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Abstract. This paper presents a thorough experimental evaluation of
an extended Gaussian Mixture Probability Hypothesis Density filter which
is able to provide state estimates for the maintenance of a multi-robot
formation, even when the communication fails and the tracking data
are insufficient for maintaining a stable formation. The filter incorpo-
rates, firstly, absolute poses exchanged by the robots, and secondly, the
geometry of the desired formation. By combining communicated data,
information about the formation, and sensory detections, the resulting
algorithm preserves accuracy in the state estimates despite frequent oc-
currences of long-duration sensing occlusions, and provides the necessary
state information when the communication is sporadic or suffers from
short-term outage. Differently from our previous contributions, in which
the tracking strategy has only been tested in simulation, in this paper
we present the results of experiments with a real multi-robot system.
The results confirm that the algorithm enables robust formation mainte-
nance in cluttered environments, under conditions affected by sporadic
communication and high measurement uncertainty.

Keywords: multi-robot tracking, formation control, cooperative local-
ization, probability hypothesis density filter

1 Introduction

In recent years, we observe a slow increase in the number of applications where
the advantages of Multi-Robot Systems (MRSs) are recognized and leveraged to
achieve improved performances when compared to single-robot solutions [1]. For
example, in industrial applications, multiple mobile manipulators carry objects
that cannot be transported by a single robot [2]. In building inspection, multi-
ple aerial vehicles inspect areas that are difficult to be reached by humans [3],
eventually providing the same documentation gathered by experts. Robots can
even assume different roles in their teams: for instance in [3], one of the robots
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inspects the conditions of the building while others provide illumination. Fur-
thermore, socially assistive robotics is one of the most attractive applications for
MRSs. Through appropriate task allocation strategies, robots provide services
to users within a multi-region environment simultaneously [4].

Cooperation among multiple robots, however, introduces another level of
complexity in the system. Methods such as formation control not only require
powerful algorithms, especially for deployments in structured indoor environ-
ments [5], but also necessitate the existence of a reliable localization infrastruc-
ture. In particular, formation control requires each robot in a team to have
continuous access to the state information of its neighbors, which is typically
achieved through a wireless communication link. However, communicated mes-
sages can be delayed or even lost [6], while loss of communication even for a
short period of time can lead to formation breaking. Issues with reliability of
communication have been widely recognized in the context of cooperative posi-
tioning systems [6]. Different solutions have been sought, including a reduction
of the broadcast data by filtering out unnecessary information [7], purposeful
packet delays within controlled time slots [8], and bounds on the extent of the
communication graph [9]. In general, it is considered a good practice to take
into account limitations in the communication bandwidth when dealing with
MRSs [10].

In our recent work [11], we introduced an approach to provide a reliable lo-
calization system for ID-based formation control methods – algorithms, where
the robot position in the formation (also referred to as the role), depends on its
unique identification number (ID). For this class of algorithms, robots must be
capable of distinguishing each other, which can pose additional challenges when
a tracking solution is sought. In particular, tracking of multiple homogeneous
robots based on Laser Range Finders (LRFs) does not provide information for
directly distinguishing the robots. To this end, we combine ID-less detections
with ID-based communicated data, when available, in a multi-target tracking
filter. Additionally, we leverage information related to the formation geometry
to improve the estimates of the robot poses. The two aforementioned informa-
tion sources are incorporated in an extension of the Gaussian Mixture Proba-
bility Hypothesis (GM-PHD) filter [12], called Formation Information GM-PHD
(FI-GM-PHD) filter [11]. As the resulting estimates are anonymous, a role as-
signment procedure finds their optimal allocation to the roles in the formation.
While the previously designed FI-GM-PHD filter has shown promising perfor-
mances in high-fidelity calibrated simulations, the method was never evaluated
on a real robotic platform. Although state-of-the-art simulators can yield re-
sults comparable to reality [13], the simulation-to-reality gap still exists as a
consequence of the difficulty to capture accurate distributions of sensing and
actuation noise [14], lack of incorporation of some subtle factors that affect
the performance of the real robots, such as fluctuation of the on-board sensors
during locomotion [15], and inadequate models for physical contact [16]. As a
consequence, high-fidelity simulations cannot be considered a replacement for
real world evaluations [16]. For example, in the context of cooperative target
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Fig. 1. Schematic diagram of the FI-GM-PHD filter.

