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Abstract: Multimode fibers (MMF) were initially devel-
oped to transmit digital information encoded in the time
domain. There were few attempts in the late 60s and 70s to
transmit analog images through MMF. With the availability
of digital spatial modulators, practical image transfer
through MMFs has the potential to revolutionize medical
endoscopy. Because of the fiber’s ability to transmit mul-
tiple spatial modes of light simultaneously, MMFs could, in
principle, replace the millimeters-thick bundles of fibers
currently used in endoscopes with a single fiber, only a few
hundred microns thick. That, in turn, could potentially
open up new, less invasive forms of endoscopy to perform
high-resolution imaging of tissues out of reach of current
conventional endoscopes. Taking endoscopy by its general
meaning as looking into, we review in this paper novel ways
of imaging and transmitting images using a machine
learning approach. Additionally, we review recent work
on using MMF to perform machine learning tasks. The
advantages and disadvantages of using machine learning
instead of conventional methods is also discussed.
Methods of imaging in scattering media and particularly
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MMFs involves measuring the phase and amplitude of the
electromagnetic wave, coming out of the MMF and using
these measurements to infer the relationship between the
input and the output of the MMF. Most notable techniques
include analog phase conjugation [A. Yariv, “On trans-
mission and recovery of three-dimensional image infor-
mation in optical waveguides,” J. Opt. Soc. Am., vol. 66, no.
4, pp. 301-306, 1976; A. Gover, C. Lee, and A. Yariv, “Direct
transmission of pictorial information in multimode optical
fibers,” J. Opt. Soc. Am., vol. 66, no. 4, pp. 306-311, 1976; G.
J. Dunning and R. Lind, “Demonstration of image trans-
mission through fibers by optical phase conjugation,” Opt.
Lett., vol. 7, no. 11, pp. 558-560, 1982; A. Friesem, U. Levy,
and Y. Silberberg, “Parallel transmission of images
through single optical fibers,” Proc. IEEE, vol. 71, no. 2, pp.
208-221, 1983], digital phase conjugation [I. N. Papado-
poulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and
scanning light through a multimode optical fiber using
digital phase conjugation,” Opt. Express, vol. 20, no. 10,
pp. 10583-10590, 2012; 1. N. Papadopoulos, S. Farahi, C.
Moser, and D. Psaltis, “High-resolution, lensless endo-
scope based on digital scanning through a multimode
optical fiber,” Biomed. Opt. Express, vol. 4, no. 2, pp.
260-270, 2013] or the full-wave holographic transmission
matrix method. The latter technique, which is the current
gold standard, measures both the amplitude and phase of
the output patterns corresponding to multiple input pat-
terns to construct a matrix of complex numbers relaying
the input to the output [Y. Choi, et al., “Scanner-free and
wide-field endoscopic imaging by using a single multi-
mode optical fiber,” Phys. Rev. Lett., vol. 109, no. 20, p.
203901, 2012; A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey,
and R. Piestun, “Real-time resilient focusing through a
bending multimode fiber,” Opt. Express, vol. 21, no. 10, pp.
12881-12887; R. Y. Gu, R. N. Mahalati, and J. M. Kahn,
“Design of flexible multi-mode fiber endoscope,” Opt.
Express, vol. 23, no. 21, pp. 26905-26918, 2015; D. Loterie, S.
Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser,
“Digital confocal microscopy through a multimode fiber,”
Opt. Express, vol. 23, no. 18, pp. 23845-23858, 2015]. This
matrix is then used for imaging of the inputs or projection
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of desired patterns. Other techniques rely on iteratively
optimizing the pixel value of the input image to perform a
particular task (such as focusing or displaying an image)
[R. Di Leonardo and S. Bianchi, “Hologram transmission
through multi-mode optical fibers,” Opt. Express, vol. 19,
no. 1, pp. 247-254, 2011; T. Cizmar and K. Dholakia,
“Shaping the light transmission through a multimode op-
tical fibre: complex transformation analysis and applica-
tions in biophotonics,” Opt. Express, vol. 19, no. 20, pp.
18871-18884, 2011; T. Cizmar and K. Dholakia, “Exploiting
multimode waveguides for pure fibre-based imaging,” Nat.
Commun., vol. 3, no. 1, pp. 1-9, 2012; S. Bianchi and R. Di
Leonardo, “A multi-mode fiber probe for holographic
micromanipulation and microscopy,” Lab Chip, vol. 12,
no. 3, pp. 635-639, 2012; E. R. Andresen, G. Bouwmans,
S. Monneret, and H. Rigneault, “Toward endoscopes with
no distal optics: video-rate scanning microscopy through a
fiber bundle,” Opt. Lett., vol. 38, no. 5, pp. 609-611, 2013].

