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The paper describes a novel implementation of the piecewise linear interface-capturing 
volume-of-fluid method (PLIC-VOF) in axisymmetric cylindrical coordinates. The principal 
innovative feature involved in this work is that both the forward and inverse reconstruction 
problems are solved analytically, resulting in an appreciable speed-up in computing time 
in comparison with an iterative approach. All reconstruction formulae are introduced 
explicitly, and an example illustrating their derivation is included for clarity. The numerical 
implementation of the PLIC-VOF interface tracking method developed here is described 
in detail, as well as its coupling with the 3D incompressible Navier-Stokes solver PSI-
BOIL, which features a finite-volume approach based on a fixed, rectangular grid. This 
coupling includes a method to calculate the surface tension force within an axisymmetric 
VOF framework by means of height functions. The method is first verified to ensure its 
correct implementation in the code, and to evaluate its performance, and several advection 
tests are employed to demonstrate successful solution of the basic transport problem. It is 
shown that convergence to equilibrium may be achieved for static problems, involving the 
control of parasitic currents, for a variety of grid arrangements, and for different material 
properties. Several axisymmetric dam-break and rising bubble problems, for which high-
quality measured data are available, are also presented to serve as validation tests. In 
all cases, very good agreement of simulation results with experimental data has been 
recorded, and the dynamics of the problem well reproduced.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In the field of multiphase computational fluid dynamics in the bubble and droplet regimes, capturing the interface 
between individual phases is crucial for performing numerical simulations of the phenomena, and capturing the morphology 
of the flow. A prominent example of an inherently mass-conservative Interface Tracking Method (ITM) is the Volume-of-
Fluid (VOF) approach, in which the phases are represented in terms of a cell-wise phasic volume-fraction function, φ. For a 
computational cell of volume V c [m3], the volume fraction of Phase 1, φ1, is defined as:

φ1 = V 1

V c
, (1)
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Principal symbols used

α Normalised line constant [-]
β Line constant [m]
η Reduced axial coordinate [-]
κ Curvature [1/m]
μ Dynamic viscosity [Pa·s]
ρ Density [kg/m3]
σ Surface tension [N/m]
ξ Normalised coordinate [-]
c Area fraction, colour [-]

φ Volume fraction [-]
�n Unit normal vector [-]
�m General normal vector with positive compo-

nents [-]
�u = (u, w) Velocity [m/s], u - radial component, w - ax-

ial component
�x = (x, z) Vector of radial (x) and axial (z) coordinates 

[m]
CFL Courant number, CFL = max

(
u/
x, w/
z

) ·
t

where V 1 is the volume of the cell occupied by Phase 1. If only two phases are present, as considered here, φ2 = 1 − φ1; 
therefore, we drop the subscript 1 for brevity. The basis for any VOF method is then the solution of the continuity equation 
(written here in conservative form, with no source terms):

∂φ

∂t
+ ∇ · (φ�u) = 0, (2)

where �u represents the velocity field. Equation (2) is valid for incompressible flow, for which the velocity field satisfies the 
divergence constraint:

∇ · �u = 0. (3)

The original algebraic VOF method [1], and many of its successors [2,3], attempt to solve Eq. (2) within the framework 
of the solver: i.e. without recourse to independent reconstruction of the interface. As a result, the interface region will have 
a finite thickness, determined by the underlying degree of grid refinement, often covering several computational cells. In 
contrast, geometric VOF methods involve advective transport of the volume fraction field based on a geometrical reconstruc-
tion of the interface within the computational cells. Typical reconstruction techniques include the simple linear interface 
calculation (SLIC) [4], which crudely assumes that the interface is parallel to one of the cell faces, and the more advanced 
piecewise linear interface calculation (PLIC) [5], which reconstructs the interface as one or multiple lines (in 2D), or one or 
multiple planes (in 3D), with arbitrary orientation with respect to that of the computational cells. Advection of the interface 
can then be simulated using directional-split or unsplit schemes: in the former approach, the phasic volume is transported 
in one direction at a time [6], while in the latter approach it is transported in all directions simultaneously [6,7].

Geometric PLIC-VOF methods were originally developed only for structured Cartesian meshes, due to the difficulty in 
deriving appropriate interface reconstruction formulae. Subsequently, however, the methods have been extended to axisym-
metric cylindrical [8], full cylindrical [9], and axisymmetric spherical [10,11] structured geometries. PLIC-VOF methods have 
also been implemented on unstructured meshes at various levels of geometrical complexity, [12–20]; see also the recent 
review by Maric et al. [21].

The interfacial geometry is usually described in terms of the pair {�n, β}, where �n is the unit vector normal to the interface 
and β is the line (plane) constant satisfying the equation:

�n · �x = β, (4)

in which �x is the vector of coordinates. Under the assumption that the normal vector is calculated via a numerical scheme, 
the volume fraction φ can be computed from β and �n alone. This is the so-called forward reconstruction, which can be 
formally represented as:

φ = f fwd(β; �n). (5)

Conversely, β can be computed from φ and �n using the inverse reconstruction:

β = f inv(φ; �n). (6)

Here, “forward” and “inverse” are chosen as descriptive labels only, which does not imply that the forward reconstruction 
is performed first, followed by the inverse reconstruction. Instead, both inverse and forward reconstruction are used in 
different parts of the overall PLIC-VOF advection algorithm: the former for positioning of the interface after volume fraction 
advection, and the latter typically for the calculation of fluid fluxes during the advection step [22].

For rectangular, cuboidal, triangular and tetrahedral meshes, simple relations connecting the volume fraction φ and the 
interfacial geometry exist, e.g. [22–24], and both the forward and inverse reconstructions can then be implemented analyt-
ically. The geometrical complexity associated with arbitrary interfaces intersecting general non-Cartesian meshes presents 
a challenge to the derivation of analogous relations in this context. Although Dyadechko and Shashkov [25] proved that 
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relation (6) is strictly monotonic, and that the pair {�n, φ} is sufficient to compute β , no analytical relation for the inverse 
reconstruction currently exists for an arbitrarily shaped cell [21]. Thus the inverse problem is usually solved using either an 
iterative root-finding algorithm or by use of a bracketing method [21]. The pioneering work on this topic is the algorithm of 
Rider and Kothe [8,26], which uses bracketing to obtain an initial guess followed by a Brent iteration [27]. The iterative step 
within this algorithm was later replaced by a direct analytical solution utilising the results of the bracketing procedure [28]. 
A similar semi-analytic approach was developed by Diot et al. [29] for 2D planar and axisymmetric convex cells of arbitrary 
shape, and later extended to arbitrary convex 3D cells [30]; however, a Newton iteration was still necessary in axisym-
metric geometry. The bracketing-analytic approach was further optimised by Lopez et al. [31], and extended to non-convex 
polyhedra by the same authors [20].

A specific example of a reconstruction method is the Moment-of-Fluid (MoF) reconstruction of Dyadechko and Shashkov 
[25,32], which has the ability to reconstruct the interface without reference to the details of the neighbouring cells, rely-
ing only on the volume fraction within the cells and geometric centroids of the phasic volumes; i.e. the first and second 
moments of the volume fraction distribution [25]. The MoF reconstruction algorithm involves minimisation of an objec-
tive function quantifying the distance of the reconstructed centroid to the tracked one; the original scheme employed a 
bracketing-analytic approach within the iterative procedure [25]. This technique was later extended to axisymmetric and 
full cylindrical coordinates [33,34]. The MoF reconstruction was also further enhanced by introducing analytical expressions 
for the objective function gradient relations for convex polyhedra [35], 3D rectangular hexahedra [36], and general poly-
hedra, as well as for axisymmetric polygons [37]. For 2D Cartesian meshes, Lemoine et al. [38] were able to replace the 
minimisation procedure by a direct inversion; the roots of the polynomials arising in the solution process were found itera-
tively followed by a posteriori elimination of the unsuitable ones. Although the authors hinted at application to rectangular 
meshes in other geometries, only 2D Cartesian meshes were treated in detail [38]. Note that the MoF method conceptually 
differs from the classical VOF approach due to the added necessity to explicitly track the advection of the phasic geometric 
centroids [25].

The iterative procedures usually employed for the inverse reconstruction, without the need for semi-analytical tech-
niques, have also been developed further. These include the secant/bisection method proposed by Ahn and Shashkov [32,39], 
which remains in common use today [40], and the efficient Predicted-Newton method of Chen and Zhang [40].

In spite of the advancements in the development of solution techniques for the inverse reconstruction problem, a direct 
analytic solution still offers clear benefits in terms of speed and accuracy. For this reason, we present in this paper a novel 
implementation of the PLIC-VOF method in axisymmetric cylindrical coordinates including a closed-form analytic solution 
of the inverse reconstruction. Aside from simple laminar flows, the two-dimensional geometry assumption finds application 
for problems for which a high degree of axial symmetry can be guaranteed, it being currently too computationally expensive 
for a full three-dimensional simulation to be undertaken. For example, direct numerical simulation (DNS) of pool boiling, 
performed recently by Urbano et al. [41] using the Level Set implementation of the ITM [42], required more than 16 million 
computational cells in an axisymmetric configuration. Evidently, a 3D domain for the same problem would encompass more 
than 64 billion cells, unfeasible in the context of current computer technology.

To the best of our knowledge, our direct analytic solution of the inverse reconstruction problem has never been at-
tempted for this geometry, and the full implementation of PLIC-VOF in an axisymmetric, cylindrical geometry has never 
been reported in the open literature. These aspects constitute the innovation of the present work.

The paper is organised as follows: in Section 2, the computational method is described. Firstly, analytic relations for 
both the forward and inverse problem in cylindrical, axisymmetric geometry are developed in Section 2.1, thereby removing 
the need for in-cell iterative reconstruction; appreciable speed-up with respect to the iterative approach is demonstrated. 
Then, in Section 2.2, details of the interface tracking algorithm and its numerical implementation in the code PSI-BOIL are 
described, and in Section 2.3 a height-function-based approach for the interfacial curvature calculation is presented. Finally, 
in Section 3, several verification and validation cases are presented, with final, overall conclusions presented in Section 4.

2. Mathematical model

The interface reconstruction method is detailed in Section 2.1, where the analytical relations for the forward and inverse 
reconstructions are developed. In Section 2.2, the interface tracking algorithm for two-phase flow is described. Finally, the 
height function method for the calculation of curvature in axisymmetric geometry is presented in Section 2.3.

2.1. Analytic relations for interface reconstruction

Axisymmetric representation of a three-dimensional object corresponds to its projection on a two-dimensional x-z plane, 
with x representing the radial and z the axial coordinate, respectively. This transformation is shown schematically in Fig. 1. 
It can be seen that a “linear” interface in an axisymmetric cylindrical geometry is, in the general case, a conical shell with 
the two extremes being a disc perpendicular to the z-axis and a cylindrical shell. Furthermore, projected rectangular cells 
represent hollow cylinders in three dimensions (see Fig. 1).

Within this framework, it is possible to define an area fraction, or colour function, c, of the projection with respect to a 
given reference control area. Due to the radius effects, the colour function is not equal to the volume fraction; nonetheless, 
c is a convenient variable to describe the interfacial geometry, as it allows us to re-use the theoretical framework developed 
3
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Fig. 1. Schematic representation of the projection of a typical computational cell in axisymmetric cylindrical geometry onto a two-dimensional x-z plane, 
with x representing the radial and z the axial coordinate, respectively.

