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Abstract
Over the last two decades, data-powered machine learning (ML) tools have profoundly trans-

formed numerous scientific fields. In computational chemistry, machine learning applications

have permitted faster predictions of chemical properties and provided powerful analytical

tools, facilitating the exploration of the chemical space. The original work presented in this

thesis leverages the paradigm-shifting influence of ML and focuses on bridging the divide be-

tween unsupervised and supervised learning with the overarching objective of improving the

predictive power of similarity-based machine learning algorithms such as kernel regression.

Despite their widespread use in chemistry, current implementations of kernel regression

suffer from biased definitions of similarity between chemical environments. This problematic

originates from the rigidity of current numerical approaches for encoding molecular informa-

tion, based on expert-crafted representations. Moreover, it is amplified by the incorrect (yet

generalized) assumption that increasing the amount of information encoded in molecular

representations unequivocally improves the evaluation of molecular similarity. As a result, the

performance of kernel models can be sub-optimal, reducing their broad applicability.

To overcome such limitations, we introduce a series of statistical tools and methodologies

based on supervised dimensionality reduction and metric learning capable of filtering and

adapting the features of common molecular representations. This allows tailoring the notion

of "molecular similarity" in order to optimize the prediction of specific chemical targets.

Using examples such as the exploration of the free-energy landscape of oligopeptides or the

prediction of subtle properties associated with the outcome of chemical reactions (i.e., enan-

tiomeric excess), we demonstrate how the methods proposed in this thesis unlock the optimal

performance of kernel regression and, more generally, of any similarity-based algorithm.

Overall, the work presented in this manuscript is part of a larger, more comprehensive ef-

fort aimed at extending the capabilities of computational modeling to increasingly complex

chemical situations by exploiting the latest advances in statistical learning.

Keywords: Machine learning, molecular similarity, metric learning, computational chemistry,

potential energy surfaces, statistical sampling.
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Résumé
Au cours des vingt dernières années, les outils d’apprentissage automatique (ML, pour Ma-

chine Learning en anglais) alimentés par les données ont profondément transformé de nom-

breux domaines scientifiques. En chimie computationnelle, les applications d’apprentissage

automatique permettent une prédiction plus rapide des propriétés chimiques quantiques

et servent de base à de puissants outils analytiques qui facilitent l’exploration de l’espace

chimique. Le travail original présenté dans cette thèse reflète ce changement de paradigme

apporté par le ML et se concentre sur la connexion entre l’apprentissage supervisé et non

supervisé, avec l’objectif primordial d’améliorer le pouvoir prédictif des algorithmes d’appren-

tissage automatique basés sur la similarité, tels que la régression kernel.

Malgré leur utilisation répandue en chimie, les implémentations actuelles de la régression

kernel souffrent de définitions biaisées de la similitude entre les environnements chimiques.

Cette problématique trouve son origine dans la rigidité des approches numériques actuelles

pour encoder l’information moléculaire basées sur des représentations élaborées par des

experts. De plus, le probleme est amplifié par l’hypothèse incorrecte, mais généralisée, selon

laquelle l’augmentation de la quantité d’informations encodées dans les représentations mo-

léculaires améliore sans équivoque l’évaluation de la similarité moléculaire. En conséquence,

les performances des modèles kernel peuvent être sous-optimales et leur applicabilité en être

considérablement réduite.

Pour surmonter ces limitations, nous introduisons une série d’outils et de méthodologies

statistiques basés sur la réduction supervisée de la dimensionnalité et l’apprentissage de

métriques capables de filtrer et d’adapter les caractéristiques des représentations moléculaires

courantes. Cela permet d’adapter la notion de "similarité moléculaire" afin d’optimiser la

prédiction de cibles chimiques spécifiques. A l’aide d’exemples tels que l’exploration de

surfaces d’énergie libre des oligopeptides ou de la prédiction de propriétés subtiles associées

au résultat de réactions chimiques (ie, excès énantiomérique), nous démontrons comment les

méthodes proposées dans cette thèse débloquent le performances de la régression kernel et,

plus généralement, de tout algorithme basé sur la similarité.

Plus largement, les travaux exposés sont ancrés dans un effort plus vaste et plus complet visant

à améliorer les capacités de modélisation informatique dans des contextes chimiques de plus

en plus complexes, et ce en exploitant les dernières avancées en matière d’apprentissage

automatique.

Mots clefs : apprentissage automatique, similitude moléculaire, apprentissage des métriques,

chimie computationnelle, surfaces d’énergie potentielle, échantillonnage statistique.
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1 Introduction

Machine learning (ML), algorithms to perform inference and construct prediction models

from raw data, is rapidly becoming a fundamental technique in scientific research. The field

of chemistry is especially well-positioned to benefit from these computational techniques,

as there is a great deal of interest in extracting relationships and patterns from highly non-

intuitive datasets that can subsequently be used to build predictive models. Indeed, the first

examples of ML applications to chemical data can be traced back over 50 years. The specific

use of supervised learning methods, which aimed to create maps between input and target

variables, originates from the 1970s with examples ranging from predicting synthetic routes

for organic molecules 16 to protein secondary structure. 17,18 Other notably examples include

constructing structure-activity relationships to predict quantities such as mutagenicity 19 and

to assist drug design. 20 As a complement to supervised learning, unsupervised learning algo-

rithms, a series of techniques that learn patterns and elucidate structures in unlabeled data 21

(e.g., factor analysis and Principal Component Analysis (PCA)) have been exploited since the

1960s22 to interpret multivariate data and aid in the experimental design of spectroscopy,

chromatography, and chemometrics,23 as well as to elucidate the behaviour of collective

motions in dynamical simulations. 24,25 However, as in many other disciplines, the use of ML

methods in chemistry remained rather peripheral until about a decade ago. The scarcity of

datasets associated with the difficulties in accessing, storing and sharing data, combined with

the unavailability of computational power and the relatively low sophistication or open-access

of ML algorithms severely limited the applicability of these methods.

Beginning in the 2000s, the combination of digital storage, personal computers with increasing

power, along with the ability to share information through the internet allowed the potential

of machine learning and artificial intelligence tools to be fully unlocked. Today, these factors

combined with the exponential growth of data allow desktop machines to routinely solve

problems that could only be tackled by supercomputers just a few decades ago. The "Big Data"

revolution of the last twenty years has been a by-product of these phenomena, affecting all

scientific fields to various degrees, sometimes radically. This revolution has, correspondingly,

led to a boom in the application of ML methods to a wide variety of fields, which in turn has
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Figure 1.1 – Publications each year from a web of science search with topics of "machine
learning" and "computational chemistry".

accelerated the speed at which new ML algorithms are developed. In the fields associated with

computational and quantum chemistry, the advances in ML combined with the increasing

availability of data (powered by novel technologies such as GPU accelerated quantum chem-

istry 26 and high throughput experiments 27) have brought about a profound impact and today

can be considered nothing short of a "change of era". Treating molecules as virtual entities

with different numeric properties, the framework was perfectly suited to embrace the Big Data

revolution. Pioneering works include Behler-Parrinello atomistic potentials built with neural

networks 28 and the first use of kernel methods and physics-based molecular representations

to construct structure-property relationships (a.k.a. Quantum Machine Learning or QML), 29

which showed unprecedented accuracy for such negligible computational costs. These exam-

ples triggered a wave of ML models applied in computational chemistry (see Figure 1.1) that

continues to grow exponentially. Indeed, the predictive power of supervised learning tech-

niques has steadily improved over the last few years, allowing the modelling of chemical targets

with increasing complexity: from simple scalar properties (e.g., atomization and isomerization

energies29–31) to vectors and tensorial quantities (e.g., forces,32–34 multipole moments,35

polarizabilities36,37) and even potential energy surfaces,28,38–40 excited-state properties,41

electron densities,8,42–46 and many-body wavefunctions.47 Once trained, these models are

orders of magnitude faster than traditional first-principle computations, which facilitate the

exploration of otherwise unimaginably vast swathes of chemical space, 29,48–54 rapid access to

complex chemical properties 8,42–47 and achieving statistically converged trajectories without

sacrificing quantum chemical accuracy.32,55–58 Similarly, unsupervised techniques have in-

creasingly been used to rationalize the conformational space of molecules, 59–62 to aid in the

design molecular representations, 63 to create drug discovery maps, 64 to classify molecules in

chemical databases according to different properties, 65–67 and even for automatic molecular

design. 68–71

While the dichotomy between supervised/unsupervised methods has been useful to classify
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ML algorithms depending on their nature and utility, the latest developments in computer

science show that the two classes are often interlinked.72–74 This is especially true for high-

dimensional datasets, for which only a small unknown number of feature variables are relevant

for a particular application. The inclusion of data variables that lack useful information for

a specific target often degrade the performance of supervised or unsupervised algorithms,

sometimes radically. On the one hand, the more descriptive feature variables are selected, the

more training instances are necessary to maintain the density of training data in the feature

space and to avoid the appearance of spurious relationships between unrelated variables. This

aspect is particularly relevant for supervised algorithms as it leads to overfitting and therefore

to poor generalization. On the other hand, uninformative features can contaminate the no-

tion of similarity between training instances, which is fundamental to both supervised and

unsupervised algorithms (e.g., the outcome of clustering algorithms becomes meaningless

if the data are grouped by uninformative features). As our information-gathering capacity

increases, so does the dimensionality of the datasets. Constructing maps between variables

and transforming data to interpretable low-dimensional representations has thus become

part of the same problem. A deeper understanding of this relationship has brought several

recent advances in computer science in the form of techniques that combine both supervised

and unsupervised methods, such as metric and similarity learning techniques, 72 supervised

manifold learning, 75 and supervised neural network-based encoders. 76 In the fields of compu-

tational and quantum chemistry, however, most of these techniques are still largely underused,

with exceptions in the area of automated molecular design with supervised autoencoders. 70,76

This is crucial for "similarity-based" algorithms such as kernel regression that are heavily used

by the quantum chemical community. Their construction, based on computing similarity

measures, 21 allows the user to easily inject physical and chemical knowledge to improve the

performance of a model. This improvement can be achieved by tailoring the selection of

the reference training instances according to an expert-crafted criterion (external informa-

tion about the characteristics of training data can be used to select the landmark reference

training instances, which is key for the adequate performance of kernel models).77,78 Still,

filtering based only on the composition of the training data can be inefficient in situations

where the selected training instances are not those that are tailored for the learning of the

target property. (∆-)55ML potentials represent a typical illustration of this issue, as the vast

majority of chemical environments are well described by a baseline model while the error

is concentrated in localized areas. In this thesis, we introduce an approach that leverages

supervised dimensional reduction algorithm to eliminate the redundancy and identify the

most relevant reference environments used to train kernel-based atomic potentials.

An alternative way to improve the regression task is to rely upon molecular representations

built to encode the physical features of the chemical target.29,53,77,79–82 These strategies im-

prove the generality and performance of kernel-based models, especially when the number of

acquirable training instances is limited.30,31 Yet, the predefined importance of the features

in molecular representations somewhat limits the adaptability of similarity-based models,

notably when targeting complex properties related to phenomena involving more than a single
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molecule. 10,83,84 Experimentally relevant properties that depend on a multitude of stationary

points (e.g. catalytic properties) are a typical example. Rather than engineering new molecular

representations for each target, we will propose a step-by-step strategy based on similarity

learning that is adaptable to other applications and which filters the information in existing

representations.

The main objective of this thesis is thus to leverage the capabilities of supervised/unsupervised

ML algorithms interplay to improve the performance and adaptability of kernel-based models.

Specifically, we aim at tailoring the selection of the two key ingredients at the basis of kernel

regression (i.e., reference pools and features of the representation) with applications in the

field of computational organic chemistry. We propose two sets of tools based on (i) supervised

dimensionality reduction to select the most relevant atomic environments and (ii) similarity

learning to amplify the most relevant features of the representation. The performance and

utility of the approaches are illustrated on two categories of applications involving the accurate

and transferable sampling of free energy landscapes and the prediction of one of the most

challenging catalytic properties, enantionmeric excess.

The material of the thesis is organized as follows.

An overview of the relevant theoretical background is presented in Chapter 2. We first intro-

duce the fundamental elements of machine learning models and present the methodologies

that are broadly used by the quantum chemical community. This includes strategies to con-

struct molecular representations and ways to exploit them in supervised and unsupervised

learning approaches. We then discuss the concept of similarity between elements in high-

dimensional feature spaces and how this similarity measure can be improved. The last section

summarizes the theoretical foundations of enhanced sampling methods and alternatives

to perform free energy computations, with special focus placed on the Replica Exchange

techniques at the center of this work.

Chapter 3 is a preliminary chapter that sets up the fundamental methodologies central to

the developments presented in the thesis, including the Modular Replica Exchange Simulator

(MORESIM). Kernel-based machine learning potentials are trained to accurately reproduce

the free energy landscapes of highly flexible organic molecules. They are efficiently combined

with the proposed Hamiltonian-reservoir Replica Exchange (Hres-RE) method, a novel en-

hanced sampling technique based on the combination of Hamiltonian Replica Exchange85

and Reservoir Replica exchange86 that are all integrated in our modular python implemen-

tation of replica exchange (i.e., MORESIM). Hres-RE allows for an effective conformational

sampling of molecular systems without requiring atomic forces. Specifically, Hres-RE gen-

erates "jumps" between free energy basins without crossing energy barriers, preventing the

exploration of conformational regions outside the domain of applicability of the trained ML

potential. The value of the approach is demonstrated through achieving CCSD(T)/CBS87,88

free energy landscapes of flexible middle sized (40-50 atoms) organic molecules that would

have otherwise been inaccessible.
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Despite being robust and accurate, the kernel ridge model used in Chapter 3 is not transferable

to predict potential energy surfaces of molecules other than those represented in the training

set. This limitation is addressed in Chapter 4 with the introduction of a local kernel regression

(LKR) approach that combines the scalability and transferability of neutral networks while

preserving the benefits of kernel methods. The proposed LKR framework acts on the selection

of reference atomic environments in a pool of highly redundant entries. While this filtering

task is traditionally tackled by unsupervised learning algorithms based on dissimilarity in

the input feature space, the later does not necessarily correlate with the dissimilarity in the

latent (i.e., target property) space. We address this issue by combining the LKR framework with

Orthogonal Matching Pursuit89 (OMP), a regression algorithm with supervised sparsity. This

results in a supervised dimensionality reduction algorithm that selects the optimal reference

atomic environments that optimize the prediction of the target property. The performance of

LKR-OMP, trained on thermally sampled dipeptide conformers, is validated on the prediction

of the potential energy surface of oligopeptides and compared with that of a state-of-the-art

Behler-Parrinello neural network. The LKR-OMP shows equal or even superior performance

to the NN model, but also comes with a unique set of analytical tools.

Chapter 5 focuses on the other necessary ingredient for the kernel regression, which are the

features of the representation that define molecular similarity. This objective is motivated

by the fact that the molecular representations commonly used in QML are overly complete,

containing a large portion of irrelevant or redundant information. As a result, measures of

molecular dissimilarity are contaminated and biased, which leads to a loss of connection with

the dissimilarity in the target property. This effect is exacerbated if the property of interest

depends on more than a single molecule. Here, we illustrate the problem by considering

the ML prediction of the DFT-computed enantioselective excess of a Lewis base-catalysed

propargylation reaction. We then introduce the concept of reaction-based representations and

exploit metric learning and supervised feature selection techniques to filter the information

contained in the molecular representations. This featurization dramatically improves the

performance of the similarity-based machine learning model.

Finally, Chapter 6 closes the thesis by summarizing the main conclusions and presenting

possible future developments.

Several appendices contain additional materials supplementing this thesis:

Appendix A Contains a small summary of the most used supervised and unsupervised learning

methods with advice on how and when they should be used.

Appendix B contains a description of the modular python package MORESIM, used to imple-

ment the Hres-RE simulations from chapters 3 and 4.

Appendix C contains a description of MolView, a Python script based on the library Dash that

allows easily constructed interactive visualization web-apps to explore chemical data.
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Appendix D contains the description of a set of Jupyter Notebooks developed for the summer

school BDML4Chem with hands-on tutorials on how to practically use ML algorithms in a real

world scenario.

Appendix E contains a set of scientific artwork developed with the open-source 3D modelling

software Blender for several scientific publications.
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2 Theory

This chapter lays out an overview of the theoretical background relevant to the material

presented in this thesis.

The first part contains a description of the basic machine learning elements used in this thesis.

Aiming at providing a basic introduction as well as source material for further reference, the

chapter is structured like a manual and allows following the different steps of the ML pipelines

used throughout the works presented. It begins with the different approaches to numerically

represent molecular data are reported, with special emphasis on those developed by the

quantum chemistry community. A separate subsection is dedicated to the basic elements

of supervised and unsupervised statistical learning, including details and practical advice to

consider at each step of the ML workflow. Given their prominent role in this thesis, supervised

kernel-based regression techniques are then more extensively discussed, with alternative

supervised and unsupervised algorithms being described in Appendix A. The final subsection

highlights the importance of the metric and the notion of similarity in machine learning as

well as its implication in approaches based on both supervised and unsupervised learning.

The second section introduces the fundamentals of canonical simulations and enhanced sam-

pling techniques. Replica Exchange schemes are presented as one convenient and reliable tool

for unbiased explorations of conformational landscapes, which are central to the applications

presented in this thesis.

2.1 Machine learning from chemical data

Machine Learning (ML) refers to the family of computer algorithms that improve automatically

through experience and by the use of data. 90 While the term "machine learning" was coined

in 1959 by the pioneer in artificial intelligence Arthur Samuel working at IBM,91 it was Tom

M. Mitchell that later provided a formal definition of machine learning algorithms as: "A

computer program is said to learn from experience E with respect to some class of tasks T

and performance measure P if its performance at tasks in T, as measured by P, improves with
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experience E.". 91

Machine learning algorithms have been traditionally classified into two broad main classes,

supervised and unsupervised, based on the task expected from the program. Specifically,

the goal of unsupervised learning is to find patterns in unlabelled data, while the goal of

supervised learning is to build prediction models of target properties based on input data.

Additionally, a third class of algorithms known as reinforced learning deals with the problem

of finding a set of actions that maximize some notion of cumulative reward. 92 This last class

of methods is outside the scope of this work.

2.1.1 Encoding Molecular information: Molecular representations

Applying ML to solve problems in computational chemistry requires a framework to encode

molecular information into numerical data that computers can process, that is, a vectorial

molecular representation. 93,94

Building molecular representations in terms of predetermined numerical descriptors is a

long-established practice in chemistry and materials informatics, mainly used in the past

to construct (linear) Quantitative Structure to Property Relationships (QSPR). 95–99 Common

examples of readily available molecular descriptors include the atomic composition, the

electronegativity of the constituent atoms, and electronic structure properties such as the

HOMO-LUMO gap of a molecule. The main disadvantage of this kind of fingerprints is that

they usually require prior knowledge of the problem and their efficiency is generally case-

specific.100 For this reason, simple chemoinformatics descriptors are more often used to

rationalize the behavior of specific classes of compounds, focusing on macroscopic properties

such as solubility, pharmacological activity, or toxicity. 101–103

In contrast to QSPR, Quantum Machine Learning (QML) has the objective to develop universal,

physics-based representations that encode all the necessary information to characterize any

chemical system. The common starting point of this type of representation is the electronic

Schrödinger equation, as it governs the electronic wavefunction and thus all the quantum

chemical properties. In this context, the large majority of QML representations encode the

nuclear positions (RI) and charges (ZI ), since (assuming charge neutrality) these properties are

sufficient information to fix the electronic Hamiltonian for any chemical system. 93,94,104–108

Besides fixing the Hamiltonian, nuclear position and charges are also readily available quanti-

ties to inject into the machine learning workflow.

While nuclear charges are simple scalar quantities that are rather straightforward to include

in a numerical representation, this is not the case for nuclear positions, which are generally

expressed in a set of Cartesian coordinates. For the algorithm to be able to learn, it is imperative

for the representation to be covariant with the target property upon any arbitrary coordinate

transformation. The majority of quantum chemical properties are scalars (e.g. electronic,

conformational, atomization energies), which are invariant under the most fundamental
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symmetries of physics: rigid rotation and translation of the molecules and permutation of

their atoms. Therefore, most of the effort in the development of efficient QML representations

is devoted to transform and encode the input nuclear coordinates in such a way to preserve

all spatial symmetries. 93

The first well-established example of physics-based representation is the Coulomb matrix

(CM), 29 which is a molecular descriptor built to mimic the electrostatic interaction between

nuclei. As these interactions depend on the distances between atom pairs and not on their

absolute positions, rotational and translation invariance is guaranteed by construction. Since

the Coulomb matrix represents each molecule as a whole, indivisible entity (i.e., one molecule

corresponds to one vector), CM is part of a more comprehensive family of descriptors called

global representations. In contrast, local representations, often atom-centered, describe

molecules as a collection of atoms and their environments. This category is well represented

by the seminal example of the Behler-Parrinello symmetry functions,28 which are fixed size

vectors constructed using products of an atom-centered radial and angular basis set.39,79

Local representations are scalable, as their computational cost increases linearly with the

number of atoms, and transferable since a large chemical diversity can be described as a com-

bination of a rather limited number of atom-centered environments. 8,109,110 Coulomb matrix

and Behler-Parrinello symmetry functions were the first universally applicable, physical-based

representations that promoted fast and accurate predictions of molecular properties. However,

they have both stringent limitations. The Coulomb matrix is not invariant upon permutation of

atoms in the molecule and electrostatic interactions are not always well correlated with molec-

ular properties. The original Behler-Parrinello symmetry functions result in impracticably

large vectors when the database contains more than a few different atom types.

During the last decade, the increased interest of the quantum chemical community in im-

proving physics-based representations led to the development of a rather diverse choice of

descriptors, each attempting to successively overcome the limitations of others. Overall, these

representations can be classified into two distinct groups, according to the physics that they

try to model:

• Representations mimicking a potential. A large group of representations relies on

sets of one-, two-, three-, and N-body descriptors to mimic physical properties in

the same way force fields use bonds, angles and dihedrals to model potential energy

surfaces.111–113 In this sense, ML models based on this type of representation can be

seen as modern expression of classical force fields, where, however, the functional

form is not defined a priori and the target property is not necessarily the ground-state

electronic potential energy. A few examples of the most common representations

falling in this first category are the already mentioned Coulomb matrices, 29 the bag of

bonds, 80 permutation invariant polynomials,114,115 sine and Ewald sum matrices,116,

many-body expansions 81,94 and many-body tensor representation, 117 descriptors with

constant complexity, 118 histograms of distances, angles, or dihedrals (HDAD), 51 Bonds-

Angles Machine Learning (BAML), 94 the Spectrum of London and Axilrod-Teller-Muto
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(SLATM) 119 and FCHL. 82

• Representations mimicking a particle density. Another family of representations

branched from the Behler-Parrinelo (BP) symmetry functions, 28,39,79 use atom-centered

functions to represent the density of neighboring nuclei within a pre-established cutoff

distance. Examples in this category include the bispectrum, 93 partial radial distribution

functions,120 simple elemental descriptors,121 Fourier series of atomic radial distri-

bution functions,122 weighted BP symmetry functions,123 and the Smooth Overlap of

Atomic Positions. 77,93,124

Independently from the nature of the features used, molecular representations can be further

classified based on other criteria, such as whether they represent a molecule globally as a

whole entity such as the CM or locally as a collection of environments like representations

based on symmetry functions. They can also be classified depending on which symmetries do

they contain, whether the representation is vectorial or a tensor of higher order, and depending

on their suitability for periodic and non-periodic systems.125 Recently, they have also been

classified and ranked based on how much information do they contain.126 Using tools from

information theory, it is possible to construct a hierarchy of the molecular representations

that contain the most information, although it is not clear that this is correlated with their

performance (as we will discuss later in this chapter). Even though QML representations

can be classified into distinct groups according to their physics, suitability for condensed

phase,125 and even on their information content,126 navigating over the totality of physics-

based descriptors is a highly non-trivial task. Despite all the effort, it is still unclear if an

optimal representation, which would lead to efficient learning for all the quantum chemical

properties, exists. In principle, an excellent molecular representation would generate a feature

space where the target properties are smooth and slowly varying, indicating that learned

maps can be generalized to new data. In general, a representation must satisfy four distinct

conditions to allow efficient and transferable learning of chemical properties:

• Completeness (injectivity) and uniqueness. There must be a one-to-one map between

the representation of a molecule and its properties. Although in general QML represen-

tations are complete and unique for a large spectrum of chemical systems, it has been

recently pointed out that many physics-based descriptors are unable to distinguish

highly-symmetric (homometric) systems. 127–129

• Continuity and differentiability. 93 A representation must be continuous and smooth,

as the smoothness of target properties is also a basic underlying assumption of most

statistical learning methods. 130,131

• Covariance. The representation must encode the same symmetries as the target prop-

erty, 36,93,132 including invariance to the basic symmetries of physics: rotation, reflection,

translation, and permutation of atoms of the same species.
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• Size independence. The size of the representation (i.e. the number of features) should

be independent from the molecular size. 133

Beyond these four fundamental properties, the more the representations reflect fundamental

physical and chemical principles (e.g. nearsightedness of electronic matter, multi-scale nature

of chemical interactions, similarity of chemical properties in the same periodic table group)

the more robust, transferable and data-efficient the models become. 30,132,134 Even in light of

the recent introduction of sophisticated deep-learned representations,74 the role of physics-

based descriptors remains paramount in quantum machine learning to the point that, for

practical applications, the choice of representation is often more important than the choice of

a learning algorithm. 53,135

Among all QML representations, the Spectrum of London and Axilrod-Teller-Muto potential

(SLATM) plays a particularly important role in the work presented in this thesis. For this

reason, the mathematical form and the physical motivation of SLATM are detailed in Section

2.1.2.

2.1.2 The SLATM representation

The SLATM representation was introduced to overcome some of the limitations of representa-

tions like the Coulomb matrix: SLATM has fixed length independently of the molecular size,

it is invariant by construction to atom permutations and include information about one-,

two- and three-body terms. In contrast to Coulomb matrix and other more sophisticated

representations such as the histograms of distances, angles, and dihedrals (HDAD),51 and

the Bonds-Angles Machine Learning (BAML),94 SLATM mimics explicitly a specific part of

the electronic Hamiltonian, the long-range correlation potential. It has been proposed that

incorporating the bond and angular information through a potential leads in general to faster

and more efficient learning of quantum chemical properties. 30,119

The conceptual starting point of SLATM is an expansion in many-body terms of artificially

defined, atom-centered nuclear charge densities. This expansion takes the following mathe-

matical form:

• One body contribution: the atomic number ZI , for each atom I in the molecule.

