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Abstract: Climate change can strongly affect renewable energy production. The state of the art in
projecting future renewable energy generation has focused on using regional climate prediction.
However, regional climate prediction is characterized by inherent uncertainty due to the complexity
of climate models. This work provides a comprehensive study to quantify the impact of climate
uncertainties in projecting future renewable energy potential over five climate zones of Europe.
Thirteen future climate scenarios, including five global climate models (GCMs) and three representa-
tive concentration pathways (RCPs), are downscaled by the RCA4 regional climate model (RCM)
over 90 years (2010–2099), divided into three 30-year periods. Solar and wind energy production is
projected considering short-/long-term climate variations and uncertainties in seven representative
cities (Narvik, Gothenburg, Munich, Antwerp, Salzburg, Valencia, and Athens). The results showed
that the uncertainty caused by GCMs has the most substantial impact on projecting renewable energy
generation. The variations due to GCM selection can become even larger than long-term climate
change variations over time. Climate change uncertainties lead to over 23% and 45% projection
differences for solar PV and wind energy potential, respectively. While the signal of climate change in
solar radiation is weak between scenarios and over time, wind energy generation is affected by 25%.

Keywords: climate change; climate uncertainties; future climate data; solar energy; wind energy

1. Introduction

In the next few decades, due to man-made emissions of greenhouse gases and aerosols,
the Earth’s climate will undergo considerable changes. The primary goal of any mitiga-
tion strategy to avoid climate change risks is to reduce greenhouse gas(GHG) emissions.
Conventional fossil energy sources, such as coal, oil, and especially natural gas, are highly
related to the energy security of the path to decarbonization [1]. However, the transition
from coal to renewable energy is vital to guarantee the full transition to a low-carbon
economy to mitigate climate change [2]. The development of renewable energy (e.g., wind
energy and solar energy) will make a considerable contribution to climate change mitiga-
tion. It is speculated that wind and solar energy will be the most critical contributors to
low-carbon energy consumption [3]. On the global scale, solar energy is likely to become
the largest single energy source in 2040, accounting for about 40% of renewable energy due
to its strong deployment in China and India [4]. Europe is a region of particular interest;
80% of the new installed capacity is based on renewable energy due to a large amount of
wind, solar, and hydro power currently installed and planned [5]. In 2020, wind power
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generation increased by 9% and solar power generation by 15% [6], aiming to reach at least
32% of renewable energy generation by 2030 [7]. This could support the movement of
societies toward the decarbonization of urban infrastructures and the 100% renewable en-
ergy system goal [8,9]. According to the European Green Agreement (EGD), the European
Commission has reviewed its energy and climate regulations to further reduce emissions
and promote renewable energy deployment. Other EU initiatives, such as the EU Green
Deal European Hydrogen Strategy, also necessitate the rollout of renewable energy sources
(e.g., wind, solar, and hydrogen) for a more sustainable energy transition [10]. The aim is
that the European Union remains neutral in terms of climate change by 2050 [11].

As the global climate is changing rapidly, a substantial increase in weather sensitivity
is also taking place. It is recognized that an increasing global and regional temperature
can lead to higher residential cooling and, consequently, higher electricity demand [12,13].
However, the two key meteorological variables for renewable energy generation, namely,
near-surface wind speed and surface solar radiation, are lacking in certainty [14]. Climate
change will alter both future energy demand and renewable energy generation. The latter
is highly affected by weather variations unlike traditional fossil fuels.

The evolution of renewable generation under the impacts of climate change has been
widely investigated. Several studies focused on describing the future state of wind and
solar energy using global climate models (GCMs) or downscaled regional climate models
(RCMs) from the Coupling Model Intercomparison Project (CMIP), which referred to
the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC)
AR5 model [15]. The outputs of these models are directly used to assess the impact of
climate change. For example, Chen [16] used a set of climate predictions from global and
regional climate models to investigate the uncertainty of the impact of climate change
on the surface solar radiation in the United States. Blommfield et al. [14] adopted six
EURO-CORDEX global/regional climate models, considering two climate forcing scenarios
(or representative concentration pathways; RCP 4.5 and RCP 8.5) to simulate the European
power system by 2050 by modeling future renewable energy generation from wind and
solar PV, as well as future energy demand. Their results showed that climate uncertainty
is exacerbated in the renewable energy-intensive power system scenario and emphasize
the need to better understand climate uncertainty in power system design. The inherent
uncertainties from climate modeling are reflected in GCM outputs, especially those relevant
to renewable energy generation [17]. For example, cloud coverage is considered to have
the highest uncertainty in current GCMs and is usually estimated based on the relative
humidity value in each GCM cube [18,19]. In another study, Cindy et al. [20] considered
two RCPs (RCP 4.5 and RCP 8.5) and two GCMs to assess the potential contribution of
renewable energy to Latin America. The results showed that wind energy has a higher time
variability than solar photovoltaic resources. Oka et al. [21] analyzed the impact of climate
change on potential solar energy production and assessed the uncertainties considering
three RCPs and seven GCMs. They predicted over 1.7%, 3.9%, and 4.9% increments in
average annual PV production by 2030, 2050, and 2070, respectively. Pryor et al. [22]
estimated the probability distributions of wind speed in Northern Europe by using the
daily output of ten downscaled GCMs in the AR4 scenario to generate historical periods
(1961–1990 and 1982–2000) and two future periods (2046–2065 and 2081–2100). They found
that there is not much consensus among GCMs, and they cannot make reliable conclusions
about the wind profile changes by 2050. Their research showed that by 2100, the average
wind speed will drop slightly, indicating that GCM has great uncertainty in solving wind
and solar potential.

