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the term proportional to ln u/u2, whose coefficients are determined solely in terms of the
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1 Introduction and summary

Let us consider a general classical scattering process in which a set of m objects carrying
four momenta p′1, · · · , p′m in the asymptotic past come together, interact and then disperse
as a set of n objects carrying four momenta p1, · · · pn. We shall choose the origin of our
space-time coordinate system close to the region where the particles interact and consider
a gravitational wave detector far away from the scattering region, whose space-time coor-
dinates will be denoted by (t, ~x). Our object of interest will be the gravitational wave-form
at the detector:

hµν(t, ~x) = 1
2(gµν − ηµν) , (1.1)

but we shall find it convenient to state the result in terms of a slightly different quantity
that carries the same information:

eµν ≡ hµν −
1
2ηµνh

ρ
ρ ⇔ hµν ≡ eµν −

1
2ηµνe

ρ
ρ . (1.2)

All indices are raised and lowered by the flat metric ηρσ. We also define

R ≡ |~x|, n̂ = ~x

R
, n = (1, n̂) , (1.3)

and the retarded time at the detector:

u = t− t0, t0 = R

c
+ correction , (1.4)

where t0 is taken to be the time around which the peak of the gravitational wave-form
reaches the detector. The ‘correction’ proportional to lnR represents the effect of the time
delay due to gravitational drag on the gravitational waves due to the objects involved in
the scattering. We denote by G and c respectively the Newton’s gravitational constant and
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the speed of light in flat space-time. We also use mostly + signature metric and compute
the inner products with flat metric unless mentioned otherwise. Since we are displaying
explicit factors of c, the zeroth component of the momentum will be given by the energy
divided by c. In this convention, results based on soft theorem determine the form of eµν
at the detector, up to gauge transformation, at late and early retarded time [1–4]:

eµν = Aµν + 1
u
Bµν + u−2 ln |u|Fµν +O(u−2) +O(R−2), for large positive u,

= 1
u
Cµν + u−2 ln |u|Gµν +O(u−2) +O(R−2), for large negative u, (1.5)

where,

Aµν = 2G
Rc3

[
−

n∑
i=1

pµi p
ν
i

1
n.pi

+
m∑
i=1

p′µi p
′ν
i

1
n.p′i

]
, (1.6)

Bµν = − 4G2

Rc7

[
n∑
i=1

n∑
j=1
j 6=i

pi.pj
{(pi.pj)2 − p2

i p
2
j}3/2

{3
2p

2
i p

2
j − (pi.pj)2

}
pµi
n.pi

(n.pj pνi − n.pi pνj )

−
{

n∑
j=1

pj .n
n∑
i=1

1
pi.n

pµi p
ν
i −

m∑
j=1

p′j .n
m∑
i=1

1
p′i.n

p′µi p
′ν
i

}]
, (1.7)

Cµν = 4G2

Rc7

[
m∑
i=1

m∑
j=1
j 6=i

p′i.p
′
j

{(p′i.p′j)2 − p′2i p′2j }3/2

{3
2p
′2
i p
′2
j − (p′i.p′j)2

}
p′µi
n.p′i

(n.p′j p′νi − n.p′i p′νj )
]
,

Fµν = 2G3

Rc11

[
4

n∑
j=1

pj .n
n∑
`=1

p`.n
n∑
i=1

pµi p
ν
i

pi.n
− 4

m∑
j=1

p′j .n
m∑
`=1

p′`.n
m∑
i=1

p′µi p
′ν
i

p′i.n

+4
n∑
`=1

p`.n
n∑
i=1

n∑
j=1
j 6=i

1
pi.n

× pi.pj
{(pi.pj)2−p2

i p
2
j}3/2 {2(pi.pj)2−3p2

i p
2
j}{n.pj p

µ
i p

ν
i −n.pi p

µ
i p

ν
j }

+2
m∑
`=1

p′`.n
m∑
i=1

m∑
j=1
j 6=i

1
p′i.n

×
p′i.p

′
j

{(p′i.p′j)2 − p′2i p′2j }3/2 {2(p′i.p′j)2 − 3p′2i p′2j }{n.p′j p
′µ
i p
′ν
i − n.p′i p

′µ
i p
′ν
j }

+
n∑
i=1

n∑
j=1
j 6=i

n∑
`=1
` 6=i

1
pi.n

pi.pj
{(pi.pj)2 − p2

i p
2
j}3/2 {2(pi.pj)2 − 3p2

i p
2
j} (1.8)

× pi.p`
{(pi.p`)2−p2

i p
2
`}3/2 {2(pi.p`)2−3p2

i p
2
`}{n.pj p

µ
i −n.pi p

µ
j } {n.p` p

ν
i − n.pi pν` }

]
,

and

Gµν = − 2G3

Rc11

[
2

m∑
`=1

p′`.n
m∑
i=1

m∑
j=1
j 6=i

1
p′i.n

×
p′i.p

′
j

{(p′i.p′j)2 − p′2i p′2j }3/2 {2(p′i.p′j)2 − 3p′2i p′2j }{n.p′j p
′µ
i p
′ν
i − n.p′i p

′µ
i p
′ν
j }
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−
m∑
i=1

m∑
j=1
j 6=i

m∑
`=1
` 6=i

1
p′i.n

p′i.p
′
j

{(p′i.p′j)2 − p′2i p′2j }3/2 {2(p′i.p′j)2 − 3p′2i p′2j }
p′i.p

′
`

{(p′i.p′`)2 − p′2i p′2` }3/2

×{2(p′i.p′`)2 − 3p′2i p′2` }{n.p′j p
′µ
i − n.p

′
i p
′µ
j } {n.p

′
` p
′ν
i − n.p′i p′ν` }

]
. (1.9)

Note that the coefficients Aµν , Bµν , Cµν , Fµν and Gµν are given only by the momenta of
the incoming and the outgoing objects and do not depend on the details of the scattering
process. One can also check that each of these coefficients is gauge invariant, i.e. vanishes
upon contraction with the four vector n.