SLATM1
I = ZI (2.1)

• Two-body contribution: London potential of the nuclear charge density.

SLATM2
I =

1

2

∑
J 6=I

ZJ
1

σ
p

2π
e−(r−RI J )2 1

r6 (2.2)

The London potential has a much faster asymptotic decay than the electrostatic interac-

11



Chapter 2. Theory

Figure 2.1 – Different (1, 2 and 3-body) terms in the (global) SLATM representation.

tions used in e.g. Coulomb matrix and thus is more appropriate to describe the covalent

bond regime. 94

• Three-body: Axilrod-Teller-Muto potential of the nuclear charge density.

SLATM3
I =

1

3

∑
J 6=K 6=I

ZJ ZK
1

σ
p

2π
e−(θ−θI JK )2

h(θ,RI J ,RI K ), (2.3)

where θ is a continuous variable the spans the angle between the vectors RI J and RI K .

The function h(θ,RI J ,RI K ) is the core of the three-body contribution and depends on

both on pairwise distances and angles as:

h(θ,RI J ,RI K ) = 1+ cosθcosθJK I cosθK I J

(RI J RI K RK J )3 . (2.4)

The complete form of SLATM results from the concatenation of the one-, two- and three-body

terms in a single vector (see Figure 2.1). Explicitly depending on the atom-centered nuclear

charge densities, SLATM is originally a local representation (better specified as aSLATM, or

atomic-SLATM), but the global version is readily obtained upon summation over all the atoms

in a molecule.

There are three user-defined parameters needed to construct the SLATM representation: the

cutoff radius rc for the 2-body term, the width of smearing Gaussian function for both radial

and angular terms, and the density of grid to sample the radial and angular terms. Since the

London potential has a rapid asymptotic decay, most SLATM applications use a standard

cutoff radius of 4.8 Å, for which the potential is usually well-converged. Following the original

publication,119 the width of the Gaussian functions are set to 0.05 Å and 0.05 rad, and the

sample grid densities are set to 0.03 Å and 0.03 rad. These values were found to optimize the

performance of SLATM across multiple datasets. 119

Since its first introduction in 2017, the SLATM representation has been extensively used in

the quantum machine learning community to predict a wide variety of chemical properties
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Figure 2.2 – Fundamental steps to analyze data with unsupervsied learning.

ranging from simple atomization energies, 119,136 to HOMO-LUMO energies and gaps, dipole

moments, polarizabilities, zero-point vibrational energies, heat capacities, and vibrational

frequencies.82 However, SLATM should not be used to simultaneously represent systems

that are not fully described by their atomic coordinates, for example transition metals with

different magnetization or identical molecules with different charges. In such cases, alternative

representations that are able to encode this information should be used instead.

On account of its robustness and its widespread success, SLATM has been the molecular

representation of choice for all the scientific work presented in this thesis.

The previous sections discuss how to encode molecular information into numerical data that

computers can process. In the following, we describe in detail the different steps of supervised

and unsupervised machine learning pipelines.

2.1.3 Unsupervised Machine Learning Pipeline

Unsupervised learning is a comprehensive term that refers to a broad class of algorithms,

which allows inferring the structure and the patterns present in unlabelled data. More precisely,

unsupervised learning algorithms can be broadly divided into two classes according to their

goal: dimensionality reduction and clustering.

The goal of nonlinear dimensionality reduction techniques is to transform data from a high-

dimensional into a low-dimensional space while retaining to the greatest extent the same data

structure as in the original dataset. These machine learning models are often employed to

visualize and understand the intrinsic structure of the data and to improve the performance

of other algorithms (e.g. clustering), which break down when applied on high-dimensional

data. The whole concept of dimensionality reduction relies upon the hypothesis that some

features in the database are strongly correlated to each and thus the intrinsic dimensionality

of the data is in reality much smaller than the one fed by the user. If on the contrary, for a given

dataset, all the features are independent and equally important, dimensionality reduction

techniques will only result in a generalized loss of information.
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In contrast to dimensionality reduction, the goal of clustering algorithms is to group data so

that elements belonging to the same group are more “similar" to each other than to those

in other groups. Each different clustering algorithm is distinguishable in the way it defines

“similarity" and a “cluster".

While unsupervised learning techniques are all conceptually different, their application on a

database follow in general a common 5-points procedure:

1. Input feature space construction

Data may be fed by the user either as a set of predefined features (molecular size,

distances and angles between atoms, type of atomic species, predefined molecular

representations, etc.) or as a set of general instances, like molecular compounds, whose

features have to be defined. The construction of the feature space is quintessential for

unsupervised learning. As the data are unlabelled, the algorithm cannot determine a

priori which features would structure the data in a way that is relevant for the user or

any other post-processing task.

2. Feature pre-processing

In general, similarity measures, like the widely used Euclidean distance, attribute higher

importance to features that vary the most through the database. If no information

on the relative importance of features is available, the most common approach is to

normalize each feature so that its values fit a normal distribution centered at zero and

with a standard deviation equal to one. This effectively enforces similarity measures to

treat all features on equal footing. Periodic features, such as angles, can be replaced by

other variables, such as their sine and cosine, which will help non-periodic metrics (e.g.

Euclidean distances) to encode adequately periodicity.

3. Choosing the dimensionality reduction algorithm

It is always possible to choose among many algorithms for dimensionality reduction,

each of them based on different underlying principles to build the reduced feature

space. If there is no fundamental reason for choosing a specific algorithm, it is good

practice to use several and compare their outcome to the desired result (see appendix A

for a summary of common dimensionality reduction algorithms and tips on how to use

them).

Dimensionality reduction algorithms can be subdivided into linear methods, often

referred to as matrix factorization or matrix decomposition techniques, and nonlinear

methods referred to as manifold learning. The archetype of linear dimensionality

reduction is Principal Component Analysis (PCA), which consists in forming linear

combinations of the original feature vectors to construct an orthogonal basis onto

which the data can be projected. The final dimensionality is chosen by the user and it is

determined by the number of basis vectors constructed. Within PCA, these orthogonal
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vectors represent the directions of maximum variance in the original high-dimensional

space.

Nonlinear dimensionality reduction can be thought of as a generalization of linear

frameworks to capture local structures of data. 137 Unlike linear methods, the obtained

dimensions bear no pre-defined (physical) meaning, except for indicating a “distance"

or a (dis)similarity between two data points. Nevertheless, they are generally much

more capable to elucidate the structure and distribution of data in a high-dimensional

space. Perhaps the most popular method for manifold learning is t-distributed Stochas-

tic Neighbours Embedding 138 (t-SNE), which relies on the idea that the probability for

two points to be neighbors should be conserved upon projection to low-dimensional

spaces(see Figure 2.3 for a comparison of PCA and t-SNE applied in a chemical database).

4. Model optimization

Most machine learning algorithms are tuned by a set of user-defined constants, the

hyper-parameters, that can significantly alter their outcome and must be optimized.

However, in the context of unsupervised learning, the evaluation of the quality of a

projection is often subjective and it is rare to have quantitative criteria to guide the

optimization of hyper-parameters. Nevertheless, the fitness of an unsupervised learning

algorithm can be always evaluated using somewhat heuristic metrics such as the fact that

spread data points are generally preferred, or that a smooth transition between clusters,

if there are any, is generally preferred over large gaps. Another possibility to assess

the quality of the projection consists in verifying that the feature space variables vary

smoothly across the projected map. To further optimize the obtained projection, steps

2-4 can be repeated while using different pre-processing techniques and dimensionality

reduction algorithms. If features have been designed by the user, it is good practice to

include step 1 in the loop.

5. Clustering

Dimensionality reduction is often used in tandem with clustering algorithms to better

highlight the similarity between groups of data (see Figure 2.3 d). As for dimensionality

reduction, a plethora of clustering algorithms have been developed in the past, each

of which can be classified according to their definition of “similarity" and “cluster"

(see appendix A for a summary of common clustering algorithms and tips on how to

use them). Alternatively, clustering can be applied directly to the input feature space,

but the outcome is seldom comparable or better than clustering after dimensionality

reduction (see Figure 2.3 c and d). Similar to dimensionality reduction, the quality of

clustering depends largely on the subjective judgment of the user. Often the evaluation

of clustering results is as difficult as the clustering itself. 139 While there exist some math-

ematical tools to analyze the quality of a clustering result, 140–142 there is no quantitative

approach that can ultimately replace human evaluation. 143
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Figure 2.3 – Results of 2D dimensionality reduction using PCA (a) and t-SNE (b) for a subsample
of 130.000 compouds of the Cambridge Crystallographic Data Centre (CCDC) database. 1 Each
point represents a molecule, and the color code represents its size. SLATM was used as the
input representation for both algorithms. As the overall variance of the SLATM representation
is dominated by the size of the molecule, the components of PCA basically capture this
magnitude and not much more. Alternatively, t-SNE is able to capture the local structure and
different cluster in the data, which give a projection much richer in details. On the lower part
of the figure the t-SNE projection is color coded using the cluster labels obtained applying
DBSCAN 2 on the t-SNE coordinates (d) or directly on the SLATM representation (c). We used
DBSCAN as it does not require as input a specific number of clusters (see Appendix A for more
information on DBSCAN). This shows why is important to apply dimensionality reduction
prior to clustering. DBSCAN applied directly to the input feature space groups most points in
a single cluster and considers the rest as noise (black).
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Figure 2.4 – Fundamental steps in building a supervised ML model.

2.1.4 Supervised Machine Learning Pipeline

In contrast to unsupervised learning, discussed in the previous section, the goal of supervised

learning algorithms is to find a mathematical relationship between input data and their

outputs (typically scalars or labels). Ideally, an ML algorithm is able to generalize the map

from the training data and use this mapping to predict the output of “unseen" instances with

controlled accuracy. The statistical performance of an algorithm is measured through this

generalization error, i.e. the error computed on a test set different from the training. Similarly

to unsupervised learning, building a supervised model generally consists of 5 steps (see Figure

2.4):

1. Database construction of training examples

The first step in building any ML model is gathering data, which can be the most com-

putationally expensive step. In quantum chemistry, acquiring data typically involves

building a pool of molecular compounds and computing the desired target molecular

quantity for each compound. While there is a large number of existing quantum chemi-

cal datasets, chemistry is so heterogeneous144,145 that they are generally not relevant

outside the framework they were built for, and very often each application requires the

construction of a task-specific dataset.

When constructing a database, it is extremely important to select the samples to avoid

redundancy, data imbalance, and to achieve uniform sampling of the ensemble of inter-

est. Intelligent database construction generally involves a step of unsupervised learning

to understand the characteristics of the pool of training instance candidates. For in-

stance, a very common tool to perform uniform sampling is Farthest Point Sampling

(FPS), a simple greedy algorithm that selects instances from a database so that they are

maximally separated from each other.

2. Input representation

Choosing the most adequate molecular representation for the specific learning exercise

is not always straightforward, but it is essential for the accuracy and generality of the

trained model. If there is no stringent physical reason for which a specific represen-

tation should be chosen, steps 2 to 5 in Figure 2.4 should be repeated for different

representations and the user should select the best-performing descriptor.
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Figure 2.5 – Schematic representation of different bias/variance trade-off scenarios.

3. Supervised regression algorithm:

The most widely used Supervised ML algorithms can be broadly classified into five

groups (see Appendix A): linear models, similarity or kernel-based methods, neural

networks, decision trees and ensemble methods, each with different strengths and

weaknesses. There is no single best algorithm, and their performance can vary from

case to case. Given the central role that kernel-based methods, and in particular, Kernel

Ridge Regression (KRR) plays in the context of this thesis, we dedicate the following

section to introduce this method in more detail.

4. Model training and hyper-parameter fitting:

As any machine learning model, supervised algorithms also depend on a set of hyper-

parameters that broadly define their complexity. Ideally, a model would learn the

regularities in training data while adequately generalize them to unseen data. 21 Unfor-

tunately, it is typically impossible to do both simultaneously, and in the optimal case

there should be an equilibrium between both, the so-called bias-variance trade-off (see

Figure 2.5).

5. Assessment of training accuracy and learning rate:

In order to select the optimal model for a learning task, it is crucial to compare several

machine learning frameworks trained on the same dataset, but using different repre-

sentations and algorithms. This comparison is crucial to assess if any of the generated

models have been able to exploit all the information in the training data to construct

the mapping. The most straightforward approach to compare different models is to

plot their learning curves (i.e. the generalization error vs. the number of training data

instances). However, an important caveat on this practice is that the learning curve

only reflects the global performance of a model. For this reason, it is good practice

to use additional metrics and performance tests on subgroups of the data in order to

understand the real behavior of any ML model.
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2.1.5 Similarity-based regression: Kernel methods

The core assumption behind similarity-based supervised learning methods is that similar data

instances (i.e. compounds in chemistry) are characterized by similar target properties. The

prototypical algorithm for this class of models is the K-Nearest-Neighbours (KNN), which

predicts new labels or scalar targets by averaging the labels and values of the K (a user-

defined number) most similar points in the training data. Due to its simplicity, KNN is a very

robust, lightweight, and easy-to-understand model, which performs surprisingly well in many

situations.

The second paradigm of similarity-based regression models is represented by Kernel methods.

Kernel methods aim at generating a mapping f : x → y and they construct this map by

evaluating the similarity between training instances X = {x1, x2, ..., x N } with known targets

y = {y1, y2, ..., yN }. The concept of similarity is intimately related to the concept of distances

between data, which require the evaluation of inner products in high-dimensional spaces. 21

This operation allows constructing complex nonlinear mapping without explicitly applying a

transformation on the coordinates of x . More specifically, the expression of a kernel mapping

has the form of a weighted sum over the different elements x i in the training data:

f (x) =∑
i
αi k(x , x i ) =αT k(x), (2.5)

where k(x , x i ) is the kernel similarity between the two inputs, and is generally bounded

between 0 (not similar) and 1 (similar). Most commonly the target quantity is a scalar value,

although generalizations of kernel methods exist to generate multi-output models. 146,147

Probably the most common kernel used in quantum machine learning is a simple Gaus-

sian function of a distance metric, i.e. k(x , x i ) = exp(−γd(x , x i ), with d typically being the

Euclidean distance. This combination produces smooth and local solutions, but other alterna-

tives such as the dot product between features vectors (k(x, xi ) = x · xi ) also exist.

In quantum machine learning, most of the learning tasks are regressions, as most of the targets

are continuous numerical values. Among all possible kernel-based algorithms, Kernel Ridge

Regression (KRR) is probably the most widely used in quantum chemistry and it is generally

the method used throughout this thesis.

In KRR the coefficients α of Equation 2.5 are computed using an ordinary least squares

minimization, i.e. minimizing a cost function C (α) equal the sum of the squared differences

between mapped (predicted) ŷi = f (x i ) and the real yi in the training data: C (α) =∑
j (y j −

f (x j ))2 =∑
j (y j −αT k(x j ))2. As many regression problems, simple kernel regression would

suffer from collinearity among the data, especially when extremely similar training instances

are present. To overcome this problem, KRR uses a regularization term (a ’Ridge’) λ||α||22 =
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Figure 2.6 – Depiction of a kernel method to predict a scalar quantity using 1D (left) and
2D(left) input data. On the left, the dotted lines are gaussians of the same with centered on
the training instances. The scale of the gaussians is determined in the training step of the
model with the goal of constructing a smooth curve crossing all the training points. The
prediction of a new data entry (the center x in the right, for example) is generated by adding
the contributions to nearby points.

λ
∑

i α
2
i , which adds a penalty to the magnitude of theα coefficients:

C (α) =∑
j

(y j −αT k(x j ))2 +λα2
j . (2.6)

Optimal coefficients (α∗) are found by finding the roots of the fist derivative if C (α), which

leads to:

α∗ = (K+λI)−1 y , (2.7)

where Ki j = k(x i , x j ).

2.1.6 Supervised feature selection, similarity measures, and metric learning

The previous sections focused on the steps to build effective supervised and unsupervised

machine learning pipelines but omitted one capital aspect of QML: how can we adapt, modify

or recast a molecular representation to improve the overall learning. For instance, features

coming from different molecular representations could be concatenated to obtain a more com-

plete representation or even to augment existing representations with additional descriptive

features.
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Figure 2.7 – For a given set of data, the higher the dimension of the feature space the more
sparsely distributed the data points are. This is exemplified in this figure, where it can be
seen how the density of data diminished with the increase of dimension. With increasing
dimensionality, a sphere of the same radius contains less and less data points. At the same
time, the separation between points increases.

The curse of dimensionality

From the perspective of statistical analysis and ML, the optimal dimensionality of the feature

space should be as small as possible, but still large enough to contain all the relevant informa-

tion for the learning task. The addition of superfluous features is generally detrimental for any

statistical model, as they could add significant noise to the data. Moreover, the feature space

increases exponentially while adding independent descriptors, and data points distributed

in that space become quickly sparse. The sparsification of data in high-dimension leads to

a phenomenon called the "curse of dimensionality":21 the higher the dimensionality of the

feature space, the exponentially more examples (i.e. data) are needed to sample that space

and thus obtain statistically reliable learning, which significantly increases the computational

cost of building a statistical model (see Figure 2.7).

Feature selection and extraction

Given the curse of dimensionality, the information contained in the data has to be filtered

to determine what is relevant for the learning exercise and what is not. Feature selection

techniques address this issue. 148 The underlying assumption of this class of algorithms is that

data contains features that are either redundant or irrelevant to the specific learning task, and

therefore can be safely eliminated. For practical purposes, however, redundant and irrelevant
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are well distinct. Redundancy implies that the information carried by a feature is already

encoded into another. Irrelevance means that the specific feature does not carry meaningful

information for a specific application. To overcome redundancy is the goal of unsupervised

feature selection, while to remove irrelevance is the goal of supervised algorithms. 149

Unsupervised feature selection methods are based on two basic principles: removing similar

features and removing features with low variance. A common way of eliminating similar

features is to compute the cross-correlation between all the features and then remove highly

correlated ones. Removing low variance features is even more straightforward and can be

performed using simple algorithms such as PCA or CUR decomposition. 150

In contrast, supervised feature selection (or supervised sparsity) can be divided into three

main categories, according to the way features are selected. Filter methods use rather cheap

statistical tools (e.g. correlation coefficients, statistical ranks, mutual information, etc.) to filter

out irrelevant or redundant features prior to any learning.151 In contrast, wrapper methods

take the performance of the model into account and search greedily among sub-sets of

features to identify which combination of descriptors leads to the best overall learning. Finally,

embedded methods perform the feature selection directly during the training of the model.

Particularly important for this thesis, Orthogonal Matching Pursuit (OMP)89,152 is a greedy

embedded method, which selects progressively the set of features that are the most correlated

with the desired target.

Metric Learning

As stated in previous sections, the most common machine learning algorithms used in quan-

tum chemistry are all rooted in the notion of a distance or a similarity between data points,

which depends on the features of the representation and the metric employed. Most com-

monly, pre-defined metrics such as the Euclidean and the Manhattan distances are used.

However, metrics like the Euclidean distance (dE (a,b) =
√∑

i (ai −bi )2 = ||a−b||2) are not

invariant under monotonic transformations and are sensitive to the scaling of individual coor-

dinates. For instance, the use of the Euclidean metric inflates the importance of the features

with higher variance. To counteract this effect, features are often normalized. However, this

kind of unsupervised generalized rescaling is not necessarily optimal, as depending on the

specific target certain features may be more important than others, and it has been shown

that it can deteriorate the learning.153 To illustrate this point, Figure 2.8 shows an example

of ad-hoc data, where unsupervised standardization of the individual features worsen the

distribution of data in the feature space. The Euclidean metric in the example of Figure 2.8

is simply not adequate, as it treats both features on equal footing, given that they have the

same variance. Nonetheless, it appears clearly that feature 1 is more important, as the target

function changes faster in that direction than in the direction of feature 2. In a space where

feature 2 is shrunk (or alternatively using a metric that gives more importance to feature 1) the

target property evolves equally fast in each direction and results in increased prediction accu-

racy (see Figure 2.8, top-right). However, it is not always straightforward to understand if the
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Figure 2.8 – On the left we can see the original and adapted feature spaces with the target
function. On the top right we can see the accuracy of test predictions done with 100 training
points. The figures on the lower left show the dissimilarity plots for each of the two metrics /
feature spaces.

Euclidean metric is adequate for a feature space, especially if the space is highly dimensional.

Dissimilarity plots are a tool that can help to visualize the influence of metrics on the learning.

These plots correlate the distance between points in the feature space with the difference in

target property. If the metric used is adequate, the difference in target property should go to

zero as the distance between points goes to zero in the feature space. In this example, the

Euclidean metric in the original spaces shows this behavior, although it can be seen that there

are two different asymptotic directions, corresponding to the two length scales of the two

features (see Figure 2.8, bottom-right). This spurious behavior is corrected using the adapted

metric.

The choice of metric is essential for any machine learning task, but it can be extremely difficult

to find or design a metric well-suited for the data and learning task of interest.154 Distance

metric learning153,155 (or metric or similarity learning) aims at automatically predicting task-

specific distance metrics from supervised data so that the learned distance metric can then

be used to perform additional supervised and unsupervised tasks. As most ML techniques,

metric learning algorithms can be classified in linear and non-linear metric learning.

Linear metric learning methods learn a linear transformation L of the original feature space

so that the Euclidean metric can be a good measure of dissimilarity. The Euclidean distance

between points a and b in the transformed space is dE (a′,b′):

dE (a′,b′) = ||a′−b′||2 = ||La−Lb||2 = ||L(a−b)||2 = dM (a,b), (2.8)

where dM is generally known as the Mahalanobis distance. Linear metric learning methods

23



Chapter 2. Theory

optimize the matrix L by minimizing the error performed by classification or regression models.

The widely used algorithm Large Margin Nearest Neighbor 156 (LMNN) learns a Mahalanobis

distance to optimize a K-Nearest-Neighbours (KNN) classification, while the algorithm Metric

Learning for Kernel Regression72 (MLKR) learns a Mahalanobis distance to optimize a kernel

regression. Constraints can be added to the optimization procedure to promote certain

properties to the learned metric, such as sparsity. 157,158 In that case, the matrix L will contain

few non-zero elements, effectively behaving as a linear supervised dimensionality reduction

method at the same time.

Alternatively, non-linear metric learning methods are a class of techniques that learn variable

metrics that change depending on the local environment of points. The first nonlinear metric

algorithms were based on learning variable Mahalanobis metrics,155,159 but more recent

methods are based on deep learning (deep metric learning160). Most deep metric learning

models are inspired by Siamese 161 and Triplet162 networks. They have been mostly used for

image recognition tasks, 160 but also for drug response similarity prediction 163 and sequence-

embedding of DNA.164 Deep metric learning allows better generalization and reliability of

deep learning models, as well as better performance for unbalanced classes. However, the

higher complexity of non-linear metric learning generally means that they require much more

data than linear metric learning methods to avoid overfitting.

Metric learning approaches form a bridge that connects the tasks typically associated with

supervised and unsupervised learning algorithms based on similarity. From a technical

perspective, metric learning models are supervised, as the data points are labeled. From a task-

oriented perspective, filtering and adapting information to define similarity are typical goals

of unsupervised learning. Indeed, filtering information, constructing effective representations,

and predicting a target property are all related tasks.
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2.2 Conformational sampling and Replica Exchange methods

One of the key technical aspects of this thesis is accelerating free energy computations by

combining ML-based potentials with enhanced sampling methods. For this reason, the

following sections introduce the main concepts and the formalism of conformational sampling

and enhanced sampling techniques, with special emphasis on replica exchange simulations.

In statistics, importance sampling is a general framework for estimating the properties of a

particular probability distribution. In computational chemistry, conformational sampling

refers to the importance sampling of the degrees of freedom of molecular systems to estimate

the probability distributions of their conformers. This probability distribution, estimated at

thermodynamic equilibrium, is the basis of free energy difference computations.

2.2.1 Canonical Sampling

The conformational sampling presented in this work aims exclusively at computing free

energy differences in the canonical, or NVT, ensemble (i.e. at a constant number of particles

(N), constant volume (V), and constant temperature (T)). The principal thermodynamic

variable of the canonical ensemble, determining the probability distribution of states, is the

temperature. 165

In these conditions, the probability of a state S depends on its energy E(S), in the form of the

Boltzman distribution: 165

p(S) ∝ e−βE(S),where β= 1

KbT
. (2.9)

Any property average < A > of the distribution can be theoretically obtained by evaluating the

probability (i.e. the energy) of all the possible states in the space S:

< A >=
∫

s∈S
A(s)p(s)d s. (2.10)

In practice, the integral in Equation 2.10 cannot be evaluated exactly and even its approxima-

tion by strictly random sampling is not efficient as most conformations would have very high

energy, and therefore negligible weight in the ensemble average. In importance sampling, the

goal is to focus on the conformational space where the weight is significant in the average.

More precisely, the goal is to generate a sequence of samples in such a way that the more sam-

ples are produced, the more closely their distribution approximates the desired distribution

p(S). This is the key idea behind the Metropolis–Hastings Monte Carlo (MC) algorithm.

In MC, samples are produced probabilistically and iteratively in such a way that the distribu-

tion of consecutive conformational samples is dependent only on the current state (which
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effectively behaves as a Markov chain). 166 At each iteration, an MC algorithm picks a possible

move from a set of candidates based on the current state. Then, with some probability, the

generated MC step is accepted (in which case the current state is updated) or rejected (in

which case the move is reverted and the same initial state is used in the next iteration). The

probability of acceptance is determined by comparing probabilities p(S) of the current and

candidate samples.

To ensure that the sampling of an MC simulation will converge to the canonical probability

distribution, there are two conditions. First, the methods used to generate new candidates

have to be ergodic, which means that all the conformational space is accessible through them.

