d) Snowflake configuration with a
time-varying control of the bottom X-point. Extended traces for these shots can be found in Fig. 6.

Fig. 4 | First ever demonstration of sustained control of two independent droplets on TCV for full
control window of 200 ms. Left: Control of Ip for each independent lobe up to the same target value.
Right: a picture where the two droplets are visible, taken from a camera looking into the vessel at
t=0.55 s.
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Additional Findings194

Some controllers exhibited a number of interesting behaviours, briefly mentioned here and depicted195

in Extended Data Fig. 7. These control behaviours hint at further potential capabilities of learned196

control approaches. When given the goal to maintain only the plasma position and current, our197

architecture autonomously constructed a low elongation plasma that eliminates the vertical instability198

mode (Extended Fig. 7a), without being explicitly told to do so. Our control architecture can naturally199

choose to employ a varying combination of poloidal field and ohmic coils to drive the inductive200

voltage required for sustaining the plasma current (Extended Fig. 7b), in contrast to existing control201

architectures that typically assume a strict separation. Our architecture can learn to include non-linear202

physical and control requests by adding objectives to the goal specification. It can, for example, avoid203

limitations in the power supplies which occasionally cause “stuck” control coil currents when reversing204

polarity (Extended Fig. 7c), and avoid X-points in the vessel but outside the plasma (Extended Fig. 7d)205

when requested with high-level rewards.206

Discussion207

We present a new paradigm for plasma magnetic confinement on tokamaks. Our control design208

fulfils many of the community’s hopes for a machine learning based control approach [14], including209

high performance, robustness to uncertain operating conditions, intuitive target specification, and210

unprecedented versatility. This achievement required overcoming known gaps in capability and211

infrastructure through a combination of scientific and engineering advances: an accurate, numerically212

robust simulator; an informed trade-off between simulation accuracy and computational complexity;213

a sensor and actuator model tuned to specific hardware control; a realistic variation of operating214

conditions during training; a highly data efficient RL algorithm that scales to high dimensional215

problems; an asymmetric learning setup with an expressive critic but fast-to-evaluate policy; a process216

for compiling neural networks into real-time capable code; and deployment on a tokamak digital217

control system. This resulted in a broad range of successful hardware experiments that demonstrate218

fundamental capability alongside advanced shape control without requiring fine-tuning on the plant. It219

additionally shows that a free boundary equilibrium evolution model has sufficient fidelity to develop220

transferable controllers, offering a justification for using this approach to test control of future devices.221

Efforts could further develop our architecture to quantify its robustness through analysis of the222

nonlinear dynamics [29–31], and reduce training time through increased re-use of data and multi-223

fidelity learning [32]. Additionally, the set of control targets can be expanded, for example to reduce224

target heat loads through flux expansion [5], aided by the use of privileged information in the critic225

to avoid requiring real-time observers. Furthermore, while the neural network infers the state of the226

system, it could be trained to be a full observer providing state estimates as additional outputs. The227

architecture can be coupled to a more capable simulator, for example incorporating plasma pressure228

and current density evolution physics, to optimize the global plasma performance.229

Our learning framework has the potential to shape future fusion research and tokamak development.230

Underspecified objectives can be harnessed to find configurations that maximize a desired performance231

objective, or even the obtainable power production. Our architecture can be rapidly deployed on a232

novel tokamak without the need to design and commission the complex system of controllers deployed233

today, and evaluate proposed designs before they are constructed. More broadly, our approach may234

enable the discovery of novel reactor designs by jointly optimizing the plasma shape, sensing, actuation,235

wall design, heat load, and magnetic controller to maximize overall performance.236
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Methods312