Fig. 2. Schematic representation of the ‘standardisation’ of the interfacial geometry.

for 2D Cartesian configurations, for which c ≡ φ. Specifically, we can treat the x-z projections of the computational cells 
as rectangular cells in a 2D Cartesian geometry. As shown in Fig. 2, we can then translate, rotate/mirror and rescale the 
projected geometry such that Eq. (4) becomes:

m1ξ1 + m2ξ2 = α, (7)

where m1 ≥ 0, m2 ≥ 0, m1 + m2 = 1, ξ1,2 ∈ [0, 1] and α ∈ [0, 1]. For the example illustrated in Fig. 2, |nz| > |nx|, nx > 0, and 
nz < 0. Thus, using basic geometric manipulations:

m1 = |nz|
z

|nz|
z + |nx|
x
; m2 = |nx|
x

|nz|
z + |nx|
x
; ξ1 = 1 − z − z0


z
; ξ2 = x − x0


x
;

with �x0 = (x0, z0) and 
�x = (
x, 
z), as shown in Fig. 2. This ‘standardised’ representation of the interfacial geometry 
was first presented in [22,43] and makes use of the invariance of c with respect to the mirroring of the PLIC-line. With this 
representation, the results derived in [22] are valid, and will only be reproduced verbatim here for the sake of completeness:

c = α2

2m(1 − m)
, 0 ≤ α < α1; (8)

c = 1

1 − m

(
α − m

2

)
= α

1 − m
− c1, α1 ≤ α ≤ 1

2
; (9)

α = √
2m(1 − m)c, 0 ≤ c < c1; (10)
4
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Fig. 3. Schematic representation of the nomenclature used to describe the geometry. Note that while the areas to the left of x = xs and to the right of it 
are the same, their respective volumes of revolution are not equal due to the radius effects. (For interpretation of the colours in the figure(s), the reader is 
referred to the web version of this article.)

α = (1 − m)c + m

2
= (1 − m)(c + c1), c1 ≤ c ≤ 1

2
; (11)

α1 = m; (12)

c1 = m

2(1 − m)
; (13)

where m = min(m1, m2). Equations (8) and (9) represent the solution of the forward problem in 2D Cartesian geometry: 
that is, calculating the area fraction c from the line constant α given a vector �m according to c = f fwd(α; �m). Equations (10)
and (11) represent the solution of the inverse problem in 2D Cartesian geometry: that is, calculating the line constant α
from the area fraction c given a vector �m according to α = f inv(c; �m).

Even though the functions f fwd and f inv are monotonic [21,22], it can be seen that both the forward and the inverse 
problems feature two solution branches. The transition between these branches occurs at the point [α1, c1]. The values of 
these two parameters can be found by equating the two branches of the solution, i.e. by solving (8) = (9) and (10) = (11).

Furthermore, it can be seen that Eqs. (8)-(11) are valid only on the intervals c ∈ [0, 12 ] and α ∈ [0, 12 ]. The complementary 
solutions of the problems for which c ∈ ( 1

2 , 1] and α ∈ ( 1
2 , 1] can be achieved simply by point reflection around [ 1

2 , 12 ] as:

c(α, �m) = c̃(α̃, �̃m) = 1 − c(1 − α, �m), (14)

α(c, �m) = α̃(c̃, �̃m) = 1 − α(1 − c, �m), (15)

as described in [22]. The above relations should be understood as descriptions of the transformations:

c → c̃ = 1 − c,

α → α̃ = 1 − α,

�m → �̃m = �m,

which is equivalent to the swapping of the two phases in any given cell.

2.1.1. Forward problem in axisymmetric geometry (calculate φ from α and �n)
With reference to Fig. 3, the relation between the volume fraction φ in axisymmetric geometry and the area fraction or 

colour function c in its two-dimensional projection is given by the Second Theorem of Pappus [44] as:

φ = c
ηc

ηs
= c

η0 + ξc,x

η0 + ξs,x
= c

η0 + ξc,x

η0 + 1/2
≡ K (α, �n, η0) · c, (16)

where ηc = xc/
x is the reduced radial coordinate of the geometric centroid of the orange-coloured area; likewise, ηs is the 
reduced radial coordinate of the geometric centroid of the bounding cell in the x-z coordinate system. The parameter η0 is 
then the reduced radial coordinate of the inward cell face, i.e. the face closer to the axis of symmetry. Also, ξc,x and ξs,x

are the reduced in-cell radial coordinates, these assuming values between 0 and 1. Again, the meanings of the individual 
symbols are illustrated in Fig. 3.
5
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Table 1
Values of ξc,x for Eq. (16).

mx ≤ mz mx > mz

nx ≥ 0
ξc,x = α

3mx
, 0 ≤ α < mx ξc,x = α

3mx
, 0 ≤ α < mz

ξc,x = 1

3

3α − 2mx

2α − mx
, mx ≤ α ≤ 1

2
ξc,x = 1

3mx

[
(2α − mz) − α − mz

2α − mz
α

]
, mz ≤ α ≤ 1

2

nx < 0
ξc,x = 3mx − α

3mx
, 0 ≤ α < mx ξc,x = 3mx − α

3mx
, 0 ≤ α < mz

ξc,x = 1

3

3α − mx

2α − mx
, mx ≤ α ≤ 1

2
ξc,x = 1

3mx

[
(3mx − 2α + mz) + α − mz

2α − mz
α

]
, mz ≤ α ≤ 1

2

Table 2
Solution of the inverse problem for axisymmetric geometry for φ ≤ φmax .

α(φ)

mx ≤ mz

nx ≥ 0
φ < φtr

φ < φcrit

(
Mφcrit

2

)1/3[
− 1 + 2 cos

(
ϕ0

3
+ π

6

)]

φ < φtr

φ ≥ φcrit

(
M

2

)1/3[
φ

1/3
crit +

{
2φ − φcrit + 2

√
φ
(
φ − φcrit

)}1/3

+
{

2φ − φcrit − 2
√

φ
(
φ − φcrit

)}1/3]

φ ≥ φtr
mzφ + mx

2

η0 + 2/3

η0 + 1/2

mx ≤ mz

nx < 0
φ < φtr −

(
Mφcrit

2

)1/3[
− 1 + 2 sin

(
ϕ0

3

)]

φ ≥ φtr
mzφ + mx

2

η0 + 1/3

η0 + 1/2

mx > mz

nx ≥ 0
φ < φtr

φ < φcrit

(
Mφcrit

2

)1/3[
− 1 + 2 cos

(
ϕ0

3
+ π

6

)]

φ < φtr

φ ≥ φcrit

(
M

2

)1/3[{
2φ − φcrit + 2

√
φ
(
φ − φcrit

)}1/3

+
{

2φ − φcrit − 2
√

φ
(
φ − φcrit

)}1/3

− φ
1/3
crit

]

φ ≥ φtr 1

2

[
mz − 2mxη0 +

√
4m2

xη
2
0 + 8m2

x

(
η0 + 1

2

)
φ − 1

3
m2

z

]

mx > mz

nx < 0
φ < φtr −

(
Mφcrit

2

)1/3[
− 1 + 2 sin

(
ϕ0

3

)]

φ ≥ φtr 1

2

[
mz + 2mx

(
η0 + 1

)
−

√
4m2

x

(
η0 + 1

)2

− 8m2
x

(
η0 + 1

2

)
φ − 1

3
m2

z

]

With the help of the basic geometrical definitions, the following relations can be derived for the geometric centroid of 
the orange-coloured area in the standardised geometry described above:

�ξc = (ξc,1, ξc,2) = α

3

(
1

m1
,

1

m2

)
, 0 ≤ α < m1; (17)

�ξc = (ξc,1, ξc,2) = 1

3

(
3α − 2m1

2α − m1
,

1

m2

[
(2α − m1) − α − m1

2α − m1
α

])
, m1 ≤ α ≤ 1

2
; (18)

with m1 ≤ m2, and with ξc,i associated with its respective mi for i ∈ {1, 2}. As the correspondence between ξc,x in the 
real geometry and either ξc,1 or ξc,2 in the standardised representation is orientation dependent, four cases must be distin-
guished, based on the conditions |nx| ≶ |nz| and nx ≷ 0. Here nx is the original x-component of the normal vector: |nx| ≤ |nz|
results in ξc,x = ξc,1 and |nx| > |nz| results in ξc,x = ξc,2; nx < 0 results in the transformation ξc,x → 1 − ξc,x . As an example, 
in the configuration shown in Fig. 3, |nx| < |nz| and nx > 0, implying m1 = mx , m2 = mz , and ξc,x = ξc,1.

Table 1 lists the ξc,x values for all given cases. With ξc,x known in all cases in terms of the interface geometry, Eq. (16), to-
gether with Eqs. (8) and (9), represent the solution of the forward problem in axisymmetric geometry: i.e. φ = f fwd(α; �n, η0), 
for α ≤ 1

2 .

2.1.2. Inverse problem in axisymmetric geometry (calculate α from φ and �n)
The solution of the inverse problem, α = f inv(φ; �n, η0), is dependent on the geometric orientation of the interface with 

respect to the coordinate system, and must be developed independently for the four cases listed in Table 1. Table 2 presents 
6
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Table 3
Auxiliary values required for the inverse problem for axisymmetric geometry.

mx ≤ mz mx > mz

nx ≥ 0
φtr = mx

2mz

η0 + 1/3

η0 + 1/2
φtr = mz

2mx

η0 + mz/3mx

η0 + 1/2

φcrit = 2mx

3mz

η3
0

η0 + 1/2
φcrit = 2mx

3mz

η3
0

η0 + 1/2

nx < 0
φtr = mx

2mz

η0 + 2/3

η0 + 1/2
φtr = mz

2mx

η0 + 1 − mz/3mx

η0 + 1/2

φcrit = 2mx

3mz

(η0 + 1)3

η0 + 1/2
φcrit = 2mx

3mz

(η0 + 1)3

η0 + 1/2

All cases
M = 3m2

xmz

(
η0 + 1

2

)

ϕ0 = arcsin

(
1 − 2φ

φcrit

)
, φmax = K (1/2, �n, η0)

2

mx = |nx|
x

|nx|
x + |nz |
z
, mz = |nz|
x

|nx|
x + |nz |
z

a summary of the different branches of the solution of the inverse problem for axisymmetric geometry for φ ≤ φmax . The 
parameter φmax is case-dependent, and can be calculated by solving the forward problem according to:

φmax = f fwd(1/2; �n, η0) = K (1/2; �n, η0) · cmax = K (1/2; �n, η0)

2
. (19)

This is in direct analogy with the Cartesian situation, for which cmax is given simply by cmax = 1/2. Table 3 lists the auxiliary 
values required for the individual branches. As illustration, the solution process is described for one of the branches in 
Appendix A.

2.1.3. Complementary problem in axisymmetric geometry
So far, only the cases 0 ≤ α ≤ αmax = 1

2 and 0 ≤ φ ≤ φmax = f fwd(1/2; �n, η0) have been considered. To extend the so-
lution to the full intervals α ∈ [0, 1] and φ ∈ [0, 1], we can use the principle of complementarity, analogously to the 
two-dimensional Cartesian situation [22]. The equalities (analogous to Eqs. (14) and (15)):

φ(1 − α,−�n, η0) = 1 − φ(α, �n, η0), and (20)

α(1 − φ,−�n, η0) = 1 − α(φ, �n, η0), (21)

hold, as the swapping of the two phases in a given cell is equivalent to the transformation:

φ → φ̃ = 1 − φ,

α → α̃ = 1 − α,

c → c̃ = 1 − c,

�n → �̃n = −�n,

η0 → η̃0 = η0.

