
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Practical Byzantine-resilient Stochastic Gradient 
Descent

Sébastien Louis Alexandre ROUAULT

Thèse n° 8999

2022

Présentée le 24 février 2022

Prof. V. Kuncak, président du jury
Prof. R. Guerraoui, directeur de thèse
Dr M. Seeger, rapporteur
Dr M. Á. Veganzones, rapporteur
Prof. M. Jaggi, rapporteur

Faculté informatique et communications
Laboratoire de calcul distribué
Programme doctoral en informatique et communications 





Acknowledgements
To be honest, more than four years ago, I had no intention of beginning a thesis after
my second master. It is my advisor, Rachid Guerraoui, who convinced me then to apply
to the PhD program of the faculty. His arguments were on point: at worst it does not
change my plans, at best it would open me another door. During my master project at
Cisco, Dr. Patrick Marlier, Dr. Sergio Mena and Dr. Pedro Ramalhete convinced me that
the PhD is not a mere academic curriculum choice, but an exceptional opportunity to
grow in many ways. I am grateful for their wise words of advice; they were right.
I am thankful for having been accepted in the PhD program and Rachid Guerraoui’s
laboratory. I am grateful for Rachid’s exceptional overall vision and ability to ask the
right (and sometimes difficult) questions, the questions that can make one sees his
own work from a completely different angle, unveiling new paths, and for constantly
pushing me to synthesize and explain potentially complex matters with simple words.
I am also grateful to Rachid who from day one, when I wanted to work on shared
memory problems, instead invited me to take a look at this then-new line of work,
Byzantine machine learning, and introduced me to El Mahdi El Mhamdi.

I cannot overstate how instrumental El Mahdi El Mhamdi has been in this thesis. Our
collaboration brought forth many technical discussions, that turned into new formu-
lations, new problems, new ideas and ultimately new contributions to the literature.
Mahdi’s intellectual sharpness may only be rivaled by Lê Nguyen Hoang, who joined
EPFL just after I started my PhD. The three of us had many stimulating philosophical
discussions, from epistemic questions to ethical considerations, which really changed
the way I think today and made these last four years so exhilarating.
More punctually, I also had fruitful collaborations with several other PhD students,
both inside and outside EPFL, all duly acknowledged in Section 1.2.1. The use of the
pronoun “we” instead of “I” in the rest of the thesis reflects that fact.

Most importantly, I am grateful to my parents for providing for and educating me in
the twenty-three years predating this thesis. Without their sustained efforts and joint
dedication to my brother and myself, I would not be presenting this thesis today.
I may not fully realize how lucky I am to have grown up in fully developed countries,
legacy of the work of so many before me. Thinking about it, one can question to which
extent a thesis may actually be more of a common effort than a personal endeavor.

I stand on the shoulders of my elders. Please consider this section incomplete.

i





Abstract
Algorithms are everywhere. The recipe for the frangipane cake is an algorithm. If all the
listed ingredients are available and the cook is sufficiently deft, after a finite number of
small, well-defined steps a delicious dessert will exit the oven.
Now, what if the grocer who sold the cook the ingredients mislabeled some of them?
If salt had been mistakenly labeled and sold as sugar, those tasting the cake would
probably be disgusted and stop eating. If a dangerous drug had been maliciously sold
as sugar, the consequences could be much more awful.

When it comes to security, machine learning is perhaps closer to cooking than it is
to other families of computer programs. Follow the recipe for the Margherita pizza
using cream and onions instead of tomatoes and mozzarella, and you may pull a
Flammekueche out of the oven. Likewise, what the practitioner gets at the end of the
training certainly depends on the relevance of the model and other hyperparameters,
but ultimately the output parameters are defined by the inputs: the training set.
While for cookery we simply trust the supply chain and blame the cook for mistakes, we
should expect machine learning algorithms to gracefully handle (partially) malformed
and malicious datasets and inputs, as for any other computer program.

Byzantine machine learning studies malicious behaviors during the training phase. A
particular, growing body of work has been tackling Byzantine failures in the context of
distributed Stochastic Gradient Descent (SGD). A central server distributes and safely
aggregates gradients from several worker nodes, some of them being adversarial.

On the theoretical side, this thesis tries to advance the state-of-the-art on two fronts.
Existing works had always considered a trusted, central parameter server. We propose
a novel algorithm that has the same proven guarantees as previous works, but does
not require any node to be trusted and can operate under network asynchrony.
Two other contributions tackle problems either in the construction or an assumption
common to statistically-robust Gradient Aggregation Rule (GAR), that made them very
vulnerable to attacks in practice. We put a substantial emphasis on devising pragmatic,
easy to implement and computationally cheap techniques to address these issues.

On the system side, this thesis implements many of the existing and contributed
GARs, integrated into two major machine learning frameworks (PyTorch and Tensor-
Flow). These algorithms are assesses from microbenchmarks on a single GPU to actual
networked deployments on many nodes. The associated code has been open-sourced.

iii





Résumé
Les algorithmes sont omniprésents. La recette de la tarte frangipane est un algorithme.
Si tous les ingrédients sont disponibles et le patissier suffisament dégourdi, après un
nombre fini d’étapes simples et bien définies, un délicieux dessert sortira du four.
Maintenant que se passeraît-il si, sans changer l’algorithme, certains ingrédients utili-
sés par notre cuisinier n’étaient pas les bons? Replacer par erreur le sucre par du sel
rendra la tarte infecte, sans plus de conséquence. Replacer par malice le sucre par une
drogue dangereuse risquerait de s’avérer beaucoup plus grave.

Concernant la sécurité, l’apprentissage machine se rapproche probablement davan-
tage de la cuisine que d’autres types de logiciels. Suivez la recette de la pizza margarita
en replaçant la tomate et la mozzarella par de la crème et des oignons, et ce que vous
sortirez du four ressemblera à une Flammekueche. Les hyperparamètres choisis in-
fluent évidemment sur le résultat de l’apprentissage, mais le comportement final du
modèle est avant tout défini par le dataset donné à l’algorithme d’apprentissage.
En cuisine, on peut avoir confiance en l’intégrité de la chaîne d’approvisionnement.
Le logiciel lui ne bénéficie naturellement pas des mêmes contrôles et garanties sur les
données qui lui sont fournies, et doit donc résister à des entrées malveillantes.

Le champ d’étude des comportement adversariaux durant l’apprentissage porte le
nom d’apprentissage machine Byzantin. Une application très étudiée est l’algorithme
distribué du gradient stochastique : un serveur central distribue et aggrège de manière
robuste les gradients calculés par plusieurs nœuds, certains pouvant être adversariaux.

Sur l’aspect théorique, cette thèse se veut d’avancer l’état de l’art dans deux directions.
La littérature ayant toujours supposé l’existence d’un serveur central de confiance,
nous proposons un nouvel algorithme qui conserve les mêmes garanties sans pour
autant dépendre d’un serveur de confiance, et est capable de fonctionner en asynchro-
nie. Deux autres contributions s’attaquent à des problèmes soit dans la construction,
soit dans une hypothèse commune aux défenses dites statistiquement robutes, qui ren-
daient ces défenses particulièrement vulnérables à certaines attaques. Nos solutions
se veulent pragmatiques, simples à implémenter et à faible coût calculatoire.

Sur l’aspect système, cette thèse implémente et intégre de nombreuses défenses à deux
des frameworks les plus utilisés en apprentissage machine (PyTorch et TensorFlow).
Les performances de ces défenses seront évaluées, de simple microbenchmarks sur
GPU à des déploiements réels sur plusieurs nœuds en réseau. Le code est open source.

v



Résumé

vi



Contents
Acknowledgements i

Abstract (English/Français) iii

Introduction 1
1.1 When Data becomes Code . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Associated Publications . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I Attacks and Defenses 7

2 Preliminaries 9
2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Distributed Training . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 The Byzantine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Formal Byzantine resilience . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Applicability and Limitations . . . . . . . . . . . . . . . . . . . . 16

3 The Hidden Vulnerability 19
3.1 Statistically-robust Defenses . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Prior Art: Krum and Geomed . . . . . . . . . . . . . . . . . . . . 20
3.1.2 MDA: Minimum Diameter Averaging . . . . . . . . . . . . . . . . 20

3.2 The Curse of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 The Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Leeway of Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Mitigating the Curse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Bulyan: a Composite GAR . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . 31

3.4 Practical Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



Contents

3.4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

II Addressing Shortcomings 39

4 (No) Single Point of Failure 41
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 The Case for Asynchrony . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.2 Updated Distributed Model . . . . . . . . . . . . . . . . . . . . . 43

4.2 ByzSGD: General Byzantine SGD . . . . . . . . . . . . . . . . . . . . . . 44
4.2.1 Distributed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Operating Assumptions . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.3 Proof of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.1 Evaluation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.2 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Distributed Momentum 61
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Studied Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.1 Byzantine resilient GARs . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.2 State-of-the-art Attacks . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Momentum at the Workers . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.2 Formal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

III Optimized Implementations 75

6 Robust Aggregation in Practice 77
6.1 Design of AggregaThor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1.1 Architecture and Byzantine resilience . . . . . . . . . . . . . . . 78
6.1.2 Optimized GAR implementations . . . . . . . . . . . . . . . . . . 81
6.1.3 Modularity by Design . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Evaluation of AggregaThor . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2.1 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

viii



Contents

6.2.2 Non-Byzantine Environment . . . . . . . . . . . . . . . . . . . . 85
6.2.3 Adversarial Environment . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Faster Aggregation on GPUs 93
7.1 Programming for GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.1.1 Execution and Memory Considerations . . . . . . . . . . . . . . 93
7.1.2 Practical case: SIMT median on GPUs . . . . . . . . . . . . . . . 94

7.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

IV Summary and Future Work 103

8 More Effective Defenses 105
8.1 The Curse of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.2 Decentralized Resilience . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.3 The Impact of the Variance-norm Ratio . . . . . . . . . . . . . . . . . . 106
8.4 Practical, Optimized Byzantine resilience . . . . . . . . . . . . . . . . . 106

9 Future Directions 109
9.1 Model-aware Aggregation Rules . . . . . . . . . . . . . . . . . . . . . . . 109
9.2 Heterogeneous Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.3 Privacy and Byzantine resilience . . . . . . . . . . . . . . . . . . . . . . 110

A Additional Experimental Results 113
A.1 Distributed Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.1.1 Reproducing the results . . . . . . . . . . . . . . . . . . . . . . . 113
A.1.2 Larger models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.1.3 More experimental results . . . . . . . . . . . . . . . . . . . . . . 115

B Additional Proofs 121
B.1 The Hidden Vulnerability: Bulyan’s resilience . . . . . . . . . . . . . . . 121

Bibliography 125

ix





Introduction

This thesis is fundamentally about software security.

1.1 When Data becomes Code

“Hello, World!” programs are famous in the software development folklore, as being
one of the first programs ever written by novice developers. They are (conceptually)
extremely simple: they display somehow the text “Hello, world!”.

“Hello, World!” programs are interesting for their behavior is independent from any
input, and so unaffected by adversarial inputs in particular. This is a singular situation
in software. The purpose of software system is precisely to (automatically) process
information in meaningful ways. Data must affect the behavior of software systems.

As software system inputs can be malicious, software security strives to “allow intended
use of software [and to] prevent unintended use that may cause harm“1. Data must
only affect software systems in intended ways. Let us take an example: microblogging.
Microblogging allows users to publicly publish small pieces of content (text, images,
videos, etc). Adversarial submissions to such a system could for instance display
arbitrary content under the name of the adversarial user: this is how the software
system is intended to operate2. Adversarial submissions must not be able to stop the
system, modify the content published by other users, etc: this would be a violation of
the security policies, which precisely define what the system can and cannot do.

Machine learning is a whole new paradigm, especially regarding software security.
The root problem with machine learning security lies with the security policies: the
expected behavior of the trained model is not well-defined. That is actually the pur-
pose of machine learning: to take over when humans cannot (know how to) directly
decompose the (intuitively) desired behavior into elementary, programmable steps,
because it is too complex or too loosely defined. Machine learning instead considers a

1This short definition was given in the master course CS-412 at EPFL, in 2019, by Pr. Mathias Payer.
2At least before content moderation is applied; and for moderation to ever happen, the system state

must have already been changed, altered by the (malicious) data as intended by the designer/defender.

1



Introduction

large space of behaviors, and automatically selects a behavior that maximizes some
metric. For instance with reinforcement learning, the machine learning algorithm must
maximize the reward. In the case of supervised learning (this thesis), the machine
learning algorithm must maximize how well the chosen behavior fits some input data.

To illustrate, at one end of the spectrum, “Hello, World!” programs do not take any
input and so are invulnerable to adversarial inputs. Further into the spectrum, regular
software systems can precisely define how they (should) interact with their inputs,
which only affect such systems in restricted ways (if specifications are complete enough
and systems precisely follow their specifications). And at the opposite end of the
spectrum lies machine learning, where the training data has free reign over which
behavior the final model will follow among an arbitrarily large set of possible behaviors.

How to tackle machine learning security then?

The defensive strategies studied in this thesis are techniques that make the training
procedure robust to a minority of Byzantine inputs. Namely, the result of the training
procedure with Byzantine agents should ideally be indistinguishable from the result
without Byzantine agents. The validity of this strategy depends on one strong assump-
tion: in the absence of Byzantine agents (e.g. if the training set is only composed of
non-adversarial samples), the final model will enforce (our intuition of) the security
policies. Unfortunately, this assumption is almost certainly not true in practice: there
is a whole branch of the literature highlighting issues with final models, that are trained
without Byzantine agents but still exhibit unwanted behaviors (Biggio et al., 2013).

This thesis only proposes incomplete answers to the question of machine learning
security; and the road ahead this challenging topic looks particularly long.

1.2 Organization

Chapter 2 will introduce the technical background of this thesis, concluding with a
critical eye on the applicability and limitations of the established formalizations.

Chapter 3 will identify a flaw, that affects a whole subfamily of defenses. This flaw
stems from a particular defensive construction, that suffers the curse of dimensionality.
We will formally study to what extent an attacker can bypass three affected defenses.
Using this knowledge, we will build and experiment with an actual attack, and observe
its (substantial) impact on the training. Finally, we will propose a new, pragmatic,
composite, Byzantine resilient Gradient Aggregation Rule (GAR) defeating this attack.

Chapter 4 will clear the assumption of a trusted, central parameter server out of dis-
tributed, Byzantine SGD. The threat model of Byzantine SGD (Section 2.2) aims at
shielding the training from arbitrary faults, but this threat model had always arbitrar-

2



1.2 Organization

ily assumed the faults would be limited to the worker nodes only. Additionally, the
threat model never (needed to) consider asynchronous communications, which, if not
supported by the defender, can be another source of vulnerabilities in practice. We
will propose a distributed algorithm that is built to work in asynchrony and supports
multiple parameter servers, some of which being Byzantine. We will prove that our
algorithm nevertheless achieves the same theoretical guarantees as standard Byzantine
SGD. Finally, we will experimentally assess the slowdown induced by our solution.

Chapter 5 will tackle two state-of-the-art attacks, targeting any statistically-robust
Byzantine resilient GARs with devastating effects. The main identified weakness in
this family of GARs is their requirement for a sufficiently low variance-norm ratio, a
requirement intuitively capturing how informative non-Byzantine gradients must be.
We will propose a practical method which, despite increasing the variance, reduces the
variance-norm ratio, mitigating the identified weakness. Besides theoretical support,
we will assess the effectiveness of our method over several thousands runs, seeded for
confidence and reproducibility purposes, spawning small to fairly large models, four
image classification tasks and testing every combination of five other hyperparameters.

On the system side, Chapter 6 will implement and assess Byzantine-resilient GAR in
actual, datacenter-scale distributed settings. We will strive to write optimized, paral-
lelized and specialized GAR implementations. This chapter will then explore the chal-
lenges behind deploying Byzantine resilient GARs inside a modern machine learning
framework, and to what extend existing defense can affect the training performances.

Chapter 7 will then implement these Byzantine-resilient GARs on GPUs, revealing
whether gradient aggregation costs could be marginalized in actual deployments. We
will see that fusing or otherwise specializing our implementations can lead to drastic
performance improvements; even beating PyTorch’s Median implementation on GPU.

1.2.1 Associated Publications

Substantial portions of the following publications3 will be included in this thesis4:

1. The Hidden Vulnerability of Distributed Learning in Byzantium
El-Mahdi El-Mhamdi, Rachid Guerraoui, Sébastien Rouault

ICML 2018 — 35th International Conference on Machine Learning

Stockholm, Sweden, July 10–15, 2018

Accepted with a "Long Talk"

2. AGGREGATHOR: Byzantine Machine Learning via Robust Gradient Aggregation
Georgios Damaskinos, El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis,

3Please note that the author names are always ordered alphabetically.
4This publication list is ordered by date of publication, not by order of appearance in the thesis.

3



Introduction

Sébastien Rouault

MLSys 2019 — 1st Conference on Machine Learning and Systems

Palo Alto, CA, USA, March 31–April 2, 2019

3. Genuinely Distributed Byzantine Machine Learning
El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis, Lê Nguyen Hoang,

Sébastien Rouault

PODC 2020 — ACM 39th Symposium on Principles of Distributed Computing

Selerno, Italy, August 3–7, 2020

4. Fast and Robust Distributed Learning in High Dimension
El-Mahdi El-Mhamdi, Rachid Guerraoui, Sébastien Rouault

SRDS 2020 — IEEE 39th International Symposium on Reliable Distributed Systems

Shanghai, China, September 21–24, 2020

5. Distributed Momentum for Byzantine-resilient Stochastic Gradient Descent
El-Mahdi El-Mhamdi, Rachid Guerraoui, Sébastien Rouault

ICLR 2021 — 9th International Conference on Learning Representations

Vienna, Austria, May 4–8, 2021

The following publications will not appear or only partially appear in this thesis:

6. On The Robustness of a Neural Network
El-Mahdi El-Mhamdi, Rachid Guerraoui, Sébastien Rouault

SRDS 2017 — IEEE 36th Symposium on Reliable Distributed Systems

Hong Kong, China, September 26–29, 2017

7. AKSEL: Fast Byzantine SGD
Amine Boussetta, El-Mahdi El-Mhamdi, Rachid Guerraoui, Alexandre Maurer,

Sébastien Rouault

OPODIS 2020 — 24th International Conference on Principles of Distributed Systems

Strasbourg, France, December 14–16, 2020

Best Student Paper award

8. GARFIELD: System Support for Byzantine Machine Learning
Rachid Guerraoui, Arsany Guirguis, Jérémy Max Plassmann, Anton Alexandre Ragot,

Sébastien Rouault

DSN 2021 — 51st IEEE/IFIP International Conference on Dependable Systems and

Networks

Taipei, Taiwan, June 21–24, 2021

9. Differential Privacy and Byzantine Resilience in SGD: Do They Add Up?
Rachid Guerraoui, Nirupam Gupta, Rafaël Pinot, Sébastien Rouault, John Stephan

PODC 2021 — ACM 40th Symposium on Principles of Distributed Computing

Selerno, Italy, July 26–30, 2021

4



1.2 Organization

10. Collaborative Learning in the Jungle
El-Mahdi El-Mhamdi, Sadegh Farhadkhani, Rachid Guerraoui, Arsany Guirguis,

Lê Nguyên Hoang, Sébastien Rouault

NeurIPS 2021 — 35th Conference on Neural Information Processing Systems

Virtual only, December 7–10, 2021

1.2.2 Notation

Symbol Description 1st reference

t Current step number

n Total number of workers in a distributed deployment

f Maximum number of Byzantine workers among the n
workers in a distributed deployment

i, j, k, . . . Worker/server identifiers in a distributed deployment

d Dimension of the parameter vector (usually d� 1)

‖·‖p `p norm. Without p, ‖·‖ represents the Euclidean norm.

1y(x) Indicator function, equals 1 when x = y else equals 0
θ

(i)
t ∈ Rd Parameter vector held by server node i at step t; when

there is only one server, we note this vector θt instead
Section 2.1.1

Q : Rd → R Loss function to minimize Section 2.1.1

ηt Learning rate used at step t Equation (2.2)

µ Momentum factor Equation (2.3)

g
(i)
t Gradient sampled by worker i at step t; as with θ

(i)
t ,

when there is only one worker involved, we note gt

Equation (2.5)

G
(i)
t Gradient submitted by worker i at step t to the

Byzantine-resilient gradient aggregation rule
Section 2.1.2

F :
(
Rd
)n → Rd An unspecified Gradient Aggregation Rule (GAR) Equation (2.6)

Gt Aggregated gradient at step t Equation (2.6)

Table 1.1: Notation used throughout this thesis.

1.2.3 Contributions

This thesis compiles portions of papers co-published (Section 1.2.1) with the author,
although this thesis sometimes features substantial differences from these papers. This
section5 goes through each chapter and points out the contributions of the author. The
introduction, Part IV and each concluding remarks sections are novel and unpublished.

Chapter 2 is a new redaction of existing, preliminary concepts. The critical analyses
expressed in this chapter, and in particular in Section 2.2.2, are new and solely represent
the point-of-view of the author.

5This section had been requested by a jury member before the oral exam.

5



Introduction

Chapter 3. The attack proposed in this chapter is originally the idea of the author. The
defense (Bulyan) is a joint work with El-Mahdi El-Mhamdi. The proof of resilience of
Bulyan is the work of El-Mahdi El-Mhamdi, and it is available in the appendix. The
proofs included within this chapter are the work of the author, and contributions from
El-Mahdi El-Mhamdi are systematically acknowledged with a footnote. The proof in
Section 3.2.3 is an improved analysis over the published one (El-Mhamdi et al. (2018),
Section B). The experiments (Section 3.4) and the software is the work of the author.

Chapter 4. The idea to “use Krum to aggregate [parameter vectors]” is from El-Mahdi
El-Mhamdi. The algorithm is from the author, except the amortization of the con-
traction step every T steps. The convergence proof is the work of the author, and
technical contributions from Lê Nguyen Hoang are systematically acknowledged with
a footnote. The author contributed the code related to the GARs (implementations on
CPU/GPU and automated compilation/loading) and miscellaneous helper functions.
The remaining code and the experiments are the work of Arsany Guirguis. The text in
Section 4.3.2 adds and removes elements compared to the original, published version.

Chapter 5. The idea to “use momentum at the workers” is from the author. The
theoretical analyses are from the author, and reviewed by El-Mahdi El-Mhamdi. The
author contributed the experiments (including the appendix) and the associated code.

Chapter 6. The system design (except the LossyMPI part, c.f. Figure 6.2) is the work
of the author, along with the associated text (Section 6.1). The author contributed a
large majority of the associated code. The LossyMPI design and code are the work of
Arsany Guirguis, and the “corrupted data” attack is the work of Georgios Damaskinos.
The author only ran the experiments of Figure 6.6; the other experiments were run by
Arsany Guirguis and Georgios Damaskinos. The text in Section 6.2 is a common effort.

Chapter 7 is entirely the work of the author, without external contribution.

6



Part IAttacks and Defenses

7





2 Preliminaries

2.1 Machine Learning

Machine learning (ML) algorithms can be distinguished from other classes of computer
algorithms for their behavior is to a large extent defined by data1, instead of code.

Machine learning uses a parameterized model to specify a space of functions, e.g.
M(x) = a x+ b parameterized by (a, b) ∈ R2 defines a set of linear functions. Training
a model consists in finding the parameters that optimize some metric on this model
using data, e.g. minimizing the quadratic error over some given cloud of points.

The literature contains a wide variety of models, from small support vector ma-
chines (Cortes and Vapnik, 1995) to deep neural networks (Schmidhuber, 2015) with
billions of parameters. While closed formulas exist to fit a simple linear function,
finding optimal parameters for large, complex models requires a different approach.

One key optimization algorithm, which is the workhorse behind many advances and
modern results in machine learning, is Stochastic Gradient Descent.

2.1.1 Stochastic Gradient Descent

We consider the classical problem of optimizing a loss function Q : Rd → R, where:

Q(θt) , EX∼D [q(θt, X)]

for a fixed data distributionD. Ideally, we seek θ∗ such that θ∗ = arg min
θ∈Rd

(Q(θ)).

Remark 1. Unless otherwise stated, the expectation of random variables is taken over
the randomness of the datapoint samplings, i.e. we will simply write: Q(θt) , E[q(θt)].

1Data is to be taken in a broad sense, and in particular data includes feedbacks from the environment,
so as to include reinforcement learning and genetic algorithms in this definition.

9



Chapter 2. Preliminaries

We make the following assumption, standard in the literature (Bottou, 1998; El-Mhamdi,
2020; Su, 2017; Damaskinos, 2020).

Assumption 1 (Derivability of Q).

The loss function Q is differentiable over Rd.

This assumption merely enables us to carry out Stochastic Gradient Descent (SGD) and
its variant. This assumption is also most reasonable: in practice, models are always
made differentiable at least once, enabling auto-differentiation as provided by major
machine learning frameworks (PyTorch contributors, 2016; TensorFlow contributors,
2015; Abadi et al., 2016).

This thesis will make further assumptions on Q on a per-chapter basis. Unless other-
wise noted, we do not make any assumption about the convexity of Q.

Mini-batch SGD optimization.

We employ mini-batch SGD optimization to try and seek θ∗.

Starting from an initial parameter θ0 ∈ Rd, at every step t ≥ 0, b independent samples(
x

(1)
t . . . x

(b)
t

)
are sampled fromD to estimate one stochastic gradient :

gt ,
1
b

b∑
k=1
∇q
(
θt, x

(k)
t

)
≈ ∇Q(θt) (2.1)

This stochastic gradient is then used to update the parameters θt, with:

θt+1 = θt − ηt gt (2.2)

The sequence ηt > 0 is called the learning rate.

Assumption 2 (Convergence of ηt).

The series
+∞∑
i=0

ηt diverges, and the series
+∞∑
i=0

η2
t converges.

Assumption 2 is inherited from (Bottou, 1998) to prove several convergence results.

These two operations (2.1) and (2.2) are repeated for T ∈ N steps, generating what we
will call the parameter trajectory (θ0 . . . θT ).

In practice, and at least for classifier models2, the training might stop when a satisfying
parameter vector θt is found. The top-k cross-accuracy is a metric commonly used to
assess satisfying parameters, and compare different models and training settings.

2This thesis will only experiment with classifier models and standard, academic datasets.

10



2.1 Machine Learning

Top-k cross-accuracy.

In supervised machine learning, and for classification tasks in particular (e.g. assigning
names on pictures of people), one relevant metric is the top-k (cross-)accuracy.

Instead of approximating the not-so-intuitive loss function Q(θt) with
(
x

(1)
t . . . x

(b)
t

)
,

each sampled datapoint is submitted to the model, which assigns each datapoint
a categorical probability of belonging to each output class. The top-k accuracy is
estimated by counting the number of times the b datapoint labels were in one the
k highest categorical probabilities, and dividing this count by b. The top-k accuracy
effectively measures how accurate the model is when predicting the class of its input.

One important aspect for the practitioner is how well the classifier will generalize (i.e.
correctly classify) unseen inputs. A metric for this aspect is the top-k cross-accuracy.
The only difference with the top-k accuracy is that none of the b sampled datapoints
were ever used to update the model (c.f. equations (2.1) and (2.2)). This can be achieved
in practice by splitting the labeled dataset in two chunks: the training set solely used
to update the model, and the testing set solely used to estimate the cross-accuracy.

The top-1 cross-accuracy is used extensively throughout the experiments of this thesis.
Although the relation between the training loss Q and metrics on the testing set (e.g.
testing loss, cross-accuracy) is hardly understood (Belkin et al., 2019), this metric is
used extensively in the literature (Roelofs et al., 2019; Zagoruyko and Komodakis, 2016;
Krizhevsky et al., 2012; Yamada et al., 2019) to assess/compare model performances.

Momentum SGD.

A field-tested amendment to mini-batch SGD is momentum (Polyak, 1964), where each
gradient keeps an exponentially-decreasing effect on every subsequent update.

Formally, given 0 < µ < 1 the momentum factor, the update step (2.2) is replaced with:

θt+1 = θt − ηt
t∑

u=0
µt−ugu (2.3)

This formulation will be called classical momentum.

Nesterov (1983) proposed another revision. Noting vt the velocity vector, v0 = 0, the
gradient computation (2.1) is amended as follows:

vt+1 = µ vt + 1
b

b∑
k=1
∇q
(
θt − ηt µ vt, x

(k)
t

)
(2.4)

11



Chapter 2. Preliminaries

The update operation (2.2) remains unchanged, simply using vt+1 instead of gt:

θt+1 = θt − ηt vt+1

This formulation will be called Nesterov momentum. Compared to classical momen-
tum, Nesterov momentum estimates the gradient at θt − ηt µ vt instead of θt.

2.1.2 Distributed Training

Estimating the gradient gt is the computationally expensive part of the training: it
consists in computing∇q

(
θt, x

(k)
t

)
for each k ∈ [1 .. b] sampled datapoints

(
x

(1)
t . . . x

(b)
t

)
.

Each computation of∇q
(
θt, x

(k)
t

)
involves one forward pass and one backpropagation

pass (Hecht-Nielsen, 1992) over the model. Hence, the amount of arithmetic operations
to carry out to compute∇q

(
θt, x

(k)
t

)
is in the order ofO(b d). Since d� 1, estimating

the gradient can easily become the bottleneck in Stochastic Gradient Descent.

Fortunately, computing gt is also embarrassingly parallel: each ∇q
(
θt, x

(k)
t

)
for k ∈

[1 .. b] can be computed separately. Supposing the batch-size is b n, we can compute:

gt ,
1
b n

b n∑
k=1
∇q
(
θt, x

(k)
t

)

= 1
n

n∑
i=1

 1
b

b (i+1)∑
k=b i+1

∇q
(
θt, x

(k)
t

)
︸ ︷︷ ︸

, g(i)
t

 (2.5)

The computation of the g(i)
t can be carried out in parallel over n processing units.

Parameter
server

Honest
workers

Figure 2.1: Parameter server networked with n = 8 worker machines.

Figure 2.1, where a central server holds the parameters θt and several workers carry
out derivative computations, corresponds to the now standard parameter server archi-
tecture, used for instance in (Li et al., 2013).

The distributed training algorithm can be summarized as follows. For each step t:

12



2.2 The Byzantine Model

1. The parameter server broadcasts the vector θt to each worker i.

2. Each worker i computes g(i)
t using its own b sampled datapoints.

3. Each worker i sends back its gradient G(i)
t to the parameter server.

Unless otherwise specified (c.f. Chapter 5), G(i)
t = g

(i)
t .

4. The parameter server aggregates G(1)
t . . . G

(n)
t into one gradient Gt.

5. The parameter server updates θt with either Equation (2.1) or (2.3), e.g.:

θt+1 = θt − ηtGt

One noteworthy operation in the above algorithm is the aggregation of the n received
gradients into one, using a Gradient Aggregation Rule (GAR) F :

(
Rd
)n
→ Rd:

Gt , F
(
G

(1)
t , . . . , G

(n)
t

)
(2.6)

As an example, the gradient aggregation rule implicitly used by Equation (2.5) is the
mere arithmetic mean of the n received gradients

(
G

(1)
t . . . G

(n)
t

)
7→ 1

n

∑n
i=1G

(i)
t .

