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Abstract

Teacher-student models provide a framework in which the typical-case performance
of high-dimensional supervised learning can be described in closed form. The
assumptions of Gaussian i.i.d. input data underlying the canonical teacher-student
model may, however, be perceived as too restrictive to capture the behaviour of
realistic data sets. In this paper, we introduce a Gaussian covariate generalisation
of the model where the teacher and student can act on different spaces, generated
with fixed, but generic feature maps. While still solvable in a closed form, this
generalization is able to capture the learning curves for a broad range of realistic
data sets, thus redeeming the potential of the teacher-student framework. Our
contribution is then two-fold: first, we prove a rigorous formula for the asymptotic
training loss and generalisation error. Second, we present a number of situations
where the learning curve of the model captures the one of a realistic data set
learned with kernel regression and classification, with out-of-the-box feature maps
such as random projections or scattering transforms, or with pre-learned ones -
such as the features learned by training multi-layer neural networks. We discuss
both the power and the limitations of the framework.

1 Introduction

Teacher-student models are a popular framework to study the high-dimensional asymptotic perform-
ance of learning problems with synthetic data, and have been the subject of intense investigations
spanning three decades [1–7]. In the wake of understanding the limitations of classical statistical
learning approaches [8–10], this direction is witnessing a renewal of interest [10–15]. However, this
framework is often assuming the input data to be Gaussian i.i.d., which is arguably too simplistic to
be able to capture properties of realistic data. In this paper, we redeem this line of work by defining a
Gaussian covariate model where the teacher and student act on different Gaussian correlated spaces
with arbitrary covariance. We derive a rigorous asymptotic solution of this model generalizing the
formulas found in the above mentioned classical works.

We then put forward a theory, supported by universality arguments and numerical experiments, that
this model captures learning curves, i.e. the dependence of the training and test errors on the number
of samples, for a generic class of feature maps applied to realistic datasets. These maps can be
deterministic, random, or even learnt from the data. This analysis thus gives a unified framework
to describe the learning curves of, for example, kernel regression and classification, the analysis of
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feature maps – random projections [16], neural tangent kernels [17], scattering transforms [18] – as
well as the analysis of transfer learning performance on data generated by generative adversarial
networks [19]. We also discuss limits of applicability of our results, by showing concrete situations
where the learning curves of the Gaussian covariate model differ from the actual ones.

Model definition — The Gaussian covariate teacher-student model is defined via two vectors
u ∈ Rp and v ∈ Rd, with correlation matrices Ψ ∈ Rp×p,Ω ∈ Rd×d and Φ ∈ Rp×d, from which
we draw n independent samples:[

uµ

vµ

]
∈ Rp+d ∼

i.i.d.
N
(
0,

[
Ψ Φ
Φ⊤ Ω

])
, µ = 1, · · · , n. (1)

The labels yµ are generated by a teacher function that is only using the vectors uµ:

yµ = f0

(
1
√
p
θ⊤
0 u

µ

)
, (2)

where f0 : R → R is a function that may include randomness such as, for instance, an additive
Gaussian noise, and θ0 ∈ Rp is a vector of teacher-weights with finite norm which can be either
random or deterministic. Learning is performed by the student with weights w via empirical risk
minimization that has access only to the features vµ:

ŵ = argmin
w∈Rd

[
n∑

µ=1

g

(
w⊤vµ

√
d
, yµ
)
+ r(w)

]
, (3)

where r and g are proper, convex, lower-semicontinuous functions of w ∈ Rd (e.g. g can be a logistic
or a square loss and r a ℓp (p=1, 2) regularization). The key quantities we want to compute in this
model are the averaged training and generalisation errors for the estimator w,

Etrain.(w) ≡ 1

n

n∑
µ=1

g

(
w⊤vµ

√
d
, yµ
)

and Egen.(w) ≡ E
[
ĝ

(
f̂

(
v⊤
neww√
d

)
, f0

(
u⊤
newθ0√
p

))]
.

(4)

where g is the loss function in eq. (3), f̂ is a prediction function (e.g. f̂ = sign for a classification
task), ĝ is a performance measure (e.g. ĝ(ŷ, y) = (ŷ − y)2 for regression or ĝ(ŷ, y) = P(ŷ ̸= y) for
classification) and (unew,vnew) is a fresh sample from the joint distribution of u and v.