The most recent studies regarding climate change on energy demand point to the
strong likelihood of lower heating demand in the future, while cooling demand may
increase (e.g., [23–26]). In contrast, research on the impact of climate change on the potential
of renewable energy generation in Europe is not consistent. Some studies have found that
Europe’s projected wind power generation will be moderately reduced [27,28], while
some other studies have predicted that it will increase. For example, Reyes et al. [29]
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used statistical and dynamic downscaling methods to downscale 22 CMIP5 models and
investigate the future changes in European wind energy potential. They found that the
annual wind energy output in Northern and Central Europe will increase, while the
overall average in the Mediterranean will decrease. Based on their results, from a seasonal
perspective, wind energy will increase in most parts of Europe in winter but may decrease
in summer. Some studies have also found that the annual energy output of future European
wind power will remain stable throughout the 21st century. For example, Tobin et al. [30]
studied the impact of climate change on wind power generation potential using EURO-
CORDEX data and considering seven RCMs driven by five GCMs. They found that the
annual energy output of future European wind power will remain stable within a range
of ±5%. For solar photovoltaic (PV) power generation potential, the results are also
inconsistent. Jerez et al. [31] adopted the latest EURO-CORDEX high-resolution climate
prediction ensemble and a PV power generation model to assess the impact of climate
change on solar generation in Europe. Based on their results, the changes in solar PV
supply in Europe ranged from −14% to +2%, with the largest decline in Northern European
countries. In contrast, other studies have found an increase in the overall potential of solar
energy in Europe [32], especially in Southern Europe [33], and a decrease in Northern
Europe [34].

These contrasting results highlight some of the major challenges in predicting renew-
able generation and considering multiple future climate scenarios. This study provides
an overview of future renewable generation considering solar and wind energy, studying
their variations over time while multiple climate change scenarios are taken into account.
This research work investigates the impacts of future climate uncertainties on estimating
solar and wind energy generation in seven European cities distributed over five different
European climate zones in Europe. The considered cities are Narvik, Gothenburg, Munich,
Antwerp, Salzburg, Valencia, and Athens. Climate data from the fourth generation of
the Rossby Centre RCM, called RCA4, are used in this work [35]. Thirteen future climate
scenarios, including three RCPs and five GCMs, are considered for each city over 90 years
(2010–2099), divided into three 30-year periods. This ensemble allows us to explore and
compare the major uncertainties that affect future climate data sets, induced due to different
GCMs and emission scenarios (or RCPs). The rest of the paper is structured as follows:
Section 2 presents the climate data set and modeling framework. Section 3 first assesses the
impacts of climate change on wind and solar energy (Section 3.1) and then investigates the
consequent seasonal variations (Section 3.2) and the impacts of climate uncertainties due to
different GCMs and RCPs (Section 3.3). Finally, conclusions are presented in Section 4.

