
Impersonating Chatbots in a Code Review Exercise
to Teach Software Engineering Best Practices

Juan Carlos Farah∗, Basile Spaenlehauer∗, Vandit Sharma†,
Marı́a Jesús Rodrı́guez-Triana‡, Sandy Ingram§, and Denis Gillet∗

∗School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Email: {juancarlos.farah,basile.spaenlehauer,denis.gillet}@epfl.ch

†Department of Computer Science, Eidgenössische Technische Hochschule Zürich (ETHZ), Zurich, Switzerland
Email: sharmav@ethz.ch

‡School of Digital Technologies, Tallinn University, Tallinn, Estonia
Email: mjrt@tlu.ee

§School of Engineering and Architecture of Fribourg, University of Applied Sciences (HES-SO), Fribourg, Switzerland
Email: sandy.ingram@hefr.ch

Abstract—Over the past decade, the use of chatbots for educa-
tional purposes has gained considerable traction. A similar trend
has been observed in social coding platforms, where automated
agents support software developers with tasks such as performing
code reviews. While incorporating code reviews and social coding
platforms into software engineering education has been found to
be beneficial, challenges such as steep learning curves and privacy
considerations are barriers to their adoption. Furthermore, no
study has addressed the role chatbots play in supporting code
reviews as a pedagogical tool. To help address this gap, we
developed an online learning application that simulates the code
review features available on social coding platforms and allows
instructors to interact with students using chatbot identities.
We then embedded this application within a lesson on software
engineering best practices and conducted a controlled in-class
experiment. This experiment examined the effect that explaining
content via chatbot identities had on three aspects: (i) students’
perceived usability of the lesson, (ii) their engagement with the
code review process, and (iii) their learning gains. While our
findings show that it is feasible to simulate the code review process
within an online learning platform and achieve good usability,
our quantitative analysis did not yield significant differences
across treatment conditions for any of the aspects considered.
Nevertheless, our qualitative results suggest that students expect
explicit feedback when performing this type of exercise and could
thus benefit from automated replies provided by an interactive
chatbot. We propose to build on our current findings to further
explore this line of research in future work.

Index Terms—chatbots, code review, code linting, software
engineering education, online learning, digital education

I. INTRODUCTION

The use of chatbots in educational settings has been rising
steadily over the past decade. Recent surveys have shown
active research into the development and use of chatbots for
education [1], as well as their wide availability on instant
messaging platforms [2]. Software engineering education is
particularly poised for the adoption of chatbots, given the
widespread use of chatbots on social coding platforms [3].
Well-established in industry, social coding platforms (e.g.,
GitHub, GitLab, Bitbucket) are collaborative workspaces fo-
cused on software development [4]. These platforms are often

based on version control software and provide bespoke inter-
faces to support reviewing code, leaving comments, visualizing
changes, and carrying out other related tasks. Chatbots can
help with some of these tasks and have thus become a common
feature of the social software development process [5]. Never-
theless, while several studies have assessed integrating social
coding features into educational contexts [6], the impact that
chatbots could have on supporting these integrations has not
been addressed in the literature. In particular, while the code
review process has been found to be suitable for educational
purposes [7], [8], no study has assessed the role chatbots could
play in supporting code review exercises.

Outside of education, a recent exploratory study showed
that adopting software agents to perform code reviews had
a positive impact on contributions to open-source software
projects and also resulted in decreased communication be-
tween maintainers and contributors [9]. Though preliminary,
these results may imply that chatbots could play a positive
part in software engineering education. Drawing a parallel
from a social coding platform to an educational context—
with contributors as students and maintainers as instructors—
we posit that chatbots might be able to increase student
engagement during code review exercises while also reducing
instructors’ workloads with respect to the guidance required
during these exercises.

Our work aims to explore this line of research. Specifically,
we investigate the effects of using a chatbot to present content
related to code quality standards within a simulated code
review exercise. To approach this goal, we posed the following
research questions:

1) Can we successfully simulate the code review func-
tionalities offered by social coding platforms within an
online learning environment? (RQ1)

2) Will presenting concepts related to code quality using a
chatbot have an impact on students’ perceived usability
of the lesson, their engagement with the code review
process, and their learning gains? (RQ2)

Juan Carlos Farah
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

In this study, we present the design, implementation, and
evaluation of an application that allows users—both instructors
and students—to review and comment code in a way that
simulates social coding platforms. This application supports
different use cases that could be applicable to software engi-
neering education. Here, we focus on the following two use
cases. First, instructors can seed the code review application
with a code snippet alongside comments explaining the issues
present in the snippet. This can provide students with an ex-
ample of what developers are looking for when a code review
is performed. Second, instructors can seed the code review
application with a code snippet containing issues that students
are then asked to find and annotate. This can serve as a way
to evaluate students’ understanding of the code review process
and the quality of the code at hand. Our design also allows
instructors to integrate chatbots into the code review process.
Instructors can define chatbot identities and then use them
to provide comments in the examples selected to illustrate
the code review process. In our current implementation, these
chatbots only participate in the code review process when
impersonated by the instructor or by teaching assistants. That
is, our chatbots cannot interact automatically with students.