Tokamak à Configuration Variable313

The TCV tokamak [1, 33], shown in Fig. 5, is a research tokamak at the Swiss Plasma Center, with314

a major radius of 0.88 m, and vessel height and width of 1.5 m and 0.512 m respectively. TCV has a315

flexible set of magnetic coils that enable the creation of a wide range of plasma configurations. Electron316

cyclotron resonance heating and neutral beam injection [34] systems provide external heating and317

current drive, as used in the experiment on Fig. 3b. TCV is equipped with a number of real-time318

sensors, and our control policies use a subset of these sensors. In particular, we use 34 of the wire loops319

that measure magnetic flux, 38 probes that measure the local magnetic field and 19 measurements of320

the current in active control coils (augmented with an explicit measure of the difference in current321

between the Ohmic coils). In addition to the magnetic sensors, TCV is equipped with other sensors322

which are not available in real-time, such as the cameras shown in Fig. 2 and Fig. 4. Our control policy323

consumes TCV’s magnetic and current sensors at a 10 kHz control rate. The control policy produces a324

reference voltage command at each timestep for the active control coils.325

Tokamak simulator326

The coupled dynamics of the plasma and external active and passive conductors are modelled with327

a free-boundary simulator, FGE [22]. The conductors are described by a circuit model where the328

resistivity is considered known and constant, and the mutual inductance is computed analytically.329

The plasma is assumed to be in a state of toroidally symmetric equilibrium force balance (Grad-330

Shafranov equation [21]) where the Lorentz force J × B generated from the interaction of the plasma331

current density, J, and the magnetic field, B, balances the plasma pressure gradient ∇p. The transport332

of radial pressure and current density caused by heat and current drive sources is not modeled. Instead,333

the plasma radial profiles are modelled as polynomials whose coefficients are constrained by the plasma334

current Ip plus two free parameters: the normalized plasma pressure βp, which is the ratio of kinetic335

pressure to the magnetic pressure, and the safety factor at the plasma axis qA which controls the336

current density peakedness.337

The evolution of the total plasma current Ip, is described as a lumped parameter equation based on338

the generalized Ohm’s law for the MHD model. For this model, the total plasma resistance, Rp, and339

the total plasma self-inductance, Lp, are free parameters. Finally, FGE produces the synthetic magnetic340

measurements that simulate the TCV sensors, which are used to learn the control policies as discussed341

below.342

Specific settings for the droplets343

In the experiment with the droplets (Fig. 4), the plasma is considered pressureless, which simplifies344

the numerical solution of the force balance equation. Moreover, the G-coil was disabled in simulation345

since it was placed in open circuit during experiments (the fast radial fields it generates were deemed346

unnecessary for these plasmas). This experiment used an earlier model for the Ip evolution designed347

for stationary state plasma operation. This model has one free parameter, the radial profile of the348

neoclassical parallel plasma conductivity σ‖ [22]. This model was replaced with the one described349

above for the single domain plasma experiment, as it better describes the evolution of Ip, especially350

when it is changing rapidly.351
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Plasma parameter variation for robustness352

We vary the plasma evolution parameters introduced above during training, in order to provide robust353

performance across the true, but unknown condition of the plasma. The level of variation is set within354

ranges identified from experimental data as shown in Table 1. In the single plasma experiments, we355

vary the plasma resistivity Rp, as well as the profile parameters βp and qA. Lp is not varied as it can be356

computed from a simple relation [35]. These are all independently sampled from a parameter-specific357

log-uniform distribution. In the experiment with droplets, we vary the initial ohmic coil current values358

according to a uniform distribution. We set two different values for the droplet σ‖ components. We359

sample the log of the difference between them from a scaled beta distribution, and the overall shift in360

the combined geometric mean from a log uniform distribution, and then solve for the individual σ‖.361

Parameter values are sampled at the beginning of each episode and kept constant for the duration of362

the simulation. The sampled value is deliberately not exposed to the learning architecture because it is363

not directly measureable. Therefore, the agent is forced to learn a controller which can robustly handle364

all combinations of these parameters. This informed and targeted domain randomization technique365

proved to be effective to find policies that track time targets for shape and Ip while being robust to the366

injection of external heating and the ELM perturbations during high confinement mode.367