2.2 The Byzantine Model

The root problem we consider in this thesis is when a minority of the processing units
(interchangeably called workers) behave arbitrarily. In the parlance of distributed
computing, that is when f of these n workers are Byzantine.

Parameter
server Byzantine

workers
(colluding)Honest

workers

Figure 2.2: Parameter server networked with n = 8 worker machines, among which
there are f = 3 colluding, adversarial machines.

The goal of the adversary is informally to stymie the learning procedure enabled by
SGD, to push the parameter vector θt into a sub-optimal space, where the model
performs poorly. We will consider that a classifier achieving noticeably lower top-k
cross-accuracies (and possibly even higher training losses) under attack than without
attack performs poorly, and that the adversary fulfilled its objective.

Threat model.

13



Chapter 2. Preliminaries

The f Byzantine workers collude. We will then refer to the f Byzantine workers as the
adversary, as they behave as if they were all under the control of a single entity.

The adversary is omniscient, in the sense that it has a perfect knowledge of the system
state at any time. The system state is constituted exhaustively by:

• the full state of the parameter server (data and code), and

• the full state of every non-Byzantine worker (data and code), and

• any data exchanged over any communication channel at any time.

The adversary has arbitrarily fast communication channels and computational capa-
bilities, in the sense that the adversary always has time to carry out its attack and can
choose in which order the parameter server will receive the f Byzantine gradients.

The adversary is not omnipotent: it can only send one (or more) messages (e.g. Byzan-
tine gradients) over the network, or choose not to send anything, at any time. The
adversary cannot directly modify the memory of non-Byzantine machines. Unless
otherwise stated, the adversary cannot impersonate non-Byzantine worker nodes.

Side note 1 (Backdoor attacks).

We considered that higher testing/training losses implies a successful attack: if this
happens, the adversary indeed fulfilled its objective to stymie the training. While this
consideration is by definition an implication, it is by no mean an equivalence.

A more subtle subclass of attack consists in instilling persistent, unwanted behaviors into
the trained model without affecting its performances on both the training and testing
sets (Bagdasaryan et al., 2020; Sun et al., 2019). Such a model is said backdoored. A
backdoored classifier could wait for a cue in its input (only known by the adversary)
to unexpectedly change its output. Wang et al. (2020) theoretically and experimentally
supports the existence of backdoors that are difficult to detect, noting in particular that
robustness to backdoor attacks implies that the model training procedure is resilient to
adversarial examples (Biggio et al., 2013; Goodfellow et al., 2014).

Side note 2 (Security topics in machine learning).

Adversarial behaviors during training, as presented in this section, is not the only security
concern. The literature in machine learning security distinguishes three topics:

• Evasion attacks — when the adversary seeks to deceive a trained model, e.g.:
the universal perturbation (Moosavi-Dezfooli et al., 2017) or a novel malware
detection avoidance technique and its defense (Chen et al., 2017a).

• Poisoning attack — when the adversary seeks to affect the trained model: this
thesis fits in the poisoning topic, considering an adversary controlling gradients.

14



2.2 The Byzantine Model

• Privacy protection — when the adversary tries to gain knowledge upon trained
parameters or private data by observing the model inputs/outputs (or even param-
eters/gradients), e.g.: training data extraction (Carlini et al., 2020) and, for a class
of defenses, secure aggregation (Bonawitz et al., 2017).

This thesis strongly focuses on poisoning attacks, although our latest work (Section
1.2.1), briefly presented in the last chapter (Section 9.3), also studies the combination of
differential privacy techniques with defenses against poisoning.

2.2.1 Formal Byzantine resilience

The goal of the defense is to prevent the adversary from stymieing the learning process.
Blanchard et al. (2017) proposed a formalization for this loosely-stated objective.

Bottou (1998) proved SGD can converge toward a local extremum of the loss functionQ.
Building upon this proof, Blanchard et al. (2017) established two sufficient conditions a
GAR can satisfy to ensure SGD will still converge to a local extremum under Byzantine
behaviors (Section 2.2). These two conditions are gathered below, into Definition 1.

Definition 1 ((α, f)-Byzantine resilience).

Let G(1)
t . . . G

(n−f)
t ∼ Gt be n − f independent, non-Byzantine gradients following the

same distribution Gt, let G ∼ Gt, and let 0 ≤ α < π
2 .

A gradient aggregation rule F :
(
Rd
)n
→ Rd is (α, f)-Byzantine resilient if and only if:

• ∀
(
G

(n−f+1)
t . . . G

(n)
t

)
∈
(
Rd
)f

the f Byzantine gradients, and

• ∀ I : [1 .. n] ↪→ [1 .. n] an “index-shuffling” function,

the aggregated gradient:
Gt , F

(
G

( I(1))
t , . . . , G

( I(n))
t

)
satisfies:

1. 〈EGt,EG〉 ≥ (1− sinα) ‖EG‖ > 0

2. ∀r ∈ {2, 3, 4}, E ‖Gt‖r is bounded above by a linear combination of the terms
E ‖G‖r1 . . . E ‖G‖rk , with (k, r1 . . . rk) ∈ (N∗)k+1 and r1 + . . . + rk = r.

Remark 2. The “index-shuffling” function I is a notation trick, only to prevent gradient
aggregation rules from using the index i of each received gradient G(i)

t . For instance, the
GAR that outputs 1

n−f
∑n−f
i=1 G

(i)
t would spuriously satisfy Definition 1 without I.

15



Chapter 2. Preliminaries

Alternative formalizations.

The literature offers at least two alternative formalizations for Byzantine resilience.

Karimireddy et al. (2020) proposes (δmax, c)-robust aggregator. A GAR is a (δmax, c)-
robust aggregator when the expected distance between its output and the average of
the non-Byzantine gradients is bounded below a factor of the non-Byzantine gradients’
variance. The factor depends on the GAR itself, and the fraction f

n of Byzantine workers.

Liu et al. (2021) proposes, (f, ε)-resilience, a fundamentally different definition in the
sense that a GAR cannot be (f, ε)-resilient alone. Only the optimization algorithm as
a whole can be (f, ε)-resilient. An optimization algorithm is (f, ε)-resilient when its
“output” is, despite Byzantine workers, at most ε away (using the `2 norm) from θ∗.

Side note 3 (Alternative adversarial models).

The Byzantine model and its threat model (Section 2.2) make a particularly powerful
adversary. The literature also studies different adversarial models (Liu, 2021). For
instance, Charikar et al. (2017) looks at the problem of adversarial data: the adversary
can inject fake data, and the defense tries to learn despite this poisoning.

With a slightly different threat model, the literature also contains defenses fundamen-
tally different than gradient filtering. For instance, Chen et al. (2018) proposes a defense
based on gradient redundancy, and Rajput et al. (2019) further hybrids the redundancy
approach with statistical filtering. We can also cite the suspicion-based approach (Xie
et al., 2019b; Xie, 2019), assuming the parameter server can also sample fromD.

2.2.2 Applicability and Limitations

From a theoretical standpoint, (α, f)-Byzantine resilience and comparable formaliza-
tions all guarantee some form of convergence of the parameter vector θt to an optimum.
In the case of convex optimization, this optimum would be θ∗. For a non-convex loss
Q, the optimum would be any extremum of the loss (i.e. any θ∗ for which∇Q(θ∗) = 0).
These are the same guarantees Bottou (1998) provided in Byzantine-free settings.

From a practical standpoint, numerous gradient aggregation rules have been devel-
oped satisfying (α, f)-Byzantine resilience3. A non-exhaustive list is: the coordinate-
wise median (Yin et al., 2018), Krum (Blanchard et al., 2017), MDA (El-Mhamdi et al.,
2018), GeoMed (Chen et al., 2017b), MeaMed (Xie et al., 2018a), Phocas (Xie et al.,
2018c), Aksel (Boussetta et al., 2021), CenteredClip (Karimireddy et al., 2020). All these
GARs have been implemented in practice and, notably, several of them run efficiently
on both CPUs and GPUs (El-Mhamdi et al., 2020c; Guerraoui et al., 2021a).

3Most (α, f)-Byzantine resilient GARs may also be (δmax, c)-robust, as these formalizations are close.

16



2.2 The Byzantine Model

The Byzantine model presented in Section 2.2 is most suited to settings where the
training computations are distributed, but any machine learning pipeline where there
are n identified sources of datapoints would fit. This configuration would occur for
instance in pipelines where the dataset is generated by a base of n identified users,
among which up to f can be Byzantine. This is also a limitation. A different, weaker
adversarial model may be more suitable if the adversary is not able to generate arbitrary
Byzantine gradients. The model also implicitly assumes the set of Byzantine nodes is
fixed, and promising recent work (El-Mhamdi et al., 2020b; Karimireddy et al., 2020)
may actually fail when the identities of the Byzantine nodes change over time. And such
a change would most likely be the norm in actual, practical scenarios: the adversary
would move as it takes control over new identities/devices/accesses while losing others.
Finally, the model assumes the datapoints are sampled independently from the same
distribution D. When the dataset is aggregated from many different sources, this
assumption may be difficult to sustain (e.g. human labeling may vary across different
cultures). Several approaches have already been proposed to tackle Byzantine attacks
and heterogeneous datasets (Li et al., 2019; He et al., 2020; El-Mhamdi et al., 2020a).

An important critic one can emit about this model is actually about its formalization,
more precisely how much actionable the theoretical guarantees of (α, f)-Byzantine re-
silience (and (δmax, c)-robustness or (f, ε)-resilience alike) are in practice. Namely, and
at least in the case of a non-convex loss Q, (α, f)-Byzantine resilience solely enables
SGD to converge: eventually, a local extremum will be found. Even if we assume that
any local extremum always yields satisfying performances, the core problem remains
in practice: the final parameters will be found eventually. So when the practitioner
tries to optimize a non-convex loss while under attack, say for 20 000 steps, few formal
guarantees about θ20000 actually exist. The takeaway is that theoretical guarantees, like
ergodic proofs of convergence despite Byzantine workers, will only remain loosely
correlated with any low loss/high cross-accuracy4 measured in actual experiments.

4Even without attack only a loose correlation exists, and the relation between low training losses and
and low testing losses is in itself only partially understood (Belkin et al., 2019).

17





3 The Hidden Vulnerability

Statistically-robust aggregation rules are the subset of Byzantine resilient GARs that
only use their inputs to derive an aggregated gradient, i.e.: they are all stateless. This
chapter focuses on statistically-robust rules based on a distance-minimization scheme.

Such stateless aggregations can only compare and combine input gradients with
each other, to try and derive a gradient which would satisfy the conditions for (α, f)-
Byzantine resilience (Definition 1). As an instance of a distance-minimization scheme,
a GAR may measure every pairwise `2-distances between the input gradients, and
output the gradient minimizing its distances with half of its closest neighbors.

These GARs can operate on high-dimensional gradients in Rd, with d� 1000, and are
oblivious to the effect each coordinate actually has on the model. These two observa-
tions enable us to build an attack that, while not necessarily preventing convergence,
can make SGD converge to ineffective parameters.

We also propose a new composite GAR that, at the cost of tolerating at best a quarter of
Byzantine workers, entirely forestalls the proposed attack.

3.1 Statistically-robust Defenses

We will study two existing statistically-robust, Byzantine resilient defenses, Krum (Blan-
chard et al., 2017) and Geomed (Chen et al., 2017b), and devise a third one, MDA,
inspired from the Minimum Volume Ellipsoid (Rousseeuw, 1985). As we will see below,
these GARs are all based on a distance-minimization scheme.

The work presented in this chapter follows exactly the distributed setting presented in
Section 2.1.2. The attack model is also the one presented in Section 2.2. We recall there
are n workers among which f are Byzantine.

19



Chapter 3. The Hidden Vulnerability

3.1.1 Prior Art: Krum and Geomed

These two GARs have a common structure, which we will present first. Their common
requirement is that n ≥ 2f + 3.

Let k ∈ {1, 2}, let m ∈ [1 .. n− f − 2], and let ‖·‖ be the `2-norm.

First, a score is assigned to each input gradient G(i)
t with score(i) ,∑�i ∥∥∥G(i)

t −G
(j)
t

∥∥∥k,

where�i designates the set of n− f − 2 closest input gradients to G(i)
t .

Then, the aggregated gradient is arithmetic mean of the m input gradients with the
smallest scores. Geomed uses k = 1, approximating the minimizer of the distances:
a “trimmed-median”. Krum uses k = 2, approximating the minimizer of the squared-
distances: a “trimmed-mean”.

For the remaining of this chapter, we will setm = n− f − 2 for both Krum and Geomed.
Blanchard et al. (2017) originally calls simply Krum the variant with m = 1, while the
variant with m > 1 is called Multi-Krum. Here both variants will be called Krum.

3.1.2 MDA: Minimum Diameter Averaging

MDA requires that n ≥ 2f + 1.

Informally, MDA selects the n− f most clumped gradients among the submitted ones,
and average them as final output. It is reminiscent of the Minimal Volume Ellipsoid
estimator, introduced by Rousseeuw (1985) and proven to have the optimal breakdown
point of 50%.

Formally, let:

• Q =
{
G

(1)
t . . . G

(n)
t

}
be the set of input gradients,

• R = {X | X ⊂ Q, |X | = n− f} be the set of all the subsets X of Q with a cardi-
nality of n− f , and

• S = arg min
X∈R

(
max(

G
(i)
t , G

(j)
t

)
∈X 2

∥∥∥G(i)
t −G

(j)
t

∥∥∥) the set of n− f input gradients with

the smallest diameter ; in case of equality S can be any of the candidate sets.

Then, the aggregated gradient is given by Gt = 1
n−f

∑
x∈S

x.

As a side note, this rule can hardly be used in large-deployment cases, as |R| = n!
f !(n−f)! .

For instance, with n = 57 workers and f = 27, we have |R| ≈ 1.4 · 1016. Even with 109

20



3.1 Statistically-robust Defenses

measured subsets X per second, aggregating these 57 gradients would take more than
5 months.

Since we use MDA as a benchmark when experimenting with small amount of workers
in Section 3.4.2, we also prove below its (α, f)-Byzantine resilience.

Proof of (α, f)-Byzantine resilience.

We assume the non-Byzantine gradients all follow i.i.d. the distribution Gt. Let λt ,
‖EG‖ for G ∼ Gt, and σ̄t , E ‖G−H‖ for H ∼ Gt independent from G. Under the
assumption that 2 f σ̄t < (n−f)λt, we will prove that MDA is (α, f)-Byzantine resilient.

Without loss of generality (MDA is agnostic to the indexing), the n− f first input gra-
dients will be the honest ones, and the Byzantine gradients will be noted B(1)

t . . . B
(f)
t .

That is, the set of input gradients can be notedQ =
{
G

(1)
t . . . G

(n−f)
t︸ ︷︷ ︸

honest

, B
(1)
t . . . B

(f)
t︸ ︷︷ ︸

Byzantine

}
.

Trivial case: ∀i ∈ [1 .. f ] , B(i)
t /∈ S.

As the aggregated gradient Gt is directly the arithmetic mean of the non-Byzantine
gradients, EGt = EG, and points 1. and 2. of Definition 1 are trivially satisfied.

Otherwise, without loss of generality, let b ∈ [1 .. f ], S =
{
G

(1)
t . . . G

(n−f−b)
t , B

(1)
t . . . B

(b)
t

}
,

and let R̄ = R \ S. Since S is the subset with the smallest diameter, it holds:

∀S̄ ∈ R̄,
∃Xi ∈ S̄ \ S,
∃Xj ∈ S̄ \ {Xi} ,
∀Xk ∈ S, ∀Xl ∈ S \ {Xk} ,
‖Xk −Xl‖ < ‖Xi −Xj‖

We can also notice that:

∃V ∈ R̄, ∀i ∈ [1 .. f ] , B(i)
t /∈ V

Basically, since S contains at least one Byzantine gradient, the (unique) set V that
contains only the n− f non-Byzantine gradients is indeed inR.

Then, by combining this observation with the previous one:

∀a ∈ [1 .. b] , B(a)
t ∈ S

⇒ ∃ (xa, ya) ∈ [1 .. n− f ]2 , xa 6= ya,

∀k ∈ [1 .. n− f − b] ,

21



Chapter 3. The Hidden Vulnerability

∥∥∥B(a)
t −G

(k)
t

∥∥∥ ≤ ∥∥∥G(xa)
t −G(ya)

t

∥∥∥ (3.1)

This formalization translates the fact that, S being the set with the smallest diameter,
the distances between Byzantine gradients and non-Byzantine gradients in S can
always be bounded above by the distance between some two non-Byzantine workers
(in V). This last observation will be reused in the following.

We can compute the aggregated gradient:

Gt = 1
n− f

n−f−b∑
i=1

G
(i)
t +

b∑
i=1

B
(i)
t


and compare it with the average of the non-Byzantine ones:

Ĝt = 1
n− f

n−f∑
i=1

G
(i)
t

Gt − Ĝt = 1
n− f

 b∑
i=1

B
(i)
t −

n−f∑
i=n−f−b+1

G
(i)
t


= 1
n− f

b∑
i=1

B
(i)
t −G

(i+n−f−b)
t

∥∥∥Gt − Ĝt∥∥∥ ≤ 1
n− f

b∑
i=1

∥∥∥B(i)
t −G

(i+n−f−b)
t

∥∥∥
≤ 1
n− f

b∑
i=1

(∥∥∥B(i)
t −G

(1)
t

∥∥∥+
∥∥∥G(1)

t −G
(i+n−f−b)
t

∥∥∥)

using (3.1)→ ≤ 1
n− f

b∑
i=1

(∥∥∥G(xi)
t −G(yi)

t

∥∥∥+
∥∥∥G(1)

t −G
(i+n−f−b)
t

∥∥∥)

We can then compute the expected value of this distance, and with E Ĝt = EG and the
Jensen’s inequality:

‖EGt − EG‖ ≤ E
∥∥∥Gt − Ĝt∥∥∥

≤ 1
n− f

b∑
i=1

(σ̄t + σ̄t)

≤ 2 b σ̄t
n− f

≤ 2 f σ̄t
n− f

Under the assumption that 2fσ̄t < (n− f)λt, we verify that ‖EGt − EG‖ < ‖EG‖,

22



3.2 The Curse of Dimensionality

and so: 〈EGt,EG〉 > 0. Point 1. of Definition 1 is satisfied.

Point 2. can also be verified formally1, ∀r ∈ {2, 3, 4}:

E[‖Gt‖r] ≤
n− f − b
n− f

E[‖G‖r] + 1
n− f

b∑
i=1

E
[∥∥∥B(i)

t

∥∥∥r]
Then reusing (3.1), by using the binomial theorem twice:

∥∥∥B(i)
t

∥∥∥r ≤ ∑
r1+r2=r

(
r

r1

)∥∥∥B(i)
t −G

(k)
t

∥∥∥r1
∥∥∥G(k)

t

∥∥∥r2

for some k ∈ [1 .. n− f − d]

∥∥∥B(i)
t −G

(k)
t

∥∥∥r1
≤
∥∥∥G(xi)

t −G(yi)
t

∥∥∥r1

≤
∑

r3+r4=r1

(
r1
r3

)∥∥∥G(xi)
t

∥∥∥r3
∥∥∥G(yi)

t

∥∥∥r4

Finally, as
(
G

(1)
t . . . G

(n−f)
t

)
are independent, identically distributed random variables

following the same distribution Gt, we have that:

∀ (β, γ) ∈ {2, 3, 4}2 ,
∀ (i, j) ∈ [1 .. n− f ]2 , i 6= j,

E
[∥∥∥G(i)

t

∥∥∥β ∥∥∥G(j)
t

∥∥∥γ] = E
[
‖G‖β

]
· E
[
‖G‖γ

]
and so E

[∥∥∥B(i)
t

∥∥∥r] is bounded as described in point 2. of Definition 1.

�

3.2 The Curse of Dimensionality

This section presents the intuition, along a more formal analysis, behind the inher-
ent vulnerability suffered by statistically-robust, Byzantine resilient GARs based on a
distance minimization scheme.

3.2.1 Intuition

In high dimensions, the distance function between two vectors ‖X − Y ‖ cannot answer
this core question: do X and Y “disagree” a bit on each coordinate, or do they disagree
a lot on only one? SGD has proven its ability to accommodate “small errors” from

1The key idea of using the binomial theorem is from El Mahdi El Mhamdi.

23



Chapter 3. The Hidden Vulnerability

the gradient estimation. Such “errors” are often beneficial, as they may allow the
descent process to leave sub-optimal local minima (Bottou, 2012). In Byzantine-free
distributed setups, gradient estimations “disagree” a bit on each coordinate2.

In a vector space of dimension d � 1, the “bit of disagreement” on each coordinate
translates into a distance ‖X − Y ‖ = O

(√
d
)

. For the omniscient adversary described
in Section 2.2, it translates into an opportunity to submit f Byzantine gradients that
“disagree” a lot, for instance as much asO

(√
d
)

, on only one coordinate with at least
one non-Byzantine gradient. This coordinate could for instance be a bias in one of
the latest linear activation layer of a neural network, potentially having a substantial
impact on the output of the model. As the `2 norm3 cannot answer the core question
mentioned in the above paragraph, such Byzantine gradient could then be selected by
a GAR based on such distance-minimization schemes.

The gradient aggregation rules presented in Section 3.1 all perform a linear combina-
tion of the selected gradient(s). Thus the final aggregated gradient might for instance
have one unexpectedly high coordinate. Depending on the learning rate (Figure 3.5),
updating the model with such gradient may push and keep the parameter vector in a
sub-space rarely reached with the usual, Byzantine-free distributed setup.

The experiments gathered in Section 3.4 clearly show this dependency on the learning
rate and indicate that, even if convergence can be achieved, this sub-space only offers
sub-optimal to utterly ineffective models.

3.2.2 The Attack

The adversary defined in Section 2.2 is omniscient and has arbitrary fast computation
and transmission throughput. So for each round, every time the n− f non-Byzantine
gradients, are produced, the adversary reads them and chooses the other f gradients
the parameter server receives. Based on that capability, for each round, the adversary
waits for n− f non-Byzantine gradients to be received. Then it attacks by sending f
times the same Byzantine gradient Bt.

Formally, let:

• Q ,
{
G

(1)
t . . . G

(n−f)
t

}
be the set of submitted, non-Byzantine gradients (in Rd),

• E , (0 . . . 0, 1, 0 . . . 0) ∈ Rd be any coordinate to attack,

• Bt (γ) = γ E + 1
n−f

∑
X∈Q

X a function generating an attack gradient.

2This has been observed during the experiments.
3The same reasoning could be made with a `p norm with p finite, and when p is very large or infinite

we also propose an attack (Section 3.2.2).

24



3.2 The Curse of Dimensionality

By a simple search, we estimate the highest value of γ, noted γm, such thatBt = Bt (γm)
is selected by the aggregation rule. Finally, Bt is submitted by every Byzantine worker.

For each presented GAR, we derive in Section 3.2.3 the relation between a rough
estimation of γm and a few hyper-parameters. We study these approximations of
γm within the minimal quorum cases, where the proportion of Byzantine workers is
maximized, respectively: n = 2f + 1 for MDA and n = 2f + 3 for Krum/Geomed.

As a side-note, an adversary does not necessarily need to know the submitted, non-
Byzantine gradientsQwith this attack. Indeed non-Byzantine gradients are assumed
to be unbiased, so by the law of large numbers we have: lim|Q|→+∞ Bt (γ) = EX + γ E

for X ∼ Gt. It indicates that, for this attack to succeed as well, the adversary may only
need to compute an unbiased gradient estimate by itself (without the need to “spy” on
the other workers) then add γ E to it.

Attack on the `p norm with p large.

With d� 1 fixed: limp→+∞
p
√
d = 1. Basically, the curse of dimensionality exploited in

the above attack seems not to exist any longer with p large enough, or infinite.

We propose a simple tweak for such cases. One effective attack consists simply in
changing the vector E = (0 . . . 0, 1, 0 . . . 0) introduced in the previous subsection for
E = (1 . . . 1). The idea is that modifying non-maximal coordinates of a given vector
does not substantially affect4 the distance to the unbiased gradient for the modified
vector. From this change on E, we proceed as described in the attack above.

We empirically observe how powerful this attack scenario can become in Section 3.4.2.

3.2.3 Leeway of Attack

In the previous section, we claim that the adversary can build an attack gradient Bt
with one unexpectedly large coordinate, and have it pass the Byzantine resilient GAR.
Here we try to estimate how large this attacked coordinate can become.

Prior conventions and assumptions.

We will note the arithmetic mean of the non-Byzantine gradients:

G ,
1

n− f

n−f∑
i=1

G
(i)
t

4It may not affect the infinite norm at all for small-enough γ.

25



Chapter 3. The Hidden Vulnerability

Note that, without loss of generality (since the studied GARs are agnostic to the index-
ing), the non-Byzantine gradients are indexed between 1 and n− f .

Let e ∈ [1 .. d] be the attacked coordinate, and let E ∈ Rd be the attack vector such that:
∀i ∈ [1 .. d] , E[i] = 1e(i).

Then with γm ≥ 0 and Bt = G + γmE, and ∀ (i, j) ∈ [1 .. n− f ]2 , i 6= j, taking the
expectation over the randomness of the non-Byzantine gradient sampling we have:

E
∥∥∥Bt −G(i)

t

∥∥∥ = E
∥∥∥G+ γmE −G(i)

t

∥∥∥
= E

∥∥∥∥∥∥∥∥
1

n− f

n−f∑
j=1
j 6=i

(
G

(j)
t −G

(i)
t

)
+ γmE

∥∥∥∥∥∥∥∥
≤ 1
n− f

E

∥∥∥∥∥∥∥∥
n−f∑
j=1
j 6=i

(
G

(j)
t −G

(i)
t

)∥∥∥∥∥∥∥∥+ γm

≤ 1
n− f

n−f∑
j=1
j 6=i

E
∥∥∥G(j)

t −G
(i)
t

∥∥∥+ γm

≤ n− f − 1
n− f

E
∥∥∥G(j)

t −G
(i)
t

∥∥∥+ γm

Under the same conditions as above, we also have:

E
[∥∥∥Bt −G(i)

t

∥∥∥2
]

= E


∥∥∥∥∥∥∥∥

1
n− f

n−f∑
j=1
j 6=i

(
G

(j)
t −G

(i)
t

)
+ γmE

∥∥∥∥∥∥∥∥
2

= E


∥∥∥∥∥∥∥∥

1
n− f

n−f∑
j=1
j 6=i

(
G

(j)
t −G

(i)
t

)∥∥∥∥∥∥∥∥
2

+ ‖γmE‖2

+ 2
〈

1
n− f

n−f∑
j=1
j 6=i

(
G

(j)
t −G

(i)
t

)
, γmE

〉

since EG(i)
t = EG(j)

t → = E


∥∥∥∥∥∥∥∥

1
n− f

n−f∑
j=1
j 6=i

(
G

(j)
t −G

(i)
t

)∥∥∥∥∥∥∥∥
2+ ‖γmE‖2

26



3.2 The Curse of Dimensionality

= 1
(n− f)2 E


∥∥∥∥∥∥∥∥
n−f∑
j=1
j 6=i

(
G

(j)
t −G

(i)
t

)∥∥∥∥∥∥∥∥
2+ γm

2

= 1
(n− f)2

n−f∑
j=1
j 6=i

E
[∥∥∥G(j)

t −G
(i)
t

∥∥∥2
]

+ γm
2

= n− f − 1
(n− f)2 E

[∥∥∥G(j)
t −G

(i)
t

∥∥∥2
]

+ γm
2

Attack against MDA.

We only study the worst case scenario, where n = 2f + 1, maximizing the proportion of
Byzantine workers.

We expect all the f submissions of Bt to be selected by MDA if, with γm ≥ 0:

∃ (i, j) ∈ [1 .. n− f ]2 , i 6= j,

∀k ∈ [1 .. n− f ] , E
∥∥∥Bt −G(k)

t

∥∥∥ ≤ E
∥∥∥G(i)

t −G
(j)
t

∥∥∥
⇐ n− f − 1

n− f
E
∥∥∥G(i)

t −G
(j)
t

∥∥∥+ γm ≤ E
∥∥∥G(i)

t −G
(j)
t

∥∥∥
⇐ γm ≤

1
n− f

E
∥∥∥G(i)

t −G
(j)
t

∥∥∥
This is a sufficient condition in expectation, for all the (identical) attack gradients to
become aggregated in the output gradient of MDA. It is only to give broad insights on
the relation between some hyper-parameters and γm. In particular, we can reasonably
expect E

∥∥∥G(i)
t −G

(j)
t

∥∥∥ to grow as
√
d, and so we have with MDA: γm = O

(√
d
)

.

Attack against Krum/Geomed.

We only study the worst case scenario, where n = 2f + 3, maximizing the proportion of
Byzantine workers.
Let q ∈ { 1, 2 }, q = 1 for Geomed and q = 2 for Krum.