Keywords: deep neural network; imaging; multimode
fibers; neuromorphic computing.

The dependence of the aforementioned methods [1-15] on
the phase measurement is also their weakness. This is
rooted in two reasons. First is the necessity of having a
nontrivial phase measurement apparatus. A holographic
experiment requires an external reference beam brought to
the output of the fiber to generate an interference pattern
from which the complex optical field (amplitude and
phase) can be extracted. Although some work has shown
that the reference beam can also be sent through the same
MMF [16], multiple quadrature phase measurements must
be done to extract the phase.

The second reason is the sensitivity of the phase to
external perturbations. Any mechanical variation or ther-
mal variability, among others, could drift the phase of the
reference wave. Upon significant change of the phase, the
calibration process needs to be repeated. Therefore, careful
phase tracking needs to be implemented to correct for
phase drift, which further complicates the implementation.

Thereby, a method that can characterize the MMF
without using the phase information of the output wave
while at the same time is as general as the gold standard
methods is highly desired. Recently, data driven methods
have been applied for characterizing scattering media and
MMFs. These techniques rely on inferring the statistical
characteristics of light propagation through the MMF system
through examples. Some works have used convex optimi-
zation to infer the transmission matrix from intensity mea-
surement [17, 18]. Others use Bayesian inference to infer the
input of the system. For the latter methods, an estimate of
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the TM of the system is first approximated using some probe
signals sent through the medium. Afterwards, an additional
step based on Bayesian inference is taken to infer the sys-
tem’s input either for imaging [19], for projection [20] or
computation [21]. Although these works are promising steps
for phase-independent characterization of the MMF, they
either lack generalization or require independent compu-
tation each time a pattern needs to be imaged or projected.
For example only limited types of images, mostly sparse
such as spots, was projected with these methods [22]. A data-
driven method that is able to generalize to all level of image
complexities, one that can learn input and output relation
end-to-end while all noise sources are present (even
when the noise is time-dependent) and one that does not
require additional computation for every pattern is more
advantageous.

In what follows, we review recent works that use
modern data-driven deep neural networks (DNNs)-based
methods for imaging, projection in scattering media and
specifically MMFs. We show that these methods consider-
ably simplify the measurement system and experiments
and show that they can correct external perturbations as
well. We also show recent works that MMF can be used as a
medium to do optical computing [23-32].

1 Learning to image

Learning-based methods for imaging through scattering
media and particularly MMFs seek to retrieve the input
information (usually a 2D image) entering the system from
intensity-only measurements of the output. In particular,
as the phase information of the wave exiting the distal facet
of the fiber is lost due to the squared-law of the detector
(a CCD or CMOS camera), these methods seek to reconstruct
the input from statistical characteristics of the system
learned from data. It should be noted that such a problem is
highly ill-posed as many inputs can result in the same
amplitude profile at the output of the fiber that only differ
in their respective phase information. A general framework
for learning physical systems, such as that of the MMFs,
depicted in Figure 1 involves acquiring many samples of
the system’s input—output (1) which is governed by phys-
ical propagation (2). A quantifiable metric is then chosen
for the inverse problem (3) from which a neural network is
trained (4). Finally, the trained network is used for infer-
ence i.e. for generating the system’s output from an input.

