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Figure S1. STEM imaging of MoS2 a, Annular-dark field scanning transmission electron microscopy (ADF-STEM) 
image shows the hexagonal lattice of single-layer MoS2. The ADF-STEM image intensity is directly proportional 
to the atomic number thus the Mo (Z = 42) atoms give brighter contrast than the S atoms (Z=16). b, The fast 
Fourier transform (FFT) pattern from the corresponding image in a demonstrates the highly crystalline nature of 
the film. 
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Figure S2. Cross-sectional TEM image of the fabricated device a, Overview of all the constituent layers (scale 
bar: 100 nm). b, Zoomed-in view of the interface between the gate stack and the monolayer MoS2 (scale bar: 2 
nm). 

 

 

Figure S3. Raman characterization of monolayer MoS2. Raman spectra of MoS2 transferred onto a SiO2 
substrate. We used a 523 nm laser excitation and a 3000 line mm-1 grating with 10 s acquisition time and averaged 
from 10 acquisitions. The observed difference between E2g and A1g Raman modes (19.088 cm-1) of MoS2 is 
consistent with a monolayer1. 
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Figure S4. Extended Characterization Curves. a, IDS versus VG for varying VDS. b, Retention curves for different 
programming voltages. c, Variation of the device current in function of the number of potentiating and depressive 
pulses with different peak voltages (VPULSE) and duration (tON). d, Device variability. e, IDS versus VG – gate leakage 
current. f, Endurance measurement with pulses with Programming/Erasing VPEAK = ± 10 V and tWIDTH = 100 ms. 
The graph shows the evolution of the channel’s conductance GDS versus number of Programming and Erasing 
cycles consisting of two opposite pulses. g, Repeatability measurement for the IDS versus VG characteristic curve. 
Endurance and Repeatability were done in a different device from the previous one but followed the same 
fabrication steps.  
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Figure S5. a, Simulated Fitting and Measured values for 1 μm memory. b, IDS versus VG for different gate length 
(950, 430, 180 nm) and different devices. 
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Figure S6. Scanning electron microscopy images of scaled devices. a, Device dimensions L = 950 nm,  
W = 8.95 μm, fake colouring to indicated contact positions. b, L = 430 nm, W = 4.44 μm c, L = 180 nm,  
W = 1.92 μm. 
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Figure S7. Extended Closed-Loop Programming Block Diagram. 
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Figure S8. Neural network device interface. a, Example of the used memory array, and expansion of 
functionality by reprogramming. b, Simplified circuit schematics of the chip connected to its peripherals. c, 
Experimental setup with the device-interface-board and the device under test. During measurements, a lid is used 
on the device to inhibit light sources influencing the measurements. 
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Figure S9. Device variation of 1 μm gate length floating-gate memory spanning over a transferred 2-inch film. 
Yield is calculated to be 80%. 
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1. Material Characterization 

In order to verify the quality and number of layers of the MOCVD MoS2, we have performed 
STEM (Scanning Transmission Electron Microscopy) and Raman spectroscopy in grown 
materials with the same recipe as the one presented in the main manuscript. In Figure S1, panel 
a show the crystalline structure of a MoS2 monolayer and panel b its Fourier transform. These 
images confirm the atomic quality of the as-grown materials showing only a few sulphur 
vacancies. Figure S1 shows the TEM image of the cross-section of the gate stack, confirming 
both thickness and quality of deposited materials. Figure S3 shows the Raman spectrum of the 
material transferred onto a SiO2 substrate, confirming its monolayer property.  

2. Device Characterization 

Figure S4 shows further device characterization of the floating gate memory.  Figure S4a 
presents the IDS versus VG curves for different VDS. Figure S4b shows the retention 
measurements for programming voltages on the same device. The measurement shows a 
multistate stability in a 5-hour measurement slot at room temperature. Because of the stability 
of the states, a much longer retention can be expected. Figure S4c shows tunning of the 
electrical properties of the memory by symmetrical pulses, allowing an analog modulation of 
the memory’s conductance states. This characteristic is essential for the application of our 
devices into synapses of the neural network accelerators. Next, in Figure S4d, we show the IDS-
VG for a few devices in the same chip, showing a consistent behaviour. Figure S4e, we show 
the gate leakage during the sweep shown in Figure S4a. Figure S4f shows the endurance of the 
memory for cycling. The channel’s conductance GDS is probed versus the number of 
programming (VPEAK = +10V) and erasing (VPEAK = -10V) cycles pulses in the gate (TPULSE = 
100ms). Finally, the last measurement probes the repeatability of the hysteresis curve (IDS 
versus VG) after 3 cycles. We note that the endurance and repeatability characterisation was 
performed with different devices but with the same fabrication process. 

3. Device Scaling 

Figure S5a shows the device fitting for the simulation, fitting – solid and measurement – 
dashed. Figure S5b shows the full data set (IDS versus VG) of the scaled devices. Figure S6 
shows the SEM images of the scaled devices. 
 

4. Closed Loop Programming 

Figure S7 shows the extension of the block diagram described in the main text, used for 
programming the individual memories to a defined value.  