Equation (20) is then a representation of the statement that the sum of the volume fractions of both phases is equal to one. 
To prove Eq. (21), we use the fact that Eq. (15) corresponds to the same transition, and so:

α(φ, �n, η0) = α[c(φ; �n, η0), �n, η0] = α̃[c̃(φ̃; �̃n, η0), �̃n, η0] = 1 − α[c̃(φ̃; �̃n, η0), �̃n, η0]
= 1 − α(φ̃, �̃n, η0) = 1 − α(1 − φ,−�n, η0).

(22)

The relation c = f (φ; �n, η0) is not developed specifically in this paper, since it is not needed in the formulation, though it 
could be derived by analogy to the other derivations presented. For the proof to hold, however, it is sufficient to realise that 
such a relation exists and is unique. Using Eqs. (20) and (21), solution of the inverse problem can now be extended to the 
full intervals α ∈ [0, 1] and φ ∈ [0, 1].
7
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2.1.4. Performance evaluation
The motivation for development of a direct solution of the inverse reconstruction problem is computational efficiency, 

since iterative algorithms can achieve the same precision as bracketing or analytical algorithms. In this section, the perfor-
mance of our method is evaluated. First, a short summary on the iterative methods developed in the past is given, followed 
by quantitative arguments justifying the performance superiority of our direct analytical method.

For axisymmetric cylindrical geometry, convergence of the inverse problem using the original algorithm of Rider and 
Kothe is reported to require ∼5 iterations after the bracketing procedure in the general case, and up to 15 iterations in 
cases for which φ ≈ 0 [8]. The later semi-analytic methods of Dyadechko and Shashkov [25] and Diot et al. [29] reduced the 
average number of iterations to � 3 [29]. Lopez et al. [31] demonstrated that the efficiency of their method for 2D problems 
is very similar to the one of Diot et al. [29], while being simpler and applicable to 3D problems as well.

Evidently, our direct solution of the inverse problem must be faster than that of the contemporary iterative algorithms 
to justify its implementation into our code. Thanks to the simplicity of the considered geometry, the Newton’s method [44]
represents an appealing reference approach. In the Newton’s method, we define an objective function F (α) as (assuming 
fixed normal vector �n and reduced coordinate η0):

F (α) = φ(α) − φref, (23)

where φref is the volume fraction, for which we want to solve the inverse reconstruction problem. We then construct and 
repeatedly solve an iterative map:

αn+1 = αn − F (αn)

F ′(αn)
= αn − φ(αn) − φref

φ′(αn)
(24)

with α0 being a suitable initial guess and ′ indicating differentiation with respect to α. The root of the equation F (α) = 0, 
i.e. α such that φ(α) = φref , represents a superstable fixed point of this iterative map [45]; as a result, the Newton’s method 
(iterative solution of Eq. (24)) converges to the true solution of the inverse problem quadratically [44].

The main challenge in implementing the Newton’s method lies in the efficient calculation of the derivative in the denom-
inator of Eq. (24). In [40], Chen and Zhang used the mean-value theorem to express this derivative with the help of the area 
of the phasic interface, developing the so-called Predicted-Newton (PN) method. Its main advantage is the simplicity and 
speed of evaluation of the derivative, requiring only the identification of points where the interface intersects the bounding 
cell.

Originally, we planned to compare the speed of execution of the PN method with our direct approach. In 2D axisymmet-
ric geometry, the area of the phasic interface can be obtained as the product of the length of the projected line segment 
and the radial coordinate of its geometric centroid, as per the First Theorem of Pappus [44]. However, after implementation, 
we have discovered that the efficiency of the PN method depends strongly on the orientation of the phasic interface with 
respect to the bounding cell: the less aligned the interface is with the edges of the cell, the more iterations are required 
to solve the inverse problem with the slowest convergence occurring for the situation |nx| ≈ |nz|, for which multiple oscil-
lations around the true value are observed. This can be explained by the strong variation of the length of the line segment 
with α for such configuration.

For this reason, we have decided to evaluate the derivative directly by taking advantage of the simplicity of Eq. (16)
instead. By differentiating it, we obtain:

φ′(α, �n, η0) = K ′(α, �n, η0)c(α, �n) + K (α, �n, η0)c′(α, �n) = ξ ′
c,xc

η0 + 1/2
+ K c′. (25)

The derivative c′ can be evaluated immediately by the differentiation of Eqs. (8) and (9). Similarly, ξ ′
c,x results from the 

formulae in Table 1 in a straightforward manner. To evaluate the initial guess α0, we first wanted to use the method 
described in [40]; given a Hermite interpolation polynomial H(α):

H(α) = −2α3 + 3α2 − φref, (26)

it is trivial to verify that H(0) = −φref, H ′(0) = 0, H(1) = 1 − φref, H ′(1) = 0, which corresponds to the properties of the 
objective function F (α) at these points (with the exception of the unlikely situation nx = 0 or nz = 0). Then, the initial 
guess can be found as the solution of the cubic polynomial equation H(α) = 0 using similar methods to those utilised in 
Appendix A as:

α0 = 1

2
− sin

(
arcsin

(
1 − 2φref

)
3

)
. (27)

However, this expression includes a successive evaluation of an inverse trigonometric and a standard trigonometric function. 
We have ascertained by testing that an initial guess of comparable quality but faster evaluation time can be deduced from 
a piecewise-quadratic interpolation polynomial as:
8
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α0 =
⎧⎨
⎩

√
φref

2 if φref < 1/2 and

1 −
√

1−φref
2 otherwise.

(28)

Note that this function, as well as its first derivative are continuous.
Although the convergence of the Newton’s method for functions with discontinuous second derivative is not guaranteed 

[44], the interpolation procedure presented in [40] and designed to enforce the convergence has not been found to be 
necessary during the evaluation of the test set presented below due to the high quality of the initial guess.

In order to compare the CPU time required for our direct approach against the iterative option, we consider a single-cell 
reconstruction test, in which the volume fraction, φ, the normal vector to the interface, �n, and the reduced radial coordinate 
of the cell face, η0, are all given. In this test, the corresponding α value is found using both the direct analytic solution of the 
inverse reconstruction problem and the Newton’s iterative method. Our method for solving both the forward and the inverse 
problems used in the process has been implemented into a C++ program under the C++11 standard and compiled using the 
Intel® 2021.1.1 compiler.1 Since the literature is not fully consistent on the topic of compiler optimisation (e.g. Lopez et al. 
[31]: no optimisation; Diot et al. [29], Chen and Zhang [35]: O2 optimisation), we employ compilation incorporating both 
the O0 (no optimisation) and O3 (maximum optimisation) flags. The results with the O2 flag lie between these two. Double 
precision accuracy is used, and time is measured using the high_resolution_clock class of the chrono2 library. To 
derive parameter values for comparison, we consider a test matrix obtained from the Cartesian product of the following 
parametric spaces:

• 54 values of φ, computed according to the formulae:

φi, j,1 = V i × 10E j and (29)

φi, j,2 = 1 − φi, j,1, (30)

where V i ∈ {1, 2, 4} and E j ∈ {−9, −8, . . . , −1}. By distributing the points in this manner, the execution speed can be 
evaluated even for fringe cases, such as φ = 10−8 or φ = 1 − 10−8.

• 9 values of η0: η0 ∈ {0.2, 0.4, 0.8, 2, 4, 8, 20, 40, 80}.
• 99 values of nx , distributed uniformly between −1 and 1. The absolute value |nz| of the z-component of the normal 

vector is then equal to 
√

1 − n2
x ; sign of nz does not affect the solution of either the forward or the inverse problem.

This procedure corresponds to 48 114 test cases in total, which we run on a workstation with a 2.40 GHz Intel® Xeon®

E5-2640 processor. To accurately measure the CPU time required for execution, average values for each of these cases after 
30 000 runs are used. The error tolerance for the iterative approach was chosen as 10−13: although the mean of the direct 
evaluation of 

∣∣φref − f f wd[ f inv(φref)]
∣∣ is 7 × 10−15 and median 1 × 10−16, for some cases this expression can attain values 

of O(10−13). Thus, we consider 10−13 to be a reasonable tolerance criterion for the termination of the Newton’s method.
Fig. 4 shows the evaluated execution times for both the iterative approach and the direct inversion without and with 

compiler optimisation, as well as their ratio and also the number of iterations required by the Newton’s method after the 
initial guess; results have been averaged for each volume fraction value considered. The overall results are reported in 
Table 4. Based on these results, we can conclude that our direct analytic solution computationally outperforms the iterative 
approach, with a ∼1.4-1.7× speed-up. Use of compiler optimisation reduces the advantage of the direct inversion approach. 
Note that the decrease of the speed-up for values of φ close to 0 or 1 is partly a result of using an absolute tolerance as a 
stopping criterion, rather than relative one. When only φ values between 0.1 and 0.9 are considered, the speed-up becomes 
1.81 ± 0.42 with O0 optimisation and 1.68 ± 0.44 with O3 optimisation.

2.2. Interface tracking method

The interface reconstruction relations developed above have been implemented into the in-house code PSI-BOIL3 as a 
component of its interface tracking algorithm. Assuming two phases (liquid and gas), with φ = 1 corresponding to the liquid 
phase and φ = 0 to the gas phase, the governing equation for the liquid volume fraction is just Eq. (2), which is reproduced 
here for clarity:

∂φ

∂t
+ ∇ · (φ�u) = 0. (31)

The equation is solved together with the single-field momentum conservation equations [46]:

1 https://software .intel .com /content /www /us /en /develop /documentation /cpp -compiler-developer-guide -and -reference/.
2 http://www.cplusplus .com /reference /chrono /high _resolution _clock/.
3 https://github .com /PSI -NES -LSM -CFD /PSI -Boil.
9

https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/
http://www.cplusplus.com/reference/chrono/high_resolution_clock/
https://github.com/PSI-NES-LSM-CFD/PSI-Boil


L. Bureš, Y. Sato and A. Pautz Journal of Computational Physics 436 (2021) 110291
Fig. 4. Execution times for the iterative approach and the direct analytic inversion, as well as their ratio and number of iterations required by the Newton’s 
method. Left: φ ∈ (0, 1/2), right: (1 − φ) ∈ (0, 1/2).

Table 4
Performance evaluation results for the iterative approach and for the direct analytic inversion. Lines designated by � correspond to the iterative approach 
with initial guess obtained by Eq. (27); the last line gives the time necessary to compute this guess.

O0 optimisation O3 optimisation

Mean Std. dev. Median Mean Std. dev. Median

Number of iterations [-] 3.3 1.0 3 3.3 1.0 3
Iterative exec. time [μs] 0.258 0.059 0.250 0.135 0.026 0.133
Direct exec. time [μs] 0.158 0.022 0.164 0.095 0.014 0.099
Ratio it./dir. [-] 1.65 0.37 1.59 1.45 0.32 1.40

�Number of iterations [-] 3.33 0.96 3 3.33 0.96 3
�Iterative exec. time [μs] 0.286 0.055 0.272 0.163 0.024 0.160
�Initial guess eval. time [μs] 0.0797 0.0037 0.0768 0.0741 0.0018 0.0739

∂(ρ�u)

∂t
+ ∇ · (ρ�u ⊗ �u) = −∇p + ∇ ·

[
μ

(∇�u + (∇�u)�
)] + ρ�g + �fσ , (32)

in which ρ [kg/m3] and μ [Pa·s] are the mixture density and dynamic viscosity, respectively. The former can be calculated 
from its single-phase counterparts according to:

ρ = φρl + (1 − φ)ρg, (33)

and the latter according to either the weighted-harmonic mixing rule derived by Prosperetti [47] from a single-field repre-
sentation of tangential stresses at the interface:
10
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ρ

μ
= φ

ρl

μl
+ (1 − φ)

ρg

μg
, (34)

or the classical harmonic mixing rule:

1

μ
= φ

1

μl
+ (1 − φ)

1

μg
. (35)

Note that there is no unique definition of the mixture dynamic viscosity arising from the derivation of the single-field 
momentum equations [47]; as such, the final choice must be ultimately motivated by the quality of the numerical results 
[47].