Our two main technical contributions are:
(C1) In Theorems 1 & 2, we give a rigorous closed-form characterisation of the properties of the
estimator ŵ for the Gaussian covariate model (1), and the corresponding training and generalisation
errors in the high-dimensional limit. We prove our result using Gaussian comparison inequalities [20];
(C2) We show how the same expression can be obtained using the replica method from statistical
physics [21]. This is of additional interest given the wide range of applications of the replica approach
in machine learning and computer science [22]. In particular, this allows to put on a rigorous basis
many results previously derived with the replica method.
Towards realistic data — In the second part of our paper, we argue that the above Gaussian
covariate model (1) is generic enough to capture the learning behaviour of a broad range of realistic
data. Let {xµ}nµ=1 denote a data set with n independent samples on X ⊂ RD. Based on this input,
the features u,v are given by (potentially) elaborated transformations of x, i.e.

u = φt(x) ∈ Rp and v = φs(x) ∈ Rd (5)

for given centred feature maps φt : X → Rp and φs : X → Rd, see Fig. 1. Uncentered features can
be taken into account by shifting the covariances, but we focus on the centred case to lighten notation.

The Gaussian covariate model (1) is exact in the case where x are Gaussian variables and the feature
maps (φs,φs) preserve the Gaussianity, for example linear features. In particular, this is the case
for u = v = x, which is the widely-studied vanilla teacher-student model [24]. The interest of
the model (1) is that it also captures a range of cases in which the feature maps φt and φs are
deterministic, or even learnt from the data. The covariance matrices Ψ, Φ, and Ω then represent
different aspects of the data-generative process and learning model. The student (3) then corresponds
to the last layer of the learning model. These observation can be distilled into the following conjecture:
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Figure 1: Left: Given a data set {xµ}nµ=1, teacher u = φt(x) and student maps v = φt(x), we
assume [u,v] to be jointly Gaussian random variables and apply the results of the Gaussian covariate
model (1). Right: Illustration on real data, here ridge regression on even vs odd MNIST digits,
with regularisation λ=10−2. Full line is theory, points are simulations. We show the performance
with no feature map (blue), random feature map with σ = erf & Gaussian projection (orange), the
scattering transform with parameters J = 3, L = 8 [18] (green), and of the limiting kernel of the
random map [23] (red). The covariance Ω is empirically estimated from the full data set, while the
other quantities appearing in the Theorem 1 are expressed directly as a function of the labels, see
Section 3.4. Simulations are averaged over 10 independent runs.

Conjecture 1. (Gaussian equivalent model) For a wide class of data distributions {xµ}nµ=1, and
features maps u = φt(x),v = φs(x), the generalisation and training errors of estimator (3) are
asymptotically captured by the equivalent Gaussian model (1), where [u,v] are jointly Gaussian
variables, and thus by the closed-form expressions of Theorem 1.

The second part of our main contributions are:

(C3) In Sec. 3.3 we show that the theoretical predictions from (C1) captures the learning curves in
non-trivial cases, e.g. when input data are generated using a trained generative adversarial network,
while extracting both the feature maps from a neural network trained on real data.
(C4) In Sec. 3.4, we show empirically that for ridge regression the asymptotic formula of Theorem 1
can be applied directly to real data sets, even though the Gaussian hypothesis is not satisfied. This
universality-like property is a consequence of Theorem 3 and is illustrated in Fig. 1 (right) where
the real learning curve of several features maps learning the odd-versus-even digit task on MNIST is
compared to the theoretical prediction.

Related work — Rigorous results for teacher-student models: The Gaussian covariate model (1)
contains the vanilla teacher-student model as a special case where one takes u and v identical, with
unique covariance matrix Ω. This special case has been extensively studied in the statistical physics
community using the heuristic replica method [1–3, 24, 25]. Many recent rigorous results for such
models can be rederived as a special case of our formula, e.g. refs. [10–15, 26–29]. Numerous of these
results are based on the same proof technique as we employed here: the Gordon’s Gaussian min-max
inequalities [20, 30, 31]. The asymptotic analysis of kernel ridge regression [32], of margin-based
classification [33] also follow from our theorem. See also Appendix A.6 for the details on these
connections. Other examples include models of the double descent phenomenon [34]. Closer to our
work is the recent work of [35] on the random feature model. For ridge regression, there are also
precise predictions thanks to random matrix theory [12, 36–41]. A related set of results was obtained
in [42] for orthogonal random matrix models. The main technical novelty of our proof is the handling
of a generic loss and regularisation, not only ridge, representing convex empirical risk minimization,
for both classification and regression, with the generic correlation structure of the model (1).