tracking, the authors in [17] reported that the tracking performance with real
robots outperforms the simulation results, while in [18] the opposite is observed,
despite a careful calibration with real robot data. As it can be expected, within
the field of MRSs, the simulation-to-reality gap is widened not only because of
the presence of several robots with their associated single-robot simulation in-
accuracies, but also because the effects of communication imperfections on the
overall navigation performance are rarely assessed.

In this paper, we perform an extensive set of experiments with a real robotic
platform. In particular, we carefully estimate the sensor-dependent detection
error, the environment-dependent self-localization error, and the quality of com-
munication to understand their effects on the performance of the FI-GM-PHD
filter. Based on these experimental findings, we update the detection model of
the filter to take into account the sensor-dependent distribution shown by em-
pirical data. The results confirm the robustness of the FI-GM-PHD filter to
measurement uncertainties, distorted formations due to navigation in cluttered
environments, and challenging communication settings.

The rest of this paper is organized as follows. Section II provides background
on the FI-GM-PHD filter and explains how the estimates are integrated into a
formation control algorithm. In Section III, we provide details of the calibration
procedure and the experimental setup. Section IV presents the results, followed
by conclusions in Section V.

2 Background

The FI-GM-PHD filter is an extension of the GM-PHD filter [12]. The standard
GM-PHD filter has four steps, namely prediction, where the previous intensity
evolves according to the motion model, update, where the intensity is updated
with the acquired measurements, selection, which reduces the solution space, and
state extraction. In addition, in our algorithm we perform an integrated update-
and-inception step, in which we incorporate data communicated from the other
robots, and a coalition step, in which we specify the formation geometry.

We provide a full description of the FI-GM-PHD filter in [11], while in this
paper we briefly overview the main concepts as follows. The schematic dia-
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gram of the overall algorithm is shown in Figure 1, in which each block graph-
ically represents the steps described in Section 2.1. In Figure 1, two survival
components (gray) from the last step serves as input to the Prediction step.
(I) Prediction: propagates the components (blue) according to the motion model.
(II) Update-and-Inception: creates posterior components (orange) according to
the detection probability and measurements including sensing (purple cross) and
communication (green cross). (III) Coalition: combines the components from
the update-and-inception step with the coalition components (green) derived
from the formation geometry (yellow). If coalition components do not have cor-
responding components of the posterior intensity, a novelty component (dark
green) is created. (IV) Selection and state extraction: prunes and merges compo-
nents (red), then extracts the estimated states (red cross) from the components
above a certain weight.

2.1 The FI-GM-PHD Filter

The multi-target state is approximated by an intensity – a Gaussian mixture in
the form:

υk(x) =

Jk∑
i=1

w
(i)
k N (x;m

(i)
k , P

(i)
k ) (1)

at time k, where N (·;m,P ) denotes a Gaussian density with mean m, covari-
ance P and weight w, and x is a target state.

I. Prediction The predicted intensity is a Gaussian mixture in the form:

υk|k−1(x) = υS,k|k−1(x) (2)

where υS,k|k−1(x) is referred to as the survival intensity. The components of the
survival intensity are computed from the previous intensity components accord-
ing to a linear Gaussian motion model.

II. Update-and-Inception The posterior intensity is composed of two terms:

υk(x) = (1− pD,k(x))υk|k−1(x) +
∑
z∈Zk

υD,k(x; z) (3)

The first term discounts the predicted components υk|k−1 according to the state-
dependent probability of detection pD,k(x). The second term, υD,k(x; z), gener-
ates a new set of components for each measurement in z.