In particular, examples of the input—output obtained
from the system are used to learn the backward mapping of
the system without estimating the forward mapping. The



DE GRUYTER

1 2

Data measurement

Physical constraints

O g | L

Target-oriented metric

B. Rahmani et al.: Learning to image and compute with multimode optical fibers =—— 3

4 5

Training

Neural network
Q

Figure 1: General framework for learning of physical systems such as the system of an MMF.

learning is carried out by minimizing a loss function con-
structed in the following way:

9= arg;nin[M(x,Ag ) +alloll 1)

where x and y are the input and output of the system. We
note that x in general is complex, whereas y is always a
positive real number. X is the solution of the this optimi-
zation problem X = Ag( y). The operator M represents a
metric between the predicted output of the network A, that
is parametrize by 6. Often time, regularizing 6 provides
better reconstruction fidelities. Therefore, a regularizing
term (I, norm) is added to the loss function that could be
tuned by the hyperparameter a. The regularization term
constraints the optimization to look for a sub-space
(instead of the full space of all-possible ) that the solu-
tion is expected to exists in. Reference [33] provides an
overview of the necessity of regularization for inverse
problems. The loss function is minimized by taking gradi-
ents with respect to the learnable parameters of the map-
ping function A, i.e. 6, in a process known as gradient
descent. Once converged, the mapping function is an
estimator of the backward mapping of the MMF system that
predicts the input patterns of the system from the corre-
sponding outputs. Depending on the modulation type of
the input beam, whether the information is incorporated in
the amplitude, phase or both of the formers, x could be real
or complex. It is expected that reconstruction in the case of
complex or phase modulation be more difficult than the
amplitude modulation as in the former cases, either the
real and imaginary parts of the input pattern (complex
modulation), two dependent unknowns, or its logarithm
(phase modulation), hence a nonlinear function, is to be
reconstructed.

A great number of recent works studied the use of data-
driven methods for computational imaging in scattering
media [34-40] for example for microscopy [41-43] and
imaging under low-photon condition [40]. A review on
these methods is studied here [44].

In MMFs, using a convolutional network, Rahmani
et al. [45] attempted to reconstruct the input information
scrambled upon propagation through a 0.75 m piece of step
index 50 pm diameter silica core size MMF. Both types
of the modulation, i.e. phase or amplitude, were tested.
Examples of the reconstructed inputs for both modulations
are plotted in Figure 2. After training, the same network
could be used to reconstruct images from a different class.
Although the authors show that their network could
transfer its knowledge for retrieval of other types of images,
the retrieval performance deteriorates when the images
become significantly different with the training set.

To overcome this problem authors in [46] use a com-
bination of two networks for reconstructing the input of the
fiber system. In particular, first a network retrieves back the
input pattern of the fiber from intensity-measurements of
the outputs. The predicted input is then fed to a second
network that maps this inferred input pattern to the orig-
inal scrambled output initially given to the first network. In
essence, the first network is learning the backward map-
ping of the fiber from intensity-measurements to the
modulator pattern while the second network is learning the
forward mapping. Example of images reconstructed via
this double network is shown in Figure 3. The training
dataset used here are from natural images (images of
everyday objects). As evident, these images have higher
structural complexity as compared with the sparse-like
images used in the work of Rahmani et al. [45].

Both of the works of Caramazza et al. and Rahmani et al.
[45] impose a computational expensive burden due to their
network architecture of the training algorithm. Authors in
[47] proposes a simpler network for reconstruction of the
images scrambled through MMF. They use a fully-connected
network to reconstruct sparse-like images of digits and
obtain the same level of fidelity as compared with the pre-
vious works.

In another work [48], Borhani et al. uses neural net-
works for classification as well as reconstruction of the
inputs of an MMF system for various lengths of the fiber
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(a) Amplitude-Mod.

SP RC
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Figure 2: Performance of the network in transfer learning the reconstruction of the input amplitudes/phases from the output amplitude
speckle patterns when the DNN is trained with the handwritten Latin alphabet. The speckle pattern for each image is obtained using the TM of

the system.