Since all the Byzantine submissions are identical, only the neighbor, non-Byzantine
gradients will account for non-zero distances in the score of any Byzantine gradient.
Namely, since there are n = 2f + 3 workers and so n− f − 2 = f + 1 neighbors, each
Byzantine gradient has two non-Byzantine neighbors. Its expected score is bounded:

∀k ∈ [1 .. n− f ] , E[s(Bt)] ≤ 2 E
[∥∥∥Bt −G(k)

t

∥∥∥q]

27



Chapter 3. The Hidden Vulnerability

Since the Byzantine submissions are equal, a non-Byzantine gradient either has no
(i.e. 0) Byzantine gradient in its neighbor, or have them all (i.e. f ). Thus, ∀ (i, j) ∈
[1 .. n− f ]2 , i 6= j, the expected score of the non-Byzantine gradient G(i)

t is either:

E
[
s
(
G

(i)
t

)]
= (f + 1)E

[∥∥∥G(j)
t −G

(i)
t

∥∥∥q]
or when all the f identical Byzantine gradients belong to the neighbor of G(i)

t :

E
[
s
(
G

(i)
t

)]
= f E

[∥∥∥Bt −G(i)
t

∥∥∥q]+ E
[∥∥∥G(j)

t −G
(i)
t

∥∥∥q]

So we expect all f gradients Bt to be selected by Geomed if γm ≥ 0 both satisfies:

∀i ∈ [1 .. n− f ] , E[s(Bt)] ≤ E
[
s
(
G

(i)
t

)]
⇐

2 E
∥∥∥Bt −G(i)

t

∥∥∥ ≤ (f + 1)E
∥∥∥G(j)

t −G
(i)
t

∥∥∥
2 E

∥∥∥Bt −G(i)
t

∥∥∥ ≤ f E
∥∥∥Bt −G(i)

t

∥∥∥+ E
∥∥∥G(j)

t −G
(i)
t

∥∥∥
⇐

2
(
n−f−1
n−f E

∥∥∥G(j)
t −G

(i)
t

∥∥∥+ γm
)
≤ (f + 1)E

∥∥∥G(j)
t −G

(i)
t

∥∥∥
(2− f)

(
n−f−1
n−f E

∥∥∥G(j)
t −G

(i)
t

∥∥∥+ γm
)
≤ E

∥∥∥G(j)
t −G

(i)
t

∥∥∥
⇐

2 γm ≤
(
f + 1− 2 n−f−1

n−f

)
E
∥∥∥G(j)

t −G
(i)
t

∥∥∥
(2− f) γm ≤

(
(2− f)

(
1

n−f − 1
)

+ 1
)
E
∥∥∥G(j)

t −G
(i)
t

∥∥∥
if f = 1:

⇐ γm ≤
1

n− 1 E
∥∥∥G(j)

t −G
(i)
t

∥∥∥
if f = 2:

⇐ γm ≤
(1

2 + 1
n− 2

)
E
∥∥∥G(j)

t −G
(i)
t

∥∥∥
if f > 2:

⇐


γm ≤

(
f−1

2 + 1
n−f

)
E
∥∥∥G(j)

t −G
(i)
t

∥∥∥
γm ≥

( 1
n− f

− 1− 1
f − 2︸ ︷︷ ︸

<0

)
E
∥∥∥G(j)

t −G
(i)
t

∥∥∥
The above three cases can actually be joined into:

⇐ γm ≤
(
f − 1

2 + 1
n− f

)
E
∥∥∥G(j)

t −G
(i)
t

∥∥∥

And for Krum, we expect all f gradients Bt to be selected if:

∀i ∈ [1 .. n− f ] , E[s(Bt)] ≤ E
[
s
(
G

(i)
t

)]

28



3.3 Mitigating the Curse

⇐


2 E

[∥∥∥Bt −G(i)
t

∥∥∥2
]
≤ (f + 1)E

[∥∥∥G(j)
t −G

(i)
t

∥∥∥2
]

2 E
[∥∥∥Bt −G(i)

t

∥∥∥2
]
≤ f E

[∥∥∥Bt −G(i)
t

∥∥∥2
]

+ E
[∥∥∥G(j)

t −G
(i)
t

∥∥∥2
]

⇐


2
(
n−f−1
(n−f)2 E

[∥∥∥G(j)
t −G

(i)
t

∥∥∥2
]

+ γm
2
)
≤ (f + 1)E

[∥∥∥G(j)
t −G

(i)
t

∥∥∥2
]

(2− f)
(
n−f−1
(n−f)2 E

[∥∥∥G(j)
t −G

(i)
t

∥∥∥2
]

+ γm
2
)
≤ E

[∥∥∥G(j)
t −G

(i)
t

∥∥∥2
]

⇐


2 γm2 ≤

(
f + 1− 2 n−f−1

(n−f)2

)
E
[∥∥∥G(j)

t −G
(i)
t

∥∥∥2
]

(2− f) γm2 ≤
(
(2− f)

(
1

(n−f)2 − 1
n−f

)
+ 1

)
E
[∥∥∥G(j)

t −G
(i)
t

∥∥∥2
]

The same case disjunction made for Geomed can be made here, yielding:

⇐ γm
2 ≤

(
f + 1

2 − 1
n− f

+ 1
(n− f)2

)
E
[∥∥∥G(j)

t −G
(i)
t

∥∥∥2
]

⇐ γm ≤

√√√√(f + 1
2 − 1

n− f
+ 1

(n− f)2

)
E
[∥∥∥G(j)

t −G
(i)
t

∥∥∥2
]

Assuming that

√
E
[∥∥∥G(j)

t −G
(i)
t

∥∥∥2
]

will grow as
√
d, we observe that for both Geomed

and Krum the attack coordinate will grow as: γm = O
(
q
√
f
√
d
)

. The added dependency

in q
√
f compared to MDA comes from the structure of the score function in Geomed and

Krum, which decreases the score of the Byzantine gradients as they all are identical.

3.3 Mitigating the Curse

In addition to being Byzantine resilient in the sense that it ensures convergence, our
algorithm Bulyan also ensures that each coordinate is agreed on by a majority of
gradient vectors that were selected by a Byzantine resilient aggregation rule F . This
rule F can for example be MDA, Krum, Geomed, a medoid, and more generally any
Byzantine resilient GAR that designates at least one input gradient as non-Byzantine.

As Bulyan relies on an underlying (α, f)-Byzantine resilient GAR to operate, in this
sense we call Bulyan a composite gradient aggregation rule.

3.3.1 Bulyan: a Composite GAR

Let F be any (α, f)-Byzantine resilient aggregation rule, that requires n ≥ rF (f).
Bulyan of F requires n ≥ 2f + rF (f) received gradients. For instance with MDA,
rF (f) , 2f + 1 and so Bulyan of MDA would require n ≥ 4f + 1.

29



Chapter 3. The Hidden Vulnerability

Bulyan of F operates in two steps. The first step is to recursively use F to select
θ = n− 2f gradients, from the set of received gradientsR (which initially contains the
n input gradients), into a selection set S (initially empty). Namely:

1. WithF , choose amongR the next selected vector; for Krum we choose the highest
scoring gradient, with a medoid the selected gradient would be the output, etc.

2. Remove the chosen gradient fromR and add it into S.

3. Loop back to 1. as long as |S| < θ.

With n ≥ 2f + rF (f) and θ = n − 2f , we ensure that there always is a quorum of
workers, i.e. rF (f), for each iterative use of F .

Since θ = n − 2 f ≥ 2f + 3, this selection S = {S1 . . . Sθ} contains a majority of
non-Byzantine gradients. Hence for each i ∈ [1 .. d], the median of the θ coordinates
i of the selected gradients is always bounded by coordinates from non-Byzantine
submissions. With β = θ − 2f ≥ 1, the second step is to generate the resulting gradient
Gt = (Gt[1] . . . Gt[d]), so that for each of its coordinates Gt[·]:

∀i ∈ [1 .. d] , G[i] = 1
β

∑
X∈M[i]

X[i] (3.2)

where:

M[i] = arg min
X⊂S, |X |=β

(∑
X∈X

|X[i]−Median[i]|
)

and:

Median[i] = arg min
m=Y[i], Y ∈S

(∑
Z∈S
|Z[i]−m|

)

Each ith coordinate of Gt is equal to the average of β of the ith coordinates of the
gradients in S, that are closest to the ith coordinate of the median of the gradients in S.

(α, f)-Byzantine resilience of Bulyan of F .

The intuition is that, due to the additional requirement of 2 f non-Byzantine input
gradients compared to rF (f), every gradient selected by F satisfies the requirements
for (α, f)-Byzantine resilience. And so will the final aggregation of these gradients.

The formalization5 is available in the appendix, Section B.1.

5This formalization is the work of my co-author, El Mahdi El Mhamdi.

30



3.4 Practical Evaluations

3.3.2 Computational Complexity

Let C be the average computational complexity of running F for each step at the master
to aggregate the gradients. Then:

1. The average complexity of Bulyan of F is at most: O((n− 2 f) C + dn).

2. In particular, if F is either Krum or Geomed, this complexity is: O
(
n2d

)
.

We iterate F as much as θ = n−2 f times to get the selected vectors, then we run quick-
select to get each median component (O(n) on each coordinate, i.e. O(dn) times),
and another quick-select to get the β closest coordinates (anotherO(dn)). Hence the
average computational complexity of Bulyan of F is at mostO((n− 2 f) C + dn).

However if we know more about how F is computed in particular cases, we may be able
to get rid of the factor (n− 2 f) when iterating F . Concretely, when F relies on distance
computations between the proposed vectors (like with Krum and Geomed), Bulyan
does not need to re-compute these distances for F , as the input gradients are the same.
Since Krum and Geomed both have an average complexity ofO

(
n2d

)
, Bulyan of these

GARs can be optimized to a final average computational complexity ofO
(
n2d+ nd

)
.

Modern models are notoriously large, and d� n holds. Therefore Bulyan of Krum and
Bulyan of Geomed both run inO

(
n2d

)
, the same as their respective underlying GARs.

3.4 Practical Evaluations

We implemented the three (α, f)-Byzantine resilient gradient aggregation rules pre-
sented in Section 3.1, along with the attack introduced in Section 3.2.2. We report in
this section on the actual impact this attack can have, on the MNIST and CIFAR-10
classification datasets, despite the use of such aggregation rules. Then, we evaluate
the impact of Bulyan compared to these gradient aggregation rules. Finally, we exhibit
the cost, in terms of convergence speed, of using Bulyan in a Byzantine-free setup.

3.4.1 Experimental Settings

We will study the following two models.

MNIST We use a fully connected, feed-forward network with 784 inputs, 1 hidden
layer of size 100, for a total of d ≈ 8 · 104 free parameters. The hidden layers use
rectified linear units only. The output layer uses softmax.

CIFAR-10 We use a convolutional network with the following 7-layers architecture:
input 32×32×3, convolutional (kernel-size: 3×3, 16 maps, 1 stride), max-pooling

31



Chapter 3. The Hidden Vulnerability

0

0.2

0.4

0.6

0.8

1

10 100 200 300 400 500 600 700 800 900 1000

A
cc

ur
ac

y

Average (no attack)
Krum (norm 2)

GeoMed (norm 2)

Step

MDA (norm 2)

Figure 3.1: MNIST: top-1 cross-accuracy up to step 1000, comparing the presented
aggregation rules under our attack. The attack was maintained only up to step 50
(dotted line). The average is the reference: it is the accuracy the model would have
shown if only non-Byzantine gradients had been selected.

of size 3× 3, convolutional (kernel-size: 4× 4, 64 maps, 1 stride), max-pooling
of size 4× 4, two fully connected layers composed of 384 and 192 rectified linear
units respectively, and softmax is used on the output layer. This model totals 106

free parameters. The hidden layers use rectified linear units. The output layer
uses softmax.

The maximum cross entropy loss function is used for both models. L2-regularization
of value 10−4 is used for both models, and both use the Xavier weight initialization
algorithm. We use a fading learning rate ηstep = η0

rη
step+rη . The initial learning rate η0,

the fading rate rη, and the mini-batch size depend on each experiment.

We use E = (0 . . . 0, 1), attacking the last coordinate, which corresponds to the bias of
the last linear layer of the model. The accuracy is always measured on the testing set.

We will use Krum with Bulyan throughout the experiments. The resulting (α, f)-
Byzantine resilient rule Bulyan of Krum will simply be called Bulyan in the following.

3.4.2 Experimental Results

Attack on MDA, Krum and Geomed.

Figures 3.3 and 3.4 shows the impact of our attack on the aggregation rules presented
in Section 3.1. The average rule is the arithmetic mean of its n input gradients.

On MNIST, we use η0 = 1, rη = 10000, a batch size of 83 images (256 for MDA), and for
the worker counts:

32



3.4 Practical Evaluations

0

0.2

0.4

0.6

0.8

1

10 100 200 300 400 500 600 700 800 900 1000

A
cc

ur
ac

y

Average (no attack)
Krum (norm 2)

GeoMed (norm 2)

Step

MDA (norm 2)

Figure 3.2: CIFAR-10: top-1 cross-accuracy up to step 1000, comparing the presented
aggregation rules under our attack. The average is the reference: it is the accuracy the
model would have shown if only non-Byzantine gradients had been selected.

Krum/Geomed 30 non-Byzantines + 27 Byzantines
MDA 6 non-Byzantines + 5 Byzantines

Average 30 non-Byzantines + 0 Byzantines

On CIFAR-10, we use η0 = 0.1, rη = 2000, a batch size of 128 images (256 for MDA), and
for the worker counts:

Krum/Geomed 21 non-Byzantines + 18 Byzantines
MDA 6 non-Byzantines + 5 Byzantines

Average 21 non-Byzantines + 0 Byzantines

In Figure 3.3, the attack is maintained only up to 50 steps. As shown, and except for
MDA, this short attack phase at the beginning of the learning process is sufficient to
put the parameter vector in a sub-space of ineffective models that SGD did not succeed
in leaving for at least 950 steps. In Figure 3.4, the attack is never stopped. Only MDA
preserved the accuracy. Krum suffered a 33% decrease at step 1000, and Geomed failed
to produce a useful model.

Higher learning rates and lower batch sizes increase the impact of our attack, by boost-
ing both its exploratory capabilities and the variance of the non-Byzantine gradients.

Attack on MDA, Krum and Geomed: the case of the infinite norm.

On MNIST, here we use η0 = 1, rη = 10000, a batch size of 83 images (256 for MDA),
and for the workers:

33



Chapter 3. The Hidden Vulnerability

0

0.2

0.4

0.6

0.8

1

10 100 200 300 400 500 600 700 800 900 1000

A
cc

ur
ac

y Average (no attack)
Krum (norm ∞)

GeoMed (norm ∞)

Step

MDA (norm ∞)

Figure 3.3: MNIST: top-1 cross-accuracy up to step 1000, comparing the presented
aggregation rules under our attack. The attack was maintained only up to step 50
(dotted line). The average is the reference: it is the accuracy the model would have
shown if only non-Byzantine gradients had been selected.

Krum/Geomed 30 non-Byzantines + 27 Byzantines
MDA 6 non-Byzantines + 5 Byzantines

Average 30 non-Byzantines + 0 Byzantines

In Figure 3.3, the attack is maintained only up to 50 steps. The attack variant for `∞
norm-based gradient aggregation rules exhibited a very strong impact. None of the
presented defenses prevented the stochastic gradient descent from being pushed and
remaining in a sub-space of ineffective models, and for at least 1000 steps.

The effect of Bulyan.

Figures 3.5 and 3.6, respectively for MNIST and CIFAR-10, compares Krum, Geomed
and Bulyan.

On MNIST, we use η0 = 1 (η0 = 0.2 for the upper graph), rη = 10000, and a mini-batch
size of 83 images. On CIFAR-10, we use η0 = 0.25, rη = 2000, and a mini-batch size of
128 images. For both MNIST and CIFAR-10, we use 30 non-Byzantines + 9 Byzantines
workers. MDA cannot be used with that many workers, see Section 3.1.2.

In Figure 3.5, with η0 = 1, Krum and Geomed fail to prevent the attack from pushing the
model into an ineffective state, despite the reduced proportion of Byzantine workers
from roughly 1/2, in Figure 3.3, to roughly 1/4. With η0 = 0.2, Krum and Geomed support
the attack, at the cost of a uselessly slower learning process. Here, Bulyan is not affected
by the attack, and achieves the same accuracy as if it averages only the non-Byzantine
gradients. In Figure 3.6, we do the same experiment with CIFAR-10. As with MNIST,
only Bulyan is not affected by our attack.

34



3.5 Concluding Remarks

0

0.2

0.4

0.6

0.8

1

10 100 200 300 400 500 600 700 800 900 1000

A
cc

ur
ac

y

Average (no attack)
Krum (norm 2)

GeoMed (norm 2)

Step

MDA (norm 2)

Figure 3.4: CIFAR-10: top-1 cross-accuracy up to step 1000, comparing the presented
aggregation rules under our attack. The average is the reference: it is the accuracy the
model would have shown if only non-Byzantine gradients had been selected.

The cost of Bulyan.

In Figure 3.7, we study the cost of using Bulyan, in terms of convergence speed, when
there is actually no adversary. We define the convergence speed, for a given mini-batch
size, as the accuracy the model reaches at a fixed, arbitrary step. We use the average,
i.e. the arithmetic mean of the submitted gradients, as the reference aggregation rule.

Without Byzantine workers, the loss in convergence speed induced by Bulyan is mini-
mized with a reasonable batch size: 24 images/batch for MNIST, and 36 for CIFAR-10.

3.5 Concluding Remarks

In this chapter, we presented a simple attack that can defeat stateless, (α, f)-Byzantine
resilient defenses based on a distance minimization scheme. The core enabling cause
is the so-called curse of dimensionality, in particular with respect to what information
the `2 distance between two gradients really provides. Namely with high dimensional
d � 1 machine learning models, for a gradient to be close to another one does not
constrain much each of their coordinates: these two gradients may “disagree” a bit
on each of their coordinates, or “disagree” a lot on only a few of them. This offers the
attacker an opportunity to inject f Byzantine gradients, all impacting the aggregated
gradient, with one fairly large coordinate, as large asO

(
f
√
d
)

in the case of Geomed. As
we have observed in our experiments, this simple attack can have devastating effects.

We call this opportunity the leeway of attack. As our theoretical development shows
conspicuously, the leeway of attack is independent from the coordinate the adversary
chose to attack. This is problematic. In a neural network for instance, the coordinates
of the parameter vector are not equivalent, and none of the studied GARs take that fact

35



Chapter 3. The Hidden Vulnerability

0
0.2
0.4
0.6
0.8

1

10 50 100 150 200 250 300 350 400 450 500

A
cc

ur
ac

y
0.7
0.8
0.9

1

0.6

Krum (norm 2)
GeoMed (norm 2)
Bulyan (norm 2)

Average (no attack)

Step

Figure 3.5: MNIST: top-1 cross-accuracy up to 500 steps for Krum, Geomed, Bulyan
rules. This graph illustrates the impact of the learning rate, as described in Section
3.2.1.

A
cc

ur
ac

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 100 200 300 400 500 600 700 800 900 1000

Krum (norm 2)
GeoMed (norm 2)
Bulyan (norm 2)

Average (no attack)

Step

Figure 3.6: CIFAR-10: top-1 cross-accuracy set up to 1000 steps for Krum, Geomed,
Bulyan rules. The arithmetic mean of non-Byzantine gradients serves as reference.

into account. One possible future work would then be to design a GAR aware of each
coordinate role, for instance by weighting each coordinate differently when computing
a distance. There would be challenges ahead: how to formalize each coordinate role,
which complexity would computing this role have (e.g. computing a Hessian inO

(
d2)

would not be practical), and how do the roles of each coordinate change over time
(allowing the adversary to attack coordinates just before they become more influential).

In the meantime, the composite gradient aggregation rule we propose, Bulyan, offers a
pragmatic and computationally efficient response to the family of attack we exposed.

36



3.5 Concluding Remarks

Minibatch size

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1
3

6 12 24 48
A

cc
ur

ac
y

0.2
0.25
0.3

0.35
0.4

0.45
0.5

24 36 48 96

A
cc

ur
ac

y

Average
Bulyan

st
ep

 2
50

st
ep

 3
50

Figure 3.7: MNIST (left), CIFAR-10 (right): top-1 cross-accuracy at step 250 (left) and
350 (right) for Average and Bulyan. There are n = 39 workers and no adversary, but f is
declared to 9. This shows the trade-off between the Byzantine robustness of Bulyan
and the loss in convergence speed it introduces.

37





Part IIAddressing Shortcomings

39





4 (No) Single Point of Failure

The Byzantine fault model, as originally introduced in distributed computing (Lam-
port et al., 1982), encompasses crashes, software bugs, hardware defects, message
omissions, corrupted data, as well as compromised machines (Biggio et al., 2012; Xiao
et al., 2015). Previous work (Alistarh et al., 2018; Xie et al., 2018a; Blanchard et al., 2017;
Yin et al., 2018; El-Mhamdi et al., 2018; Xie et al., 2018c) on Byzantine resilient SGD
assumed that a fraction of the workers could be Byzantine. But all also assumed the
central parameter server (Figure 2.2) always remains honest and failure-free. In other
words, none of the previous approaches considered a genuinely Byzantine resilient
distributed setting, where no component is trusted.

We propose a distributed algorithm solving the general Byzantine resilient distributed
stochastic gradient descent problem, where no individual component is trusted.

4.1 Motivation

Consider a multi-branch organization with sensitive data and needs for high availabil-
ity, e.g. a hospital or a bank. The failure of the central server, be it because of a crash or
malicious attack, could have severe consequences for such critical organizations: from
the unavailability of the service to compromised trained models affecting its users. A
common and generic strategy to avoid the parameter server from becoming a single
point-of-failure is to replicate it. The remaining challenge is then to keep the respective
states of these many replicas somehow synchronized.

The classical synchronization technique, State Machine Replication (SMR), enforces a
total order on state changes for all the replicas through consensus (Schneider, 1990),
allowing all the replicated states to undergo the exact same updates (and thus remain
synchronized). Such an approach would provide the abstraction of a single parameter
server, allowing to keep using Byzantine resilient GARs as with one parameter server,
while benefiting from the resilience of many replicas. Applying SMR to distributed

41



Chapter 4. (No) Single Point of Failure

SGD would however lead to a potentially huge overhead. In order to maintain the same
state, replicas would need to agree on a total order of the model updates, inducing fre-
quent exchanges (and especially retransmissions) of gradients and parameter vectors,
that can easily be hundreds of megabytes large (Kim, 2012). Given that distributed
stochastic gradient descent setups are network-bound (Zhang et al., 2017; Hsieh et al.,
2017), SMR appears impractical in this context.

The key insight underlying this work is that the general Byzantine SGD problem, even
when neither the workers nor the servers are trusted, is easier than consensus; and so
total ordering of updates is not required for SGD applications. The final parameter
obtained with many parameter servers need only be close to the one obtained in
the single parameter server case. We thus follow a different path where we do not
require all the servers to maintain the same state. Instead, we allow mildly diverging
parameters (which have proven beneficial in other contexts (Zhang et al., 2015; Alistarh
et al., 2016)) and present a new way to contract them in a distributed manner.

4.1.1 The Case for Asynchrony

The additional need for the parameter servers to synchronize would also increase the
attack surface available to the adversary. As Cachin et al. (2011) notes it: “an important
part in the characterization of a distributed system is the behavior of its processes and
links with respect to the passage of time”. Distributed algorithms can either be:

Synchronous The algorithm assumes there is a known upper bound delay on both
processing and communication. The correctness of the algorithm is not guaran-
teed if the delay happens to be violated in practice.

Partially synchronous The algorithm makes progress only when a known upper
bound delay on both processing and communication is upheld, but is built
to maintain consistency even when the delay upper bound is violated in practice.

Asynchronous No timing assumption is made and needed to ensure the correctness
and actual progress of the algorithm. In particular, asynchronous consensus
algorithms are impossible under Byzantine failures (Fischer et al., 1985).

Introducing delays in communication and processing is most certainly within the
reach of a real adversary. Based on overwhelming a service with requests, Distributed
Denial of Service (DDoS) attacks are for instance able to slow down a target, possibly
to the point of rendering the service effectively inaccessible. Attacking one of the
parameter server this way (or any router between parameter servers) appears to be
a plausible attack, that would disrupt synchronous algorithms. Under the same cir-
cumstances, partially synchronous algorithms should not introduce inconsistencies

42



4.1 Motivation

that the adversary can leverage. Nevertheless, the progress of such algorithms would
be delayed until a phase of synchrony (Cachin et al., 2011); delay which the adversary
controls. So under an adversary capable of inducing delays (which is very reasonable
given enough resources), a partially synchronous algorithm may exchange infinitely
many messages between non-Byzantine nodes, and still not make any progress.

As long as messages are exchanged between non-Byzantine nodes, an asynchronous
algorithm would keep making progress. We thus choose to design a distributed, asyn-
chronous algorithm to tackle the problem of general Byzantine resilient SGD.

4.1.2 Updated Distributed Model

There is one change to make compared to the original distributed model presented in
Section 2.1.2: instead of one parameter server, there are nps ≥ 1 parameter servers.

Worker A Worker B Worker C

Worker D

Worker G

Worker E Worker F

Worker H Worker I

Parameter
server A

Parameter
server B

Parameter
server C

Parameter
server D

Legend
Node

Network
Byzantine
nodes
Covert
network

Figure 4.1: nps = 4 parameter servers and nw = 9 workers, including respectively fps =
1 and fw = 3 Byzantine nodes, which can be viewed together as a single adversary.

Figure 4.1 provides an overview of the new model. The objective of the adversary
and the threat model both remain identical as the ones presented in Section 2.2. The
Byzantine parameter servers and the Byzantine workers can also collude.

The notations are updated accordingly:

Symbol Description

nps Total number of parameter servers in the distributed deployment

fps Maximum number of Byzantine parameter servers among the nps servers

nw Total number of workers in the distributed deployment

fw Maximum number of Byzantine workers among the nw workers

θ
(i)
t Parameter vector held by parameter server i at step t

Table 4.1: Updated notations over Table 1.1 for Chapter 4 specifically.

43



Chapter 4. (No) Single Point of Failure

4.2 ByzSGD: General Byzantine SGD

We present here ByzSGD, historically the first algorithm to tolerate Byzantine workers
and servers without making any assumptions on node relative speeds and communica-
tion delays. ByzSGD does not add, on average, any communication rounds compared
to the standard parameter server communication model. However, periodically1,
ByzSGD adds a communication round between the parameter servers to eventually
enforce contraction and convergence.

We will first describe the distributed algorithm ByzSGD. We will then present its oper-
ating assumptions, and finally provide a formal proof of convergence.

4.2.1 Distributed Algorithm

The particularity of our algorithm is that it uses two aggregation rules: one Byzan-
tine resilient rule to aggregate the gradients (as in the single server setting), and one
contraction rule to bring back parameter vectors closer to each other.

One of the main challenges arising with multiple parameter servers is that nothing
prevents the non-Byzantine parameters θ(1)

t . . . θ
(n−f)
t to drift away from each other

as t grows. Parameter drifts can be mitigated without Byzantine nodes, by using a
central authority which pulls back together the diverging parameters using an elastic
force (Zhang et al., 2015). With general Byzantine faults, there can be no central
authority anymore.

Asynchrony and Byzantine faults not only prevent consensus (Fischer et al., 1985) and
incidentally SMR, but also prevent non-Byzantine nodes from waiting for every other
non-Byzantine nodes. Indeed: due to asynchrony, a slow-to-respond non-Byzantine
node is indistiguishable from a non-responding Byzantine node. For instance if there
are n nodes among which f are Byzantine, if a non-Byzantine node waits for at least
n− f other nodes, then this non-Byzantine node will necessarily wait for at least one
of the Byzantine nodes. Consequently, if the f Byzantine nodes all decide never to
respond, the distributed algorithm will remain blocked forever2.

The challenging question can then be formulated as follows: given that the non-
Byzantine parameter servers should not expect to receive more than n−f−1 messages

1Our experimental assessment suggests this additional communication round may happen infre-
quently, e.g. once every 333 training steps yielded satisfying performances in practice (Section 4.3.2).
While the algorithm was originally my contribution, the idea to amortize the communication round
between parameter servers every T steps, instead of having it every step, was the idea of my co-authors.

2Remember that asynchrony forbids the non-Byzantine node from setting a deadline after which the
algorithm would continue with the received responses. If the non-Byzantine node was waiting for q
responses for at most ∆t, due to asynchrony, it is possible that the non-Byzantine node receives e.g. only
f responses, all coming only from the f Byzantine nodes. In asynchrony, there can be no such deadline.

44



4.2 ByzSGD: General Byzantine SGD

per round, how to keep the non-Byzantine parameters close to each other, knowing
that a fraction of the q received messages could be Byzantine?

Distributed Median-based Contraction.

Our solution to this issue is what we call Distributed Median-based Contraction (DMC).
Once every T steps, the parameter servers broadcast to each other their respective
parameter vectors θ(1)

t . . . θ
(nps)
t . The goal of DMC is to decrease the expected maximum

distance between any two honest parameter vectors, hence the term contraction.

DMC is a combination of:

• the application of the coordinate-wise median (Median) on the parameter vectors,

• and provisionning enough non-Byzantine servers so that each non-Byzantine
server can expect to collect the messages from at least 2fps + 1 other parameter
servers (i.e. due to asynchrony, the following has to hold: nps ≥ 3fps + 2).

These two points constitute the root of what we call the contraction effect. In a nutshell,
this contraction effect derives from the fact that, during the contraction step made
every T steps, each non-Byzantine server will aggregate (with the Median) at least
2fps+2 parameter vectors3. Since there is a strict majority of non-Byzantine parameter
vectors nps ≥ 2fps + 1, each coordinate of the coordinate-wise median will then be
bounded between coordinates of the non-Byzantine parameter vectors. And since
there is at least one additional non-Byzantine parameter vector nps ≥ (2fps + 1) + 1
over a strict majority, taken over which random subset of non-Byzantine parameter
vectors was actually received, the expected maximum distance between any two non-
Byzantine parameter vectors is thus decreased after applying the DMC.

The algorithms for both non-Byzantine workers and non-Byzantine parameter servers
are detailed in Figure 4.2. Please note that the initial (non-Byzantine) parameter vector
is randomly selected using a common seed, so that each non-Byzantine parameter
server j starts the algorithm with the same initial parameter vector θ(j)

0 .

4.2.2 Operating Assumptions

Since the parameter server uses MDA (c.f. Algorithm 2), each parameter server needs
to collect qw ≥ 2fw + 1 gradients per step. And so, due to asynchrony, there must be at
least nw ≥ qw + fw ≥ 3fw + 1 workers, among which up to fw can be Byzantine.

3Indeed: each non-Byzantine parameter server i collected at least 2fps + 1 other parameter vectors.
So adding its own parameter vector θ(i)

t the server will aggregate at least 2fps + 2 parameter vectors.

45



Chapter 4. (No) Single Point of Failure

Data: max_steps
t← 0;
while t < max_steps do

θ
(x)
t ... θ(y)

t ← receive_from_servers();

θ
(i)
t ←Median

(
θ

(x)
t ... θ(y)

t

)
;

g
(i)
t ← estimate_gradient

(
θ

(i)
t

)
;

broadcast_to_servers
(
g

(i)
t

)
;

t← t+ 1;
end

Algorithm 1: Worker i

Data: max_steps, T, seed
θ

(j)
0 ← seed_parameters(seed);
t← 0;
while t < max_steps do

broadcast_to_workers
(
θ

(j)
t

)
;

G
(x)
t ...G(y)

t ← receive_from_workers();

G
(j)
t ←MDA

(
G

(x)
t ...G(y)

t

)
;

θ
(j)
t ← θ

(j)
t − ηtG

(j)
t ;

t← t+ 1;
if t mod T = 0 then

broadcast_to_servers
(
θ

(j)
t

)
;

θ
(x)
t ... θ(y)

t ← receive_from_servers();

θ
(j)
t ←Median

(
θ

(x)
t ... θ(y)

t

)
;

end
end

Algorithm 2: Parameter server j

Figure 4.2: ByzSGD: worker and parameter server algorithms. receive_from_workers()
always waits for nw − fw gradients. On a worker, receive_from_servers() waits for
nps − fps parameter vectors. On a server, receive_from_servers() waits for nps − fps − 1
other parameter vectors, as the server’s own parameter vector is always delivered.

A similar reasoning applies for nps. For DMC to work, each parameter server must
collect at least qps ≥ 2fps + 2 parameter vectors (including their own) per contraction
step. And so, due to asynchrony, there must be at least nps ≥ qps + fps ≥ 3fps + 2
workers, among which up to fps can be Byzantine.

To prove the convergence of the non-Byzantine parameter vectors, we assume that:

1. ∀t ∈ N, g(1)
t . . . g

(nw−fw)
t are mutually independent.

2. ∃σ′ ∈ R+, ∀ (i, t) ∈ [1 .. nw − fw]× N, E
∥∥∥g(i)
t − E g(i)

t

∥∥∥ ≤ σ′.
3. Q is positive, and 3-times differentiable with continuous derivatives.

4. ∀r ∈ [2 .. 4] , ∃ (Ar, Br) ∈ R2, ∀ (i, θ) ∈ [1 .. nw − fw]× Rd,
g , estimate_gradient (θ) , E ‖g‖r ≤ Ar +Br ‖θ‖r.