Second, they must satisfy the principle of detailed balance. Detailed balance states that at

equilibrium, each elementary process is in equilibrium with its reverse process. In practice

this means that the probability of being in state A (p(A)) and going to state B (p(A → B |A))

must be the same as being in state B (p(B)) and moving to state A (p(B → A|B)), i.e.:

p(A)p(A −→ B |A) = p(B)p(B −→ A|B). (2.11)

By using equation 2.10, this leaves:

p(A −→ B |A)

p(B −→ A|B)
= eβ(E(B)−E(A). (2.12)

Assuming that both A → B and B → A exists, then the simplest expression that satisfies this

equation is:

p(A −→ B |A) = mi n(1,eβ(E(B)−E(A)), (2.13)

the last formula being the original Metropolis scheme for the acceptance probability of an MC

move in a simulation.

It has been shown that in some circumstances some of the conditions for an acceptable MC

move can be relaxed and require “balance", rather than “detailed balance", 167 to achieve the

right convergence, but the reader is referred elsewhere165–167 for an in-depth discussion of

the topic.

Alternatively to MC, canonical sampling of atomic conformations can be achieved through

dynamical simulations. In the limit of time going to infinit, time averages and ensemble

averages are equivalent, and can be generated with Molecular Dynamics (MD) simulations

when coupled with a virtual temperature bath (a.k.a. a thermostat165).

For the purpose of conformational sampling, the differences between MC and MD reside in

their efficiency. For molecular systems, the “interesting region” of a canonical distribution

26



2.2. Conformational sampling and Replica Exchange methods

(with high p(S)) is narrowly distributed in the accessible phase space, since most of the pos-

sible arrangements of atoms in space do not represent a realistic molecule. As a result, the

efficiency of MC methods depends on the design of the moves used to drive the evolution of

the sampling. An effective MC sampling must contain "moves" designed to guide the simula-

tion in a large dimensional and convoluted phase space filled with steep potential barriers.

Otherwise, a blind search in the form of random displacements is typically very inefficient,

resulting in very small probabilities of move acceptance. Alternatively, in MD simulations

the dynamic evolution of a system is reproduced and all the structures generated directly fall

in the relevant area of the phase space, so every step is accepted by default. Therefore, for

molecular conformational sampling, MD is often superior to crude MC. Nevertheless, MD

trajectories are bound to diffuse locally, with a time step smaller than the time scale of any of

the system’s dynamic modes, in order to produce stable and realistic dynamics. In contrast, in

MC simulations any rearrangement of the system’s coordinates can be used as a candidate

move, as long as it satisfies detailed balance. This allows for engineered MC moves designed

to generate big changes of the system’s coordinates and produce jumps in the phase space.

Therefore, while MD has a much faster local diffusion in the phase space, MC can potentially

have a much faster global diffusion.

The sampling efficiency is especially relevant for systems with very slow collective motions,

for example, related to the transition between basins in rough potential energy landscapes. In

such cases, standard MD simulations get trapped in local energy basins, and the time scales as-

sociated with barriers-crossing can be many times the time scales that are affordable/feasible

to simulate. Alternatively, MC simulations can allow for easy transition between meta-stable

states if the MC moves are adequately designed, although they are still ineffective for fast local

diffusion. The set of techniques known as "Enhanced" or "Accelerated" sampling addresses

this issue. In most cases, enhanced sampling techniques combine MD approaches with fast

local diffusion, with MC steps that generate big jumps in phase space. This facilitates the

jump over energy barriers and the transitions between the local basins of the PES, allowing to

obtain converged canonical sampling with a feasible computational cost. One of the most

extensively used methodologies that follows this philosophy is the so-called Replica Exchange

simulations.

2.2.2 Replica Exchange methods

Replica Exchange (RE) simulations aim at improving the convergence speed of statistical

sampling of the phase space for systems presenting a rough potential energy surface. 85,168,169

A RE simulation consists of a series of independent sampling simulations (replicas) of the same

system in different equilibrium conditions, which are allowed to exchange their molecular

configurations every so often. The simulation proceeds by alternating between normal ther-

malized MD, and MC moves that attempt to exchange configurations between neighboring

replicas.
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Generally, one of the replicas evolves at some target equilibrium conditions, while the rest

evolve under modified conditions that facilitate the exploration of the phase space. Replica

exchange simulations typically use modifications in the temperature or in terms of the Hamil-

tonian (such as the atomic masses or the coefficients of the dihedral or Van der Waals terms in

molecular force fields 85,170–172) to facilitate the crossing of energy barriers and thus accelerate

the sampling of canonical probability distributions. The MC exchange of structures between

two replicas induces big phase space jumps in the replica evolving at the target equilibrium

conditions, which allow transitioning between local basins of the PES and critically reducing

the convergence time of the canonical sampling. To ensure that the sampling generated

in each replica follows the adequate (generally the canonical) distribution, the exchange of

structures must be conditioned to satisfy detailed balance, as discussed before in equation

2.11.

In an exchange of conformations between two replicas Ra and Rb in a RE simulation, the

probability p(A) (as in eq. 2.11) is equal to the probability of Ra being in conformation s1

times the probability of Rb being in conformation s2: p(A) = p(Ra in s1)p(Rb in s2).

In the canonical ensemble the number of particles and the volume remain constant among all

the replicas, so that p(Ra in s0) ∝ e
− Ha (s0)

kb T = e−βa Ha (s0) = e−ha (s0) where ha is the reduced Hamil-

tonian ha = Haβa . In this case, the algorithm is referred as Hamiltonian Replica Exchange

(H-RE). 85

Inserting this in the detailed balance equation:

p(A)

p(B)
= e−βa Ha (s0)e−βb Hb (s1)

e−βa Ha (s1)e−βb Hb (s0)
= p(B −→ A|B)

P (A −→ B |A)
= R. (2.14)

The most trivial choice for p(A −→ B |A) is therefore:

p(A −→ B |A) = min(1,R−1) = min(1,
e−βa Ha (s1)e−βb Hb (s0)

e−βa Ha (s0)e−βb Hb (s1)
) = min(1,

e−ha (s0)e−hb (s1)

e−ha (s1)e−hb (s0)
). (2.15)

This last equation is the general acceptance rule between two replicas in a canonical replica

exchange simulation, which depends on the overlap between the phase space probability

density functions of two replicas. This acceptance rule vanishes exponentially when the

equilibrium conditions change, so a series of replicas that interpolate the conditions between

the target replica and the “acceleration" replica are necessary to keep a sufficiently high

acceptance probability of exchange.
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Temperature replica exchange

Temperature Replica Exchange (T-RE 169), also known as Parallel Tempering,168,173,174 is ar-

guably the most common variation of RE simulations. In T-RE simulations replicas evolve

at different temperatures under the same Hamiltonian, and therefore equation 2.15 simply

becomes p(A −→ B |A) = min(1,exp(∆β∆H)). A specific replica evolves in the canonical en-

semble at the target temperature of interest, while other replicas evolve at increasingly higher

temperatures. This strategy is useful when the sampling efficiency of the target replica is ham-

pered by high potential energy barriers, although it is not effective to accelerate the crossing

of entropic barriers. The temperature of the highest replica is chosen to be high enough to

be able to easily overcome the existing potential barriers in the system, so that it can freely

explore the phase space. Structures at new areas of the phase space discovered by this replica

are passed down to other replicas until they reach the lowest replica at the target temperature,

allowing it to teleport to other areas of the conformational space without actually having to

cross any potential energy barrier.

Figure 2.9 – Left: Depiction of different replicas at different temperature navigating a potential
energy landscape. Right: Scheme of a temperature exchange simulation.

The optimal number of replicas needed for a T-RE simulation generates an average acceptance

probability between 20 and 40%. 175,176 This quantity depends on the overlap of energy distri-

butions between replicas at different temperatures, which depends on the heat capacity. Since

the heat capacity is an extensive property, the acceptence probability between two replicas at

specific temperatures decreases with the number of particles, which increases the number

of replicas necessary to span a given temperature range. The other important parameter

(as well as in other RE schemes) is the frequency of attempted exchanges. In principle, in

T-RE simulations there are no negative effects in using a high exchange rate frequency, given

that the cost of computing the exchange probabilities is very low.177,178 Notice that a T-RE is

equivalent to an H-RE with the Hamiltonian scaled with coefficients β.

Reservoir Replica Exchange

Reservoir Replica Exchange (res-RE) is a technique to accelerate replica exchange simula-

tions by replacing the highest replica with a reservoir of structures that randomly exchanges

29



Chapter 2. Theory

structures with the other replicas. The rationale behind the use of a reservoir is to reduce

the trajectory correlation time and thus the number of single point computations needed to

achieve convergence. 86 Of course, res-RE is only adequate to compute ensemble averages if

the reservoir contains samples that follow a known physical distribution, as otherwise, it is

not possible to derive a proper exchange probability with the other replicas.
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3 Hamiltonian-Reservoir Replica Ex-
change and Machine Learning Po-
tentials for Computational Organic
Chemistry
This chapter is based on the following publication:

R. Fabregat, A. Fabrizio, B. Meyer, D. Hollas, C. Corminboeuf, Hamiltonian-Reservoir Replica

Exchange and Machine Learning Potentials for Computational Organic Chemistry, J. Chem.

Theory Comput. 2020, 16, 5, 3084–3094.

3.1 Introduction

Machine learning techniques are increasingly used to bypass expensive quantum chemical

computations. A typical example are machine learning-based potentials that are exploited to

propagate the dynamical evolution of molecular systems on ab initio potentials at a fraction

of the cost. The seminal work in the field comes from Behler and Parrinello, 28 who trained a

generalized Artificial Neural Network (ANN) capable of predicting density functional theory-

based energies and atomic forces and demonstrated its capability on bulk silicon 179 and then

on carbon180,181 and sodium. 182 Behler and Marquetand then applied the same approach to

n-alkanes 183 and alanine tripeptides. 184 Comparable capabilities were achieved by Csanyi and

co-workers, who used kernel-based methods (i.e., the Gaussian approximation potential) 38 to

propagate the Density Functional Theory (DFT)-molecular dynamics (MD) of bulk crystal, 77

amorphous carbon185 and silicon. 186 Kernel ridge methods were also exploited for the “on-

the-fly” propagation of the dynamic in the electronic states, circumventing the need for the

explicit Time dependent-DFT or the CASSCF computations.187 Roitberg et al. pushed this

approach further and proposed a deep neural network (ANAKIN-ME) with modified Behler-

Parrinello symmetry functions to learn the potential of organic molecules approaching the

CCSD(T)/CBS accuracy. 40,188,189 Such a high accuracy level was also achieved by Tkatchenko

and co-workers using a gradient-domain machine learning (GDML).33,34,190 Similarly, the

SchNet 47,191,192 and PhysNet 193 deep learning architectures were also exploited to predict the
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potential energy surface and other quantum chemical properties of molecules and materials.

Overall, machine learning potentials (neural network or kernel-based) achieving post-Hartree-

Fock or DFT accuracy were essentially employed for the molecular dynamics of fairly small and

rigid systems (e.g., benzene, ethane and malonadehyde, aspirin, uracil, naphthalene, salicylic

acid, and toluene)33,34,42 or alternatively for larger systems with limited chemical diversity

(e.g., peptides made of the same amino-acid type). 184 For these reasons, the associated (free)

energy landscapes were explored using standard ab initio molecular dynamics without the

need of making use of accelerated sampling approaches. Describing more flexible organic

molecules (i.e., molecules that possess low-frequency (anharmonic) modes and multiple

local minima close in energy) with machine learning potentials set additional challenges,

which influence both the accuracy of the ML potential and the convergence of the statistical

sampling of complex potential energy surfaces.

In 2016, one of us demonstrated4 the utility of coupling enhanced sampling methods like

temperature Replica Exchange Molecular Dynamics 169 (REMD) with the most recent variant

of density functional tight binding, i.e., DFTB3194–196 to map the free-energy landscapes of

fluxional organic molecules. This combination allowed to address organic chemistry problems

that are not solvable solely relying on static electronic structure computations or standard

molecular dynamics, the latter being too short to capture the interconversion between dif-

ferent possible states. A replica exchange simulation overcomes problems associated with

running insufficiently long simulations by performing a series of energetically independent

simulations (named replicas) of the same system in different equilibrium conditions and

allowing them to occasionally exchange their configuration in a way that still ensures a canon-

ical sampling within each replica. Replica exchange is especially appealing when relevant

collective variables essential to a metadynamics 197 simulation are not easily identifiable 4 (see

Ref. 198 for recent example of metadynamics at the DFTB level). The most common version is

Temperature Replica-Exchange (T-RE), 169 an alternative name for REMD, where the replicas

differ by their temperature. The additional insights provided by the coupling of REMD and

DFTB3 (REMD@DFTB3)4 were demonstrated on four examples including reaction energy

pathways and conformational free energy differences, characteristic of organocatalysts and

flexible molecular rotors. While REMD@DFTB3 permits thorough exploration of potential

energy surfaces at an affordable computational cost, the accuracy of the electronic struc-

ture method was sacrificed to ensure statistical convergence. In fact, the incompatibility

associated with obtaining both converged statistical sampling and highly accurate energet-

ics has traditionally prevented the ability of improving the quantum chemical description

of moderately sized, yet highly flexible molecules that evolve on complex potential energy

surfaces, 199–202 sometimes leading to catastrophic results. 203 In the present work, we achieve

high-level ab initio accuracy by correcting semi-empirical potentials with a machine learning

model based on kernel ridge regression 21 combined with a more general enhanced sampling

scheme connecting Hamiltonian85 (H-RE) and reservoir86 (res-RE) replica exchange (i.e.,

resH-RE). With the former, the replicas evolve under a different Hamiltonian instead of a dif-

ferent temperature like in Temperature Replica Exchange, (i.e., T-RE). As for reservoir Replica
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Figure 3.1 – (a) Dithiacyclophane and the collective variables used to characterize its global
structure: the distance between the center of masses of each cyclic bulk and the angles
between the average planes going through them. (b) The cinchona alkaloid organocatalyst
and the two dihedral angles used to characterize its global structure.

Exchange, it was originally developed to improve T-RE by replacing the highest temperature

replica with a pool of structures (i.e., reservoir) acting as any other replica but exchanging

conformations taken randomly from the pool. The proposed combination of Hamiltonian

and reservoir RE dramatically accelerates the exploration of ab initio free energy landscapes

of archetypes flexible medium-size organic molecules that are dictated by a subtle energetic

interplay originating from both enthalpic contributions and conformational entropy. The

illustrative systems considered herein are motivated by our previous work 4,204,205 and are (1)

the bridged asymmetrically polarized dithiacyclophane, incorporating a thieno[2,3-b] 206 and

(2) a prototypical cinchona alkaloid organocatalyst.205,207,208 Specifically, the first molecule

is chosen because its relative conformational stability is governed by subtle intramolecular

non-covalent interactions that necessitates an accurate ab initio treatment, while the large

conformational entropy effects can only be accounted for by using accelerated sampling

techniques. The free energy landscape of the organocatalyst is a complementary example that

depends on individual energy contributions arising from rotational isomerism.

3.2 Methods and Computational Details

3.2.1 Overview

The proposed protocol is schematically illustrated in the workflow given in Figure 3.2, whereas

all the details on the quantum chemistry, machine learning models and enhanced sampling

approaches are described in the upcoming individual sections. In brief, a low-cost semi-

empirical approach is used as a quantum chemical baseline, while the targeted free energies

are achieved at an accurate ab initio target level with machine learned corrections that learn

the difference (∆) between the baseline and the target (∆ML correction). 55 The semi-empirical

level is first used to generate a canonical sampling using T-RE for two purposes. (a) A subset of
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Figure 3.2 – Mind-map and workflow illustrating the proposed methodology.

structures extracted from this T-RE simulation serves to build a training set of energies/struc-

tures to train the ∆ML model and (b) the pool of structures associated with the T-RE is used as

a reservoir (vide infra). The thorough exploration of the free energy landscapes, which is finally

performed using a potential corresponding to the semi-empirical level + ∆ML correction,

combines two variants of replica exchange that are Hamiltonian and reservoir RE (resH-RE).

The resH-RE simulations were performed with a modular in-house python implementation

of replica exchange uploaded in git-hub209 in the form of a Python library under the name

Modular Replica Exchange Simulator (MORESIM).

3.2.2 Quantum chemical potentials: targets and baseline

DFTB3 194 with the 3OB parameters195,196 and the Slater-Kirkwood dispersion correction210

(DFTB-SK) using the DFTB+211 software is the chosen baseline for the ∆ML model and for

building the reservoir. The target potential is the domain-based local pair natural orbital

coupled-cluster with perturbative triples (DLPNO-CCSD(T)/CBS)87,88 as implemented in

ORCA 4.0. 212 Complete Basis Set (CBS) extrapolations are performed following Neese’s scheme

starting from Dunning basis sets213,214 (i.e., cc-pVDZ and cc-pVTZ) computations. PBE0 215-

D3216/(6-31G) is also used as target. The TeraChem217,218 software, which allows GPU ac-

celeration for electronic structure computations, serves to provide a comparison with the

direct (exact PBE0 as opposed to ML-based) free energy computations at the PBE0-D3/(6-31G)

level. Following the work by Martinez et al.,218 we utilized an MPI interface between the

software for molecular simulations AMBER 219 and TeraChem to perform the GPU accelerated

T-RE simulations. At each step of the dynamics, the converged density from the previous

step was passed as the initial point for the SCF computation. These PBE0 simulations enable

comparison between the explicit ab initio free energy landscapes and the faster ML ansatz;

a comparison, which is not possible at the DLPNO-CCSD(T) level. Details on the relative
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Figure 3.3 – Histogram representing the cost of the computations to generate the dithiacyclo-
phane free energy landscapes. The blue fraction corresponds to the time spent on the T-RE
simulations. Orange shows the time spent on the single point computations used to train
the ML model. Green is for time spent on the resH-RE simulations. The cost for DLPNO-
CCSD(T)/CBS is an estimation.

computational cost is provided in Figure 3.3.

Solvent effects were included implicitly using the SMD58 model (with the dielectric constant

of chloroform) at the PBE0-D3/(6-31G) level, also in ORCA 4.0.

3.2.3 Machine Learning Methods

The ML corrections trained to learn the difference between the baseline and target levels are

based on Kernel Ridge Regression21 (KRR) and use the Spectrum of London Axilrod-Teller-

Muto (SLATM)119 molecular representation developed by von Lilienfeld and Huang in the

Quantum Machine Learning (QML) package. 220 Among all the tested molecular representa-

tions, (e.g., Coulomb Matrix, 29 Bag of bonds 80), SLATM offered the best accuracy for the class

of problems investigated herein. The KRR space was generated with a Gaussian kernel. The

training set is built based on the most distinct structures extracted from the DFTB-SK T-RE

simulations and correspond to 1500 and 1800 structures and energies for the bridged asym-

metrically polarized dithiacyclophane (a), and a prototypical cinchona alkaloid organocatalyst

(b) respectively. These sets were divided into a training and a validation set (200 and 300

random structures) were used for validation for each system respectively. Amongst the ini-

tial 1500 and 1800 structures/energies, a random subset of 500 were used to optimize the

hyper-parameters (i.e., the standard deviation of the Gaussian kernel σ, and the regularization

parameter λ) optimized with a Nelder-Mead simplex algorithm. 221 The quality of the trained

model is evaluated by the mean absolute errors for the predictions on the test set. Overall, the
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final ∆ML models offer an accuracy reaching 1 kcal/mol for both the dithiacyclophane and

the cinchona alkaloid organocatalyst in comparison to the electronic energy computed at the

exact reference level.

3.2.4 Hamiltonian-reservoir Replica Exchange

Two complementary sampling techniques are used for the exploration of the free energy

landscapes computed with the ∆ML models: Hamiltonian Replica Exchange85 (H-RE) and

reservoir Replica 86 (res-RE). Approaches based on replica exchange typically use parallel sim-

ulations with modified parameters (temperature, Hamiltonian, atomic masses, ...) to facilitate

the crossing of energy barriers and thus accelerate the sampling of canonical probability

distributions. 85,169,173 Over the course of the simulation, the original replica, operating at the

target conditions, exchange molecular conformations with the modified replicas as a way to

introduce significant jumps in the phase-space. To ensure non-vanishing exchange probabili-

ties, a sufficient number of replicas connecting the original conditions with the other extreme

is introduced. In H-RE, the transition between states is accelerated by creating intermediate

potentials (i.e., between the baseline and target condition) using a modified Hamiltonian for

each of the replicas.85,171,172 In our implementation, H-RE exploits a reservoir of DFTB-SK

structures obtained from previous simulations (vide infra). The replicas evolve at the same

temperature (300K) and under a potential Vλ = (1 - λ)Vtarget + λVlow that transition from DFTB-

SK (low) to DFTB-SK + ∆ML (target) corresponding to post-Hartree-Fock or DFT accuracy.

The replica with λ = 0 evolves with the pure accurate potential V0 = Vtarget = DFTB-SK + ∆ML,

while the replica with λ=1 corresponds to the lower-level potential V1 = Vlow = DFTB-SK. In

practice, the "highest" replica (λ = 1) is replaced by an available reservoir, generated with the

low level potential (i.e., DFTB-SK at 300K), in the spirit of reservoir Replica Exchange (res-RE)

(see scheme in Figure 3.4). Here, the canonical DFTB-SK reservoirs (see Figures 3.5a and 3.6a)

were taken from previous T-RE simulations (300K) within i-PI. 222,223

The rationale behind the use of a reservoir is to use the information from the sampling

performed at low accuracy to reduce the trajectory correlation time of the sampling at the

high level of accuracy, and thus reduce the amount of single point computations needed to

achieve convergence.86 Of course, res-RE is only adequate to compute ensemble averages

if the reservoir contains samples that follows a known physical distribution (in our case

canonical), as otherwise it is not possible to derive a proper exchange probability with the

other replicas that satisfies detailed balance. 165 Coupling the reservoir with H-RE rather than

T-RE also allows to accelerate the sampling of the accurate ab initio level without increasing

the temperature, which leads to several advantages.

First, in comparison to T-RE (achievable only at the semi-empirical level), the reservoir in

resH-RE covers the entire conformational space that is accessible to the replica evolving at

the target condition, so that exchanging structures with the reservoir effectively generates

transitions between free energy basins without the need to actually cross free energy barriers.
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Figure 3.4 – Schematic depiction of resH-RE.

This is convenient because it critically reduces the simulation time needed to obtain converged

results, as crossing barriers between free energy basins represent the slowest type of collective

motion. In other words, by taking advantage of canonical sampling performed at an affordable

semi-empirical level, resH-RE will seamlessly simulate rare events. Second, it prevents the

replica trajectories to generate structures out of the domain of applicability of the trained

ML potential. Given that the ML model was trained with structures at 300K, its accuracy at

higher temperatures can’t be guaranteed. Additionally, less replicas (4/6 (H-RE) vs 16/48 (T-RE)

(for the two considered molecules) are necessary to achieve optimal exchange probabilities,

reducing significantly the computational cost.

Given that swaps between local minima in the free energy landscape (i.e., between basins)

and crossings of energy barriers occur through the reservoir, replicas only serve to induce

local diffusion in the phase-space. Therefore, the time propagation of each replica can be

performed using thermalized Molecular Dynamics, but also with simple Monte Carlo (MC)

moves (e.g., random particle moves) that are otherwise largely inefficient for systems with

non-linear potential energy surfaces like those investigated herein.165 In our context, this

brings another key advantage, as many of the existing ML-based potentials have not yet

been adapted to run molecular dynamics. With kernel-based approaches, the forces can be

obtained from deriving the expression of the KRR (and thus of the molecular representation)

with respect to the atomic coordinates,187 but the task is not straightforward for the SLATM

representation used here. The alternative, the Gradient Domain ML scheme developed by

Müller et al., 33,34,190 that consists in learning the forces directly is considerably more expensive

and only applicable to small molecules. Moreover, only energetic quantities are available

for high level ab initio potentials like DLPNO-CCSD(T). This work uses resH-RE with MC

moves not only because of the unavailability of the forces but also to illustrate that the broad
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Figure 3.5 – (a) Free energy landscape (DFTB-SK/3OB level) of dithiacyclophane at 300K (T-RE)
projected on the 2D space generated by the collective variables visible in Figure 3.1a. (b)
Projection of the dataset made of 1500 dithiacyclophane structures extracted with farthest
point sampling from the 300K canonical ensemble of 40000 structures and color coded based
on the single point energy difference ∆E=((DFTB-SK/3OB) - (DLPNO-CCSD(T)/CBS)). The
continuous background is plotted using a gaussian interpolation of the mean energy difference.
The smooth histograms were constructed with a Gaussian Kernel Density Estimator (Gaussian
KDE) using the SciPy 3 python library.

applicability of the sampling scheme with any of the existing ML potentials.

The convergence of free energy computations was evaluated by analyzing the evolution of

the estimated relative free energies between basins. Given that the crossing between basins

represent the slowest dynamical mode, the stabilization of the estimated basin free energies

represents a good indicator of convergence. Statistical error boundaries on the estimated

free energies were evaluated using a block jackknife with a width of one tenth of simulation

time. 224

Note that the adopted approaches are applicable to any molecule but is especially designed

for situations when free energy perturbation is not sufficient or suffer from convergence

problems. resH-RE is indeed not a simple reweighting scheme; the reservoir in resH-RE is

used to accelerate jumps over the conformational space, but the data generated by the replica

that samples the canonical distribution of the target potential corresponds to an unbiased

sampling of the adequate probability distribution.

3.2.5 Technical details

The 300K free energy landscape of dithiacyclophane was obtained with a resH-RE simulation

using 4 replicas (λ=0, 0.33, 0.66, 1) exploiting a reservoir of 40000 structures taken from a

previous DFTB-SK canonical distribution of structures obtained with T-RE. A subset with the

1500 most distinct structures were extracted from the reservoir with Farthest Point Sampling 78

(FPS) (Figure 3.5b) and used to train the ∆ML corrections. A total of 6 replicas (λ=0, 0.2,
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Figure 3.6 – Free energy landscape (DFTB-SK/3OB level) of the cinchona alkaloid organocata-
lyst at 300K projected on the 2D space generated by the collective variables visible in Figure3.1b.
Constructed with canonical structures generated with T-RE simulations with DFTB-SK as
potential energy. (b) Projection of the 1800 dataset structures obtained with FPS from a canon-
ical ensemble of 32000 structures at 300K canonical ensemble and color coded based on the
single point energy difference ∆E=((DFTB-SK/3OB) - (DLPNO-CCSD(T)/CBS)). (c) Structures
representing each of the 4 conformational regions (i.e., basins).