Furthermore, in Eq. (32), p [Pa] refers to the pressure, �g [m/s2] the gravitational acceleration, and �fσ [N/m3] the surface 
tension force density. The pressure is obtained via the projection method of Chorin [48], to satisfy the adiabatic incompress-
ibility condition:

∇ · �u = 0. (36)

Brackbill’s Continuum Surface Force (CSF) model [49] is used to estimate the surface tension force density, �fσ .
The solution algorithm for the above governing equations starts from the discretised form of Eq. (2) (or Eq. (31)):

φn+1 − φn


t
= −∇ · (φ�u), (37)

and can be summarised in the procedural steps listed below:

Step 1. Reconstruct interfacial geometry, calculating normal vectors and line constants.
Step 2. Advect the volume fraction field based on the reconstructed geometry.
Step 3. Calculate curvatures and surface tension force.
Step 4. Solve the momentum conservation equations to obtain a new velocity field (here, backward and forward Euler 

methods are used for the discretisation of the diffusion and advection terms, respectively).
Step 5. Advance the time step, and go back to Step 1.

Step 1, Step 2 and Step 3 are detailed below.

2.2.1. Normal vector calculation and global iterative reconstruction
In the interface reconstruction procedure, knowledge of the normal vector is a pre-requisite for the solution of both the 

forward and inverse problems. In 2D Cartesian geometry, algorithms for calculating �n based on a c-value stencil are widely 
available; e.g. via the Young method [50], the Centred Columns method [50], LVIRA [50,51] or ELVIRA [51]. In axisymmetric 
geometry, the colour function c must be obtained from the volume fraction φ in order to accurately calculate the normal 
vector, since c, rather than φ, characterises the geometry of the interface. An iterative technique is therefore used to compute 
c and reconstruct the full geometry: i.e. to determine the complete (�n, α) pair, especially since the normal vector in general 
depends on the values of c in multiple cells. The iterative reconstruction algorithm has been implemented according to the 
following prescription, in which subscripts indicate the iteration count.

Step 1a. Set c0 = φ everywhere.
Step 1b. Calculate the normal vector field �n0(c0) under this assumption.
Step 1c. Solve the inverse problem α0 = f inv(φ, �n0) for the line-constant field.
Step 1d. Calculate c1 (Eqs. (8) and (9)).
Step 1e. Calculate the updated normal vector field �n1(c1).
Step 1f. Solve the forward problem φ�

0 = f fwd(α0, �n1) to obtain an estimate of the volume fraction field, given the current 
(α, �n) pair.

Step 1g. If the chosen cost function Err(φ�
0, φ) < ε, with ε being a prescribed tolerance, terminate the iteration. Candidate 

cost functions include the L2-norm (N is the total number of grid cells):

L2-error = 1√
N

√√√√ N∑
i=1

(
φ�

0,i − φi
)2

, (38)

or the L∞-norm:

L∞-error = max
∀ cells

|φ�
0 − φ|. (39)

Step 1h. If not satisfied, increment the iteration count and go back to Step 1c.

The ELVIRA algorithm [51] has been implemented for the �n calculations performed here, due to its overall accuracy, and its 
ability to reconstruct any linear interface exactly [51].
11
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Fig. 5. Schematic representation of the nomenclature used to describe advection in the radial direction for cases with ux ≷ 0. In this representation, the 
z-axis is perpendicular to the page.

2.2.2. Volume fraction advection
The directional-split method [6] has been adopted here for the flux calculations in the solution of the VOF advection 

equation (Eq. (31)). Both the sequential flux-splitting approach with independent splitting and the bounded conservative flux-
splitting approach described in [52] have been modified for application to axisymmetric geometry. In the former method, the 
flux in each direction is calculated independently, and large undershoots and overshoots of the volume fraction (i.e. values 
outside the physically meaningful interval [0,1]) can occur. The latter method was designed to resolve this problem [52]; 
however, it requires solving the inverse reconstruction problem after each directional sweep, and introduces a corrective 
term to account for the non-zero divergence of the individual velocity components; see [52] for a detailed discussion.

For both approaches, the liquid volume advected in the given direction (either x or z) must be calculated for each 
cell to obtain the flux value. To this end, the forward reconstruction problem must be solved within a segment of the 
computational cell delineated by the so-called cut-cell fraction (CCF), which is calculated in 3D Cartesian VOF formulations 
according to [52]:

CCFcart,s = us
t


s
, (40)

in which us is the advective velocity in the direction s ∈ {x, y, z}, 
t is the time step, and 
s is the cell extent in the 
given direction (i.e. 
x, 
y or 
z). This equation is also applicable for advection in the axial direction in axisymmetric 
geometries, but the CCF for the radial advection then requires modification. It can be derived from the continuity equation 
as:

CCFradial = η2
f − (η f − LCFradial)

2

η2
e − η2

w
, (41)

where ηw and ηe are the reduced radial coordinates of the inward (west) and outward (east) faces of the cell, η f is the 
reduced radial coordinate of the particular face (i.e. either ηw or ηe), and LCFradial is the radial line cut fraction in the given 
cell, as calculated from:

LCFradial = η f −
√

η2
f − 2η f

ux
t


x
. (42)

The meaning of the individual symbols is illustrated schematically in Fig. 5.

2.3. Curvature estimation using height functions

A fundamental property of interface tracking in the context of bubble/droplet multiphase flows is the ability to esti-
mate the cell-wise curvature κ of the interface, which is needed for estimating the surface tension force included in the 
momentum conservation equations. In axisymmetric geometry, κ can be expressed in terms of the principal radii:

κ = 1

Rxz
+ 1

Rz
= κxz + κ̃z

xr
, (43)

where xr is the radial position of the interface, and represents the radius of revolution around the z-axis. The first term 
in Eq. (43) is just the curvature calculated in a two-dimensional Cartesian projection of the geometry on the x-z plane, 
while the second arises from the revolution around the z-axis, and is of course identically zero in the Cartesian case. In the 
context of VOF methods generally, the current state-of-the-art for curvature estimation is by means of the height-function 
method [53], first comprehensively presented by Sussman [54] and Cummins et al. [55]; the review paper of Popinet [53]
describes the height-function method in detail. Using basic differential geometry, both the Cartesian curvature κxz and the 
12
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Fig. 6. Illustration of the curvature sign convention. Curvature is positive in the left configuration and negative in the right one.

Fig. 7. Schematic representation of the height function method for the calculation of curvature in the highlighted cell. Only 3 × 3 stencils with uniform 
grid spacing are shown, for clarity. Left: |nz| > |nx|, implying the use of a stencil aligned with the z-axis. Right: |nx| > |nz |, implying the use of a stencil 
aligned with the x-axis.

non-dimensional factor κ̃z can be easily calculated (hz and hx are local representations of the interface as graphs of the 
functions z = hz(x) and x = hx(z), respectively). Viz:

κxz = ∂2hz

∂x2

/[
1 +

(∂hz

∂x

)2]1.5 = ∂2hx

∂z2

/[
1 +

(∂hx

∂z

)2]1.5
, (44)

κ̃z = ∂hz

∂x

/√
1 +

(∂hz

∂x

)2 = −1
/√

1 +
(∂hx

∂z

)2
. (45)

Under the chosen sign convention, which is standard for evaluating curvatures, the radius of curvature is positive if the 
centre of curvature is located “below” the surface, i.e. in the region for which c < 1

2 . This is illustrated in Fig. 6. Note that 
in general the centre of curvature may not lie in the same cell as the arc of the surface under consideration.

In the two-dimensional Cartesian implementation of the height function method, the functions hx and hz in Eqs. (44) and 
(45) are replaced by the area fraction field, integrated in a given direction on a local stencil [53]. In axisymmetric geometry, 
the area fraction is represented by the colour function c used in our calculations. A 3 × 7 stencil with the local topology 
adaptation of Lopez et al. [56] is used for the height integrations, in which the major stencil direction is determined by the 
dominant normal vector component: i.e. |nx| > |nz| results in alignment of the stencil with the x-direction, and |nx| < |nz|
results in alignment of the stencil with the z-direction. For the highly unlikely situation in which |nx| = |nz|, the major 
stencil direction is undefined; so in this case we choose x, just for simplicity.

Fig. 7 illustrates the curvature calculation in schematic form. For clarity, 3 × 3 stencils with uniform grid spacing are 
shown, but a 3 × 7 stencil is actually implemented in PSI-BOIL. In the example on the left, |nz | > |nx|, implying the use of a 
stencil aligned with the z-axis. In the example on the right, |nx| > |nz|, implying the use of a stencil aligned with the x-axis. 
Note that to maintain consistent second-order accuracy of the curvature estimation using height functions in axisymmetric 
geometry, the radius of revolution, xr in Eq. (43), must take into account the position of the interface with respect to the 
given stencil alignment, as indicated in Fig. 7.

3. Verification and validation

For verification purposes, artificial advection problems, and problems involving the generation of parasitic currents, have 
been selected for simulation. For the validation, the well-known cylindrical dam-break problem, and bubble rise due to 
buoyancy, have been chosen. Note that, barring influence of the outlet boundary conditions, exact conservation of total 
volumetric content of both phases has been confirmed in all simulations. The weighted-harmonic viscosity mixing rule 
(Eq. (34)) has been used in calculations in which the Navier-Stokes equations were solved, if not stated otherwise.
13
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Table 5
Simulation parameters of reversible advection verification cases.

Radial 
extent [m]

Axial 
extent [m]

Initial circle 
radius [m]

Initial circle 
location (x, z) [m]

Total time 
[s]

Stretching field (0, L) (−2.5L,2.5L) 0.1L (0.7L,0) 3.20 L/A
Contracting field (0, L) (−0.25L,0.25L) 0.1L (0.1L + 
x,0) 2.64 L/A
Circular vortex (0, L) (0, L) 0.2L (0.4L,0.4L) 15 L/A

3.1. Reversible advection problems

To verify the correct implementation of our advection algorithm in the code PSI-BOIL, the volume fraction field has been 
artificially transported by means of prescribed divergence-free velocity fields in different geometries for a pre-set number 
of time steps, and then run in reverse for the same duration. The differences between the initial and final configurations 
are then quantified, together with any under/overshoots of the volume fraction φ with respect to its physical range [0,1], i.e. 
−φmin and (φmax − 1). Note that these are very challenging tests of the model implementation. The following velocity fields 
have been considered:

1. Stretching field:

u(x, z) = − Ax

L
; (46)

w(x, z) = 2
Az

L
. (47)

2. Contracting field:

u(x, z) = Ax

L
; (48)

w(x, z) = −2
Az

L
. (49)

3. Circular vortex:

u(x, z) = −A cos
(π z

L

)
sin

(πx

L

)
; (50)

w(x, z) = AL

πx
sin

(π z

L

)[
sin

(πx

L

)
+ πx

L
cos

(πx

L

)]
. (51)

In all cases, advection is applied to analytically initialised circles (corresponding to tori in axisymmetric representation), 
and the domain dimensions taken as suitable multiples of L to accommodate the full advection process. Table 5 lists details 
of the chosen simulation parameters. Uniform discretisation of the grid has been adopted in all cases. Grid resolution is 
measured in terms of the number of cells per initial circle radius, with assumed values ranging from 20 to 240. The time 
step is taken as constant for each simulation, so that the CFL condition:

vmax
t


x
= CFLlim (52)

could be satisfied, with vmax the maximum of 
√

u2 + w2 in the computational domain. Multiple values of the CFL limit in 
the range [0.02, 0.4] have been adopted to test the effect of time step on the simulation results. Both “droplet-like” and 
inverted “bubble-like” tori have been tested: the effects of colour inversion, i.e. whether liquid or gas is considered as the 
primary fluid, were found to be negligible. For a qualitative illustration of the advection process, Figs. 8, 9, and 10 give 
snapshots of the simulations for selected grid resolutions and CFLlim values. It can be seen that in all cases the initial and 
final states bear much similarity, despite the challenging transient conditions imposed.