5. ∇Q is Lipschitz continuous, i.e.: ∃l > 0, ∀ (x, y) ∈
(
Rd
)2
,

‖∇Q(x)−∇Q(y)‖1 ≤ l ‖x− y‖1

6. ∃D ∈ R, ∀θ ∈ Rd, ‖θ‖2 ≥ D, ∃ (ε, β) ∈ R+ ×
[
0, π2

[
,

‖∇Q(θ)‖ ≥ ε, 〈θ,∇Q(θ)〉 ≥ cos (β) ‖θ‖ ‖∇Q(θ)‖.

46



4.2 ByzSGD: General Byzantine SGD

7. ∇q is “almost Lipschitz continuous”, i.e.: ∃l′ > 0, ∀ (x, y) ∈
(
Rd
)2
,

Ez∼D ‖∇q(x, z)−∇q(y, z)‖1 ≤ l′ ‖x− y‖1

8. ∃κ ∈ ]nps,+∞[ , ∀ (i, t, θ) ∈ [1 .. nw − fw]× N× Rd,

κ
√

8 fw
nw−fw

√
E
[
‖estimate_gradient(θ)−∇Q(θ)‖2

]
≤ ‖∇Q(θ)‖.

9. Let4 Sj , {s⊂ [1 .. nps−fps]−{j} | |s|∈ [q−f−1 .. q−1]} the subset of non-Byzantine
indexes that node j will receive at any given step. Let S = ∏

j∈[1 .. nps−fps] Sj the
set of all non-Byzantine parameter server indexes the nps − fps non-Byzantine
parameter servers can receive. We assume that: ∃ρ > 0, ∀s ∈ S, P (X = s) ≥ ρ.

The assumptions made in Point 1 to Point 5 (i.i.d., bounded variance, loss differentia-
bility, bounded statistical moments, and gradient Lipschitz continuity) are the most
common ones in classical SGD analysis (Bottou, 1998; Bousquet and Bottou, 2008).

The assumption made in Point 8 is inherited from the theoretical requirements for
the (α, f)-Byzantine resilience of MDA. κ > nps is a safe bound to eventually tackle
both honest gradients being estimates at slightly different parameter vectors, and a
worst-case scenario where the adversary could push parameters in the wrong direction.

The assumption made in Point 6 was first adapted from Bottou (1998) by Blanchard
et al. (2017) to account for Byzantine resilience. It intuitively says that beyond a
certain horizon, the loss function is “steep enough” (it has lower bounded gradient
norms) and “convex enough” (it has upper bounded angles between the gradients
and the parameter vectors). The loss function does not need to be convex: adding a
`2 regularization term to the loss is enough to guarantee this assumption in practice.
Indeed, when ‖θt‖ goes to infinity, the regularization eventually dominates the rest of
the loss function and permits the gradient∇Q(θt) to point to the same half space as θt.

4.2.3 Proof of Convergence

Without loss of generality, let (1, . . . , nw − fw) be the indices of the non-Byzantine work-
ers, and let (1, . . . , nps − fps) be the indices of the non-Byzantine parameter servers.

Noting θt , Median
(
θ

(1)
t . . . θ

(nps)
t

)
, we prove that:

lim
t→+∞

E ‖∇Q(θt)‖ = 0 (4.1)

The expected values are taken over the randomness of both the datapoints sampled
by each non-Byzantine worker and the subset of non-Byzantine messages received by
each non-Byzantine node, at step t and every previous steps.

4This is a improved formulation by Lê Nguyen Hoang over the original formulation of the author.

47



Chapter 4. (No) Single Point of Failure

Lemma 1. We derive a sufficient condition for Equation (4.1). Namely, we observe that:

lim
t→+∞

E
[

max
(a,b)∈[1 .. nps−fps]2

∥∥∥θ(a)
t − θ

(b)
t

∥∥∥] = 0

lim
t→+∞

E
∥∥∥∇Q(θ(1)

t

)∥∥∥ = 0

 =⇒ (4.1)

The first expression is proven in Lemma 5, and the second one is proven in Lemma 6.

Proof. Indeed, by one of the triangular inequalities and Lipschitz continuity, we have:

∀t ∈ N,
∣∣∣‖∇Q(θt)‖ −

∥∥∥∇Q(θ(1)
t

)∥∥∥∣∣∣ ≤ ∥∥∥∇Q(θt)−∇Q
(
θ

(1)
t

)∥∥∥ ≤ l ∥∥∥θt − θ(1)
t

∥∥∥
Hence, using |A−B| ≤ C ⇒ B − C ≤ A ≤ B + C, we get:

E
∥∥∥∇Q(θ(1)

t

)∥∥∥− lE ∥∥∥θt − θ(1)
t

∥∥∥ ≤ E ‖∇Q(θt)‖ ≤ E
∥∥∥∇Q(θ(1)

t

)∥∥∥+ lE
∥∥∥θt − θ(1)

t

∥∥∥ (4.2)

We now recall that, by the coordinate-wise construction of θt , Median
(
θ

(1)
t . . . θ

(nps)
t

)
:

∀i ∈ [1 .. d] ,
∣∣∣θt[i]− θ(1)

t [i]
∣∣∣ ≤ max

(a,b)∈[1 .. nps−fps]2

∣∣∣θ(a)
t [i]− θ(b)

t [i]
∣∣∣

Hence, observing that:

max
(a,b)∈[1 .. nps−fps]2

∥∥∥θ(a)
t − θ

(b)
t

∥∥∥
1

≤
d∑
i=1

(
max

(a,b)∈[1 .. nps−fps]2

∣∣∣θ(a)
t [i]− θ(b)

t [i]
∣∣∣)

≤ (nps − fps) (nps − fps − 1)
2 max

(a,b)∈[1 .. nps−fps]2

(
d∑
i=1

∣∣∣θ(a)
t [i]− θ(b)

t [i]
∣∣∣︸ ︷︷ ︸∥∥∥θ(a)

t −θ
(b)
t

∥∥∥
1

)
(4.3)

The equivalence of norms ‖·‖2 ≤ ‖·‖1 ≤
√
d ‖·‖2 yields here:

E
∥∥∥θt − θ(1)

t

∥∥∥ ≤ √d (nps − fps) (nps − fps − 1)
2 E

[
max

(a,b)∈[1 .. nps−fps]2

∥∥∥θ(a)
t − θ

(b)
t

∥∥∥] (4.4)

Finally, Equation (4.4) and lim
t→+∞

E
[

max
(a,b)∈[1 .. nps−fps]2

∥∥∥θ(a)
t − θ

(b)
t

∥∥∥] = 0 yield:

lim
t→+∞

E
∥∥∥θt − θ(1)

t

∥∥∥ = 0 (4.5)

48



4.2 ByzSGD: General Byzantine SGD

Combining Equation (4.5) with Equation (4.2) and lim
t→+∞

E
∥∥∥∇Q(θ(1)

t

)∥∥∥ = 0 concludes:

lim
t→+∞

E ‖∇Q(θt)‖ = 0

Lemma 2. Convergence of
n∑
i=0

kn−i ηi.

Let 0 < k < 1 and ηi > 0 be the general term of a sequence such that lim
i→+∞

ηi = 0.

Then: lim
n→+∞

(
n∑
i=0

kn−i ηi

)
= 0

Proof. First, we observe that:

lim
t→+∞

ηt = 0⇒ ∀ε > 0, ∃τ ∈ N, ∀t ≥ τ, ηt < ε

⇒ ∃τ ∈ N, ∀t ≥ τ, ηt < 1 (4.6)

Then, reusing τ from (4.6), it holds ∀n ≥ 2 τ :

n∑
i=0

kn−i ηi =
τ−1∑
i=0

kn−i ηi +
bn/2c∑
i=τ

kn−i ηi +
n∑

i=bn/2c+1
kn−i ηi

< kn−τ
(
τ−1∑
i=0

kτ−i ηi

)
+
bn/2c∑
i=τ

kn−i +
n∑

i=bn/2c+1
kn−i ηi

< kn−τ
(
τ−1∑
i=0

kτ−i ηi

)
+ kd

n/2e
bn/2c∑
i=τ

kb
n/2c−i + max

i∈[n2 +1 .. n]
(ηi)

n∑
i=bn/2c+1

kn−i

< kn−τ
(
τ−1∑
i=0

kτ−i ηi

)
+ 1

1− k

(
kd

n/2e + max
i∈[n2 +1 .. n]

(ηi)
)

Finally, since 0 < k < 1 and lim
n→+∞

(
max

i∈[n2 +1 .. n]
(ηi)

)
= lim

n→+∞
(ηn) = 0, we conclude:

lim
n→+∞

(
n∑
i=0

kn−i ηi

)
= 0

Lemma 3. MDA bounded deviation from majority.

Let (d, f) ∈ (N− {0})2, let q ∈ N such that q ≥ 2 f + 1.

Let note H1 , [1 .. q − f ] and H2 , [q + 1 .. 2 q − f ].

49



Chapter 4. (No) Single Point of Failure

We will show that, ∀p ∈ N+ ∪ {+∞}:

∃c ∈ R+, ∀ (x1 . . . x2q) ∈
(
Rd
)2q

,

‖MDA (x1 . . . xq)−MDA (xq+1 . . . x2q)‖p ≤ c max
(i,j)∈(H1∪H2)2

‖xi − xj‖p

Proof. We will proceed by construction of MDA (Section 3.1.2).

Reusing the notation from Section 3.1.2, we recall that MDA (x1 . . . xq) , 1
q−f

∑
x∈S1 x.

Since S1 is a subset of size q − f of smallest diameter in {x1 . . . xq}, the following holds:

∃ (i, j) ∈ H1
2, ∀ (y, z) ∈ S2

1 , ‖y − z‖ ≤ ‖xi − xj‖

Then, observing that q − f > f ⇒ ∃k ∈ H1, xk ∈ S1, we can compute:

‖MDA (x1 . . . xq)− xk‖ =

∥∥∥∥∥∥
 1
q − f

∑
x∈S1

x

− xk
∥∥∥∥∥∥

= 1
q − f

∥∥∥∥∥∥
∑
x∈S1

(x− xk)

∥∥∥∥∥∥
≤ 1
q − f

∑
x∈S1

‖x− xk‖

≤ 1
q − f

∑
x∈S1

(
max

(i,j)∈H12
‖xi − xj‖

)
≤ max

(i,j)∈H12
‖xi − xj‖

Using the same construction, with l ∈ H2:

‖MDA (xq+1 . . . x2q)− xl‖ ≤ max
(i,j)∈H22

‖xi − xj‖

Finally, reusing k and l, we can compute:

‖MDA (x1 . . . xq)−MDA (xq+1 . . . x2q)‖
= ‖MDA (x1 . . . xq)− xk + xk − xl + xl −MDA (xq+1 . . . x2q)‖
≤ ‖MDA (x1 . . . xq)− xk‖+ ‖xk − xl‖+ ‖MDA (xq+1 . . . x2q)− xl‖
≤ 3 · max

(i,j)∈(H1∪H2)2
‖xi − xj‖

And we conclude using the equivalence of `p norms.

Lemma 4. Coordinate-wise Median contraction effect.

50



4.2 ByzSGD: General Byzantine SGD

Let (d, f) ∈ (N− {0})2, and let (n, q) ∈ N2 such that n ≥ 3 f + 1 and q = n− f .
We recall that x[i] designates the ith coordinate of the vector x ∈ Rd.

Let ρ > 0, and let S ∼ S a random variable following a random distribution S, with
support RS , {X |X ⊂ {1..q} , |X| = q − f, P(S1 = X1, . . . , Sq = Xq) ≥ ρ}. That is, S
represents a set of q − f indexes selected randomly among the q non-Byzantine indexes.

We will then formally prove that ∃m ∈ [0, 1[ such that:

S1 ∼ S, . . . , Sq ∼ S

∀ (x1 . . . xq) ∈
(
Rd
)q
,

∀
(
z

(1)
1 . . . z

(1)
f , . . . , z

(q)
1 . . . y

(q)
f

)
∈
(
Rd
)q f

,

∀i ∈ [1 .. q] ,

y(i) , Median
(
xSi[1] . . . xSi[q−f ], z

(i)
1 . . . z

(i)
f

)
we have:

E
[

d∑
k=1

max
(i,j)∈[1 .. q]2

∣∣∣y(i)[k]− y(j)[k]
∣∣∣] ≤ m d∑

k=1
max

(i,j)∈[1 .. q]2
|xi[k]− xj[k]| (4.7)

Proof. Since q−f ≥ f +1, there is a strict majority of non-Byzantine coordinates when
computing the Median. So by construction, Median is bounded above and below by
non-Byzantine coordinates, formally: ∀i ∈ [1 .. q] , min

j∈[1 .. q]
xj[k] ≤ y(i)[k] ≤ max

j∈[1 .. q]
xj[k].

Thus we first observe that:

∀k ∈ [1 .. d] , ∀ (s1, . . . , sq) ∈ RSq, ∀ (i, j) ∈ [1 .. q]2 ,

y(i)[k] , Median
(
xsi[1][k] . . . xsi[q−f ][k] , z(i)

1 [k] . . . z(i)
f [k]

)
,∣∣∣y(i)[k]− y(j)[k]

∣∣∣ ≤ max
(a,b)∈[1 .. q]2

|xa[k]− xb[k]| (4.8)

We will now consider two cases:

1. x1 = x2 = . . . = xq, or

2. at least two non-Byzantine parameter vectors are different.

If x1 = x2 = . . . = xq, then we have:

max
(i,j)∈[1 .. q]2

|xi[k]− xj[k]| = max
(i,j)∈[1 .. q]2

|x[k]− x[k]| = 0

51



Chapter 4. (No) Single Point of Failure

And so:

∀ (i, j) ∈ [1 .. q]2 , ∀k ∈ [1 .. d] ,
∣∣∣y(i)[k]− y(j)[k]

∣∣∣ = 0

⇒
d∑

k=1
max

(i,j)∈[1 .. q]2

∣∣∣y(i)[k]− y(j)[k]
∣∣∣ = 0

Which concludes for Equation (4.7) for any m ∈ [0, 1[.

Otherwise, if at least two non-Byzantine parameter vectors are different, then let5:

• xmin , min
i∈[1 .. q]

xi[k] and xmax , max
i∈[1 .. q]

xi[k]

• A ,
{
i ∈ [1 .. q]

∣∣∣ xi[k] ≥ 1
2 (xmax + xmin)

}
and B , {1..q} −A

We observe that |A| > 0 and |B| > 0, and either |A| ≥
⌈ q

2
⌉

or |B| ≥
⌈ q

2
⌉
.

Suppose |A| ≥
⌈ q

2
⌉

and let s the set composed of all the indexes of A completed by
max (0, q − f − |A|) indexes from B. We observe that s ∈ RS , so P (Sy = s) ≥ ρ.

If S1 = s, . . . , Sq = s, since |A| ≥
⌈ q

2
⌉
, we have by construction of Median:

xmin < 1
2 (xmax + xmin) ≤ y(1)[k] ≤ xmax

...
...

...
...

xmin < 1
2 (xmax + xmin) ≤ y(1)[k] ≤ xmax

The probability associated to this event is by assumption P(S1 =s, . . . , Sq=s) ≥ ρ > 0,
and so, using Equation (4.8), we can bound ∀ (i, j) ∈ [1 .. q]2:

E
∣∣∣y(i)[k]− y(j)[k]

∣∣∣ ≤ (1− ρ) (xmax − xmin) + ρ

(
xmax −

1
2 (xmax + xmin)

)
≤
(

1− ρ

2︸ ︷︷ ︸
0< ·< 1

)
(xmax − xmin)

The case |B| ≥
⌈ q

2
⌉

is symmetrical and yields the exact same conclusion.

We then have ∃m′ ∈
[
1− ρ

2 , 1
[

such that:

E
[

max
(i,j)∈[1 .. q]2

∣∣∣y(i)[k]− y(j)[k]
∣∣∣] ≤ m′ max

(i,j)∈[1 .. q]2
|xi[k]− xj[k]|

And so, using Equation (4.8) on every other coordinates l 6= k and by linearity of the
expected value, we can finally conclude on the existence of m < 1 in Equation (4.7).

5The idea to split the non-Byzantine indexes this way was originally proposed by Lê Nguyen Hoang.

52



4.2 ByzSGD: General Byzantine SGD

Lemma 5. Almost-sure contraction of the correct parameter vectors.

Using some of the assumptions made in Section 4.2.2, we will prove that:

lim
t→+∞

E
[

max
(a,b)∈[1 .. nps−fps]2

∥∥∥θ(a)
t − θ

(b)
t

∥∥∥] = 0

Proof. For concision in the following development6, we will note:

inner max
(a,b)∈[1 .. q]2

∥∥∥x(a) − x(b)
∥∥∥

1
,

d∑
k=1

max
(a,b)∈[1 .. q]2

∣∣∣x(a)[k]− x(b)[k]
∣∣∣

Equation (4.3) displays what we call the equivalence of innermax:

max
(a,b)∈[1 .. q]2

∥∥∥x(a)−x(b)
∥∥∥

1
≤ inner max

(a,b)∈[1 .. q]2

∥∥∥x(a)−x(b)
∥∥∥

1
≤ q (q−1)

2 max
(a,b)∈[1 .. q]2

∥∥∥x(a) − x(b)
∥∥∥

1

Using Equation (4.3), we observe in particular that:

lim
t→+∞

E
[

inner max
(a,b)∈[1 .. nps−fps]2

∥∥∥θ(a)
t − θ

(b)
t

∥∥∥
1

]
= 0

⇒ lim
t→+∞

E
[

max
(a,b)∈[1 .. nps−fps]2

∥∥∥θ(a)
t − θ

(b)
t

∥∥∥] = lim
t→+∞

E
[

max
(a,b)∈[1 .. nps−fps]2

∥∥∥θ(a)
t − θ

(b)
t

∥∥∥
1

]
= 0

Using the assumption that correct gradient estimations’ deviation is bounded (Point 2.
of Section 4.2.2), since the number of correct workers is also bounded, it holds that:

∃σ ∈ R+, ∀t ∈ N, E
[

inner max
i∈[1 .. nw−fw]

∥∥∥g(i)
t − E g(i)

t

∥∥∥
1

]
≤ σ (4.9)

We use the same notations as in Figure 4.2. In particular for t+ 1 mod T 6= 0:

• θ
(i)
t+1 = θ

(i)
t − ηtG

(i)
t , where G

(i)
t is the output of MDA of g(x)

t . . . g
(y)
t .

• E g(i)
t , ∇Q

(
θ

(i)
t

)
, where θ

(i)
t is the output of Median of θ(x)

t . . . θ
(y)
t .

Then, for t ≥ 0 and t+ 1 mod T 6= 0, we can bound:

E
[

inner max
(a,b)∈[1 .. nps−fps]2

∥∥∥θ(a)
t+1 − θ

(b)
t+1

∥∥∥
1

]

= E
[

inner max
(a,b)∈[1 .. nps−fps]2

∥∥∥(θ(a)
t − ηtG

(a)
t

)
−
(
θ

(b)
t − ηtG

(b)
t

)∥∥∥
1

]
6The idea to analyze the contraction of each coordinate separately, here formalized with the innermax,

is the idea of Lê Nguyen Hoang, and it was an “unblocker” to the original redaction of this proof.

53



Chapter 4. (No) Single Point of Failure

≤ E
[

inner max
(a,b)∈[1 .. nps−fps]2

∥∥∥θ(a)
t − θ

(b)
t

∥∥∥
1

]
+ ηt E

[
inner max

(a,b)∈[1 .. nps−fps]2

∥∥∥G(a)
t −G

(b)
t

∥∥∥
1

]

Using Lemma 3 and the equivalence of innermax, ∃c > 0 so that we can bound:

E
[

inner max
(a,b)∈[1 .. nps−fps]2

∥∥∥G(a)
t −G

(b)
t

∥∥∥
1

]
≤ c E

[
inner max

(a,b)∈[1 .. nw−fw]2

∥∥∥g(a)
t − g

(b)
t

∥∥∥
1

]

The distance between two gradients g(a)
t and g(b)

t can be split into:∥∥∥g(a)
t − g

(b)
t

∥∥∥
1

=
∥∥∥(g(a)

t −∇Q
(
θ

(a)
t

))
−
(
g

(b)
t −∇Q

(
θ

(b)
t

))
+
(
∇Q

(
θ

(a)
t

)
−∇Q

(
θ

(b)
t

))∥∥∥
1

And so, using Equation (4.9), Point 5. of Section 4.2.2 and Lemma 4:

E
[

inner max
(a,b)∈[1 .. nw−fw]2

∥∥∥g(a)
t − g

(b)
t

∥∥∥
1

]
≤ 2σ + E

[
inner max

(a,b)∈[1 .. nw−fw]2

∥∥∥∇Q(θ(a)
t

)
−∇Q

(
θ

(b)
t

)∥∥∥
1

]

≤ 2σ + l m E
[

inner max
(a,b)∈[1 .. nps−fps]2

∥∥∥θ(a)
t − θ

(b)
t

∥∥∥
1

]

Noting ut , E
[

inner max
(a,b)∈[1 .. nps−fps]2

∥∥∥θ(a)
t − θ

(b)
t

∥∥∥
1

]
and “telescoping” the above inequalities:

∀t ∈ N, t+ 1 mod T 6= 0, 0 ≤ ut+1 ≤ (1 + l m ηt c)ut + 2σ c ηt

To express the DMC phase every T steps, we define a new learning rate series:

η̂t , max
t≤i<t+T

ηi

We can then include the DMC phase every T steps, in the series ut:

∀t ∈ N, t mod T = 0, 0 ≤ ut+T ≤ m (1 + l m η̂t c)T ut + 2σ c η̂tmT

For readability, we define vt , u(T ·t), and we will prove that lim
t→+∞

vt = 0.

Since
∑
t∈N

ηt
2 converges (Assumption 2), we have that lim

t→+∞
η̂t = lim

t→+∞
ηt = 0, and so:

lim
t→+∞

η̂t = 0⇒ ∀ε > 0, ∃τ ∈ N, ∀t ≥ τ, η̂t < ε

⇒ ∃k ∈ ]m; 1[ , ∃τ ∈ N, ∀t ≥ τ, η̂t <
T

√
k
m − 1
l cm

(4.10)

Then, using k and τ from Equation (4.10), it holds:

vτ+1 ≤ m (1 + l m η̂t c)T vτ + 2σ c η̂τ mT

≤ k vτ + 2σ c η̂τ mT

54



4.2 ByzSGD: General Byzantine SGD

Similarly for step τ + t > τ :

vτ+t ≤ k vτ+t−1 + 2σ c η̂τ+t−1mT

vτ+t ≤ k2 vτ+t−2 + k 2σ c η̂τ+t−2mT + 2σ c η̂τ+t−1mT

≤ kt vτ + 2σ cmT
t∑
i=1

ki−1 η̂τ+t−i

Since 0 < k < 1 and ∃r ∈ R+, ∀ (t, u) ∈ T N × [0 .. T − 1] , ut+u ≤ r vt, and using
Lemma 2, we finally conclude that:

lim
t→+∞

E
[

max
(a,b)∈[1 .. n−f ]2

∥∥∥θ(a)
t − θ

(b)
t

∥∥∥] = lim
t→+∞

ut = lim
t→+∞

vt = lim
t→+∞

vτ+t = 0

Lemma 6. Expected convergence of the loss gradient.

Using some of the assumptions made in Section 4.2.2, we will prove that:

lim
t→+∞

E
∥∥∥∇Q(θ(1)

t

)∥∥∥ = 0

Proof. Using Lemma 5 we will show that, intuitively, the trajectory of any non-Byzantine
parameter vector (we have chosen to study θ(1)

t ) will be arbitrarily close to a “reference”
trajectory obtained in the single-server situation with a (α, f)-Byzantine resilient GAR.
Such a reference trajectory has been proven to converge (Blanchard et al., 2017).

Formally, we will prove that, after some step tc ∈ N, each non-Byzantine estimated
gradient g(i)

t , i ∈ [1 .. nps − fps] satisfies the conditions for (α, f)-Byzantine resilient

relative to the gradient distribution at the single parameter vector θ(1)
t .

Using the notation of Equation (2.1), the difference between the gradient estimated at

θ
(i)
t and the gradient estimated at θ(1)

t using the same dataset samples is bounded by:∥∥∥estimate_gradient
(
θ

(i)
t

)
− estimate_gradient

(
θ

(1)
t

)∥∥∥
1

=
∥∥∥∥∥1
b

b∑
k=1
∇q
(
θ

(i)
t , x

(k)
t

)
− 1
b

b∑
k=1
∇q
(
θ

(1)
t , x

(k)
t

)∥∥∥∥∥
1

= 1
b

∥∥∥∥∥
b∑

k=1

(
∇q
(
θ

(i)
t , x

(k)
t

)
−∇q

(
θ

(1)
t , x

(k)
t

))∥∥∥∥∥
1

≤ 1
b

b∑
k=1

∥∥∥∇q(θ(i)
t , x

(k)
t

)
−∇q

(
θ

(1)
t , x

(k)
t

)∥∥∥
1

55



Chapter 4. (No) Single Point of Failure

And so, taking the expected value and using Point 7. of Section 4.2.2:

E
∥∥∥estimate_gradient

(
θ

(i)
t

)
− estimate_gradient

(
θ

(1)
t

)∥∥∥
1

≤ 1
b

b∑
k=1

E
∥∥∥∇q(θ(i)

t , x
(k)
t

)
−∇q

(
θ

(1)
t , x

(k)
t

)∥∥∥
1

≤ l′ E
∥∥∥θ(i)
t − θ

(1)
t

∥∥∥
1

By construction of Median, we recall that:

∀k ∈ [1 .. d] , min
j∈[1 .. nps−fps]

θ
(j)
t [k] ≤ θ(i)

t [k] ≤ max
j∈[1 .. nps−fps]

θ
(j)
t [k]

Using Lemma 5 and “telescoping” the above inequalities, we then have:

lim
t→+∞

E
∥∥∥estimate_gradient

(
θ

(i)
t

)
− estimate_gradient

(
θ

(1)
t

)∥∥∥
1

= lim
t→+∞

E
∥∥∥θ(i)
t − θ

(1)
t

∥∥∥
1

= 0

Hence, ∀ε > 0, ∃tε ∈ N such that ∀t ≥ tε we can rewrite:

∀i ∈ [1 .. nw − fw] ,

∃
(
ε

(i)
t , e

(i)
t

)
∈ R+ × Rd, ε(i)

t ≤ ε,
∥∥∥e(i)
t

∥∥∥ = 1,

g
(i)
t = g

(1)
t + ε

(i)
t e

(i)
t

Using this new expression and the equivalence of norms, we can bound ∀i ∈ [1 .. nw − fw]:

E
[∥∥∥g(i)

t − E g(i)
t

∥∥∥2
]

= E
[∥∥∥g(i)

t −∇Q
(
θ

(i)
t

)∥∥∥2]
= E

[∥∥∥g(1)
t −∇Q

(
θ

(1)
t

)
+ ε

(i)
t e

(i)
t +∇Q

(
θ

(1)
t

)
−∇Q

(
θ

(i)
t

)∥∥∥2]
≤ E

[∥∥∥g(1)
t −∇Q

(
θ

(1)
t

)∥∥∥2]
+ ε2 + E

[∥∥∥∇Q(θ(1)
t

)
−∇Q

(
θ

(i)
t

)∥∥∥2]
≤ E

[∥∥∥g(1)
t −∇Q

(
θ

(1)
t

)∥∥∥2]
+ ε2 + d l2 E

[∥∥∥θ(i)
t − θ

(1)
t

∥∥∥2]
Since we have by assumption κ > 1 in Point 8. of Section 4.2.2, using the above
decomposition and Lemma 5 again, ∃tc ∈ N such that ∀t ≥ tc it holds that:

8fw2

(nw − fw)2 E
[∥∥∥g(i)

t −∇Q
(
θ

(i)
t

)∥∥∥2]

≤ κ2 8 fw2

(nw − fw)2 E
[∥∥∥estimate_gradient

(
θ

(1)
t

)
−∇Q

(
θ

(1)
t

)∥∥∥2
]

≤
∥∥∥∇Q(θ(1)

t

)∥∥∥2

56



4.3 Experimental Evaluations

And so for t ≥ tc, using the assumption made in Point 4. of Section 4.2.2, each g
(i)
t

satisfies for θ(1)
t the condition of (α, f)-Byzantine resilience of MDA (Section 3.1.2).

Finally, with κ > nps and using the assumptions made from Point 1. to Point 6. of
Section 4.2.2, we can reuse the whole proof of convergence in the single-server setting
devised by Blanchard et al. (2017) for any (α, f)-Byzantine resilient GAR to conclude.

4.3 Experimental Evaluations

We implemented the algorithms presented in Section 4.2.1 on top of TensorFlow (Ten-
sorFlow contributors, 2015). We deployed our code on a physically distributed cluster,
and in this section we report on the empirical results we obtained.

4.3.1 Evaluation Settings

Testbed.

We use Grid50007 as an experimental platform. We employ up to 20 worker nodes and
up to 6 parameter servers. Each node in the cluster has:

• 2 Intel Xeon E5-2630 v4, 10 cores per socket

• 256 GiB of RAM

• 2× 10 Gbps Ethernet switched networking

Experiments.

We consider the standard, academic image classification task CIFAR-10, due to its wide
adoption as a benchmark in the distributed machine learning literature (Abadi et al.,
2016; Chilimbi et al., 2014). CIFAR-10 consists in small picture of various common
objects (cars, planes, boats, etc). It is composed of of 60 000 32 × 32 RGB images
distributed in 10 classes. Its training set contains 50 000 datapoints, and the testing set
contains the remaining 10 000 datapoints.

As model, we employ the CifarNet neural network architecture. It comprises 1 756 426
trainable parameters. Using 32-bit floating point number representation, the size
of one parameter vector/gradient is then approximately 7.0 MB. This roughly corre-
sponds to the size of each message exchanged between parameter servers/workers.

7https://www.grid5000.fr/. While the code was co-authored by both Arsany Guirguis and me, Arsany
Guirguis ran the experiments and produced the original graphs (that are slightly modified in this thesis).

57

https://www.grid5000.fr/


Chapter 4. (No) Single Point of Failure

Metrics.

We evaluate the performance of ByzSGD with the top-1 cross-accuracy achieved by
the model (Section 2.1.1). We report the top-1 cross-accuracy function of either the
step number t or time (in seconds). The evolution of the accuracy function of the step
number reveals whether using Byzantine resilient aggregation rules impact the quality
of the training. The evolution of the accuracy function of time allows to compare how
much slower ByzSGD is compared to the non-Byzantine resilient baseline.

Baseline.

We consider vanilla TensorFlow (shorthand: vanilla TF) as the baseline. Given that such
a baseline does not converge in Byzantine environments (Damaskinos et al., 2019), we
use it only to estimate the overhead ByzSGD incurs in non-Byzantine environments.

4.3.2 Evaluation Results

We assess ByzSGD’s performance against the baseline in a non-Byzantine environment
(the baseline is not Byzantine resilient). We vary the batch-size and the maximum
numbers of Byzantine workers fw and Byzantine parameter servers fps ByzSGD must
tolerate. Changing fw and fps affects the number of gradients/parameter servers
awaited by each node: due to the asynchrony, no worker/server can await more than
nw − fw gradients and nps − fps parameter vectors (c.f. Section 4.2.1).