When available, the communicated state information is incorporated as an
additional set of measurements:

Zk:=Zk ∪
∆k∑
j=1

z
(j)
k (4)

where ∆k is the number of robots communicating their state information.
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III. Coalition First, the specification of the desired formation geometry is
encoded in the form of a Gaussian mixture, referred to as the coalition intensity.
At the locations of where the other robots in formation should be with respect

to the tracking robot i, we generate Gaussian components with the means m
(j)
ζ,k,

where j 6= i is the jth role in the formation.
The coalition step combines the intensities obtained during the update-and-

inception step with the coalition intensity. All the components forming the pos-
terior intensity are compared against the components of the coalition to find
the matching that optimizes some criteria. In our implementation, we minimize
the distance between the component means, while choosing components of the
posterior intensity with significant weights:

o
(j,l)
k = exp(||m(l)

k −m
(j)
ζ,k||) + (w

(l)
k + ε)−1 (5)

where j is the jth component of the coalition intensity, and l is the lth component
of the posterior intensity υk(x). We first evaluate the best candidates for good
matching by sorting the components of the posterior intensity according to the
measure ok.

New components are generated for each matching pair. To limit a number of

new components, each coalition component j is assigned a budget Φ
(j)
ζ,k, which

decreases with every posterior component that has been found close-by, with the
amount of expended budget inversely proportional to the distance between. In
other words, the budget of the coalition component decreases significantly with
every posterior components found close to it. Once the budget of the component
j is depleted, the matching procedure for that component is completed.

Finally, the coalition and the posterior components are coalesced to form a
new Gaussian component:

m
(n)
k = Φ

(l)
k m

(l)
k + (1− Φ(l)

k )m
(j)
ζ,k

P
(n)

k = (Φ
(l)
k + ε)−1P

(l)
k

w
(n)
k = Φ

(l)
k w

(l)
k (6)

where Φ
(l)
k is the matching score.

The budget Φ
(j)
ζ,k left at the end of iteration indicates that one of the coali-

tion components did not have a corresponding component in the posterior. In
that case, the coalition component, from now on referred to as the novelty, is
propagated to the final intensity. Since novelty can suffer when the formation is
far from the desired topology, its weight is proportional to the overall matching
error.

IV. Selection and State Extraction Components with weights weaker than
a certain threshold are pruned. Furthermore, components naturally clustered
together are merged into a single component by first selecting a component with
the highest weight and then merging with it all components within a prescribed
distance. In the state extraction step, the means of the components that have
weights greater than a predefined threshold are selected as state estimates.
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Fig. 2. (Left) The MBot robot. (Right) the experimental arena.

2.2 Graph-Based Formation Control

The formation is comprised of ∆ holonomic robots, including one leader and
∆ − 1 followers. The leader moves on a predefined trajectory while followers
maintain the desired formation as follows:

ẋi = 1
|
∑
jLij |

∑
i∼j [−Lij(rij(t) cos (γij(t))− bxij(t))]

ẏi = 1
|
∑
jLij |

∑
i∼j [−Lij(rij(t) sin (γij(t))− byij(t))] (7)

where L is a non-stationary Laplacian, rij and γij are the Euclidean relative
range and the bearing between the robots i and j. The bias bij ∈ R2 defines the
desired inter-robot distance between i and j. The details of the algorithm can
be found in [5].

2.3 Role Assignment

The role assignment procedure finds a permutation that assigns the ID-less es-
timates to the target positions in the formation. With respect to the detecting
robot i, each estimate j, obtained from the state extraction step, is coupled with
bias bil that corresponds to the “lth” place in the formation. An optimal assign-
ment is found by computing the smallest cost between the estimates and the
projected formation positions, brought to a common reference frame.

3 Experimental Campaign

Experiments are performed with three MBot robots – omnidirectional robots
with a height of 0.98 m and a footprint of 0.65 m in diameter, shown in Figure 2.
The robots are equipped with two LRFs that provide 360◦ field of view and a
4 m sensing range. The robots are connected through a wireless network and self-
localize using the AMCL [19] package offered in ROS. Ground truth positioning
data is provided by a Motion Capture System (MCS) with millimeter accuracy.
The experimental arena is approximately 8× 10 m2.