Gaussian equivalence: A similar Gaussian conjecture has been discussed in a series of recent works,
and some authors proved partial results in this direction [11, 12, 28, 35, 43–46]. Ref. [45] analyses
a special case of the Gaussian model (corresponding to φt = id here), and proves a Gaussian
equivalence theorem (GET) for feature maps φs given by single-layer neural networks with fixed
weights. They also show that for Gaussian data x ∼ N (0, ID), feature maps of the form v = σ(Wx)
(with some technical restriction on the weights) led to the jointly-Gaussian property for the two
scalars (v ·w,u · θ0) for almost any vector w. However, their stringent assumptions on random
teacher weights limited the scope of applications to unrealistic label models. A related line of work
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discussed similar universality through the lens of random matrix theory [47–49]. In particular, Seddik
et al. [50] showed that, in our notations, vectors [u,v] obtained from Gaussian inputs x ∼ N (0, ID)
with Lipschitz feature maps satisfy a concentration property. In this case, again, one can expect the
two scalars (v ·w,u · θ0) to be jointly Gaussian with high-probability on w. Remarkably, in the
case of random feature maps, [46] could go beyond this central-limit-like behavior and established
the universality of the Gaussian covariate model (1) for the actual learned weights ŵ.

2 Main technical results

Our main technical result is a closed-form expression for the asymptotic training and generalisation
errors (4) of the Gaussian covariate model introduced above. We start by presenting our result in
the most relevant setting for the applications of interest in Section 3, which is the case of the ℓ2
regularization. Next, we briefly present our result in larger generality, which includes non-asymptotic
results for non-separable losses and regularizations.

We start by defining key quantities that we will use to characterize the estimator ŵ. Let Ω =
S⊤diag(ωi)S be the spectral decomposition of Ω. Let:

ρ ≡ 1

d
θ⊤
0 Ψθ0 ∈ R, θ̄ ≡ SΦ⊤θ0√

ρ
∈ Rd (6)

and define the joint empirical density µ̂d between (ωi, θ̄i):

µ̂d(ω, θ̄) ≡
1

d

d∑
i=1

δ(ω − ωi)δ(θ̄ − θ̄i). (7)

Note that Φ⊤θ0 is the projection of the teacher weights on the student space, and therefore θ̄ is the
rotated projection on the basis of the student covariance, rescaled by the teacher variance. Together
with the student eigenvalues ωi, these are relevant statistics of the model, encoded here in the joint
distribution µ̂d.

Assumptions — Consider the high-dimensional limit in which the number of samples n and the
dimensions p, d go to infinity with fixed ratios:

α ≡ n

d
, and γ ≡ p

d
. (8)

Assume that the covariance matrices Ψ,Ω are positive-definite and that the Schur complement of
the block covariance in equation (1) is positive semi-definite. Additionally, the spectral distributions
of the matrices Φ,Ψ and Ω converge to distributions such that the limiting joint distribution µ is
well-defined, and their maximum singular values are bounded with high probability as n, p, d→∞.
Finally, regularity assumptions are made on the loss and regularization functions mainly to ensure
feasibility of the minimization problem. We assume that the cost function r + g is coercive, i.e.
lim∥w∥2→+∞(r + g)(w) = +∞ and that the following scaling condition holds : for all n, d ∈
N, z ∈ Rn and any constant c > 0, there exist a finite, positive constant C, such that, for any standard
normal random vectors h ∈ Rd and g ∈ Rn:

∥z∥2 ⩽ c
√
n =⇒ sup

x∈∂g(z)

∥x∥2 ⩽ C
√
n,

1

d
E [r(h)] < +∞, 1

n
E [g(g)] < +∞ (9)

The relevance of these assumptions in a supervised machine learning context is discussed in Appendix
B.1. We are now in a position to state our result.
Theorem 1. (Closed-form asymptotics for ℓ2 regularization) In the asymptotic limit defined above,
the training and generalisation errors (4) of the estimator ŵ ∈ Rd solving the empirical risk
minimisation problem in eq. (3) with ℓ2 regularization r(w) = λ

2 ||w||
2
2 verify:

Etrain.(ŵ)
P−−−→

d→∞
Es,h∼N (0,1)

g
proxV ⋆g(.,f0(

√
ρs))

m⋆

√
ρ
s+

√
q⋆ − m⋆2

ρ
h

 , f0(
√
ρs)


Egen.(ŵ)