2. Materials and Methods
2.1. Climate Data

The climate data used in this study have been simulated by the CMIP5 project, which
provides a framework for studying and comparing Global Atmospheric Coupled Ocean
Models (AOGCMs) through standardized experiments. In CMIP5, predefined radiative
forcing scenarios obtained from socio-economic scenarios are used to predict climate
change [36,37]. There are a total of four representative concentration pathways (RCPs),
namely, RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5, which, except for RCP 6, were all considered
in this work. The core of the RCP concept is that any single path of radiative forcing can be
generated by multiple socio-economic, technological, and policy development scenarios.
RCP 2.6 provides the lowest possible carbon dioxide emissions; RCP 4.5 provides milder
emission scenarios, where GHG emissions increase slightly and reach a peak around 2040.
RCP 8.5 is an extreme case, where GHG emissions are three times higher than the current
atmospheric level [15,38]. Thus, RCP 2.6, RCP 4.5, and RCP 8.5 relate to the radiative
forcing of 2.6 W/m2, 4.5 W/m2, and 8.5 W/m2, respectively. RCP 6 is between RCP 4.5
and RCP 8.5, therefore neglecting that which does not affect the range of possible climate
scenarios and extremes that we are interested in for this study.
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The spatial resolution of the GCMs (100 km2–300 km2) is usually too coarse for regional
climate studies. The regional assessment of solar and wind energy mostly tends to rely
on downscaled climate projections from RCMs with a finer spatial resolution, which is
12.5 km2 for RCA4 used in this work [35,39,40]. Five GCMs are considered in this work:
(1) CNRM-CM5, (2) ICHEC-EC-EARTH, (3) IPSL-CM5A-MR, (4) MOHC-HadGEM2-ES,
and (5) MPI-ESM-LR. In total, thirteen future climate scenarios are considered for three
30-year periods of 2010–2039, 2040–2069, and 2070–2099. This ensemble approach allows
the exploration and comparison of various uncertainties from emission scenarios and
GCM models.

As mentioned above, the future climate scenarios are analyzed for the period 2010–2039
as near term (NT), 2040–2069 as medium term (MT), and 2070–2100 as long term (LT).
Climate data with hourly temporal resolution are studied in this work, allowing us to
investigate the possible wind and solar energy potential variation due to climate change
over time and to cover a wide range of possible future conditions. Seven cities are selected
from the European nearly zero-energy buildings (NZEB) climate zone to further assess the
future solar and wind potential [41]. The NZEB classified Europe into five zones; cities are
selected from Zone 1 and 2 (Barcelona and Athens), Zone 3 (Salzburg), Zone 4 (Munich and
Brussels), and Zone 5 (Gothenburg and Narvik). More details about the climate models
and synthesizing weather data sets are available in [35,42]. In this work, when we discuss
the impacts of climate uncertainties, we refer to differences induced by different GCMs and
RCPs, while by impacts of climate change (or its signals), we refer to variations due to the
evolution of climate over time (mainly between the three 30-year periods).

2.2. Wind and Solar Power

Regional climate models have been widely used to project renewable energy gener-
ation. For example, Walter et al. [43] evaluated two RCMs and compared their output
with the observed data. They found that the deviation between the RCM data (reanaly-
sis driven by past observed data) and the observed data usually does not exceed 1 m/s.
Hollweg et al. [44] also found RCM data applicable in wind energy assessment. They com-
pared RCM data with 10-year annual average wind speed observation data in Germany
and found that RCM data deviate less than 0.5 m/s for onshore areas and 1 m/s for offshore
areas. Sailor et al. [45] used RCM data considering four GCMs and found that RCM wind
data are accurate enough in comparison with past climate data.

Conversion from wind speed to power density (power per unit area, kW/m2) includes
obtaining the wind speed value using the power law [46,47] according to Equation (1). For
this work, the relation is set to extrapolate the wind speed V0 (m/s) from 10 m (H0) to 80 m
(H), which is the current average hub height of onshore wind turbines [48]. The power-law
exponent α of 0.142 for the offshore hub is used in this study. V (m/s) is the wind speed
at the hub height of H (m). The wind speed is later used as an input variable to calculate
wind power output on an hourly basis according to Equation (2).

V
V0

=

(
H
H0

)α

(1)

P
A

=
1
2
ρV3Cp (2)

In Equation (2), P/A is the power density (kW/m2), ρ is the air density (1.225 kg/m2),
V is the wind speed (m/s), and Cp is the maximum power coefficient (Betz law [49],
theoretical 0.59). The power density function (Equation (2)) can be used to calculate the
average power based on a series of average wind speeds in the selected area. This function
closely matches the observed long-term distribution of average wind speed, and this
function is widely used to quantify wind energy generation [50,51].

Photovoltaic (PV) projections rely on the photovoltaic power generation model as is
shown in Equation (3) [52]. It uses two parameters as input variables, which are the total
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horizontal irradiance G (W/m2) and ambient temperature T (K), to calculate photovoltaic
power generation on an hourly basis. It should be noted that this study considers only the
power generation for 1 m2 (or power per unit area) and does not consider the inclination
of the solar panels. P/A refers to the generated electrical power per unit surface of the
PV module.