3.1.1. Comparison of flux calculation methods
We have performed calculations using both the sequential and bounded conservative flux-splitting methods described in 

Section 2.2. For a quantitative comparison of their convergence properties, Figs. 11, 12 and 13 show the simulation errors 
as functions of CFLlim and grid resolution. The L∞-errors of undershoot and overshoot in Fig. 12 are defined as:

L∞-error (undershoot) = max
∀ cells

(−φ), and (53)

L∞-error (overshoot) = max
∀ cells

(φ − 1), (54)
14



Fig. 8. From left to right: initial, midpoint and final states of the domain in the “droplet-like” stretching field reversible advection test case with bounded 
conservative flux splitting. There are 40 cells per initial circle radius; CFLlim = 0.2. Only one half of the domain is shown.

while the final L1-error in Figs. 12 and 13 is calculated according to:

L1-error = 1

V

N∑
i=1

∣∣∣φfinal
i − φinitial

i

∣∣∣V i, (55)

where N is the total number of grid cells, V the total domain volume, and V i the volume of cell i.
It can be noticed in Fig. 11 that for the sequential flux-splitting method the undershoots −φmin and overshoots φmax − 1

are quadratically dependent on CFLlim as a result of the over-estimation of the flux caused by the independent splitting. 
However, there is no significant difference between these two error estimates. For the bounded conservative method, no 
such trend can be discerned. This is not surprising as this method was specifically designed to prevent any overshoot/under-
shoot error resulting from the independent splitting for CFL < 0.5 [52]. Thus, these errors remain negligible, independently 
of the CFL number.

The final L1-error varies strongly with CFL for the sequential flux-splitting method. For example, as can be discerned 
from Fig. 12, the CFL-dependence of the error for the stretching and contracting field cases could be described as essentially 
linear, with a non-zero offset. This offset most probably derives from errors induced by interface reconstruction, and as such 
would be independent of the CFL number. While the final shape of the advected object is continuous and close to circular 
in the stretching field and contracting field cases, strong fragmentation is observed in the circular vortex cases, with the 
degree of severity increasing with increasing CFL number. This feature tends to dominate the final error and, as a result, 
the L1-error is seen to be unacceptably high for CFLlim � 0.2. This is a direct result of the over-estimation of the computed 
fluxes.

For the bounded conservative method, the final error depends only weakly on CFLlim . It can be seen that it is lower than 
the error for the sequential flux-splitting method for all CFL values, with the two apparently converging for CFLlim → 0, 
which is to be expected. The non-zero error offset as CFLlim → 0 corresponds to the accumulated reconstruction error for 
the given grid resolution, as the PLIC method with a finite grid spacing can never represent curved interfaces exactly; as a 
result, the L1-error tends to a non-zero value as CFLlim → 0. Note that due to the very good performance of the bounded 
conservative flux-splitting algorithm, the total error actually slightly decreases with increasing CFL number. This could be 
attributed to the reduced number of time steps, thereby reducing the number of interfacial reconstructions needed to be 
performed. Indeed, for a method in which the L1-error is dominated by the reconstruction error, this would lead to a 
reduction of the overall error.

For the dependence of the L1-error on grid resolution, the following observation can be made: assuming that cells in 
the vicinity of the interface account for the major contribution to the error, which is reasonable, and that the contribution 
ε of an individual cell is approximately constant, the L1-error should be proportional to G−1, where G is the grid level 
quantifying the number of cells per dimension, in our case the number of cells per initial circle radius. This deduction is a 
consequence of the number of cells near the interface Nγ being O(G), and the total number of cells N being O(G2). Hence:

L1-error ≈ Nγ
ε ∝ G

2
ε = G−1ε. (56)
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Fig. 9. From top to bottom: initial, midpoint and final states of the domain in the contracting field “bubble-like” reversible advection test case with bounded 
conservative flux splitting. There are 40 cells per initial circle radius; CFLlim = 0.2.

Fig. 10. From left to right: initial, midpoint and final states of the domain in the circular vortex field “droplet-like” reversible advection test case with 
bounded conservative flux splitting. There are 80 cells per initial circle radius; CFLlim = 0.2.
16



L. Bureš, Y. Sato and A. Pautz Journal of Computational Physics 436 (2021) 110291

Fig. 11. Maximum undershoot (left) and overshoot (right) of the volume fraction during the simulations as functions of the imposed CFLlim for all reversible 
advection cases: grid resolution 20 cells per initial circle radius for the stretching and contracting field cases, and 80 cells per initial circle radius for the 
circular vortex.

Fig. 12. Final L1-errors of the volume fraction field as functions of the imposed CFLlim for all reversible advection cases: grid resolution is 20 cells per initial 
circle radius for the stretching and contracting field cases, and 80 cells per initial circle radius for the circular vortex. Values are normalised in terms of the 
L1-error of the respective case, for CFLlim = 0.02 using the sequential flux-splitting method.

Fig. 13. Final L1-errors of the volume fraction field as functions of the reciprocal of the grid resolution (measured in cells per initial circle radius) for all 
reversible advection cases for CFLlim = 0.2; left: sequential flux-splitting method, right: bounded conservative flux-splitting method. Values are normalised 
in terms of the L1-error of the respective case for the coarsest grid resolution considered using the sequential flux-splitting method.
17
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Fig. 14. Position of the left (xmax , shown in the left figure) and top (zmax , shown in the right figure) edges of the advected circle as functions of time for 
the stretching-field/reversible advection test case; results of four different grid resolutions are shown as well as the analytic solutions (Eqs. (59) and (60)). 
Position is normalised by the initial circle radius R = 0.1L, and time is normalised in terms of the total time (see Table 5).

Fig. 13 shows that, for the sequential flux-splitting method, this dependence is exactly that observed for the stretching field 
case, as well as for the circular vortex case (after some initial non-monotonicity). In this case, the main source of error most 
probably results from surface fragmentation. The initial non-monotonic behaviour of the error corresponds to a qualitative 
change resulting from grid refinement, since for the two coarsest grid spacings very strong fragmentation occurs at the 
midpoint of the simulation in the tail of the spiral, which significantly increases the final error. Similarly, for the contracting 
field case, with the sequential flux-splitting method, the midpoint geometry is under-resolved for coarse grid spacings, 
whereas for fine grid spacings 1.5-order accuracy is achieved. Switching to the bounded conservative flux-splitting method 
reduces the error significantly; furthermore, the order of the asymptotic accuracy increases to ∼1.6 for the stretching field 
case, ∼1.9 for the circular vortex case, and ∼3 for the contracting field case. Evidently, using this method, the error in 
interfacial cells reduces with increasing grid resolution.

As the bounded conservative flux-splitting method outperforms the sequential one in all cases, this option will be 
adopted for the rest of the simulations described in this paper.

3.1.2. Evolution of interfacial position
For the stretching and contracting field cases, the u and w components of velocity are only dependent on the x and z

coordinates, respectively. Thus, for an infinitesimal fluid parcel located originally at [x0, z0], its position as a function of time 
can be calculated analytically by solving two first-order linear differential equations:

dx

dt
= u(x, z) = −S

Ax

L
, and (57)

dz

dt
= w(x, z) = 2S

Az

L
, (58)

in which S = 1 for the stretching field case and S = −1 for the contracting field case. For both, the solution is:

x(t) = x0 exp

(
− S

A

L
t

)
, and (59)

z(t) = z0 exp

(
2S

A

L
t

)
. (60)

Figs. 14 and 15 compare the position of the left (xmax) and top (zmax) edges of the advected circle as functions of time, 
obtained from the simulations at various levels of grid refinement, with the analytical solution. It can be observed that 
near-perfect agreement has been achieved overall, the only exception being the contracting field advection with 10 cells 
per initial circle radius: here, due to under-resolution of the midpoint condition at t = 1.32L/A (only 2 cells per axial 
extent of the stretched circle), the algorithm fails to capture advection in the reverse direction. Note that no analytical 
solution is available for the circular vortex case, but almost perfect recovery of the initial conditions, as in the stretching 
and contracting field cases, gives strong indications that the algorithm has been coded correctly.
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Fig. 15. Position of the left (xmax , shown in the left figure) and top (zmax , shown in the right figure) edges of the advected circle as functions of time for 
the contracting field reversible advection test case; results of four different grid resolutions are shown as well as the analytic solutions (Eqs. (59) and (60)). 
Position is normalised by the initial circle radius R = 0.1L, and time is normalised by the total time (see Table 5).

Fig. 16. Final L1-errors of the volume fraction field as functions of imposed CFLlim (left) and the reciprocal of the grid resolution measured in cells per 
initial circle radius (right). Results for the circular vortex case are shown using our approach with the sequential flux-splitting method, our approach with 
the bounded conservative flux-splitting method, Basilisk and Ansys® Fluent.

3.1.3. Comparison with contemporary VOF methods
In order to compare our method with existing implementations of the (axisymmetric) PLIC-VOF method, we have sim-

ulated the circular vortex case using the commercial CFD software Ansys® Fluent 2020 R14 [57] and the open-source CFD 
code Basilisk.5 Note that both Fluent and Basilisk incorporate the PLIC geometric reconstruction algorithm: see the Fluent 
Theory Guide [57] and the Basilisk source code at the referenced website. Basilisk uses the bounded conservative flux-
splitting advection method of Weymouth and Yue [52]; but we have not been able to find out the precise details of the 
Fluent advection algorithm, either in the documentation supplied with the code, nor in the open literature.

Fig. 16 shows a comparison of the final L1-errors using our implementation with the sequential flux-splitting method, 
our implementation with the bounded conservative flux-splitting method, Basilisk and Ansys® Fluent. For the simulations 
with variable CFLlim , a grid resolution of 100 cells per initial circle radius is used for our method, and for Fluent, and 102.4 
cells for Basilisk; this minor discrepancy resulting from the use of factors of 2 for domain discretisation in Basilisk, has a 
negligible effect on the comparisons. For the simulations with variable grid resolution, CFLlim = 0.2 in all cases. It can be 
seen that our approach with the bounded conservative flux-splitting method outperforms both Fluent and Basilisk under 
all conditions, meaning L1-errors are always smaller in our case. Furthermore, Fig. 17 compares the overshoot and under-
shoot errors of our approach against those of Basilisk, as functions of CFLlim . Our approach, with the bounded conservative 

4 https://www.ansys .com /resource -library /brochure /ansys -fluent.
5 http://basilisk.fr.
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Fig. 17. Maximum undershoot and overshoot of the volume fraction during the circular vortex simulations as functions of the imposed CFLlim . Results 
obtained using Basilisk and our approach with the sequential and the bounded conservative flux-splitting methods are shown. The results for our approach 
with the sequential flux-splitting method overlap.

Table 6
Simulation parameters of the Rudman [2] advection verification case. Initial location refers to the coordinates of 
the centre of area of the advected circle.