0.6, 0.8, 1) were required for the resH-RE simulations of the cinchona-based asymmetric

organocatalyst, and the 1800 most distinct structures (Figure 3.6b) extracted from a reservoir

of 32000 structures obtained as discussed above were used for the training. For both resH-

RE simulations, it was ensured that the exchange rate between replicas reaches an optimal

30%. 225 Exchange between replica were attempted every 20 MC steps consisting of a Gaussian

random displacement of all atoms (in cartesian coordinates) with standard deviation σ=0.03

Å, set to 50% acceptance rate. The MC simulations correspond to a total of 106 steps for both

systems.

3.3 Results

3.3.1 Dithiacyclophane

The three conformational regions of dithiacyclophane, previously investigated by one of us, 4

and visible in Figure 3.5a, are controlled by very distinct enthalpic and entropic contributions.

The π-stacked "closed" conformer is stabilized by long-range correlation effects and only

captured at the DFT level upon addition of a London dispersion correction. 204,205,226 In sharp
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contrast, the open conformer is highly flexible and driven by entropy and large anharmonic

effects. The third "disarticulated" conformer is rigid but less sensitive to London dispersion

forces in comparison to the closed region. Our former T-RE DFTB simulations that captured all

the conformational entropy effects, highlighted the limitation of the harmonic approximation

for describing the relative stability of the most floppy (i.e., open) conformer (see Figure 3.5a).

Figure 3.7 – Comparison between the DFTB-SK electronic energy and the ML predictions (i.e.,
DFTB-SK + ∆ML correction) for the 40000 structures in the reservoir.

The harmonic approximation fails to account for the full conformational entropy contribu-

tions and the anharmonic nature of the open state (2) (see Ref.227 for relevant examples of

approximations for anharmonic free energies) and to a lesser extent of the closed conforma-

tional region (1). The large entropic contributions characterizing the open region (see Figure

3.5a) makes it the lowest-energy conformer at the DFTB-SK level at 300K and temperatures

above. Yet, the DFTB relative free energies between the three conformers are very small (within

1 kcal · mol−1). Converging the statistical sampling comes with a quantum chemical cost

and the affordable semi-empirical level is not expected to capture all these subtle energy

differences accurately. The ML correction to DFTB-SK offers access to converged DLPNO-

CCSD(T) free energy profiles at a fraction of the cost (vide supra). Prior to obtaining the full

free-energy landscapes with resH-RE, it is interesting to identify the trends emerging from the

∆ML correction added to the DFTB-SK energy of the structures in the reservoir (Figure 3.7).

The 0.79 regression slope between DFTB-SK and ML-DLPNO-CCSD(T) is indicative of the

much flatter potential energy surface of the former or, in other words, an underestimation of

the energy differences and barriers across the energy landscape.

The consequence of these energy discrepancies is clear when comparing the full free energy

landscapes and relative free energies (upon integration within the free energy basins, 4 Figure

3.8) obtained with resH-RE sampling at different quantum chemical levels. Overall, the shape

of the ML-DLPNO-CCSD(T)/CBS and DFTB-SK profiles are very similar but the disarticulated

basin is strongly favored by CCSD(T) at the detriment of the close conformer (>2 kcal · mol−1

higher). In contrast to the flat DFTB-SK free-energy profile, the ML-DLPNO-CCSD(T) land-
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Figure 3.8 – Free energy landscapes at 300K generated with the potential: (a) DFTB-SK (b) ML-
[DLPNO-CCSD(T)/CBS] (c) ML-[PBE0-D3/(6-31G)(SMD Chloroform)] (d) PBE0-D3/(6-31G)
(e) ML-[PBE0-D3/(6-31G)]. (f) Relative free energies by integration within the local minima. 4

The free energies are all given relative to the Disarticulated. The stripped columns correspond
to the static relative free energy using the harmonic approximation (for the solvated system
the harmonic free energies were computed with the true potential, and not with the machine
learning version). All the free energies maps come from resH-RE expect for the direct PBE0,
which uses T-RE, as described in the method section.

scape is clearly uneven highlighting the difficulties of the tight-binding method to reproduce

the delicate interaction interplay characterizing the conformational regions of this illustra-

tive system. The PBE0 free energy landscapes are even less flat and favor the disarticulated

state even more with the closed structure being around 3 kcal · mol−1 higher. Yet, the excel-

lent agreement between PBE0-D3/(6-31G) and ML-PBE0-D3/(6-31G) is a proof-of-principle

demonstration that this trend is not an artifact from the ML potentials (see Figure 3.8d and

Figure 3.8e).

Note that a direct approach using DLPNO-CCSD(T)/CBS is not achievable, given the intrinsic

computational cost of the method. For this specific reason, a relatively small basis set was

chosen for the DFT profiles. While some of the deviations between DFTB-SK and the higher

level approaches (i.e., much smaller energy differences) are already apparent in the static pic-

ture (see the harmonic free energies in Figure 3.8), the deviations between methods are more
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pronounced when accounting for thermal fluctuations. With PBE0-D3, the approximated

barriers between each conformational regions is over 5 kcal · mol−1, which is significantly

higher than the DFTB-SK (<2 kcal · mol−1).

The Monte Carlo approaches used in this work are not easily compatible with the inclusion of

explicit solvent but the effect of the environment is of course essential to decipher the true

molecular behavior and its associated PES. As a compromise, solvent effects were incorporated

implicitly with the SMD continuum model (with the chloroform dielectric constant 206) at the

PBE0 level. The inclusion of these effects severely affect the relative energetic stability and

flatten the entire profile looking much more similar to the gas phase DFTB-SK profile. The

limitation associated with the continuum model could be overcome by using an additional

potential that models the interaction between the solute and explicit solvent within a dynamic

simulation, a possibility that we will explore in future work.

3.3.2 Cinchona Alkaloid

The same methodology is applied to a common cinchona-based asymmetric organocata-

lyst for which we also generated the ab initio free energy landscape (Figure 3.9).4 The 2D

conformational map extracted from the 2016 T-RE simulations at the DFTB level revealed

four easily accessible conformational regions (1- 4) and one that is much less populated (2’).

Unexpected from previous static computations was the dihedral angle (open rather than close)

characteristic of the conformational state 3. Other added values from the T-RE simulation

were the demonstration of the pronounced entropic nature of 1 at 300 K reversing the relative

stability between 1 and 4 in comparison with the static computation and the appearance of

region 2’. Yet, the 1 and 4 conformational regions were within 2 kcal · mol−1 stressing the

importance of improving upon the DFTB level.

With a slope much smaller than 1 (i.e., 0.76), this example confirms the general flatness of the

DFTB-SK potential compared to that of DLPNO-CCSD(T). Note that the DFTB3 underestima-

tion of the rotational barriers and of the relative energy differences, which originates from the

limited amount of atomic overlap afforded by the use of a minimal basis set, is reminiscent of

other examples in the literature. 195,228

Figure 3.9 compares the full DFTB profile with those obtained with ML-DLPNO-CCSD(T)

and ML-PBE0-D3 accounting for the implicit effect of the chloroform environment.229 The

general shape of the ML-DLPNO-CCSD(T)/CBS free energy landscape of the organocatalyst

is once again similar to the DFTB-SK one but with significant differences. Specifically, 4 is

clearly enthalpically stabilized at the higher level, whereas the flexibility of the conformational

region 1 is enhanced (i.e., larger spread over the dihedral angle characteristic of the syn/anti

conformation). The meta-stable region 2’ is also more populated at this level. Quantitatively,

these trends translate into 1 and 4 lying very close in energies (within 0.5 kcal · mol−1) with

state 3 being nearly 3 kcal · mol−1 higher and disconnected from region 1 (i.e., high barrier

separating the two regions). Akin to the dithiacyclophane, the PBE0 gas phase profile is much

42



3.4. Conclusions

Figure 3.9 – Free energy landscapes at 300K generated with the potential: (a) DFTB-SK b)
ML-DLPNO-CCSD(T)/CBS c) ML-[PBE0-D3/(6-31G)(SMD Chloroform)]. (d) Free energies
upon integration within the free energy basins. The free energies are all given relative to state
1. The stripped columns are the free energy predictions of the basins using the static free
energies using the harmonic correction.

closer to ML-DLPNO-CCSD(T)/CBS than the implicit solvated (in chloroform) profile but the

flattening of the free energy landscape of the cinchona derivatives upon implicit solvation

is less pronounced than for the dithiacyclophane (see Figure 3.9c). Overall, the effect of the

solvent on conformer 3 is negligible but the meta-stable 2’ specie disappears, while 2/4 are

more/less populated.

These two complementary examples are associated with different energetic driving forces that

are the interplays between pronounced intramolecular vdW interactions and conformational

entropy in the first case and the individual contributions arising from rotational isomerism in

the second.

3.4 Conclusions

In 2016, we highlighted the importance of thorough mapping of the free energy landscapes for

solving problems in computational organic chemistry. In this subsequent step, we demon-

strate how to exploit a variant of Hamiltonian replica exchange and kernel-based machine

learning potentials to achieve a remarkable accuracy/cost ratio and accelerate the accurate

predictions of relative free energies, which is one of the most challenging goals in computa-

tional quantum chemistry. Overall, our results stress the relevance of improving the entropic
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and enthalpic description of flexible organic molecules having complex free energy land-

scapes dictated by subtle energetic interplays. In particular, based on comparisons between

the DFTB-SK baseline and the ML-DLPNO-CCSD(T) target, one concludes that the semi-

empirical method generally leads to much flatter free-energy landscapes. Similarly, such

systems are poorly described by the picture arising from static free energies, which under-

estimate the conformational entropy of the most flexible conformational regions. For all

these reasons, our original combination of Hamiltonian and reservoir replica exchange and

its implementation into a modular environment (the python package MORESIM) represents

a powerful solution capable of accelerating enhanced sampling simulations involving any

machine learning-based or ab initio potential energies. Subsequent objectives will consist of

using the same workflow but circumventing the reduced transferability associated with the

use of a global molecular machine learning representation by deriving a differentiable kernel

approach based on local atomic environment that is also compatible with molecular dynamic

simulations.
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4 Local Kernel Regression and Neural
Network Approaches to the Conforma-
tional Landscapes of Oligopeptides

This chapter is based on the following publication:

R. Fabregat, A. Fabrizio, E. Engel, B. Meyer, V. Juraskova, M. Ceriotti, C. Corminboeuf, Local

Kernel Regression and Neural Network approaches to the conformational landscapes of

oligopeptides, J. Chem. Theory Comput. Submitted for publication.

4.1 Introduction

Machine learning (ML) techniques have begun to supplement atomistic simulations by facili-

tating access to the potential energy surfaces (PES) with an unprecedented accuracy at greatly

reduced computational cost.28,33,230 Behler and Parrinello’s seminal work introduced one of

the first condensed-phase potentials based on a neural network (NN). Using atom-centered

symmetry functions to encode the molecular structures 28,39 and expressing the corresponding

potential energy as a sum of the atomic contributions makes the potentials transferable and

scalable. In recent years, several NN architectures for atomic based potentials have been

proposed, including SchNet47,128,192,231 and PhysNet,193,232 which predict energies, forces,

and other properties (e.g., dipole moments or chemical potentials) of various chemical sys-

tems. Roitberg and coworkers also introduced the ANI-1 188 model, where single-atom atomic

environment vectors (AEVs) are used to build deep NN potentials to approach the golden

standard of CCSD(T)/CBS for reaction thermochemistry, isomerization and drug-like molecu-

lar torsions.189 Despite their widespread use, NNs have drawbacks: lack of interpretability,

the non-deterministic and computationally demanding training, and the large amounts of

training data required are some of them.

As an alternative to artificial NNs, kernel-based approaches such as Kernel Ridge Regression

(KRR) and Gaussian Process Regression (GPR) overcome some of these limitations. 21 Kernel

methods build a map between a target system and its properties by evaluating a similarity

measure between the target and a set of known reference points. Gaussian Approximation
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Potentials (GAPs)38,124 pioneered the use of kernels in molecular dynamic simulations and

demonstrated that they can achieve results equivalent to NNs. Since then, they have been used

to model bulk materials ranging from simple silicon, 77,186,233–235 to ternary Ge2Sb2Te5. 236,237

In the wake of GAPs, numerous alternative kernel-based and linear methods have been pro-

posed to predict PESs for atomistic simulations, including support vector machines (SVM) 238

and the Spectral neighbor analysis potentials (SNAPs).239 More recently, the symmetrized

gradient-domain (sGDML) model has proven to yield nearly exact molecular dynamics simu-

lations for small molecules based on coupled-cluster energies and forces.33,34,190 However,

despite the increasing number of kernel-based ML potentials, artificial neural networks remain

dominant for driving atomistic simulations. 39,240–247

When paired with global molecular representations (e.g., Coulomb matrix,29 bag of bonds

(BoB) 80 or the Spectral London Axilrod-Teller-Muto 119 (SLATM)), which encode the key physi-

cal information about the structure and composition of molecules as whole indivisible entities,

kernel models are often lightweight, making them ideal for predicting molecular proper-

ties. 52,53,77,248,249 However, predictions made with these global representations are expected

to be accurate only for molecules of similar size and composition with respect to those in

the training set. These constraints limit severely the exploration and extrapolation to larger

chemical and conformational spaces. Local representations (e.g., FCHL, 31,82 aSLATM, 119 and

SOAP93), which describe molecules as a collection of atoms within their local environments,

provide a greater transferability,250 but also significantly increase the computational cost of

kernel-based methods, as similarity between molecules is then computed as a function of the

pairwise similarity between atoms. 125 To restore the data-efficiency typical of kernel-based

methods and efficiently exploit the local representations, one can resort to sparse regression

techniques. The simplest form amounts to sampling the entire set of atom-centered envi-

ronments and retaining only the (a priori) most informative environments, assuming that

substantial redundancy arises from recurring environments across training structures. The

criteria for selection tends to be based on techniques such as Farthest Point Sampling (FPS) or

CUR matrix decomposition,78 that maximize the dissimilarity of the selected environments.

While the environments sampled with FPS or CUR based methods represent the most varied

set among the training instances, they are not necessarily the best for regressing the property

of interest,251 as the dissimilarity in the representation space does not necessarily correlate

with dissimilarity in the target space.10 (∆-) 55ML approaches represent a typical illustration

of this issue, as the vast majority of chemical environments are well described by an approxi-

mated baseline model while the error is concentrated in localized areas of the feature space.

This is particularly true when predicting PESs, where capturing the conformational changes

(e.g., a torsion of a single dihedral angle) is as crucial as capturing the dependence on chemical

diversity.

In this work, our goal is to address the limitations of traditional unsupervised sparsification

techniques and leverage the data-efficiency and transferability of local kernel models, by

combining a Local Kernel Regression (LKR) framework with a flexible orthogonal matching

pursuit (OMP) algorithm. The efficiency of the resulting model is demonstrated by predicting
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the PES of a set of 52’000 conformations of dipeptides comprised of 26 amino acids. In this

context, the OMP controls the sparsification process and selects (amongst tens of thousands

of atom-centered environments present in the training set) the best possible reference pool

for predicting the PESs of any dipeptide. To increase the smoothness of the target energies,

the model is baselined with density functional tight-binding (DFTB195,196) using a ∆ML ap-

proach, 55 with the model improving the description of the PES in regions that are traditionally

not accurately captured with the semiempirical baseline method (e.g., hydrogen atoms and

polarized bonds). To further illustrate the transferability of LKR, we compare its performance

with a state-of-the-art Behler-Parrinello type Neural Network, both on the dipeptide set and

in an extrapolation test based on the Phe-Gly-Phe tripeptide. The two ML models are then

used to drive enhanced sampling simulations to describe the free energy landscape of the

tripeptide with DFT accuracy.

4.2 Methods

4.2.1 Machine learning models

The ML potentials presented in this work correct a semi-empirical baseline obtained from

density functional tight-binding (DFTB) with the D3(BJ) 252 dispersion correction (shortened

DFTB hereafter), and target PBE 253-dDsC 254–256 (shortened PBE hereafter) for DFT accuracy.

For each molecule in the dataset, the property learned within the ∆-ML framework corre-

sponds to the difference between the atomization energy evaluated at DFTB and PBE. For

both levels, the atomization energies are computed using a two step procedure. First, the

contribution of each atom type to the total energy is evaluated by a multilinear regression

(MLR) on the full dataset (dressed-atom energies). Then, the difference between the computed

total energy and the sum of the dressed-atom energies yields the atomization energy used

herein. The following sections describe the two types of complementary ML architectures

exploited in this work.

ML model 1: Sparse Local Kernel Regression

The LKR inputs are the target molecular properties and the atomic representations of the

corresponding molecular structures. In this case we used the atomic Spectral London Axilrod-

Teller-Muto119 representation (aSLATM) (see step 1 in Figure 4.1, upper panel) but other

local atomic representations could be used. As it is standard procedure for local kernel

based atomistic models, LKR uses a selected pool of reference atomic environments taken

from the training structures as the regression basis for predicting the target property. The

structures available for the training are projected onto the pool of atomic environments using

a Gaussian kernel to create the matrix S, effectively generating a new vectorial representaion

of the molecules (see step 2 in Figure 4.1, upper panel). By assuming a linear relationship

between the features of S and the global molecular properties, LKR allows to obtain the
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regression coefficients for each reference atomic environment without requiring an a priori

decomposition of the target property, which is sometimes possible257 but highly non-trivial

for complex PES like the ones discussed here. If the pool of atomic environments is too large,

a pre-filtering, which reduces the redundancy of the pool is needed. Here, we use Farthest

Point Sampling, 78 which selects the N most distinct environments in terms of their Euclidean

distances.

For the final selection of the reference environments, the reduction of the training environ-

ments is commonly performed by constructing multiple models including a variable number

of the FPS points, which is gradually increased until achieving a satisfying accuracy. It was al-

ready hypothesized 258 that some sort of supervision in the sparsification procedure would be

desirable. Here, we rely on a supervised sparse regression model called Orthogonal Matching

Pursuit (OMP).89 OMP is a greedy optimization algorithm that finds the best sparse choice

of reference environments for a particular application (see step 3 in Figure 4.1, upper panel).

The OMP algorithm searches greedily through the whole pool of atom-centered environments

and selects at each time the specific environment that reduces the most the prediction error,

(i.e., the one with the highest inner product with the targeted property). At each iteration,

the contributions from the previously selected environments to the global target property is

subtracted and the search continues for the best-match of the residual until convergence. With

this procedure, OMP automatically identifies the most suitable, property-specific environment

subset (i.e. best-matching basis) for the regression of the targeted molecular property in one

shot. In the prediction step (see step 4 in Figure 4.1, upper panel), the similarity of each new

atomic environment with respect to the reference pool is evaluated by computing a kernel

sum with all the selected environments. The reader is referred to Figure 4.1 for a schematic

depiction of the workflow.

Overall, LKR-OMP combines the scalability and transferability of NNs, with the faster training

and stability of kernel based models. The addition and removal of training data also requires

minimal computational effort, as opposed to an NN, for which the procedure requires at best

a partial retraining. This would be especially beneficial for active learning approaches,259

when the training data evolves throughout the process. The counterpart is that the cost of the

model scales linearly with the number of reference environments, while the cost of NNs is

fixed by the architecture.

ML model 2: Behler-Parrinello neural networks

To benchmark the LKR model against an established NN architecture we further construct a

Behler-Parrinello artificial neural network. 28 For each atom, we describe the positions of all

neighboring atoms inside a cutoff radius (its “atomic environment”) by a set of atom-centered

many-body symmetry functions (SF) 260 (see the Computational Details).

To allow for on-the-fly estimation of the uncertainties in the predictions, a committee of four

Behler-Parinello neural networks (NN), 28,260 which only differ in the random initialisation of
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Figure 4.1 – Workflow and schematic depiction of the LKR model.

the NN weights and the internal cross-validation splitting of the training data, was trained to

reproduce the differences between the DFTB baseline and the target DFT energies and forces.

This permits estimating the uncertainty associated with each committee prediction of the ∆-

ML correction following the scheme introduced in reference [Musil 2019]. 261 The uncertainty

estimates were also used to modulate the application of the NN correction, using the weighted

baseline scheme proposed by Imbalzano and coworkers.262 This procedure minimises the

uncertainty in the total potential, and ensures that the it falls back to the baseline whenever

the ML correction enters the extrapolative regime, thereby stabilizing the simulation. The

total energy is calculated as the sum of the outputs of atomic NNs, and analytic gradients and

thus forces are readily available. To train the NN model both energies and forces were used.

Training data

The training set for the construction of the models described in the previous sections was

built by selecting configurations from the 300K replica of a DFTB-based temperature replica

exchange (T-RE) simulation (with replicas at temperatures between 300K and 1000K) for each

amino acid dipeptide. The most distinct 2’000 configurations of each dipeptide were selected
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by means of a farthest point sampling algorithm,77,263 using the the Ramachandran plot264

coordinates as the independent variables.

For a total of 26 amino acid dipeptides, 265 we obtained a pool of 52’000 conformations. Finally,

to include the effects of sidechain-sidechain interactions into the model, the training set was

completed with an additional set of 3378 optimized peptide dimers from the BioFragment

Database.266 Single point computations were performed to obtain energy and forces at the

target and baseline levels.

4.3 Enhanced sampling methods for the tripeptide

We use the reservoir-Hamiltonian Replica Exchange (resH-RE)230 technique to sample the

canonical ensemble of the selected Phe-Gly-Phe tripeptide at 300 K with the LKR potential.

ResH-RE is an enhanced Hamiltonian Replica Exchange 85 scheme, which serves to accelerate

the sampling of the configurational space at a high level of theory using a canonical reservoir

of structures generated with a less accurate but computationally cheaper potential energy. The

replicas essentially help to capture the local diffusion in the phase space, whereas the most dra-

matic conformational changes, such as swaps between local minima and crossings of energy

barriers, occur through coupling with the reservoir. By construction, the resH-RE simulation

can be driven by molecular dynamics in the NVT ensemble, but also by simpler Monte Carlo

(MC) moves (i.e., random particle moves), which are otherwise largely inefficient for systems

characterized by highly non-linear PESs. 165 The possibility of using both molecular dynamics

and Monte Carlo moves within resH-RE is especially advantageous given that the atomic

forces are not readily available with the LKR model used here, albeit, in principle, obtainable

through computing the LKR energy derivativesa with respect to the nuclear coordinates. 187

Considering that the forces are available and actually needed to increase the robustness

of the NN potential (vide infra), the sampling of the tripeptide in that case was performed

using the ATLAS metadynamics framework,267 which employs a divide-and-conquer strat-

egy to enable efficient biasing when working with many collective variables (CV). In AT-

LAS, high-dimensional CV space is divided into basins, each of which is described by an

automatically-determined, low-dimensional subset of the CVs on which a local, well-tempered

metadynamics-like bias is constructed. The local biases are smoothly translated into an effec-

tively high-dimensional bias using indicator functions based on a Gaussian mixture model.

Given the high dimensionality of the CV space of the Phe-Gly-Phe tripeptide, attempting

convergence with conventional metadynamics would be futile. Meanwhile, the ATLAS frame-

work was specifically designed to work in high dimensions, and it has already been tested

on 6D spaces.267 Alternatively, the sampling of the tripeptide with the NN implementation

could have been done using T-RE simulations or other methods based on temperature ac-

aTo obtain the LKR energy derivatives, it is necessary to derive both the kernel and the underlying molecular
representation with respect to the nuclear coordinates. The SLATM representation used in this work has a rather
cumbersome mathematical form, whose analytical derivatives are not readily obtained.
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celeration.268,269 However, temperatures past the bond dissociation range are necessary to

overcome the increased energetical barriers between basins at DFT and ab initio levels of

theory, compared to the flatter profile of DFTB. 230

In this work, space is divided into five basins, identified by applying the PAMM framework 270

to an initial well-tempered metadynamics trajectory using the end-to-end distance of the

backbone as the sole CV. Each basin is described and biased based on the two principal axes

determined by performing a PCA on the associated distributions of configurations in the six-

dimensional CV space. The resultant metadynamics trajectories were unbiased using the ITRE

scheme,271 which makes efficient use of the entire trajectory and that does not require the

distribution to be evaluated on a grid, rendering it suitable for high-dimensional CV spaces.

4.4 Computational details

All the baseline computations for the ∆-ML model were performed with DFTB3/3OB 195,196 in

combination with the D3BJ252 dispersion correction (DFTB), as implemented in the DFTB+

software. 211 The target potential was set at PBE 253-dDsC 254–256 using the def2-TZVP basis set,

as implemented in GAMESS-US. 272,273 Canonical sampling of each dipeptide was performed

using T-RE simulations using the REMD@DFTB 4 protocol implemented in i-PI. 222 The simu-

lations included 16 replicas with temperatures ranging from 300 K to 1’000 K, equally spaced

on a logarithmic scale. A time step of 0.75 fs was used in the dynamics, which ensured the

stability and energy conservation of the dynamics, with a Langevin thermostat to control the

temperature. The simulations were run for two million steps, which ensured statistical conver-

gence of the results. The final batch of structures was split in two separate sets (respectively

70% (40’000) and 30% (15’378) of the molecules), which were used for training and testing

of the models. The resH-RE simulations were run using the MORESIM python package.230

They included four replicas with a potential linearly evolving from DFTB to DFTB + LKR. This

choice resulted in an exchange acceptance probability of 40%. The resH-RE simulations were

run for two million steps, which provided converged results. A global random displacement

with a Gaussian distribution of standard deviation 0.01 Å was chosen as the Monte Carlo step,

which resulted in a 50% acceptance rate.

All metadynamics simulations were performed by coupling the i-PI energy and force en-

gine223 to the open-source, community-developed PLUMED library 274 version 2.8.0-dev

(git: 79bcb8947) 275 to apply a well-tempered bias, and the DFTB+211 and LAMMPS 276 codes

to evaluate the baseline potential and ∆-learned correction, respectively. All simulations

employed a time-step of 0.5 fs and a generalized Langevin equation (GLE) thermostat. 277,278

The Local Kernel Regression implementation (available on github279) relies on a Gaussian

Kernel 29 and on the aSLATM representation, as provided in the QML-toolkit.220 The width

of the Gaussian Kernel σ= 4.5 was obtained after a systematic grid search. We used FPS to

preselect a first pool of 39’000 local atomic environments. The optimal number of reference
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environment selected by OMP can be obtained using a grid search optimization of this pa-

rameter (LKR-optimal), although the bigger the number the higher the cost of the model. To

achieve a converged statistical sampling (with resH-RE) at a reasonable computational cost,

the size of the pool of reference environment is limited to 1’000 (LKR-1000). The python library

Sci-Kit Learn137 was used to perform the OMP regression.