P−−−→
d→∞

E(ν,λ)

[
ĝ
(
f̂(λ), f0(ν)

)]
(10)
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where prox stands for the proximal operator defined as

proxV g(.,y)(x) = argmin
z
{g(z, y) + 1

2V
(x− z)2} (11)

and where (ν, λ) are jointly Gaussian scalar variables:

(ν, λ) ∼ N
(
0,

[
ρ m⋆

m⋆ q⋆

])
, (12)

and the overlap parameters (V ⋆, q⋆,m⋆) are prescribed by the unique fixed point of the following set
of self-consistent equations:

V = E(ω,θ̄)∼µ

[
ω

λ+V̂ ω

]
m = m̂√

γE(ω,θ̄)∼µ

[
θ̄2

λ+V̂ ω

]
q = E(ω,θ̄)∼µ

[
m̂2θ̄2ω+q̂ω2

(λ+V̂ ω)
2

] ,

V̂ = α

V (1− Es,h∼N (0,1)[f
′
g(V,m, q)])

m̂ = 1√
ργ

α
V Es,h∼N (0,1)

[
sfg(V,m, q)− m√

ρf
′
g(V,m, q)

]
q̂ = α

V 2Es,h∼N (0,1)

[(
m√
ρs+

√
q−m2

ρ h−fg(V,m, q)
)2]

(13)

where we defined the scalar random functions fg(V,m, q) = proxV g(.,f0(
√
ρs))(ρ

−1/2ms +√
q − ρ−1m2h) and f ′g(V,m, h) = prox′V g(.,f0(

√
ρs))(ρ

−1/2ms +
√
q − ρ−1m2h) as the first de-

rivative of the proximal operator.

Proof : This result is a consequence of Theorem 2, whose proof can be found in appendix B.

The parameters of the model (θ0,Ω,Φ,Ψ) only appear trough ρ, eq. (6), and the asymptotic limit µ of
the joint distribution eq. (7) and (f0, f̂ , g, λ). One can easily iterate the above equations to find their
fixed point, and extract (q∗,m∗) which appear in the expressions for the training and generalisation
errors (E⋆train, E⋆gen), see eq. (4). Note that (q⋆,m⋆) have an intuitive interpretation in terms of the
estimator ŵ ∈ Rd:

q⋆ ≡ 1

d
ŵ⊤Ωŵ, m⋆ ≡ 1√

dp
θ⊤
0 Φŵ (14)

Or in words: m⋆ is the correlation between the estimator projected in the teacher space, while q⋆ is
the reweighted norm of the estimator by the covariance Ω. The parameter V ∗ also has a concrete
interpretation : it parametrizes the deformation that must be applied to a Gaussian field specified by
the solution of the fixed point equations to obtain the asymptotic behaviour of ẑ. It prescribes the
degree of non-linearity given to the linear output by the chosen loss function. This is coherent with
the robust regression viewpoint, where one introduces non-square losses to deal with the potential
non-linearity of the generative model. V̂ ∗ plays a similar role for the estimator ŵ through the
proximal operator of the regularisation, see Theorem 4 and 5 in the Appendix. Two cases are of
particular relevance for the experiments that follow. The first is the case of ridge regression, in
which f0(x) = f̂(x) and both the loss g and the performance measure ĝ are taken to be the mean-
squared error mse(y, ŷ) = 1

2 (y − ŷ)
2, and the asymptotic errors are given by the simple closed-form

expression:

E⋆gen = ρ+ q⋆ − 2m⋆, E⋆train =
E⋆gen

(1 + V ⋆)2
, (15)

The second case of interest is the one of a binary classification task, for which f0(x) = f̂(x) =
sign(x), and we choose the performance measure to be the classification error ĝ(y, ŷ) = P(y ̸= ŷ).
In the same notation as before, the asymptotic generalisation error in this case reads:

E⋆gen =
1

π
cos−1

(
m⋆

√
ρq⋆

)
, (16)

while the training error E⋆train depends on the choice of g - which we will take to be the logistic loss
g(y, x) = log (1 + e−xy) in all of the binary classification experiments.

As mentioned above, this paper includes stronger technical results including finite size corrections
and precise characterization of the distribution of the estimator ŵ, for generic, non-separable loss and
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regularization g and r. This type of distributional statement is encountered for special cases of the
model in related works such as [28, 29, 51]. Define V ∈ Rn×d as the matrix of concatenated samples
used by the student. Informally, in high-dimension, the estimator ŵ and ẑ = 1√

d
Vŵ roughly behave

as non-linear transforms of Gaussian random variables centered around the teacher vector θ0 (or its
projection on the covariance spaces) as follows:

w∗ = Ω−1/2 prox
1

V̂ ∗ r(Ω−1/2.)