5. Experimental Setup 

Due to the limited number of devices, we reuse the same devices 3 times to expand the number 
of outputs as shown in a Figure S8a. The schematic of the Figure S8b shows the connections 
and internal circuits to perform the inference/programming of the neural network. We use a 
custom-made device interface board (DIB) described in Figure S8c to apply gains and route 
the input and output voltages as shown in the previous schematic. The signals are generated 
using a CompactDAQ system and a LabVIEW software in the host computer. Although almost 
all the computation is done directly on hardware, the neuron’s activation function is performed 
numerically after the acquisition of the signals. In the computer, we perform a SoftMax 
function: 
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6. Energy Efficiency Estimation For a Large Neural Network Based on the Fabricated 
Devices 

The energy efficiency EE of a neural network is defined as: 
 

𝐸𝐸 ൌ
𝑁ாை௖௟௔௦௦
𝐸௖௟௔௦௦

, 

where 𝑁ாை௖௟௔௦௦ is the number of elementary operations (sums or products) required to complete 
a single classification, and 𝐸௖௟௔௦௦ is the energy required by the neural network for a single 
classification. 
If we assume that the main building block of a deep neural network is represented by the VMM, 
we can approximate the EE of the neural network with the EE of the VMM, and therefore write: 
 

𝐸𝐸 ൌ
𝑁௏ெெ
𝐸௏ெெ

ൌ
𝑁௏ெெ

𝑃௏ெெ𝑡௟௔௧
 

where 𝑁௏ெெ and 𝐸௏ெெ are the number of elementary operations and the energy required for a 
vector-matrix multiplication, respectively, 𝑃௏ெெ is the power consumption of the VMM, and 
𝑡௟௔௧ is the latency time, i.e. the time required to obtain the multiplication result. 
With reference to Fig. 6(a) 𝑃௏ெெ of a VMM with M rows and N columns is the sum of the 
power consumed over all the 2 ൈ𝑀 ൈ 𝑁 memory cells (the factor two takes into account the 
fact that the weights of a deep neural network can be both positive and negative and therefore 
we need one column for positive weights and one column for negative weights, leading to a 
doubling of the number of cells). In this calculation we are not considering the effect of other 
peripheral blocks (i.e., transimpedance amplifiers converting output currents of one neuron 
layers into the input voltage of the following neuron layer, or analog-to-digital and digital-to-
analog converters), because their presence depends on the particular implementation of the 
network. This also means that we are estimating an upper value for the EE and that actual 
implementations will likely have a lower EE, depending on the details of the circuit. 
The power 𝑃௜,௝  consumed by the (i,j) memory cell is  

𝑃௜,௝ ൌ 𝑉௜௡,௜
ଶ 𝐺௜,௝ ൌ 𝑉௜௡,௜

ଶ 𝐺௠௔௫𝑤௜,௝ 

Where 𝑉௜௡,௜ is the input voltage of the i-th row, and 𝐺௜,௝is the conductance of the memory cell, 
that can be written as the maximum conductance 𝐺௠௔௫ times the cell weight 𝑤௜,௝ normalized 
from zero to 1. The power consumption therefore depends on the input vector and on the 
weights. We estimate the average power consumption by maximizing 𝑉௜௡,௝ with the maximum 
value 𝑉௜௡,௠௔௫ (50 mV, in the case considered) and by considering the average weight obtained 
after training the AlexNet (in our case 〈𝑤〉 ൌ 0.2). Therefore we have: 
 

𝑃௏ெெ ൌ ෍ 𝑉௜௡,௜
ଶ 𝐺௠௔௫𝑤௜,௝  

୭୴ୣ୰ ଶൈெൈே ୡୣ୪୪ୱ

௜,௝

~2𝑀𝑁𝑉௜௡,௠௔௫
ଶ 𝐺௠௔௫〈𝑤〉  
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The multiplier performs in parallel 𝑀 ൈ𝑁  elementary products and ሺ𝑀 െ 1ሻ𝑁  elementary 
additions, therefore the number 𝑁௏ெெ of elementary operations is: 
 

𝑁௏ெெ ൌ 𝑀𝑁 ൅ ሺ𝑀 െ 1ሻ𝑁 ൌ ሺ2𝑀 െ 1ሻ𝑁 

We can therefore obtain the EE efficiency of the multiplier as: 

𝐸𝐸 ൌ
𝑁ாை௖௟௔௦௦
𝐸௖௟௔௦௦

~
𝑁௏ெெ

𝑃௏ெெ𝑡௟௔௧
~

ሺ2𝑀 െ 1ሻ𝑁
2𝑀𝑁𝑉௜௡,௠௔௫

ଶ 𝐺௠௔௫〈𝑤〉𝑡௟௔௧
~

1
𝑉௜௡,௠௔௫
ଶ 𝐺௠௔௫〈𝑤〉𝑡௟௔௧

 