P
A

= 0.128G − 0.239 × 10−3T (3)

2.3. Spearman’s Rank Correlation Coefficient

The Spearman’s rank correlation coefficient is a sensitivity analysis that is used to
quantify the uncertainty in different types of complex models, and we adopted it to check
whether the ranks of the results between the two groups are consistent. The method is
used to identify the correlation between temperature and solar wind energy output under
different climate scenarios without considering the normality or mean variance of the data;
Spearman’s rank correlation coefficient focuses on the difference in the rank order of the
data rather than the difference in the mean. For example, there is a positive correlation
between the two sets of results in the null hypotheses A and B. The coefficient value
ranges from −1 to 1, where 1 and −1 are the strongest positive and negative correlations,
respectively. All hypothesis tests are performed with 95% confidence. The Spearman’s rank
correlation Rs can be calculated from Equation (4) [53]. N is the number of observations,
and d is the difference between the ranks.

Rs = 1 − 6Σd6

N
(

N2 − 1
) (4)

3. Results and Discussion

The long-term variations of solar and wind energy, as well as their seasonal variations,
are investigated in seven cities in the NT, MT, and LT in Sections 3.1 and 3.2. The impacts
of climate uncertainties on the estimation of renewable energy potential are analyzed by
looking into seasonal mean values and Spearman’s ranking correlation in the NT, MT, and
LT in Section 3.3.

3.1. Long-Term Trends of Solar and Wind Energy Potential

The regression analysis in Figure 1 shows the long-term solar irradiance trends and
variations over time for RCP 2.6, RCP 4.5, and RCP 8.5. Each regression line combines
all five GCMs. According to the results, for each combination of GCM, all RCPs show
a decreasing trend for solar irradiance throughout 2010–2099 (regression equations in
Table 1). Among the seven cities, Gothenburg has the fastest decreasing trend followed by
Antwerp and Narvik. Athens has the highest solar irradiance among all the cities, followed
by Valencia. These two cities have the lowest decreasing rate of solar irradiance due to
climate change.

The regression analysis for wind speed was performed, along with the determination
coefficient (R2) (see Figure 2 and Table 1). It can be found that Athens has a significant
upward trend in RCP 4.5 and RCP 8.5, while Valencia and Munich only have a slightly
increasing trend in RCP 2.6 and RCP 8.5, respectively. Except for the cases mentioned
above, the other ones all show an overall decreasing trend. Among them, Valencia has the
most apparent decreasing trend in RCP 8.5, followed by Narvik and Salzburg. Compared
to solar irradiance, the scattered points are more dispersed around the regression line, and
the decreasing or increasing trend is more visible.
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Table 1. Regression analysis for solar irradiance and wind speed of 7 European cities.

City Solar RCP 2.6 Solar RCP 4.5 Solar RCP 8.5 Wind RCP 2.6 Wind RCP 4.5 Wind RCP 8.5

Gothenburg y = −8.9 × 10−7x + 132 y = −1.4 × 10−6x + 133 y = −1.2 × 10−6x + 133 y = −1.9 × 10−7x + 4.7 y = −1.1 × 10−7x + 4.6 y = −2.4 × 10−8x + 4.6
Narvik y = −1.1 × 10−6x + 109 y = −8.3 × 10−7x + 110 y = −7.9 × 10−7x + 110 y = −2.1 × 10−7x + 5.1 y = −1.4 × 10−7x + 4.9 y = −3.1 × 10−7x + 4.9

Antwerp y = −9.9 × 10−7x + 137 y = −8.9 × 10−7x + 136 y = −2.1 × 10−6x + 136 y = −6.5 × 10−8x + 4.2 y = −7.2 × 10−8x + 4.2 y = −3.2 × 10−8x + 4.2
Munich y = −1.4 × 10−6x + 155 y = −2.3 × 10−7x + 154 y = −1.3 × 10−6x + 153 y = −5.6 × 10−8x + (4.2 y = −7.1 × 10−8x + 4.3 y = 7.3 × 10−10x + 4.3
Athens y = −2.7 × 10−7x + 223 y = −2.6 × 10−7x + 224 y = −2.2 × 10−7x + 224 y = −1.2 × 10−7x + 4.2 y = 8.1 × 10−9x + 4.2 y = 2.5 × 10−8x + 4.2

Valencia y = −1.3 × 10−7x + 213 y = −6.4 × 10−7x + 217 y = −6.4 × 10−7x + 216 y = 1.17 × 10−8x + 3.4 y = −2.1 × 10−7x + 3.6 y = −2.9 × 10−7x + 3.6
Salzburg y = −1.2 × 10−6x + 160 y = −7.9 × 10−7x + 158 y = −2.6 × 10−6x + 159 y = −7.6 × 10−8x + (3.3 y = −1.2 × 10−7x + 3.4 y = −1.2 × 10−7x + 3.4

Coefficient of
determination (R2) Solar RCP 2.6 Solar RCP 4.5 Solar RCP 8.5 Wind RCP 2.6 Wind RCP 4.5 Wind RCP 8.5