Sensing and Actuation368

The raw sensor data on TCV goes through a low-pass filtering and signal conditioning stage [36]. We369

model this stage in simulation by a time delay and a Gaussian noise model, identified from data during370

a stationary plasma operation phase (Table 1). This sensor model (shown in Fig. 1b) captures the371

relevant dynamics affecting control stability. The power supply dynamics (also shown in Fig. 1b) are372

modelled with a fixed bias and a fixed time delay identified from data as well as an additional offset373

varied randomly at the beginning of each episode. The values for these modifications can be found374

in Table 1. This is a conservative approximation of the true thyristor based power supplies [36], but375

captures the essential dynamics for control purposes.376

The control policy can learn to be robust against very non linear hardware specific phenomena. For377

example, when the current in the active coils changes polarity and the controller requests a too low378

voltage, the power supplies can get ’stuck’, erroneously providing zero output current over extended379

period of time (Fig. 7b). This phenomenon might affect both the controller stability and precision.380

To demonstrate the capability of our controller to deal with this issue, we applied “learned region381

avoidance” in the advanced control demonstration to indicate that currents near zero are undesirable.382

As a result, the control policy effectively learns to increase the voltages when changing the current383

polarity to avoid stuck coils on the plant (Fig. 7c).384

Learning Loop385

Our approach uses an episodic training approach where data is collected by running the simulator386

with a control policy in the loop, as shown in Fig. 1a. The data from these interactions are collected in387

a finite-capacity first-in-first-out buffer [37]. The interaction trajectories are sampled at random from388

the buffer by a “learner” which executes the MPO algorithm to update the control policy parameters.389

During training, the executed control policy is stochastic to explore successful control options. This390

stochastic policy is represented by a diagonal Gaussian distribution over coil actions.391

Each episode corresponds to a single simulation run which terminates either when a termination392

condition is hit, which we will discuss below, or when a fixed simulation time has passed in the episode.393

This fixed time was 0.2 s for the droplets, 0.5 s in the case of Fig. 6a and Fig. 6c, and 1 s otherwise.394

Each episode is initialized from an equilibrium state at the pre-programmed handover time which was395
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reconstructed from a previous experiment on TCV.396

Our training loop emulates the control frequency of 10 kHz. At each step, the policy is evaluated397

using the observation from the previous step. The resulting action is then applied to the simulator398

which is then stepped. Observations and rewards are also collected at the 10 kHz control frequency399

resulting at training data collected at 0.1 ms intervals. For our simulation, we chose a time-step of400

50 kHz. Hence, for each evaluation of the policy, five simulation time steps are computed. The action,401

i.e. the desired coil voltage, is kept constant during these substeps. Data from intermediate steps is402

only used for checking termination data and is discarded afterwards. This allows for choosing the403

control rate and simulator time step independently and hence setting the latter based on numerical404

considerations.405

We use a distributed architecture [38] with a single learner instance on a Tensor Processing Unit406

and multiple actors each running an independent instance of the simulator. We used 5000 actors in407

parallel for our experiments, generally resulting in training times of 1 to 3 days, though sometimes408

longer for complex target specifications. We ran a sweep on the number of actors required to stabilize409

a basic plasma, and the results can be seen in Extended Data Fig. 8b. We see that a similar level of410

performance can be achieved with a drastic reduction in the number of actors for a moderate cost in411

training time. In Extended Data Fig. 8a, we also show the importance of using an asymmetric setup.412

In the symmetric version, the critic was sized the same as the policy, whose size is already limited by413

the control rate on the plant.414

Since reinforcement learning only interacts sample-wise with the environment, the policy could415

be fine-tuned further with data from interacting with the plant. Alternatively, one might imagine416

leveraging the database of past experiments performed on TCV in order to improve the policy. However,417

it is unclear if the data is sufficiently diverse, given TCV’s versatility and the fact that the same plasma418

configuration can be achieved by various coil voltage configurations. Especially for novel plasma shapes,419

no data or only very limited data is available, rendering this approach ineffective. Conversely, the420

simulator can directly model the dynamics for the configurations of interest.421

Rewards and Terminations422

All of our experiments have multiple objectives that must be satisfied simultaneously. These objectives423

are specified as individual reward components that track an aspect of the simulation, typically a physical424

quantity, and these individual components are combined together into a single scalar reward value.425