To address our research questions, we configured the code
review application following the two aforementioned use cases
and incorporated it into an online lesson on enforcing code
quality standards in JavaScript. We then evaluated this imple-
mentation in a controlled in-class experiment comprising 30
undergraduate software engineering students.

Our objective was twofold. First, to validate the usability of
a learning scenario that incorporated the code review applica-
tion. Second, to test whether there was an effect on perceived
usability, student engagement, and learning gains if explana-
tions regarding code quality were provided differently. To do
this, we evaluated two treatments: (i) providing explanations
as the course instructor within the code review application
(instructor condition) and (ii) providing explanations within
the code review application through a chatbot that the course
instructor impersonated (chatbot condition). Finally, to provide
a baseline, we also included a condition in which the code
review application was only used to display the code snippet,
while explanations of the issues therein were provided in the
text preceding the code review application (control condition).

Our paper is structured as follows. We begin by reviewing
related work and motivating our study. In Section III, we
present the design of our code review application, chatbot
integration, chatbot identity, and learning scenario. We outline
our methodology in Section IV and report on the results
in Section V. These results are discussed in Section VI
alongside limitations and future work. Finally, we summarize
our conclusions in Section VII.

II. BACKGROUND AND RELATED WORK

The use of social coding platforms in education has been
widely studied [6], [10], [11], [12], [13], [14], with a recent
survey of 7530 students and 300 educators concluding that
the use of GitHub “predicted better learning outcomes and

classroom experiences” [12]. However, several researchers
have highlighted a number of challenges associated with the
use of social coding platforms in education, including steep
learning curves and privacy considerations due to the often
public visibility of the interactions on such platforms [6], [10],
[11]. These challenges motivate the development of our code
review application as a way to address RQ1. Namely, to lower
the barrier to entry for incorporating and exploiting the code
review process within online learning environments.

Our focus on using code review as a pedagogical tool
builds on prior work highlighting its applicability to software
engineering education. A study conducted by Li et al. on
effectively teaching coding standards in programming revealed
that most students believe coding standards are important [7].
However, students still fail to comply with them, thus high-
lighting possible flaws in current teaching strategies. To that
end, the researchers suggested code review as a possibly
effective pedagogical tool, given that it provides an element of
learning by example and practice, as well as an opportunity for
obtaining feedback from teachers and other learners. Another
study conducted by Bacchelli et al. on Microsoft employees
highlighted additional benefits of code review, such as knowl-
edge transfer, increased team awareness, and the creation of
alternative solutions to problems [15].

Given the benefits of code review, studies have explored
designs for incorporating the code review process as a part of
programming education [16], [17], [18]. Wang et al. proposed
an online assessment system based on code review to assess
how students learn programming languages [8]. Empirical
results from their study showed that the code review-based
assessment significantly improved student learning outcomes
in several areas such as programming skills, collaborative
learning, and compliance with coding standards. Positive re-
sults were also obtained when testing code review activities in
high school and university settings [19], [20].

While peer code review provides various opportunities for
learning, it often entails a significant amount of human effort
from the various entities involved [21]. Automated agents such
as chatbots can help reduce this effort by automatically check-
ing code standards and providing necessary feedback where
required. Balachandran proposed Review Bot, an automated
agent designed to integrate automatic static analysis within the
code review process [22]. Indeed, using bots for automating
code maintenance tasks has been gaining popularity in recent
years. A study conducted by Wessel et al. in 2018 revealed that
nearly 26% of popular open-source projects on GitHub already
use bots for numerous tasks [3]. Among the 48 bots identified
in the study, 14 bots (29.2%) were being used for reviewing
code and pull requests, highlighting the suitability of bots for
code review. Our work builds on these results to motivate
the integration of chatbot identities into our code review
application, which was designed for educational purposes.

In education, the rise of instant messaging platforms has
motivated both educators and learners to adopt chatbots, with
recent surveys identifying 89 educational conversational agents
on the Facebook Messenger platform alone [2]. However—as

recently as 2021—researchers have raised the issue that there
are “few empirical studies investigating the use of effective
learning designs or learning strategies with chatbots” [23].
Although the findings of some of these empirical studies are
actually promising [24], there is ample need for more research
to ground the use of chatbots in education on solid results. In
fact, our understanding of the factors affecting chatbot user
experiences is limited even outside educational settings [25].