(
1

V̂ ∗
(m̂∗t+

√
q̂∗g)

)
, z∗ =

prox
V ∗g(.,z)

(
m∗
√
ρ
s+

√
q∗ − (m∗)2

ρ
h

)
.

where s,h ∼ N (0, In) and g ∼ N (0, Id) are random vectors independent of the other quantities, t =
Ω−1/2Φ⊤θ0, y = f0

(√
ρs
)
, and (V ∗, V̂ ∗, q∗, q̂∗,m∗, m̂∗) is the unique solution to the fixed point

equations presented in Lemma 12 of appendix B. Those fixed point equations are the generalization of
(13) to generic, non-separable loss function and regularization. The formal concentration of measure
result can then be stated in the following way:
Theorem 2. (Non-asymptotic version, generic loss and regularization) Under Assumption (B.1),
consider any optimal solution ŵ to 3. Then, there exist constants C, c, c′ > 0 such that, for any
Lipschitz function ϕ1 : Rd → R, and separable, pseudo-Lipschitz function ϕ2 : Rn → R and any
0 < ϵ < c′:

P
(∣∣∣∣ϕ1( ŵ√

d

)
− Eϕ1

(
w∗
√
d

)∣∣∣∣ ⩾ ϵ

)
⩽
C

ϵ2
e−cnϵ4 ,P

(∣∣∣∣ϕ2( ẑ√
n

)
− Eϕ2

(
z∗
√
n

)∣∣∣∣ ⩾ ϵ

)
⩽
C

ϵ2
e−cnϵ4 .

Note that in this form, the dimensions n, p, d still appear explicitly, as we are characterizing the
convergence of the estimator’s distribution for large but finite dimension. The clearer, one-dimensional
statements are recovered by taking the n, p, d → ∞ limit with separable functions and an ℓ2
regularization. Other simplified formulas can also be obtained from our general result in the case of
an ℓ1 penalty, but since this breaks rotational invariance, they do look more involved than the ℓ2 case.
From Theorem 2, one can deduce the expressions of a number of observables, represented by the test
functions ϕ1, ϕ2, characterizing the performance of ŵ, for instance the training and generalization
error. A more detailed statement, along with the proof, is given in appendix B.

3 Applications of the Gaussian model

We now discuss how the theorems above are applied to characterise the learning curves for a
range of concrete cases. We present a number of cases – some rather surprising – for which
Conjecture 1 seems valid, and point out some where it is not. An out-of-the-box iterator for all
the cases studied hereafter is provided in the GitHub repository for this manuscript at https:
//github.com/IdePHICS/GCMProject.

3.1 Random kitchen sink with Gaussian data

If we choose random feature maps φs(x) = σ (Fx) for a random matrix F and a chosen scalar
function σ acting component-wise, we obtain the random kitchen sink model [16]. This model has
seen a surge of interest recently, and a sharp asymptotic analysis was provided in the particular case
of uncorrelated Gaussian data x ∼ N (0, ID) and φt(x) = x in [11, 12] for ridge regression and
generalised by [43, 46] for generic convex losses. Both results can be framed as a Gaussian covariate
model with:

Ψ = Ip, Φ = κ1F⊤, Ω = κ201d1
⊤
d + κ21

FF⊤

d
+ κ2⋆Id, (17)

where 1d ∈ Rd is the all-one vector and the constants (κ0, κ1, κ⋆) are related to the non-linearity σ:

κ0= Ez∼N (0,1) [σ(z)] , κ1= Ez∼N (0,1) [zσ(z)] , κ⋆=
√
Ez∼N (0,1) [σ(z)2]− κ20 − κ21 . (18)

In this case, the averages over µ in eq. (13) can be directly expressed in terms of the Stieltjes
transform associated with the spectral density of FF⊤. Note, however, that our present framework
can accommodate more involved random sinks models, such as when the teacher features are also a
random feature model or multi-layer random architectures.