The N2P2 framework 280 was used to train the NN models. Initial many-body symmetry func-

tions (SF), 260 which describe the local, atomic environment of each atom in a configuration

and provide the inputs to the NNs, were generated following the protocol of Imbalzano et al., 78

and included G2 functions with N = 12 and cutoffs rc = 8,12,16 Bohr, and G3 functions with

N = 4, rc = 8 Bohr, and ζ= 1,2,4 and with N = 2, rc = 12 Bohr, and ζ= 1,2. The cut-offs are

long enough to describe the environment of the central atom substantially beyond its nearest

neighbours in order to address the local differences between DFTB and DFT (long-range

discrepancies between DFTB and DFT are also accounted for, albeit in a mean-field manner,

through their effect on the local atomic environments). The 512 most informative among

them were extracted using the semi-supervised PCovCUR scheme; 281 a modification to the

CUR approach, which uses a mixing parameter (here set to 0.5) to smoothly interpolate be-

tween a feature-covariance and a linear regression-like loss to identify features that reflect the

(structural) variance of the dataset while correlating the the target property. We concatenate

their values for a given atomic environment into a feature vector and fed into the “atomic”

NN, which in the following consists of two fully-connected, hidden layers with 24 nodes each.

This particular architecture has previously proven sufficiently flexible to describe molecular

crystals containing up to four chemical species282,283 and multi-layer perceptron networks

with similar depths and widths have seen widespread success for a variety of molecular and

condensed matter systems. 284,285

4.5 Results and Discussion

4.5.1 Performance of the trained machine learning models

The need for correcting DFTB to obtain reliable PESs for each amino acid dipeptide is made

evident by Figure 4.2a, showing the histogram of the differences with respect to the target

PBE (after removing the multilinear regression contribution). The inaccuracy of DFTB is

also illustrated by the regression slopes between the atomization energies at the DFTB level

with and without ML corrections (Figure 4.2b) and the PBE atomization energies. For each

dipeptide, the slope between uncorrected DFTB and PBE is consistently smaller than unity,

implying a systematic overstabilization of the most distorted configurations and an energy

understabilization for the most stable ones (see Figure 4.3 for a more detailed analysis of

the individual dipeptides). The flatter characteristic of the DFTB PESs has previously been

discussed 229,230 and attributed to the limited amount of atomic overlap afforded by its minimal

valence basis, which also affects the rotational barriers.195 As shown in Figures 4.2b and

4.2c, the LKR and NN models correct for the systematic flattening of the PESs (slope ∼1,
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Figure 4.2 – (a) Histogram of errors in test samples of the dipeptide dataset. (b) Regression
slopes between ’bonding energies’ of DFTB and PBE for each of the training dipeptides and
for the dimers. (c) MAE achieved by the models in the test data for each dipeptite and for the
peptide dimers. (d) Learning curves, i.e., achieved MAE vs. number of structures used for
the training. The different learning curves are: LKR using OMP with the optimized number
of atomic environments (blue), LKR exploiting OMP to select the best 1’000 environment
(orange), the Behler-Parrinello based NN (green), LKR using FPS to select the most distinct
atomic environments, using 200 atoms per atom type (FPS 1000) (red), LKR using FPS to select
the most distinct atomic environments but with the same distribution as OMP (FPS+ 1000)
(purple).

Figure 4.2b), and also decrease the absolute errors for each dipeptide. As shown by the

learning curves (Figure 4.2d), the NN (0.58 kcal/mol, 40’000 training dipeptides) and LKR-

OMP(optimal) (0.57 kcal/mol, 40’000 training dipeptides) predictions are equally accurate.

The LKR-OMP(1000) model discussed above achieves an accuracy of 0.74 kcal/mol. The

relevance of using OMP for the selection of the reference environments instead of simpler

algorithms is illustrated by comparing the accuracy of LKR-OMP(1000) and a Ridge Regression

based on the same number of environments chosen by FPS. The LKR-OMP(1000) model

(referred simply as "LKR" for the rest of the article) is significantly more accurate than the

LKR based on FPS model, which additionally highlights the importance of selecting atomic

environments tailored for the specific target property.

While the performance of the NN is slightly superior to the LKR in the training step, it must

be noted that the latter model is only trained on energy data, whereas the NN uses both

energies and forces (i.e., 3 · Natoms times more training scalar quantities). However, the mean

absolute error for each individual dipeptide is consistently below 1 kcal/mol for both models.

The learning rates of both approaches, defined as the error as a function of the number of

training structures, are also both very similar and characterized by a decay exponent of -0.2
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on a logarithmic scale.

The OMP algorithm provides insightful complementary information, allowing to identify

which atomic environment is associated with the largest difficulties in the learning procedure.

This feature is unique to OMP, and not available for standard kernel or NN based approaches

that do not rely on supervised sparsity methods. In particular, OMP identifies that only a few of

the 39’000 atomic environments (as low as 300) are sufficient to reach the accuracy threshold

(1 kcal/mol) for the predictions of the dipeptides atomization energies. The OMP selection

within LKR-OMP 1000 is 45.1% C, 2.9% H, 18.6% O, 28.9% N and 4.5% S atoms. For the sake of

comparison, the atomic composition of the pool of dipeptide training structures is 29.5% C,

53% H, 8.5% O, 9% N, 0.3% S atoms. Evidently, the optimal reference atomic environments

selected by OMP do not follow the same atomic distribution as in the overall pool of structures.

OMP does not only find an adequate percentage of atom types, but it picks also the most

tailored atomic environments for the target property. In contrast, the FPS selection with the

same enforced atomic distribution as OMP (FPS+ 1000) is not sufficient to achieve a MAE as

low as OMP (Figure 4.2d). In fact, on average 3 times more atomic environments are needed

for FPS+ to match OMP. This is further demonstrated by the 2D t-SNE (t-Stochastic Neighbour

Embedding 138) projection (Figure 4.4) of the training atomic environments (constructed using

the aSLATM representation as input data for the t-SNE).

The first two rows of t-SNE maps are color-coded based on the average “atomic Kernel Repre-

sentation Score” (aKRS), i.e., the average value of the kernel similarity between the training

atomic environments and the selected reference (〈aK RS〉 j = 1
Na

∑
i∈ref. K (a j , ai ), where j rep-

resents the index of an environment in the training data and i runs over the Na selected

reference environments of each atom type). The score is computed for the reference environ-

ments selected by OMP and FPS+. This score, bound between zero and one, shows how well an

atomic environment is represented by the selected reference environments. The most striking

differences between OMP and FPS+ is in the selection of the oxygen and hydrogen atomic

environments, whereas carbon, nitrogen and sulfur are treated very similarly. In other words,

the assumption behind the usage of FPS (the larger the variability in the reference environ-

ment, the higher the accuracy), is correct for carbon, nitrogen and sulfur, but not for hydrogen

and oxygen. The oxygen maps are formed by one large smooth cluster, which represents the

amide-bond oxygen atoms [O(a)], and two smaller regions regrouping the carboxylate [O(b)]

and hydroxyl [O(c)] oxygen atoms respectively. In comparison with FPS, OMP is placing more

emphasis on the amide oxygens and the carboxylate groups but much less on the oxygen in

the hydroxyl groups. For the hydrogen atoms, the large number of isolated clusters in the

t-SNE is indicative of a large variability in the hydrogen environments, which could intuitively

suggest that a high number of hydrogen reference atoms are necessary to get an accurate

model. Yet, OMP only selects 2.9% of them. This result reinforces that the choice of tailored

environments is the key to achieving a more robust regression model. Interestingly, OMP

favors carbon-bonded hydrogen atoms lying in the central cluster, rather than polar hydrogens

(e.g., in a O-H bond). Since the model is constructed to capture the variations of the potential

energy as a function of the molecule structural changes, the selection of more carbon-bonded
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Figure 4.3 – Energy predictions on the test set (y axis) v.s. target PBE (x axis). In blue is DFTB-
D3BJ without ML correction, in orange DFTB-D3BJ + LKR and in green DFTB-D3BJ + NN. The
number in the legend is the MAE between the predicted energies and the real values.
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Figure 4.4 – t-SNE maps constructed with the aSLATM representation as input for each atom
type. Each point represent an atomic environment in the training data. The color code in
the first two rows shows how well represented the training environments are by the reference
environments chosen by OMP and FPS+. As representation score we use the average "atomic
Kernel Representation Score" (aKRS), the average value of the kernel similarity between each
of the training atomic environments and the selected reference environments of the same
atom type. The color code in the last row shows the LKR correction on each of the training
atomic environments.

hydrogens than any other type has to be attributed to the higher conformational variability of

the environments surrounding a C-H bond.

Another useful analysis of how the model behaves involves comparing the choice of atomic en-

vironments by OMP with the magnitude of the ML correction in terms of atomic-contributions

(last row of Figure 4.4). While one might expect a direct relationship between the atomic

selection and the magnitude of the ML atomic error, this intuition is actually incorrect. In fact,

a large DFTB error for a given atom type does not necessarily imply that the learning process

would be improved by including more atom-environments of the same type. This is especially

true if the electronic nature of the DFTB error is uniform across all the conformation available

in the training set. This lack of correlation is evident while looking at the bottom panels of

Figure 4.4. The DFTB errors are the largest for the hydroxyl functional groups [H(c) and O(c)

in the figure], while only a small portion of carbonyl or amide oxygen atoms are characterized

by a similar errors of opposite sign. This trend is not reflected in the optimal OMP selection of

reference atomic environments. Similarly, the most problematic carbon atoms (in terms of

ML errors) are the oxygen-bonded carbons, which include the amide functions (the center

cluster), as well as the carbons of the terminal guanidino group of arginine (HNC(NH2)2).

However, OMP does not place special attention to these environments when selecting the
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best reference carbons. Nitrogen behaves similarly to carbon. The central cluster is the most

well described, which is representative of C-NH-C nitrogens (mainly present in the amide

bonds), while the outer clusters, including terminal amines (−NH2), the proline rings and

guanidino groups, are less sampled. In contrast to other atoms, the ML correction for nitrogen

has similar magnitude in all the clusters. An interactive application to visualize and explore

this data is available at https://atomic-environments-dipeptides.herokuapp.com, built with

the Molecular Explorer Software. 286

4.6 Extrapolation

The local nature of the two ML potentials can, in principle, be used to make predictions for any

system containing no chemical species other than C, H, O, N, and S, although high accuracy

is expected only for local environments similar to those present in the training set, i.e., in

peptide chains or oligopeptides. Here we demonstrate the transferability of the two models by

exploring the potential and free energy landscapes of the Phe-Gly-Phe tripeptide. The Phe-

Gly-Phe tripeptide (in neutral form) is an appealing target to test the transferability of the ML

models as it is one of the most suitable chemical systems to model non-covalent interactions

in proteins.287 Additionally, this tripeptide is not an adequate target by existing force fields,

which are typically parametrized either for the capped peptides or for charged forms. The

Phe-Gly-Phe tripeptide is in the gas phase without capping, and contains a combination of

neutral NH2 and COOH groups that are not stable in solution. As a result, many Force Fields

(AMOEBA, AMBER) do not accept it as input, or alternatively they generate unstable dynamics

(GAFF).

To assess the quality of the extrapolated energies, we compile two datasets made of 1’000

Phe-Gly-Phe structures subdivided into 900/100 subsets illustrative of the conformational

landscape explored at 300 K and 0 K respectively at both the baseline and target levels. The

first set corresponds to a random selection of 1’000 structures taken from the converged

T-RE (300 K) ensembles computed at the DFTB level. Out of these 1’000 structures, 100 are

optimized at the same DFTB level (i.e., 0 K static optimization). The second set is a random

selection of 1’000 structures taken from the 300 K sampling at the DFTB + LKR-1000 level (see

the next section) out of which 100 of them are optimized with PBE.

The most striking difference when comparing the error distributions of DFTB and the ML

corrected versions (respectively the blue and orange/green histograms, Figure 4.5a) is the

transition from a bimodal Gaussian distribution to a simple Normal distribution centered at

zero. The two peaks correspond to the DFTB energies of conformers generated using DFTB as

underlying potential [DFTB//DFTB, overstabilized] and to the DFTB energies of conformers

generated using a different potential [DFTB//PBE, understabilized. What is perhaps more

significant is the fact that the ML corrections not only remove the systematic error (i.e., they

center the distribution in zero), but also treat the two sets of structures on an equal footing.

The transition from a bimodal to a single Gaussian distribution upon application of the
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Figure 4.5 – a) Histogram of prediction errors made on the tripeptide test set. b) Bar plots with
the mean shifts of the error distributions and their MAE after being centered.

Figure 4.6 – (a) Regression slopes between atomization energies of DFTB-D3BJ and PBE for
different test sets of the tripeptide. (b) Histograms of shifted errors (systematic deviations
in the atomization energy have been removed) made on the tripeptide test set. The data is
divided according to the potential that was used to generate them: (left) DFTB, (right) PBE.

ML-corrections reveals that the DFTB sampled conformational space (i.e., the set of visited

structures) would be energetically disjoint from the reference sampled space at PBE if we had

to drive a dynamics using a DFTB potential. The ML-corrections allows concluding that this

separation is spurious and that the DFTB structures from the PBE perspective [PBE//DFTB]

are not peculiar. Interestingly, the slope between DFTB and PBE energies for all the tripeptide

test structures combined is 0.96, which would suggest that systematic flattening of the PES by

DFTB is not observed in this case. However, the correlation between DFT and DFTB breaks

down when considering the 300 K and 0 K conformations separately (in a clear example of the

Simpson’s paradox 288), where the typical behavior of DFTB is recovered (slopes: 0.78 at 300 K

and 0.73 at 0 K, see again Figure 4.6). Finite temperature effects offset the energies of the 300 K

ensemble with respect to the 0 K, so that joint distribution seem to correlate better with the

DFT values.

The ML corrections (Figure 4.5 orange and green data) overcome all the issues present in the un-

corrected DFTB potential. First, the mean bonding energy shift is reduced from 10.6 kcal/mol

to 1.3 kcal/mol by the LKR and to 0.8 kcal/mol by the NN model (see Figure 4.5b). This error
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Figure 4.7 – Histogram with the mean absolute atomic contribution to the LKR corrections
for the tripeptide for the 2’000 test structures. The figure includes a particular conformation
of the tripeptide with isosurfaces of a scalar field representing the localization of the ML
correction. The scalar field was generated with the LKR atomic corrections to the energy for
that structure, convoluted with the atomic positions and a Gaussian filter of width 1 Å. The
isosurfaces correspond to the isovalues -5, -2, +2 and +5.

does not influence the conformational sampling of the molecule, as a constant shift in energy

does not alter the relative probability of the conformers. Nevertheless, a decreased error is

beneficial when comparing the electronic energies of different molecules. Most importantly,

the average absolute deviation from the mean is reduced from 4.2 kcal/mol to 1.6 kcal/mol by

the LKR model and to 1.9 kcal/mol by the NN (see Figure 4.5b). All the errors of the LKR model

are below 8 kcal/mol, while the NN predictions on the tripeptide present two outliers of -15

and +26 kcal/mol. Additionally, the regression slope between the predictions and the target

energies is also corrected to 0.99 for all the sets. These results are crucial since the standard

deviation and the regression slope are the most important quantities for conformational

sampling. Even a slight deviation from 1 in the regression slope causes significant changes

in the resulting free energy surfaces. In particular, the observed regression slope between

DFTB and PBE at 300K (0.75) is roughly equivalent to perform sampling with a temperature

1.33 times higher (e.g., 400 K instead of 300 K). At the same time, outliers can lead to unstable

dynamics and alter the results of sampling simulations.

Overall, while the NN model performs slightly better on the dipeptide test structures, the LKR

provides a more robust extrapolation (lower MAE, less outliers) for the Phe-Gly-Phe tripeptide.

It must be noted that the superior stability of LKR is not a consequence of exclusively using

energetical data for the training. On the contrary, an equivalent NN trained only with energies

shows much poorer transferability and scalability capabilities.

As shown in the previous section, the atomic decomposition of the ML correction naturally

provides a measure of the error localization in the molecule. To visualize the error for the

tripeptide, we constructed a scalar field using atomic centered Gaussian functions scaled such

as to match the LKR atomic predictions (see Figure 4.7). Using this procedure, it is possible to
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construct a real-space map highlighting the regions of the tripeptide where the DFTB potential

deviates from the PBE reference. An example of these critical regions is identifiable between

the oxygen and hydrogen atom forming an intramolecular hydrogen bond (e.g., between

atoms 4 and 22 in Figure 4.7). In Figure 4.4, we have shown that the hydrogens bound to an

oxygen or a nitrogen are the most difficult to describe at the DFTB level. Figure 4.7 shows

the understabilization of the hydrogen bond between the NH2 and the CO by DFTB, which is

corrected by our models. However, this particular example does not imply that all hydrogen

bonds are poorly described and in a systematic manner. For example, equivalent figures show

that the OCO–H bond in the dipeptide of aspartate is actually overstabilized by DFTB, while

the CO–HN in the protonated histidine is understabilized. These inconsistencies have been

shown to arise at the DFTB level due to a poor description of short-range electrostatic and

polarization interactions arising from the use of a minimal valence basis.289 While several

empirical corrections to DFTB and more generally to semi-empirical methods have been

proposed, 289–293 the use of the D3H5 correction (the last of such corrections DFTB-D3H5 294)

does not change the performance of DFTB on the dipeptide set significantly.

Furthermore, the analysis reported in Figure 4.7 shows that the description of the hydrogen-

bond interactions are not the only limitation of DFTB. More generally, the highest absolute

ML corrections appears whenever the bond between two atoms is polarized, such as in the

region of the terminal carboxylic acid (atoms 2, 3 and 4 in Figure 4.7) and the amide moiety of

the peptide bond (atoms 7, 8, 9 and 10 in Figure 4.7). In contrast to existing corrections, which

are not meant to improve the description of these polarized bonds, the ML models guarantee

by construction an equally accurate description for all the regions.

4.7 Free energy surface of tripeptides

Having assessed the robustness of the ML models by evaluating the accuracy of the energy

predictions on Phe-Gly-Phe tripeptide conformations and by providing comparisons with

uncorrected DFTB, this section goes further and applies the ML corrections to sample the free-

energy landscape of the tripeptide in gas phase. As described in the Computational Details

section, for the LKR model we use the resH-RE approach for a 300 K canonical sampling of the

tripeptide generated with DFTB as a reservoir to accelerate the DFTB+LKR sampling without

the need for high temperatures or bias potentials. We used T-RE for the exploration of the

tripeptide at the DFTB level as it is an unbiased sampling method, which is preferable for

high dimensional systems when adequate CV for metadynamics simulations are unknown.

Additionally, the resH-RE simulations require a reservoir following a canonical distribution,

which is not directly obtainable from biased methods such as metadynamics. The resH-RE

approach is especially convenient as the ML model was trained on structural data generated

at 300 K and could thus become unstable at high temperatures. Figure 4.8 shows the set of

characteristic collective variables (CVs) chosen to analyze the free-energy landscape. The set

of CVs includes all the Ramachandran dihedral angles as well as the distance between the

benzene rings at each end of the chain. We generated 2D free energy surfaces using all the
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Figure 4.8 – (a) Tripeptide Phe-Gly-Phe with highlighted atoms used for the collective variables
in the analysis of the sampling simulations. (b) & (c) Grids with 2D free energy landscapes for
each pair of the selected collective variables. The lower diagonals contains results from T-RE
simulations using DFTB. The upper diagonals contains the results of the resH-RE simulations
using DFTB + LKR (b) and DFTB + NN (c). In the diagonal are the probability distributions of
each collective variable for DFTB(blue), DFTB + LKR(orange), and DFTB + NN(green).

pairs of CVs from the samplings obtained using DFTB (lower diagonal of Figure 4.8 b/c) and

DFTB+LKR (upper diagonal of Figure 4.8b) in order to provide a complete view of the results.

The C4-N2-C5-C6 and C2-N1-C3-C4 dihedral angles were excluded from the plot because

their values remain constant throughout the sampling.

To provide a complementary view, we further sample the same tripeptide free energy surfaces

using the committee of NN models (upper diagonal of Figure 4.8c). We exploit the availability

of forces to perform well-tempered metadynamics simulations, and make use of the ability to

assess the uncertainties in the predicted corrections to smoothly fall back onto the DFTB base-

line when the NN predictions become uncertain. This suppresses instabilities in the dynamics

due to unphysical NN corrections in areas of the PES, which are underrepresented in the

training data. Using the analysis of the DFTB-based sampling as guidance, the metadynamics

are biased in the six-dimensional CV space spanned by the four peptide bond dihedrals (see

Figure 4.8), with the additional dihedrals N1-C2-C9-C10 and C5-C6-C7-C8 to account for the

ring distance (for further information see the Computational Details section).

The comparison between the DFTB T-RE results (lower triangular portions of Figure 4.8) and

the results of the ML potentials (upper triangular portions of Figure 4.8) shows the effects of

correcting the flat PES on the final free energy landscape. In addition to increasing the free

energy barriers, translated in very low populations in basin transition areas, the ML correc-

tions dramatically affect the relative stability of the different basins, altering the qualitative

dynamic behavior of the tripeptide at 300 K. These effects can be equally observed in both

the sampling based on LKR and NN. The results obtained show good agreement. The single
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Figure 4.9 – Sketchmap computed with DFTB (left) DFTB + LKR (middle) and DFTB + NN
(right) sampling at 300 K using the selected CVs from Figure 4.8.

CV populations are nearly identical, and the lowest free energy minima are unequivocally

determined. However, some disagreement in the free energy surfaces obtained by sampling

using the two ML frameworks can be observed for the higher-energy portions of the free

energy surfaces. Given the highly non-trivial nature of this exercise, it is not easy to pinpoint

the source of the discrepancy. The entanglement between uncertainties arising from (i) fi-

nite statistics and (ii) possible discrepancies of the ML models difficults the analysis of their

relative weight. Nevertheless, it is clear that both ML-corrected frameworks predict a much

sharper variation of the free energy compared with DFTB that instead predicts a very smooth

landscape as a function of the dihedral angles. This qualitative difference is also clearly visible

in a 2D Sketchmap 60,61 projection (Figure 4.9), which indicates that the more diffuse structural

distribution at DFTB is a direct consequence of the flatness of the associated PES.

As a final note, it is important to stress that the generation of converged statistics using

the target potential (PBE) would have been computationally unfeasible. Alternatively, a

comparison with experimental results would requires the addition of solvent effects, which is

outside the scope of this work.

4.8 Conclusion

In this work we introduced LKR-OMP, a local kernel regression model which exploits the

supervised sparsity algorithm OMP, and compared its performance along with that of a Behler-

Parrinello neural network. LKR-OMP benefits from the straightforward training of kernel

methods, combining it with the scalability and transferability of models based on neural

networks. We juxtapose the two approaches by applying them to the challenging task of

learning the PES of oligopeptides at the PBE-dDsC level, using the semiempirical DFTB-D3(BJ)

potential as a baseline and training on a combination of dipeptide structures and dimers of

small organic fragments.
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To achieve comparable computational cost between sparse kernel regression and NNs, it is es-

sential to select carefully the most representative environments. We show, both by comparing

the final model accuracy and by combining the representation score with a 2D projection of

the local atomic environments, that selection methods relying exclusively structural informa-

tion, such as FPS or CUR, are not always optimal, and that substantial improvements can be

achieved with the supervised strategy adopted in the LKR-OMP scheme.

Using only energies for training, the LRK-OMP model achieves an accuracy and transferability

compared to that of the NN-based model, that also uses forces to optimize its parameters.

Thanks to the atom-centered construction of the ML correction, we can reveal the origin of

the DFTB-D3(BJ) error relative to DFT, interpret in terms of chemical and atomic patterns

and demonstrate the relevance of relying upon a correction based on non-linear regression

techniques.

As a final demonstration of the possibilities brought about by the use of ML corrections of

the PES, we use them in combination with an enhanced sampling approach to explore the

conformational energy landscape of the tripeptide Phe-Gly-Phe at an effective PBE-dDsC level.

We use two different sampling strategies: resH-RE for LKR-OMP, which at present does not

provide easy access to energy derivatives, and ATLAS metadynamics for the NN potential, that

instead does. The free energy landscapes obtained with the two frameworks are consistent

with each other, and show striking differences compared to the uncorrected baseline potential.

This provides another example of the exaggerated smoothness of the DFTB potentials and

highlights the dire need to make the accuracy of higher electronic structure levels accessible

to the size and time scale that are necessary for free energy computations. In this respect, the

fact that ML corrections have now become a mature, trustworthy approach to achieve this

goal – with entirely different frameworks achieving comparable accuracy and efficiency is

very encouraging. The LKR-OMP model, in particular, offers a good compromise in terms

of data-intensiveness, computational cost, generality and accuracy, in addition to providing

unique analytical insight into the model performance.
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5 Reaction-based machine learning
representations for predicting the
enantioselectivity of organocatalysts
This chapter is based on the following publication:

S. Gallarati, R. Fabregat, R. Laplaza, S. Bhattacharjee, M. D. Wodrich, C. Corminboeuf, Reaction-

based machine learning representations for predicting the enantioselectivity of organocata-

lysts, Chem. Sci. 2021, 12, 687.