Our paper contributes to addressing this gap by tackling
RQ2. Specifically, we aim to shed light on whether the simple
act of presenting students with information via a static chatbot
has an effect on students’ perception of the usability of the
interface in which the lesson is presented, their engagement
with the tools provided by the interface, and the short-term
learning gains acquired during the lesson. Moreover—to the
best of our knowledge—no study has evaluated the impact
of incorporating chatbots in a code review exercise within an
online learning scenario. Given the widespread use of chatbots
in social platforms and the trend to incorporate these platforms
into educational contexts, we believe our study is both timely
and relevant.

III. DESIGN

In this section, we introduce the design of our code review
application. We then show how we integrated a chatbot in-
terface into this application and present Lint Bot, the chatbot
identity used in this study. Finally, we illustrate how the code
review application was embedded within a lesson on enforcing
code quality standards in JavaScript.

A. Code Review Application

To provide the context in which to implement our chatbot
integration, we developed an online learning application aimed
at allowing students to review snippets of code. Code reviews
are a key part of any software development project [26].
As teams of engineers collaborate to develop an application,
website, or other software, they often follow a process whereby
one team member submits code that a colleague will review
before the code gets merged into a central repository. This
process often happens on social coding platforms, such as
GitHub, GitLab, or Bitbucket. Nevertheless, full-fledged social
coding platforms can be daunting for entry-level programming
students [6]. In order to provide an introduction to code
reviews for beginner programmers, our code review applica-
tion provides the basic code review functionalities typically
supported by a social coding platform.

First, the code presented is static, as its purpose is not
to be modified but rather to be commented on by users to
start a discussion about possible improvements. Users can add
comments to a specific code line by pressing the “+” button at
the beginning of the line. An editor supporting Markdown [27]
provides users with the functionality to input, preview, create,
edit, and delete comments. Users also have the possibility of
replying to existing comments to start a thread-like exchange,
as shown in Figure 1. While replies to comments are displayed
as nested boxes inside their parent comment, a “hide” button

Fig. 1. The code review application allows students to reply to comments
seeded by the instructor, leading to thread-like exchanges. As depicted here,
the instructor can impersonate a chatbot when annotating the code snippet.

toggles the visibility of a comment’s content, freeing up space
to let the user focus on the underlying code or other comments.

The application also provides an interface for instructors.
Within this interface, instructors can view interactions on a
per-student basis and seed the interface with comments that
will be shown to all students. Finally, comments are only
visible to the student, the instructor, and optionally to the
student’s peers, if configured as such by the instructor.

B. Chatbot Integration

Our objective in the design of our chatbot integration was
to provide instructors with a way of easily configuring and
impersonating chatbots in order to interact with students within
an online learning application. To achieve this, we designed an
interface whereby an instructor can easily create chatbots that
can be then used to interact with students through the learning
application in which the interface is embedded.

To guide instructors, we incorporated three best practices for
the design and implementation of chatbots that are relevant to
scenarios where chatbots are being impersonated by human
users [25], [28], [29]. Namely, we wanted to ensure that
instructors (i) provide the chatbot with an identity, (ii) explic-
itly state the chatbot’s purpose, and (iii) can interact through
messages including content that students might find pleasant,
evocative, or playful. First, with respect to (i) and (ii), the
interface provided a way to define a chatbot’s identity, which
was given by its name, an optional avatar, and an optional
description, with both the name and description serving as
a way to explicitly state the chatbot’s purpose. Second, with
respect to (iii), the messages sent by the instructor under the
chatbot’s guise can be formatted using Markdown, which sup-
ports embedding rich text and multimedia, making it possible
to easily create engaging content.

We implemented this chatbot integration within the code
review application. Figure 2 shows an instance of the code
review application that has been seeded with three chatbot
identities. Once a chatbot identity has been created, instructors
can impersonate it to provide feedback to students, as shown in
Figure 3. Students can then reply back, leading to interactions
similar to the one shown previously in Figure 1.

Fig. 2. Instructors can create different bot identities that they can then
impersonate when interacting with students.

C. Lint Bot

As mentioned in Section I, many social coding platforms
support using chatbots to perform a variety of tasks [3]. One
of these tasks is to verify that code submitted to a repository
is formatted according to the repository’s respective style
and guidelines. The term “linting” refers to the use of static
analysis tools (“linters”) to detect bugs and other issues (“lint”)
in software programs [30]. Therefore, for our evaluation, we
created a bot identity using the name Lint Bot. This identity
would be used to explain code quality issues to students. As
noted in Section I, it is important to underline that Lint Bot
was simply an identity and did not have any agency or script
to reply automatically to student comments. That is, for Lint
Bot to interact with students, instructors had to manually post
comments and replies using Lint Bot’s identity. In our case,
for example, the instructor that participated in our evaluation
impersonated Lint Bot to seed the comments in one of the
treatment conditions (chatbot condition). Students assigned to
this condition were unaware that the chatbot was impersonated
by the instructor, following the Wizard of Oz technique [31].