3.1 Implementation

As our objective is to evaluate the robustness of the original FI-GM-PHD filter in
reality, we keep the parametrization used in Section 7.1 of [11], with the notable
exception of calibrating the sensor model according to the empirical data.
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Table 1. The self-localization error eL and
the measurement error eM of our setup,
determined empirically through dedicated
experiments.

eL[m] eM [m]

mean std mean std
0.18 0.051 0.33 0.24

Fig. 3. The models of sensor-dependent
missed detection probability for each robot
(R0, R1, R2).

The state of the target is composed of its position and velocity x = [x, y, ẋ, ẏ].
The measurement is the position Z = [zx, zy]T . Tracking is performed in the
global frame; all methods are run onboard. The formation heading is fixed to the
positive y-axis of the global coordinate frame. The message losses are simulated
by modulating the communicated information input reported in Equation 4 with
a probability of (1 − pmd), where pmd stands for the message drop probability.
For further details and comprehensive parametrization, please refer to [11].

3.2 Self-Localization and Measurement Errors

The performance of our methods is affected by two sources of stochasticity. First,
the self-localization error eL, is included in the formation projections and in the
positioning information communicated by the robots. Second, the measurement
error eM , is independent of eL and affects the sensory data. Before evaluating the
filter algorithm in its integrity, we have carried out a series of tests (i.e. TI and
TII) to assess the extent to which the errors above may affect the performance
of our system.

The self-localization error eL is the difference between the self-localization
estimates and ground truth data obtained through the MCS. To calculate eL,
in Test TI , we let a robot moving around in the arena for 960 s and average all
the data obtained each 100 ms.

The measurement error eM is the difference between the estimated position
of the detected robot and the actual position, also acquired at 10 Hz through
the MCS. In our system the error is higher in dynamic situations, where both
the detecting and the detected robots are moving [20]. Therefore, to determine
eM , in Test TII , we move two robots independently, keeping them within sensing
reach, with the range and the bearing between the two varying throughout an
experiment that lasts for 960 s.

The results are summarized in Table 1. The self-localization error corre-
sponds to about half of the robot radius, therefore influencing in a limited way
the tracking performance. The measurement error is instead close to the robot
radius, thus having a larger effect on the tracking performance.

3.3 Tailoring the Probability of Detection

In our original model reported in Section 5.2 of [11], we already integrated effects
related to a limited field of view and occlusions.Therefore, in the original model
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the probability of detection pD was dependent on the robot pose and this allowed
a robot to reduce the risk of losing track of another robot. Despite taking into
account such sensing realism in the original filter algorithm, such considerations
turned out to be insufficient for handling the effects present in reality. Indeed,
to cope with additional sensing heterogenities across robots and real world un-
certainties, in this paper we had to additionally model the sensor-dependent
probability of missing a detection and incorporate it in pD.

Our models are based on the empirical data collected in Test TII . The models
characterize specific sensors, therefore, in contrast to their simulated counter-
part, they are different for each robot. The data and the models fitted to it are
shown in Figure 3. The spikes indicate the portion of the lost detections pD,s
for a given angle. To the resulting distributions we fit Gaussian models using
the curve fit method from SciPy optimize [21]. Recall that the MBot robots are
equipped with two LRFs. The sensors, each of them providing 240◦ field of view,
are located at the front and at the back of the robot, while on the sides their
ranges overlap. The overlapping, however, is skewed, resulting in higher proba-
bility of missing detection around the angles −π/2 and π/2. Moreover, it is worth
noticing that the distribution of pD,s characterizing the robot R0 is significantly
different from the two other robots, especially for the angles between −π/2 and
−π, probably due to a slightly different tilting of its LRFs.