Gothenburg 0.04 0.01 0.09 0.09 0.05 0.02
Narvik 0.01 0.04 0.04 0.09 0.07 0.3

Antwerp 0.04 0.04 0.02 0.01 0.02 0.04
Munich 0.01 0.03 0.01 0.02 0.03 0.02
Athens 0.06 0.07 0.04 0.09 0.08 0.07

Valencia 0.08 0.03 0.03 0.24 0.21 0.36
Salzburg 0.04 0.03 0.04 0.03 0.13 0.1
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Figure 2. Wind speed trend regression analysis for RCP 2.6 (green), RCP 4.5 (blue), and RCP 8.5 (red)
in seven cities during the period of 2010–2100 considering five GCMs.

3.2. Long-Term Variations Due to Climate Change and Uncertainties

The impact of climate change on average PV output is shown in Figure 3. For all RCPs
and GCMs, the output of PV has a downward trend over time, but the relative differences
are very small, which are discussed in the following section in Tables 2 and 3. ICHEC-RCP
2.6 predicts a relatively higher PV output than the other GCMs in the seven cities in Figure 4.
For example, in Munich, ICHEC projects a 13.2% higher PV production than MPI. For
RCP 4.5 and RCP 8.5, IPSL in Valencia, Athens, and Norway predicts larger PV outputs.
For example, IPSL in Athens is 2.7% and 3.6% higher than MPI-RCP 4.5 and -RCP 8.5,
respectively. Different RCPs for the same GCM induce small changes in the PV output.
For example, in Munich, RCP 8.5 for MOHC is 0.03% lower than RCP 2.6. Regarding the
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projection of wind energy, all the GCMs showed an irregular change between NT, MT, and
LT (see Figure 4). For RCP 2.6, MOHC and MPI have a decreasing trend in seven cities,
while ICHEC shows a different trend. For example, in Gothenburg and Narvik, ICHEC
shows an increasing trend in the MT. For both PV and wind turbine outputs, the numbers
do not change considerably between the 30-year periods.
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3.3. Seasonal PV and Wind Energy Potential and Their Variations

This section assesses seasonal photovoltaic and wind energy potential, considering
summer (June to August) and winter (December to March). Figure 5a,b show PV output
results in the MT considering 13 climate scenarios, clearly showing that the summer
PV output is higher than that in winter. In summer, Athens has the highest PV output
(35 kWh/m2–38 kWh/m2), followed by Valencia (34 kWh/m2–35 kWh/m2). The PV
production in Antwerp, Munich Salzburg, and Narvik vary from 22 kWh/m2 to 29 kWh/m2.
Winter PV outputs show a similar pattern with smaller values. Seasonal wind turbine
output behaves contrary to PV production (see Figure 5c,d). For example, in winter, Narvik
produces almost three times more energy than in summer (146 kWh/m2–198 kWh/m2 in
winter and 32 kWh/m2–59 kWh/m2 in summer). Gothenburg, Antwerp, Munich, Salzburg,
and Valencia also show the same trend, having about 2.4 times higher wind energy in
winter compared to summer. The seasonal variations and complementarity characteristics
of wind and solar energy are interesting. For example, when Narvik has limited PV output
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in winter (6 kWh/m2–7 kWh/m2), the wind energy is about 10 times that of the PV output,
which has the best temporal complementarity.
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The seasonal relative differences of NT–MT and MT–LT for PV productions are shown
in Table 2 (summer) and for wind turbines in Table 3 (winter). The differences due to time
period (climate change), GCM, and RCP (climate uncertainties) are visible for both PV and
wind potential. For PV output, an evident decline was found across all time periods, but the
relative differences are minimal. For example, the relative difference between Gothenburg
NT–MT and MT–LT is between −0.1% and 0.86%. In general, the difference due to the time
period changes is much smaller than that induced by selecting climate scenarios (climate
uncertainty). For example, the maximum relative differences for NT–MT and MT–LT range
from −0.01% to −2.17% for the entire period. However, the differences between selection
climate scenarios are up to 12% (e.g., for Munich between MOHC-RCP 8.5 and MPI-RCP
8.5 in the MT in Figure 5).

For wind potential, the relative differences are much higher than those for PV. Due to
the climate uncertainties, there is no general trend for wind energy potential suggesting its
increase or decrease over time. For example, in winter (Figure 5d), the relative difference
between ICHEC-RCP 4.5 and IPSL-RCP 4.5 in Narvik is 45%, while the maximum relative
difference for the entire period is only 22% (Table 2). Differences between RCPs for the
same GCM also have a larger relative difference in wind turbine output.