In the above formulæ, Aµν represents a permanent change in metric due to the pas-
sage of the gravitational wave, and is known as the memory effect [5–14]. Its connection
to the leading soft graviton theorem has been discussed in [15]. The coefficients Bµν and
Cµν , representing long range tail of the gravitational wave-form, are related to the loga-
rithmic correction to the subleading soft graviton theorem [3]. The coefficients Fµν and
Gµν are related to the leading logarithmic correction to the subsubleading soft graviton
theorem [3, 4].

If a significant fraction of energy is carried away by radiation, then the sum over the
final state momenta in the expressions for Aµν , Bµν and Fµν should include integration
over outgoing flux of radiation, regarded as a flux of massless particles. Cµν and Gµν are
given in terms of incoming momenta only and are not sensitive to the momenta of outgoing
particles or radiation.

The contribution to Aµν due to the final state gravitational waves is some time referred
to as non-linear memory [9] or null memory [14]. This makes the computation of Aµν
somewhat hard since we need to first find the angular distribution of the flux of energy
carried away by the gravitational waves. A priori, computation of Bµν and Fµν suffers from
the same difficulty. However it was found in [2] that due to some miraculous cancellations,
the contribution to Bµν due to final state massless particles, including gravitational waves,
can be expressed in terms of the momenta of massive objects only. If we denote by p̃i
the momenta carried by the final state massive objects only and by ñ the number of such
objects, then the modified formula takes the form:

Bµν = −4G2

Rc7

[
ñ∑
i=1

ñ∑
j=1
j 6=i

p̃i.p̃j
{(p̃i.p̃j)2 − p̃2

i p̃
2
j}3/2

{3
2 p̃

2
i p̃

2
j − (p̃i.p̃j)2

}
p̃µi
n.p̃i

(n.p̃j p̃νi − n.p̃i p̃νj )

−
{

ñ∑
j=1

p̃j .n
ñ∑
i=1

1
p̃i.n

p̃µi p̃
ν
i −

m∑
j=1

p′j .n
m∑
i=1

1
p′i.n

p′µi p
′ν
i

}
+ P̃µP̃ ν − P ′µP ′ν

]
, (1.10)

where

P ′ =
m∑
i=1

p′i, P̃ =
ñ∑
i=1

p̃i . (1.11)

We emphasize that (1.10) is not an independent formulæ but follows from (1.7) after setting
p2
i = 0 for the massless final state particles.
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In this paper we shall show that a similar rewriting is possible for the quantity Fµν as
well. In particular, the expression for Fµν can be manipulated into the form:

Fµν = 2G3

Rc11

[
4

ñ∑
j=1

p̃j .n
ñ∑
`=1

p̃`.n
ñ∑
i=1

p̃µi p̃
ν
i

p̃i.n
− 4

m∑
j=1

p′j .n
m∑
`=1

p′`.n
m∑
i=1

p′µi p
′ν
i

p′i.n

+4
ñ∑
`=1

p̃`.n
ñ∑
i=1

ñ∑
j=1
j 6=i

1
p̃i.n

× p̃i.p̃j
{(p̃i.p̃j)2 − p̃2

i p̃
2
j}3/2 {2(p̃i.p̃j)2 − 3p̃2

i p̃
2
j}{n.p̃j p̃

µ
i p̃

ν
i − n.p̃i p̃

µ
i p̃

ν
j }

+2
m∑
`=1

p′`.n
m∑
i=1

m∑
j=1
j 6=i

1
p′i.n

×
p′i.p

′
j

{(p′i.p′j)2 − p′2i p′2j }3/2 {2(p′i.p′j)2 − 3p′2i p′2j }{n.p′j p
′µ
i p
′ν
i − n.p′i p

′µ
i p
′ν
j }

+
ñ∑
i=1

ñ∑
j=1
j 6=i

ñ∑
`=1
` 6=i

1
p̃i.n

p̃i.p̃j
{(p̃i.p̃j)2 − p̃2

i p̃
2
j}3/2 {2(p̃i.p̃j)2 − 3p̃2

i p̃
2
j}

p̃i.p̃`
{(p̃i.p̃`)2 − p̃2

i p̃
2
`}3/2

×{2(p̃i.p̃`)2 − 3p̃2
i p̃

2
`}{n.p̃j p̃

µ
i − n.p̃i p̃

µ
j } {n.p̃` p̃

ν
i − n.p̃i p̃ν` }

+4n.P ′P ′µP ′ν − 4n.P̃ P̃µP̃ ν
]
. (1.12)

This corresponds to restricting the sum over final state particles in (1.8) to over massive
particles only, and adding the compensating term given in the last line of (1.12).

It follows from (1.10) and (1.12) that if the final state contains only massless particles,
then Bµν and Fµν will depend on only the momenta of the objects in the initial state.
In fact it can also be seen with little effort that if the final state contains one massive
object and arbitrary number of massless objects, then Bµν and Fµν still depend only on
the momenta of the objects in the initial state. In particular the terms proportional to
P̃µP̃ ν in these expressions exactly cancel the terms involving p̃i.

Finally we would like to mention that if some of the initial and /or final state particles
are charged then we also need to take into account the effect of long range electromagnetic
interaction among these particles. These effects have been studied in [2–4]. Following the
same procedure that will be described in section 2 and section 3, it is easy to show that
even in the presence of charged particles in the initial and the final states, the late time
gravitational wave-form at future null infinity continues to be independent of the individual
momenta of the final state massless particles. This has been demonstrated in appendix A.

In section 4 and 5 we apply our results to analyze gravitational radiation emitted
during scattering of massless particles and compare the results with those in [16–18].