3.2 Kernel methods with Gaussian data
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Figure 2: Learning in kernel space: Teacher and
student live in the same (Hilbert) feature space
v = u ∈ Rd with d≫ n, and the performance only
depends on the relative decay between the student
spectrum ωi = d i−2 (the capacity) and the teacher
weights in feature space θ20iωi = d i−a (the source).
Top: a task with sign teacher (in kernel space), fitted
with a max-margin support vector machine (logistic
regression with vanishing regularisation [52]). Bot-
tom: a task with linear teacher (in kernel space) fitted
via kernel ridge regression with vanishing regularisa-
tion. Points are simulation that matches the theory
(lines). Simulations are averaged over 10 independ-
ent runs.

Another direct application of our formalism
is to kernel methods. Kernel methods admit
a dual representation in terms of optimization
over feature space [53]. The connection is
given by Mercer’s theorem, which provides
an eigen-decomposition of the kernel and of
the target function in the feature basis, effect-
ively mapping kernel regression to a teacher-
student problem on feature space. The clas-
sical way of studying the performance of ker-
nel methods [54, 55] is then to directly ana-
lyse the performance of convex learning in
this space. In our notation, the teacher and stu-
dent feature maps are equal, and we thus set
p = d,Ψ = Φ = Ω = diag(ωi) where ωi are
the eigenvalues of the kernel and we take the
teacher weights θ0 to be the decomposition of
the target function in the kernel feature basis.

There are many results in classical learning
theory on this problem for the case of ridge
regression (where the teacher is usually called
"the source" and the eigenvalues of the kernel
matrix the "capacity", see e.g. [54, 56]). How-
ever, these are worst case approaches, where
no assumption is made on the true distribu-
tion of the data. In contrast, here we follow
a typical case analysis, assuming Gaussianity
in feature space. Through Theorem 1, this
allows us to go beyond the restriction of the
ridge loss. An example for logistic loss is in
Fig. 2.

For the particular case of kernel ridge regression, Th. 1 provides a rigorous proof of the formula
conjectured in [32]. App. A.6 presents an explicit mapping to their results. Hard-margin Support
Vector Machines (SVMs) have also been studied using the heuristic replica method from statistical
physics in [57, 58]. In our framework, this corresponds to the hinge loss g(x, y) = max(0, 1− yx)
when λ → 0+. Our theorem thus puts also these works on rigorous grounds, and extends them to
more general losses and regularization.

3.3 GAN-generated data and learned teachers

To approach more realistic data sets, we now consider the case in which the input data x ∈ X is
given by a generative neural network x = G(z), where z is a Gaussian i.i.d. latent vector. Therefore,
the covariates [u,v] are the result of the following Markov chain:

z 7→
G

x ∈ X 7→
φt

u ∈ Rp, z 7→
G

x ∈ X 7→
φs

v ∈ Rd. (19)

With a model for the covariates, the missing ingredient is the teacher weights θ0 ∈ Rp, which
determine the label assignment: y = f0(u

⊤θ0). In the experiments that follow, we fit the teacher
weights from the original data set in which the generative model G was trained. Different choices
for the fitting yield different teacher weights, and the quality of label assignment can be accessed by
the performance of the fit on the test set. The set (φt,φs,G,θ0) defines the data generative process.
For predicting the learning curves from the iterative eqs. (13) we need to sample from the spectral
measure µ, which amounts to estimating the population covariances (Ψ,Φ,Ω). This is done from the
generative process in eq. (19) with a Monte Carlo sampling algorithm. This pipeline is explained in
detail in Appendix D. An open source implementation of the algorithms used in the experiments is
available online at https://github.com/IdePHICS/GCMProject.

Fig. 3 shows an example of the learning curves resulting from the pipeline discussed above in a
logistic regression task on data generated by a GAN trained on CIFAR10 images. More concretely,
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Figure 3: Left: generalisation classification error (top) and (unregularised) training loss (bottom)
vs the sample complexity α = n/d for logistic regression on a learned feature map trained on
dcGAN-generated CIFAR10-like images labelled by a teacher fully-connected neural network (see
Appendix D.1 for architecture details), with vanishing ℓ2 regularisation. The different curves compare
featured maps at different epochs of training. The theoretical predictions based on the Gaussian
covariate model (full lines) are in very good agreement with the actual performance (points). Right:
Test classification error (top) and (unregularised) training loss, (bottom) for logistic regression as a
function of the number of samples n for an animal vs not-animal binary classification task with ℓ2
regularization λ = 10−2, comparing real CIFAR10 grey-scale images (blue) with dcGAN-generated
CIFAR10-like gray-scale images (red). The real-data learning curve was estimated, just as in Figs. 4
from the population covariances on the full data set, and it is not in agreement with the theory in
this case. On the very right we depict the histograms of the variable 1√

d
v⊤ŵ for a fixed number

of samples n = 2d = 2048 and the respective theoretical predictions (solid line). Simulations are
averaged over 10 independent runs.