Descriptions of the targets used are listed in Extended Data Table 3. The target values of the objectives426

are often time-varying (e.g. the plasma current and boundary target points), and are sent to the policy427

as part of the observations. This time-varying trace of targets is defined by a sequence of values at428

points in time, and are linearly interpolated for all time steps in between.429

Shape targets for each experiment were generated using the shape generator [39] or specified430

manually. These points are then canonicalized to 32 equally spaced points along a spline, which are431

the targets that are fed to the policy. The spline is periodic for closed shapes, but non-periodic for432

diverted shapes, ending at the x-points.433

The process for combining these multiple objectives into a single scalar is as follows. First, for each434

objective, the difference between the actual and target value is computed, and then transformed with435

a nonlinear function (see Extended Data Table 4) to a quality measure between 0 and 1. In the case436

of a vector-valued objective (e.g. distance to each target shape point), the individual differences are437

first merged into a single scalar through a “combiner”, a weighted nonlinear function (see Extended438

Data Table 5). Finally, a weighted combination of the individual objective-specific quality measures is439

computed into a single scalar reward value between 0 and 1 using a combiner as above. This (stepwise)440
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reward is then normalized so the maximum cumulative reward is 100 for 1 s of control. In cases where441

the control policy has triggered a termination (see Extended Data Table 6) a large negative reward is442

given.443

We typically compute the quality measure from the error using a softplus or sigmoid, which provides444

a non-zero learning signal early in training when the errors are large, while simultaneously encouraging445

precision as the policy improves. Similarly, we combine the rewards using a (weighted) smooth max or446

geometric mean, which gives a larger gradient to improving the worst reward, while still encouraging447

improving all objectives. The precise reward definitions used in each of our experiments are listed in448

Extended Data Table 2, and the implementations are available in the supplementary material.449

Deployment450

As the stochastic nature of the training policy is only useful for exploration, the final control policy is451

taken to be the mean of the Gaussian policy at the conclusion of training. This gives a deterministic452

policy to execute on the plant. During training, we monitor the quality of this deterministic policy453

prior to deployment.454

TCV’s control loop runs at 10 kHz though only half of the cycle time, i.e. 50µs, is available for the455

control algorithm due to other signal processing and logging. Hence, we created a deployment system456

that compiles our neural network into real-time capable code that is guaranteed to run within this time457

window. To achieve this, we remove superfluous weights and computations (such as the exploration458

variance) and then use tfcompile [40] to compile it into binary code, carefully avoiding unnecessary459

dependencies. We tailored the neural network structure to optimize the usage of the processor’s cache460

and enable vectorized instructions for optimal performance. The table of time varying control targets is461

also compiled into the binary for ease of deployment. In future work, targets could easily be supplied462

at run-time to dynamically adjust the control policy’s behaviour. We then test all compiled policies in463

an automated, extensive benchmark prior to deployment to ensure timings are met consistently.464

Post-experiment Analysis465

The plasma shape and position is not directly observed and needs to be inferred from the available466

magnetic measurements. This is done with magnetic equilibrium reconstruction, which solves an467

inverse problem to find the plasma current distribution that respects the force balance (Grad-Shafranov468

equation) and best matches the given experimental magnetic measurements at a specific time in a469

least-squares sense.470

In a conventional magnetic control design, a real time capable magnetic equilibrium reconstruction471

is needed as a plasma shape observer to close the shape control feedback loop (shown as the “Plasma472

Shape” observer in Fig. 1f). In our approach instead we only make use of equilibrium reconstruction with473