2 Review of the analysis of the subleading term

In this section we shall briefly review the analysis of the subleading term leading to (1.10).
For this we divide the set of final momenta {pi} into the massive particle momenta p̃i and
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the massless particle momenta {p̂i}. We now use the fact that if either pi or pj represents
a massless particle, then we have:

pi.pj
{(pi.pj)2 − p2

i p
2
j}3/2

{3
2p

2
i p

2
j − (pi.pj)2

}
= 1 . (2.1)

Therefore the first term in the expression for Bµν given in (1.7) may be written as:
n∑
i=1

n∑
j=1
j 6=i

pi.pj
{(pi.pj)2 − p2

i p
2
j}3/2

{3
2p

2
i p

2
j − (pi.pj)2

}
pµi
n.pi

(n.pj pνi − n.pi pνj )

=
ñ∑
i=1

ñ∑
j=1
j 6=i

p̃i.p̃j
{(p̃i.p̃j)2 − p̃2

i p̃
2
j}3/2

{3
2 p̃

2
i p̃

2
j − (p̃i.p̃j)2

}
p̃µi
n.p̃i

(n.p̃j p̃νi − n.p̃i p̃νj )

+
∑
i

∑
j

p̃µi
n.p̃i

(n.p̂j p̃νi − n.p̃i p̂νj ) +
∑
i

∑
j

p̂µi
n.p̂i

(n.p̃j p̂νi − n.p̂i p̃νj )

+
∑
i

∑
j

p̂µi
n.p̂i

(n.p̂j p̂νi − n.p̂i p̂νj ) . (2.2)

We can now use the result of momentum conservation:∑
j

p̃νj +
∑
j

p̂νj = P ′ν , P ′ ≡
∑
i

p′i , (2.3)

to express (2.2) as,
n∑
i=1

n∑
j=1
j 6=i

pi.pj
{(pi.pj)2 − p2

i p
2
j}3/2

{3
2p

2
i p

2
j − (pi.pj)2

}
pµi
n.pi

(n.pj pνi − n.pi pνj )

=
ñ∑
i=1

ñ∑
j=1
j 6=i

p̃i.p̃j
{(p̃i.p̃j)2 − p̃2

i p̃
2
j}3/2

{3
2 p̃

2
i p̃

2
j − (p̃i.p̃j)2

}
p̃µi
n.p̃i

(n.p̃j p̃νi − n.p̃i p̃νj )

+
∑
i

p̃µi p̃
ν
i

n.p̃i
n.(P ′ − P̃ ) +

∑
i

p̂µi p̂
ν
i

n.p̂i
n.P ′ + P̃µP̃ ν − P ′µP ′ν . (2.4)

We also have

−
n∑
j=1

pj .n
n∑
i=1

1
pi.n

pµi p
ν
i = −n.P ′

n∑
i=1

1
p̃i.n

p̃µi p̃
ν
i − n.P ′

∑
i

1
p̂i.n

p̂µi p̂
ν
i . (2.5)

Substituting (2.4) and (2.5) into (1.7), we get,

Bµν = − 4G2

Rc7

[
ñ∑
i=1

ñ∑
j=1
j 6=i

p̃i.p̃j
{(p̃i.p̃j)2 − p̃2

i p̃
2
j}3/2

{3
2 p̃

2
i p̃

2
j − (p̃i.p̃j)2

}
p̃µi
n.p̃i

(n.p̃j p̃νi − n.p̃i p̃νj )

−
{

ñ∑
j=1

p̃j .n
ñ∑
i=1

1
p̃i.n

p̃µi p̃
ν
i −

m∑
j=1

p′j .n
m∑
i=1

1
p′i.n

p′µi p
′ν
i

}
+ P̃µP̃ ν − P ′µP ′ν

]
. (2.6)

This reproduces (1.10).
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3 Analysis of the subsubleading term

We shall now rewrite the expression (1.8) for Fµν by dividing the sum over final state
momenta into the contribution from massless and massive particle momenta, denoted by
p̂i and p̃i respectively. Fµν(n) will denote contribution from terms where in each term, we
have n factors of p̂i. Therefore we have:

Fµν(0) = 2G3

Rc11

[
4

ñ∑
j=1

p̃j .n
ñ∑
`=1

p̃`.n
ñ∑
i=1

p̃µi p̃
ν
i

p̃i.n
− 4

m∑
j=1

p′j .n
m∑
`=1

p′`.n
m∑
i=1

p′µi p
′ν
i

p′i.n

+4
ñ∑
`=1

p̃`.n
ñ∑
i=1

ñ∑
j=1
j 6=i

1
p̃i.n

× p̃i.p̃j
{(p̃i.p̃j)2 − p̃2

i p̃
2
j}3/2 {2(p̃i.p̃j)2 − 3p̃2

i p̃
2
j}{n.p̃j p̃

µ
i p̃

ν
i − n.p̃i p̃

µ
i p̃

ν
j }

+2
m∑
`=1

p′`.n
m∑
i=1

m∑
j=1
j 6=i

1
p′i.n

×
p′i.p

′
j

{(p′i.p′j)2 − p′2i p′2j }3/2 {2(p′i.p′j)2 − 3p′2i p′2j }{n.p′j p
′µ
i p
′ν
i − n.p′i p

′µ
i p
′ν
j }

+
ñ∑
i=1

ñ∑
j=1
j 6=i

ñ∑
`=1
` 6=i

1
p̃i.n

p̃i.p̃j
{(p̃i.p̃j)2 − p̃2

i p̃
2
j}3/2 {2(p̃i.p̃j)2 − 3p̃2

i p̃
2
j}

p̃i.p̃`
{(p̃i.p̃`)2 − p̃2

i p̃
2
`}3/2

×{2(p̃i.p̃`)2 − 3p̃2
i p̃

2
`}{n.p̃j p̃

µ
i − n.p̃i p̃

µ
j } {n.p̃` p̃

ν
i − n.p̃i p̃ν` }

]
. (3.1)

In writing down the expressions for Fµν(n) for n ≥ 1, we shall try to simplify the sum over
final state momenta using the relations:∑

j

p̃µj = P̃µ,
∑
j

p̂µj = (P ′ − P̃ )µ . (3.2)

Another simplification follows from the observation that the expression {n.pj pµi pνi −
n.pi p

µ
i p

ν
j } vanishes for j = i. Therefore unless the factor multiplying it diverges for

j = i, we can include in the sum over j the term j = i even if the original sum excludes
this. This trick can often be used to make the sum over i and j into independent sums as
long as either i or j represents a massless particle, since in this case we can first use (2.1)
to replace the apparently divergent factor at j = i by a finite term, and then include the
contribution from the j = i term in the sum. This gives:

Fµν(1) = 2G3

Rc11

[
8n.(P ′ − P̃ )n.P̃

ñ∑
i=1

p̃µi p̃
ν
i

p̃i.n
+ 4n.P̃ n.P̃

∑
i

p̂µi p̂
ν
i

p̂i.n

+ 4n.(P ′ − P̃ )
∑
i

∑
j 6=i

1
p̃i.n

× p̃i.p̃j
{(p̃i.p̃j)2 − p̃2

i p̃
2
j}3/2 {2(p̃i.p̃j)2 − 3p̃2

i p̃
2
j}{n.p̃j p̃

µ
i p̃

ν
i − n.p̃i p̃

µ
i p̃

ν
j }
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− 8n.P̃
∑
i

1
p̃i.n
{n.(P ′ − P̃ ) p̃µi p̃

ν
i − n.p̃i p̃

(µ
i (P ′ − P̃ )ν)}

−8n.P̃
∑
i

1
p̂i.n
{n.P̃ p̂µi p̂

ν
i − n.p̂i p̂

(µ
i P̃ ν)} non (3.3)

+ 4
∑
i

1
p̂i.n
{n.P̃ p̂µi − n.p̂i P̃

µ} {n.P̃ p̂νi − n.p̂i P̃ ν}

− 4
∑
i

∑
j 6=i

1
p̃i.n

p̃i.p̃j
{(p̃i.p̃j)2 − p̃2

i p̃
2
j}3/2 {2(p̃i.p̃j)2 − 3p̃2

i p̃
2
j}

×
{
n.p̃j n.(P ′ − P̃ ) p̃µi p̃

ν
i − n.p̃i n.(P ′ − P̃ ) p̃µj p̃

ν
i − n.p̃j n.p̃i p̃

(µ
i (P ′ − P̃ )ν)

+(n.p̃i)2p̃
(µ
j (P ′ − P̃ )ν)

}]
. (3.4)

This can be simplified to:

Fµν(1) = 2G3

Rc11

[
4n.P̃ (P ′ − P̃ )µ P̃ ν + 4n.P̃ (P ′ − P̃ )ν P̃µ + 4n.(P ′ − P̃ ) P̃µP̃ ν

− 4
∑
i

∑
j 6=i

p̃i.p̃j
{(p̃i.p̃j)2 − p̃2

i p̃
2
j}3/2 {2(p̃i.p̃j)2 − 3p̃2

i p̃
2
j}

×
{
− n.p̃j p̃(µ

i (P ′ − P̃ )ν) + n.p̃ip̃
(µ
j (P ′ − P̃ )ν)

}]
. (3.5)

We now note that the last line is anti-symmetric under the exchange of i and j while the
second line is symmetric under this exchange. Therefore this term vanishes after summing
over i and j, and we get:

Fµν(1) = 2G3

Rc11

[
4n.P̃ (P ′ − P̃ )µ P̃ ν + 4n.P̃ (P ′ − P̃ )ν P̃µ + 4n.(P ′ − P̃ ) P̃µP̃ ν

]
. (3.6)

We also have,

Fµν(2) = 2G3

Rc11

[
4n.(P ′ − P̃ )n.(P ′ − P̃ )

ñ∑
i=1

p̃µi p̃
ν
i

p̃i.n
+ 8n.(P ′ − P̃ )n.P̃

∑
i

p̂µi p̂
ν
i

p̂i.n

−8n.(P ′ − P̃ )
∑
i

1
p̂i.n
{n.P̃ p̂µi p̂

ν
i − n.p̂i p̂

µ
i P̃

ν}

−8n.(P ′ − P̃ )
∑
i

1
p̃i.n

{
n.(P ′ − P̃ ) p̃µi p̃

ν
i − n.p̃i p̃

µ
i (P ′ − P̃ )ν

}
−8n.P̃

∑
i

1
p̂i.n

{
n.(P ′ − P̃ ) p̂µi p̂

ν
i − n.p̂i p̂

µ
i (P ′ − P̃ )ν

}
+4

∑
i

1
p̃i.n

{
n.(P ′ − P̃ )n.(P ′ − P̃ ) p̃µi p̃

ν
i − n.p̃i n.(P ′ − P̃ ) (P ′ − P̃ )µ p̃νi

−n.(P ′ − P̃ )n.p̃i p̃µi (P ′ − P̃ )ν + (n.p̃i)2(P ′ − P̃ )µ (P ′ − P̃ )ν
}

+ 8
∑
i

1
p̂i.n
{n.(P ′ − P̃ ) p̂(µ

i − n.p̂i (P ′ − P̃ )(µ} {n.P̃ p̂ν)
i − n.p̂i P̃

ν)}
]
. (3.7)
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This can be simplified to:

Fµν(2) = 2G3

Rc11

[
8n.(P ′ − P̃ ) (P ′ − P̃ )(µ P̃ ν) + 4n.P̃ (P ′ − P̃ )µ (P ′ − P̃ )ν

]
. (3.8)

Finally we have,

Fµν(3) = 2G3

Rc11

[
4n.(P ′ − P̃ )n.(P ′ − P̃ )

∑
i

p̂µi p̂
ν
i

p̂i.n

−8n.(P ′ − P̃ )
∑
i

1
p̂i.n
{n.(P ′ − P̃ ) p̂µi p̂

ν
i − n.p̂i p̂

µ
i (P ′ − P̃ )ν} (3.9)

+ 4
∑
i

1
p̂i.n
{n.(P ′ − P̃ ) p̂µi − n.p̂i (P ′ − P̃ )µ}{n.(P ′ − P̃ ) p̂νi − n.p̂i (P ′ − P̃ )ν}

]
.

This can be simplified to:

Fµν(3) = 2G3

Rc11

[
4n.(P ′ − P̃ )(P ′ − P̃ )µ(P ′ − P̃ )ν

]
. (3.10)

Using (3.6), (3.8) and (3.10), we get,

Fµν(1) + Fµν(2) + Fµν(3) = 8G3

Rc11

[
n.P ′ P ′µ P ′ν − n.P̃ P̃µP̃ ν

]
. (3.11)

Adding this to (3.1) we get (1.12).