Radial 
extent [m]

Axial 
extent [m]

Initial 
location (x, z) [m]

Total time 
[s]

(0,2.8) (0,4) (1.36,1.88) 4

flux-splitting method, can again be seen to achieve superior performance in terms of L∞-error. Note that with Fluent, no 
overshoots and undershoots of the volume fraction occur, possibly due to clipping and filling of cells; as a result, the total 
volume of the phases is not exactly conserved during the simulation.

3.2. Rudman advection problem

In the test cases described in the previous section, the imposition of exact flow reversal can obscure the effects of the 
accumulating reconstruction errors. To evaluate the stability of the advection algorithm with respect to the reconstruction 
method, we have considered one of the forced advection test cases of Rudman [2], also used, for example, by Harvie and 
Fletcher [58]. In this test case, an analytically-initialised circle is advected using a constant, unidirectional velocity field and, 
after a given number of time steps, the volumetric fraction distribution is compared to the analytical solution. Note that for 
unidirectional flow, the sequential and bounded conservative flux-splitting methods coincide.

In axisymmetric geometry, only advection in the axial z-direction can be considered in order to avoid deformation of 
the advected objects due to radial stretching. In analogy to the original 2D Cartesian setup of Rudman [2], we consider 
an advection velocity of w = 1 m/s in the positive z-direction for a hollow circle with outer diameter of 1.6 m and inner 
diameter of 1.2 m. This shape represents a body of rotation in axisymmetric geometry with circular cross-section. Table 6
gives details of the simulation parameters adopted here. The domain is taken as periodic in the z-direction and the total 
time chosen so that the final position of the advected shape coincides with its original location. Uniform grid discretisation 
is used in all cases. Grid resolution is measured in terms of the number of cells per domain height, Lz = 4 m, ranging from 
100 to 800. The time step is taken as constant in each simulation, so that the CFL condition could be satisfied, the velocity 
being constant and equal to the prescribed value of w = 1 m/s. Multiple values of the CFL limit in the range [0.005, 1] are 
adopted to test the effect of the size of the time step on the simulation results.

Fig. 18 gives snapshots of the simulations for selected grid resolutions and CFLlim values. It can be seen that the initial and 
final states are almost identical. Table 7 lists the final L1-error as a function of grid resolution; the order of accuracy is ∼1.8. 
Regarding the dependence of the final L1-error on the CFLlim number, the total error grows with decreasing CFLlim , due to 
the increasing number of simulation steps which, in turn, correspond to an increased number of interface reconstructions. 
Indeed, in the limit of CFLlim = 1, the total error is caused only by the repeated reconstructions. However, the L1-error 
divided by the number of time steps, a measure representative of error per time step, scales almost linearly with the CFLlim
in the asymptotic region (i.e. CFLlim � 0.1); see Fig. 19. The undershoots and overshoots of the solution are negligible for 
all cases considered: both are results of independent splitting during flux calculations, and these errors do not occur for 
unidirectional advection.
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Fig. 18. Initial (left) and final (right) states of the domain in the Rudman circle advection test case. There are 400 cells per domain height; CFLlim = 0.2. 
Only that part of the domain containing the circle is shown. Units in m and s.

Table 7
Final L1-errors of the volume frac-
tion field for various values of the 
grid resolution (measured in terms 
of the number of cells per domain 
height) for the Rudman circle advec-
tion case, with CFLlim = 0.2. Values 
are normalised by the L1-error for the 
coarsest grid resolution considered.

Grid 
resolution [-]

Normalised 
L1-error [-]

1 1.00
2 0.282
4 0.0889
8 0.0270

Fig. 19. L1-errors per time step of the volume fraction field as a function of imposed CFLlim for the 
Rudman advection test case for circle with grid resolution 200 cells per domain height. Values are 
normalised in terms of the L1-error per time step for CFLlim = 0.005.

Fig. 20. Schematic representation of the domain used for the static parasitic current problem.
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Table 8
Characteristics of surface tension verification cases.

Laplace 
number La [-]

Density 
ratio [-]

Viscosity 
ratio [-]

C
t (Eq. (65)) 
[-]

Note

‘Droplet-like” 2 · 105 1000 100 0.126 Heavier fluid in the bulk
“Bubble-like” 2 · 106 1000 100 0.126 Lighter fluid in the bulk
Artificial case 1 · 103 1 1 0.282

3.3. Parasitic-current problems

3.3.1. Parasitic-current problem in a stagnant configuration (static)
The parasitic current problem is a standard benchmark for the implementation of the surface tension force in a code 

[53]. As described in detail by Popinet [59], the test consists of simulating a static sphere inside a stagnant bulk fluid. To 
represent this problem in axisymmetric geometry, we analytically initialise a circle of radius R in a square domain of side 
length L, and then calculate the corresponding volume fraction field using forward reconstruction. We choose L = 2 mm 
as a typical droplet/bubble size and R = 0.8L, following the choices made in [59]. Making use of the symmetry boundary 
condition at z = 0, only a half of the sphere needs to be simulated. Free-flow boundary conditions are applied at z = L and 
x = L. Fig. 20 is a schematic representation of the domain used.

The simulation is run until several multiples of a “suitable” time scale (see below) have elapsed to allow the system to 
relax to its equilibrium state. If the surface tension force has been implemented correctly, the amplitude of the velocity field 
should decrease below the prescribed residual tolerance of the iterative momentum equations solver. A “suitable” time scale 
T in this case would be:

T = max(Tσ , Tμ), (61)

in which Tσ is the capillary-wave time scale, calculated according to [59]:

Tσ =
√

ρd3

σ
, (62)

where σ is the surface tension coefficient between the two fluids, ρ the density of the fluid inside the sphere, and d = 2R
the diameter of the sphere. The viscous time scale, Tμ , is calculated as follows [59]:

Tμ = ρd2

μ
, (63)

where μ is the dynamic viscosity of the fluid inside the sphere. The Laplace number La,

La = T 2
μ

T 2
σ

, (64)

is an important dimensionless parameter characterising the problem. The two other control parameters are the ratios of the 
densities and dynamic viscosities for the two fluids. During the simulation performed here, the time step is limited by the 
capillary wave condition [49]:


t ≤ C
t

√
(ρ1 + ρ2)
x3

σ
, (65)

where ρ1 and ρ2 are the densities of the fluid on either side of the interface. Even though the condition in Eq. (65) was 
originally developed for 2D Cartesian geometry [49,60], it is also applicable for spherical surfaces, since in that case it 
can be derived by the requirement that the time step be smaller than the lowest admitted eigenperiod of the spherical 
droplet oscillations [61]. Note that the exact value of the coefficient C
t has not been agreed upon in the literature [53]: for 
example, Brackbill et al. [49] derived C
t = 1/

√
4π ≈ 0.282, while Sussman and Ohta [60] suggest C
t = 1/

√
8π3 ≈ 0.063.

Correct implementation of the surface tension force in our code has been verified for three test cases; their characteristics 
are summarised in Table 8. Four grid resolutions have been employed (16, 32, 48, 64), each measured in terms of number of 
cells per domain width L. Note that for the “droplet-like” cases, several million time steps are required to reach equilibrium 
conditions.

In all simulations, decay of parasitic currents has been observed. As illustration, Fig. 21 shows the relaxation process for 
the “droplet-like” and“bubble-like” cases for different grid resolutions. The capillary velocity scale used here for normalisa-
tion is given by [59]:

Uσ = d
, (66)
Tσ
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Fig. 21. L∞-norm of the z-component of the velocity field in the domain, normalised in terms of the capillary velocity, as a function of time, itself 
normalised in terms of the viscous time scale for the “droplet-like” (left) and “bubble-like” (right) static parasitic current problems; results of four different 
grid resolutions (measured in terms of number of cells per the domain width L) are shown.

Fig. 22. Relative L1-error of curvature as a function of time, normalised in terms of the viscous time scale, for the static parasitic current problem. Results 
with grid resolution 32 are shown.

with the L∞-norm defined as:

L∞-norm = max
∀ cells

∣∣∣∣∣∣ w

Uσ

∣∣∣∣∣∣. (67)

According to Popinet [59], the interfacial shape adjusts itself during the relaxation process to reach the static numerical 
equilibrium solution of the Young-Laplace equation:


p = σκ, (68)

where 
p is the pressure jump across the interface. The relative L1-error of the interfacial curvature in Fig. 22 is defined 
as:

L1-error = 1

Nγ

Nγ∑
i=1

∣∣∣∣∣∣κi − κtheor

κtheor

∣∣∣∣∣∣, (69)

with Nγ being the number of interfacial cells, and κtheor the theoretical value of the curvature of the sphere, equal to:

κtheor = 2

R
= 2

0.8L
= 1250 m−1. (70)

The evolution of the L1-error is shown in Fig. 22 for all three cases (droplet-like, bubble-like, artificial), each with a grid 
resolution of 32. Note that as the Laplace number increases (see Table 8) the relaxation process becomes longer, since the 
dampening effect of viscosity decreases. It should also be noted that, at the end of the simulation, the L1-error = L∞-error 
for all cases. This provides further evidence that equilibration has indeed been achieved.
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Fig. 23. Relative error of curvature as a function of the reciprocal of grid resolution (measured in terms of number of cells per the domain width L) for the 
static parasitic current problem; the L1- and L∞-errors are numerically identical. The solid line corresponds to a quadratic fit of the data points.

Fig. 24. Schematic representation of the domain used for the dynamic parasitic current problem.

Fig. 23 shows the final relative error in the curvature (Eq. (69)) as a function of the grid resolution for all three cases. 
It can be seen that for the artificial case, in which the densities and viscosities are equal, second-order accuracy has been 
achieved. For the bubble-like case, the error decays to negligible levels with higher grid resolution, while for the droplet-like 
case, the grid dependency cannot be clearly discerned. This adverse behaviour, as well as the observed non-monotonicity, 
are issues currently under further investigation. However, note that in all cases the error is anyway extremely small (� 1%), 
and the solutions are stable.

3.3.2. Parasitic-current problem in advected configuration (dynamic)
As argued by Popinet [53,59], the parasitic current problem in a stagnant configuration should be complemented by a 

corresponding dynamic study, in which a sphere is advected with constant velocity. In [59], for example, it was found that 
the simulation exhibited poor convergence characteristics, as the interface was continuously perturbed during advection. In 
the present study, advection in the axial direction has been tested for each of the three cases listed in Table 8. The domain 
is taken as periodic in the z-direction, and a free-slip boundary condition is applied in the radial direction; see Fig. 24. The 
radius of the advected sphere is taken as 0.5L, where L = 2 mm is the domain radial extent. Two extreme values of the 
advection velocity are considered: 0.01Uσ and 10Uσ . Five grid resolutions are adopted (16, 32, 48, 64, 96), each measured 
in terms of number of cells per domain width L.
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Fig. 25. L1-norm of the velocity field in the domain, normalised in terms of the capillary velocity, as a function of time, itself normalised in terms of the 
viscous time scale, for the “artificial” dynamic parasitic current problem; results for five grid resolutions are shown.

Table 9
Characteristics of the axisymmetric dam-break problem [62], and experimental results.