LIUQE code [10] during post-discharge analysis to validate the plasma shape controller performances474

and compute physical initial condition for the simulation during training.475

After running the experiment, we use this equilibrium reconstruction code to obtain an estimate476

of the plasma state and magnetic flux field. The plasma boundary is defined by the last closed flux477

surface (LCFS) in the domain. We extract the LCFS as 32 equiangular points around the plasma axis478

and then canonicalize with splines to 128 equidistant points. The error distance is computed using the479

shortest distance between each of the points that defined the target shape and the polygon defined by480

the 128 points on the LCFS. The shape RMSE is computed across these 32 error distances over all time481

steps in the time range of interest.482

Errors on scalar quantities, such as Ip or elongation, are computed from the error between the483
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reference and the respective estimation from the equilibrium reconstruction over the time period of484

interest. The estimate of the growth rate of the vertical displacement instability [6] is computed from a485

spectral decomposition of the linearized system of equations of the simulator around the reconstructed486

equilibrium.487

Comparison to Prior Work488

In recent years, advanced control techniques have been applied to magnetic confinement control.489

De Tommasi et al. [41] describe a model-based control approach for plasma position control using490

a linear model and a cascaded feedback control structure. Gerkšič & De Tommasi [42] propose a491

Model Predictive Control approach, demonstrating linear MPC for plasma position and shape control492

in simulation including a feasibility estimate for hardware deployment. Boncagni et al. [43] have493

proposed a switching controller, improving on plasma current tracking on hardware but without494

demonstrating additional capabilities.495

More generally, machine learning based approaches are being developed for magnetic confinement496

control and fusion in general not limited to control. A survey of this area is provided in Humphreys497

et al. [14], categorizing approaches into seven priority research opportunities including accelerating498

science, diagnostics, model extraction, control, large data, prediction and platform development. The499

first use of neural networks in a control loop for plasma control is presented in Bishop et al. [15], where500

a small-scale neural network is estimating the plasma position and low-dimensional shape parameters501

which are subsequently used as error signals for feedback control.502

To the best of our knowledge our work is the first where (deep) reinforcement learning is used503

for feedback control for magnetic confinement control on a tokamak. In addition, our architecture504

constitutes a significant step forward regarding generality, where a single framework is used to solve a505

broad variety of fusion control challenges, satisfying several of the key promises of machine learning506

and artificial intelligence for fusion set out in [14].507
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Extended Data563

Fig. 5 | Pictures and illustration of the TCV. Top: Photographs showing the part of the TCV inside the
bioshield. Bottom Left: CAD drawing of the vessel and coils of the TCV. Bottom Right: (©Alain Herzog
/ EPFL) view inside the TCV, showing the limiter tiling, baffles and central column
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Fig. 6 | A larger overview of the shots in Figure 3. We plotted the reconstructed values for the
normalized pressure βp and safety factor qA, along with in green the range of domain randomization
these variables saw during training, which can be found in Table 1. We also plot the growth rate, γ, and
the plasma current, Ip, along with the associated target value. Where relevant, we plot the elongation
κ, the neutral beam heating, the triangularity δ and the vertical position of the bottom X-point zX and
its target.
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(a) When asked to stabilize the plasma without
further specifications, the agent creates a round
shape. The agent is in control from t=0.45 s and
changes the shape while trying to attain Ra and Za
targets. This discovered behaviour is indeed a good
solution, since this round plasma is intrinsically
stable with a growth rate γ < 0.

(b)When not given a reward to have similar current
on both Ohmic coils, the algorithm tended to use
the E-coils to obtain the same effect as the OH001-
coil. This is indeed possible as can be seen by the
coil positions in Fig. 1g, but causes electromagnetic
forces on the machine structures. Therefore, in
later shots a reward was added to keep the current
in both Ohmic coils close together.

(c) Showing voltage requests by the policy to avoid
the E3-coil from sticking when crossing 0 A. As can
be seen in e.g. Figure 7b, the currents can get stuck
on 0 A for low voltage requests, a consequence
of how these requests are handled by the power
system. Since this behaviour was hard to model,
we introduced a reward to keep the coil currents
away from 0 A. The control policy produces a high
voltage request to move through this region quickly.