3.4 Evaluation Metrics

For the evaluation of the multi-target tracking performance, we use the Optimal
SubPattern Assignment (OSPA) metric [22]. OSPA is comprised of two compo-
nents: the first accounting for the cardinality error in the target number, and
the second for the positioning error. Therefore, the lower the OSPA metric, the
higher the tracking performance. OSPA is tailored with two weighting parame-
ters, p and c, the former related to the position accuracy and the latter to the
cardinality. In our experiments, OSPA is computed between the ground truth
positions and the estimated positions of all targets, with c = 1.0 and p = 2.0.

The second metric considered evaluates the formation control performance.
The formation error eF is the average difference between the desired distances
and the actual distances between the robots in the formation.

3.5 Scenarios

The FI-GM-PHD filter is evaluated in three scenarios: (I) tracking decoupled
from formation control, where robots do not use the tracking data for control,
(II) tracking for formation control, where we alter the quality of communication
(i.e. the message drop probability) and simulate an augmented detection error
(i.e. the measurement error), and (III) realistic navigation, where robots move
among obstacles scattered in the environment. Our methods are compared with
the standard GM-PHD filter and with respect to the baseline formation control
with fully reliable communication and no tracking.

Scenario I: Multi-Robot Tracking We collect a dataset (raw sensor data,
positioning information and the formation state) in the baseline experiment with
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Table 2. OSPA metrics for Scenarios I-III.

Scenario I Scenario II-A

Std FSys Std FSys

pmd 1.0 0.0 0.5 0.9 1.0 pmd 1.0 0.0 0.5 0.9 1.0

OSPA mean 0.63 0.41 0.49 0.56 0.57 OSPA mean 0.64 0.50 0.57 0.62 0.63
OSPA std 0.24 0.11 0.16 0.18 0.19 OSPA std 0.21 0.14 0.18 0.19 0.19

Scenario II-B Scenario III

FSys Std FSys

eM [m] 0.0 0.1 0.3 0.6 1.0 pmd 1.0 0.0 0.5 0.9 1.0

OSPA mean 0.50 0.48 0.49 0.52 0.55 OSPA mean 0.74 0.53 0.63 0.67 0.67
OSPA std 0.14 0.14 0.14 0.14 0.14 OSPA std 0.23 0.16 0.20 0.20 0.20

formation relying on ideal communication conditions. The three-robot formation
follows an eight-shape trajectory, forming a triangle shape with the inter-robot
spacing of 1.75 m. We perform multi-robot tracking with the collected data of-
fline, with the standard GM-PHD filter, and with the FI-GM-PHD filter with
emulated message drop probabilities of pmd = 0.0 (i.e. ideal communication),
pmd = 0.5, pmd = 0.9 and pmd = 1.0 (i.e. no communication). For each experi-
ment, we perform 11 sequential runs, each lasting 120 s.

Scenario II: Tracking for Formation Control In contrast to Scenario I,
in the following experiments, tracking is running online, and used for formation
control directly. In other words, the performance of the tracking system affects
the formation error, which in turn has an effect on tracking through the coalition
step. We distinguish two sub-scenarios:

Scenario II-A: Message Drop Probability where we vary the message drop prob-
ability as in Scenario I (i.e. pmd ∈ {0.0, 0.5, 0.9, 1.0}) and compare to an ideal
communication baseline case.

Scenario II-B: Measurement Error where we manipulate the precision of the
robot detection by adding a random uniform error of magnitude eM = {0.0, 0.3,
0.6, 1.0} m to the original measurement. The probability of message drop is zero
(i.e. ideal communication), in order to decouple the effects of communication
and sensing quality. The experimental settings, including the number of robots,
the desired formation shape and the trajectory are identical to Scenario I.