D. Learning Scenario

Our goal was to evaluate the code review application and
the effect of equipping it with a chatbot interaction in a
real software engineering lesson. To do this, we created a
lesson introducing the concept of code linting. This lesson was
hosted on the Graasp online learning platform [32] and was
structured following five phases. In the first phase, students
were presented with a code review application containing a
snippet of code. Students were explained how to use the code
review application and asked to add comments to the parts
of the code that had potential issues. This exercise served
as a pre-test to (i) gauge their level of engagement at the
start of the lesson and (ii) see if they could find six issues
that had been explicitly seeded in the code. In the second
phase, students were introduced to the concept of code linting,
while in the third phase, they were introduced to ESLint [33],
a popular tool specifically designed to find linting errors in
JavaScript [34]. In the fourth phase, four specific code quality
issues were presented and exemplified in detail using the code

Fig. 3. Instructors can impersonate chatbots to seed a code snippet with
comments or to provide feedback to students.

review application. This fourth phase was the only part of the
scenario that varied across conditions (see Section IV-B for
more details). Finally, in the fifth phase, students were again
presented with an exercise using the code review application.
This exercise served as a post-test to (i) gauge their level of
engagement at the end of the lesson and (ii) see if they could
find seven issues present in the code snippet. Figure 4 depicts
the learning scenario, highlighting the lesson’s second phase
(Introduction).

IV. METHODOLOGY

The approach to addressing our research questions consisted
of a two-step process. The first step was to tackle RQ1 by
implementing the code review application, embedding it within
an online learning scenario, and then using this scenario to
teach a lesson on software engineering best practices. This
practical implementation then served as an indication that it is
possible to successfully simulate code review functionalities
within an online learning platform. In a second step, we

Fig. 4. We prepared an online lesson introducing students to the concept of
code linting in JavaScript.

Fig. 5. The Examples phase of the learning scenario varied across experimental conditions. This figure depicts the interface for the chatbot condition,
showcasing an example code snippet with linting errors that have been highlighted by comments from an instructor impersonating Lint Bot.

addressed RQ2 by evaluating three variations of our learning
scenario. More specifically, we tested the effect of imper-
sonating chatbots when presenting concepts in software en-
gineering education, conducting a between-subjects controlled
experiment comprising one control and two treatments. In all
conditions, subjects were presented with the learning scenario
described in Section III-D. The conditions differed only in the
way we explained the linting errors illustrated by the example
code snippets. In this section, we explain the methodology of
our evaluation in detail.

A. Participants

We recruited 31 undergraduate software engineering stu-
dents following a course on front-end web development at the
School of Engineering and Architecture of Fribourg (HEIA-
FR). Students consented to participate in this study. Responses
from one participant were omitted after controlling for data
collection errors, resulting in a total of 30 valid participants
(2 female, 28 male), with a distribution of 9 participants in the
control condition, 10 participants in the instructor condition,
and 11 participants in the chatbot condition.

B. Procedure

The experimental part of our study was conducted in
November 2021. As part of an in-class exercise, students were
given 30 minutes to complete the learning scenario described
in Section III-D. The content of the lesson was identical for
all students except for the fourth phase (Examples), which

differed in the way the code quality issues were explained. In
the control condition, the explanation was presented in text
alongside—but not embedded within—the code review appli-
cation (control condition). In the two treatments, we either
provided the explanation within comments in the code review
application (i) via a user representing the course instructor
(instructor condition) or (ii) under the alias of Lint Bot (chatbot
condition). All explanations were in English, based on the
feedback provided by the ESLint command line interface [33].
Figure 5 depicts the Examples phase for the chatbot condition.
Interactions with the lesson were recorded using Graasp’s
learning analytics (LA) pipeline [35]. Upon completion of the
lesson, students completed a post-questionnaire containing the
instruments described in the following section.

C. Instruments

To assess the impact of the treatment conditions of our
controlled experiment, we operationalized three concepts—(i)
usability, (ii) engagement, and (iii) learning gains—using the
following instruments. To collect data regarding usability, we
used the System Usability Scale (SUS) [36]. The SUS is a ten-
item questionnaire using a five-point Likert scale to measure
usability. Results are presented as scores ranging from 0 to
100, with higher scores representing better usability. We refer
to this metric as the SUS score.