4 Example involving scattering of massless particles

In this section we shall compare our results to that of [16, 17] on the emission of soft gravi-
tational radiation during the scattering of a pair of massless particles. For this comparison
we shall set c = 1 since the results of [17] were given in that convention.1 Let ẽµν(ω, ~x) be
the time Fourier transform of eµν(t, ~x):

ẽµν(ω, ~x) =
∫
du eiωu eµν(t, ~x), u = t− t0 . (4.1)

Then ẽµν(ω, ~x) has a small ω expansion of the form [3]:

ẽµν(ω, ~x) = i Aµν ω
−1 − (Bµν − Cµν) lnω + i

2(Fµν −Gµν)ω(lnω)2 + · · · ., , (4.2)

where Aµν , Bµν , Cµν , Fµν and Gµν are the same coefficients that appeared in the large
|u| expansion of eµν . The iε prescription inside lnω captures separate information on Bµν
and Cµν and also on Fµν and Gµν [3], but at present we shall proceed ignoring the iε
prescription.

1A similar result was found in [18] where part of the contribution associated to the Coulomb phase of
the soft radiation (e.g. the terms in the second line of (1.7)) was not included.
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When all the incoming and outgoing particles are massless, we get
from (1.8), (1.9), (1.10) and (1.12),

Bµν = −Cµν = −4G2

R

[
n.P ′

∑
i

p′µi p
′ν
i

n.p′i
− P ′µP ′ν

]
, (4.3)

and
Fµν = −Gµν = −16G3

R
n.P ′

[
n.P ′

∑
i

p′µi p
′ν
i

n.p′i
− P ′µP ′ν

]
. (4.4)

We also have, from (1.6),

Aµν = 2G
R

[
−

n∑
i=1

pµi p
ν
i

1
n.pi

+
m∑
i=1

p′µi p
′ν
i

1
n.p′i

]
. (4.5)

We now apply these results to the specific case of scattering of two massless particles
into two massless particles and soft gravitational radiation. Following [17], we label the
momenta of the incoming and outgoing hard particles as:

p′1 = E(1, 0, 0, 1), p′2 = E(1, 0, 0,−1),

p1 = E(1, sin Θs cosφ, sin Θs sinφ, cos Θs),

p2 = E(1,− sin Θs cosφ,− sin Θs sinφ,− cos Θs) . (4.6)

On the other hand, the direction of emission of the soft gravitational rediation, encoded in
the four vector n = (1, n̂), takes the form:

n = (1, sin θ, 0, cos θ) . (4.7)

Our choice of frame is rotated by an angle φ about the z-axis relative to the frame used
in [17], so that the direction of propagation of the soft gravitational wave, and not the
momenta of the outgoing hard particles, lies in the x-z plane. We now define

ê+ = (0, cos θ, i,− sin θ), ê− = (0, cos θ,−i,− sin θ) , (4.8)

so that,
ε+µν = 1

2 ê
+
µ ê

+
ν , ε−µν = 1

2 ê
−
µ ê
−
ν , (4.9)

denote left and right circular polarizations of soft gravitational waves traveling along n.
Using (4.2) we now get,

ε±µν ẽ
µν(ω, ~x) = ε±µν

[
i Aµν ω−1 − (Bµν − Cµν) lnω + i

2(Fµν −Gµν)ω(lnω)2 + · · ·
]
.

(4.10)
Since [17] gives the result for small θ and Θs, we shall also make this approximation.
However, in section 5 we have given the results for finite θ and Θs. Now, for small θ,Θs,

ê±.p′1 = −E sin θ ' −E θ,
ê±.p′2 = E sin θ ' E θ,

– 9 –



J
H
E
P
0
1
(
2
0
2
2
)
0
7
7

ê±.p1 = E (sin Θs cos θ cosφ− cos Θs sin θ ± i sin Θs sinφ)
' E(Θs cosφ− θ ± iΘs sinφ) ,

ê±.p2 = −E (sin Θs cos θ cosφ− cos Θs sin θ ± i sin Θs sinφ)
' −E(Θs cosφ− θ ± iΘs sinφ) ,

n.p′1 = −E (1− cos θ) ' −E θ2/2,
n.p′2 = −E (1 + cos θ) ' −2E
n.p1 = −E (1− sin Θs sin θ cosφ− cos Θs cos θ) ' −E (Θ2

s + θ2 − 2 Θsθ cosφ)/2
n.p2 = −E (1 + sin Θs sin θ cosφ+ cos Θs cos θ) ' −2E . (4.11)

It follows from these equations that ε±µνp
µ
i p

ν
i and ε±µνp

′µ
i p
′ν
i are quadratic in the small pa-

rameters Θs and θ. Therefore only terms with n.p1 or n.p′1 in the denominator will survive
in this limit. This gives:

ε±µνA
µν = G

R

[
− ê
±.p1 ê

±.p1
n.p1

+ ê±.p′1 ê
±.p′1

n.p′1

]

= 2GE
R

[
(Θs cosφ− θ ± iΘs sinφ)2

(Θ2
s + θ2 − 2 Θsθ cosφ) − 1

]
, (4.12)

ε±µν(Bµν − Cµν) = −4G2

R
n.P ′

ê±.p′1 ê
±.p′1

n.p′1
= −16G2E2

R
, (4.13)

and
ε±µν(Fµν −Gµν) = −16G3

R
(n.P ′)2 ê

±.p′1 ê
±.p′1

n.p′1
= 128G3E3

R
. (4.14)

Following [17], we introduce the variable ψ via:

sinψ = Θs sinφ
(Θ2

s + θ2 − 2 Θsθ cosφ)1/2 , cosψ = Θs cosφ− θ
(Θ2

s + θ2 − 2 Θsθ cosφ)1/2 , (4.15)

so that (4.12) may be expressed as:

ε±µνA
µν = 2GE

R

[
e±2 i ψ − 1

]
. (4.16)

Substituting (4.13), (4.14) and (4.16) into (4.10), we get,

ε±µν ẽ
µν = i

2GE
R

ω−1
[
e±2iψ − 1− i 8GE ω lnω + 32G2E2 ω2 (lnω)2

]
. (4.17)

Up to an overall normalization this agrees with the small ω expansion of eq. (6.20) of [17]
after identifying the variable R of [17], describing the Schwarzschild radius of the system,
with 4GE. We shall now verify that the overall normalization also agrees.