For 𝑉௜௡,௠௔௫ ൌ 50 mV , 𝐺௠௔௫ ൌ
ଵ

ோ೘೔೙
ൌ ሺ2.5 𝑀Ωሻିଵ (e.g. extracted from Fig. 6c considering 

𝑉 ൌ െ3 𝑉 and 𝑉ௗ௦ ൌ 500 mV) , 〈𝑤〉 ൌ 0.2, 𝑡௟௔௧ ൌ 100 ns, we obtain 𝐸𝐸 ൌ 50 POps/W.  
As we mention in the main text, we are not considering the peripheral circuits, and in particular 
possible digital-to-analog and analog-to-digital converters, as well as current-to-voltage 
converters and interface circuits, therefore our estimate is the upper limit of the achievable EE. 
Let us highlight the fact that for larger VMM the weight of the power consumption of the cells 
becomes higher with respect to that of peripheral circuits, since the power consumed by the 
array scales with 𝑁 ൈ𝑀, whereas the power of the peripheral circuits scale linearly with N and 
M. 

7. Energy Efficiency Calculation For the Fabricated Neural Network – Only Resistive 
Losses 

From the experimental results we obtain the distribution of the output voltages (10000 counts) 
of the system and we calculate the average output voltage as <VOUT> = 0.62 V. 

 

Figure S10 Output voltage distribution of the 7-segment classification perceptron layer. 
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Total energy consumed by the network 
 
The total energy consumed by the resistor network can be estimated as the sum of the energy 
dissipated in each individual memory. Current flow to the input iCELL(t): 
 

𝐸 ൌ ෍ න𝑣ூேሺ𝑡ሻ𝑖஼ா௅௅ሺ𝑡ሻ𝑑𝑡

்

଴

ே்ை்஺௅

଴

 

Since we have VIN
MAX < vIN(t) < 0 and we assume that ICELL

MAX
  < iCELL(t) < 0 , we can set 

the upper limit of the integral as:  
 

𝐸 ൌ ෍ න𝑣ூேሺ𝑡ሻ𝑖஼ா௅௅ሺ𝑡ሻ𝑑𝑡

்

଴

ே்ை்஺௅

଴

 ൑ ෍ න𝑉ூே
ெ஺௑. 𝑖஼ா௅௅ሺ𝑡ሻ𝑑𝑡

்

଴

ே்ை்஺௅

଴

 

Rewriting as the following we can correlate the energy with the mean current in each cell: 

𝐸 ൌ 𝑉ூே
ெ஺௑.𝑇. ෍

1
𝑇
න 𝑖஼ா௅௅ሺ𝑡ሻ𝑑𝑡

்

଴

ே்ை்஺௅

଴

ൌ 𝑉ூே
ெ஺௑ ൉  𝑇 ൉ ෍ 〈𝐼஼ா௅௅〉 ൌ 𝑉ூே

ெ஺௑ ൉ 𝑇 ൉ 𝑁்ை்஺௅ ൉ 〈𝐼஼ா௅௅〉 

ே்ை்஺௅

଴

 

 
 
Since we know that the transimpedance amplifier output voltage can be written as  
 

<VOUT> = -RTIꞏ<IOUT> 

and the output current can be assumed to be constant in each of the cells in one output branch: 
<ICELL > = <IOUT>/NARRAY 

Therefore,  

𝐸 ൑ 𝑉ூே
ெ஺௑ ൉ 𝑇 ൉ ෍ 〈𝐼஼ா௅௅〉 ൌ 𝑉ூே

ெ஺௑ ൉ 𝑇 ൉ 𝑁்ை்஺௅ ൉ 〈𝐼஼ா௅௅〉 ൌ  𝑉ூே
ெ஺௑ ൉ 𝑇 ൉

𝑁்ை்஺௅
𝑁஺ோோ஺௒

൉ 〈𝐼ை௎்〉 

ே்ை்஺௅

଴

 

𝐸 ൑ െ𝑉ூே
ெ஺௑ ൉ 𝑇 ൉

𝑁்ை்஺௅
𝑁஺ோோ஺௒

൉
〈𝑉ை௎்〉

𝑅்ூ
 

The energy can be understood as the operation frequency (fOP) times the operation time (T) and 

the energy per operation (EOP). By analysing only the upper limit: 

𝐸 ൌ 𝐸ை௉ ൉ 𝑇 ൉ 𝑓ை௉ ൌ െ𝑉ூே
ெ஺௑ ൉ 𝑇 ൉

𝑁்ை்஺௅
𝑁஺ோோ஺௒

൉
〈𝑉ை௎்〉

𝑅்ூ
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In our system, we have VIN
MAX= -1V, fOP = 10000 samples, NTOTAL = 21 memories, NARRAY = 

7 memories (per output), RTI = 2.5MΩ:  

𝐸ை௉ ൌ
ே೅ೀ೅ಲಽ
ேಲೃೃಲೊ

൉ ௏಺ಿ
ಾಲ೉.〈௏ೀೆ೅〉

௙ೀು.ோ೅಺
 = 74.32 pJ/op 

0 ൑ 𝐸ை௉ ൑74.32 pJ/op 
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