For engagement and learning gains, we built bespoke instru-
ments using the results of the pre- and post-tests. As explained
in Section III-D, the pre-test assessed if students could find six

issues seeded in a code snippet, while the post-test assessed
if they could find seven issues seeded in a different code
snippet. Engagement was operationalized using the length of
the comments added by students. The total length hl,t of the
set of comments Cl,t added by a given student l in test t can
be calculated as the sum of the length of each comment in the
set.

hl,t =
∑

c∈Cl,t

len(c)

The total length of the comments added by a given student
in the pre-test (hl,pre) served as an indicator of how engaged
the student was at the beginning of the activity, before being
exposed to their respective condition. The total length of
comments added in the post-test (hl,post) then served as an
indicator of how engaged the student was at the end of the
lesson, after being exposed to their respective condition. The
engagement resulting from their exposure was then measured
as the difference between the total length of comments left by
the student in the post-test and the pre-test. We refer to this
metric as the engagement score (e).

el = hl,post − hl,pre

Learning gains were operationalized using the scores of the
post-test and the pre-test. That is, for a given student l, their
learning gain gl was calculated as the difference between their
score in the post-test wl,post and their score in the pre-test
wl,pre. We refer to this metric as the learning gain (g).

gl = wl,post − wl,pre

Finally, we also captured qualitative feedback through an
open-ended question asking students to provide comments,
suggestions, and general observations in short answer form.

D. Data Analysis

Data collected through the aforementioned instruments were
analyzed using mixed methods. Quantitative data were an-
alyzed using descriptive and inferential statistics. In terms
of descriptive statistics, we report the sample mean (x̄),
median (x̃), and standard deviation (s). In terms of inferential
statistics, data on usability, engagement, and learning gains
were all normally distributed and homoscedastic within each
condition, and were therefore compared using analysis of
variance (ANOVA). Qualitative data—in the form of open-
ended comments—were analyzed by articulating emergent
themes using line-by-line data coding [37].

V. RESULTS

In this section, we present the main results of our evaluation.
These results are also summarized in Table I and illustrated
in Figure 6.

ChatbotControl Instructor

65

70

75

80

85

90

95

SU
S
Sc

or
e

U ability by Condition

ChatbotControl In tructor

−100

0

100

200
E
ng

ag
em

en
t S

co
re

Engagement by Condition

ChatbotControl In tructor

−0.4

−0.2

0.0

0.2

0.4

0.6

Le
ar

ni
ng

 G
ai
n

Learning Gain by Condition

Fig. 6. Box plots summarizing the descriptive statistics across conditions
for the three aspects considered by our quantitative analysis: usability (top),
engagement (middle), and learning gains (bottom).

TABLE I
DESCRIPTIVE STATISTICS FOR EACH CONDITION AND ANOVA RESULTS ACROSS CONDITIONS

Condition

Aspect Control Chatbot Instructor ANOVA

Mean (SD) Mean (SD) Mean (SD) F (p-value)

Usability 84.167 (8.004) 75.682 (7.508) 82.250 (9.238) 2.978 (0.068)

Engagement 57.556 (56.593) 38.727 (106.593) 108.500 (97.803) 1.606 (0.219)

Learning Gains 0.071 (0.231) 0.184 (0.179) 0.145 (0.287) 0.577 (0.568)

A. Usability

The mean SUS scores were x̄ = 82.250 (x̃ = 82.500,
s = 9.238) in the instructor condition, x̄ = 75.682 (x̃ =
77.500, s = 7.508) in the chatbot condition, and x̄ = 84.167
(x̃ = 85.000, s = 8.004) in the control condition. These scores
all correspond to usability that can be described as good [38].
Furthermore, one-way ANOVA showed that there were no
significant differences between the conditions (F (2, 27) =
2.978, p = 0.068).

B. Engagement

The mean engagement scores were x̄ = 108.500 (x̃ =
108.000, s = 97.803) in the instructor condition, x̄ = 38.727
(x̃ = 26.000, s = 106.593) in the chatbot condition, and
x̄ = 57.556 (x̃ = 73.000, s = 56.593) in the control
condition. These descriptive results suggest that engagement
was higher in the instructor condition. However, one-way
ANOVA showed that there were no significant differences
between the conditions (F (2, 27) = 1.606, p = 0.219).

C. Learning Gains

The mean learning gains were x̄ = 0.145 (x̃ = 0.095, s =
0.287) in the instructor condition, x̄ = 0.184 (x̃ = 0.238, s =
0.179) in the chatbot condition, and x̄ = 0.071 (x̃ =
0.119, s = 0.231) in the control condition. These results
show that all conditions led to—on average—positive learning
gains for students. Nevertheless, when comparing between
the conditions, one-way ANOVA showed that there were no
significant differences (F (2, 27) = 0.577, p = 0.568).