To check the overall normalization, we compute the energy flux associated with (4.17)
at the leading order in ω. This can be done using the formula for the angular distribution
of the energy flux with a given polarization. In the 8πG = 1 unit the flux is given by (see
e.g. [19]):

dE±
dωdΩ = ω2

π
R2 |ε±µν ẽµν |2 = E2

16π3

∣∣∣e±2iψ − 1
∣∣∣2 . (4.18)
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On the other hand, the same flux computed in [17] at the leading order in ω is given by
(see eq. (6.13)):

4GE2

8π2

∣∣∣e±2iψ − 1
∣∣∣2 = E2

16π3

∣∣∣e±2iψ − 1
∣∣∣2 . (4.19)

Comparing (4.18) and (4.19) we see that the overall normalizations also match.
Even though we have derived the various formulæ in the limit of small Θs and θ for

comparison with the results of [17], it follows from our general result that even for general
values of Θs and θ, our expressions for Bµν = −Cµν and Fµν = −Gµν remain the same
as those given in (4.13) and (4.14). What is perhaps more striking is that even if the
incoming states have a small enough impact parameter so that they form a black hole,
possibly accompanied by hard radiation, the expressions for Bµν and Fµν do not change.
This follows from the discussion in the last paragraph of section 1 since we have only one
massive object in the final state.

Before concluding this section, we would like to discuss another aspect of the results
given in [17]. [17] used the wave-form (4.17) to compute the total flux of soft radiation
to subsubleading order. However on dimensional grounds, the lnω in (4.17) should be
regarded as ln(ωa) where a is some scale of the order of the size of the scattering region,
giving non universal contribution of order ω ln a. Therefore there could be terms of order
ω inside the square bracket that have not been computed. This would give an additional
contribution at the subleading order, spoiling the subsubleading results of [17]. It is easy
to see that an imaginary term of order ω inside the square bracket in (4.17) will not
contribute to the energy flux at the subleading order after summing over polarizations of
the gravitational radiation. On the other hand a real term proportional to ω will violate
the reality condition ẽµν(ω)∗ = ẽµν(−ω) that is required for the reality of the gravitational
field. However there could be a contribution proportional to ω{H(ω)−H(−ω)} inside the
square bracket, with H denoting the Heaviside function, that satisfies the reality condition.
If present, such a term would give subleading contribution to the energy flux, spoiling the
result of [17].

We shall now show that such a term is absent, but for this we need to carefully keep
track of the iε prescription in the argument of the logarithms in (4.2). It follows from the
analysis of [3], that at the subleading order, the time Fourier transform of the wave-form,
including the iε prescription, is given by:

− 1
2 {Bµν ln(ω + iε)− Cµν ln(ω − iε) +Bµν ln(−ω − iε)− Cµν ln(−ω + iε))} . (4.20)

Using (4.3) this can be written as:

1
2Cµν{ln(ω + iε) + ln(ω − iε) + ln(−ω − iε) + ln(−ω + iε)} = 2Cµν ln |ω| . (4.21)

Therefore at the subleading order we do not have terms proportional to H(ω) − H(−ω).
Note that this is a consequence of the relation Bµν = −Cµν and seems to be present when
all the incoming and outgoing particles are massless. From this it follows that (4.17) can
be used to compute the total flux of energy carried by the gravitational radiation to order
ω2(lnω)2, reproducing the result of [17].
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5 Energy flux from massless particle scattering

In section 4 we compared our results for radiation during scattering of massless particles
at small angle with those of [17]. In this section we shall compute the energy flux of low
frequency gravitational radiation produced during such a scattering without making the
small angle approximation.

Using (4.3)–(4.5) and (4.11) without making the small θ,Θs approximation, we get

ε±µνA
µν = 2GE

R

[
e±2 i ψ − 1

]
,

sinψ = sin Θs sinφ
{1− (sin Θs sin θ cosφ+ cos Θs cos θ)2}1/2 ,

cosψ = sin Θs cos θ cosφ− cos Θs sin θ
{1− (sin Θs sin θ cosφ+ cos Θs cos θ)2}1/2 ,

ε±µν(Bµν − Cµν) = −16G2E2

R
, ε±µν(Fµν −Gµν) = 128G3E3

R
. (5.1)

Using (4.2) and the first equality in (4.18), and summing over polarizations, we now get
the total differential flux in the 8πG = 1 unit:

dE

dωdΩ ≡
∑
±

dE±
dωdΩ (5.2)

=
∑
±

ω2

π
R2

∣∣∣∣ε±µν {i Aµν ω−1 − lnω(Bµν − Cµν) + i

2ω(lnω)2(Fµν −Gµν)
}∣∣∣∣2 .

Using (5.1), (5.1), this can be written as

P (θ, φ) +Q(θ, φ)ω2(lnω)2 +O(ω2 lnω) , (5.3)

where
P (θ, φ) = E2

2π3 sin2 ψ, Q(θ, φ) = E4

8π5 (1− 2 sin2 ψ) . (5.4)

Therefore for computing the total flux, we need to evaluate the integral:

I ≡
∫ π

0
sin θdθ

∫ 2π

0
dφ sin2 ψ (5.5)

=
∫ π

0
sin θdθ

∫ 2π

0
dφ

sin2 Θs sin2 φ

{1− (sin Θs sin θ cosφ+ cos Θs cos θ)2}
.

Now, writing

sin2 Θs sin2 φ

{1− (sin Θs sin θ cosφ+ cos Θs cos θ)2}
= 1

2
sin2 Θs sin2 φ

{1− (sin Θs sin θ cosφ+ cos Θs cos θ)}

+(θ → π − θ, φ→ φ+ π) , (5.6)

and noting that both terms produce the same integral, we can express I as:

I =
∫ π

0
sin θdθ

∫ 2π

0
dφ

sin2 Θs sin2 φ

{1− (sin Θs sin θ cosφ+ cos Θs cos θ)} . (5.7)
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We can carry out the φ integral by defining z = eiφ, replacing sinφ by (z− z−1)/(2i), cosφ
by (z + z−1)/2, and regarding (5.7) as a contour integral over z along the unit circle. The
resulting integrand has double pole at z = 0 and single poles at z = z± where

z± = (1± cos θs)(1∓ cos θ)
sin θ sin θs

. (5.8)

It is easy to see that for θ > Θs, z+ > 1, z− < 1 and for θ < Θs, z+ < 1, z− > 1. We can
now perform the contour integral by picking up the residues at the poles inside the unit
circle. The result is:

I = 2π
∫ π

0
sin θdθ

[
H(Θs − θ)

1 + cos Θs

1 + cos θ +H(θ −Θs)
1− cos Θs

1− cos θ

]
, (5.9)

where H is the step function. This arises due to the fact that as θ varies from being below
Θs to above Θs, the poles of the integrand move across the integration contour. After
carrying out the θ integration we get:

I = 2π [2 ln 2− (1 + cos Θs) ln(1 + cos Θs)− (1− cos Θs) ln(1− cos Θs)] . (5.10)

We can now use (5.4) to calculate the energy flux integrated over all angles, up to order
ω2(lnω)2:∫

dE

dωdΩdΩ =
∫ π

0
sin θdθ

∫ 2π

0
dφ [P (θ, φ) +Q(θ, φ)ω2(lnω)2]

= E2

π2 [2 ln 2− (1 + cos Θs) ln(1 + cos Θs)− (1− cos Θs) ln(1− cos Θs)]

+ E4

2π4ω
2(lnω)2[1− 2 ln 2

+(1 + cos Θs) ln(1 + cos Θs) + (1− cos Θs) ln(1− cos Θs)
]
. (5.11)

The small Θs expansion of this function takes the form:∫
dE

dωdΩdΩ = E2

π2
Θ2
s

2
{

1 + 2 ln 2 + ln Θ−2
s +O(Θ3

s)
}

(5.12)

+ E4

2π4ω
2(lnω)2

[
1− Θ2

s

2
{

1 + 2 ln 2 + ln Θ−2
s

}
+O(Θ3

s)
]

+O(ω2 lnω) .

Even though we have evaluated (5.11) for general Θs, during this derivation we have
ignored the possible modification of Aµν due to radiation emitted during the scattering.
Now for scattering at large impact parameter b, we have Θs ∼ E/b [20]. If we assume
that the spectrum of gravitational radiation falls off rapidly for ω > b−1 ∼ Θs/E, then
integrating (5.12) in the range 0 ≤ ω ≤ Θs/E we see that the total radiated energy during
the scattering is of order EΘ3

s times possible factors of ln Θ−1
s . Since the correction to

ε±µνA
µν from a final state particle is proportional to the energy carried by the particle,

we see that ε±µνAµν can receive correction of order EΘ3
s, and this in turn can affect the

coefficients appearing in (5.11) by terms of order Θ3
s. However expansion up to order Θ2

s,
given in (5.12) can be trusted.
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It was shown in [16] however that in the near forward direction, the actual cut-off on ω
extends beyond 1/b and as a result the net energy of emitted radiation is of order Θ2

s with
possible logarithmic corrections. Therefore one might worry that this will give corrections
to ε±µνAµν of order Θ2

s and affect the order Θ2
s coefficient of the ω2(lnω)2 term. However one

can see as follows that this is not the case. If the energy is emitted strictly in the forward
direction, then it effectively amounts to a redistribution of the energy among the various
final state particles in the forward direction and does not affect Aµν . For example a final
state particle of momentum λp and another particle of momentum (1− λ)p give the same
contribution to Aµν as a single particle of momentum p. Therefore the relevant correction
to Aµν can be estimated from the difference between the emission in the forward direction
and in a direction making an angle of order δΘs ∼ Θs with the forward direction. We see
from (5.1) that when we change Θs by δΘs, the change in ε±µνAµν is of order EδΘs even
when δΘs ∼ Θs but θ is finite, but is of order E when θ and δΘs are both of order Θs. Using
E ∼ Θ2

s and δΘs ∼ Θs, one finds that for finite θ, the correction to ε±µνAµν is still of order
Θ3
s (possibly multiplied by powers of ln Θ−1

s ) while for θ ∼ Θs the correction to ε±µνAµν is
of order Θ2

s. Taking into account the extra factor of Θ2
s that we get when θ integration is

restricted to be of order Θs, we see that the correction to (5.11) due to the modification of
Aµν by the final state radiation is of order Θ3

s times possible logarithmic corrections.
The positivity of the coefficient of the ω2(lnω)2 term for small Θs shows that the flux

has a local minimum at ω = 0 and therefore has a maximum elsewhere, presumably around
ω ∼ b−1. This confirms the prediction of [17]. The actual coefficient of this term differs
from that of [17] by a factor of 2 in the small Θs limit. On the other hand the coefficient
of the E2Θ2

s/(2π2) term differs from that of [17] by the additive constant 2 ln 2. Both of
these can be attributed to the fact that [17] computed the differential flux in the small θ
approximation, whereas (5.12) receives contribution also from the finite θ region.

6 Discussion

In this paper we have observed that the late time radiation during a scattering process is
independent of the final state massless particle momenta. A similar phenomenon has now
also been observed for the spin dependent part of the final state radiation [21]. These results
are based on the analysis of the general formula for the radiation tail, but we do not know
of any deeper explanation. The usual explanation of soft theorems based on the analysis
of asymptotic symmetries does not work for logarithmic corrections. Some attempts to
modify the asymptotic symmetry analysis to include the logarithmic corrections has been
made in [22–25] for electrodynamics. Possible generalization of these results to gravity
could give some insight into the phenomena described here.

We also observed that for a binary black-hole merger process the gravitational tail
memories at order u−1 , u−2 ln u vanish when we treat the inspiral binary as a singe initial
bound state object which decays to one massive black-hole and lots of massless radiation. A
similar vanishing phenomena for spin dependent gravitational tail memory at order u−2 has
also been observed in [21]. Vanishing of the late time gravitational waveform at future null
infinity is consistent with the prediction from Price’s law for nearly spherical gravitational
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collapse [26–28].2 Late time behaviour of scalar perturbation near future time-like and null
hyper-surfaces has been widely studied in a spherically symmetric background to determine
Price’s law for scalar fluctuation [26, 29–35]. According to our current understanding a non-
linear version of Price’s law for gravitational fluctuation has not been studied rigorously
so far. In that case our observation on the vanishing of gravitational tail memories at the
orders described above can be thought of as new predictions for a non-linear version of
Price’s law for gravitational fluctuation.