ID Initial radius 
R0 [cm]

Initial height 
H0 [cm]

Arrival time 
at wall [s]

Time of 
max. height [s]

Maximal 
height [cm]

D1-1 5.5 5 0.24 ± 0.02 0.34 ± 0.02 3 ± 1
D1-2 5.5 10 0.21 ± 0.02 0.36 ± 0.02 9 ± 1
D1-3 5.5 20 0.20 ± 0.02 0.42 ± 0.02 16 ± 1
D2-1 9.5 10 0.16 ± 0.02 0.34 ± 0.02 14 ± 1
D2-2 9.5 20 0.15 ± 0.02 0.40 ± 0.02 22 ± 1

For the artificial case, the parasitic currents do not decay to zero, but rather display a stable, oscillatory behaviour 
throughout the simulation: see Figs. 25a and 25b. This can be attributed to the fact that the advection scheme fails to 
preserve the spherical shape of the advected object, and corrective fluxes induced by the surface tension force arise as a 
result. The anomalous increase in magnitude of the parasitic currents for grid resolution 64, for both advection velocities, 
remains under investigation. Nonetheless, the results are encouraging in as far as the present algorithm does not induce 
divergent solutions.

In cases for which unequal dynamic viscosities are featured, irregular and even divergent behaviour has been observed 
when the weighted-harmonic mixing rule (Eq. (34)) is used. By switching to the classical harmonic mixing rule (Eq. (35)), 
stable solutions, with parasitic currents of negligible amplitude, could be achieved for the bubble-like cases. For the droplet-
like cases, the solutions were also stable, but with adverse properties:

• For an advection velocity of 0.01Uσ , the magnitude of the parasitic currents was comparable to, or even exceeded, the 
applied advection velocity, with occasional “spikes” occurring for some of the grid resolutions used.

• For an advection velocity of 10Uσ , the magnitude of the parasitic currents increased with the grid refinement.

Note that such problems always diminish if equal dynamic viscosities are imposed for the droplet-like cases. It appears 
that the representation of the stress balance at the phasic interface under dynamic conditions requires further investigation, 
which remains a task for future work.

3.4. Cylindrical dam break validation test

The dam-break problem is a commonly-used experimental benchmark for testing interfacial tracking methodology [64]. 
In this problem, a free-standing column of liquid, centrally located in a cylindrical vessel, is allowed to collapse under 
gravity. A diverging wave spreads out radially at the base of the column. Then, depending on the particular experimental 
set-up, sloshing, with different characteristics, takes place. The experimental study was performed at the Karlsruhe Institute 
of Technology by Maschek et al. [62,63]; the set of centralised dam-break experiments without obstacles, presented in Table 
V.1.1 of their report [62], is used here for validation purposes.

The computational domain has dimensions R × H , where R = 22 cm is the radius of the container and H is taken as 
double the height of the initial column H0, this to ensure that the upper outlet boundary condition has no influence on 
the subsequent dynamics; the radius of the initial column is R0. Fig. 26 is a schematic representation of the fluid domain, 
and Table 9 gives the values of R0 and H0 for all the cases studied here. Water, surrounded by air at room temperature, 
25



L. Bureš, Y. Sato and A. Pautz Journal of Computational Physics 436 (2021) 110291
Fig. 26. Schematic representation of the domain used for the dam-break problem.

Table 10
Physical properties of fluids used in the dam break problem.

Density 
[kg/m3]

Dynamic 
viscosity [Pa·s]

Surface 
tension [N/m]

Water 997.8 9.53 × 10−4 0.072
Air 1.2 1.82 × 10−5

Table 11
Simulation results for the axisymmetric dam-break problem.

ID Initial radius 
R0 [cm]

Initial height 
H0 [cm]

Arrival time 
at wall [s]

Time of 
max. height [s]

Maximal 
height [cm]

D1-1 5.5 5 0.23 0.31-0.32 5.0
D1-2 5.5 10 0.20 0.32-0.34 13.5
D1-3 5.5 20 0.20
D2-1 9.5 10 0.15 0.30-0.33 17.5
D2-2 9.5 20 0.15

and at atmospheric pressure, was used as the test liquid [62]. Physical properties of both fluids are presented in Table 10, 
and reflect normalised atmospheric conditions; surface tension is considered in the simulation. Due to the negligible effect 
of surface wetting on the problem dynamics, the wall adhesion force is neglected on the container walls. A uniform grid 
discretisation is employed for all cases. A variable time step is used, with the limit imposed by the Courant number, here 
taken as CFL < 0.2. A second upper limit is given by the capillary wave condition (Eq. (65)), with C
t = 0.126: the absolute 
minimum of these two criteria denoting the time step actually used in the simulation.

In the original experiments [62], the macroscopic characteristics (time of arrival of liquid at the outer wall, time of 
maximal ascent at the outer constraining wall, etc.) have all been recorded, and have provided valuable data for validation 
exercises. Some of these quantities have been reproduced in Table 9, just for reference purposes. Note that the time of 
maximal ascent at the outer constraining wall represents the limit of applying the axisymmetric assumption to the problem, 
as confirmed by the photographs presented in [62], in which three-dimensional effects are observed.

The time of arrival at the outer wall is a well-defined quantity, which was measured with high precision in the exper-
iments. Moreover, the flow is essentially perfectly axisymmetric before impact on the container wall. Thus, predictions of 
this quantity have been recorded for all the simulations performed here, and are presented in Table 11. As can be seen from 
the comparison with the measured values in Table 9, very good agreement has been achieved, all predictions falling within 
the error bounds of the experimental values.

Note that this problem exhibits non-monotonic convergence behaviour with respect to the degree of grid refinement, as 
illustrated in Fig. 27. With a grid resolution less than 880 cells per domain radius R (i.e. grid spacing 
x = 0.25 mm), almost 
no variation in the arrival time of the wave at the confining wall is observed as a function of grid refinement. However, 
by further increasing the grid resolution (i.e. using ever smaller meshes), significant improvement in overall agreement 
with measured data is achieved. This can be explained by considering that the arrival time is affected primarily by the 
overall momentum of the radially expanding wave, and only secondarily by its actual physical shape. To capture the scales 
required to resolve the overall momentum, it appears only a coarse grid is necessary. But, to capture the fine details of the 
wave, a high level of grid refinement must be employed. A qualitative comparison of the shape of the diverging wave as a 
function of grid resolution is shown in Fig. 28. Evidently, the leading edge is accurately resolved only in the case of fine grid 
resolution, which, as a consequence, improves the accuracy of the simulation results.
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Fig. 27. Deviation of calculated wall-arrival times from experimental values as functions of the reciprocal of grid resolution (measured in terms of number of 
cells per domain radius R) for the cylindrical dam-break problem. Values on the abscissa are normalised in terms of the coarsest grid resolution considered 
(88 cells per domain radius R) and values on the ordinate in terms of the experimental standard deviation (0.02 s). Refer to Table 9 for an explanation of 
the legend.

Fig. 28. Details of the leading edge of the diverging wave for the D1-1 axisymmetric dam-break problem. Three different levels of grid refinement are 
shown; the base grid resolution is 88 cells per domain radius R . Units are in mm.

The importance of properly resolving the leading edge of the diverging wave diminishes with increasing initial column 
height in the simulations, as demonstrated by the diminishing effect of grid refinement on error shown in Fig. 27. This can 
be attributed to the fact that the higher the initial column height, the higher the initial potential energy of the column, 
and the greater the kinetic energy of the advancing radial wave, with the dynamics of the situation becoming progressively 
more momentum-dominated.

After the impact of the liquid on the outer wall, the complexity of the interface structure gradually increases with the 
corresponding loss of axial symmetry. This becomes even more pronounced with increasing energy of the wave. Further-
more, corresponding generation of high-velocity eddies in the gas phase imposes limitations on the time step determined by 
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Fig. 29. Evolution of the phasic interface in the D1-3 axisymmetric dam-break problem; grid resolution 1760 cells per domain radius R . Units are in m.

the CFL condition. For these reasons, present simulations have been continued until the time of maximal height on the outer 
containing cylinder only for the three cases with less energetic impacts, and earlier times of maximal height (D1-1, D1-2 
and D2-1). Predictions for the maximal height of the outer sloshing, as well as its time, are presented in Table 11. While 
the times to maximum height are quite well-predicted, the heights themselves are over-estimated somewhat. This could 
be attributed to the fact that the higher the symmetry of the configuration, the more synchronised the system dynamics 
become [62], and in the case of our simulations, perfect cylindrical symmetry is inherently assumed, of course. Note that 
this could also explain the under-estimation of the arrival times and times of maximal height obtained from the simulations 
(although these values remain within the range of experimental uncertainty).

To illustrate the overall evolution of the flow, Fig. 29 shows several snapshots from the numerical simulation for the D1-
3 case, for which experimental photographs are available [62]. Several characteristics of the problem have been described 
in [62], in particular the relief wave on top of the collapsing column and the water “hump” at the leading edge during 
the horizontal outward spreading at the base: both aspects can be clearly identified from the simulation. For qualitative 
comparison purposes only, selected experimental snapshots of this case are reproduced in Fig. 30.

3.5. Single air bubble rise in liquid due to buoyancy

Simulating the rise of a single, initially spherical, bubble in a stagnant liquid is a challenging test of the stability and 
effectiveness of the coupling of the interface tracking method with the underlying momentum solver, and the treatment of 
surface tension. In particular, bubbles rising in a highly viscous liquid (e.g. a water-glycerin mixture) deform significantly, 
and a variety of bubble shapes are often observed [65]. In order to accurately reproduce the terminal rise velocity, and shape 
of the bubble, effects of external acceleration, viscosity and surface tension must be correctly accounted for, as reported in 
[64,66].

To represent this problem in axisymmetric geometry, we analytically initialise a circle of radius R at the bottom of a 
rectangular domain of dimensions L × H , and then calculate the corresponding volume fraction field using our forward 
reconstruction algorithm, as explained earlier. In order to minimise the wall effects on the computational results, we choose 
L = 8R , as per the recommendations of Hua et al. [66] and the experimental findings of Krishna et al. [67]. The domain 
height in the axial direction H is taken as a suitable multiple of R to accommodate the full motion of the bubble in a 
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Fig. 30. Snapshots of the D1-3 axisymmetric dam-break experiment [63]6.

static reference frame; here, we choose H = 30R . A free-flow outlet boundary condition is applied at z = H , and no-slip 
wall boundary conditions are applied at z = 0 and x = L. Gravity is considered to act in the negative z-direction. Fig. 31 is 
a schematic representation of the fluid domain.

A uniform grid discretisation is employed with 33 cells per initial bubble radius, corresponding to 261 360 grid cells in 
total. Grid convergence at this resolution was first confirmed by means of grid sensitivity studies performed for several of 
the considered cases. A variable time step is used, with the limit imposed by the Courant number, taken here as CFL < 0.25. 
A second upper limit on the time step is given by the capillary wave condition (Eq. (65)) with C
t = 0.126, and the absolute 
minimum of these two criteria is the time step actually used in the simulation.

To characterise the problem, the following dimensionless groups are commonly formed from the liquid properties (gas 
properties have a negligible effect on the dynamics of the problem [65]):

• Morton number Mo:

Mo = gμ4
l

ρlσ 3
, (71)

• Eötvös number Eo:

Eo = g D2
0ρl

σ
, (72)

• Terminal Reynolds number Ret :

Ret = ρl D0Ut

μl
, (73)

• Terminal Weber number Wet :

Wet = ρl D0U 2
t

σ
= Re2

t

√
Mo

Eo
. (74)

6 Reprinted from [63], p. 31, Copyright (1992), with permission from Taylor & Francis.
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Fig. 31. Schematic representation of the domain used for the bubble rise problem.

Table 12
Characteristics of the cases for the bubble rise in a stagnant liquid together with calculated Reynolds and Weber numbers.