(d) An illustration of the difference in cross-sections
between two different shots, where the only dif-
ference is the policy for the right shot was trained
with an additional reward to avoid X-points in vac-
uum. This demonstrates how high level rewards
can be used to find desired behaviour.

Fig. 7 | An overview of additional observations on the behaviour of the agent and the use of rewards.
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Fig. 8 | Episodic reward for the deterministic policy smoothed across 20 episodes with parameter
variations enabled, where 100 means all objectives are perfectly met. Left: Comparison of the learning
curve for the capability benchmark (as shown in Figure 2) using our asymmetric actor-critic vs. a
symmetric actor-critic where the critic is using the same real-time capable feedforward network as
the actor. These results indicate that a more expressive critic, as used in the asymmetric setup, is
crucial for achieving high performance. Right: Comparison between using various amounts of actors
for stabilizing a mildly enlongated plasma. While the policies in this paper were trained with 5000
actors, this comparison shows that at least for simpler cases the same level of performance can be
achieved with significantly lower computational resources.
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parameter value lower bound upper bound

action delay
E 0.5 ms
F 0.5 ms
OH 0.5 ms
G 0.1 ms

action bias (fixed)

E001 7 V
E002 −10 V
E003 −1 V
E004 0 V
E005 11 V
E006 −1 V
E007 −4 V
E008 44 V
F001 38 V
F002 −3 V
F003 6 V
F004 1 V
F005 −37 V
F006 −9 V
F007 5 V
F008 10 V
OH001 −54 V
OH002 −15 V

action offset (random) all coils −20 V 20 V

measurement noise (std dev)

integrated flux loops 0.1 mWb
magnetic probes 0.1 mT
E coil currents 20 A
F coil currents 5 A
OH coil currents 20 A
G coil currents 2.5 A

measurement delay all measurements 0.02 ms
Rp 2.5µΩ 10µΩ

plasma parameters βp 0.125 0.5
(single domain) qA 1.04 1.625

σ‖ scaling 0.1 10
plasma parameters σ‖ difference 0.33 3
(multiple domain) IOH −10 kA −6 kA

Table 1 | Simulation parameters for actuator, sensor and current diffusion models. All parameters
are identified from data. The action bias was fit on the power supply output voltage. Measurement
noise is Gaussian additive noise and randomly sampled at each simulation time step. We use a fixed
action bias with an additive random offset to account for non-ideal behaviour of power supply hardware.
Current diffusion parameter variations account for the uncontrolled operating conditions. Parameter
variations are sampled at the beginning of each episode but kept constant during the episode. The
samples are drawn from uniform (action bias) and loguniform (current diffusion) distributions using
the bounds in this table. For single plasma training, Rp, βp and qA are varied, while in a multiple
plasmas training, we vary σ‖ and IOH. In the latter case, we sample an overall geometric mean offset of
the two σ‖ from a log-uniform distribution. We sample the log of the multiplicative difference between
them from Bs(4, 4), where Bs is a scaled beta distribution. We sample a single IOH value for both coils.
Parameters are sampled as absolute values unless explicitly indicated as scaling factors.
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Fundamental
Capability Elongated shape ITER-like shape Negative

Triangularity Snowflake Droplets

Figure Figure 2 Figures 3a, 6a Figures 3b, 6b Figures 3c, 6c Figures 3d, 6d Figure 4
Shot TCV#70915 TCV#70920 TCV#70600 TCV#70457 TCV#70755 TCV#69545
Reward
Components Transforms, Combiners (if necessary), and weight (default=1)

Diverted Equal() Equal()

E/F Currents
SoftPlus(

good=100,
bad=50)

GeometricMean()

SoftPlus(
good=100,
bad=50)

GeometricMean()

SoftPlus(
good=100,
bad=50)

GeometricMean()

SoftPlus(
good=100,
bad=50)

GeometricMean()

Elongation
SoftPlus(

good=0.005,
bad=0.2)

SoftPlus(
good=0,
bad=0.5)

LCFS Distance
SoftPlus(

good=0.005,
bad=0.05)