In all our experiments we use T = 333. El-Mhamdi et al. (2020) discusses the effect
of varying T ; we use here one of the (many) ideal values reported. The empirical
observation is that, from T ≥ 10, further increasing T does not impact the throughput
of ByzSGD much. This effect is easily explained by the fact T directly divides the
average time spent in the DMC phase. Even with T = 1, the cost of the DMC phase is
smaller than the gradient exchange phase, as there are more workers than parameter
servers in our experiments. The speedup for varying T from T1 to T2 = k T1, k > 1, is
then roughly8 upper bounded by speedup < k(T1+1)

k T1+1 (Amdahl’s law (Amdahl, 1967)).

Figure 4.3 shows the convergence of ByzSGD, either function of the step number t or
run time, when there is no actual attack. We observe that the evolution of the cross-
accuracy per step appears identical between the baseline and ByzSGD. When fw > 0,
ByzSGD induces a small loss in final cross-accuracy. Such a loss is more emphasized
with a smaller batch size (Figure 4.3) than a larger one (Figure 4.4). This accuracy loss
is admitted in previous work (Xie et al., 2018b) and is inherited from using statistical
methods (basically, MDA in our case) for Byzantine resilience. Regarding the gain

8Neglecting the CPU time and assuming the DMC phase takes as long as the gradient exchange phase,
which is conservative since the DMC phase is less time-consuming than the gradient exchange phase.

58



4.3 Experimental Evaluations

A
cc

ur
ac

y

Step number
0 200

TensorFlow
ByzSGD (fps = 0, fw = 0)
ByzSGD (fps = 1, fw = 5)

0.1
0.2

0.6

0.3
0.4
0.5

0.7

400 600 800 1000 1200 1400

TensorFlow
ByzSGD (fps = 0, fw = 0)
ByzSGD (fps = 1, fw = 5)

A
cc

ur
ac

y

0.1
0.2

0.6

0.3
0.4
0.5

0.7

Time (s)
0 200 400 600 800 1000 1200 1400

Figure 4.3: Top-1 cross-accuracy function of either the step number t or time, for
ByzSGD vs the baseline (TF) in a non-Byzantine environment. The batch-size is 100.

TensorFlow
ByzSGD (fps = 0, fw = 0)
ByzSGD (fps = 1, fw = 5)

A
cc

ur
ac

y

0.1
0.2

0.6

0.3
0.4
0.5

0.7

Step number
0 200 400 600 800 1000 1200 1400

TensorFlow
ByzSGD (fps = 0, fw = 0)
ByzSGD (fps = 1, fw = 5)

A
cc

ur
ac

y

0.1
0.2

0.6

0.3
0.4
0.5

0.7

Time (s)
0 200 400 600 800 1000 1200 16001400

Figure 4.4: Top-1 cross-accuracy function of either the step number t or time, for
ByzSGD vs the baseline (TF) in a non-Byzantine environment. The batch-size is 250.

of accuracy over time, the baseline reached the final cross-accuracy several times
faster than ByzSGD. This result can largely be attributed to the cost of the additional
processing and communication rounds carried out by our algorithm.

Figure 4.4 shows the same settings as Figure 4.3, except the batch-size had been set
from b = 100 to b = 250, multiplying the gradient computation time by×2.5. As noted
above, higher batch-sizes lead to higher top-1 cross-accuracies with statistically-robust
GARs. The longer time it takes to compute gradients naturally impacts the speedup
of ByzSGD over the baseline: the fraction of time spent computing gradients become
more prevalent with b = 250 than with b = 100, mechanically increasing the speedup.

Both sets of experiments in figures 4.3 and 4.4 exhibit the same behavior regarding the
variation of fw and fps. Even if higher fw and fps respectively decrease the number of
gradients and parameter vectors awaited by each (non-Byzantine) node, the impact
on the performance is barely visible. Two opposing effects are in play here. Higher
fw and fps both lead to less non-Byzantine gradients aggregated per step (since there
is no actual attack). This filtering of valid gradients/parameter vectors increases the
variance of the aggregate, in turn slightly increasing the time it takes to reach the final
top-1 cross-accuracy. Opposing to this effect is the (slight) throughput gain ByzSGD
benefits when less gradients and parameter vectors are awaited per step.

59



Chapter 4. (No) Single Point of Failure

4.4 Concluding Remarks

In this chapter, we tackled the problem of general Byzantine SGD, where no single
node needs to be trusted. Having no single-point-of-failure, the general Byzantine SGD
model enables further more resilient distributed deployments. We propose ByzSGD,
historically the first algorithm to solve the general Byzantine SGD problem. We formally
prove the soundness of our algorithm, and we assess its costs against a non-resilient
baseline (a distributed deployment of the same model and dataset with TensorFlow).

One of the important features of ByzSGD is that it is able to work in asynchrony: as long
as messages can be exchanged between nodes, the algorithm will make progress. This
is a performance feature synchronous and partially synchronous algorithms lack in the
presence of Byzantine failures. This is arguably an important feature for correctness
as well. Breaking the timing assumptions of a synchronous algorithm also breaks its
guarantees. In practice, unexpectedly long delays can be triggered by e.g. a software
update on a non-Byzantine node, temporary congestion on the network, or even by a
distributed denial-of-service attack for powerful-enough adversaries.

The theoretical analysis (Section 4.2.3) shows that two opposing forces are at play. The
variance of the non-Byzantine gradient estimations tends to push the non-Byzantine
parameter vectors apart from each other. The DMC procedure works to pull these
vectors back together. Intuitively, as Lemma 5 and Lemma 6 formalize, these forces
induce three different training phases. The first phase corresponds to the expansion of
the envelope of the non-Byzantine parameter vectors. This expansion peaks at step
arg maxt∈N ut. Then comes the contraction phase. And finally for t ≥ tc, the convergence
phase of the non-Byzantine parameter vectors. One important critic is that, unless
tc = 09, the adversary may be free to move the non-Byzantine parameter vectors
(almost) wherever it likes during the first two phases, starting the convergence phase
from a potentially sub-optimal (El-Mhamdi et al., 2018) region of the loss function.

Another set of critics10 regards some theoretical assumptions, that may be (or are)
difficult to satisfy in practice, e.g.: requiring i.i.d. gradients, or the Lipschitz continuity
of the loss. In particular, two assumptions (Point 7. and Point 9. of Section 4.2.2)
are not inherited from the literature. Point 7. is even stronger than mere Lipschitz
continuity. Point 9. brings a subtle requirement, strictly stronger than the standard
definition of asynchrony (Cachin et al., 2011), but also strictly more lenient than partial
synchrony. One particularly demanding assumption in practice is the upper-bound
on the variance-norm ratio (Point 8). This assumption is instrumental to converge
despite Byzantine workers, yet often unsatisfied in practice (El-Mhamdi et al., 2020),
enabling successful attacks (Baruch et al., 2019; Xie et al., 2019a). In the next chapter,
we propose an inexpensive, easy-to-implement mitigation to this ubiquitous problem.

9This is theoretically possible, if ηt remains small enough or the loss has a very low Lipschitz constant.
10Please note that some of the listed critics here have been addressed in (El-Mhamdi et al., 2020a).

60



5 Distributed Momentum

Byzantine resilient Stochastic Gradient Descent (SGD) aims at shielding model training
from Byzantine faults, be they ill-labeled training datapoints, exploited software/hard-
ware vulnerabilities, or malicious worker nodes in a distributed setting. Two recent
attacks have been challenging state-of-the-art statistically-robust defenses though,
often successfully precluding the model from even fitting the training set.

The main identified weakness in this family of GARs is their requirement for a suf-
ficiently low variance-norm ratio. Intuitively, the variance-norm ratio measure how
informative about the real gradient∇Q(θt) the non-Byzantine stochastic gradient is.
And if the stochastic gradients are too noisy, statistically-robust GARs are not able to
correctly infer the half-space in which the real gradient is, opening the door for attacks.

In this chapter, we propose a practical method which, despite increasing the variance,
reduces the variance-norm ratio, mitigating the identified weakness. We assess the
effectiveness of our method over 736 different training configurations, comprising the
2 state-of-the-art attacks and 6 defenses. For confidence and reproducibility purposes,
each configuration is run 5 times with specified seeds (1 to 5), totalling 3680 runs.

The work presented in this chapter follows the distributed setting presented in Section
2.1.2, simply tweaking the presented training algorithms (Section 5.3.1). The attack
model is also the one presented in Section 2.2.

5.1 Motivation

In Byzantine SGD, three families of defense techniques can be distinguished.

The first employs redundancy schemes (Chen et al., 2018), inspired by coding theory.
This approach has strong resilience guarantees, but its requirements to share data
and synchronize between non-Byzantine workers which datapoints are sampled make

61



Chapter 5. Distributed Momentum

this approach unsuitable for several classes of applications, e.g. when data cannot be
shared for privacy, scalability or legal reasons.

The second family, said suspicion-based, relies on estimating at the server how much
each gradient decreases the loss (Xie et al., 2019b; Xie, 2019). There is a trade-off
between aggregation time and precision of the scoring (using larger batch-size).

The third family uses statistically-robust aggregation schemes, and is the focus of this
paper. The underlying idea is simple. At each training step, the server aggregates
the stochastic gradients computed by the workers into one gradient, using a function
called a Byzantine resilient GAR (Section 2.2). These statistically-robust GARs are
designed to produce at each step a gradient that is expected to decrease the loss.

Intuitively, one can think of this third family as different formulations of the multi-
variate median. In particular, if the non-Byzantine gradients were all equal at each
step, any different (adversarial) gradient would be rejected by each of these medians,
and no attack would succeed. But due to their stochastic nature, the non-Byzantine
gradients are different: their variance is strictly positive. Formal guarantees on any
given statistically-robust GAR typically require that the variance-norm ratio, the ratio
between the variance of the non-Byzantine gradients and the norm of the expected
non-Byzantine gradient, remains below a certain constant (constant which depends
on the GAR itself and fixed hyperparameters). Intuitively, this notion of variance-norm
ratio can be comprehended quite analogously to the inverse of the signal-to-noise ratio
(i.e. the “noise-to-signal” ratio) in signal processing.

However, Baruch et al. (2019) noted that an attack could send gradients that are close
to non-Byzantine outlier gradients, building an apparent majority of gradients that
could be sufficiently far from the real gradient to increase the loss. This can happen
against most statistically-robust GARs, as the variance-norm ratio is often too large in
practice. Two recent attacks (Baruch et al., 2019; Xie et al., 2019a) were able to exploit
this fact to substantially hamper the training process (which our experiments confirm).

The work presented in this chapter aims at (substantially) improving the resilience of
statistically-robust GARs “also in practice”, by reducing the variance-norm ratio of the
gradients received by the server. We do that by taking advantage of an old technique
normally used for acceleration: momentum. This technique is regularly applied at
the server, but instead we propose to confer it upon each distributed worker, effec-
tively making the Byzantine resilient GAR aggregate accumulated gradients. Crucially,
there is no computational complexity attached to our reformulation: it only reorders
operations in existing (distributed) algorithms.

62



5.2 Studied Algorithms

5.2 Studied Algorithms

5.2.1 Byzantine resilient GARs

We briefly present below the 6 studied Gradient Aggregation Rules (GARs). These GARs
all are (α, f)-Byzantine resilient (Definition 1). Within its operating assumptions, a
Byzantine resilient GAR guarantees convergence even in an adversarial setting.

We reuse the notations from Section 1.2.2, Table 1.1. Since there is only one trusted
parameter server (nps = 1 and fps = 0), for concision in this chapter, let n , nw be the
number of gradients the parameter server received from the n workers, and let f , fw
be the maximum number of Byzantine gradients the GAR must tolerate.

Definition 2 (Variance-norm ratio).

LetX a random variable following some distributionX , for which both the first
moment and the second centered moment exist.

The variance-norm ratio is then defined as:
√

E[‖X−EX‖2]
‖EX‖ .

The variance-norm ratios respectively required by the 6 studied GARs are laid below.
We will note E ‖Gt − EGt‖

2 the variance of the honest gradient (at step t), and note
‖EGt‖ the norm of the expected, honest gradient (at step t).

Krum. (Blanchard et al., 2017)

Each received gradient is assigned a score. The score of gradient x is the sum of the
squared `2-distances between x and the n−f−2 closest gradients to x. The aggregated
gradient is then the arithmetic mean of the n− f − 2 gradients with the smallest scores.
This variant is called Multi-Krum in the original paper.

To be (α, f)-Byzantine resilient, Krum requires the variance of the honest gradient
E ‖Gt − EGt‖

2 to be bounded below the norm of the honest gradient ‖EGt‖ as follows:

2 ·
(
n−f+ f (n−f−2)+f2 (n−f−1)

n−2f−2

)
· E ‖Gt − EGt‖

2 < ‖EGt‖
2 (5.1)

Median. (Yin et al., 2018)

The coordinate-wise median of the n received gradients. Median is proven (α, f)-
Byzantine resilience with the following condition on the variance-norm ratio:

(n− f) · E ‖Gt − EGt‖
2 < ‖EGt‖

2 (5.2)

63



Chapter 5. Distributed Momentum

Trimmed Mean. (Yin et al., 2018)

The coordinate-wise trimmed-mean of the n received gradients. The trimmed-mean
of n values is the arithmetic mean, after the f smallest and the f largest values have
been discarded, of the remaining values. From Theorem 1 of Xie et al. (2018c), we can
derive the following condition on the variance-norm ratio:

2 (f+1) (n−f)
(n−2f)2 E ‖Gt − EGt‖

2 < ‖EGt‖
2 (5.3)

Phocas. (Xie et al., 2018c)

The coordinate-wise arithmetic mean of the n−f closest values to the coordinate-wise
trimmed-mean. From Theorem 2 of Xie et al. (2018c):(

4 + 12 (f+1) (n−f)
(n−2f)2

)
E ‖Gt − EGt‖

2 < ‖EGt‖
2 (5.4)

MeaMed. (Xie et al., 2018a)

Same as Phocas, but with median replacing trimmed-mean. Theorem 5 of Xie et al.
(2018a) provides the following condition:

10 (n− f) · E ‖Gt − EGt‖
2 < ‖EGt‖

2 (5.5)

Bulyan. (El-Mhamdi et al., 2018)

This is a composite GAR, iterating on another GAR in a first selection phase. In the
remaining of this paper, Bulyan will use Krum, so the first phase selects n − 2 f − 2
gradients, at each iteration removing the highest scoring gradient. The aggregated
gradient is the coordinate-wise arithmetic mean of the n− 4 f − 2 closest values to the
(coordinate-wise) median of the selected gradients.

The theoretical requirement on the variance-norm ratio are the same as the ones of
the underlying GAR. That is, in this paper, they are the same as Krum (Equation (5.1)).

5.2.2 State-of-the-art Attacks

The two state-of-the-art attacks follow the same core principle. Interestingly, the attack
presented in Section 3.2.2 also follows the same construction, except that the attack
vector (see below) is a constant, unadapted to the non-Byzantine gradient submissions.

64



5.3 Momentum at the Workers

Let ε ∈ R≥0 be a non-negative factor, and at ∈ Rd an attack vector which value depends
on the actual attack used (see below for possible values of at). At each step t, each of
the f Byzantine workers submits the same Byzantine gradient: gt + ε at, where gt is an
approximation of the real gradient∇Q(θt) at step t. The value of ε is fixed (see below).

A Little is Enough. (Baruch et al., 2019)

In this attack, each Byzantine worker submits gt + ε at, with at , −σt the opposite of
the coordinate-wise standard deviation of the honest gradient distribution Gt. Our
experiments use ε = 1.5, as proposed by the original paper.

Fall of Empires. (Xie et al., 2019a)

Each Byzantine worker submits (1− ε) gt, i.e., at , −gt. The original paper tested
ε ∈ {−10,−1, 0, 0.1, 0.2, 0.5, 1, 10, 100}, our experiments use1 ε = 1.1, corresponding in
the notation of the original paper to ε , − (1− ε) = − (1− 1.1) = 0.1.

5.3 Momentum at the Workers

Intuitively, the Byzantine resilient GARs (Section 5.2.1) rely on the honest gradients
being sufficiently clumped: the variance-norm ratio of the honest gradient should
be sufficiently small. Sufficiently small is formalized for each of the studied GARs, in
Equation (5.1) to Equation (5.5). For the purpose of filtering attacks, the practitioner
wants the variance-norm ratio (of the honest gradients) to be as small as possible. In
the edge case of a null variance-norm ratio, the honest gradients are almost-surely
equal. Any GARs approximating a multidimensional median(oid), e.g. all the GARs
presented in Section 5.2.1, would then always select the (identical) honest gradient,
no matter the attack. But when the honest gradients are sufficiently “spread”, namely
when their variance-norm ratio is large enough, the attack vectors can intuitively “form
an apparent majority” by relying on a few outlier (but honest) gradients (Baruch et al.,
2019), and potentially substantially influence the aggregated gradient.

In this section, we present a simple technique that aims at reducing the variance-
norm ratio: either increasing the norm without increasing (much) the variance, or
decreasing the variance without decreasing (much) the norm of the honest gradients.
The idea is to use momentum, which makes the parameters θt travel down the loss
function with inertia, accumulating both the real gradient∇Q(θt) and the error (i.e.
here, the stochastic noise) gt −∇Q(θt). Intuitively, the accumulation of errors grows
at a moderate rate, as past errors can be partially compensated by future ones. But
when consecutive∇Q(θt) have sufficiently low solid angles, past real gradients do not

1This factor made this attack consistently successful in the original paper.

65



Chapter 5. Distributed Momentum

compensate future real gradients: the norm of Gt can grow “faster” (for each new step)
than its variance, mitigating the potential impact of an attack.

5.3.1 Formulation

From the formulation of momentum SGD in a distributed setting (Equation (2.3)):

Gt ,
t∑

u=0
µt−uF

(
g(1)
u , . . . , g(n)

u

)
we instead confer the momentum computation on the workers:

Gt , F

(
t∑

u=0
µt−ug(1)

u︸ ︷︷ ︸
G

(1)
t

, . . . ,
t∑

u=0
µt−ug(n)

u︸ ︷︷ ︸
G

(n)
t

)
(5.6)

Notations.

In the remaining of this paper, we call the original formulation:

(momentum) at the server,

and the proposed, revised formulation:

(momentum) at the worker(s).

The variance-norm ratio may2 exist and can be estimated for any random variable.
Regarding Byzantine resilience, only the variance-norm ratio of the gradients that
are aggregated by the GAR is relevant. So in the experiments, when momentum at
the server is employed, the variance-norm ratio of the honest gradient G(i)

t , g
(i)
t , for

any i the index of an honest worker. When momentum at the workers is used instead,
G

(i)
t 6= g

(i)
t (c.f. Equation (5.6)), and the variance-norm ratio will likely be different from

the variance-norm ratio of g(i)
t . Our goal is now to discover whether/when momentum

at the workers induces a lower variance-norm ratio than with momentum at the servers.

5.3.2 Formal analysis

Without loss of generality, the indexes of the honest workers will be in [1 .. n− f ].
We compare the variance-norm ratio of the honest, sampled gradients g(1)

t . . . g
(n−f)
t

against the variance-norm ratio of the honest, submitted gradientsG(1)
t . . . G

(n−f)
t when

classical momentum is computed at the workers. We want the variance-norm ratio of
the submitted gradients to be lower than the one of the sampled gradients.

2As long as the first two (centered) moments of a random variable exist, the variance-norm ratio exists.

66



5.3 Momentum at the Workers

We denote by EGt , ∇Q(θt) the “real” gradient at step t. Please note that the honest
gradients are unbiased, and thus it holds that: ∀i ∈ [1 .. n− f ] , E g(i)

t = EGt.

Let λt , ‖EGt‖ > 0 be the real gradient’s norm at step t.

Let σt ,
√
E ‖Gt − EGt‖

2 be the standard deviation of the real gradient at step t. The
variance-norm ratio of the non-Byzantine subset of the sampled gradients at step t is:

r
(s)
t ,

σt
2

λt
2

We will now compute the variance-norm ratio of the non-Byzantine subset of the
submitted gradients. Let G(i)

t , with G(i)
−1 , 0, be the gradient sent by any honest worker

i at step t, i.e.:

G
(i)
t ,

t∑
u=0

µt−ug(i)
u

The numerator of the variance-norm ratio is, for any two honest workers i 6= j:

E
∥∥∥G(i)

t −G
(j)
t

∥∥∥2

= E
∥∥∥g(i)
t + µG

(i)
t−1 − g

(j)
t − µG

(j)
t−1

∥∥∥2

= E
∥∥∥g(i)
t − g

(j)
t

∥∥∥2
+ µ2 E

∥∥∥G(i)
t−1 −G

(j)
t−1

∥∥∥2
+ 2µ

E g(i)
t − E g(j)

t︸ ︷︷ ︸
=EGt−EGt

 · (EG(i)
t−1 − EG(j)

t−1

)
︸ ︷︷ ︸

= 0

= E
∥∥∥g(i)
t − g

(j)
t

∥∥∥2
+ µ2 E

∥∥∥G(i)
t−1 −G

(j)
t−1

∥∥∥2

= 2σt2 + µ2
(
2σt−1

2 + µ2
(
2σt−2

2 + µ2 (...)
))

= 2
t∑

u=0
µ2(t−u)σu

2 (5.7)

= 2 E
∥∥∥G(i)

t − EG(i)
t

∥∥∥2

And the denominator of the variance-norm ratio is:∥∥∥EG(i)
t

∥∥∥2
=
∥∥∥E g(i)

t + µ EG(i)
t−1

∥∥∥2

=
∥∥∥E g(i)

t

∥∥∥2
+ 2µ E g(i)

t · EG
(i)
t−1 + µ2

∥∥∥EG(i)
t−1

∥∥∥2

= λt
2 + 2µ E g(i)

t ·
(
E g(i)

t−1 + µ
(
E g(i)

t−2 + µ (...)
))

+ µ2
(
λt−1

2 + 2µ E g(i)
t−1 ·

(
E g(i)

t−2 + µ (...)
)

+µ2 E
∥∥∥G(i)

t−2

∥∥∥2
)

67



Chapter 5. Distributed Momentum

=
t∑

u=0
µ2(t−u)

λu2 + 2
u−1∑
v=0

µu−v E g(i)
u · E g(i)

v︸ ︷︷ ︸
=EGu·EGv



Thus, assuming honest gradients EG(i)
t do not become null:

r
(w)
t ,

Ωt
2

Λt2
=

∑t
u=0 µ

2(t−u)σu
2∑t

u=0 µ
2(t−u)

(
λu

2 + su
)

where the expected “straightness” of the gradient trajectory at step u is defined by:

su , 2
u−1∑
v=0

µu−v EGu · EGv

su quantifies what is intuitively the curvature of the gradient trajectory. Straight trajec-
tories can make su grow up to (1− µ)−1>1 times the expected squared-norm of the
honest gradients, while highly “curved” trajectories (e.g. close to a local minimum) can
make su negative.

This observation stresses that this formulation of momentum can sometimes be harm-
ful for the purpose of Byzantine resilience. We measured su for every step u > 0 in
our experiments, and we always observed that this quantity is positive and increases
for a short window of (dozen) steps (depending on ηt), and then oscillates between
positive and negative values. While the empirical impact is concrete, in the form of a
decreased or even canceled loss in accuracy, we also believe there is room for further
improvements, as discussed in Section 8.3.

The purpose of using momentum at the workers is to reduce the variance-norm ratio
r

(w)
t , compared to r

(s)
t . Since g(i)

0 = G
(i)
0 , we verify that r(u)

0 = r
(w)
0 . Then ∀t > 0,

assuming Ωt−1 > 0 and σt > 0, we have:

r
(w)
t ≤ r(s)

t ⇔
σt

2 + µ2 Ωt−1
2

λt
2 + st + µ2 Λt−1

2 ≤
σt

2

λt
2

⇔ µ2 Ωt−1
2 λt

2 ≤
(
st + µ2 Λt−1

2
)
σt

2

⇔ st ≥ µ2 Λt−1
2

r(w)
t−1

r
(s)
t

− 1

 (5.8)

The condition for decreasing r(w)
t can be obtained similarly, assuming Ωt−1 > 0 and

σt > 0:

r
(w)
t ≤ r(w)

t−1 ⇔ st ≥ λt2
 r

(s)
t

r
(w)
t−1
− 1


68



5.4 Experiments

To study the impact of a lower learning rate ηt on st, we will assume that the real
gradient∇Q is l-Lipschitz. Namely:

∀ (t, u) ∈ N2, u < t, ‖EGt − EGu‖
2 ≤ l2 ‖θt − θu‖

2 ≤ l2
∥∥∥∥∥
t−1∑
v=u

ηv Gv

∥∥∥∥∥
2

Then, ∀ (t, u) ∈ N2, u < t, we can rewrite:

‖EGt − EGu‖
2 = ‖EGt‖2︸ ︷︷ ︸

λt
2

+ ‖EGu‖2︸ ︷︷ ︸
λu

2

−2 EGt · EGu

And finally, we can lower-bound st as:

t−1∑
u=0

µt−u ‖EGt − EGu‖
2

=
t−1∑
u=0

µt−u
(
λt

2 + λu
2
)
− 2

t−1∑
u=0

µt−u EGt · EGu︸ ︷︷ ︸
st

≤
t−1∑
u=0

µt−u l2
∥∥∥∥∥
t−1∑
v=u

ηv Gv

∥∥∥∥∥
2

⇔ st ≥
t−1∑
u=0

µt−u

λt2 + λu
2 − l2

∥∥∥∥∥
t−1∑
v=u

ηv Gv

∥∥∥∥∥
2 (5.9)

≥ 1− µt
1− µ λt

2 +
t−1∑
u=0

µt−u

λu2 − l2
∥∥∥∥∥
t−1∑
v=u

ηv Gv

∥∥∥∥∥
2

When the real gradient∇Q is (locally) Lipschitz continuous, reducing the learning rate
ηt can suffice to ensure st satisfies the conditions laid above for decreasing the variance-
norm ratio r(w)

t (Figure 5.4 indeed shows a pronounced “dip” when the learning rate
is decreased); the purpose of momentum at the workers. Importantly this last lower
bound, Equation (5.9), sets how the practitioner should choose two hyperparameters,
µ and ηt, for the purpose of Byzantine resilience. Basically, as long as it does not harm
the training without adversary, µ should be set as high and ηt as low as possible.

5.4 Experiments

Our experiments cover 2 models, 4 datasets, the 6 studied defenses under each of the
2 state-of-the-art attacks3, different fractions of Byzantine workers (either half or a
quarter), using Nestorov instead of classical momentum, plus unattacked settings

3To the best of our knowledge, putting aside simple attacks (e.g. sending attack gradients sampled
from a Gaussian distribution) tested in each defense papers, no other attack has been published.

69



Chapter 5. Distributed Momentum

where each worker is honest and the GAR is mere averaging. Since our theoretical
results (Section 5.3.2) suggest that smaller learning rates may reduce the variance-norm
ratio, two learning rate schedules (an optimal and a smaller one) are also tested. For
reproducibility and confidence in the empirical benefits of our reformulation, we test
every combination of the hyperparameters mentioned above, and each combination
is repeated 5 times with specified seeds (1 to 5, totally 3680 runs).

The tools we developed to implement our reformulation captures∼20 metrics, includ-
ing the evolution of the average loss, top-1 cross-accuracy and variance-norm ratio of
the submitted gradients. In this section, we specifically report on these 3 metrics.

5.4.1 Experimental Setup

We use a compact notation to define the models: L(#outputs) for a fully-connected
linear layer, R for ReLU activation, S for log-softmax, C(#channels) for a fully-connected
2D-convolutional layer (kernel size 3, padding 1, stride 1), M for 2D-maxpool (kernel
size 2), B for batch-normalization, and D for dropout (with fixed probability 0.25).

We use the models from respectively Baruch et al. (2019) and Xie et al. (2019a):

Fully connected Convolutional

Model (784)-L(100)-R-L(10)-R-S (3, 32×32)-C(64)-R-B-C(64)-R-B-M-D-
-C(128)-R-B-C(128)-R-B-M-D-
-L(128)-R-D-L(10)-S

Datasets MNIST, Fashion MNIST CIFAR-10, CIFAR-100
(83 samples/gradient) (50 samples/gradient)

#workers n = 51 f ∈ {24, 12} n = 25 f ∈ {11, 5}

For model training, we use the negative log likelihood loss and respectively 10−4 and
10−2 `2-regularization for the fully connected and convolutional models. We also
clip gradients, ensuring their norms remain respectively below 2 and 5 for the fully
connected and convolutional models. For performance evaluation, we measure both
the top-1 cross-accuracy over the whole test set, and the average loss at each step.

Datasets are pre-processed before training. MNIST receives the same pre-processing
as in Baruch et al. (2019): an input image normalization with mean 0.1307 and stan-
dard deviation 0.3081. Fashion MNIST, CIFAR-10 and CIFAR-100 are all expanded with
horizontally flipped images. For both CIFAR-10 and CIFAR-100, a per-channel nor-
malization with means 0.4914, 0.4822, 0.4465 and standard deviations 0.2023, 0.1994,
0.2010 (Liu, 2019) has been applied.

We denote by f the number of Byzantine workers either to the maximum for which

70



5.4 Experiments

Krum can be used (roughly an half: f =
⌊
n−3

2

⌋
), or the maximum for Bulyan (roughly a

quarter, f =
⌊
n−3

4

⌋
). The attack factors εt (Section 5.2.2) are set to constants proposed

in the literature, namely εt = 1.5 for Baruch et al. (2019) and εt = 1.1 for Xie et al.
(2019a). We also experiment two different learning rates. The first and largest is selected
so as to maximize the performance (highest final cross-accuracy and accuracy gain
per step) of the model trained without Byzantine workers. The second and smallest
is chosen so as to minimize the performance loss under attack, without substantially
impacting the final accuracy when trained without Byzantine workers. The fully
connected and convolutional models are trained respectively with µ = 0.9 and µ = 0.99.
These values were obtained by trial and error, to maximize the accuracy gain per step
when there is no attack.

Reproducibility. Particular care has been taken to make our results reproducible. Each
of the 5 runs per experiment are respectively seeded with seed 1 to 5. For instance,
this implies that two experiments with same seed and same model also starts with the
same parameters θ0. To further reduce the sources of non-determinism, the CuDNN
backend is configured in deterministic mode (our experiments ran on two GeForce
GTX 1080 Ti) with benchmark mode turned off. We also used log-softmax + nll loss,
which is equal to softmax + cross-entropy loss, but with improved numerical stability
on PyTorch. We provide our code along with a script reproducing all of our results,
both the experiments and the graphs, in one command. Details, including software
and hardware dependencies, are available in Section A.1.1.

5.4.2 Experimental Results

[a] [b] [c] [d]

Figure 5.1: Highest measured top-1 cross-accuracy while training under attack. [a, b]:
the convolutional model for CIFAR-10 under the attack from Baruch et al. (2019), and
[c, d]: the fully connected model for Fashion-MNIST under the attack from Xie et al.
(2019a). Roughly half the workers implements the attack in [a, c], and a quarter does
in [b, d]. The dotted blue line is the median of the maximum top-1 cross-accuracy of
the 5 runs without attack, and the boxes aggregate the maximum top-1 cross-accuracy
obtained under attack with each 5 runs of the 6 studied defenses.