D. Qualitative Feedback

A total of 10 students provided open-ended feedback, four
from the instructor condition, three from the chatbot condi-
tion, and three from the control condition. Two themes were
presented by more than one student. First, two students (one
in the instructor condition and one in the control condition)
described the examples in the lesson as “repetitive”. Second,
four students (one in the instructor condition, one in the
chatbot condition, and two in the control condition) expressed
the need for feedback after having completed the post-test.
Specifically, one student expressed the following with respect
to the need for feedback: “You explain the concept, yes, but the
fact that we do an exercise without being able to see the answer

key makes it all frustrating and not at all useful in learning.”1

This quote illustrates how the second theme—which was the
only one seen across all three conditions—was the one that
students who provided open-ended comments were most vocal
about.

VI. DISCUSSION

The design process and results of our evaluation provide key
insights with respect to our research questions. In this section,
we discuss these results as well as certain limitations of our
study and future work that we aim to carry out.

Concerning RQ1, the design of our code review
application—as well as its implementation within a learn-
ing scenario and its use to teach software engineering best
practices to undergraduate students—is a proof-of-concept
validation that code review functionalities offered by social
coding platforms can be simulated within online learning
environments. Students that participated in the experiment
were able to annotate the different code snippets as if they
were engaging in an actual code review process, reporting SUS
scores that resulted in positive mean usability ratings across
all conditions. Furthermore, the instructor interface served to
evaluate students’ responses and gather part of the data used
for our study.

This prototype is a strong first step towards lowering the
barrier to entry for novice students to exploit functionalities
offered by social coding platforms. Students are not required to
pre-install software or create accounts, and comment visibility
is limited to the concerned parties. The code review application
also serves instructors and researchers in education looking to
better understand how students behave and learn in scenarios
involving social coding interactions. By integrating the code
review application within an online learning platform, instruc-
tors and researchers can gain insight into students’ learning
experiences using the built-in LA features often supported by
learning platforms.

Nevertheless, our current evaluation was limited to soft-
ware engineering students. To test whether our code review
application can indeed lower the barrier to entry, we aim to
perform a similar study with non-technical students following

1“On nous explique le truc oui, mais le fait qu’on aie [sic] un exercice
sans pouvoir avoir un corrigé rend le tout frustrant et pas du tout utile dans
l’apprentissage.” (Translated from French by the authors.)

an introductory programming course, as well as with a more
gender-balanced cohort of participants.

With respect to RQ2, our evaluation provided inconclusive
yet promising results regarding the role chatbots could play in
learning scenarios incorporating code review exercises. First,
our quantitative analysis showed that overall, usability was
good in all conditions. Similarly, all conditions led to positive
learning gains. These findings imply that the learning scenario
in and of itself was both usable and effective. Nevertheless,
there were no significant differences between the conditions
for either usability or learning gains. Second, while descriptive
results suggest that engagement was higher in the instructor
condition, no significant differences were observed between
conditions. This lack of significant differences across condi-
tions for all of the aspects considered could be in part due to
our limited sample size. As illustrated in Figure 6, the presence
of outliers within various condition/aspect combinations could
have affected our ability to draw conclusions from our results.
Future work aims to further explore our research questions
with a larger group of students.

Moreover, our findings could suggest that the differences
across conditions, which were limited to the three code snip-
pets used in the Examples phase of the lesson, were not distinct
enough, and therefore resulted in a very similar learning
experience. Indeed, the qualitative analysis we conducted
sheds some light on this matter. First, it was reported that
the exercises were repetitive. This perception of repetitiveness
could have resulted in an adaptation effect, diminishing the
impact of the treatments. Second, students expressed disap-
pointment at the absence of feedback provided during the les-
son. These remarks point to a possible explanation for the non-
significant results across conditions. Namely, that the mere use
of identities (human or chatbot) to present static information,
adds very little to the learning experience, at least within the
scope of our learning scenario. Instead, students expect this
type of scenario to include feedback and interactivity. While
instructors might not be able to cope with giving real-time
feedback to large numbers of students, chatbots following rule-
based scripts could serve as a first layer of interaction. A
promising next step for our research would be to build on
these results and assess the role that interactive chatbots could
play within exercises simulating code reviews.

VII. CONCLUSIONS

In this paper, we addressed the feasibility of simulat-
ing the code review process—widely used on social coding
platforms—within an online learning environment. We also
explored the role chatbots could play in supporting a lesson
on software engineering. Our approach was to first design a
simple, configurable code review application that could serve
as a way to introduce students to best practices in software
engineering and software development processes often en-
countered in industry. We then equipped our application with
an interface to enable instructors to impersonate chatbots when
presenting content or interacting with their students. This code
review application was integrated into an online lesson on code

linting and used to evaluate three ways of explaining linting
errors presented via example code snippets. This evaluation
was conducted through a controlled in-class experiment with
30 undergraduate software engineering students.