We have restricted our analysis to four dimensions, but one could ask if similar results
may hold in higher dimensions. It is known that due to phase space suppression in the
Fourier integral, the leading soft term in the amplitude proportional to 1/ω does not
produce a late time memory effect in the final state radiation. Furthermore, the infrared
effects are suppressed in higher dimensions and do not generate logarithmic corrections
at low orders. However it is possible that they would generate ωn lnω type of terms in
the Fourier transform of the final state radiation with high power of n. As these are non-
analytic despite having a finite ω → 0 limit, these could give rise to late time tail in the
retarded time with high power 1/u. It will be interesting to explore whether the coefficient
of these tail terms enjoy the same cancelation properties as described in this paper.
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A Effect of electromagnetic interaction

If the incoming and the outgoing particles carry electric charge then the coefficients Bµν ,
Cµν , Fµν and Gµν receive additional corrections [2–4]. In this appendix we shall show that
even in the presence of these corrections, Bµν and Fµν continue to be independent of the
momenta (and charges) carried by individual massless particles in the final state.

The extra contribution to Bµν due to electromagnetic interaction is given by [3]:

∆Bµν = − 2G
Rc5

 n∑
i=1

n∑
j=1
j 6=i

1
{(pi.pj)2 − p2

i p
2
j}3/2

pµi
n.pi

(n.pj pνi − n.pi pνj )× 1
4πqiqjp

2
i p

2
j

]
,

(A.1)
2We wish to thank Luc Blanchet and Thibault Damour for pointing out possible connection between

our results and Price’s law.
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where qi is the charge carrried by the i-th final state particles, in units where the electro-
static force between a pair of charges separated by distance r is given by qiqj/(4πr2). (A.1)
clearly vanishes if either i or j represents a massless particle.

The correction to Fµν is given by [4]:

∆Fµν = 2G
Rc9

[
− 4G

n∑
`=1

p`.n
n∑
i=1

n∑
j=1
j 6=i

1
pi.n

× 1
{(pi.pj)2 − p2

i p
2
j}3/2 {n.pj p

µ
i p

ν
i − n.pi p

µ
i p

ν
j } ×

qiqj
4π p

2
i p

2
j

−2G
m∑
`=1

p′`.n
m∑
i=1

m∑
j=1
j 6=i

1
p′i.n

× 1
{(p′i.p′j)2 − p′2i p′2j }3/2 {n.p

′
j p
′µ
i p
′ν
i − n.p′i p

′µ
i p
′ν
j } ×

q′iq
′
j

4π p
′2
i p
′2
j

−2G
n∑
i=1

n∑
j=1
j 6=i

n∑
`=1
` 6=i

1
pi.n

pi.pj
{(pi.pj)2 − p2

i p
2
j}3/2 {2(pi.pj)2 − 3p2

i p
2
j}

× 1
{(pi.p`)2 − p2

i p
2
`}3/2 ×

qiq`
4π p

2
i p

2
` {n.pj p

µ
i − n.pi p

µ
j } {n.p` p

ν
i − n.pi pν` }

+ c2
n∑
i=1

n∑
j=1
j 6=i

n∑
`=1
` 6=i

1
pi.n

1
{(pi.pj)2 − p2

i p
2
j}3/2

1
{(pi.p`)2 − p2

i p
2
`}3/2

×qiqj4π p
2
i p

2
j ×

qiq`
4π p

2
i p

2
` {n.pj p

µ
i − n.pi p

µ
j } {n.p` p

ν
i − n.pi pν` }

]
. (A.2)

It is understood that the expression needs to be symmetrized under the exchange of µ and
ν. As before we divide the final state particles into massive particles carrying momenta
p̃i and charges q̃i and massless particles with momenta p̂i and charges q̂i. Examining this
expression we see that the only contributions from massless final state particles can come
when p` represents a massless particle momentum in the first term inside the square bracket
and when pj represents a massless particle momentum in the third term inside the square
bracket. The first contribution may be expressed as:

− 4G
∑
`

p̂`.n
∑
i

∑
j

j 6=i

1
p̃i.n

1
{(p̃i.p̃j)2 − p̃2

i p̃
2
j}3/2 {n.p̃j p̃

µ
i p̃

ν
i − n.p̃i p̃

µ
i p̃

ν
j } ×

q̃iq̃j
4π p̃

2
i p̃

2
j . (A.3)

On the other hand when the sum over j runs over massless particles in the third term
within the square bracket, the contribution takes the form:

4G
∑
j

∑
i

∑
`

` 6=i

1
p̃i.n

1
{(p̃i.p̃`)2 − p̃2

i p̃
2
`}3/2

× q̃iq̃`4π p̃
2
i p̃

2
` {n.p̂j p̃

µ
i − n.p̃i p̂

µ
j } {n.p̃` p̃

ν
i − n.p̃i p̃ν` } . (A.4)

– 16 –



J
H
E
P
0
1
(
2
0
2
2
)
0
7
7

In the above expression, relabelling ` as j and j as ` and simplifying we get:

4G
∑
`

∑
i

∑
j

j 6=i

1
p̃i.n

1
{(p̃i.p̃j)2 − p̃2

i p̃
2
j}3/2

× q̃iq̃j4π p̃
2
i p̃

2
j {n.p̂` p̃

µ
i − n.p̃i p̂

µ
` } {n.p̃j p̃

ν
i − n.p̃i p̃νj }

= 4G
∑
`

p̂`.n
∑
i

∑
j

j 6=i

1
p̃i.n

1
{(p̃i.p̃j)2 − p̃2

i p̃
2
j}3/2 {n.p̃j p̃

µ
i p̃

ν
i − n.p̃i p̃

µ
i p̃

ν
j } ×

q̃iq̃j
4π p̃

2
i p̃

2
j

−4G
∑
`

∑
i

∑
j

j 6=i

1
{(p̃i.p̃j)2 − p̃2

i p̃
2
j}3/2 p̂

µ
` {n.p̃j p̃

ν
i − n.p̃i p̃νj } ×

q̃iq̃j
4π p̃

2
i p̃

2
j . (A.5)

We now see that the first term on the right hand side of (A.5) cancels (A.3) and the second
term vanishes since the summand is anti-symmetric under the exchange of i and j. Hence
we do not get any contribution involving final state massless particles due to long-range
electromagnetic interaction.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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