Scenario III: Realistic Environment In the final set of experiments, the
robots move in a triangular formation with the inter-robot spacing of 1.6 m in
an arena scattered with obstacles. The leader robot plans the trajectory using a
Fast Marching Method [23]. For each experiment we perform 11 sequential runs
of approximately 100 s. We perform an ideal communication baseline experiment
and runs with varying communications quality with pmd ∈ {0.0, 0.5, 0.9, 1.0}.
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Fig. 4. Trajectories of the robots using the FI-GM-PHD filter with pmd = 1.0, i.e. with
no communication. (Left)Scenario II-A trajectories of the robots plotted at (a) t = 15
s, (b) t = 55 s, (c) t = 95 s. (Right)Scenario III trajectories of the robots plotted at
(a) t = 15 s,(b) t = 45 s,(c) t = 75 s.

4 Results

We use the following acronyms for labeling the methods. NT stands for the
baseline experiments with the formation relying on ideal communication and no
tracking, Std stands for the standard GM-PHD filter and FSys stands for the
full FI-GM-PHD algorithm.

4.1 Scenario I: Multi-Robot Tracking

The OSPA performance is summarized in Table 2, from which we draw two
conclusions. First, the tracking performance of the FI-GM-PHD filter degrades
gracefully with the drop of the communication quality. Compared to when the
positioning data is received at 10 Hz, in the case of no communication the per-
formance of FI-GM-PHD method is only 37% worse. Second, in the case of
pmd = 1.0, i.e. no communication, the FI-GM-PHD filter outperforms the stan-
dard GM-PHD filter. This is a fair comparison, as both methods rely on the
same data, but the FI-GM-PHD filter performs an additional coalition step.

4.2 Scenario II: Tracking for Formation Control

Scenario II-A: Tracking-Based Formation Control with Varying Mes-
sage Drop Probability An example of a trajectory of the FI-GM-PHD filter
in the pmd = 1.0 case is shown in Figure 4. The formation error, shown in Fig-
ure 5, remains bounded for all the tested cases. It oscillates between as low as 0
m and up to 0.4 m, with a short-term peak at 0.6 m in the FSys case without
communication (pmd = 1.0). Higher values of eF are resulting from the fact that
during part of the experiment the leader robot is situated behind the followers,
and the “pushing” forces it exerts have a smaller effect than the “pulling” ones
(they act against the follower-to-follower forces, not with them). For the major-
ity of the run duration, the formation error of all the methods follows that of
the NT baseline.
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Fig. 5. Scenario II-A: (Left) OSPA. (Right) Formation error.

Shown in Figure 5, on average the OSPA error is the lowest for the FSys
method and it gracefully degrades with the reduction of the communication
throughput. As summarized in Table 2, the rise of the OSPA error with respect
to the pmd is moderate, with the difference between the pmd = 0.0 and pmd = 1.0
amounting to 27%. This confirms the results we obtain in Scenario I, but in this
case the tracking is performed online. On average, the OSPA error of the FI-
GM-PHD with no communication (pmd = 1.0) is almost identical to that of
the standard GM-PHD filter. However, during our experiments, the Std method
resulted in three formation failures out of the total of 11 runs. A run is labeled as
failed when at least one of the robots stops keeping the formation with the other
robots and falls behind. This phenomenon is typically caused by a lost estimate,
an estimate mistakenly associated to a static object in the area, a mistaken role
association, or a combination of the above. No failures occur in the FSys case,
even when no communication is allowed.

Scenario II-B: Tracking-Based Formation Control with Varying Mea-
surement Error Based on the results summarized in Table 2, we can deduce
that once the communication quality is high (i.e. pmd = 0), the measurement
error has little effect on the performance of our tracking method. Recall that
our preliminary evaluation determined that the baseline detection error of our
setup with two LRFs is around 0.33 m (see Table 1). An addition of a random
uniform error of less than that value (as in the eM = 0.1 and eM = 0.3 cases)
has no effect on the tracking performance, while the injection of an error as high
as 1 m (one and a half times the robot diameter) results in a 14% increase of
the OSPA error compared to the eM = 0.0 case, confirming the robustness of
the FI-GM-PHD filter to sensing noise.