Table 2. Relative difference of NT–MT and MT–LT of PV output for each climate scenario.

GCM Gothenburg Narvik Munich Antwerp Salzburg Valencia Athens

CNRM45 NT–MT −0.05% −0.09% −0.10% −0.86% −0.67% −0.48% −0.10%
CNRM45 MT–LT −0.50% −0.03% −0.57% −0.53% −0.35% −1.46% −0.73%
CNRM85 NT–MT −0.74% −0.55% −0.42% −1.69% −2.05% −0.95% −0.03%
CNRM85 MT–LT −1.12% −1.05% −1.65% −0.15% −1.97% −0.49% −0.77%
ICHEC26 NT–MT −0.71% −0.45% −0.49% −0.55% −1.87% −0.44% −0.20%
ICHEC26 MT–LT −0.20% −0.40% −1.32% −1.49% −0.23% −0.04% −0.25%
ICHEC45 NT–MT −1.10% −1.13% −0.74% −0.51% −1.61% −1.22% −0.23%
ICHEC45 MT–LT −1.52% −1.91% −1.47% −1.66% −0.70% −0.93% −0.14%
ICHEC85 NT–MT −1.23% −1.30% −0.88% −1.20% −0.97% −0.17% −0.12%
ICHEC85 MT–LT −0.07% −1.29% −1.80% −1.47% −1.78% −0.31% −0.17%
IPSL45 NT–MT −0.76% −0.85% −1.31% −0.47% −0.62% −0.02% −0.28%
IPSL45 MT–LT −0.40% −1.56% −0.88% −0.28% −0.59% −1.00% −0.45%
IPSL85 NT–MT −1.72% −0.47% −2.13% −0.08% −1.95% −0.23% −0.41%
IPSL85 MT–LT −1.19% −1.17% −2.17% −0.40% −0.85% −0.26% −0.93%

MOHC26 NT–MT −0.01% −1.09% −1.69% −1.70% −0.90% −0.29% −0.18%
MOHC26 MT–LT −1.07% −1.31% −1.50% −0.40% −0.31% −0.02% −0.03%
MOHC45 NT–MT −0.08% −0.95% −1.91% −1.83% −1.68% −0.24% −0.08%
MOHC45 MT–LT −0.34% −0.92% −0.92% −1.20% −1.66% −0.45% −0.47%
MOHC85 NT–MT −1.82% −1.03% −0.48% −0.59% −0.08% −0.37% −0.38%
MOHC85 MT–LT −0.05% −1.15% −1.81% −2.04% −2.00% −0.26% −0.76%

MPI26 NT–MT −0.49% −0.44% −1.97% −2.29% −1.36% −0.25% −0.29%
MPI26 MT–LT −2.43% −0.46% −1.33% −2.21% −1.16% −0.57% −0.01%
MPI45 NT–MT −0.57% −1.24% −0.86% −0.22% −0.92% −0.14% −0.19%
MPI45 MT–LT −0.47% −1.36% −1.41% −2.63% −1.01% −0.21% −0.11%
MPI85 NT–MT −1.85% −1.55% −1.48% −0.59% −0.43% −0.10% −0.16%
MPI85 MT–LT −0.28% −1.83% −1.73% −1.01% −1.54% −0.43% −0.51%



Energies 2022, 15, 302 12 of 19

Table 3. Relative difference of NT–MT and MT–LT of winter wind turbine output for each
climate scenario.

GCM Gothenburg Narvik Munich Antwerp Salzburg Valencia Athens

CNRM45 NT–MT −2.6% −3.0% 4.4% 1.3% −3.6% 10.6% 2.7%
CNRM45 MT–LT −6.6% −0.5% −5.8% −8.4% −1.6% 7.1% 1.7%
CNRM85 NT–MT 2.3% 3.8% −3.3% −3.6% −3.3% −4.1% 1.6%
CNRM85 MT–LT 1.0% 11.3% 1.6% −0.2% 4.7% 15.7% −4.8%
ICHEC26 NT–MT −12.1% −6.3% −1.0% −5.5% 7.9% −0.3% 5.4%
ICHEC26 MT–LT 11.1% 6.6% −3.7% 4.0% −2.5% −6.4% −4.6%
ICHEC45 NT–MT 4.8% 5.6% 4.5% 7.2% −3.2% −13.4% −9.7%
ICHEC45 MT–LT 11.0% 12.8% −3.7% −5.4% 4.6% 9.5% 12.4%
ICHEC85 NT–MT 0.1% −4.1% 5.6% 2.8% −4.1% 12.1% 2.1%
ICHEC85 MT–LT −0.2% 5.8% −2.0% 2.8% 13.5% −7.3% −0.5%
IPSL45 NT–MT 9.6% 2.8% −2.4% 4.0% 8.0% −10.7% 2.8%
IPSL45 MT–LT 4.3% 8.0% 10.5% 9.2% 8.4% 6.0% 2.8%
IPSL85 NT–MT −13.3% 4.6% −6.5% −5.5% 8.9% 1.1% 7.8%
IPSL85 MT–LT −4.8% 3.7% 0.0% −3.4% −1.6% −7.8% 1.0%