This section reports on the evolution of the average loss, top-1 cross-accuracy and

71



Chapter 5. Distributed Momentum

Momentum at the server Momentum at the workers

C
la

ss
ic

al
m

o
m

en
tu

m
N

es
te

ro
v

m
o

m
en

tu
m

Figure 5.2: Top-1 cross-accuracy and average loss (over the n − f honest workers).
CIFAR-10 and the convolutional model (Section 5.4.1), with n = 25, f = 5 and ηt = 0.01
if t < 1500 else ηt = 0.001, under attack from (Baruch et al., 2019). Each line and
colored surface correspond to respectively the average and standard deviation of the
top-1 cross-accuracy over 5 seeded runs. Only two parameters change between these
four graphs: where momentum is computed (at the server or at the workers), and which
flavor of momentum is employed (classical or Nesterov).

Momentum at the server Momentum at the workers

N
es

te
ro

v
m

o
m

en
tu

m
N

es
te

ro
v

m
o

m
en

tu
m

Figure 5.3: Top-1 cross-accuracy and average loss (over the n − f honest workers).
CIFAR-100 and the convolutional model, with n = 25, f = 5 and ηt = 0.01 if t < 1500
else ηt = 0.001, under attack from (Xie et al., 2019a). Each line and colored surface
(barely visible due to a low variance across runs) correspond to respectively the average
and standard deviation of the top-1 cross-accuracy or average loss over 5 seeded runs.

72



5.4 Experiments

Trimmed Mean Bulyan

Figure 5.4: Same settings as in Figure 5.3, measuring at each step the empirical
variance-norm ratios obtained by training with Trimmed Mean and Bulyan and mo-
mentum at the workers. “sample” corresponds to the variance-norm ratio of the
sampled gradients, and “submit” to the variance-norm ratio of the submitted gradients.

variance-norm ratio of the submitted gradients. Section A.1.3 in the appendix reports
on the entirety of our experimental results, and Section A.1.2 additionally experiments
with a much larger model. One first remark is that our new formulation either obtains
similar, or (substantially) increased maximum top-1 cross-accuracy compared to the
standard formulation in the exact same settings (Figure 5.1 highlights the impact of
our method). Namely, in only 4 runs (0.23% of all the runs) did our formulation lead to
a decreased maximum top-1 cross-accuracy. Also, these decreases were only observed
with the fully connected model, using Krum against Xie et al. (2019a), and for each of
these 4 runs using any of the 4 other seeds made the decrease disappear.

In all of our experiments, we observe a strong correlation between higher top-1 cross-
accuracies and lower average losses; e.g. see Figure 5.3. The two state-of-the-art attacks
decreased the accuracy by at least 20%, compared to the unattacked case (see “No
attack” in Figure 5.2), in 25.80% and 70.80% of the runs with respectively the fully
connected and convolutional models.

Focusing on the convolutional model, when roughly an half of the workers are Byzan-
tine, both attacks actually succeed in decreasing the accuracy by at least 20% in 100%
of our runs. Our technique manages to recover at least 10% and 20% in respectively
79.75% and 49.25% of these runs. When roughly a quarter of the workers are Byzantine,
the attacks decrease the accuracy by at least 20% in 46.46% of our runs. Our technique
then manages to recover at least 20% in 95.07% of these runs. Figure 5.2 shows a
fraction of these runs. El-Mhamdi et al. (2020b) reports on all of our experiments.

Technically, our reformulation aims at reducing the variance-norm ratio of the aggre-
gated gradients. Intuitively, this ratio is expected to increase as the loss decreases;
more correctly as the norm of the gradient decreases. For instance, Figure 5.4 dis-
plays the variance-norm ratios of Trimmed Mean and Bulyan using the same settings
as in Figure 5.3. At least before the final cross-accuracy is reached, our technique
consistently decreases the variance-norm ratio of the aggregated gradients. Also, we

73



Chapter 5. Distributed Momentum

consistently observed in the experiments that reducing the learning rate indeed re-
duces the variance-norm ratio (e.g. Figure 5.4, t ≥ 1500).

5.5 Concluding Remarks

In this chapter, we have studied probably one of the most difficult assumptions to
satisfy in practice, to safely use most statistically-robust, (α, f)-Byzantine resilient
Gradient Aggregation Rules. The variance-norm ratio assumption is instrumental
for this family of GARs, as it basically quantifies how informative the non-Byzantine
gradients are, informative about the direction and length of the real gradient∇Q(θt).

The variance-norm ratio assumption is unfortunately rarely satisfied in practice. Ra-
tios observed with academic models and datasets (e.g. Figure 5.4) are theoretically
satisfying only to a few GARs, like MDA, and with f small compared to n.

The lack of validity of this theoretical requirement also has a practical impact. Both of
the studied attacks rely on the frequent sampling of non-Byzantine, outlier gradients to
pass harmful gradients through statistically-robust Byzantine resilient defenses Baruch
et al. (2019), some specifically designed to increase the loss Xie et al. (2019a). In theory,
the variance-norm ratio can be lowered to arbitrarily small values by increasing the
batch-size, but this comes at higher, possibly unsustainable gradient estimation costs.

We propose a fairly simple tweak, that can substantially improve the effectiveness
of existing statistically-robust defenses in practice. This tweak aims at reducing the
variance-norm ratio, relying on the empirical observation that the real gradient does
not change much between steps. To quantify this “rate of change”, the relevant metric
is the so-called curvature st of the parameter trajectory. If st is small enough, our
tweak will reduce the variance-norm ratio compared to the variance-norm ratio of the
sampled gradients; but if st becomes too large, our changes may become harmful.

In our 3680 runs4, less than 1/400 of them saw their top-1 cross-accuracies decrease
due to the tweak we propose. Importantly, a substantial fraction of them saw their
cross-accuracies leap, sometimes completely canceling the effects of the attack. And
unlike increasing the batch-size, our tweak carries no computational complexity: it
merely reorders existing computations associated with momentum.

This chapter may also highlight the relevance of the variance-norm ratio as a practical,
predictive metric for the resilience of statistically-robust defenses. Interestingly, Karim-
ireddy et al. (2020) defend the idea that “any optimization procedure which does not
use history cannot converge”, and as they note, “momentum [as done in this chapter]
incorporates history”. Karimireddy et al. (2020) also provide a proof of convergence.

4Without even counting the additional runs in Section A.1.2, which responded very well to our changes.

74



Part IIIOptimized Implementations

75





6 Robust Aggregation in Practice

We present AggregaThor , the first framework to implement and assess Byzantine-
resilient GAR in actual, datacenter-scale distributed settings. Byzantine resilience is
certainly not free. The purpose of this chapter is to explore to what extend existing
defense can affect the training performances, especially when there is no attack.

AggregaThor is built around TensorFlow1, one of the major machine learning frame-
works available today. Unlike previous implementations of (α, f)-Byzantine resilient
GARs (e.g. in Section 3), we strive to write optimized, parallelized and specialized imple-
mentations. Our native implementations systematically beat implementations of the
same GARs with TensorFlow and PyTorch2. We describe our design for AggregaThor ,
including a modification toward making TensorFlow viable for Byzantine deployments,
and compare its performances against “vanilla” usages of TensorFlow.

The theoretical framework is the same as the one presented in Section 2.2.

6.1 Design of AggregaThor

We can identify three different, high-level components that must be adapted to work
together in AggregaThor . First, the “vanilla” training procedure of TensorFlow, with
its way of defining model, loading datasets, and running SGD. Second, the gradient
aggregation rules, their implementations in native, specialized code, the support for
automated, incremental compilation, and a convenient, user-friendly interface to use
these GARs inside TensorFlow. Third, the communication layer, the distribution of a
workload across a cluster, and other specificities of TensorFlow: blocking communica-
tions, the remote graph execution feature and utter absence of access control.

1This system chapter has been designed against TensorFlow 1.x (Abadi et al., 2016). Some remarks
may not be up-to-date with TensorFlow 2.x, which underwent significant design changes in several areas.

2One of the other major machine learning frameworks freely available today; see Chapter 7.

77



Chapter 6. Robust Aggregation in Practice

6.1.1 Architecture and Byzantine resilience

AggregaThor is a framework that handles the distribution of the training of a Tensor-
Flow neural network graph over a cluster of machines. The training procedure includes
the use of an arbitrary GAR, which require accesses to the flat gradients computed by
each worker. This introduces non-negligible changes over “vanilla” training pipelines.

Cluster definition

The first step to begin a distributed training session is to define the cluster, i.e.: which
nodes will partake in the distributed training session, and under which roles. There are
three possible roles3: parameter server (only one node can assume this role), worker,
and evaluator. Evaluator nodes do not appear in the theoretical model (Section 2.1.2):
their responsibility is simply to carry out periodic cross-accuracy measurements.

The cluster specification is a JSON string representing a dictionary, mapping each of
the three job names to a list of “hostname:port” strings. For instance:
{

"ps": ["ps.example.com:7000"],
"workers": ["worker0.local:1234", "1.2.3.4:5555", "localhost:5555"],
"eval": ["[2001:db8::8a2e:370:7334]:7000"]

}
The semantic is that the resources accessible from the designed hosts (e.g. GPUs) in
each job (e.g. workers) will be reserved and used by this job (e.g. spawn one (virtual)
worker per available GPU in nodes registered as workers).

A single node can assume several roles. In particular in our experiments, the parameter
server node is also the (single) evaluator node. This is achieved by (1) not defining the
eval job in the cluster specification, and (2) later instructing AggregaThor to use the
resources on the ps job to deploy the part of the graph carrying out the evaluation of
the model. As a side note, AggregaThor supports one and only one replica4 per job.

Specifying the cluster may be tedious and error-prone. AggregaThor is able to auto-
matically infer a cluster specification when running on a supported PaaS provider.
For instance, we use Grid5000 in our evaluation of AggregaThor (c.f. Section 6.2), and
Grid5000 provides a mean to query which nodes belong to the same “reservation” as
the node doing the query. Upon request, AggregaThor can automatically parse the
information provided by Grid5000 to build the corresponding cluster specification.

3Each of these roles appear in Figure 6.1, under /job:ps, /job:workers and /job:eval. The notion of
“job”, which is a way to state the intended use for each resource of a cluster, is inherited from TensorFlow.

4This is another notion proper to TensorFlow, notion we do not use and thus ignore in this chapter.

78



6.1 Design of AggregaThor

Cluster analysis

Now that all the nodes and their respective roles are specified, the next step is to
connect to each of these node, and instantiate a TensorFlow tf.train.Server on each
of them. A Python script handles this deployment from a cluster specification.

The deployment Python script requires that (1) each node in the cluster is accessible
from the local node via SSH, and (2) both Python 3 and TensorFlow are available
on each node. This deployment script has no other requirement, and in particular
it does not require access to persistent storage onto each node (e.g. to copy itself
onto each node). The deployment script works by maintaining an interactive SSH
tunnel with each node in the cluster, running python3, and uploading the code that
instantiates the tf.train.Server directly within the remote Python interpreter. By
maintaining interactive SSH tunnels, this procedures offers two other advantages: (1)
remote errors are reported centrally (in the standard output of the deployment script),
and (2) centralized termination of the whole cluster (when the deployment script
terminates, this closes the tunnels, terminating all the tf.train.Server instances).

The tf.train.Server instances enable TensorFlow to connect to and control each
node in the cluster. The remaining step before deploying and running the whole
training graph is then to discover which resources are available, and plan their usage.

At this point, thanks to the cluster specification, AggregaThor already knows which
nodes will host each part of the whole training graph (represented in Figure 6.1). The
only remaining question is which processing units (CPU, first GPU, second GPU, etc)
on each node will actually carry the operations. AggregaThor lists every available
processing unit per job. The allocation of the available processing units to each worker
follows a few rules. First, AggregaThor tries to maximize spreading. For instance if
there are 5 nodes in the cluster, each carrying 2 GPUs, and AggregaThor is requested
to spawn n = 4 workers, then 1 GPU on 4 different nodes will be selected instead of 2
GPUs on 2 different nodes. The second (optional) rule is that GPUs are preferred over
CPUs (AggregaThor also supports TPUs, which are then preferred over both GPUs and
CPUs). The third (optional) rule is that each GPU can be allocated to only one worker,
and if n is larger than the number of available GPUs in the workers job, the remaining
workers will use CPUs (allocated so to maximize spreading, satisfying the first rule).

Cluster deployment

Each operation constituting the whole training graph is then deployed onto the cluster
as illustrated in Figure 6.1, using the devices allocated in the cluster analysis phase.

In TensorFlow, Byzantine resilience cannot be achieved solely through the use of a
Byzantine-resilient GAR. Indeed, TensorFlow allows any node in the cluster to execute

79



Chapter 6. Robust Aggregation in Practice

/job:ps/task:0 /job:eval/task:0

/job:workers/task:0 /job:workers/task:m-1

Variable x

Variable y

Variable z
In

fer
en

ce

Lo
ss

Gr
ad

ien
t

worker 0

In
fer

en
ce

Lo
ss

Gr
ad

ien
t

worker 1

tes
t s

et
tra

in
 se

t

tra
in

 se
t

Gr
ad

ien
t

Lo
ss

In
fer

en
ce

worker n-1
Gr

ad
ien

t

Lo
ss

In
fer

en
ce

worker n-2

Inference

Accuracy

...

Aggregation
...

Apply grad.

Figure 6.1: High-level components and execution graph. Each gray rectangle represents
a group of several tf.Operation and tf.Tensor, and each plain arrow represents a
single tf.Tensor. For readability purpose, the tensors from the variables to each
“Inference” and “Gradient” groups of operations have not been represented.

arbitrary operations anywhere in the cluster. A single Byzantine worker could then
continually overwrite the shared parameters with arbitrary values. This is actually how
TensorFlow is supposed to work: each worker node defines his own parts of the graph,
wherever needed in the cluster, to pull/update the shared parameters at each step.

One can overcome this issue in two steps. The first step is to modify the behavior of
tf.train.Server, to only accept connections coming from a trusted authority. This
involves setting up a proper Public Key Intrastructure (PKI), where for instance the
single parameter server acts as the trusted authority. Once the connection between two
tf.train.Server is established, messages (i.e. graph definitions and tensors) coming
from the authority must at least be authenticated. Since these modifications involving
cryptography are fairly complex and do not impact the training performances (the
execution graph is created only once, and authenticated encryption is unlikely to
induce a noticeable throughput hit5), they have not been implemented in AggregaThor .
The second step is for each node to accept remote graph definitions only if they come
from the trusted authority (e.g. the trusted parameter server). This second step changes
the way we deploy graphs in AggregaThor compared to “vanilla” TensorFlow: the whole
graph, as summarized in Figure 6.1, is defined by one entity.

5For a basic benchmark of ChaCha20-Poly1305: https://www.wireguard.com/performance/#results

80

https://www.wireguard.com/performance/#results


6.1 Design of AggregaThor

There is one last subtlety during the deployment phase. Some graph operations can-
not be sent onto a remote tf.train.Server. This is for instance the case with the
tf.py_func operation, which calls a local Python closure when executed. This is also
the case for our native GAR implementations (Section 6.1.2), as they are implemented
in shared libraries that are not available in remote nodes. So when a custom GAR
is used (i.e. for any GAR except Average), the trusted authority deploying the graph
must always be the parameter server. This also changes the way we initially deploy
the cluster with the deployment script : when using a custom GAR, this script does
not deploy the tf.train.Server of the parameter server. The tf.train.Server of the
parameter server is instead started from within the AggregaThor process, bypassing
the need to transfer the GAR operations altogether.

6.1.2 Optimized GAR implementations

TensorFlow already offers many carefully-written tensor primitive operations. Natu-
rally thought, no single primitive carries out a Byzantine resilient aggregation: most
GARs are necessarily composed of many existing primitives. Such a composition might
not be as performance- or memory-efficient as a custom operation, as custom opera-
tions might exploit shortcuts (as our implementation of Bulyan does) or specificities
in the shape of the inputs (as our implementation of Median does, c.f. Section 7.1.2).

TensorFlow offers the ability to write custom operations6. Custom operations are
fundamentally identical to the primitive operations of TensorFlow: they use the same
facility to make themselves available to the Python runtime, and abide by the same
interface. The Byzantine resilient GAR custom operations will be written in C++ (for the
CPU implementations) and CUDA (for the Nvidia-compatible GPU implementations),
and will be compiled as dynamically-loadable shared libraries.

Incremental compilation.

For convenience to both the developer of these GARs and the practitioner using Aggre-
gaThor , AggregaThor automatically handles the incremental compilation of each GAR.
AggregaThor uses the preferred C++ compiler and linker of the platform7. The behavior
for incremental compilation very closely follows the one of GNU Make8: basically, an
object (e.g. *.o, *.so) is recompiled if and only if any of its dependencies (e.g. *.cpp,
*.hpp) have a modification time posterior to the modification time of the object.

AggregaThor tries to automatically detect whether the CUDA software development

6https://www.tensorflow.org/guide/create_op
7/usr/bin/c++. AggregaThor only supports GNU/Linux-like platforms, and requires that a compila-

tion toolchain is locally available if the GARs are not all already compiled.
8https://www.gnu.org/software/make/

81

https://www.tensorflow.org/guide/create_op
https://www.gnu.org/software/make/


Chapter 6. Robust Aggregation in Practice

toolkit and runtime are available, and whether a GAR exports GPU implementations.
If either the CUDA toolkit or runtime is unavailable, AggregaThor will only compile
and link the non-CUDA source code. This permits a graceful degradation in case the
target platform does not have (Nvidia-compatible) GPUs, enabling the use of the CPU
implementations only instead of merely failing the compilation process.

Automated loading and interfacing.

Whether or not incremental compilation was needed, to use the custom operations,
they must be loaded into TensorFlow. AggregaThor automatically loads into the Python
process every available (i.e. successfully compiled) GAR. Each custom operation GAR is
made available to Python code as a Python function, under the same name as declared
inside the custom operation interface. This allows for very convenient use of these
custom operations, almost as if they were native TensorFlow operations, e.g.: instead of
calling in Python tf.my_gar, one will call native.instantiate_op("my_gar", ...).

In the literature the GAR expect to take flat gradients: one single vector in Rd. In
TensorFlow (and other frameworks), the parameter vector and gradients are actually
split into several tensors. AggregaThor transparently merges the splits of each gradient
into one flat gradient before forwarding them to the GAR, and splits the aggregated
gradient back into pieces prior to updating each parameter vector.

Finally, AggregaThor does not only support TensorFlow custom operations. Besides
custom operations, two other kinds of libraries are recognized: (1) “Python” libraries
and (2) “dependency” libraries. These three supported kinds of libraries are built the
same way; they only differ in how they are loaded into AggregaThor . In a nutshell,
“Python” libraries are loaded with ctypes, allowing raw access to the exported symbols
in Python, and the “dependency” libraries are simply not automatically loaded.

Dependency support.

AggregaThor supports dependencies between the native implementations. This is for
instance useful when several GARs want to share common pieces of code. Arbitrary
acyclic graphs of dependency can exist between native code. Compilation cycles are
monitored, and an error will be raised if a cycle is detected during compilation.

Both the compilation and loading behaviors are changed by dependencies. If a library
B depends on library A, library A will be built before library B. If library A fails to
compile, the compilation of library B will be skipped. Library A will also be loaded
before library B, and if the loading fails library B will not be loaded either. This is also
where the “dependency” kind of library is useful: it is loaded only if at least one other
library depends on it, and by construction compiled and loaded at most once.

82



6.1 Design of AggregaThor

6.1.3 Modularity by Design

From the standpoint of the practitioner, AggregaThor is mostly configured through
the command line. Command line arguments configure which model to use, which
dataset to train against, how many workers to launch, on which cluster, using which
(Byzantine resilient) GAR, optimizer, learning rate, etc. The full list of command line
arguments is available in the original publication (Damaskinos et al., 2019).

From the standpoint of the developer, AggregaThor is the framework which defines
the interfaces between machine learning components (GAR, model, dataset, optimizer,
etc), and manages the combination of a selection of these different modules into a
training session. This modular approach, illustrated in Figure 6.2, trades versatility
(modules are restricted by their respective interface, e.g. a GAR cannot directly access
the parameter vector) for manageability (well-defined interfaces and responsibilities
help deal with complexity) and “scriptability” (e.g. testing a wide range of GARs boils
down to changing one parameter in a BASH script).

Experience
(= model   
  + dataset)

Gradient
Aggregation
Rule (GAR)

AGGREGATHOR · Cluster management
· Optimizers

Momentum, Adam, ...
· Learning rates

Fixed, Polynomial, ...

OS (libstdc++, libcudart, libmpi, ...)

TensorFlow lossyMPI <code patch>

Figure 6.2: The components of AggregaThor , and their layered relations with existing
components. New components have a gray background. AggregaThor acts as a light
framework, managing the deployment and training of a model over a cluster. Please
note that the lossyMPI component will not be discussed in this thesis(a).
(a)The designer and author of the implementation of this component is Arsany Guirguis.

Automated imports for convenience.

The code of AggregaThor needs not be modified when adding a new component, e.g. a
GAR or a model. For instance, each GAR available in AggregaThor are actually written
in different Python modules under directory aggregators/. Developing a new GAR
consists in writing a new .py file in aggregators/. The GARs exported by this new
Python module will then be imported by AggregaThor , and made available as new
possible choices in the command line options.

Through several high-level libraries (e.g. https://github.com/google-research/tf-slim),
TensorFlow also offers a large range of models and datasets. AggregaThor supports

83

https://github.com/google-research/tf-slim


Chapter 6. Robust Aggregation in Practice

automatically re-exporting models and datasets from some of these libraries, so that
they can be selected in the command line by the practitioner. The advantage of such an
automated interfacing is that any new contribution in one of the supported, external
libraries will also become available in AggregaThor .

Custom arguments from the command-line.

The pair model-experiments, most optimizers and some GAR may take additional
parameters. This is the case with Krum (Section 3.1.1) for instance, which take an
additional, optional parameter m.

Such module-dependent arguments can be specified via the --*-args command
line arguments. The expected format of these optional arguments is also technically
module-dependent, although the usual format all modules currently follow is a list of
one or more property:value strings, e.g. batch-size:32 or m:4.

6.2 Evaluation of AggregaThor

We evaluate the performance of AggregaThor over an academic image classification
task (CIFAR-10), due to its high-availability and wide adoption as a benchmark for
distributed ML literature (Chilimbi et al., 2014; Abadi et al., 2016; Zhang et al., 2017).

6.2.1 Evaluation Setup

We present the details of the configuration, benchmarks, and methods we employ
for our evaluation. For clarity and for the rest of this section, we will refer with Krum
to the deployment of AggregaThor with the GAR being Krum and with Bulyan to the
deployment of AggregaThor with the GAR being Bulyan.

Platform. Our experimental platform is Grid50009. Unless stated otherwise, we
employ 20 nodes, all within the same datacenter, each carrying 2 CPUs (Intel Xeon
E5-2630) with 8 cores each, 128 GiB RAM and 10 Gbps Ethernet.

Dataset. We use the CIFAR-10 dataset (Krizhevsky et al., 2009), a widely used dataset
in image classification (Srivastava et al., 2014; Zhang et al., 2017), which consists of
60 000 colour (RGB) 32× 32 images in 10 classes. We perform min-max scaling as a pre-
processing step for the input features of the dataset. We employ a convolutional neural
network with a total of 1.75M parameters as shown in Table 6.1. We have implemented
the same model with PyTorch to be compatible with Draco (Chen et al., 2018).

9https://www.grid5000.fr/

84

https://www.grid5000.fr/


6.2 Evaluation of AggregaThor

Input Conv1 Pool1 Conv2 Pool2 FC1 FC2 FC3

Kernel size
Strides

32×32×3
5×5×64
1×1

3×3
2×2

5×5×64
1×1

3×3
2×2

384 192 10

Table 6.1: Architecture of the “CNN model”.

Evaluation metrics.

We evaluate the performance of AggregaThor using the following standard metrics.

Throughput. This metric measures the total number of steps (i.e. gradient computa-
tion, aggregation and parameter update) executed per second. The factors that affect
the throughput is the time to compute a gradient, the communication delays (worker
receives the model and sends the gradient) and the idle time of each worker. The idle
time is determined by the overhead of the aggregation at the server. While the server
performs the aggregation and the descent, the workers wait (synchronous training).

Accuracy. This metric measures the top-1 cross-accuracy: the fraction of correct pre-
dictions among all the predictions, using the testing dataset (see below). We measure
accuracy both with respect to the passage of time and increasing step numbers t.

Evaluation scheme.

To cross-validate the performance, we split the dataset into training and test sets. The
dataset includes 50,000 training examples and 10,000 test examples. Note that, if not
stated otherwise, we employ an RMSprop optimizer (Tieleman and Hinton, 2012) with
a fixed initial learning rate of 10−3 and a mini-batch size of 100.

We split our 20 nodes into n = 19 workers and 1 parameter server. If not stated
otherwise, we set f = 4 given that Bulyan requires n ≥ 4f + 3.

We employ the fastest-to-convergence combination of other hyperparameters for the
deployment of Draco. For example, we use the repetition method, because it gives
better results than the cyclic one. We use the reversed gradient adversary model, with
its parameters as recommended by the original authors, and a momentum of 0.9.

6.2.2 Non-Byzantine Environment

In this section, we report on the performance of our framework in a non-Byzantine
distributed setup. Our baseline is vanilla TensorFlow (TF) deployed with the built-in
averaging GAR: tf.train.SyncReplicasOptimizer. We compare TF against AggregaThor
using (a) Krum, (b) Bulyan, (c) the coordinate-wise Median (Xie et al., 2018b), and (d)

85



Chapter 6. Robust Aggregation in Practice

the basic arithmetic mean (Average). We also report on the performance of (e) Draco.

0 250 500 750 1000
Training time (s)

To
p-

1 
cr

os
s-

ac
cu

ra
cy

0.15

0.30

0.45

0.60

0.75

TF
Average
Median
Krum (f = 4)
Bulyan (f = 4)
Draco (f = 4)

0 250 500 750

To
p-

1 
cr

os
s-

ac
cu

ra
cy

0.15

0.30

0.45

0.60

0.75

1000
Step number

Figure 6.3: Overhead of AggregaThor in a non-Byzantine environment (b = 250).

Overhead in terms of convergence time.

In Figure 6.3, TensorFlow reaches 50% of its final accuracy in 3 minutes and 9 seconds,
whereas Krum and Bulyan are respectively 19% and 43% slower for reaching the same
accuracy. Our framework with Average leads to a 7% slowdown compared to the
baseline. The Median GAR, with a mini-batch size of b = 250, converges as fast as
the baseline (model update-wise), while with b = 20 (Figure 6.4), Median prevents
convergence to a model achieving baseline accuracy.

We identify two separate causes for the overhead of AggregaThor . The first is the com-
putational overhead of carrying out the Byzantine-resilient aggregation rules. The
second cause is the inherent variance increase that Byzantine-resilient rules introduce
compared to Average and the baseline. This is attributed to the fact that Krum, Bulyan
and Median only use a fraction of the computed gradients; in particular Median uses
only one gradient. Increasing the variance of the gradient estimation is a cause of con-
vergence slowdown (Bottou, 1998). Since even Median converges as fast as the baseline
with b = 250, the respective slowdowns of 19% and 43% for Krum and Bulyan corre-

86



6.2 Evaluation of AggregaThor

0 250 500 750 1000
Training time (s)

To
p-

1 
cr

os
s-

ac
cu

ra
cy

0.15

0.30

0.45

0.60

0.75

TF
Average
Median
Krum (f = 4)
Bulyan (f = 4)
Draco (f = 4)

0 1000 2000 3000 5000

To
p-

1 
cr

os
s-

ac
cu

ra
cy

0.15

0.30

0.45

0.60

0.75

4000
Step number

Figure 6.4: Overhead of AggregaThor in a non-Byzantine environment (b = 20).

spond only to the computational overhead. The practitioner using AggregaThor does
not need to increase the mini-batch size to achieve baseline final accuracy (Figure 6.4).

Although Draco reaches the same final accuracy, the time to reach the model’s maximal
accuracy is slower than with our TensorFlow-based system. We attribute this mainly
to the fact that Draco requires 2f + 1 times more gradients to be computed than our
system before performing a step.

We decompose the average latency per step to assess the effect of the aggregation time
on the overhead of AggregaThor against TensorFlow. We employ the same setup as in
Figure 6.3. Figure 6.5 shows that the aggregation time accounts for 35%, 27% and 52%
of run times of Median, Krum, and Bulyan respectively. These ratios do not depend
on the variance of the aggregated gradients, but solely on the gradient computation
time: a larger/more complex model would naturally make these ratios decrease (i.e.,
the relative cost of Byzantine resilience would decrease). See Figure 6.6.

Impact of f on scalability.

87



Chapter 6. Robust Aggregation in Practice

Computation + communication time
Aggregation time

R
un

tim
e 

pe
r 

st
ep

 (
s)

TF Median Krum
(f = 4)

Bulyan
(f = 4)

0.1
0.0

0.2
0.3
0.4
0.5
0.6
0.7
0.8

Figure 6.5: Latency breakdown (b = 250).

We measure the scalability of AggregaThor with respect to TensorFlow for two models:
the CNN that we use throughout the evaluation and a significantly larger one, ResNet-
50. Figure 6.6 shows that the throughput of all TensorFlow-based systems with up to 6
workers is the same. From this point on, the larger the number of workers, the larger
the deviation between the Byzantine-resilient algorithms and TensorFlow. The reason
behind this behavior is the fact that an increase in the number of workers forces the
GARs (especially Krum and Bulyan which are quadratic in n) to do more and more
operations. For example, Bulyan scales poorly for this setup. This is confirmed with
ResNet-50 in Figure 6.6, where gradient computation is significantly more costly than
gradient aggregation, mechanically enabling the GARs to display better scalability.

Figure 6.6 also indicates that the higher the declared f the higher the throughput
(except for Draco). This is the direct outcome of the algorithmic design of the two
statistically-robust GARs assessed in these experiments. Since m = n − f − 2, the
higher f the fewer iterations for Krum (Blanchard et al., 2017) and Bulyan (El-Mhamdi
et al., 2018). Of course, there actually is a trade-off between the update throughput
and the variance of each aggregated gradient. Indeed: f controls how many gradients
are aggregated. Higher f translates into fewer (non-Byzantine) gradients averaged
by Krum (Blanchard et al., 2017) and Bulyan (El-Mhamdi et al., 2018), which might
eventually hamper the training even without Byzantine workers.

Draco is always at least one order of magnitude slower than the TensorFlow-based
systems. This low throughput limits its scalability. An interesting observation here
is that changing the number of Byzantine workers does not have a remarkable effect
on the throughput. This is attributed to the method Draco uses to handle Byzantine
behaviors, linear in n (Chen et al., 2018), and thus remains unaffected when f changes.