5.1 Introduction

Society’s growing need for pharmaceuticals, agricultural chemicals, and materials requires

a continuous push in the development of asymmetric catalytic methods.295,296 In particu-

lar, enantioselective organocatalysis has emerged as a powerful strategy for the stereocon-

trolled assembly of structurally diverse molecules 297–299 with constant effort placed in making

chemical transformations more selective, efficient, or generally applicable.300 Although the

computational design of highly selective catalysts has long been viewed as a “Holy Grail” in

chemistry, 301,302 it is generally still more efficient to experimentally screen a range of potential

organocatalysts for a given reaction than to assess their performance in silico.303 That is

because e.e. (enantiomeric excess) values, estimated as the ratio between the competitive

reaction rates leading to the two enantiomeric products,304 are relatively computationally

expensive and challenging to predict accurately with standard electronic structure compu-

tations. The energy difference between the transition states (TSs) leading to the major and

minor enantiomers can be quite small (< 2 kcal mol−1) and multiple diastereomeric transition

states, stemming from the large conformational space of flexible organocatalysts, can yield

the same enantiomer. 301,305 As the relation between rate constants and computed selectivity

is exponential, minor errors in computed energies can lead to major errors in stereochemical

outcome prediction. These factors pose a monumental challenge for traditional quantum

mechanical (QM) methods, in terms of both accuracy and cost,306,307 especially if many

conformers and substrate-catalyst combinations have to be computed. While the intrinsic

error of the quantum chemical level is often addressed in comprehensive benchmark stud-

ies, 304,308–311 automated toolkits, 312,313 such as AARON 314 and CatVS, 315 have been developed
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to streamline the tedious and error-prone task of optimising hundreds of thermodynamically

accessible stereocontrolling transition states. Starting from user-defined libraries, multiple

conformations and configurations of TS structures are located and optimised. Although such

accelerated prediction of selectivity is enticing for the prospect of computational catalyst

design, 303 the applicability of QM-based tools such as AARON remains limited either by the

cost of quantum mechanical computations, which quickly becomes prohibitive, or by the

inherent difficulty of locating all transition state structures. On the other hand, tools using QM-

derived molecular mechanics force fields (Q2MM), like CatVS, require the development of an

MM force field for each new reaction type considered, a major limitation to their widespread

application. 305

An alternative approach pioneered by Norrby 316 and Pradhan317 and popularised by Sigman

and co-workers is to fit experimental reaction outcomes to physical organic molecular de-

scriptors. 318–320 The difference in free energies at the stereocontrolling transition states can

be expressed as a polynomial function of global or local steric and electronic parameters, such

as Sterimol values, natural bond orbital charges, IR frequencies, HOMO/LUMO energies, and

polarisabilities.321–327 In principle, the resulting statistical model allows for extrapolation to

out-of-sample examples,328,329 however, like all QSSR-type methods,330 such multivariate

linear regression is not easily transferable and most suitable only for closely related analogues

of the training set, given that a set of appropriate molecular descriptors must be redefined for

every new regression. 315

Nonlinear regression models (e.g., artificial neural networks, random forest, Gaussian pro-

cesses, support vector machines)331 have demonstrated the potential to overcome some of

the previous limits in catalyst screening and constitute an alternative to multilinear regres-

sions with parameters derived from chemical knowledge and mechanistic hypotheses (e.g.,

Hammett constants, Tolman cone angles, percent buried volume, vibrational frequencies, pKa

values).9,52,332–336 Recently, the organic synthetic community has exploited these artificial

intelligence-based approaches for predicting ∆∆G‡, e.e., the activation energy, the product

distribution, or the yield of (asymmetric) catalytic reactions. These models rely on the identifi-

cation of a large set of system-specific molecular descriptors (e.g., physical organic descriptors

like Charton or Sterimol values, NBO charges, NMR chemical shifts, bond distances and

angles, HOMO-LUMO gaps, local electro/nucleophilicity, or RDKit descriptors337) used as

the input from which an algorithm can “learn” while being “supervised” by the reaction out-

come (output, i.e. ∆∆G‡, e.e., or yield).338–353 While the reaction outcome is often obtained

from experiment (i.e., phenomenological models), alternatives based on computed data are

highly valuable as well.354–358 Indeed, so-called quantum (or atomistic) ML models, which

map a three-dimensional molecular structure (called molecular representations, e.g. CM, 29

SLATM,119 SOAP125) to a representative target computed quantum chemically, constitute

an appealing complementary strategy owing to its broad applicability and dependence on

the laws of physics.53,119,359 While these approaches provide a favourable combination of

efficiency, scalability, accuracy, and transferability for predicting energetic and more complex

molecular properties, 53 identifying enantioselective organocatalysts requires precise predic-
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tions of the relative energy barriers for the stereocontrolling transition states, a target currently

beyond their accuracy. Recently, SOAP features of isolated reactants were used to train a

machine learning classifier and predict transition state barriers of regioselective arene C-H

functionalization. In this work, a large number of molecular fingerprints were combined with

the SOAP features to improve the regression, and the resulting model was outperformed in

out-of-sample predictions by a random forest model using chemical descriptors with physical

organic basis (PhysOrg). 360

Here, we provide a stepwise route to improve such QML approaches to reach sufficient accu-

racy for subtle properties such as those associated with asymmetric catalysis (i.e., e.e.). This

objective is achieved by rationally designing a reaction-based representation (vide infra) that

is a more faithful fingerprint of the enantiodetermining TS energy. The performance of the

approach is demonstrated through accurately predicting the DFT-computed enantiomeric

excess of Lewis base-catalysed propargylation reactions directly from the structure of the

catalytic cycle intermediates. Unlike other ML models trained on (absolute) experimental

e.e.’s,328,329 our model is able to predict the absolute configuration of the excess product,

because it is trained on the activation energy of the enantiodetermining step for each pair of

enantiomers (pro-(R) and pro-(S) intermediates) independently.
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5.2 Methods

5.2.1 Reaction and Organocatalysts Database

Asymmetric allylations 363–366 and propargylations 367 of aromatic aldehydes are key C-C bond

forming transformations, providing access to optically enriched homoallylic and homopropar-

gylic alcohols, respectively, which serve as valuable building blocks for the synthesis of complex

chiral molecules.368 Catalysts that are selective for allylations are generally not highly stere-

oselective for propargylations, which has led to a dearth of stereoselective propargylation

catalysts. 362,369–372 Tools to screen dozens of allylation catalysts to find promising candidates

for propargylation reactions are therefore highly valuable.303 To this end, Wheeler and co-

workers have investigated364 Lewis base organocatalysts (Scheme 5.1)361 and used the com-

putational toolkit AARON20 to build a database of 760 stereocontrolling transition states to

predict their enantioselectivity in the propargylation of benzaldehyde (Scheme 5.1). 308,361,373

Large databases of kinetic data for asymmetric catalysis generated in silico are scarce.354

Therefore, this library constitutes an ideal training and validation set for the development of

an atomistic ML model with reaction-based representations capable of predicting the e.e. of

organocatalysts readily from the structures of intermediates. Note that the workflow presented

below would improve the ML performance independently of the size of the training data.

The target of the ML model is the DFT-computed relative forward activation energy (Ea , i.e.,

the energy difference between the TS and the preceding intermediate) associated with each

of the 10 (R)- or (S)-ligand arrangements of the enantiodetermining TS in Scheme 5.1 for

the 76 catalysts in Scheme 5.1 (11 catalysts of type 1, 16 of type 2, 15 of type 3, 11 of type 4,

13 of type 5, and 10 catalysts of type 6), yielding a total of 754 Ea values (the intermediates

1f-S-bp2-2, 3e-R-bp1-3, 3e-S-bp1-3, and 3j-S-bp2-3 could not be converged, therefore the

corresponding enantiomeric TS structures were removed from the original database of 760

TSs). e.e. values are computed from Ea (vide infra), thus accurate predictions of Ea lead to

accurate e.e. predictions.

5.2.2 General ML Workflow

The general workflow exploited and improved herein relies on a physics-based ML model for

the prediction of the e.e. of the asymmetric catalytic reactions, as illustrated in Scheme 5.1

and described hereafter. It comprises two parts: part (1) is a training procedure that relies on

the following steps:

1. Database construction: a library of 3D geometries and energies of catalytic cycle in-

termediates is curated. Here, the structures of 754 pairs of intermediates 2 and 3 are

optimised with DFT (see the next section) and used to train the ML model. As shown

in our previous work,52 accurate geometries are not necessarily needed as inputs for

atomistic ML models; thus, rough-coordinate estimates (e.g., obtained directly from

SMILES strings) or low-cost DFTB structures could potentially be used to generate
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Scheme 5.2 – Graphical overview of the workflow used to build an atomistic ML model for e.e.
prediction.

suitable molecular representations.

2. Generation of molecular representations: information intrinsically contained within

the 3D structure of each intermediate is transformed into a suitable molecular repre-

sentation. Here we build different variants based on the Spectral London and Axilrod-

Teller-Muto (SLATM)119 representation. SLATM is composed of two- and three-body

potentials, which are derived from the atomic coordinates, and contain most of the

relevant information to predict molecular properties. 55,125,129,187,374–377

3. Training of the model: input representations are mapped onto the corresponding target

values (Ea , computed at the DFT level, see the next section) using Kernel Ridge Regres-

sion (KRR)21 with a Gaussian kernel. Note that even if target values based on DFT are

used here to train the ML model, the strategy proposed hereafter is expected to perform

equally well on experimental or more accurate quantum chemical data.

4. Hyperparameter optimisation and cross-validation: the full dataset is split randomly

100 times into 90/10 training/test sets (678/76 datapoints) to optimise the KRR hyperpa-

rameters and obtain the learning curves.

In part (2), the trained ML model is used to predict the activation energy of out-of-sample

organocatalysts. The model requires as input the 3D structures of 2 and 3 and delivers the cor-

responding Ea value. Using the energy of 2 as reference, the relative energies of the enantiode-

termining (R)- and (S)-TSs can be calculated, and the e.e. of the catalyst under investigation

computed (vide infra).
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5.3 Computational Details

5.3.1 Quantum Chemistry

Catalytic cycle intermediates 2 and 3 were optimised at the B97-D/TZV(2p,2d) level of the-

ory,378–380 accounting for solvent effects (dichloromethane, ε = 8.93) using the polarizable

continuum model (PCM)381–383 with Gaussian16384 in analogy with the study by Wheeler

and co-workers. 361 Density fitting techniques were used throughout. The structures of 1508

intermediates were obtained via intrinsic reaction coordinate calculations (IRC) 385 from the

TS database curated by Wheeler et al.385 754 target Ea values (11 catalysts of type 1, 16 type

2, 15 of type 3, 11 of type 4, 13 of type 5, and 10 of type 6, each in 5 distinct pro-(R) and

pro-(S) ligand arrangements) were computed (relative to the lowest-lying intermediate 2

ligand arrangement) at the same level, which was shown to provide the best compromise

between accurate predictions of low-lying TS energies and stereoselectivities for allylation

and propargylation reactions.308 The e.e. values were not predicted from Gibbs free energy

barriers, but rather from relative energy barriers (i.e., electronic energies plus solvation free

energies), since they have been found to be more reliable than those based on either relative

enthalpies or free energy barriers for this reaction.308 The symbol Ea was therefore used to

indicate the energy (electronic plus solvation) difference between the TS and the preceding

intermediate. For each C2-symmetric catalyst (Scheme 5.1), 304 distinct ligand arrangements

around a hexacoordinate Si centre are possible (BP1-5, (R)- and (S)-). 362,372,373 Since each of

these can lead to thermodynamically accessible reaction pathways, and the stereoselectivity

is largely a consequence of which ligand arrangement is low-lying for a particular catalyst,

all diastereomeric TSs were considered viable and the e.e. calculated from a Boltzmann

weighting of the relative energy barriers. 361 In equations 1-3, ∆Ea,eff is the relative Boltzmann-

weighted activation energy of each (R)- or (S)-species, ∆∆E‡ is the difference between the

(R)- and (S)-Boltzmann-weighted activation energies, R is the ideal gas constant, and T is the

propargylation reaction temperature (195 K).

5.3.2 Machine Learning

The Python package QML220 was used to construct standard SLATM representations. Fea-

ture selection and the construction of the reaction-based representations SLATMDIFF and

SLATMDIFF+ were done using the Python package Scikit-learn. 137 To generate the learning

curves and the e.e. predictions, a cross-validation scheme was used with 100 different 90/10

training/test sets (678/76). The KRR hyperparameters (the width of the Gaussian kernel σ and

the ridge regularization λ) were optimised for each train/test split, systematically obtaining

essentially the same results for each split (see the SI). From the 100 train/test splits, the Ea of

each intermediate pair (2 and 3) was predicted approximately 10 times; these test predictions

were then averaged to obtain one final prediction. The standard deviation from the ≈10 test

predictions were used to generate the error bars. The final average prediction of the Ea value

was used to calculate the Boltzmann-weighted ∆Ea,eff values (eq. 1) and the ∆∆ E‡ of each (R)-
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and (S)-pair (eq. 2), and so the e.e. value of each organocatalyst (eq. 3). The out-of-sample pre-

dictions were done with the same SLATMDIFF+ models trained in the cross-validation scheme.

Additionally, out-of-sample predictions were done re-training the model on the entire dataset,

although this did not lead to noticeable improvement. While simpler representations (e.g.,

CM, 29 BoB 80) were tested, SLATM performs significantly better.

5.4 Results and Discussion

5.4.1 Molecular representations

The key step of the workflow presented above is generating a molecular representation, which

is mapped onto the target value (i.e., the activation energy Ea) and used as a fingerprint of

the enantiodetermining TS. Representations can be constructed from single molecules and

more recently as “ensemble representations”: instead of associating one fixed configuration of

atoms to a single-point geometry energetic target value, information from multiple structures

can be combined to generate a representation for an ensemble property, such as the free

energy of solvation (∆Gsol).83 This has recently been achieved by calculating the ensemble

average of the FCHL19 representations31,82 of a set of configurational snapshots obtained

through MD sampling. 83 Here, we propose an alternative approach that goes beyond standard

QML representations (i.e., KRR using one given gas-phase geometry) by describing the chemi-

cal transformation occurring during the enantiodetermining step of an asymmetric reaction

through the comparison of the representations of the two catalytic cycle intermediates pre-

ceding and following the stereocontrolling TS. This allows us to generate a “reaction-based”

representation, which can be closely mapped to the activation energy of the enantiodetermin-

ing step, as discussed later. We rely on “dissimilarity” plots as a diagnostic tool to determine

whether a particular representation can adequately characterize the stereocontrolling step.

By dissimilarity plots, we refer to histograms of the Euclidean distance between any two

representations vs. the difference in their target property, which in this case is Ea . For a

particular representation to be effective, small distances between structures must correspond

to small differences between target properties, as the Euclidean distance is used to measure

the similarity of two molecular representations. Similar plots have previously been exploited

to analyse the behaviour of molecular representations, 74,125 but only parenthetically. Here we

highlight their importance as a fundamental analytical tool to understand the performance of

molecular representations in kernel methods for asymmetric catalysis and demonstrate their

utility for constructing reliable ML models.

Before discussing our proposed representation variants, we report in Figure 5.1a the perfor-

mance of the standard SLATM representation using the structure of a single intermediate (e.g.,

2). Due to the structural similarities between 2 and the enantiodetermining TS (in both, the

Si atom has 6 coordination sites occupied, whereas only the coordination number is only 5

or 4 in intermediate 3), intermediate 2 was first chosen to construct the input representation.

The learning curve for the prediction of Ea using SLATM (blue) of intermediate 2 (denoted
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Figure 5.1 – (a) Learning curves with MAE in test sets predictions of Ea for the three approaches
discussed. The error bars correspond to the standard deviations and are computed from the
results of 100 different random train/test splits. (b) Dissimilarity plots i.e., difference in target
values (Ea) vs. Euclidean distance between representations for each pair of points in the
dataset (the Euclidean distances have been divided by the average distance between points).
When the difference in Ea values tends to zero, the corresponding points should lie in the area
delimited by the two dotted straight lines (ideal behaviour).

SLATM2) reaches a Mean Absolute Error (MAE) of 0.54 ± 0.06 kcal mol−1 for the prediction of

Ea with 90% of the data used for training (i.e., 680 structures). Considering the exponential

relationship between relative activation energies and e.e. values, which implies a dramatic

propagation of errors, the accuracy of this approach is insufficient. This is further demon-

strated in Figure 5.2, which shows the correlation between the predicted and reference ∆∆E‡

values (MAE = 0.96 kcal mol−1), and in Figure 5.5, where the e.e. values obtained from SLATM2

are compared to the reference quantities: the large number of red-coloured cells indicates

large deviations between ML-predicted and DFT-computed e.e. values. The rather poor map-

ping between SLATM2 and the Ea of the stereocontrolling step (associated with the key 2 - 3

transition state) is evident from the visual inspection of Figure 5.5, where the large number

of red-coloured cells associated with catalysts bearing substituents a, d, e, g, f and j indicates

inaccurate predictions of e.e. values, and from the analysis of the corresponding dissimilarity

plot in Figure 5.1b (left). In the latter, the large scattering of points lying outside the area

delimited by the dotted lines, particularly when the Euclidean distance tends to zero, means

that two different structures might be considered equal by the kernel (distance ≈ 0) albeit

leading to very different Ea values. Thus, the shape of the dissimilarity plot of SLATM2 deviates

considerably from ideal one, indicated by the dotted straight lines. 125 Note that the MAE for

Ea increases up to 0.77 ± 0.05 kcal mol−1 if starting from the SLATM representation of 3, the

intermediate following the enantiodetermining step in the catalytic cycle (Scheme 5.1). The

higher accuracy achieved using the representation of 2 vs. 3 could be attributed to the reaction

step being exergonic and, according to the Hammond Postulate, 386 the enantiodetermining

TS resembling 2 more closely. In any case, neither the structure of 2 or 3 provide sufficiently

good fingerprints of Ea on their own.

Unlike other intrinsic molecular properties that depend on the structure of a single molecule, 83

enantioselectivity is determined by electronic and/or steric effects stabilising or destabilising
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one enantiomeric TS to a greater or lesser degree than the other. In that sense, it is to be

expected that our target accuracy for Ea , well below 1 kcal mol−1, cannot be reached using

only one structure that does not adequately describe the stereocontrolling transition state as

an input. To improve the model performance, an alternative representation is constructed

by comparing the representations of both intermediates. Knowing that neither the struc-

ture of 2 or 3 are uniquely related to the corresponding activation energies, we can generate

such a “reaction-based” representation that draws information from both structures, sub-

tracting the global SLATM of 2 from 3. This is reminiscent of binary reaction fingerprints

(obtained by subtracting the products from reactants in RDKit 337 fingerprints), which reflect

changes in molecular features over reaction processes.358 The resulting representation (de-

noted SLATMDIFF) accounts for the differences between the two intermediates and is thus

more sensitive to the structural changes occurring during the enantiodetermining step. By

subtracting “reactant” from “product”, the global features that do not change during the cat-

alytic cycle step are eliminated from the representation, and the structural changes between

intermediates are highlighted. In this way, we obtain a more faithful representation of the

reaction step, which corresponds to a more unique fingerprint of Ea . Although the construc-

tion of SLATMDIFF requires the SLATM representations of both intermediates (2 and 3), the

computational cost associated with its generation is negligible.

As depicted in the dissimilarity plot (Figure 5.1b, middle), the reaction-based representation

(SLATMDIFF) is significantly better than SLATM2: the difference in Ea values tends to zero as the

Euclidean distance between their representations tends to zero. In line with this observation,

the learning curve (shown by the orange line in Figure 5.1a) is significantly improved. The MAE

of SLATMDIFF is reduced to 0.31 ± 0.2 kcal mol−1, roughly 50% better than SLATM2 and up to

60% better than that of SLATM3 using 90% of the data for training (i.e., 680 structures) in the

train/test splits of the cross-validation scheme. Given the rationality of the approach leading to

the construction of SLATMDIFF, its gain in accuracy is encouraging. As shown in Figure 5.2 and

Figure 5.5, the halved MAE leads to a very notable improvement in the prediction of e.e. values.

Nevertheless, we note again that very small errors in Ea are amplified when e.e. values are

calculated, and therefore even a small accuracy gain can be significant. The high probability

density of normalised Euclidean distances between 0.5 and 0.75 seen in Figure 5.1b (middle,

SLATMDIFF) indicates that the shape adopted by the dissimilarity histogram of SLATMDIFF is

not yet ideal, and that further improvement is possible. To achieve higher accuracy, we focus

on improving the shape of this dissimilarity plot. Notice that in our ML model, the Euclidean

distance is used as a measure of similarity between representations. This means that features

with high variance (i.e., that change the most between molecules) dominate the notion of

similarity, as they contribute the most to the Euclidean distance between representations. By

feature, we mean each of the terms in the molecular representation, which, for SLATM, consist

of two- (London dispersion) and three- (Axilrod-Teller-Muto) body potentials computed on

groups of atoms closer than a certain cut-off (here, 4.8 Å). The results of these potentials are

averaged over their atom-type sets (e.g., all C-C interactions for the two-body terms, all the

C-C-C for the three-body terms), which are then concatenated to generate the SLATM vector.
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The size of the SLATM representation depends on the existing atom-type sets in the database.

Given that our dataset contains the elements C, H, O, N, F, Cl and Si, the total number of

features of the SLATM representations is 27827.

Figure 5.2 – Predictions of ∆∆E‡ vs. DFT reference for the three approaches discussed. Mean
Absolute Errors (MAE) are reported in kcal mol−1. These predictions are obtained by aver-
aging the predictions obtained from the cross-validation scheme with 100 different random
train/test splits. The error bars indicate the standard deviation of ML ∆∆E‡, derived from the
standard deviations in the Ea prediction of the 100 different random train/test splits.

In SLATMDIFF, features with high variance dominate the notion of similarity, measured through

the Euclidean distance. However, we are using SLATM to predict a property that is very differ-

ent from the single-molecule properties for which it was originally designed. Consequently,

features with high variance in SLATM are not necessarily the most important fingerprints of Ea .

In general, applications that use molecular representations are highly sensitive to the metric

used to compute similarities, as common choices like the euclidean distance use a biased

notion of similarity that gives more or less importance to features depending on their pre-

defined variances. This is not always a critical problem, because molecular representations

are designed with rational principles, but in general the metric used and therefore the idea

of similarity should depend on each specific application, as different molecular properties

depend on different molecular features. However, so far only unsupervised feature selection

and dimensionality reduction methods are commonly used in the computational chemistry

community, while their supervised counterparts, much more adequate, are largely unknown.

The inadequacy of the euclidean distance to assess the similarity between standard molec-

ular representations is clearly illustrated in the following example, where we use SLATM to

regress the atomization energy of the QM9 database 49,250 containing 134k stable small organic

molecules made of up to 9 CONF heavy atoms. If we compute the variances of SLATM for

the QM9 database and compare them to the mutual information between features and the
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Figure 5.3 – Variance, MI, and obtained MLKR variance of the SLATM features for the QM9
database (top left). Achieved test MAE for each of the representations (top right). Dissimilarity
plots for each of the representations (middle). 2D t-SNE projections of the QM9 databse using
each of the representations (bottom).

target387 (the atomization energy) we do not observe a correlation (see Figure 5.3 top left).

This indicates that the standard design of SLATM is not optimal even for atomization energies,

one of the main targets for which it was designed. Using supervised feature selection, we

are able to obtain a naive representation, SLATMMI, that is built using the 1000 features with

the highest mutual information. Moving from SLATM to SLATMMI already reduces the test

error of atomization energy prediction by 20% of a simple KRR model with 10000 training

data points (see Figure 5.3 top right). Subsequent removal of the correlated features from

SLATMMI, followed by application of Metric Learning for Kernel Regression (MLKR) leads to a

representation, SLATMMLKR, containing only 516 features that reduces the original error by

50%. The dissimilarity plots in the middle of Figure 5.3 corresponding to each representation

clearly show the successive improvement. The obtained feature space is not only useful for

improving supervised machine learning models, but also for any task that uses distances

and similarities, such as dimensionality reduction methods. As the notion of similarity be-

comes better adapted to the target at hand, the results of unsupervised learning become more

meaningful. This can be clearly observed in the lower plots of Figure 5.3, which show 2D

t-SNE projections of the QM9 database for each of the representations (all generated with the
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Figure 5.4 – Variance and correlation coefficient with the target value for each of the 27827
features of the SLATMDIFF representation in the dataset.

same t-SNE hyperparameters). Successively improved feature spaces generate 2D projections

having better correlation with the atomization energies.

It must be stressed that the results of this example were not achieved by increasing the

information encoded in SLATM, but rather by filtering and adapting it to the target at hand.

Therefore, categorizing different molecular representations by the amount of information they

encode126 can be misleading, as maximizing the encoded information is not equivalent to

maximizing usability. In this sense the pursuit of an ideal, universal and immutable molecular

representation can be detrimental, if no additional measures are taken into account. This

issue has been largely ignored until now, even after studies have shown how the popular

representation SOAP could be optimized for different scenarios. 105 Molecular representations

are still envisioned as immutable quantities, that should be equally accurate in any application

or situation. This fact has been a source of the current convoluted understanding of molecular

representations, where many fundamentally different possibilities exist, yet guidelines for

choosing one over another, apart from trial and error specific to each application, remain

absent.

In pursuit of the best possible fingerprint for the current application, we follow the previous

example and procede to optimize the SLATMDIFF to construct a similarity measure adapted

to the activation energy. First, we assign importance scores to each feature and attempt to

focus on the most relevant ones. In this case, the linear correlation coefficient (r2) between

each feature and the target property is used as an estimate of the importance of the different

terms in the representation. The results, presented in Figure 5.4, show that in SLATMDIFF

there are only a few high-variance features, while the computed importance scores are spread

over many other features that have relatively small variances. Simply put, the variances in the

features of the SLATMDIFF representation are not well correlated with their real importance in

this application. Based on this observation, an improved representation, labelled SLATMDIFF+,

is generated by selecting only the Nf most important features of SLATMDIFF (specifically, Nf =

76



5.4. Results and Discussion

Figure 5.5 – e.e. values obtained from DFT computations (top left) and from the ML predictions
of Ea using the three approaches discussed. These predictions are obtained by averaging the
predictions obtained from the cross-validation scheme with 100 different random train/test
splits. Cells are coloured according to their accuracy with respect to the reference, ranging
from dark green (best) to dark red (worst). Positive e.e. values correspond to excess (R)-alcohol
formation, negative values to excess (S)-alcohol formation.

500) and discarding the rest. This feature selection was done using only the training data at

each train/test split of the cross-validation step, as otherwise it could lead to severe overfitting.