4.3 Scenario III: Realistic Environment

The experimental setup with the obstacles scattered around the arena and the
robot trajectories recorded during one run of the FI-GM-PHD filter with pmd =
1.0 is shown in Figure 4. The OSPA metrics, plotted in Figure 6 and summarized
in Table 2, once more confirm the stability of the tracking performance of our
FI-GM-PHD filter, even when the formation experiences deformations resulting
from the presence of obstacles. Once more, we observe the trends recognized in
Scenario I and Scenario II-A, namely that the increase of pmd has a bounded
effect on the quality of tracking (with the OSPA in the pmd = 1.0 case being 26%
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Fig. 6. Scenario III: (Left) OSPA. (Right) Formation error.

Fig. 7. Failed scene of FSys with pmd = 1.0. (a)R1 and R2 follow R0. (b)R1 tries to
avoid an obstacle, but it takes time. (c)R1 is left behind.

worse than in the pmd = 0.0 case) and that the FI-GM-PHD filter outperforms
the standard filter even in the case when communication is not used (with OSPA
of FSys, pmd = 1.0 being 10% lower than Std).

Robots keep the ideal formation shape at times t = 0 − 20 s, while moving
sideways, as shown in the formation error in Figure 6. Then, the error remains
close to the NT baseline, with the exception of the Std and the FSys with
pmd = 0.9 and pmd = 1.0 conditions, while the under the same conditions,
variance rapidly increases around t = 50 s, at the time where both algorithms
experience formation failures. Out of all the tested cases, the Std and the FSys
with pmd = 0.9 and with pmd = 1.0 each result in failure to maintain the
formation in 1 out of 11 runs. Each of these conditions involves very little (1
message per second) to no communication. Figure 7 shows the failed situation
of FSys with pmd = 1.0. Once R1 falls slightly behind during a maneuver of
negotiating an obstacle, it has no means to recover since the obstacle occludes
the detection of the other formation members, while the impact of including
the formation geometry is reduced because of the geometry drifting from the
desired set point. When robots reach the left top of the arena (around t = 70),
the formation error, except for the failure cases, get close to ideal, but afterwards
the error rises since the leader robot pushes the followers.

5 Conclusion

The primary objective of the paper was to validate our original work on the FI-
GM-PHD filter with real robots, their associated sensing and actuation noises,
and the stochasticity of interactions with and within a real environment. We
conclude that our filtering method prove to be highly robust, and does require
minimal fine-tuning when moved from simulation to reality, as we have not
performed any re-parametrization except for integrating a probability of missed
detection for each individual robot.
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The presented results consistently lead us to two conclusions. Firstly, our
filtering algorithm is robust to a deterioration of the communication quality,
sensory imperfections, and the complexity of the environment, with the tracking
performance degrading gracefully with increasing levels of experimental chal-
lenges. Second, the FI-GM-PHD filter outperforms marginally, or, in some cases
even significantly, the standard GM-PHD filter, even in the cases when no com-
munication is available. One should note that although it may seem that the
FI-GM-PHD filter has obvious advantages over the standard filter, it achieves
such superior performance thanks to an increased complexity: in fact, it combines
data from multiple information sources. In particular, reaching an effective fu-
sion is nontrivial because of the inconsistencies introduced by the self-localization
(incorporated in the communicated positioning information) and the detection
errors. Fusion, if done inappropriately, can result in track splitting and ambigu-
ity of estimates, which in turn can lead to erroneous role assignment, ill-defined
formation, and eventually, breaking of the formation. The GM-PHD filter facili-
tates fusion of data from multiple heterogeneous sources, but care must be taken
so that the advantageous properties of the original algorithm are not sacrificed.

Through our experimental campaign, not only we have proven the robust-
ness of the FI-GM-PHD filter, but we also tested it in settings more challenging
than what the filter has been originally designed for – situations where com-
munication suffers from short-term outages. The FI-GM-PHD filter is shown to
be able to successfully sustain the formation even in cases without inter-robot
communication, keeping the probability of formation failure marginal even in
environments cluttered with obstacles.
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