88



6.2 Evaluation of AggregaThor

T
hr

ou
gh

pu
t 

(b
at

ch
es

/s
)

#workers
2 4 6 8 10 12 14 16 18

0

8

16

24

32

40

48
TF
Average
Median
Krum (f = 1)
Krum (f = 4)
Bulyan (f = 1)
Bulyan (f = 4)
Draco (f = 1)
Draco (f = 4)

#workers
2 4 6 8 10 12 14 16 18

T
hr

ou
gh

pu
t 

(b
at

ch
es

/s
)

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Average
Median
Krum (f = 1)
Bulyan (f = 1)
Draco (f = 1)

Figure 6.6: Throughput comparison, higher is better. Left: the model defined in Ta-
ble 6.1, with 1.75M parameters. Right: the model is ResNet-50, with 23.5M parameters.
The scalability to higher worker counts mechanically improves as the gradient estima-
tion time increases with larger models.

Impact of f on convergence.

0 250 500 750 1000
Training time (s)

To
p-

1 
cr

os
s-

ac
cu

ra
cy

0.15

0.30

0.45

0.60

0.75

Krum (f = 1)
Krum (f = 4)

Bulyan (f = 4)
Bulyan (f = 1)

Draco (f = 4)
Draco (f = 1)

Figure 6.7: Impact of f on convergence (b = 250).

We show the effect of the choice of f in a non-Byzantine environment. Figure 6.7 shows
that the larger value of f triggers a slightly slower convergence for Krum and slightly
faster convergence for Bulyan. This is the direct consequence of the aforementioned
trade-off. The throughput of Krum is boosted more than the throughput of Bulyan
for the same increase on f (from 1 to 4). Therefore, in the case of Bulyan, the faster
model updates compensate for the additional noise whereas in the case of Krum
the throughput boost is not enough. For a smaller mini-batch size (Figure 6.8) the

89



Chapter 6. Robust Aggregation in Practice

Krum (f = 1)
Krum (f = 4)

Bulyan (f = 4)
Bulyan (f = 1)

Draco (f = 4)
Draco (f = 1)

0 250 500 750 1000
Training time (s)

To
p-

1 
cr

os
s-

ac
cu

ra
cy

0.15

0.30

0.45

0.60

0.75

Figure 6.8: Impact of f on convergence (b = 20).

behaviour is similar but the impact of f is smaller. This is because the mini-batch
size is an important parameter in practice, that can substantially affect the trade-off
between the update throughput and the quality of each update (Akiba et al., 2017).

6.2.3 Adversarial Environment

We evaluate AggregaThor in a distributed setting under attack. We report on a weak,
but arguably realistic family of adversarial behaviors: corrupted training set.

Corrupted data.

We highlight here the fact that TensorFlow cannot tolerate even one Byzantine worker
(which employs corrupted data in this scenario) while AggregaThor can tolerate that.

TF (non-Byzantine)
TF
AggregaThor (f = 1)

0 250 500 750 1000
Training time (s)

To
p-

1 
cr

os
s-

ac
cu

ra
cy

0.15

0.30

0.45

0.60

0.75

Figure 6.9: Impact of malformed input on convergence.

Figure 6.9 shows that for a mini-batch size of 250, the convergence behavior of Ag-
gregaThor is similar to the ideal one (TensorFlow in a non-Byzantine environment).

90



6.3 Concluding Remarks

We thus highlight the importance of Byzantine resilience even for this “mild” form of
Byzantine behavior (only one worker sends corrupted data) to which TensorFlow is
intolerant (TensorFlow diverges). The use of Byzantine-resilient GARs, such as Krum,
is naturally enough to thwart this kind of mild attack.

Experimenting with more complex attacks, like the ones presented by Baruch et al.
(2019) and Xie et al. (2019a), would not bring anything new compared to e.g. the
comprehensive study reported by Chapter 5. One of the main added value in this
chapter is arguably the time component of the experiments: measuring the impact of
Byzantine-resilient GARs over the total runtime of actual, distributed training sessions.
The runtime of the studied GARs is fairly decorrelated from the presence of Byzan-
tine vector, and to carry out complex attacks (which runtime is comparable to one
aggregation) would likely bias our throughput and total runtime measurements.

6.3 Concluding Remarks

In this chapter we described the overall design of AggregaThor, historically the first
framework to integrate Byzantine resilient gradient aggregations into TensorFlow. The
design of AggregaThor significantly differs from the one of “vanilla” deployments
with TensorFlow. We have seen that TensorFlow, and particularly through the way it
handles distributed deployments, is not designed with Byzantine resilience in mind.
We described in high-level terms what could be done to mitigate these issues, and
other design choices made during the development of AggregaThor .

We have evaluated AggregaThor in datacenter-wide distributed deployments, using
academic machine learning problems (CIFAR-10 with a simple convolutional network).
Our baseline is “vanilla” TensorFlow, which as we show does not support adversarial
behaviors during training. There are two main takeaways. The first takeway is that
Byzantine resilient GARs, such as Krum with m = n− f − 2 and Bulyan of Krum (also
withm = n−f −2) do not induce any accuracy loss when there is no Byzantine worker.
This is not the case for Median, at least with small batch sizes. The second takeway is
that Byzantine resilient GARs may take a significant fraction of the total runtime (up to
50% for Bulyan) with small models (d < 2 M), although this runtime highly depends
on which GAR is used (in our experiments, Krum takes half as long as Bulyan to run).
Nevertheless with larger models (d > 20 M) and n < 20, the time spent estimating
and transferring gradients becomes relatively larger than the time spent aggregating
gradients, (subtantially) decreasing the throughput loss induced by the GARs.

The next chapter explores whether, like for gradient estimations, implementing GARs
on GPUs can provide a significant speedup, potentially marginalizing the cost of
statistically-robust Byzantine resilience in actual distributed deployments.

91





7 Faster Aggregation on GPUs

In Chapter 6, we have seen that existing Byzantine resilient GARs, such as Krum and
Bulyan, carry a non-negligible runtime cost in practice; at least when running on CPUs.
The question we explore in this chapter is whether implementing and running these
GARs onto GPUs can provide a significant speedup over CPUs implementations.

For this chapter, we ported over PyTorch all the components of AggregaThor , except
for the cluster and graph distribution parts. In this chapter, we will solely compare the
aggregation times of each GAR. In addition to optimized GPU implementations, we also
implement a version of Krum and Bulyan using only PyTorch’s primitive operations.

7.1 Programming for GPUs

We briefly discuss the main differences to take into account to implement algorithms
for CPUs vs. GPUs. We then dissect a practical implementation case.

7.1.1 Execution and Memory Considerations

CPUs offer a handful of pipelined, branch-predicted, (mostly1) independent cores.
With the presence of a close (on-die), hierarchical cache, CPUs are basically made to
execute instructions as fast as possible (especially when data and code fit in cache).

In comparison, GPUs feature hundreds more cores, offering thousands more hardware
threads. But these cores are also much simpler: no branch-prediction and most
importantly, hardware threads are grouped into blocks of e.g. 32 threads executing
the same instruction2. GPUs also have high-throughput interconnects between main
memory and cores, used optimally when the memory access patterns allow coalesced

1Different cores may fight for memory bandwidth, affecting each other’s instruction throughput.
2Modern GPUs, e.g. since the Volta microarchitecture for Nvidia, may not have this constraint anymore.

93



Chapter 7. Faster Aggregation on GPUs

data fetches (e.g. when all the threads from the same block simultaneously access
adjacent memory). GPUs are basically made to process large chunks of data in parallel.

Since GARs are fundamentally concurrent workloads, we should highlight there are
also differences regarding the memory model of CPUs and GPUs. CPUs, even with
multiple sockets, allow any pair of hardware threads to synchronize on any (aligned)
memory address. With CPUs, the memory is hierarchical3 and remains coherent: L1d/i,
L2(, L3), RAM, NVM/SSD/hard-drive/etc. With CUDA-compatible GPUs, while the
silicon is not fundamentally different than with CPUs (there is both a RAM-like off-die
memory, and a cache-like on-die memory), the model is different and several types of
memories exist at what would be the same level for CPUs. There is a separation between
“global” memory and “local” memory, which are both RAM-like off-die memories, but
differ in how data is stored and how accesses can be coalesced. Some types of on-die
memory (e.g. texture and surface memories) are not kept coherent with off-die memory.
Regarding atomic operations, atomicity can be guaranteed either across all GPUs (like
with CPUs), or instead only single GPU-wide or even only thread group-wide.

7.1.2 Practical case: SIMT median on GPUs

Median is not only a GAR, it is also a crucial component of Bulyan. Maximizing its
performance in the context of gradient aggregation thus kills two birds with one stone.

Our implementation of the Median function on CPU is quite straightforward: each of
the m ≥ 1 available cores processes a continuous share of n

m coordinates. Then each
core applies, for each coordinate of its share, introselect (or equivalent) by calling the
standard C++ std::nth_element.

Nevertheless, even embarrassingly parallel algorithms like Median would not neces-
sarily get all the benefits from running on GPUs. That is because modern GPUs, to
achieve parallel execution on many threads while limiting instruction fetch costs, batch
threads into groups of e.g. 32 threads that execute the same instruction4. Algorithms
like introselect (Musser, 1997) are branch-intensive, with possibly many instructions
executed in each branch, and so, may fail to scale on GPUs.

Reminiscent of (Kachelrieß, 2009), our implementation of median is built around a
primitive that orders 3 elements without branching. This is made possible through the
use of the selection instruction, which converts a predicate into an integer value.

Let v be a table of 3 elements to reorder by increasing values. The selection instruction
enables our implementation to compute:

3Here we are not considering latency, which may not only depend on the level of the accessed data.
4In case of branching, each branch will be executed one after the other, blocking the other threads.

94



7.2 Experiments

int[] c = { v[0] > v[1], v[0] > v[2], v[1] > v[2] },

where a > b equals 1 if a > b, else a > b equals 0.

Then using the intermediate results (found by solving the “reordering truth tables”):

int[] i = {
(1+c[0]+2*c[1]+c[2]-(c[1]⊕c[2]))/2,
(4-c[0]-2*c[1]-c[2]+(c[0]⊕c[1]))/2 },

we can finally reorder the elements of v into w with:

int[] w = { v[i[0]], v[3-i[0]-i[1]], v[i[1]] }.

Using this reordering primitive, we manage to implement an efficient version of Median
with minimal branching, tailored for machine learning usages (Figure 7.1, “Median
(PyTorch)” vs. “Median (custom)”) where n is fairly small and d can be very large.

7.2 Experiments

We report on the performance of our implementations over two metrics:

1. the aggregation time of our implementations of Median, Krum and Bulyan,
compared to the implementation of Median in PyTorch 1.6 (CUDA 10.1), and

2. the maximum top-1 cross-accuracy reached on a commonly used classification
task in the ML litterature, compared to mere averaging and Median.

7.2.1 Setup

We run our experiments on the following hardware: (CPU) Intel® Core™ i7-8700K @
3.70GHz, (GPU) Nvidia GeForce GTX 1080 Ti, and (RAM) 64 GB.

We report on the aggregation time, i.e. the time needed by a GAR to aggregate its
input gradients and provide the output gradient. This metric is arguably the empirical
counterpart of the asymptotic complexity, respectivelyO

(
n2d

)
,O
(
n2d

)
andO(nd) for

Krum, Bulyan and Median. To study the empirical behaviors of Krum and Bulyan
compared to Median, we then vary both n and d over a realistic range of values. Namely
we set (n, d) ∈ {7, 9, 11, . . . , 35, 37, 39} ×

{
105, 106, 107} and f =

⌊
n−3

4

⌋
.

The protocol for one run on the GPU is the following:

95



Chapter 7. Faster Aggregation on GPUs

1. n gradients are independently sampled in U(0, 1)d.

2. These gradients are moved over to the GPU main memory.

3. The command queue is then flushed on the GPU with torch.cuda.synchronize(),
ensuring no kernel is pending on the CUDA stream.

4. The timer is then started.

5. The GAR is called on the GPU with the n input gradients.

6. The command queue is then flushed again, waiting for the GAR’s execution to
fully complete.

7. The timer is finally stopped, giving the execution time of one run.

When running the GAR on the CPU, the protocol is the same minus steps 2., 3. and 6.
There are 7 runs per values of (n, d), from which we remove the first execution time (as
it often looked like an outlier, especially on GPU), and we report on the average and
standard deviation of the 6 other measurements in Table 7.1, Table 7.2, Figure 7.1.

We report on the maximum top-1 cross-accuracy reached by a distributed training
process using either Krum, Bulyan, Median or mere averaging for aggregation. We set
n = 11 workers and f = 2. There is no attack thought: this experiment highlights the
benefits of averaging more gradients per aggregation step, as Krum and Bulyan do,
over aggregation rules that keep (the equivalent of) only one gradient, e.g. Median.

The classification task we consider is Fashion-MNIST (Xiao et al., 2017), with 60 000
training points and 10 000 testing points. The model that we train is a convolutional
network, composed of two 2D-convolutional layers followed by two fully-connected
layers. The first convolutional layer has 20 channels (kernel-size 5, stride 1, no padding)
and the second 50 channels (same kernel-size, stride and padding). Each convolutional
layer uses the ReLU activation function followed by a 2D-maxpool of size 2×2. The first
fully-connected layer has 500 hidden units, employing ReLU, and the second has 10
output units. We train the model using a cross-entropy loss (log-softmax normalization
+ negative log likelihood loss) over 3000 steps, with a fixed learning rate of 0.1 and
momentum 0.9. To compute their gradients, each worker employs minibatches of
size b ∈ {5, 10, 15, . . . , 45, 50}. Every 100 steps we measure the top-1 cross-accuracy
of the model over the whole testing set, and we keep the highest accuracy achieved
over the whole training. For reproducibility purpose we seed each training, repeated 5
times with seeds 1 to 5. We report on the average and standard deviation of the highest
accuracy achieved using each GAR and batch size in Figure 7.2.

96



7.2 Experiments

d Average
Median (PyTorch) Krum (PyTorch) Bulyan (PyTorch)
Median (custom) Krum (custom) Bulyan (custom)

105 0.23 ± 0.049 69 ± 0.93 4.5 ± 0.039 125 ± 1.1
2.4 ± 0.48 2.7 ± 0.030 6.5 ± 0.071

106 5.03 ± 0.34 707 ± 9.2 46 ± 0.44 1255 ± 24
21 ± 2.7 29 ± 0.51 59 ± 1.1

107 82 ± 0.058 7000 ± 86 786 ± 0.29 13047 ± 93
208 ± 4.7 348 ± 1.0 630 ± 2.3

Table 7.1: GAR execution time (ms) on CPU (over 6 runs), n = 15.

d Average
Median (PyTorch) Krum (PyTorch) Bulyan (PyTorch)
Median (custom) Krum (custom) Bulyan (custom)

105 0.11 ± 0.0012 1.0 ± 0.028 3.9 ± 0.18 5.9 ± 0.37
0.26 ± 0.00066 1.4 ± 0.41 1.9 ± 0.26

106 0.55 ± 0.0011 7.0 ± 0.0015 8.9 ± 0.040 23 ± 0.012
0.92 ± 0.0020 6.5 ± 0.0076 8.3 ± 0.0085

107 5.1 ± 0.0014 70 ± 0.0081 54 ± 0.039 190 ± 0.31
8.1 ± 0.61 53 ± 0.46 71 ± 0.37

Table 7.2: GAR execution time (ms) on GPU (over 6 runs), n = 15.

7.2.2 Experimental Results

Table 7.1 and Table 7.2 compare the runtime of the GARs we implemented (except
for Average and Median (PyTorch), which are both primitive operations in PyTorch),
respectively on CPU and on GPU (hardware specifications are listed in Section 7.2.1).
In particular, these tables compare our specialized, optimized, “custom” GAR imple-
mentations against the implementations made of one or several PyTorch primitives.

We can make two observations. First we did not implement, in our “custom” implemen-
tation of Krum, any computational/memory shortcut that cannot be implemented
with PyTorch primitives; and we observe that our custom implementation is not much
faster than the PyTorch one. More precisely, performances on GPU are almost identi-
cal5. Regarding the CPU, we noticed that PyTorch 1.6 did only use half of the available
hardware threads, corresponding to the number of physical cores. This is sub-optimal
for memory-bound workloads, such as medium to large gradient aggregation. On CPU,
the PyTorch implementation6 of Krum is approximately twice as slow as our custom
implementation, which can be explained by PyTorch’s sub-optimal use of CPU re-
sources. This first observation may indicate that, if our other custom implementations
are faster than their PyTorch counterparts, this would mostly be due to the shortcuts

5Especially with larger values of d, which hides the higher fixed costs of the PyTorch implementation.
6The exact same “PyTorch implementation” of a GAR is used to run on both CPU and GPU.

97



Chapter 7. Faster Aggregation on GPUs

we found, and not the PyTorch primitives being intrinsically slower than necessary.

The second observation is that our other custom implementations are indeed faster,
on both CPU and GPU, than their PyTorch counterparts. The custom implementation
of Median employs the GPU-friendly trick detailed in Section 7.1.2. The custom imple-
mentation of Bulyan additionally fuses Equation (3.2) (Section 3.3.1) into one single,
parallel operation. These optimizations can lead to drastic speedups,×10 and more.

The original question this chapter asked is whether running (Byzantine resilient) GARs
on a GPU, instead of a CPU, can provide a significant speedup. Comparing Table 7.1
with Table 7.2, the harmonic mean of the aggregation speedups is above ×15 when
d = 107 (i.e. slightly less parameters than in ResNet-18). Since the communication
time will not depend on the use of GPUs, such a speedup could substantially reduce
the share of runtime spent in gradient aggregation (c.f. Figure 6.5 for the breakdown
on CPU).

In Figure 7.1, the first observation that we can make is that the computational cost of
both Krum and Bulyan indeed appears quadratic in n, the number of workers. The
number of workers n is kept below 24 for Bulyan due to a limited amount of available
on-die shared memory on the GPU we used. Regarding Median, for which we expect a
linear increase with n, the tendency is not clear. The Median implementation provided
by PyTorch shows a two-phase behavior, and our tailored implementation of Median
is much faster7 but exhibits a slightly superlinear behavior.

In Figure 7.1, and despite a higher asymptotic complexity, Krum and Bulyan achieve
lower aggregation times than Median (PyTorch implementation) for respectively n ≤
7, n ≤ 9

(
d = 105), n ≤ 15, n ≤ 13

(
d = 106) and n ≤ 17, n ≤ 15

(
d = 107). Essentially,

the higher the dimension of the model, the higher the number of workers up to which
Bulyan is more competitive than the Median (PyTorch implementation). Our custom
implementation of Median is faster than any other GAR in every tested setting.

For reference, ResNet-50 contains d ≈ 24M parameters. For such neural network
sizes, major DNN frameworks already show scaling issues when employing only 8
workers (Luo et al., 2018). This inherent limitation the practitioner has to apply on
the number of workers not to saturate the standard parameter server (even when
using high-throughput 56 Gbps IP-over-InfiniBand networks (Luo et al., 2018)) would
actually make Krum and Bulyan faster than Median (PyTorch implementation) in rea-
sonable deployments (n < 20). The steady performance of Krum is mostly explained by
the fact that its most computationally intensive part, the gradients’ pairwise distances
computation, is also naturally parallelizable on GPU: it consists in many additions and
multiplications executed in parallel. The remaining computations for Krum merely
consists in ordering scalar values. The same applies for Bulyan: our implementation

7NB: the implementation of PyTorch does unnecessary work by also returning the selected indexes.

98



7.3 Concluding Remarks

does the costly pairwise distance computation only once, and since f ≈ n
4 the median

of Bulyan is computed over a substantially reduced set of pre-aggregated gradients.

The empirical “slowdown” effect of each GAR is captured in Figure 7.2. Each of the
studied GAR throw away gradients that are, in these experiments, all correct. Com-
pared to mere averaging the n = 11 gradients, aggregating less gradients per step has a
tangible impact on the model performance: either more training steps, or higher batch
sizes per worker, is needed to compensate. By averaging only (the equivalent of) one
gradient per step, Median (no matter the implementation as both our implementation
and PyTorch’s implementation return the same values) shows in this Byzantine-free
settings a tangible loss in top-1 cross-accuracy compared to Bulyan and Krum, which
both achieve almost the same performance as averaging.

7.3 Concluding Remarks

In this chapter, we asked and answered whether Byzantine resilient GARs can benefit
from running on GPUs. The answer is yes, and the aggregation speedup is sizeable:
from×6.6 (Krum) to×26 (Median) when d = 107 (roughly as large as ResNet-18).

Our results also highlight to what extent fusing operations can improve aggregation
throughput, compared to combining several of the primitive operations provided e.g.
by PyTorch. The arguably substantial speedup obtained with our GPU implementation
of Median is actually the product of two factors: (1) an efficient construction of the al-
gorithm on GPUs, and (2) the fact that the PyTorch Median primitive, by also returning
the selected indices, does unnecessary work for the purpose of Byzantine resilience.

Finally, when there is no (obvious) shortcut or opportunity to fuse primitive operations
together, there may not be any tangible performance gain with a custom implemen-
tation. This is a rather important result for the practitioner, as developing a custom
implementation can be fairly complex and time-consuming. This result does not
appear obvious, in particular for PyTorch-based implementations, as combining prim-
itive operations in PyTorch implies running parts of the aggregation in the Python
interpreter, which could have induced a non-negligible overhead.

99



Chapter 7. Faster Aggregation on GPUs

Figure 7.1: Average aggregation time and standard deviation (over 6 runs) function of
the number n of aggregated gradients. From top to bottom: d = 105, 106, 107.

100



7.3 Concluding Remarks

Figure 7.2: Maximum top-1 cross-accuracy reached by the model with a given GAR
and gradient batch size. Each experiment is repeated 5 times, with seeds 1 to 5 for
reproducibility purpose, and we report on the average and standard deviation of the
measured maximum accuracies.

101





Part IVSummary and Future Work

103





8 More Effective Defenses

Effective defenses has two distinct interpretations: either whether the defenses provide
the desired outcome, or whether the defenses are ready for use in actual deployments.

In this thesis, we explored both interpretations.

8.1 The Curse of Dimensionality

First in Chapter 3, we have seen that stateless aggregation rules based on a distance-
minimization scheme are vulnerable to the curse of dimensionality. The adversary
can use what we called the leeway of attack to increase one chosen coordinate on
the aggregated gradient, moving the parameter vector to a sub-optimal region of Rd.
We observed in our experiments that this attack can have devastating effects. Also,
this attack does not (necessarily) violate (α, f)-Byzantine resilience, which theoretical
guarantees may not match with intuitive definitions of Byzantine resilience.

As a pragmatic and computationally efficient response to the family of attack we
exposed, we proposed Bulyan, a new, composite gradient aggregation rule. We discuss
a potential improvement in Section 9.1.

8.2 Decentralized Resilience

In Chapter 4, we removed the last single point of failure in standard distributed SGD:
the parameter server. We proposed (historically) the first distributed SGD algorithm
that does not require a trusted, central parameter server to operate. Our algorithm
works with multiple parameter servers, guarantees convergence despite colluding
Byzantine workers and servers, and can make progress despite network asynchrony.
We also experimentally assessed the slowdown induced by our algorithm, compared to
the standard distributed SGD deployment using TensorFlow.

105



Chapter 8. More Effective Defenses

There are still several issues before our algorithm can be trusted in actual deployments.
For instance, the initial expansion phase (c.f. Section 4.4) may allow the adversary to
choose what would be equivalent to the initial parameter vector in standard distributed
SGD. A perhaps more important consideration for actual deployments is that the
datasets held by the non-Byzantine workers may not be homogeneous. Section 9.2
discusses decentralized, heterogeneous learning.

8.3 The Impact of the Variance-norm Ratio

In Chapter 5, we faced two powerful attacks targeting statistically-robust, Byzantine
resilient GARs. The main identified weakness in this family of GARs is their requirement
for a sufficiently low variance-norm ratio. Intuitively, the variance-norm ratio measures
how informative about the real gradient∇Q(θt) the non-Byzantine stochastic gradient
is. We proposed a pragmatic method which, despite increasing the variance, reduces
the variance-norm ratio. We studied the impact of our method on the variance-norm
ratio, and experimentally assessed its practical impact over more than 3680 runs.

We observed a sustained correlation between lower variance-norm ratio and higher
maximum top-1 cross-accuracy (and lower training losses). This tends to indicate
that the variance-norm ratio is one important predictive metric regarding statistically-
robust Byzantine resilience in practice. Our theoretical analysis suggests that further
reducing the variance-norm ratio is possible, by dynamically decreasing the momen-
tum factor µ when the curvature st is high, and increasing it back when st is low. If
this technique alone is not enough to get the variance-norm ratio below its theoreti-
cal requirement (e.g. Equation (5.1) and Equation (5.2)), our analysis also ultimately
suggests to reduce the learning rate ηt.

While we focused on the synchronous setting (Section 2.1.2), which received in com-
parison a substantial attention in the Byzantine resilient literature, this work might also
be applied in asynchronous settings. Specifically, combining our idea with a filtering
scheme such as Kardam (Damaskinos et al., 2018) is in principle possible, as this filter
and momentum commute. However, further analysis of the interplay between the
dynamics of stale gradients and the dynamics of momentum remain necessary.

8.4 Practical, Optimized Byzantine resilience

Part III in this thesis has been devoted to system implementations and experiments.

While the asymptotic complexity of existing Byzantine resilient GARs can be studied
on paper, we wanted to uncover their actual costs when deployed on real clusters.
In Chapter 6, we developed AggregaThor , historically the first distributed, Byzantine

106



8.4 Practical, Optimized Byzantine resilience

resilient implementation of SGD on TensorFlow. Our implementation substantially
differ from “vanilla” deployments, as TensorFlow originally allows any node to overwrite
data anywhere else in the same cluster. We developed several GARs in C++, parallelized
on and optimized for CPUs, and we integrated them to TensorFlow.

With our implementation of Krum, 26% of the total runtime (when training academic
models and datasets) is spent aggregating gradients. This fraction goes up to 50%
with our implementation of Bulyan. Basically, running GARs on CPU can hamper
throughput (Figure 6.5) and scalability (Figure 6.6, left) with small models; yet with
larger models, our CPU implementations arguably scale much better (Figure 6.6, right).

We then wanted to know whether, like for gradient estimations, implementing GARs
on GPUs can provide a significant speedup, potentially marginalizing the cost of
statistically-robust Byzantine resilience in actual distributed deployments. To that end
we ported most of the functionalities of AggregaThor to PyTorch, a major machine
learning framework. As the programming model of CUDA-compatible GPUs is fairly
different than the one of CPUs, GAR implementations for GPUs can substantially
differ from the implementations of same GARs on CPUs. We describe a specialized
construction block for the Median, designed to make the most out of GPUs when d� 1
and n is small. We benchmarked our GAR implementations against various model sizes
d and number of workers n. Our optimized implementations are consistently at least
as fast, and often much faster than (compositions of) primitive operations in PyTorch.
In particular, our Median implementation is much faster than the one provided in
PyTorch. Overall in our experiments, we observed that porting and running GARs on
GPUs can reduce the aggregation time×15 over CPUs on average (harmonic mean).
This speedup alone could be enough to make Byzantine gradient aggregation take a
minor fraction of the total training runtime in actual distributed deployments.

107





9 Future Directions

9.1 Model-aware Aggregation Rules

Not all model parameters have an equal impact on the behavior of the model. For
instance in a feed-forward, fully-connected neural network, even the neural weights
at the same layer do not all equally impact the result of the forward pass; they have
different roles. Weights can belong to neurons which output is scaled down in most
subsequent layers, while other weights can be biases at the latest layer and substantially
impact the model behavior. The role of a single parameter also is a dynamic process,
that evolves as the parameter vector gets updated with each training step.

None of the existing Byzantine resilient gradient aggregation rules consider the impact
each coordinate has on the model. The implicit assumption that all parameters are
equivalent is instrumental in the attack we proposed in Chapter 3, which leaves the
adversary utterly free to choose which coordinate to attack with its leeway (in particular
in our experiments, we attacked a bias in the last layer).

Developing Byzantine resilient GARs which take into account parameter roles seems
quite challenging though. How to even formalize each coordinate role? Also, which
complexity would computing this role have (e.g. computing a Hessian inO

(
d2)would

not be practical)? Perhaps even more importantly, how do the roles of each coordinate
change over time? This could allow the adversary to attack coordinates just before they
become more influential, potentially bypassing defensive strategies.

9.2 Heterogeneous Learning

Our distributed SGD model (Section 2.1.2) assumes homogeneous dataset at each
worker: each non-Byzantine worker independently samples its datapoints from the
same distribution. This assumption can be challenged in practice. In the context

109



Chapter 9. Future Directions

of Federated Learning for instance, data is routinely assumed to be generated at the
workers by various persons/organizations (Kairouz et al., 2019), and never shared.

Focusing on the work presented in this thesis, Chapter 4 concluded on several remain-
ing issues, among which the homogeneous dataset assumption. In (El-Mhamdi et al.,
2020a), as a direct continuation of Chapter 4, my coauthors and I tackle the heteroge-
neous problem in the Byzantine, decentralized, asynchronous case. Notably, we study
to which extent convergence can be achieved, stumbling upon an impossibility result
intuitively resulting from the heterogeneity inducing a non-nullable variance-norm
ratio among heterogeneously-sampled non-Byzantine gradients.

In the case of Byzantine heterogeneous learning, the challenge we highlight actually
regards societal implications. Coupled with statistically-robust1 gradient aggregation
rules, Byzantine heterogeneous learning can restrict minorities with vastly diverging
views (expressed by how they built datasets with fairly different distributions). This is
due to the very nature of statistically-robust defenses, which work by filtering outliers
in favor of the majority. Such an approach had not been an issue before, as the honest
participants and their respective datasets had always been assumed homogeneous.

If data privacy is not an issue, resampling (He et al., 2020) could be a pragmatic
approach to the problem of Byzantine heterogeneous learning. Data privacy issues
could also be mitigated with additional, privacy-preserving techniques.

9.3 Privacy and Byzantine resilience

Another type of threat arises when the non-Byzantine workers are not willing to share
with each other and the parameter server(s) their respective training datasets, or
merely derived information about their datasets. When there is no Byzantine node,
the literature may already provide several appealing techniques (Kairouz et al., 2019).

The case of privacy-preserving, Byzantine resilient SGD is more challenging though.
Pillutla et al. (2019) proposes a construction to approximate Geomed with a secure
sum (Bonawitz et al., 2017), which allows to compute and reveal the sum of the gradi-
ents without revealing any single one of them2. In a nutshell, the approach of Pillutla
et al. (2019) consist in iteratively weighting each gradient in a way that would approxi-
mate Geomed. And for the applications that cannot even leak the parameter vector
trajectory/the aggregated gradients, another approach exists: Differential Privacy (DP).

In distributed SGD (Section 2.1.2), Differential Privacy (Dwork et al., 2006) would for
instance add noise to each submitted gradient. DP intuitively works by decorrelating
gradients from training samples. Two key properties of DP are composability and

1It is unclear whether redundancy- and suspicion-based defenses can be applied under heterogeneity.
2For illustration, the classical dining cryptographers problem is one instance of a secure sum.

110



9.3 Privacy and Byzantine resilience

robustness to post-processing, which in the context of Byzantine SGD ensure that any
GAR can by used and the whole training process will still satisfy differential privacy.