MOHC26 NT–MT 6.6% 13.2% 9.5% 8.6% 8.6% 7.1% −4.6%
MOHC26 MT–LT 7.2% 5.0% 0.1% 4.9% 6.4% −13.1% 2.9%
MOHC45 NT–MT −15.0% −7.4% 1.3% −7.4% −2.5% 22.3% 0.6%
MOHC45 MT–LT 19.8% 11.3% 4.1% 11.3% 6.0% −12.4% 1.2%
MOHC85 NT–MT 8.1% 20.4% 11.2% 10.8% 1.4% 15.4% −5.2%
MOHC85 MT–LT −1.1% −2.9% −5.5% −7.7% −4.1% 15.6% −2.0%

MPI26 NT–MT 4.6% −3.7% 7.1% 12.1% 6.0% −12.0% 10.3%
MPI26 MT–LT −6.8% 4.9% −4.1% −9.7% 0.0% 6.3% −4.5%
MPI45 NT–MT 3.3% 18.9% 9.8% 9.0% 3.3% −1.4% 1.4%
MPI45 MT–LT −9.9% −2.6% −11.6% −14.9% −8.1% 9.3% −2.8%
MPI85 NT–MT 12.1% 2.3% −9.8% −6.7% −4.5% −22.4% −10.5%
MPI85 MT–LT −12.5% 0.8% −6.4% −10.9% −0.2% 10.1% 8.3%

3.4. Spearman’s Correlation Analysis

To further explore the uncertainties in the projected PV and wind potential, Spearman’s
rank correlation was calculated between the hourly temperature and hourly PV or wind
turbine energy generation potential. As explained in Section 2, Spearman’s rank correlation
is calculated to check the agreement on the ranking results between two groups, in which
group 1 is the hourly temperature from the different climate scenarios and group 2 is the
hourly PV output or wind turbine output. In general, the result indicates that outdoor
temperature is positively correlated to PV output and negatively correlated to wind output.
From Figures 6–9, the correlation between outdoor temperature and relevant output varies
differently due to climate uncertainty. For example, the correlation between outdoor
temperature and wind output in Antwerp, Munich, and Salzburg for IPSL showed a strong
negative correlation in all periods and RCPs, with a correlation coefficient between −0.27
and 0.33. In contrast, the correlation in other climate scenarios did not reflect such a
strong negative correlation (around 0.2). A similar result also appears in Gothenburg; the
temperature and wind output show a near-zero correlation in all scenarios for MPI, while
the other scenarios project negative correlations. For the correlation coefficient between
outdoor temperature and PV output, which remains in the range of 0.23–0.4 for all the
cities, due to the uncertainty, some scenarios project a weak correlation; for example, IPSL
in Gothenburg projects less correlation (0.23–0.27) and CNRM RCP 8.5 and MPI RCP 2.6 in
Munich project a higher correlation compared with other scenarios.



Energies 2022, 15, 302 13 of 19
Energies 2022, 15, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 6. Spearman’s correlation between temperature and solar or wind output (Gothenburg and 
Narvik). 
Figure 6. Spearman’s correlation between temperature and solar or wind output (Gothenburg
and Narvik).



Energies 2022, 15, 302 14 of 19
Energies 2022, 15, x FOR PEER REVIEW 15 of 20 
 

 

 
Figure 7. Spearman’s correlation between temperature and solar or wind output (Antwerp and Mu-
nich). 
Figure 7. Spearman’s correlation between temperature and solar or wind output (Antwerp and Munich).



Energies 2022, 15, 302 15 of 19Energies 2022, 15, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 8. Spearman’s correlation between temperature and solar or wind output (Athens and Va-
lencia). 
Figure 8. Spearman’s correlation between temperature and solar or wind output (Athens and Valencia).



Energies 2022, 15, 302 16 of 19Energies 2022, 15, x FOR PEER REVIEW 17 of 20 
 

 

 
Figure 9. Spearman’s correlation between temperature and solar or wind output (Salzburg). 