Nevertheless, the importance scores were consistent across the cross-validation splits thanks

to the robustness of the linear regressions. An improved relationship between representation

and target distances (Figure 5.1b, right) is obtained with the SLATMDIFF+ representation, in

spite of its reduced size. This simple feature selection leads to a noticeable improvement

in accuracy, with a cross-validated MAE of 0.25 ± 0.4 kcal mol−1 (see the green curve in

Figure 5.1a). Using the SLATMDIFF+ representation, the resulting cross-validated correlation

coefficients for the difference between (R)- and (S)-activation energies (∆∆E‡, Figure 5.2) in

the test set are greatly improved (r2 > 0.95). The quality of our fitted model far supersedes

previously reported approaches. Good qualitative and even quantitative agreement is achieved

between predicted and reference e.e. values computed using the test data splits from the

cross-validation runs (Figure 5.5). Since linear correlation constitutes a very limited notion

of relevance, other methods, such as nonlinear mutual information criteria,387 were tested

as feature importance estimators, but the resulting models showed similar or even worse

performance. Similarly, methods based on metric learning such as MLKR did not lead to

any improvement in this case, as the high dimensionality of the problem and little data

available led to severe overfitting. Ceriotti et al.251 suggested the use of principal covariates
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regression (PCovR) to solve similar issues. PCovR is a supervised feature selection method

that interpolates between principal component analysis (PCA) and linear regression. Herein,

because the variance of the features is completely unrelated to the importance scores, the

addition of PCA would not offer any advantage. Nevertheless, these findings highlight the

importance of adapting molecular representations to the application at hand, while still

preserving the overall generality of the approach.

5.4.2 Chemical Insight on Asymmetric Propargylation Catalysts

The ML model is able to reproduce the main trends in e.e. observed across the different

catalysts from the 100 different random train/test splits (Figure 5.5, top left table). For ex-

ample, using SLATMDIFF+ (Figure 5.5, bottom right table), which gives the best predictions

with respect to the reference data, catalysts built on scaffold 4 (Scheme 5.1) are revealed to be

outliers, yielding e.e.’s that are significantly different to those obtained with other scaffolds,

for a given substituent a-j. This is due to the different placement of the substituent X on the

organocatalysts’ scaffold. Excluding 4, the effect of different substituents on the e.e. is qualita-

tively the same across all scaffolds, with the exception of f (iPr) and j (Ph). The introduction

of a phenyl group on the organocatalysts’ scaffold leads to highly varied e.e. values, from

-97 (S) to 91 (R). This variation, which is due to the presence of favourable π-stacking and

CH/π interactions stabilising some (S)-TSs and degrading the enantioselectivity,361 is nicely

captured by SLATMDIFF+. Overall, the high enantioselectivity displayed by (most) catalysts in

the library can be attributed to the favourable electrostatic interaction between the formyl

C-H of benzaldehyde and one of the chlorines bound to Si, which is present in the lowest-lying

(R)-ligand arrangement, and absent in the (S)-structures. 361

In their computational screening with AARON, 361 Wheeler and co-workers identified deriva-

tives of 6 as promising candidates for propargylation reactions. However, these catalysts are

difficult to synthesize stereoselectively.370,388 Recently, Malkov et al. reported the synthesis

of a set of terpene-derived atropisomeric bipyridine N,N-́dioxides 7 (Figure 5.6) as easily-

separated diastereoisomers.389 Aromatically-substituted catalysts 7j and 7k were shown to

be highly active and selective (e.e. of 96 and 97, respectively); additionally, the TS structures

for 7 were computationally shown to be nearly identical to the corresponding substituted

forms of 6. 389 Prompted by these results, we decided to test the ML model with SLATMDIFF+ to

predict the activation energy of the 10 distinct ligand arrangements afforded by 7j and 7k. The

out-of-sample results are shown in Figure 5.6. Despite scaffold 7 and substituent k not being

in the original training set, excellent correlation between predicted and reference Ea values is

obtained (r2 = 0.97). Thus, the enantioselectivity of these out-of-sample catalysts is qualita-

tively reproduced, despite not achieving exact quantitative agreement between DFT and ML

predicted ∆∆E‡ values (1.2 and 1.3 for 7j and 7k, respectively, vs. 0.2 and 0.5 kcal mol−1). In

summary, we provide a logical route to improve atomistic ML methods for enantioselectivity

prediction of asymmetric catalytic reactions, which are limited by both the required accuracy

and the small amount of data generally available. Firstly, the intermediates associated with
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Figure 5.6 – Out-of-sample predictions on terpene-derived atropisomeric organocatalysts
7j and 7k. 10 distinct TSs were computed for each catalyst (BP1-5, (R)- and (S)-). The error
bars are the standard deviation of the 100 predictions from each trained model from the
cross-validation scheme.

the enantiodetermining step (2 and 3 in Scheme 5.1) must be identified, and their SLATM

representations generated. Secondly, using the difference between the two SLATM representa-

tions (SLATMDIFF) as input, a set of features that map the activation energy accurately can be

obtained. Finally, feature engineering can be used to improve SLATMDIFF, keeping only the

most relevant features that relate to the target property. The results show that the ML workflow

presented herein is able to accurately predict enantioselectivity from the molecular structures

of catalytic cycle intermediates.

5.5 Conclusions

In this work, we have developed an atomistic machine learning model to predict the DFT-

computed e.e. of Lewis base-catalysed propargylation reactions (Scheme 5.1). The use of

dissimilarity plots allowed us to rationally develop and progressively improve a reaction-based

representation that can be adequately mapped onto the activation energy of the stereocon-

trolling step. We identified two fundamental limitations of many standard physics-based

molecular representations for subtle catalytic properties. First, we have shown that neither

the structure of the preceding nor that of the following catalytic cycle intermediate is a fine fin-

gerprint of the energy of the stereocontrolling transition state. This issue can be circumvented

by using a reaction-based molecular representation derived from both structures. Finally, we

have demonstrated how feature selection can be used to fine-tune this representation.

The resulting model can accurately predict the DFT-computed enantioselectivity of asymmet-

ric propargylations from the structure of catalytic cycle intermediates. Thus, it constitutes
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a valuable tool to quickly identify potentially selective propargylation organocatalysts. By

design, the model is well-balanced between computational cost, generality and accuracy. It

is easy to implement for a wide region of chemical space and seamlessly compatible with

experimental (e.g., X-ray structures of stable intermediates) and computational data alike.

Our results prove that semi-quantitative predictions of e.e. values in asymmetric catalysis

can be achieved by accurately predicting Ea . We conclude that atomistic ML models with

adequately tailored molecular representations can be a practical and accurate alternative to

both traditional quantum chemical computations of relative rate constants and multivariate

linear regression with physical organic molecular descriptors. The stepwise improvement

to the model described in this work opens the door to more complex reaction-based and

catalytic cycle-based representations. Indeed, ensemble representations, which were recently

introduced for properties very sensitive to conformational freedom, such as the free energy

of solvation ∆Gsol,83 are a promising path to go beyond the single structure-to-property

paradigm and allow for further generalisation, once combined with the approach discussed

herein. Such methodologies will be explored in future work for the accurate screening of

enantioselective catalysts in asymmetric reactions.
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6 General Conclusions and Outlook

6.1 Conclusions

The applications of machine learning in computational chemistry stand at a thrilling stage of

development. The increasingly available data, powered by technological innovations such

as GPU accelerated quantum chemistry and high throughoutput experiments, represents an

extremely fertile playground where to test the innovations in the field of statistical learning.

As a result, new data-fuelled prediction and analytical tools are providing unprecedented

exploratory power of the chemical space, which is reshaping the methodological paradigms of

the field. The work presented in this thesis is part of this evolution and aims at broadening

the domain of applicability of machine learning algorithms that rely on similarity measures,

among which are some of the most useful supervised and unsupervised approaches. The

techniques and chemical situations presented in this work are part of a larger effort to develop

novel statistical tools that process the ever-growing amount of chemical data, and belong to a

broader family of computational methods to model increasingly complex molecular systems.

In the first part of this thesis we introduced the fundamental concepts and methodologies re-

quired for the developments presented in the rest of the thesis. We highlighted the importance

of machine learning potentials in quantum chemistry applications, specifically to perform free

energy computations with ab initio accuracy. This was demonstrated through the computa-

tion of free energy landscapes at the CCSD(T)/CBS level of theory of two flexible systems that

are dictated by a subtle interplay between enthalpic contributions and conformational entropy.

We showed how this could only be achieved thanks to the combination of two elements. On

the right hand, kernel-based potentials, which use physics-based molecular representations

to achieve extreme data-efficiency. On the left hand, Hres-RE, a novel enhanced sampling

algorithm that bypasses the limitations of ML potentials and critically decreases convergence

time by recycling the information of reservoirs with canonically distributed conformers. This

combination was made only possible through the development of MORESIM, a modular

Python package that provides an environment to design and execute hand-crafted replica

exchange simulations.
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Despite their widespread use to predict molecular properties, kernel methods like the one

used in Chapter 3 suffer from serious drawbacks. On one side, they lack the transferability and

scalability of methods based of Neural Networks. On the other side, their accuracy in molecular

property prediction is conditioned to the prior existence of molecular representations that

are adequate for the application at hand. In this thesis we showed how these limitations

originate from the sub-optimal construction of the two key elements that define a kernel

method: the set of reference elements and the definition of similarity. In Chapters 4 and 5

we addressed each of the issues and unveiled that the fundamental source of both problems

lies in the presence of redundant and irrelevant information in descriptive data. We tackled

this problematic by leveraging the ability of supervised dimensionality reduction and metric

learning tools to filter descriptive information and adapt it to specific target properties. We

then demonstrated how this greatly improves the capabilities of similarity-based methods for

applications in computational organic chemistry.

Specifically, in Chapter 4 we address the underwhelming performance of kernel approaches

to construct transferable ML-based potentials for systems with high chemical diversity. Prior

to our work, local kernel models suffered from a poor choice of reference atomic environments

due to the inappropriate use of unsupervised learning approaches to filter highly redundant

molecular databases. This hindered their performance for systems with high chemical variety

and restricted their use to amorphous and crystaline materials with few element species.235

Our work has unveiled the two reasons that make unsupervised algorithms like FPS sub-

optimal for this task. On one hand, they use dissimilarity measures in the input feature space

to select the most diverse set of reference environments. This is inadequate as dissimilarity in

the representation space is not necessarily correlated with dissimilarity in the target space,

given that molecular representations are not adapted to each specific target. On the other

hand, sampling the input space uniformly as done by FPS is inefficient when the variability of

the target property is not distributed accordingly, but rather localized in certain areas. ∆-ML

represents a major example of this case, as the difference between a baseline and the target

property is typically concentrated in specific regions of the input space. We tackled this prob-

lematic by introducing the LKR-OMP model, which combines a local kernel projection with

the sparse regression algorithm OMP. This results in a supervised dimensionality reduction

algorithm that allows to select the optimal set of reference environments for the prediction of

a specific property. The performance of LKR-OMP, trained on thermally distorted dipeptide

conformers, is validated on the prediction of the potential energy surface of oligopeptides

and compared with that of a state-of-the-art Behler-Parrinello neural network. The LKR-

OMP shows equal or even superior performance to the NN model, but also provides unique

analysis tools. The sparse reference environments learned by LKR-OMP, combined with a

2-dimensional manifold learned using unsupervised learning, allows to identify the atomic

environments that are most problematic for the training. Moreover, by comparing the results

with traditional unsupervised sparsity algorithms like Farthest Point Sampling (FPS), we are

able to determine which specific atomic environments are treated differently by OMP and

therefore are inadequately described for the application at hand.
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In Chapter 5 we addressed the second and more fundamental problematic of current ML

approaches in computational chemistry (present not only in supervised kernel methods but

in all unsupervised learning in general): a poor and rigid definition of similarity between

atomic and chemical environments. We have demonstrated that the origin of this problem

lies in the high quantity of redundant and irrelevant information present in current molecular

representations. This pollutes standard similarity metrics like the Euclidean distance and

results in artificial similarity scores containing user-biases, which can critically affect the

performance of any similarity based algorithm. We highlighted the importance of dissimilarity

plots as diagnostic tools to assess this problem and to compare the adequacy of different

similarity metrics. We then showed how supervised metric learning and feature selection

techniques can be used to filter the information in molecular representations to adapt the

idea of molecular similarity to a specific application. These concepts were applied to develop

an atomistic machine learning model that predicts the DFT-computed enantiomeric excess

of Lewis base-catalysed propargylation reactions. Using dissimilarity plots we rationally

developed and progressively improved a reaction-based representation that can be adequately

mapped onto the activation energy of the stereocontrolling step. This methodology allowed

us to show how semi-quantitative predictions of enantiomeric excess values in asymmetric

catalysis can be achieved by accurately predicting activation energies.

The results presented in the previous paragraphs summarize the main conclusions of this

work and set the stage for new compelling perspectives, as outlined in the following section.

6.2 Outlook

6.2.1 Metric learning in the chemical space

Rather than engineering new representations, our work presents the possibility to adapt them

to different applications by finding new metrics, which offers alternative ways to evaluate their

performance. So far, molecular representations have been compared based on how much

information they contain, but we have showed that this is not necessarily a reliable measure

of efficiency. Instead, molecular representations should be ranked based on how well they

can be adapted to different targets through metric learning approaches. In addition, a careful

analysis of the similarities and differences between metrics learned for different applications

could reveal hidden trends and help to develop improved and more adaptable molecular

representations. This leads to an important question left unanswered by this thesis, which is

whether learned metrics can be shared or transferred among different applications. If so, this

opens the door to transfer-learning for kernel methods, a concept usually reserved for Neural

Network models. Transfer-learning refers to storing knowledge gained while solving one

problem and applying it to a different but related problem. A clear example would be to learn

metrics using approximated target values (e.g. DFTB) prior to the learning with the real target

property (e.g. DFT). This would allow access to much larger datasets to learn metrics, which

is specially valuable as the main problem of metric learning approaches is their tendency to

83



Chapter 6. General Conclusions and Outlook

Figure 6.1 – Euclidean and geodesic distance before and after manifold learning.

overfit when data is scarce and the input feature space is large. Nevertheless, novel metric

learning methods with sparsity and smoothness regularization158,390 are continuously being

developed and could contribute to alleviate this problem.

6.2.2 Semi-supervised kernel regression

Metric learning allows to linearly transform the space in order to give each feature the right

importance and improve the notion of similarity between training elements. However, the

obtained similarity is a function of the feature coordinates exclusively, and do not take into

account how the data is distributed in space. Including the local structure of data in the com-

parison between elements could further improve the notion of similarity between elements.

This is specially relevant for high-dimensional data, which is often distributed in convoluted

manifolds with low effective dimension that can be accessed using manifold learning methods.

In such case, the similarity between training elements can be better assessed by using geodesic

distances in the manifold rather than global distance metrics like the Euclidean distance (see

Figure 6.1). The special advantage of this methodology is that local structures can be captured

using unlabelled data, which is generally much more available than the labelled counterpart.

This type of approach, where the local structure of unlabelled data is used to aid supervised

learning tasks is generally referred as semi-supervised learning (see Figure 6.2).

Semi-supervised learning is specially well-suited for chemical applications, where labelled

data is often scarce but unlabelled data is generally available in large quantities. The learning

of potential energy surfaces (PES) is a key example. Training ML models to fit a PES usually

involves generating thermally distorted conformers using sampling methods with an approx-

imate potential. The target potential is then computed in a small selection of conformers,

which serves as training data, while the large majority are discarded. Instead, the whole data

could be used to learn local manifold structures where the actual regression will finally take

place.

Only few recent works have reported the use of semi-supervised learning along with chemical

data, 391,392 although they are without exception used on deep learning frameworks. This is not
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Figure 6.2 – Illustrative depiction of semi-supervised learning for classification. In this example,
the distribution of the data in clusters can be used to infer the labels of unlabelled data using
label propagation. 5

a coincidence, as most semi-supervised regression models are based on deep learning. In fact,

there are several recent breakthroughs on semi-supervised learning on deep neural networks

that have significantly reduced the amounts of labelled data necessary for training in image

classification frameworks, 5,393,394 although their applicability in other domains remains to be

seen. Additionally, most of the unsupervised regression methods are designed for classification

problems, 395 as it is generally easier to understand the relationship between data structure and

target if the target variable is categorical rather than continuous. Nevertheless, approaches

to include semi-supervised learning to kernel methods do exist.396–398 A straightforward

possibility is to use unsupervised learning dimensionality reduction like t-SNE prior to the

kernel regression. We already saw in Chapter 5 that after using Metric Learning for Kernel

Regression (MLKR) the target property showed a very smooth evolution in the manifold

learned by t-SNE. When coupled with metric learning, semi-supervised learning is a very

promising direction to further boost the applicability of similarity-based regression models in

chemical applications.
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A Elemental supervised and unsuper-
vised ML algorithms

This appendix contains a summary of the most common used supervised and unsupervised

learning algorithms, with some tips on how and when to use them.

A.1 Unsupervised learning algorithms

A.1.1 Dimensionality reduction algorithms

Dimensionality reduction algorithms can be divided in linear methods based on matrix

factorization or matrix decomposition techniques, and non-linear methods, often referred as

manifold learning.

Linear dimensionality reduction: Matrix decomposition and factorization

Linear dimensionality reduction techniques are based on the approximation of a matrix

M(n ×d) (in a data science setting n would be the number of samples and d the number of

dimensions of the representation) as a product of two other matrices U(n × f ) and V( f ×d),

where f would be the number of dimensions in the new reduced space (i.e. M ≈ UV.

By minimizing the Frobenius norm of the "reconstruction error" (||M−UV||) we obtain the

solution of Principal Component Analysis (PCA). From the solution of PCA we obtain a space

of dimension f where the orthogonal basis are a linear combination of the original features,

and that represents the directions of maximum variance in the original space of dimension

d . Alternatively to the Frobenius norm, different cost functions can be defined to obtain

solutions with particular characteristics, such as smoothness or sparsity. 399 For example, by

forcing all the elements in U and V to be positive, we obtain what is known as Non-Negative

Matrix Factorization, which has many uses when negative values are not meaningful, such as

in signal decomposition and image reconstruction. 400

The reconstruction error can be used to determine how many dimensions are necessarily for
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the linear method to "explain" most of the variance in the matrix M. Typically, the reconstruc-

tion error drops very fast with an increasing number of dimensions f , and then stabilizes and

decreases at a much slower rate. The number of dimensions where this change of regime

occurs is generally used as the optimal value of f .

Non-linear dimensionality reduction: Manifold learning

Manifold Learning can be thought of a generalization of linear frameworks like PCA to be

sensitive to non-linear structure in data, and they build a new space by aggregating the

results of local approximations. Unlike linear methods, the obtained dimensions bear no clear

significance, apart from indicating an idea of distance between points. Different algorithms

differ in the way the local structure is defined, and the way the data points are projected.

The first existing methods to perform manifold learning were based on Multi-dimensional

Scaling 401,402 (MDS), which finds a low dimensional representation of the original data where

the pairwise distances between all points are the same as in the original high-dimensional

space. Isomap403 is a contemporary modification of MDS where only the local distances are

computed, and the global distances are inferred from the local ones. In this way, in the low

dimensional representation created by Isomap the conserved quantities are the geodesical

distances, rather than the absolute euclidean distances themselves. While this allow to better

unfold nonlinear manifolds, it makes Isomap very sensitive to court-circuiting (connecting

data-points that belong to different parts of the manifold), which can quickly degrade the

obtained low dimensional projection. Another variant of MDS common in the computational

chemistry community is skethcmap, 60,61,404 specifically designed to unravel high dimensional

free energy landscapes from sampling simulations. It uses a sigmoid function rather than

a Gaussian or a hard cut-off to build the network of locally connected points, with the goal

of reproducing the distances that lie within a particular length scale that corresponds to the

transition pathways between free energy basins. Kernel PCA (KPCA) is another method of

the same family that applies PCA on a kernel representation rather than on the data itself.

This allows to find a low-dimensional representation in the kernel space such that pairwise

kernels are maintained. The PCA components on the kernel space are effectively non-linear

components on the original space. When used with a Gaussian kernel, as is most often done,

only the local neighbours of each point are captured, so the learned components in the kernel

space are the components that maintain neighbours close to each other, which produces

similar results as Isomap.

Another group of methods focuses on finding local linear factorizations of the data. Local

Linear Embedding405 (LLE) creates local linear maps that describe each point as a linear

combination of its neighbors. Then, it builds a low-dimensional embedding where the local

linear relationships are conserved. Effectively this is equivalent of merging a series of local

Principal Component Analyses. There exist several modifications of LLE to improve the

stability in ceratin conditions (such as MLLE 406 and Hessian Eigenmapping 407 Local Tangent

Space Alignment 408 (LTSA)).
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Perhaps the most popular family of methods today is based on stochastic neighbor embed-

ding methods. This family of algorithms compute the likelihood that two points in a high-

dimensional space are linked, and then builds a low-dimensional embedding attempting to

conserve the relationships between pairs of datapoitns. One of the most used dimensionality

reduction techniques is t-distributed Stochastic Neighbours Embedding138 (t-SNE), which

belongs to this class. In t-SNE, the links in the original space are described using Gaussian

joint probabilities while in the embedded space Student’s t-distributions are used. This al-

lows t-SNE to adequately assign small and large pairwise distances to similar and dissimilar

datapoints respectively. Consequently, t-SNE has better capabilities to disentangle complex

manifolds than other methods that rely only on Gaussian distributions such as KPCA. The

long range forces induced by the t-distribution allow t-SNE to deal better with non-uniformly

sampled data than methods like Isomap, LLE and variants, which are best suited to unfold a

single continuous low dimensional manifold, a case rarely found in heterogenuous datasets.

Unlike linear methods like PCA, where the obtained features are linear combination of the

features in the original space, the meaning of the dimensions in non-linear dimensionality

reduction is quite obscure, and no clear diagnosis tool exists to determine the "goodness".

A.1.2 Clustering algorithms

Cluster algorithms can be classified according to their inherent notion of cluster, and their

performance will depend on how well a the distribution of points in specific dataset fits this

definition. Unless it can be shown mathematically that a type of clustering method is more

suited for a specific case, the performance of clustering algorithms can only be assessed

experimentally. Four of the most common families of clustering algorithms are:

• Connectivity-based clustering (hierarchical clustering):

Connectivity-based clustering methods define a cluster using the maximum cutoff

distance needed to connect all the elements in the cluster. Different cutoff distances

will generate different clusters, which can be represented hierarchically using a dendo-

gram. Rather than providing a single clustering result, this type of methods generates

a hierarchy of clusters that progressively merge with each other with increasing cutoff

distances. Hierarchical clustering methods constitute the theoretical foundation of

clustering algorithms, but are generally considered obsolete.

• Centroid-based clustering:

In Centroid-based clustering clusters are represented by points in space called "cen-

troids". Each data point belongs to the cluster whose centroid is closest. Given a fixed

number of clusters, the algorithm K-means21 optimizes the centroid locations so that

the squared distances between the points in a cluster and its centroid are minimized.

Centroid-based algorithms like K-means generate a parition of the feature space in

Voronoid cells with linear borders. One of their main drawbacks is that the number
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of clusters has to be defined by the user, although there are tools such as the Elbow

curve 409,410 that help to infer what is the adequate number. Moreover, they tend to gen-

erate clusters of approximately similar size which often leads to incorrectly cut borders

if the sizes of the clusters are heterogenous.

• Distribution-based clustering:

In distribution-based clustering clusters can be defined as data points belonging most

likely to the same distribution, which mimics the way data sets are often generated: by

sampling random elements from a distribution.

The functional form of the underlying distributions have to be defined a priori. Most

often the prior used is a mixture of Gaussian distributions, which yealds the Gaussian

Mixture Model, usually solved using the Expectation-Maximization algorithm. 411 As for

K-means, Gaussian mixture models require a fixed number of clusters to be given as

input. However, unlike K-means, the size of the gaussians can freely vary, which makes

this type of model much more adaptable to find clusters of different sizes, although the

shape should fit an ellipsoid.

• Density-based clustering

Density-based clustering algorithms define clusters as areas of high density of data

points. They approximate the local density of points for each data entry and proceed to

find the local minima of the point density, which will represent the centers of clusters. 412

The clusters are constructed by connecting the points with the higher density to points

with lower density, which produces a hierarchical network similarly to hierarchical

clustering methods. Perhaps the most popular density based clustering methods are

DBSCAN2 and OPTICS.413 The parameter that defines the output of the model is the

lowest density considered. Points where the local density is lower than this threshold

are considered noise or outliers, a property that is unique to this family of methods.

Unlike distribution or centroid based clustering methods, density based algorithms

do not require a fixed number of clusters as input parameters, nor do they make as-

sumptions concerning the underlying distribution, which is specially beneficial when

dealing with big datasets and a large unspecified number of clusters. However, they

require large density changes to detect the borders separating different clusters. Data

sets with overlapping Gaussian distributions generate soft cluster borders, which are not

always well characterised by Density-based methods. In such cases distribution-based

clustering will generally produce better results.

A.2 Supervised ML algorithms

A.2.1 Linear models

A linear model expresses a value yi as a linear combination of a collection of variables

{X i
1, ..., X i

n}. The parametersα and β of the linear combination are obtained through general-
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ization from pairs of data (yi ∈ y, xi ∈ X ) so that y ≈αX +β.

Fitting a linear model implies finding an expression αX +β that generates a set of values y

as similar as possible as a set of reference or target values y∗. This implies optimizing the

parameters in the vector α and β, which at the same time implies defining a cost function.

The most common approach, ordinary least squares, refers to minimizing the mean squared

error of the predictions, i.e. argminα,β
∑

i (αX +β− yi∗)2, which is the maximum likelihood

estimator under the assumption that errors are normally distributed. Alternative solutions

for the regression coefficients (e.g. sparsity, non-negativity...) can be obtained by adding

additional or alternative terms in the cost function. 21,414

Linear models are at the core of many machine learning models, as a large part of non-linear

regression and classification models (like kernel methods and neural networks) are based on

generating a coordinate system where the target variable can be linearly expressed. A simpler

approach to achieve non-linear models using a linear regression consists on generating new

features based on non-linear combinations of the input features, for example using polynomial

combinations. 21

A.2.2 Decision Tree

A decision tree is an extremely simple model that creates predictors using consecutive binary

splits of feature coordinates (see Figure A.1).

Decision trees are simple to understand and to interpret, and can deal with categorical and

continuous scalar features at the same time. As they do not rely on similarity measures

or a metric, they are also monotonic transformation invariant, and therefore insensitive to

the scale of each feature. However, they have very high variance, as small variations in the

data can lead to completely different tree structures. Moreover, they use orthogonal splits

to separate the data, which makes them inadequate for regression purposes and for cases

when the target property has a complex non-linear expression in the feature space. That

makes them relatively inaccurate, and many other predictors perform better with similar data.

Nevertheless, decision trees can be used in large numbers to create some of the most reliable

machine learning algorithms to date (for some applications).