(a) Reconstructed amplitude input patterns and (b) reconstructed phase input patterns of digit images. The performance metric (2-dimensional
Pearson correlation between the GT images and RC images) are shown as inset. Figures adopted from [45].

starting from 0.1 m up to 1 km. Both amplitude- and phase-
modulated SLM patterns are tested. It was shown that, for
fibers up to 10 m in length, phase-modulated input pro-
vides slightly better classification accuracies, probably due

to the more uniform distribution of the injected light across
the fiber modes. For amplitude-modulated inputs, there is
a selective spatial excitation of the fiber modes at the input
facet, which may limit the number of modes that actually
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Figure 3: Performance of the network in reconstruction of the input
amplitude from the output amplitude speckle patterns when the
DNN is trained with natural images. The figure is adopted from [46]
with modifications. The performance metric (2-dimensional Pearson
correlation between the GT images and RC images) are shown as
inset.

participate in transporting the information. On the other
hand, for the 1 km fiber, the amplitude-modulated prox-
imal input image provides better classification accuracies.
Authors attributed this to distribution of the information
among all modes along the long propagation distance of
the fiber. Additionally, despite the pronounced sensitivity
of the fiber to external perturbation specifically in the case
of the long 1 km length, it was observed that the network
learns to correct for the perturbation and successfully
reconstruct the information.

In keeping with the results of Borhani et al. [48],
authors in [49] attempted to learn perturbed system of
MMFs. In particular, the fiber was moved around a number
of different but fixed configurations where in each position
examples of the input-output of the system were collected.
A network was trained with the entire dataset (combined
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dataset from multiple configurations) to reconstruct the
input of the system. Even though the fiber undergoes se-
vere change from one configuration to the other, it was
shown that reconstruction of the input is still possible. This
might be an advantage of learning-based methods as
compared to their non-learning counterparts; for in the
latter case, when the system is moved (unless for small
lengths of MMFs [50] - few hundreds of millimeter- or some
specialty MMFs such graded-index (GRIN) [51] or multi-
core), a recalibration of the entire system is necessary. To
correct for perturbations, we note that learning-based
methods require samples from different perturbed config-
urations while the non-learning method require additional
characterization process.

Similarly in [52], authors applied deep learning to the
image retrieval problem that shows robustness to fiber
deformations as large as few millimeters. By drawing from
a method that combines data from different configurations
of the MMF (configuration learning), images decorrelated
by a factor of 10 (Pearson correlation of 0.1) because of fiber
bends, were reconstructed with high fidelities. The authors
attribute this success to DNNs learning invariant properties
in the speckle produced for different fiber conformations.
Similar methods have been applied to more drastic fiber
perturbations (smaller bent radius), for example in [53]
where authors show successful reconstruction of the input
image for 5 cm fiber bend.

Another source of perturbation is the drift in the
wavelength of the laser source that decorrelates the output
intensity with time. In a study conducted by Kakkava et al.
[54-56], it was shown that the DNNs can correct for
the decorrelation rendered by the wavelength change of the
fiber with an extended bandwidth. A classification of the
output intensities into single digit numbers was conducted
using a multimode GRIN fiber of length 10 cm and core size
62.5 um diameter at central wavelength 800 nm. Figure 4(a)
plots the deterioration of the speckle pattern versus wave-
length changes. As evident, at a half width bandwidth of
50 nm, the output pattern gets entirely decorrelated. Two
experiments where conducted. In one, a network is trained
with examples of input-output, only at the central wave-
length and then was tested on examples at other wave-
lengths while in the second experiment, the network was
trained with examples from multiple wavelength points
and tested on various wavelengths within the range of
wavelengths used for training. As evident in Figure 4(b),
the performance of the network is substantially higher in
the latter experiment.