SmoothMax(-1)

SoftPlus(
good=0.003,
bad=0.03)

SmoothMax(-1)
weight=3

SoftPlus(
good=0.005,
bad=0.05)

SmoothMax(-1)
weight=3

SoftPlus(
good=0.005,
bad=0.05)

SmoothMax(-1)
weight=3

SoftPlus(
good=0.005,
bad=0.05)

SmoothMax(-1)
weight=3

Legs
Normalized
Flux

Sigmoid(
good=0.1,
bad=0.3)

SmoothMax(-5)
weight=2

Limit Point
Sigmoid(

good=0.1,
bad=0.2)

Sigmoid(
good=0.2,
bad=0.3)

Sigmoid(
good=0.1,
bad=0.2)

OH Current Diff
SoftPlus(

good=50,
bad=1050)

ClippedLinear(
good=50,
bad=1050)

ClippedLinear(
good=50,
bad=1050)

ClippedLinear(
good=50,
bad=1050)

ClippedLinear(
good=50,
bad=1050)

ClippedLinear(
good=50,
bad=1050)

Plasma Current
SoftPlus(

good=500,
bad=20000)

SoftPlus(
good=500,
bad=30000)

SoftPlus(
good=500,
bad=20000)

weight=2

SoftPlus(
good=500,
bad=20000)

weight=2

SoftPlus(
good=500,
bad=20000)

weight=2

Sigmoid(
good=2000,
bad=20000)

weight=[1, 1]

R
Sigmoid(

good=0.02,
bad=0.5)

weight=[1, 1]

Radius
SoftPlus(

good=0.002,
bad=0.02)

SoftPlus(
good=0,
bad=0.04)

Triangularity
SoftPlus(

good=0.005,
bad=0.2)

SoftPlus(
good=0,
bad=0.5)

Voltage Out of
Bounds

Mean()
SoftPlus(

good=0,
bad=1)

Mean()
SoftPlus(

good=0,
bad=1)

Mean()
SoftPlus(

good=0,
bad=1)

Mean()
SoftPlus(

good=0,
bad=1)

X-point Count Equal()

X-point Distance
Sigmoid(

good=0.01,
bad=0.15)

Sigmoid(
good=0.01,
bad=0.15)

weight=0.5

Sigmoid(
good=0.02,
bad=0.15)

weight=[0.5, 0.5]

Sigmoid(
good=0.01,
bad=0.15)

weight=[0.5, 0.5]

X-point Far
Sigmoid(

good=0.3,
bad=0.1)

SmoothMax(-5)

X-point Flux
Gradient

SoftPlus(
good=0,
bad=3)

weight=0.5

SoftPlus(
good=0,
bad=3)

weight=0.5

SoftPlus(
good=0,
bad=3)

weight=[0.5, 0.5]

SoftPlus(
good=0,
bad=3)

weight=[0.5, 0.5]
X-point
Normalized
Flux

SoftPlus(
good=0,
bad=0.08)

SoftPlus(
good=0,
bad=0.08)

SoftPlus(
good=0,
bad=0.08)

weight=[1, 1]

SoftPlus(
good=0,
bad=0.08)

weight=[1, 1]

Z
Sigmoid(

good=0.02,
bad=0.2)

weight=[1, 1]
Final Combiner SmoothMax(-0.5) SmoothMax(-5) SmoothMax(-5) SmoothMax(-0.5) SmoothMax(-5) GeometricMean()

Table 2 | Rewards used in the experiments Empty cells are not used in that reward. Any cell that does
not specify a weight has an implicit weight of 1. Vector-valued weights (e.g. Droplets: R) return multiple
values to the final combiner. See Table 3 for the descriptions of the different reward components,
Table 4 for the transforms, and Table 5 for the combiners. All the terminations in Table 6 were used for
these experiments. Code for these rewards is available in the supplementary material.
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Reward Component Description

Diverted Whether the plasma is limited or diverted.

E/F Currents The currents in the E and F coils, in amperes.