Case Ref. D0

[mm]
ρl

[kg/m3]
μl

[Pa·s]
σ
[N/m]

Mo [-] 
(Eq. (71))

Eo [-] 
(Eq. (72))

Ret [-] 
(Eq. (73))

Wet [-] 
(Eq. (74))

1 [65] 3.9 1258 0.4578 0.0588 1.68 3.19 0.488 0.173
2 [65] 5.9 1258 0.4578 0.0588 1.68 7.31 1.51 1.10
3 [65] 5.9 1242 0.1735 0.0626 0.0292 6.78 6.81 3.05
4 [65] 5.9 1225 0.0800 0.0627 0.00133 6.67 18.2 4.66
5 [65] 9.0 1258 0.4578 0.0588 1.68 17.0 3.91 4.81
6 [65] 9.0 1242 0.1735 0.0626 0.0292 15.8 13.0 7.31
7 [65] 9.0 1225 0.0800 0.0627 0.00133 15.5 29.1 7.81
8 [68] 12.2 875.5 0.118 0.0322 0.0651 39.4 20.1 16.4
9 [69] 26.1 1350 2.722 0.0778 848 116 3.31 29.7
10 [69] 26.1 1350 2.038 0.0778 266 116 4.92 36.7
11 [69] 26.1 1350 1.277 0.0778 41.1 116 8.63 44.3
12 [69] 26.1 1350 0.7728 0.0778 5.51 116 14.8 47.6

D0: initial bubble diameter, ρl : liquid density, μl : liquid dynamic viscosity, σ : surface tension, Mo: Morton number, Eo: Eötvös number, Ret : terminal 
Reynolds number, Wet : terminal Weber number.
Gas density ρg [kg/m3]: 1.204.
Gas dynamic viscosity μg [Pa·s]: 1.85 × 10−5.

In these groups, D0 is the diameter of a volume-equivalent sphere (initial bubble diameter in our simulations), ρl the liquid 
density, μl the liquid dynamic viscosity, σ the surface tension, g the gravitational acceleration, and Ut the bubble terminal 
rise velocity.

The experimental data of Legendre et al. [65], Hnat and Buckmaster [68] and Bhaga and Weber [69] are taken for 
comparison purposes. Table 12 lists the characteristics of all the cases considered, together with calculated terminal Reynolds 
and Weber numbers. Fig. 32 shows a visual comparison of the computed bubble shapes against measured experimental data. 
Note that to obtain snapshots of the entire bubble cross-section, the plots of the simulation results have been mirrored 
around the axis of symmetry during post-processing. It can be seen that the various types of deformed bubble shapes (i.e. 
spherical, ellipsoidal and spherical-cap) are all well predicted. Fig. 33 is a plot of the calculated terminal Reynolds numbers 
against the correlation group of Rastello et al. [70]:

Ret,cor = 2.05We2/3
t Mo−1/5. (75)
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Fig. 32. Comparison of simulated and experimental bubble shapes.7 Numbers correspond to case identifiers listed in Table 12. The shadow observed below 
the bubble in Case 8 is an artefact of the experimental measurement technique [68].

Fig. 33. Comparison of terminal Reynolds numbers against the correlation group of Rastello et al. (Eq. (75)).

Selected experimental results from [65,68,69] are also shown. Good agreement between our computed values and experi-
mental data has clearly been achieved.

7 Reprinted from [65], p. 3, Copyright (2012), with permission from AIP Publishing, from [68], p. 182, Copyright (1976), with permission from AIP 
Publishing, and from [69], p. 66, Copyright (1981), with permission from Cambridge University Press.
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4. Conclusions

In this work, analytical solutions of the forward and inverse PLIC-VOF interface reconstruction procedure in axisymmetric, 
cylindrical geometry have been presented. To the best of authors’ knowledge, this represents the first solution of its type in 
such a configuration. Our direct analytic solution procedure outperforms the iterative solution method with a speed-up of 
about 1.4-1.7. Full implementation of the PLIC-VOF algorithm for axisymmetric cylindrical geometry is also presented here 
for the first time in the open literature, including a method for curvature estimation using height functions.

A number of benchmark simulations have been performed to test the efficacy of the numerical algorithm. First, a veri-
fication exercise has been performed using a set of forced advection cases, as well as the standard parasitic current problem. 
The advection problems successfully demonstrate the solution of the transport of the free surface under a prescribed ve-
locity field, with numerical predictions in good agreement with analytical results. For the circular vortex advection case, a 
comparison of error measures of our method and contemporary implementations of the axisymmetric PLIC-VOF method in 
the commercial CFD software Ansys® Fluent and open-source CFD code Basilisk demonstrates the superior performance of 
our method in terms of accuracy.

The static parasitic current problems considered here show that the discrete form of the Young-Laplace equilibrium 
condition can be achieved, after a sufficiently long relaxation time, for a variety of grids and material properties. For config-
urations in which both phases have the same density and dynamic viscosity, second-order accuracy is achieved. Furthermore, 
for these configurations, a stable solution of the dynamic parasitic problem involving repeated perturbation of the phasic 
interface by continuous advection could be demonstrated, with parasitic currents shown to be negligible. However, grid-
convergent solutions of the dynamic problem could not be attained for all configurations involving non-trivial viscosity 
ratios. It appears that the representation of the stress balance at the phasic interface under dynamic conditions requires 
further investigation.

To validate the algorithm developed here, the well-known axisymmetric dam-break problem and bubble rise in a qui-
escent liquid problem have also been simulated. For the dam-break problem, very good agreement of simulation results 
with experimental data has been attained, and the dynamic characteristics of the problem well reproduced. For the bubble 
rise problem, bubble shapes at various degrees of deformation have been well predicted, and good agreement between 
computed values of terminal Reynolds numbers with those derived from the experimental data has been achieved.

In future work, the wall-adhesion force, represented using height functions, will be included in the algorithm. This will 
enable wall-bounded flows to be simulated. Subsequently, the algorithm will be extended to treat problems involving heat, 
mass and species transfer, by incorporating a sharp-interface phase change model and species transport solver.

CRediT authorship contribution statement

Lubomír Bureš: Conceptualization, Methodology, Software, Validation, Visualization, Writing – original draft. Yohei Sato:
Conceptualization, Funding acquisition, Project administration, Supervision, Writing – review & editing. Andreas Pautz:
Project administration, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to thank Dr. Brian Smith of Goldsmith Transactions for valuable technical discussions, ad-
vice and English corrections. This work is supported by the Swiss National Science Foundation (SNSF) under Grant No. 
200021_175893.

Appendix A. Solution of the inverse problem

With reference to the terminology introduced in Section 2.1.2, we demonstrate the solution of the inverse problem for 
the case mx ≤ mz , nx ≥ 0. The derivation for other cases follows analogously. At the transition point, which it will be recalled 
is the point where two different branches of the solution connect, the following relation holds:

φtr = mx

2mz

η0 + 1/3

η0 + 1/2
. (A.1)

A.1. φ < φtr

For φ < φtr , α(φ) is the solution of the cubic equation:(
η0 + 1

)
φ = α2 (

η0 + α
)

, (A.2)

2 2mxmz 3mx
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which can be re-arranged (using standard notation for the cubic equation coefficients a, b, c) as:

α3 + aα2 + c = α3 + 3mxη0α
2 − 6m2

xmz

(
η0 + 1

2

)
φ = 0. (A.3)

Note that the coefficient b is absent here, since there is no linear term in the equation. According to the Descartes’ rule of 
signs [71], only one solution of this equation is positive; this is the one being sought. Following the standard rules for the 
solution of cubic equations [44,71], we define:

p := −a2

3
= −3m2

xη
2
0; (A.4)

q := 2a3

27
+ c = 2m3

xη
3
0 − 6m2

xmz

(
η0 + 1

2

)
φ = 2m2

x

[
mxη

3
0 − 3mz

(
η0 + 1

2

)
φ

]
. (A.5)

The cubic determinant 
 is then determined according to:


 = q2

4
+ p3

27
= 3m4

xmzφ

(
η0 + 1

2

)[
3mz

(
η0 + 1

2

)
φ − 2mxη

3
0

]
. (A.6)

It can be seen that the determinant can attain negative, zero or positive values; the sign can be decided from the critical 
value (note that here mz > 0):

φcrit = 2mx

3mz

η3
0

η0 + 1/2
= 4

3

η3
0

η0 + 1/3
φtr . (A.7)

Using the above definition of φcrit , together with the definition

M := 3m2
xmz

(
η0 + 1

2

)
, (A.8)

q can be rewritten as

q = 2m2
x

[
mxη

3
0 − 3mz

(
η0 + 1

2

)
φ

]
= M

(
φcrit − 2φ

)
, (A.9)

p as

p = −3m2
xη

2
0 = −3

(
Mφcrit

2

)2/3

, (A.10)

and finally the determinant 
 as


 = 3m4
xmzφ

(
η0 + 1

2

)[
3mz

(
η0 + 1

2

)
φ − 2mxη

3
0

]
= M2φ

(
φ − φcrit

)
. (A.11)

A.1.1. 
 < 0, φ < φcrit

For φ < φcrit , the determinant is negative. Then, three real solutions exist:

α1 = a

3

[
− 1 + 2 sin

(
ϕ0

3

)]
, (A.12)

α2 = a

3

[
− 1 − 2 sin

(
ϕ0

3
+ π

3

)]
, (A.13)

α3 = a

3

[
− 1 + 2 cos

(
ϕ0

3
+ π

6

)]
, (A.14)

with ϕ0 calculated according to:

ϕ0 = arcsin

(
27q

2a3

)
= arcsin

(
1 − 2φ

φcrit

)
, (A.15)

in which the coefficient a/3 may be expressed in terms of M and φcrit as

a

3
=

(
Mφcrit

2

)1/3

. (A.16)

It can be readily proved that α3 ≥ α1 and α3 ≥ α2; therefore, α3 is the only positive root, which is the one sought for in 
this algorithm.
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A.1.2. 
 > 0, φ > φcrit

For φ > φcrit , the determinant is positive. Then, only one real solution exists, and this has the form:

αsol =
(

− q

2
+ √




)1/3

+
(

− q

2
− √




)1/3

− a

3

=
(

M

2

)1/3[{
2φ − φcrit + 2

√
φ
(
φ − φcrit

)}1/3

+
{

2φ − φcrit − 2
√

φ
(
φ − φcrit

)}1/3

− φ
1/3
crit

]
.

(A.17)

A.1.3. 
 = 0, φ = φcrit

For the case φ = φcrit , the determinant is zero. Then, two real solutions exist:

α1 = −2

(
q

2

)1/3

− a

3
=

(
M

2

)1/3[
2

{
2φ − φcrit

}1/3

− φ
1/3
crit

]
, (A.18)

α2 =
(

q

2

)1/3

− a

3
=

(
M

2

)1/3[
−

{
2φ − φcrit

}1/3

− φ
1/3
crit

]
. (A.19)

Evidently, α2 ≤ 0 and α2 = 0 if and only if α1 = 0. Consequently, α1 is the desired solution. It can also be recognised that 
this is just a special case of the formula in which 
 > 0, A.1.2, so these two cases do not have to be treated separately.

A.2. φ ≥ φtr

For φ ≥ φtr , α(φ) is the solution of the linear equation:(
η0 + 1

2

)
φ = 1

2mz

(
2α − mx

)(
η0 + 1

3

3α − 2mx

2α − mx

)
= 1

2mz

[(
2α − mx

)
η0 + 1

3

(
3α − 2mx

)]
, (A.20)

for which there is just one solution:

αsol = mzφ + mx

2

η0 + 2/3

η0 + 1/2
. (A.21)

This concludes the solution of the inverse problem for all branches of the case in which mx ≤ mz , nx ≥ 0. Though the solu-
tions appear rather cumbersome, once they have been derived and implemented in the code, major savings in computational 
efficiency result.
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