The code review application developed for this study pro-
vides a proof-of-concept validation that functionalities from
social coding platforms can be simulated within online learn-
ing environments. This application could indeed serve as an
entry point for instructors looking to incorporate an environ-
ment simulating social coding platforms into their practice.
Nevertheless, findings from our evaluation suggest that there
are no significant differences between the three conditions we
explored—explaining concepts (i) via a user representing the
course instructor, (ii) via a chatbot alias, or (iii) in the accom-
panying text—with respect to perceived usability, engagement,
and learning gains. However, suggestions obtained through
open-ended responses provide key insights into the possible
need for interactivity and feedback in order to better support
students in this type of learning scenario. We aim to build on
these findings to equip our chatbot identities with interactivity
and evaluate them in future work.

ACKNOWLEDGMENT

Images used in this study include icons made by Vector
Stall, Nadiinko, and Flat Icons (available on Flaticon2), as well
as a photograph by James Harrison (available on Unsplash3).

REFERENCES

[1] J. Quiroga Pérez, T. Daradoumis, and J. M. Marquès Puig, “Rediscover-
ing the Use of Chatbots in Education: A Systematic Literature Review,”
Computer Applications in Engineering Education, vol. 28, no. 6, pp.
1549–1565, 2020.

[2] P. Smutny and P. Schreiberova, “Chatbots for Learning: A Review
of Educational Chatbots for the Facebook Messenger,” Computers &
Education, vol. 151, 2020.

[3] M. Wessel, B. M. de Souza, I. Steinmacher, I. S. Wiese, I. Polato,
A. P. Chaves, and M. A. Gerosa, “The Power of Bots: Characterizing
and Understanding Bots in OSS Projects,” Proceedings of the ACM on
Human-Computer Interaction, vol. 2, no. CSCW, 2018.

[4] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social Coding in
GitHub: Transparency and Collaboration in an Open Software Repos-
itory,” in Proceedings of the ACM 2012 Conference on Computer
Supported Cooperative Work (CSCW '12). ACM, 2012, pp. 1277–1286.

[5] C. Lebeuf, M.-A. Storey, and A. Zagalsky, “Software Bots,” IEEE
Software, vol. 35, no. 1, pp. 18–23, 2018.

[6] A. Zagalsky, J. Feliciano, M.-A. Storey, Y. Zhao, and W. Wang, “The
Emergence of GitHub as a Collaborative Platform for Education,” in
Proceedings of the 18th ACM Conference on Computer Supported
Cooperative Work & Social Computing. ACM, 2015, pp. 1906–1917.

[7] X. Li and C. Prasad, “Effectively Teaching Coding Standards in
Programming,” in Proceedings of the 6th Conference on Information
Technology Education (SIGITE '05). ACM Press, 2005, p. 239.

[8] Y. Wang, H. Li, Y. Feng, Y. Jiang, and Y. Liu, “Assessment of Pro-
gramming Language Learning Based on Peer Code Review Model: Im-
plementation and Experience Report,” Computers & Education, vol. 59,
no. 2, pp. 412–422, 2012.

[9] M. Wessel, A. Serebrenik, I. Wiese, I. Steinmacher, and M. A. Gerosa,
“Effects of Adopting Code Review Bots on Pull Requests to OSS
Projects,” in Proceedings of the 2020 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 2020.

2Flaticon: flaticon.com
3Unsplash: unsplash.com

[10] J. Fiksel, L. R. Jager, J. S. Hardin, and M. A. Taub, “Using GitHub
Classroom To Teach Statistics,” Journal of Statistics Education, vol. 27,
no. 2, pp. 110–119, 2019.

[11] J. Feliciano, M.-A. Storey, and A. Zagalsky, “Student Experiences Using
GitHub in Software Engineering Courses: A Case Study,” in Proceedings
of the 38th International Conference on Software Engineering Compan-
ion. ACM, 2016, pp. 422–431.

[12] C. Hsing and V. Gennarelli, “Using GitHub in the Classroom Predicts
Student Learning Outcomes and Classroom Experiences: Findings from
a Survey of Students and Teachers,” in Proceedings of the 50th ACM
Technical Symposium on Computer Science Education. ACM, 2019,
pp. 672–678.

[13] L. Haaranen and T. Lehtinen, “Teaching Git on the Side: Version
Control System as a Course Platform,” in Proceedings of the 2015
ACM Conference on Innovation and Technology in Computer Science
Education. ACM, 2015, pp. 87–92.

[14] O. G. Glazunova, O. V. Parhomenko, V. I. Korolchuk, and T. V.
Voloshyna, “The Effectiveness of GitHub Cloud Services for Implement-
ing a Programming Training Project: Students’ Point of View,” Journal
of Physics: Conference Series, vol. 1840, no. 012030, 2021.

[15] A. Bacchelli and C. Bird, “Expectations, Outcomes, and Challenges
of Modern Code Review,” in 2013 35th International Conference on
Software Engineering (ICSE). IEEE, 2013, pp. 712–721.