Elongation The elongation of the plasma, this is its height divided by its width.

LCFS Distance The distance in meters from the target points to the nearest point on the
last closed flux surface (LCFS).

Legs Normalized Flux The difference in normalized flux from the flux at the LCFS at target leg
points.

Limit Point The distance in meters from the actual limit point (wall or X-point) and
target limit point.

OH Current Diff The difference in amperes between the two OH coils.

Plasma Current The plasma current in amperes.

R The radial position of the plasma axis/centre.

Radius Half of the width of the plasma.

Triangularity The upper triangularity is defined as the radial position of the highest
point relative to the median radial position. The overall triangularity is
the mean of the upper and lower triangularity.

Voltage Out of Bounds Punish the agent for going outside of the voltage limits.

X-point Count Return the number of actual and requested X-points within the vessel.

X-point Distance Returns the distance in meters from actual X-points to target X-points.
Only X-points within 20cm are considered.

X-point Far For any X-point that isn’t requested, return the distance in meters from
the X-point to the LCFS. This helps avoid extra X-points that may attract
the plasma and lead to instabilities.

X-point Flux Gradient The gradient of the flux at the target location with a target of 0 gradient.
This encourages an X-point to form at the target location, but isn’t very
precise on the exact location.

X-point Normalized Flux The difference in normalized flux from the flux at the LCFS at target
X-points. This encourages the X-point to be on the last closed flux surface,
and therefore for the plasma to be diverted.

Z The vertical position of the plasma axis/centre.

Table 3 | Reward Components All of these return an actual and a target value, and many allow
time-varying target values. See Table 2 for where and how they are used.
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Transform Description

ClippedLinear Linearly maps the input values such that the good goes to 1 and bad to 0, then
clips between 0 and 1.

Equal Returns 1 if there is no error, returns 0 otherwise. Useful for boolean or integer
outputs.

Sigmoid Maps the input values such that good is 0.95 and bad is 0.05 in the output of the
logistic function. This is similar to ClippedLinear, except there’s still small impetus
to improve beyond the good value and a little bit of reward signal for improvements
below the bad value.

SoftPlus Maps the input values such that good is 1 and bad is 0.1 in the output of the lower
half of the logistic function, then clips to 0 and 1. This leads to a sharp drop-off as
the value moves away from the good value, and a slow drop-off past bad. This is
similar to a smooth relu.

Table 4 | Reward transformations Transforms that scale the different reward components. Transforms
take a good and bad value that usually have some semantic meaning defined by the reward component,
and then map it to the range 0 to 1. The good value should lead to a reward close to or equal to 1,
while a bad value should lead to a reward close to or equal to 0.

Combiner Formula Description

Geometric Mean
(︁
n
i1 xiwi

)︁ 1
n
i1 wi Takes the weighted geometric mean of the values.

Mean
n
i1 xiwi

n
i1 wi

Takes the weighted mean of the values.

Smooth Max
n
i1 xiwieαxi

n
i1 wieαxi Takes the smooth maximum, parameterized with an α such that

α 0 is equivalent to taking the mean, α −∞ is equivalent to taking
the minimum, and α ∞ is equivalent to taking the maximum.

Table 5 | Reward Combiners Combiners take a list of values and corresponding weights and returns a
single value. Any values with a weight of 0 are excluded.

Termination Termination Criteria
Coil current limits Any coil current exceeds the physical limit of the plant.
Edge safety factor Terminate when the edge safety factor q95 [48] goes below 2.2, which

provides some margin over the the threshold for a stable plasma (q95 > 2).
OH too different The OH coil currents differ by more than 4 kA, which would cause high

structural forces.
Plasma current limit Plasma current is below the plant’s disruption detector threshold, which is

−60 kA for a single plasma, and −25 kA per plasma for droplets.
Solver not converged Multiple subsequent simulation steps did not converge.

Table 6 | Episode Termination Criteria Description of the different terminations used. If any termina-
tion triggers, the episode ends with a large negative reward.
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