External perturbations that are detrimental for imag-
ing could be harnessed for sensing in MMFs. Authors in [57]
use deep learning for sensing, such as temperature for
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Figure 4: Speckle intensity correlation as a function of wavelength drift bandwidth; (b) Classification accuracy for datasets collected for the
two cases discussed in the text: DNN trained at 800 nm wavelength and tested at data collected at different wavelengths (red circles) and DNN
trained with data that include the perturbation (blue circles). Figures adopted from [54].

example, using the complex optical interference output of
an MMF. The method is shown to work even when the
information is buried in strong undesired noise. In other
line of works, the spectral output of the MMF is used for
sensing mechanical perturbations such as bends [58, 59]
along the fiber.

2 Learning to project

Learning-based methods for projection through scattering
media and MMFs [60, 61] seek to find the correct input
pattern that upon propagation through the fiber produces a
desired image at its distal side. It is again assumed that the
fiber system is characterized without resorting to holo-
graphic measurements. In other words, the phase infor-
mation of the wave exiting the fiber is not measured and
only intensity measurements of the output are available. A
similar learning of the MMF system as in the imaging case
could not be carried out here since a priori, no proper ex-
amples of the correct input for producing a desired output
image is available. In [60] authors propose to use a com-
bination of two networks as a solution to this problem. In
particular, one network, referred therein as model network,
is trained to mimic the forward propagation path of the
MMF from where the incoming wave is modulated by an
SLM until it reaches the camera. A second network, referred
to as Actor, is then trained to obtain the inverse of the
forward path. These two networks are trained one at a time
after each other so as to the actor network uses an estimate

of the forward propagation of the MMF learned by the
model to find the correct input required for projection of the
desired target output. The handshake between the two-
network method and the MMF system (achieved through
updating the model with the experimental data received
from the MMF) act as a feedback which allows the actor to
move toward the appropriate distribution of SLM patterns
that is required for producing the desired target outputs. A
sketch of the training procedure for this network is depic-
ted in Figure 5. Results of the projection through the MMF
are shown in Figure 6. Authors in [60] compared the pro-
jection fidelity of the two-network method with that of the
holographic-based TM approach for various dataset shown
in Table 1.

3 Learning to compute

In addition to using digital computers to image and project
with MM optical fibers, they can also be used to perform
computational tasks since a complex transformation oc-
curs as light propagates through a fiber due to linear and
nonlinear effects. One of the main transform mechanisms
in multimode fibers is linear scattering and this phenom-
enon was already utilized for computational processes in
the context of complex media. Using TiO, nanoparticles on
a microscopy slide as the scattering medium, Saade et al.
[23] showed that linear scattering process could be used as
a random projection kernel on the data and can improve
the accuracy on classification tasks. In addition, this
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System output

Figure 5: The projector network consists of two subnetworks: the model (M) and the actor (A). Once trained, the subnetwork actor accepts a
target pattern desired to be projected at the output MMF to generate an SLM pattern. The training procedure is carried out in three steps. (i) A
number of input control patterns are sent through the system and the corresponding outputs are captured on the camera. (ii) The subnetwork
modelis trained on these images to learn the mapping from the SLM to camera, so the model is essentially learning the optical forward path of
light starting from its reflection from the SLM, propagation through the MMF and finally impinging on the camera. (jii) While the sub-network
modelis being fixed, the actor is fed with a target image and is asked to produce an SLM image corresponding to that target image. The actor-
produced SLM image is then passed to the fixed subnetwork model. (c) The test procedure is carried out by feeding the target image to the
trained subnetwork actor and acquiring the appropriate SLM image corresponding to that target image and sending it through the system.

Figure adopted from [60].

improvement was further analyzed by Gao et al. [24], using
the combination of a simple linear classification algorithm
and speckle formation by a scattering medium from input
images at different wavelengths, they demonstrated that
this combination can perform comparably with a deep
convolutional neural network trained directly on input
images. Moreover, in the study by Dong et al. [25], linear
scattering process provided the random projection step as
a part of recursive computation scheme, realizing optical
reservoir computing. Nonlinear activation function on this
recurrent neural network was modulus square operator,

since the final state of electromagnetic field could be
measured as intensity on a camera sensor.