we used a pre-trained five-layer deep convolutional GAN (dcGAN) from [59], which maps 100
dimensional i.i.d. Gaussian noise into k = 32 × 32 × 3 realistic looking CIFAR10-like images:
G : z ∈ R100 7→ x ∈ R32×32×3. To generate labels, we trained a simple fully-connected four-layer
neural network on the real CIFAR10 data set, on a odd (y = +1) vs. even (y = −1) task, achieving
∼ 75% classification accuracy on the test set. The teacher weights θ0 ∈ Rp were taken from the
last layer of the network, and the teacher feature map φt from the three previous layers. For the
student model, we trained a completely independent fully connected 3-layer neural network on the
dcGAN-generated CIFAR10-like images and took snapshots of the feature maps φi

s induced by the
2-first layers during the first i ∈ {0, 5, 50, 200} epochs of training. Finally, once

(
G,φt,φ

i
s,θ0

)
have been fixed, we estimated the covariances (Ψ,Φ,Ω) with a Monte Carlo algorithm. Details of
the architectures used and of the training procedure can be found in Appendix. D.1.

Fig. 3 depicts the resulting learning curves obtained by training the last layer of the student. Interest-
ingly, the performance of the feature map at epoch 0 (random initialisation) beats the performance of
the learned features during early phases of training in this experiment. Another interesting behaviour
is given by the separability threshold of the learned features, i.e. the number of samples for which
the training loss becomes larger than 0 in logistic regression. At epoch 50 the learned features are
separable at lower sample complexity α = n/d than at epoch 200 - even though in the later the
training and generalisation performances are better.

3.4 Learning from real data sets

Applying teacher/students to a real data set — Given that the learning curves of realistic-looking
inputs can be captured by the Gaussian covariate model, it is fair to ask whether the same might be
true for real data sets. To test this idea, we first need to cast the real data set into the teacher-student
formalism, and then compute the covariance matrices Ω,Ψ,Φ and teacher vector θ0 required by
model (1).
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Let {xµ, yµ}ntot
µ=1 denote a real data set, e.g. MNIST or Fashion-MNIST for concreteness, where

ntot = 7 × 104, xµ ∈ RD with D = 784. Without loss of generality, we can assume the data is
centred. To generate the teacher, let uµ = φt(x

µ) ∈ Rp be a feature map such that data is invertible
in feature space, i.e. that yµ = θ⊤

0 u
µ for some teacher weights θ0 ∈ Rp, which should be computed

from the samples. Similarly, let vµ = φs(x
µ) ∈ Rd be a feature map we are interested in studying.

Then, we can estimate the population covariances (Ψ,Φ,Ω) empirically from the entire data set as:

Ψ =

ntot∑
µ=1

uµuµ⊤

ntot
, Φ =

ntot∑
µ=1

uµvµ⊤

ntot
, Ω =

ntot∑
µ=1

vµvµ⊤

ntot
. (20)

At this point, we have all we need to run the self-consistent equations (13). The issue with this
approach is that there is not a unique teacher map φt and teacher vector θ0 that fit the true labels.
However, we can show that all interpolating linear teachers are equivalent:
Theorem 3. (Universality of linear teachers) For any teacher feature map φt, and for any θ0 that
interpolates the data so that yµ = θ⊤

0 u
µ ∀µ, the asymptotic predictions of model (1) are equivalent.

Proof. It follows from the fact that the teacher weights and covariances only appear in eq. (13)
through ρ = 1

pθ
⊤
0 Ψθ0 and the projection Φ⊤θ0. Using the estimation (20) and the assumption that it

exists yµ = θ⊤
0 u

µ, one can write these quantities directly from the labels yµ:

ρ =
1

ntot

ntot∑
µ=1

(yµ)
2
, Φ⊤θ0 =

1

ntot

ntot∑
µ=1

yµvµ . (21)

For linear interpolating teachers, results are thus independent of the choice of the teacher.