[16] D. A. Trytten, “A Design for Team Peer Code Review,” ACM SIGCSE
Bulletin, vol. 37, no. 1, pp. 455–459, 2005.

[17] X. Li, “Incorporating a Code Review Process into the Assessment,” in
Proceedings of the 20th Annual Conference of the National Advisory
Committee on Computing Qualifications (NACCQ 2007), N. Bridgeman
and S. Mann, Eds., 2007, pp. 125–131.

[18] M. Tang, “Caesar: A Social Code Review Tool for Programming Edu-
cation,” Master’s thesis, Massachusetts Institute of Technology, 2011.

[19] Z. Kubincová and M. Homola, “Code Review in Computer Science
Courses: Take One,” in Advances in Web-Based Learning – ICWL 2017,
ser. Lecture Notes in Computer Science, H. Xie, E. Popescu, G. Hancke,
and B. Fernández Manjón, Eds., vol. 10473. Springer, 2017, pp. 125–
135.

[20] Z. Kubincová and I. Csicsolová, “Code Review in High School Pro-
gramming,” in Proceedings of the 2018 17th International Conference on
Information Technology Based Higher Education and Training (ITHET).
IEEE, 2018.

[21] T. D. Indriasari, A. Luxton-Reilly, and P. Denny, “A Review of Peer
Code Review in Higher Education,” ACM Transactions on Computing
Education, vol. 20, no. 3, 2020.

[22] V. Balachandran, “Reducing Human Effort and Improving Quality in
Peer Code Reviews Using Automatic Static Analysis and Reviewer

Recommendation,” in 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 2013, pp. 931–940.

[23] G.-J. Hwang and C.-Y. Chang, “A Review of Opportunities and Chal-
lenges of Chatbots in Education,” Interactive Learning Environments,
2021.

[24] S. Tegos, S. Demetriadis, P. M. Papadopoulos, and A. Weinberger, “Con-
versational Agents for Academically Productive Talk: A Comparison of
Directed and Undirected Agent Interventions,” International Journal of
Computer-Supported Collaborative Learning, vol. 11, no. 4, pp. 417–
440, 2016.

[25] A. Følstad and P. B. Brandtzaeg, “Users’ Experiences with Chatbots:
Findings from a Questionnaire Study,” Quality and User Experience,
vol. 5, no. 1, 2020.

[26] K. E. Wiegers, Peer Reviews in Software: A Practical Guide. Addison-
Wesley, 2002.

[27] J. Gruber and A. Swartz, “Markdown,” 2004. [Online]. Available:
daringfireball.net/projects/markdown/

[28] A. P. Chaves and M. A. Gerosa, “How Should My Chatbot Interact? A
Survey on Human-Chatbot Interaction Design,” International Journal of
Human–Computer Interaction, 2020.

[29] M. A. Ferman Guerra, “Towards Best Practices for Chatbots,” Master’s
thesis, University of Victoria, 2018.

[30] S. C. Johnson, “Lint, A C Program Checker,” Bell Laboratories, Tech.
Rep., 1978.

[31] N. Dahlbäck, A. Jönsson, and L. Ahrenberg, “Wizard of Oz Stud-
ies—Why and How,” Knowledge-Based Systems, vol. 6, no. 4, pp. 258–
266, 1993.

[32] D. Gillet, “Personal Learning Environments as Enablers for Connectivist
MOOCs,” in 2013 12th International Conference on Information Tech-
nology Based Higher Education and Training (ITHET). IEEE, 2013.

[33] N. C. Zakas, “ESLint,” 2013. [Online]. Available: eslint.org
[34] K. F. Tómasdóttir, M. Aniche, and A. van Deursen, “The Adoption

of JavaScript Linters in Practice: A Case Study on ESLint,” IEEE
Transactions on Software Engineering, vol. 46, no. 8, pp. 863–891, 2020.

[35] J. C. Farah, J. Soares Machado, P. Torres da Cunha, S. Ingram,
and D. Gillet, “An End-to-End Data Pipeline for Managing Learning
Analytics,” in Proceedings of the 19th International Conference on
Information Technology Based Higher Education and Training (ITHET),
2021.

[36] J. Brooke, “SUS: A ’Quick and Dirty’ Usability Scale,” in Usability
Evaluation In Industry, 1st ed. CRC Press, 1996.

[37] K. Charmaz, Constructing Grounded Theory: A Practical Guide through
Qualitative Analysis. Sage, 2006.

[38] A. Bangor, P. T. Kortum, and J. T. Miller, “An Empirical Evaluation of
the System Usability Scale,” International Journal of Human-Computer
Interaction, vol. 24, no. 6, pp. 574–594, 2008.