Sunada et al. [26] demonstrated the transform of in-
formation thanks to the dynamics of speckle formation
inside MMFs. The information is encoded as the phase of
spatially single-mode input laser, and the intensity of the
speckle pattern at different locations of the output beam
was recorded. This transform of data is then shown to be
applicable to the task of chaotic time series prediction.
Similarly, Paudel et al. [27] encodes the information with a
spatial light modulator to a beam which is then propagated
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Figure 6: Continuous grey-scale image projection. Examples of natural-scene continuous grey-scale target and experimentally projected
images being sent through the MMF and captured on the camera for colors red, green, blue and the three-channel RGB as well as the
superposition of all three colors in one channel (sum) are shown. Figure adopted from [60].

inside an MMF. The output speckle is then recorded with a
camera. This output pattern is then fed back along a new
input pattern at the input of the MMF. Nonlinearity is
introduced at the coding level, from phase to intensity and
from the field amplitude to intensity conversion at the
camera. In another study, the crosstalk between cores and
the spatial control of gain inside a multi-core active fiber is
proposed to be used for realizing an optical computer that
operates as a neural network [28].

Even though optoelectronic interfaces such as cameras
provide nonlinearity naturally, to implement a fully optical
neural network, or to simply benefit from optical domain’s
advantages such as parallelism, many groups aimed to

Table 1: Neural network and TM image projection average fidelities
(in percent) for various dataset. Data adopted from [60].

Dataset (1000 samples) Average variance

NN ™ NN ™
Latin alphabet 92.4 96.9 3.7 0.8
Digits 92.5 97.1 3.5 0.7
Random sketches 83.9 90.3 3.9 1.2

achieve nonlinearity optically with different approaches.
Using relatively mature silicon photonics technology, Jha
et al. [29] built a cavity-loaded Mach-Zehnder interferom-
eter device that can perform nonlinear activation func-
tions. This device could implement different nonlinearity
functions and achieve generalization in different tasks.
Miscuglio et al. [30] used a quantum dot in conjunction
with gold nanopatrticles to achieve all-optical nonlinearity
such as saturable absorption. In the study by Zuo et al. [31],
the transitions between states of laser-cooled atoms were
tuned to achieve all-optical nonlinearity. Then, these
nonlinearities were placed in a free-space optical setup to
be the activation function inside an optical neural network
and this network could classify order and disorder phases
of a statistical Ising model.

Instead of using additional optical components or
relying on electro-optic devices for nonlinearity in the data
transformation, which is indispensable for successful
generalization in many computational tasks, Tegin et al.
[32] demonstrated that optical nonlinearities inside an
MMEF can be effectively utilized for the same purpose, and it
improves the performance on different machine learning
tasks. In this study, an optical system consisting of an input
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Digital
Learning on
Output

Figure 7: A simplified schematic of the nonlinear optical data transformation performed by an MMF. The change of spatial distribution of the
electromagnetic wave with nonlinear propagation is shown in the inset and the training of a single digital neural network layer on the collected
data is illustrated next to the camera. Figure illustrating the system of [32].

Table 2: The performance metrics of the system presented in [32], on different classification and regression tasks.

Dataset Abalone  Age prediction from Audio digit - digit Audio digit — speaker COovID-19
face recognition recognition x-ray

Normalized mean squared 0.126 0.167 - - -

error

Test set classification — - 94.5% 95.2% 83.2%

accuracy

SLM, coupling optics from the SLM to the fiber, the MMF,
and a 2D camera that records the spatial distribution of the
light intensity of the field emerging from the far end of the
fiber, carries out a transformation of the data that modu-
lates the input SLM to the detector distribution as shown on
Figure 7. This transformation is generally nonlinear due to
square-law detection. In addition, when the light intensity
of the light source is increased sufficiently, optical propa-
gation inside the MMF becomes nonlinear due to the
nonlinear response of the material in the MMF. This
transformation becomes a useful computational element
when the fixed operation performed by the MMF is com-
plemented with electronic adaptive elements that can be
trained to produce a favorable operation for the combined
system. This is in some ways similar to the combination of a
DNN with an MMF to perform imaging as described earlier.
The main difference between the computational and the
imaging cases is the importance of optical nonlinearity in
the MMF. In what follows, we describe recent experimental
results demonstrating MMF-based optical neural networks.
The key advantage of this optical implementation is the
power efficiency compared to digital techniques.