Although this result might seen surprising at first sight, it is quite intuitive. Indeed, the information
about the teacher model only enters the Gaussian covariate model (1) through the statistics of u⊤θ0.
For a linear teacher f0(x) = x, this is precisely given by the labels.
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Figure 4: Test and training mean-squared errors
eqs. (15) as a function of the number of samples
n for ridge regression. The Fashion-MNIST data
set, with vanishing regularisation λ = 10−5. In
this plot, the student feature map φs is a 3-layer
fully-connected neural network with d = 2352
hidden neurons trained on the full data set with
the square loss. Different curves correspond to the
feature map obtained at different stages of training.
Simulations are averaged over 10 independent runs.
Further details on the simulations are described in
Appendix D.1

Ridge Regression with linear teachers —
We now test the prediction of model (1) on

real data sets, and show that it is surprisingly ef-
fective in predicting the learning curves, at least
for the ridge regression task. We have trained
a 3-layer fully connected neural network with
ReLU activations on the full Fashion-MNIST
data set to distinguish clothing used above vs.
below the waist [60]. The student feature map
φs : R784 → Rd is obtained by removing the
last layer, see Appendix D.1 for a detailed de-
scription. In Fig. 4 we show the test and training
errors of the ridge estimator on a sub-sample
of n < ntot on the Fashion-MNIST images.
We observe remarkable agreement between the
learning curve obtained from simulations and
the theoretical prediction by the matching Gaus-
sian covariate model. Note that for the square
loss and for λ≪ 1, the worst performance peak
is located at the point in which the linear system
becomes invertible. Curiously, Fig. 4 shows
that the fully-connected network progressively
learns a low-rank representation of the data as
training proceeds. This can be directly verified
by counting the number of zero eigenvalues of
Ω, which go from a full-rank matrix to a matrix
of rank 380 after 200 epochs of training.

Fig. 1 (right) shows a similar experiment on the MNIST data set, but for different out-of-the-box
feature maps, such as random features and the scattering transform [61], and we chose the number of
random features d = 1953 to match the number of features from the scattering transform. Note the
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characteristic double-descent behaviour [9, 25, 62], and the accurate prediction of the peak where the
interpolation transition occurs. We note in Appendix D.1 that for both Figs. 4 and 1, for a number of
samples n closer to ntot we start to see deviations between the real learning curve and the theory.
This is to be expected since in the teacher-student framework the student can, in principle, express
the same function as the teacher if it recovers its weights exactly. Recovering the teacher weights
becomes possible with a large training set. In that case, its test error will be zero. However, in
our setup the test error on real data remains finite even if more training data is added, leading to
the discrepancy between teacher-student learning curve and real data, see Appendix D.1 for further
discussion.

Why is the Gaussian model so effective for describing learning with data that are not Gaussian? The
point is that ridge regression is sensitive only to second order statistics, and not to the full distribution
of the data. It is a classical property (see Appendix E) that the training and generalisation errors are
only a function of the spectrum of the empirical and population covariances, and of their products.
Random matrix theory teaches us that such quantities are very robust, and their asymptotic behaviour
is universal for a broad class of distributions of [u,v] [49, 63–65]. The asymptotic behavior of kernel
matrices has indeed been the subject of intense scrutiny [11, 47, 48, 50, 66, 67]. Indeed, a universality
result akin to Theorem 3 was noted in [41] in the specific case of kernel methods. We thus expect
the validity of model (1) for ridge regression, with a linear teacher, to go way beyond the Gaussian
assumption.

Beyond ridge regression — The same strategy fails beyond ridge regression and mean-squared
test error. This suggests a limit in the application of model (1) to real (non-Gaussian) data to the
universal linear teacher. To illustrate this, consider the setting of Figs. 4, and compare the model
predictions for the binary classification error instead of the ℓ2 one. There is a clear mismatch between
the simulated performance and prediction given by the theory (see Appendix D.1) due to the fact that
the classification error does not depends only on the first two moments.

We present an additional experiment in Fig. 3. We compare the learning curves of logistic regression
on a classification task on the real CIFAR10 images with the real labels versus the one on dcGAN-
generated CIFAR10-like images and teacher generated labels from Sec. 3.3. While the Gaussian
theory captures well the behaviour of the later, it fails on the former. A histogram of the distribution
of the product u⊤ŵ for a fixed number of samples illustrates well the deviation from the prediction
of the theory with the real case, in particular on the tails of the distribution. The difference between
GAN generated data (that fits the Gaussian theory) and real data is clear. Given that for classification
problems there exists a number of choices of "sign" teachers and feature maps that give the exact same
labels as in the data set, an interesting open question is: is there a teacher that allows to reproduce
the learning curves more accurately? This question is left for future works.
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