Statistically-robust defenses and differential privacy nevertheless remain hard to com-
pose. Indeed: when d� 1, the privacy noise can be quite large, which may substan-
tially increase the variance-norm ratio of the submitted gradients. My coauthors and I
studied the intrinsic antagonism between DP and statistically-robust defenses, pub-
lished in (Guerraoui et al., 2021b), highlighting how combining DP with such defenses
becomes practically impossible with large models. In a nutshell, when d is too large, it
may3 become implausible to ever satisfy the variance-norm ratio condition, which is
necessary to statistically-robust GARs. We also experimentally explore how difficult
training even small (d < 100) models with both DP and Byzantine resilience can be.

Future work may try to mitigate these issues, or find different paths altogether.

3Depending on the sensitivity of the the non-Byzantine gradient estimations.

111





A Additional Experimental Results

A.1 Distributed Momentum

A.1.1 Reproducing the results

Our contributed code is available at https://github.com/LPD-EPFL/ByzantineMomentum,
or as a ZIP archive from OpenReview (https://openreview.net/forum?id=H8UHdhWG6A3).

Software dependencies.

Python 3.7.3 has been used, over several GNU/Linux distributions (Debian 10, Ubuntu
18). Besides the standard libraries associated with Python, our scripts also depend on1:

Library Version
numpy 1.19.1
torch 1.6.0
torchvision 0.7.0
pandas 1.1.0
matplotlib 3.0.2
PIL 7.2.0

Library Version
requests 2.21.0
urllib3 1.24.1
chardet 3.0.4
certifi 2018.08.24
idna 2.6
six 1.15.0

Library Version
pytz 2020.1
dateutil 2.8.1
pyparsing 2.2.0
cycler 0.10.0
kiwisolver 1.0.1
cffi 1.13.2

Hardware dependencies.

We list below the hardware components used:

• 1 Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz
• 2 Nvidia GeForce GTX 1080 Ti
• 64 GB of RAM

1This list was automatically generated (see get_loaded_dependencies() in tools/misc.py).

113

https://github.com/LPD-EPFL/ByzantineMomentum
https://openreview.net/attachment?id=H8UHdhWG6A3&name=supplementary_material
https://openreview.net/forum?id=H8UHdhWG6A3


Appendix A. Additional Experimental Results

[a] [b] [c] [d]

Figure A.1: CIFAR-10 and wide-resnet model. [a] Roughly an half (f = 4) Byzantine
workers implementing (Baruch et al., 2019). [b] Roughly a quarter (f = 2) Byzantine
workers implementing (Baruch et al., 2019). [c] Roughly an half Byzantine workers im-
plementing (Xie et al., 2019a). [d] Roughly a quarter Byzantine workers implementing
(Xie et al., 2019a).

Command.

Our results are reproducible in one command. In the root directory of the ZIP file:

$ python3 reproduce.py

On our hardware, reproducing the results takes a bit less than a week. Please be aware
this script requires non-negligible disk space: 2.1 GB of run data, and 132 MB of graphs.

Instructing the script to launch several runs per available GPU may reduce the total
runtime with some hardware. For instance, to push up to 4 concurrent runs per GPU:

$ python3 reproduce.py –supercharge 4

A.1.2 Larger models

To assess our method on even larger models, we consider the “wide-resnet” model
family implemented by Kim (2020). We use the same model-specific parameters as
the ones proposed by the original author, namely: 28 (depth), 10 (widen factor), 0.3
(dropout rate), and 10 output classes (for CIFAR-10). This model contains 36 489 290
trainable parameters, almost 28 times more than the 1 310 922 trainable parameters of
the convolutional model.

We employ the same hyperparameters as in our main experiments with the convo-
lutional model (Section 5.4.1), except for the number of workers (set to n = 11), the
mini-batch size per worker (set to 20), and the learning rate schedule (0.02 for t < 8000,
0.004 for 8000 ≤ t < 16000, 0.0008 for t ≥ 16000).

114



A.1 Distributed Momentum

Momentum at the server Momentum at the workers
B

ar
u

ch
et

al
.(

20
19

)
X

ie
et

al
.(

20
19

a)

Figure A.2: CIFAR-10 and wide-resnet model, roughly an half of Byzantine workers.

The training procedure lasts for 20 000 steps and only employs Nesterov momentum,
as proposed by the original author (Kim, 2020). We report on the maximum observed
top-1 cross-accuracy in Figure A.1 and evolution of the top-1 cross-accuracy in figures
A.2 and A.3.

These results are also reproducible in one command. In the root directory of the ZIP
file, simply execute in a shell:

$ python3 reproduce-appendix.py

On our hardware, reproducing these results takes several weeks. Some of the 6 pre-
sented GARs could not be employed, as they repeatedly trigger out-of-memory errors
on our GPUs. These GARs have been disabled in this specific script.

A.1.3 More experimental results

This section reports on the entirety of the main experiments, completing Section 5.4 of
the main paper. For every pair model-dataset, the following parameters vary:

• Which attack: (Baruch et al., 2019) or (Xie et al., 2019a)
• Which defense: Krum, Median, Trimmed Mean, Phocas, MeaMed, or Bulyan
• How many Byzantine workers (an half or a quarter)
• Where momentum is computed (server or workers)
• Which flavor of momentum is used (classical or Nesterov)
• Which learning rate is used (larger or smaller)

115



Appendix A. Additional Experimental Results

Momentum at the server Momentum at the workers

B
ar

u
ch

et
al

.(
20

19
)

X
ie

et
al

.(
20

19
a)

Figure A.3: CIFAR-10 and wide-resnet model, roughly a quarter of Byzantine workers.

Every possible combination is tested2, leading to a total of 736 different experiment
setups. Each setup is tested 5 times, each run with a fixed seed from 1 to 5, enabling
verbatim reproduction of our results3. In this specific section, we report on:

• the maximum observed top-1 cross-accuracy with each of the 6 studied GARs,
• the evolution of the average and standard deviation of the top-1 cross-accuracy

for every tested setup.

The results regarding the maximum observed top-1 cross-accuracy are layed out by
“block” of 4 experiment setups, among which only the flavor of momentum and the
attack used are different. Namely: [a] classical momentum under attack from (Baruch
et al., 2019), [b] nesterov momentum under attack from (Baruch et al., 2019), [c]
classical momentum under attack from (Xie et al., 2019a), [d] nesterov momentum
under attack from (Xie et al., 2019a). These results are available from Figure A.4 to
Figure A.19.

2Along with baselines using averaging without attack.
3Despite our best efforts, there may still exist minor sources of non-determinism, like race-conditions

in the evaluation of certain functions (e.g., parallel additions) in a GPU. Nevertheless we believe these
should not affect the results in any significant way.

116



A.1 Distributed Momentum

[a] [b] [c] [d]

Figure A.4: CIFAR-10 and convolutional model, with n = 25, f = 11 and ηt = 0.01 if
t < 1500 else ηt = 0.001.

[a] [b] [c] [d]

Figure A.5: CIFAR-10 and convolutional model, with n = 25, f = 11 and ηt = 0.001.

[a] [b] [c] [d]

Figure A.6: CIFAR-10 and convolutional model, with n = 25, f = 5 and ηt = 0.01 if
t < 1500 else ηt = 0.001.

[a] [b] [c] [d]

Figure A.7: CIFAR-10 and convolutional model, with n = 25, f = 5 and ηt = 0.001.

117



Appendix A. Additional Experimental Results

[a] [b] [c] [d]

Figure A.8: CIFAR-100 and convolutional model, with n = 25, f = 11 and ηt = 0.01 if
t < 1500 else ηt = 0.001.

[a] [b] [c] [d]

Figure A.9: CIFAR-100 and convolutional model, with n = 25, f = 11 and ηt = 0.001.

[a] [b] [c] [d]

Figure A.10: CIFAR-100 and convolutional model, with n = 25, f = 5 and ηt = 0.01 if
t < 1500 else ηt = 0.001.

[a] [b] [c] [d]

Figure A.11: CIFAR-100 and convolutional model, with n = 25, f = 5 and ηt = 0.001.

118



A.1 Distributed Momentum

[a] [b] [c] [d]

Figure A.12: Fashion MNIST and fully connected, with n = 51, f = 24 and ηt = 0.5.

[a] [b] [c] [d]

Figure A.13: Fashion MNIST and fully connected, with n = 51, f = 24 and ηt = 0.02.

[a] [b] [c] [d]

Figure A.14: Fashion MNIST and fully connected, with n = 51, f = 12 and ηt = 0.5.

[a] [b] [c] [d]

Figure A.15: Fashion MNIST and fully connected, with n = 51, f = 12 and ηt = 0.02.

119



Appendix A. Additional Experimental Results

[a] [b] [c] [d]

Figure A.16: MNIST and fully connected model, with n = 51, f = 24 and ηt = 0.5.

[a] [b] [c] [d]

Figure A.17: MNIST and fully connected model, with n = 51, f = 24 and ηt = 0.02.

[a] [b] [c] [d]

Figure A.18: MNIST and fully connected model, with n = 51, f = 12 and ηt = 0.5.

[a] [b] [c] [d]

Figure A.19: MNIST and fully connected model, with n = 51, f = 12 and ηt = 0.02.

120



B Additional Proofs

B.1 The Hidden Vulnerability: Bulyan’s resilience

In Section 3.2, we explained that the curse of dimensionality leaves the Byzantine work-
ers, at a coordinate i, with a margin ofO

(√
d
)

computed as the difference between the
Byzantine proposed i-th coordinate and the honest proposed vectors’ i-th coordinates.
In what follows, we prove that any vector produced by Bulyan is constrained, in each
coordinate, to remain withinO

(
σ̄√
d

)
of the honest workers, with: σ̄ , E

∥∥∥G(i)
t −G

(j)
t

∥∥∥.

Let F be a (α, f)-Byzantine resilient GAR.

Proposition 1. Denote by But the vector chosen by Bulyan of F at round t. Then for
any dimension i ∈ [1 .. d] and any honest worker k proposing gradient gk, we have
E |But[i]− gk[i]| = O

(
σ̄√
d

)
.

Proof. Let ξ = (ξ1, . . . , ξn−f ) denote the random (n− f )-tuple of training samples used
by the honest workers. By assumption, the ξk (for k ∈ [1 .. n− f ] are independent and
identically distributed. Let i ∈ [1 .. d] be any coordinate index. We denote by B any
vector that is selected by Bulyan of F in the setM[i] (i.e,B[i] scores among the β closest
values to Median[i]). Let k be any honest worker proposing gradient gk.

Since B was selected by Bulyan, B[i] is among the closest β propositions to Median[i].
We know that Median[i] is the the median coordinate of θ ≥ 2 f + 3 propositions,
and we know that β = θ − 2 f therefore, all the setM[i] is closer to Median[i] than at
least 2 f other propositions, in particular, on each side of Median[i] (we are in a single
dimension) there are at least f workers who are farther from Median[i] than is any B[i].
Therefore, there are at least two different honest workers, call them l and r whose i-th
coordinates are respectively on the left and on the right of the B[i], for every B inM[i],
i.e, gl[i] ≤ B[i] ≤ gr[i]. There are three cases:

1. gk[i] ∈ ]−∞, gl[i]], then |B[i]− gk[i]| < |gl[i]− gk[i]|

121



Appendix B. Additional Proofs

2. gk[i] ∈ ]gl[i] , gr[i][, then |B[i]− gk[i]| < |gl[i]− gr[i]|

3. gk[i] ∈ [gr[i] ,+∞[, then |B[i]− gk[i]| < |gr[i]− gk[i]|

Denote by Ih the indicator function of each of the three cases h ∈ {1, 2, 3} above, i.e.
Ih = 1 only if we are in case h, Ih = 0 otherwise. Then we have the following bound:

|B[i]− gk[i]| < I1 |gl[i]− gk[i]|+ I2 |gl[i]− gr[i]|+ I3 |gr[i]− gk[i]|

Let B1, · · · , Bβ be the β elements ofM[i], the previous inequality holds for every Bh,
denote by Ir,h, r ∈ [1 .. 3] the corresponding indicator functions for each h, we have:

|But[i]− gk[i]| ≤
1
β

β∑
h=1
|Bh[i]− gk[i] |

≤ 1
β

β∑
h=1

(I1,h |gl[i]− gk[i]|+ I2,h |gl[i]− gr[i]|+ I3,h |gr[i]− gk[i]|)

Since gl, gr and gr are all honest workers, which in addition are positioned w.r.t. to other
honest workers, they are i.i.d random variables following the randomness of ξ and
satisfy a vector-wise variance bound (norm 2) E |gr − gl| = E |gk − gl| = E |gk − gr| ≤
E |gk −G| + E |G− gr| = O(σ̄), where G is the unbiased estimator used by the hon-
est workers with a bounded variance such that, component-wise (we divide by

√
d):

E |But[i]− gk[i]| = O
(
σ̄√
d

)
.

Proposition 1 proves that Bulyan of F reduces the component-wise margin of an
attacker, i.e. how much the latter can deviate from honest workers component-wise,
while still be influencing the aggregated gradient.

A last natural question to be posed is: will Bulyan of F introduce an additional bias in
gradient estimations? The answer, provided by Corollary 1, is no. We show that Bulyan
of F keeps the gradient estimation in the cone of angle α around the true gradient. In
particular, Bulyan of F is also provably convergent.

Corollary 1. As F is assumed to be (α, f)-Byzantine resilient, Bulyan of F is also (α, f)-
Byzantine resilient.

Proof. This is an immediate consequence of the (α, f)-Byzantine resilience of F (Defi-
nition 1) and of the fact that any vector used as an input to the last (averaging) step of
Bulyan already comes from the cone of angle α, since it was selective by an iteration
of F on a set of vectors of cardinal ≥ 2 f + 2. Let g be the true gradient, a triangle
inequality applied between g, Bu and the β terms coming from the iterations of F , call
them Fk, k ∈ [1 .. β] gives: |Bu− g| ≤ 1

β |Fk − g|. Given how the iterations over F are

122



B.1 The Hidden Vulnerability: Bulyan’s resilience

performed (without re-sampling ξ), the Fk are themselves i.i.d. and by taking the E on
the inequality, every term in the sum of the right-hand side is bounded by |g| · sin (α)
(since it lives in the cone of angle α around g). Therefore: |EBu− g| ≤ |g| · sin (α)
which means that EBu is also a vector in the cone of angle α around g. The proof on
the statistical moments is obtained with same steps above (except of bounding with
E |G|r ’s instead of sin (α) · |g|

Finally, even if the focus of our work was rather on narrowing the leeway of Byzantine
workers which we argue is a more powerful requirement than (α, f)-Byzantine resilient
alone. It is worth mentioning that as a consequence of our results, convergence is
ensured for Bulyan.

Corollary 2 (Convergence). With Bulyan of F , the sequence of models xt adopted by the
master almost surely converges to a region where∇Q(x) = 0

Proof. As a consequence of Corollary 1, Bulyan is also (α, f)-Byzantine resilient, by
Proposition 2 of (Blanchard et al., 2017) guarantees almost sure convergence.

123





Bibliography

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Irving, G., Isard, M., et al. (2016). Tensorflow: A system for large-scale machine
learning. In OSDI.

Akiba, T., Suzuki, S., and Fukuda, K. (2017). Extremely large minibatch sgd: Training
resnet-50 on imagenet in 15 minutes. arXiv preprint arXiv:1711.04325.

Alistarh, D., Allen-Zhu, Z., and Li, J. (2018). Byzantine stochastic gradient descent. In
Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal,
Canada, pages 4618–4628.

Alistarh, D., Li, J., Tomioka, R., and Vojnovic, M. (2016). Qsgd: Randomized quan-
tization for communication-optimal stochastic gradient descent. arXiv preprint
arXiv:1610.02132.

Amdahl, G. M. (1967). Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer
conference, pages 483–485.

Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., and Shmatikov, V. (2020). How to backdoor
federated learning. In International Conference on Artificial Intelligence and Statistics,
pages 2938–2948. PMLR.

Baruch, M., Baruch, G., and Goldberg, Y. (2019). A little is enough: Circumventing
defenses for distributed learning. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019, 8-14
December 2019, Long Beach, CA, USA.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2019). Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the Na-
tional Academy of Sciences, 116(32):15849–15854.

Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N., Laskov, P., Giacinto, G., and
Roli, F. (2013). Evasion attacks against machine learning at test time. In Joint

125



Bibliography

European conference on machine learning and knowledge discovery in databases,
pages 387–402. Springer.

Biggio, B., Nelson, B., and Laskov, P. (2012). Poisoning attacks against support vector
machines. arXiv preprint arXiv:1206.6389.

Blanchard, P., El-Mhamdi, E.-M., Guerraoui, R., and Stainer, J. (2017). Machine learning
with adversaries: Byzantine tolerant gradient descent. In Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 119–129.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S., Ramage,
D., Segal, A., and Seth, K. (2017). Practical secure aggregation for privacy-preserving
machine learning. In proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 1175–1191.

Bottou, L. (1998). Online Learning and Stochastic Approximations. On-line learning in
neural networks, 17(9):142.

Bottou, L. (2012). Stochastic Gradient Descent Tricks, pages 421–436. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Bousquet, O. and Bottou, L. (2008). The tradeoffs of large scale learning. In Neural
Information Processing Systems, pages 161–168.

Boussetta, A., El-Mhamdi, E.-M., Guerraoui, R., Maurer, A., and Rouault, S. (2021). Ak-
sel: Fast byzantine sgd. In 24th International Conference on Principles of Distributed
Systems (OPODIS 2020).

Cachin, C., Guerraoui, R., and Rodrigues, L. (2011). Introduction to reliable and secure
distributed programming. Springer Science & Business Media.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., Roberts, A.,
Brown, T., Song, D., Erlingsson, U., et al. (2020). Extracting training data from large
language models. arXiv preprint arXiv:2012.07805.

Charikar, M., Steinhardt, J., and Valiant, G. (2017). Learning from untrusted data. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
pages 47–60.

Chen, L., Wang, H., Charles, Z. B., and Papailiopoulos, D. S. (2018). DRACO: byzantine-
resilient distributed training via redundant gradients. In Proceedings of the 35th In-
ternational Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stock-
holm, Sweden, July 10-15, 2018, pages 902–911.

Chen, L., Ye, Y., and Bourlai, T. (2017a). Adversarial machine learning in malware detec-
tion: Arms race between evasion attack and defense. In 2017 European Intelligence
and Security Informatics Conference (EISIC), pages 99–106. IEEE.

126



Bibliography

Chen, Y., Su, L., and Xu, J. (2017b). Distributed statistical machine learning in adversar-
ial settings: Byzantine gradient descent. CoRR, abs/1705.05491.

Chilimbi, T. M., Suzue, Y., Apacible, J., and Kalyanaraman, K. (2014). Project adam:
Building an efficient and scalable deep learning training system. In OSDI, volume 14,
pages 571–582.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3):273–
297.

Damaskinos, G. (2020). Private and Secure Distributed Learning. PhD thesis, École
Polytechnique Fédérale de Lausanne.

Damaskinos, G., El-Mhamdi, E.-M., Guerraoui, R., Guirguis, A. H. A., and Rouault, S.
(2019). Aggregathor: Byzantine machine learning via robust gradient aggregation.
In The Conference on Systems and Machine Learning (SysML), 2019.

Damaskinos, G., El-Mhamdi, E.-M., Guerraoui, R., Patra, R., and Taziki, M. (2018).
Asynchronous byzantine machine learning (the case of SGD). In Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, pages 1153–1162.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to sensi-
tivity in private data analysis. In Theory of cryptography conference, pages 265–284.
Springer.

El-Mhamdi, E., Guerraoui, R., Guirguis, A., Hoang, L. N., and Rouault, S. (2020). Gen-
uinely distributed byzantine machine learning. In Emek, Y. and Cachin, C., editors,
PODC ’20: ACM Symposium on Principles of Distributed Computing, Virtual Event,
Italy, August 3-7, 2020, pages 355–364. ACM.

El-Mhamdi, E.-M. (2020). Robust Distributed Learning. PhD thesis, École Polytech-
nique Fédérale de Lausanne.

El-Mhamdi, E.-M., Farhadkhani, S., Guerraoui, R., Guirguis, A., Hoang, L. N., and
Rouault, S. (2020a). Collaborative learning as an agreement problem. arXiv preprint
arXiv:2008.00742.

El-Mhamdi, E.-M., Guerraoui, R., and Rouault, S. (2017). On the robustness of a neural
network. In 2017 International Symposium on Reliable Distributed Systems (SRDS).

El-Mhamdi, E.-M., Guerraoui, R., and Rouault, S. (2018). The hidden vulnerability of
distributed learning in byzantium. In Proceedings of the 35th International Confer-
ence on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018, pages 3518–3527.

127



Bibliography

El-Mhamdi, E.-M., Guerraoui, R., and Rouault, S. (2020b). Distributed momentum
for byzantine-resilient stochastic gradient descent. In International Conference on
Learning Representations.

El-Mhamdi, E.-M., Guerraoui, R., and Rouault, S. (2020c). Fast and robust distributed
learning in high dimension. In 2020 International Symposium on Reliable Distributed
Systems (SRDS), pages 71–80. IEEE.

Fischer, M. J., Lynch, N. A., and Paterson, M. S. (1985). Impossibility of distributed
consensus with one faulty process. JACM, 32(2):374–382.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Explaining and harnessing adver-
sarial examples. arXiv preprint arXiv:1412.6572.

Guerraoui, R., Guirguis, A., Plassmann, J. M., Ragot, A. A., and Rouault, S. (2021a).
Garfield: System support for byzantine machine learning. In 51st IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks.

Guerraoui, R., Gupta, N., Pinot, R., Rouault, S., and Stephan, J. (2021b). Differential pri-
vacy and byzantine resilience in sgd: Do they add up? In PODC ’21: ACM Symposium
on Principles of Distributed Computing, Virtual Event, Italy, July 26-30, 2021.

He, L., Karimireddy, S. P., and Jaggi, M. (2020). Byzantine-robust learning on heteroge-
neous datasets via resampling. arXiv preprint arXiv:2006.09365.

Hecht-Nielsen, R. (1992). Theory of the backpropagation neural network. In Neural
networks for perception, pages 65–93. Elsevier.

Hsieh, K., Harlap, A., Vijaykumar, N., et al. (2017). Gaia: Geo-distributed machine
learning approaching lan speeds. In NSDI, pages 629–647.

Kachelrieß, M. (2009). Branchless vectorized median filtering. In 2009 IEEE Nuclear
Science Symposium Conference Record (NSS/MIC), pages 4099–4105. IEEE.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K.,
Charles, Z., Cormode, G., Cummings, R., et al. (2019). Advances and open problems
in federated learning. arXiv preprint arXiv:1912.04977.

Karimireddy, S. P., He, L., and Jaggi, M. (2020). Learning from history for byzantine
robust optimization. arXiv preprint arXiv:2012.10333.

Kim, B. (2020). Best cifar-10, cifar-100 results with wide-residual networks using
pytorch. https://github.com/meliketoy/wide-resnet.pytorch. MIT license, using
commit 292b3ede0651e349dd566f9c23408aa572f1bd92.

Kim, L. (2012). How many ads does google serve in a day?

128

https://github.com/meliketoy/wide-resnet.pytorch


Bibliography

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny
images.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems,
25:1097–1105.

Lamport, L., Shostak, R., and Pease, M. (1982). The Byzantine generals problem.
TOPLAS, 4(3):382–401.

Li, L., Xu, W., Chen, T., Giannakis, G. B., and Ling, Q. (2019). Rsa: Byzantine-
robust stochastic aggregation methods for distributed learning from heterogeneous
datasets. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 1544–1551.

Li, M., Zhou, L., Yang, Z., et al. (2013). Parameter server for distributed machine
learning. In Big Learning NIPS Workshop, volume 6, page 2.

Liu, K. (2019). Train cifar-10 with pytorch.

Liu, S. (2021). A survey on fault-tolerance in distributed optimization and machine
learning. arXiv preprint arXiv:2106.08545.

Liu, S., Gupta, N., and Vaidya, N. H. (2021). Approximate byzantine fault-tolerance in
distributed optimization. arXiv preprint arXiv:2101.09337.

Luo, L., Nelson, J., Ceze, L., Phanishayee, A., and Krishnamurthy, A. (2018). Parameter
box: High performance parameter servers for efficient distributed deep neural
network training. CoRR, abs/1801.09805.

Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., and Frossard, P. (2017). Universal adver-
sarial perturbations. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Musser, D. R. (1997). Introspective sorting and selection algorithms. Software: Practice
and Experience, 27(8):983–993.

Nesterov, Y. (1983). A method for solving a convex programming problem with conver-
gence rate o(1/k2). Soviet Mathematics Doklady, 27:372–367.

Pillutla, K., Kakade, S. M., and Harchaoui, Z. (2019). Robust aggregation for federated
learning. arXiv preprint arXiv:1912.13445.

Polyak, B. (1964). Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics, 4:1–17.

PyTorch contributors (2016). Pytorch. https://pytorch.org/.

129

https://pytorch.org/


Bibliography

Rajput, S., Wang, H., Charles, Z., and Papailiopoulos, D. (2019). Detox: A redundancy-
based framework for faster and more robust gradient aggregation. Neural Informa-
tion Processing Systems.

Roelofs, R., Shankar, V., Recht, B., Fridovich-Keil, S., Hardt, M., Miller, J., and Schmidt,
L. (2019). A meta-analysis of overfitting in machine learning. Advances in Neural
Information Processing Systems, 32:9179–9189.

Rousseeuw, P. J. (1985). Multivariate estimation with high breakdown point. Mathe-
matical statistics and applications, 8:283–297.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural
networks, 61:85–117.

Schneider, F. B. (1990). Implementing fault-tolerant services using the state machine
approach: A tutorial. CSUR, 22(4):299–319.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. JMLR,
15(1):1929–1958.

Su, L. (2017). Defending distributed systems against adversarial attacks: consensus,
consensus-based learning, and statistical learning. PhD thesis, University of Illinois
at Urbana-Champaign.

Sun, Z., Kairouz, P., Suresh, A. T., and McMahan, H. B. (2019). Can you really backdoor
federated learning? arXiv preprint arXiv:1911.07963.

TensorFlow contributors (2015). Tensorflow. https://www.tensorflow.org/.

Tieleman, T. and Hinton, G. (2012). Lecture 6.5–rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural Networks for Machine
Learning.

Wang, H., Sreenivasan, K., Rajput, S., Vishwakarma, H., Agarwal, S., Sohn, J.-y., Lee,
K., and Papailiopoulos, D. (2020). Attack of the tails: Yes, you really can backdoor
federated learning. arXiv preprint arXiv:2007.05084.

Xiao, H., Biggio, B., Brown, G., Fumera, G., Eckert, C., and Roli, F. (2015). Is feature
selection secure against training data poisoning? In ICML, pages 1689–1698.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. CoRR, abs/1708.07747.

Xie, C. (2019). Zeno++: robust asynchronous SGD with arbitrary number of byzantine
workers. CoRR, abs/1903.07020.

130

https://www.tensorflow.org/


Bibliography

Xie, C., Koyejo, O., and Gupta, I. (2018a). Generalized byzantine-tolerant SGD. CoRR,
abs/1802.10116.

Xie, C., Koyejo, O., and Gupta, I. (2018b). Generalized Byzantine-tolerant sgd. arXiv
preprint arXiv:1802.10116.

Xie, C., Koyejo, O., and Gupta, I. (2018c). Phocas: dimensional byzantine-resilient
stochastic gradient descent. CoRR, abs/1805.09682.

Xie, C., Koyejo, O., and Gupta, I. (2019a). Fall of empires: Breaking byzantine-tolerant
SGD by inner product manipulation. In Proceedings of the Thirty-Fifth Conference
on Uncertainty in Artificial Intelligence, UAI 2019, Tel Aviv, Israel, July 22-25, 2019,
page 83.

Xie, C., Koyejo, S., and Gupta, I. (2019b). Zeno: Distributed stochastic gradient descent
with suspicion-based fault-tolerance. In Proceedings of the 36th International Con-
ference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, pages 6893–6901.

Yamada, Y., Iwamura, M., Akiba, T., and Kise, K. (2019). Shakedrop regularization for
deep residual learning. IEEE Access, 7:186126–186136.

Yin, D., Chen, Y., Kannan, R., and Bartlett, P. (2018). Byzantine-robust distributed
learning: Towards optimal statistical rates. In International Conference on Machine
Learning, pages 5650–5659. PMLR.

Zagoruyko, S. and Komodakis, N. (2016). Wide residual networks. arXiv preprint
arXiv:1605.07146.

Zhang, H., Zheng, Z., Xu, S., Dai, W., Ho, Q., Liang, X., Hu, Z., Wei, J., Xie, P., and Xing,
E. P. (2017). Poseidon: An efficient communication architecture for distributed deep
learning on GPU clusters. In USENIX ATC, pages 181–193.

Zhang, S., Choromanska, A. E., and LeCun, Y. (2015). Deep learning with elastic
averaging sgd. In NIPS, pages 685–693.

131


	Acknowledgements
	Abstract (English/Français)
	Contents
	Introduction
	When Data becomes Code
	Organization
	Associated Publications
	Notation
	Contributions


	I Attacks and Defenses
	Preliminaries
	Machine Learning
	Stochastic Gradient Descent
	Distributed Training

	The Byzantine Model
	Formal Byzantine resilience
	Applicability and Limitations


	The Hidden Vulnerability
	Statistically-robust Defenses
	Prior Art: Krum and Geomed
	MDA: Minimum Diameter Averaging

	The Curse of Dimensionality
	Intuition
	The Attack
	Leeway of Attack

	Mitigating the Curse
	Bulyan: a Composite GAR
	Computational Complexity

	Practical Evaluations
	Experimental Settings
	Experimental Results

	Concluding Remarks


	II Addressing Shortcomings
	(No) Single Point of Failure
	Motivation
	The Case for Asynchrony
	Updated Distributed Model

	ByzSGD: General Byzantine SGD
	Distributed Algorithm
	Operating Assumptions
	Proof of Convergence

	Experimental Evaluations
	Evaluation Settings
	Evaluation Results

	Concluding Remarks

	Distributed Momentum
	Motivation
	Studied Algorithms
	Byzantine resilient GARs
	State-of-the-art Attacks

	Momentum at the Workers
	Formulation
	Formal analysis

	Experiments
	Experimental Setup
	Experimental Results

	Concluding Remarks


	III Optimized Implementations
	Robust Aggregation in Practice
	Design of AggregaThor
	Architecture and Byzantine resilience
	Optimized GAR implementations
	Modularity by Design

	Evaluation of AggregaThor
	Evaluation Setup
	Non-Byzantine Environment
	Adversarial Environment

	Concluding Remarks

	Faster Aggregation on GPUs
	Programming for GPUs
	Execution and Memory Considerations
	Practical case: SIMT median on GPUs

	Experiments
	Setup
	Experimental Results

	Concluding Remarks


	IV Summary and Future Work
	More Effective Defenses
	The Curse of Dimensionality
	Decentralized Resilience
	The Impact of the Variance-norm Ratio
	Practical, Optimized Byzantine resilience

	Future Directions
	Model-aware Aggregation Rules
	Heterogeneous Learning
	Privacy and Byzantine resilience


	Additional Experimental Results
	Distributed Momentum
	Reproducing the results
	Larger models
	More experimental results


	Additional Proofs
	The Hidden Vulnerability: Bulyan's resilience

	Bibliography