4. Conclusions 
This work investigated the impacts of future climate uncertainties on projecting the 

renewable energy generation potential (solar PV and wind). This study showed how cli-
mate change can affect renewable energy generation in seven European countries distrib-
uted over five different European climate zones. In this regard, the potential changes in 
climate variables related to future photovoltaic (solar irradiance) and wind power gener-
ation (wind speed), based on CMIP5 climate change projections under the framework of 
the fifth IPCC assessment report, were quantified. The GCM data have been dynamically 
downscaled by RCA4, with hourly temporal resolution and 12.5km2 spatial resolution, 
allowing us to access both long-term and short-term variations in the climate. The solar 
radiation and wind speed projections over the period of 2010–2099 were used considering 
five GCMs forced by RCP 2.6, RCP 4.6, and RCP 8.5. 

The results showed that the overall future PV and wind potential do not change con-
siderably by climate change. In all climate scenarios, an overall decrease in PV potential 
is found, but the relative change is about 0.01%–2.71%. For wind turbine potential, the 
RCP 8.5 of Gothenburg, Antwerp, Munich, and Athens increased slightly by 0.6%–2.3%. 
The temporal complementarity that exists between solar and wind resources in the sea-
sonal scale does not change considerably by climate change. Spearman’s rank correlation 
indicates a positive correlation between outdoor temperature with PV output and a neg-
ative correlation with wind output. For the seasonal variations, the uncertainties associ-
ated with different climate scenarios considerably affect the renewable energy output. 
Based on the assessment, differences induced by climate evolution (i.e., when comparing 
different time periods) are smaller—varying around 0.01%–2.17% for PV output and 
around 22% for wind output—than those induced by climate uncertainties (i.e., when 
comparing different climate scenarios), reaching up to 23% for PV output and 45% for 
wind turbine output. The results of Spearman’s correlation analysis revealed strong cor-
relations between outdoor temperature and PV output for some scenarios (e.g., a strong 
positive correlation of 0.4–0.5 in Narvik) and wind turbine output generation (e.g., a 
strong negative correlation from −0.27 to −0.33 for IPSL in Antwerp, Munich, and Salz-
burg).  

The results indicated the importance of considering multiple climate scenarios and 
accounting for climate uncertainties when planning for future energy solutions. This can 
be very important when planning for the climate change adaptation of future cities. The 

Figure 9. Spearman’s correlation between temperature and solar or wind output (Salzburg).

4. Conclusions

This work investigated the impacts of future climate uncertainties on projecting the
renewable energy generation potential (solar PV and wind). This study showed how climate
change can affect renewable energy generation in seven European countries distributed
over five different European climate zones. In this regard, the potential changes in climate
variables related to future photovoltaic (solar irradiance) and wind power generation (wind
speed), based on CMIP5 climate change projections under the framework of the fifth IPCC
assessment report, were quantified. The GCM data have been dynamically downscaled
by RCA4, with hourly temporal resolution and 12.5km2 spatial resolution, allowing us to
access both long-term and short-term variations in the climate. The solar radiation and
wind speed projections over the period of 2010–2099 were used considering five GCMs
forced by RCP 2.6, RCP 4.6, and RCP 8.5.

The results showed that the overall future PV and wind potential do not change
considerably by climate change. In all climate scenarios, an overall decrease in PV potential
is found, but the relative change is about 0.01–2.71%. For wind turbine potential, the RCP
8.5 of Gothenburg, Antwerp, Munich, and Athens increased slightly by 0.6–2.3%. The
temporal complementarity that exists between solar and wind resources in the seasonal
scale does not change considerably by climate change. Spearman’s rank correlation indi-
cates a positive correlation between outdoor temperature with PV output and a negative
correlation with wind output. For the seasonal variations, the uncertainties associated
with different climate scenarios considerably affect the renewable energy output. Based on
the assessment, differences induced by climate evolution (i.e., when comparing different
time periods) are smaller—varying around 0.01–2.17% for PV output and around 22% for
wind output—than those induced by climate uncertainties (i.e., when comparing different
climate scenarios), reaching up to 23% for PV output and 45% for wind turbine output. The
results of Spearman’s correlation analysis revealed strong correlations between outdoor
temperature and PV output for some scenarios (e.g., a strong positive correlation of 0.4–0.5
in Narvik) and wind turbine output generation (e.g., a strong negative correlation from
−0.27 to −0.33 for IPSL in Antwerp, Munich, and Salzburg).

The results indicated the importance of considering multiple climate scenarios and
accounting for climate uncertainties when planning for future energy solutions. This can
be very important when planning for the climate change adaptation of future cities. The
proposed methodology to account for climate uncertainties and short-/long-term variations
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can be applied to other regions. The developed projection database has the potential to
be adopted as a reliable source to support the expansion of energy systems that rely on
renewable energy or countries that plan to expand their renewable energy networks.
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