During the optical transformation of the data from SLM
to the camera, the encoded information can be considered
to be decomposed into the modes of the MMF each having a
magnitude and phase value. Thanks to the fixed linear and
power-dependent nonlinear optical effects, these values
change, and energy is coupled from one channel of the
fiber to another one. This high-dimensional and nonlinear
transformation works as the engine of the computation
mechanism and in the following results, the generalization
performance of this transform is presented when it is
combined with a simple linear regression step after the
data is recorded on a digital computer. The strength of
nonlinear mixing is power dependent. The reported ex-
periments were done at the optimum power level which
was obtained experimentally by changing the optical po-
wer. This power level corresponds to the case where
nonlinearity is significantly effective but slightly weaker
than it would be necessary to create Kerr induced beam
cleaning, which causes an all-to-one mapping and de-
creases generalization performance.

Table 2 lists the classification performances of the MMF
computation system on several databases, these illustrate
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that the complex transformation of the data yields gener-
alization on a diverse set of problems.

4 Discussion and outlook

A variety of examples illustrate the power of DNNs applied
to MMFs for imaging and projection which relies only on a
simple intensity detection at the MMF’s output. Particu-
larly, it was shown that DNNs can learn to reconstruct the
input entering an MMF from output speckles. Several
classes of input images were reconstructed, ranging from
sparse-like images such as MNIST to more complex natural
looking pictures. The fidelity of reconstruction signifi-
cantly depends on the type of images that the DNN is
trained with. Importantly, a DNN trained on sparse images
cannot be used for reconstruction of natural images. The
same is true for the projection in which the DNN is task with
finding the correct input required for projection of a desired
image at the output of the MMF.

Moreover, DNNs were used to correct perturbations
imposed on the MMF system. It was shown that a DNN can
correct for wavelength and positional drifts with acceptable
fidelities as long as the drift is within the range for which
training data were available. In other words, the perfor-
mance decreases when the DNN is expected to extrapolate.

The strong dependence of the DNN’s performance on
the availability of training data could limit its applicability
especially when obtaining data is expensive, for example
in microscopy. One possible line of research is using
techniques such as few-shot learning [62] in which a DNN is
trained with few training examples.

In addition to imaging and projection, MMFs are also
shown to efficiently perform useful data transformations,
when the input data is encoded either temporally or spatially.
Similarly, the random mapping occurring inside MMFs were
also utilized with other complex media, and high perfor-
mances were achieved with the help of nonlinearity on
optoelectronic interfaces. However, optoelectronic conver-
sions could be the main limiting factor in different computing
architectures for considerations of energy consumption or
speed. On the other hand, nonlinear activation functions
play a crucial role in the generalization ability of neural
networks, hence a growing body of work investigated the
possible implementations of all-optical nonlinear activa-
tion functions. Silicon photonics, plasmonics or material
response based optical nonlinearities were shown to be
suitable for the role of activation functions in the context of
neural networks. However, performing this operation with
spatially multimode beams in a physically compact structure

DE GRUYTER

was only possible with multimode fibers. The spatiotemporal
nonlinear optical effects in MMFs were shown to perform
a nonlinear mapping that improves the performance in
machine learning tasks significantly. This is especially
noteworthy, because for decades the nonlinearities inside
optical fibers were regarded as disruptive effects and many
approaches were developed to compensate for them. How-
ever, under the light of the recent results, these effects hold
the promise of naturally improving performances in infor-
mation processing tasks. The integration of information
transmission and transformation together inside optical
fibers could decrease the strain on silicon electronics based
digital computing systems, which are now reaching their
limits in terms of miniaturization and parallelization.
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