A.2.3 Ensemble models

Ensemble methods use groups of "weak" learning algorithms, or "learners", to obtain a model

superior that what could be achieved with a single "strong" learning model alone.415 There

are broadly two basic approaches to ensemble models, bagging and boosting, which broadly

separate algorithm where learners are applied in parallel or sequentially. In either case, the

"weak" learners are most often random decision trees.

• Bagging: Bagging consists on averaging the classification or regression results of each
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Figure A.1 – Illustration of an example of decision tree used to construct a classification model.

of the individual learners. In order to promote model variance, each learner in the

ensemble is trained with a random subset of features and data.

The archetypal example of bagging ensemble models is the random forest algorithm,

which combines random decision trees with bagging.416,417 Random forests perform

very well on large datasets with heterogeneous data. They are very robust to noise and

to over-fitting, which make them a very popular choice in machine learning compe-

titions. Moreover, they are able to provide a importance score for each feature in a

regression/classification based on how often they were used in each decision tree.

• Boosting: Rather than averaging the results of multiple learners with equal weight,

boosting refers to building an ensemble iteratively by training each new learner putting

emphasis on the training instances that previous models mis-classified. The final

prediction is based on an average vote, weighted by the individual accuracy of each

model. The archetypal boosting ensemble model is AdaBoost, 418 which uses decision

trees as the weak learner.

Alternatively, weak learners can be concatenated by being trained on the remaining

errors of the previous learner, which is a different way to give more importance to the

difficult instances. This method is called gradient boosting. Some of the most popular

algorithms based on gradient boosting are XGBoost419 and LighGBM,420 which have

won multiple machine learning competitions since they were introduced in 2016.

Boosting is generally more powerful than bagging, although it is also more sensitive to

overfiting.

92



A.2. Supervised ML algorithms

A.2.4 Neural Networks

The concept of neural networks does not refer to a specific model, but rather to a framework

to build models. A specific NN model is defined by the architecture of the NN, which can

have wildly different forms and capabilities for both supervised and unsupervised learning

approaches.

Artificial Neural Networks (NN) are models formed by small processing units referred as nodes

that are loosely inspired by neuronal networks in biological brains. Nodes receive inputs,

make a small non-linear transformation, and signal the result to other nodes connected to

it by edges, which is reminiscent of the synapse between real neurons. Nodes are arranged

in layers, which in most cases can be divided in 3 groups: the input layer, the hidden layers,

and the output layer. The input layer connects the input data, such as images and documents,

to the hidden layers. The hidden layers transform the data through concatenated non-linear

transformations. The output layer gets as input the data transformed by the hidden layers and

constructs the final prediction of the neural network. The underlying idea of neural networks

is that the concatenation of multiple simple non-linear processes can achieve different tasks

like recognizing objects in images or finding relationships in data. To do so, a neural network

have to be "trained", which technically means optimizing the parameters that define the

non-linear transformation of each of its nodes in order to maximize the performance of the

network for a specific task.

A full review of NN models is way outside the scope of this work, and the reader is referred

elsewhere for an in depth review of the topic.421 We broadly describe here the two most

fundamental examples of neural network architectures to illustrate how they operate.

Basic neural network architectures

• Fully connected Neural Network: The fully connected NN (sometimes known as multi-

layer perceptron) is the most basic NN architecture. It is composed of dense layers where

all nodes in a layer are connected to all the nodes of the adjacent layers (see Figure A.2).

The number of hidden layers and the number of nodes per layer defines the complexity

of the network. Depending on the function used in the output node, they can be trained

to perform simple classification or regression techniques. An interactive tool to illustrate

the details of fully connected NNs can be found here: playground.tensorflow.org.

• Convolutional neural networks: Convolutional neural networks (CNN) are a type of

neural networks that exploit some type of spatial or temporal correlation in data. They

are useful when representation features have some sort of connection to other nearby

features, for example adjacent pixels in an image (spatial correlation) or adjacent signal

points in a sound recording (time correlation). Fully connected NN are inefficient in

such cases as they treat each pixel independently. This leads to a huge amount of

parameters that prevents them to efficiently deal with real images with millions of
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Figure A.2 – Illustration of a standard fully connected NN for regression.

Figure A.3 – Illustration of the standard of a CNN network for image classifiation.

pixels. By exploiting the correlation between adjacent pixels in a common image or

photography, convolutional neural networks are able to critically reduce the number

of parameters needed to process image data. This is achieved by using consecutive

convolutional filters that extract increasingly concrete features. A final fully connected

layer is generally used to connect the high-level feature representation with the ultimate

prediction (see Figure A.3).

A.2.5 Automatic supervised learning

New approaches are emerging where the whole learning process is being automatized, in-

cluding data pre-processing, feature selection and extraction and the supervised learning

itself. They are still over performed by human users, specially if they have additional external

knowledge on the nature and source of the data, but they get better everyday, and they can

provide reliable benchmark models.422 Some of the most used are the open source python

packages T-pot, 423 and auto-sklearn, 424,425 and the online "black-box" AutoML from Google

(which is not free).
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B MORESIM

MORESIM is a python package that allows for easy and modular design of replica exchange

simulations. There exist plenty of molecular simulation software that allows to perform replica

exchange simulations, but each of them have a rigid set of functionalities that are hard to

extend without deep understanding of the source code. At the same time, the choice of

underlying potential energy functions used to drive the simulations is often limited for each

specific software. These two constraints are big limiting factors for the experimentation and

design of replica exchange simulations and for all sampling simulations in general.

MORESIM is aimed at alleviating these issues. Each part of MORESIM is built in a modular way

so that they can be combined by the user. This facilitates the design of new replica exchange

simulation schemes, and allows to easily add new elements such as new potential energy

functions or sampling methods. MORESIM is written completely in the Python programming

language, which makes it clear and concise and requires minimal effort to modify.

The structure of MORESIM is based on classes that encompass individual tasks, so that they

can be modified without altering other parts of the code. They can be divided in 4 groups, the

trajectory class, the energy class, the simulation class and the replica exchange class:

• Trajectory class: The Trajectory class is simply a class to create trajectory instances that

store the results of simulations, incuding molecular structures (in the form of ASE Atom

objects), energies, acceptance probabilities of MC moves, etc...

• EnergyCalculators: The EnergyCalculators module contains the Energy class, a parent

class that defines the structure that an energy function should have to be adequatly

embedded in the framework. An adequate energy class should have the functions energy

and force, which take a molecular structure as an input and return the corresponding

energy and forces.

• Simulations: The Simulations module contains the different simulation classes, MC,

MD and reservoir. An adequate Simulation class should take as input at least the tem-

perature and an instance of an energy class. An instance of simulation should have a
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Appendix B. MORESIM

Figure B.1 – Schematic depiction of the different modular elements in MORESIM

method run that would take as input a molecular structure and a number of steps and

generate a trajectory of structures.

• ReplicaExchangeSimulation: The Simulations module also contains the ReplicaEx-

changeSimulation class, which works similarly to a Simulation object, but that takes

different parameters as input. An instance of a ReplicaExchangeSimulation requires

the following parameters: The number of replicas, a list with of Simulation objects with

length equal to the number of replicas, a set of initial states for the Simulation objects

and the number of simulation steps between each replica exchange. ReplicaExchangeS-

imulation have the function run which takes as input the number of exchanges to run

and starts the replica exchange simulation. Each replica is run in parallel and the results

are gathered. The structures are then exchanged and the simulations are launched

again.

The ReplicaExchangeSimulation captures different types of replica exchange schemes

based on canonical sampling. The baseline is a Hamiltonian-Replica Exchange, which

allows for different energy functions and temperatures between replicas. It also allows

to use biases in the probability exchanges, which can be used to integrate results from

biased simulations like metadynamics.

The different calsses are embedded on a hierarchical order, with the ReplicaExchangeSimu-

lation class being the final wrapper. The ReplicaExchangeSimulation class requires as input

a list of instances of other simulation classes, like the MCSimulation class (Monte Carlo).

Simulation classes like MCSimulation and MDSimulation require as parameters an instance
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of an Energy class. Different simulation classes can require other parameters. For example

the MCSimulation class requires as parameter an instance of MCMove class, which defines

the possible moves of the MC simulation. Each part of the hierarchy can work individually

as long as the lower levels of the hierarchy are defined. For example, a Energy class can work

individually to predict energies, and a MCSimulation can run MC simulations individually as

long as it has its Energy class defined.

A schematic depiction of each class in the framework can be found in Figure B.1.
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C MolView

Figure C.1 – MolView example to explore donor-acceptor systems for intramolecular singlet
fission (https://www.materialscloud.org/discover/isf#mcloudHeader). 6

MolView (https://github.com/lcmd-epfl/molecular_data_explorer) is a Python script that

allows to build web apps to visualize molecular data straightforwardly. It is based on the Python

framework Dash(https://github.com/plotly/dash), a library that allows to build JavaScript

apps using Python in a much more concise and clear manner. The basic standalone script

MolView takes as input a csv file with data entries and a directory address with molecular

structures:

python mol_view.py data.csv structures_directory
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Appendix C. MolView

which generates a web app that automatically opens in a web browser (see Figure C.1). Ex-

tended functionalities are can be easily added with basic knoweledge of Python. The main two

objectives of MolView is accessibility and shareability. Contrary to other software with similar

capabilities such as CHEMISCOPE, 426 setting up MolView is straighforward and requires close

to none technical skills. At the same time, while it is not comparable to mature software like

DataWarrior,427 it allows to easily deploy the apps on a server and make them available to

anyone with internet connection. This is specially convenient using the free services of Heroku

(https://www.heroku.com/), which allow to deploy web apps on a server for free. Examples of

deployed apps are shown in Figures C.1 and C.2.

Figure C.2 – MolView example to explore the atomic enviornments of dipeptides https://
atomic-environments-dipeptides.herokuapp.com/. 7
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D ML hands on tutorial for Chemists

For the occasion of the summer school Big Data and Machine Learning For Chemistry and

with the help of 2 of the coorganizers (Veronika Juraskova and Saurep Chatterjee) I created

a practical guide on the usage of many of the elements presented of this thesis in Python,

with examples on different datasets. The tutorial is stored on a GitHub repository (https:

//github.com/lcmd-epfl/BDML4Chem) and freely available. A badge in the repository allows

to open it using Deepnote, a cloud service that allows to easily deploy, share and execute

virtual environments where code can be executed and visualized.

The tutorial is dived in three sessions, in the form of Jupyter notebooks:

• 1_basic_ML_tutorial.ipynb : The first notebook contains a step-by-step guide on the

different stages of a ML pipeline, including loading data, data visualization, basic sta-

tistical tests, clustering and dimensionality reduction and regression using different

supervised algorithms. The ML pipeline is applied on the Boston Housing Dataset, 428 a

common dataset to showcase ML techniques.

The notebook also introduces and describes the basic fundamental python libraries re-

lated to data science, including Numpy, 429 Pandas, 430,431 Matplotlib, 432 Sci-kit Learn 137

and TensorFlow. 433

• 2_chemical_example.ipynb : The second notebook repeats the different stages of the

ML pipeline, but this time using a real chemical example. 434

• 3_atomistic_modelling.ipynb: The third notebook introduces basic elements of atom-

istic modeling and molecular representations. A subset of the QM949,250 dataset is

loaded and visualized using the Atomic Simulation Environment 435 (ASE) python pack-

age. Different molecular representations are generated using the QML 220 python pack-

age, which are then used to create a model of the atomization energy of the compounds.

As an example of unsupervised learning, the atom centered version of SLATM, aSLATM,

is used as input for a dimensionality reduction to elucidate the different types of carbon

in the dataset.
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E Artworks

Figure E.1 – Logo of the Laboratory of Computational Molecular Design (LCMD).

Figure E.2 – Logo of the summer school Big Data and Machine Learning 4 Chemistry 2021
(BDML4Chem)
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Appendix E. Artworks

Figure E.3 – Journal covers of LCMD publications. 6,8–10
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Figure E.4 – Journal Table of Contents (ToC) images of LCMD publications. 6,11–14
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Appendix E. Artworks

Figure E.5 – Citation network build with the references in this thesis using the software
VOSviewer.15 Nodes represent scientific articles and edges between two nodes indicate that
one of them is cited by the other. The size of a node indicates the degree of the node, meaning
how many edges it contains, and is a measure of the relevance of the article in the thesis.
The articles are clustered in four groups based on the structure of the network, and they
loosely represent the four main areas of this thesis: Machine Learning, Sampling Simulations,
Quantum Chemistry and Chemical Reaction.
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[294] Řezáč, J. Empirical Self-Consistent Correction for the Description of Hydrogen Bonds in

DFTB3. J. Chem. Theory Comput. 2017, 13, 4804–4817.

[295] Taylor, M. S.; Jacobsen, E. N. Asymmetric catalysis in complex target synthesis. Proc.

Natl. Acad. Sci. U.S.A. 2004, 101, 5368–5373.

[296] Gawley, R. E.; Aubé, J. Principles of asymmetric synthesis; Elsevier, 2012; pp 63–95.

[297] MacMillan, D. W. C. The advent and development of organocatalysis. Nature 2008, 455,

304–308.

[298] Dalko, P. I.; Moisan, L. Enantioselective organocatalysis. Angew. Chem. Int. Ed. 2001, 40,

3726–3748.

[299] Dalko, P. I. Enantioselective Organocatalysis: Reactions and Experimental Procedures;

John Wiley & Sons, 2007; pp 1–536.

[300] Xiang, S.-H.; Tan, B. Advances in asymmetric organocatalysis over the last 10 years. Nat.

Commun. 2020, 11.

[301] Poree, C.; Schoenebeck, F. A Holy Grail in Chemistry: Computational Catalyst Design:

Feasible or Fiction? Acc. Chem. Res. 2017, 50, 605–608.

[302] Houk, K. N.; Liu, F. Holy grails for computational organic chemistry and biochemistry.

Acc. Chem. Res. 2017, 50, 539–543.

[303] Wheeler, S. E.; Seguin, T. J.; Guan, Y.; Doney, A. C. Noncovalent Interactions in

Organocatalysis and the Prospect of Computational Catalyst Design. Acc. Chem. Res.

2016, 49, 1061–1069.

[304] Peng, Q.; Duarte, F.; Paton, R. S. Computing organic stereoselectivity-from concepts to

quantitative calculations and predictions. Chem. Soc. Rev. 2016, 45, 6093–6107.

[305] Hansen, E.; Rosales, A. R.; Tutkowski, B.; Norrby, P. .; Wiest, O. Prediction of Stereochem-

istry using Q2MM. Acc. Chem. Res. 2016, 49, 996–1005.

128



Bibliography

[306] Hopmann, K. H. Quantum chemical studies of asymmetric reactions: Historical aspects

and recent examples. Int. J. Quantum Chem. 2015, 115, 1232–1249.

[307] Tsang, A. S. .; Sanhueza, I. A.; Schoenebeck, F. Combining Experimental and Compu-

tational Studies to Understand and Predict Reactivities of Relevance to Homogeneous

Catalysis. Chem. Eur. J. 2014, 20, 16432–16441.

[308] Sepulveda, D.; Lu, T.; Wheeler, S. E. Performance of DFT methods and origin of stereos-

electivity in bipyridine N,N-dioxide catalyzed allylation and propargylation reactions.

Org. Biomol. Chem. 2014, 12, 8346–8353.

[309] Balcells, D.; Clot, E.; Eisenstein, O.; Nova, A.; Perrin, L. Deciphering Selectivity in Organic

Reactions: A Multifaceted Problem. Acc. Chem. Res. 2016, 49, 1070–1078.

[310] Cheong, P. H. .; Legault, C. Y.; Um, J. M.; Çelebi Ölçüm, N.; Houk, K. N. Quantum

mechanical investigations of organocatalysis: Mechanisms, reactivities, and selectivities.

Chem. Rev. 2011, 111, 5042–5137.

[311] Sperger, T.; Sanhueza, I. A.; Kalvet, I.; Schoenebeck, F. Computational Studies of Synthet-

ically Relevant Homogeneous Organometallic Catalysis Involving Ni, Pd, Ir, and Rh: An

Overview of Commonly Employed DFT Methods and Mechanistic Insights. Chem. Rev.

2015, 115, 9532–9586.

[312] Foscato, M.; Jensen, V. R. Automated in Silico Design of Homogeneous Catalysts. ACS

Catal. 2020, 10, 2354–2377.

[313] Ingman, V. M.; Schaefer, A. J.; Andreola, L. R.; Wheeler, S. E. QChASM: Quantum chem-

istry automation and structure manipulation. Wiley Interdiscip. Rev.: Comput. Mol. Sci.

2021, 11, e1510.

[314] Guan, Y.; Ingman, V. M.; Rooks, B. J.; Wheeler, S. E. AARON: An Automated Reaction

Optimizer for New Catalysts. J. Chem. Theory Comput. 2018, 14, 5249–5261.

[315] Rosales, A. R.; Wahlers, J.; Limé, E.; Meadows, R. E.; Leslie, K. W.; Savin, R.; Bell, F.;

Hansen, E.; Helquist, P.; Munday, R. H.; Wiest, O.; Norrby, P. . Rapid virtual screening of

enantioselective catalysts using CatVS. Nat. Catal. 2019, 2, 41–45.

[316] Oslob, J. D.; Åkermark, B.; Helquist, P.; Norrby, P. . Steric influences on the selectivity in

palladium-catalyzed allylation. Organometallics 1997, 16, 3015–3021.

[317] Lipkowitz, K. B.; Pradhan, M. Computational studies of chiral catalysts: A Comparative

Molecular Field Analysis of an asymmetric Diels-Alder reaction with catalysts containing

bisoxazoline or phosphinooxazoline ligands. J. Org. Chem. 2003, 68, 4648–4656.

[318] Harper, K. C.; Sigman, M. S. Three-dimensional correlation of steric and electronic free

energy relationships guides asymmetric propargylation. Science 2011, 333, 1875–1878.

129



Bibliography

[319] Sigman, M. S.; Harper, K. C.; Bess, E. N.; Milo, A. The Development of Multidimensional

Analysis Tools for Asymmetric Catalysis and beyond. Acc. Chem. Res. 2016, 49, 1292–

1301.

[320] Reid, J. P.; Sigman, M. S. Comparing quantitative prediction methods for the discovery

of small-molecule chiral catalysts. Nat. Rev. Chem. 2018, 2, 290–305.

[321] Harper, K. C.; Sigman, M. S. Using physical organic parameters to correlate asymmetric

catalyst performance. J. Org. Chem. 2013, 78, 2813–2818.

[322] Santiago, C. B.; Guo, J. .; Sigman, M. S. Predictive and mechanistic multivariate linear

regression models for reaction development. Chem. Sci. 2018, 9, 2398–2412.

[323] Durand, D. J.; Fey, N. Computational Ligand Descriptors for Catalyst Design. Chem. Rev.

2019, 119, 6561–6594.

[324] Milo, A.; Bess, E. N.; Sigman, M. S. Interrogating selectivity in catalysis using molecular

vibrations. Nature 2014, 507, 210–214.

[325] Denmark, S. E.; Gould, N. D.; Wolf, L. M. A systematic investigation of quaternary

ammonium ions as asymmetric phase-transfer catalysts. Application of quantitative

structure activity/selectivity relationships. J. Org. Chem. 2011, 76, 4337–4357.

[326] Milo, A.; Neel, A. J.; Toste, F. D.; Sigman, M. S. A data-intensive approach to mechanistic

elucidation applied to chiral anion catalysis. Science 2015, 347, 737–743.

[327] Bess, E. N.; Bischoff, A. J.; Sigman, M. S.; Jacobsen, E. N. Designer substrate library for

quantitative, predictive modeling of reaction performance. Proc. Natl. Acad. Sci. U.S.A.

2014, 111, 14698–14703.

[328] Werth, J.; Sigman, M. S. Connecting and Analyzing Enantioselective Bifunctional Hy-

drogen Bond Donor Catalysis Using Data Science Tools. J. Am. Chem. Soc. 2020, 142,

16382–16391.

[329] Reid, J. P.; Sigman, M. S. Holistic prediction of enantioselectivity in asymmetric catalysis.

Nature 2019, 571, 343–348.

[330] Zahrt, A. F.; Athavale, S. V.; Denmark, S. E. Quantitative Structure-Selectivity Relation-

ships in Enantioselective Catalysis: Past, Present, and Future. Chem. Rev. 2020, 120,

1620–1689.

[331] Mitchell B.O., J. B. O. Machine learning methods in chemoinformatics. Wiley Interdiscip.

Rev.: Comput. Mol. Sci. 2014, 4, 468–481.

[332] Funes-Ardoiz, I.; Schoenebeck, F. Established and Emerging Computational Tools to

Study Homogeneous Catalysis—From Quantum Mechanics to Machine Learning. Chem

2020, 6, 1904–1913.

130



Bibliography

[333] Kitchin, J. R. Machine learning in catalysis. Nat. Catal. 2018, 1, 230–232.

[334] Yang, W.; Fidelis, T. T.; Sun, W. . Machine Learning in Catalysis, from Proposal to Practic-

ing. ACS Omega 2020, 5, 83–88.

[335] Li, Z.; Wang, S.; Xin, H. Toward artificial intelligence in catalysis. Nat. Catal. 2018, 1,

641–642.

[336] Wodrich, M. D.; Fabrizio, A.; Meyer, B.; Corminboeuf, C. Data-powered augmented

volcano plots for homogeneous catalysis. Chem. Sci. 2020, 11, 12070–12080.

[337] RDKit: A software suite for cheminformatics, computational chemistry, and predictive

modeling. 2013; http://www.rdkit.org.

[338] Zahrt, A. F.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Prediction of

higher-selectivity catalysts by computer-driven workflow and machine learning. Science

2019, 363.

[339] Henle, J. J.; Zahrt, A. F.; Rose, B. T.; Darrow, W. T.; Wang, Y.; Denmark, S. E. Development of

a Computer-Guided Workflow for Catalyst Optimization. Descriptor Validation, Subset

Selection, and Training Set Analysis. J. Am. Chem. Soc. 2020, 142, 11578–11592.

[340] Tomberg, A.; Johansson, M. J.; Norrby, P. . A Predictive Tool for Electrophilic Aromatic

Substitutions Using Machine Learning. J. Org. Chem. 2019, 84, 4695–4703.

[341] Singh, S.; Pareek, M.; Changotra, A.; Banerjee, S.; Bhaskararao, B.; Balamurugan, P.;

Sunoj, R. B. A unified machine-learning protocol for asymmetric catalysis as a proof of

concept demonstration using asymmetric hydrogenation. Proc. Natl. Acad. Sci. U.S.A.

2020, 117, 1339–1345.

[342] Chen, J.; Jiwu, W.; Mingzong, L.; You, T. Calculation on enantiomeric excess of catalytic

asymmetric reactions of diethylzinc addition to aldehydes with topological indices and

artificial neural network. J. Mol. Cat. A Chem. 2006, 258, 191–197.

[343] Amar, Y.; Schweidtmann, A. M.; Deutsch, P.; Cao, L.; Lapkin, A. Machine learning and

molecular descriptors enable rational solvent selection in asymmetric catalysis. Chem.

Sci. 2019, 10, 6697–6706.

[344] Banerjee, S.; Sreenithya, A.; Sunoj, R. B. Machine learning for predicting product distri-

butions in catalytic regioselective reactions. Phys. Chem. Chem. Phys. 2018, 20, 18311–

18318.

[345] Beker, W.; Gajewska, E. P.; Badowski, T.; Grzybowski, B. A. Prediction of Major Regio-

, Site-, and Diastereoisomers in Diels–Alder Reactions by Using Machine-Learning:

The Importance of Physically Meaningful Descriptors. Angew. Chem. Int. Ed. 2019, 58,

4515–4519.

131

http://www.rdkit.org


Bibliography

[346] Maley, S.; Kwon, D. .; Rollins, N.; Stanley, J. C.; Sydora, O. L.; Bischof, S. M.; Ess, D. H.

Quantum-mechanical transition-state model combined with machine learning provides

catalyst design features for selective Crolefin oligomerization. Chem. Sci. 2020, 11, 9665–

9674.

[347] Dhayalan, V.; Gadekar, S. C.; Alassad, Z.; Milo, A. Unravelling mechanistic features of

organocatalysis with in situ modifications at the secondary sphere. Nat. Chem. 2019, 11,

543–551.

[348] Ahneman, D. T.; Estrada, J. G.; Lin, S.; Dreher, S. D.; Doyle, A. G. Predicting reaction

performance in C–N cross-coupling using machine learning. Science 2018, 360, 186–190.

[349] Nielsen, M. K.; Ahneman, D. T.; Riera, O.; Doyle, A. G. Deoxyfluorination with sulfonyl

fluorides: Navigating reaction space with machine learning. J. Am. Chem. Soc. 2018, 140,

5004–5008.

[350] Jorner, K.; Brinck, T.; Norrby, P. .; Buttar, D. Machine learning meets mechanistic mod-

elling for accurate prediction of experimental activation energies. Chem. Sci. 2021, 12,

1163–1175.

[351] Sandfort, F.; Strieth-Kalthoff, F.; Kühnemund, M.; Beecks, C.; Glorius, F. A Structure-

Based Platform for Predicting Chemical Reactivity. Chem 2020, 6, 1379–1390.

[352] Granda, J. M.; Donina, L.; Dragone, V.; Long, D. .; Cronin, L. Controlling an organic

synthesis robot with machine learning to search for new reactivity. Nature 2018, 559,

377–381.

[353] Coley, C. W.; Jin, W.; Rogers, L.; Jamison, T. F.; Jaakkola, T. S.; Green, W. H.; Barzilay, R.;

Jensen, K. F. A graph-convolutional neural network model for the prediction of chemical

reactivity. Chem. Sci. 2019, 10, 370–377.

[354] Friederich, P.; dos Passos Gomes, G.; De Bin, R.; Aspuru-Guzik, A.; Balcells, D. Machine

learning dihydrogen activation in the chemical space surrounding Vaska’s complex.

Chem. Sci. 2020, 11, 4584–4601.

[355] Heinen, S.; von Rudorff, G. F.; von Lilienfeld, O. A. Toward the design of chemical

reactions: Machine learning barriers of competing mechanisms in reactant space. J.

Chem. Phys. 2021, 155, 064105.

[356] von Rudorff, G. F.; Heinen, S. N.; Bragato, M.; von Lilienfeld, O. A. Thousands of reactants

and transition states for competing E2 and S2 reactions. Mach. Learn.: Sci. Technol.

2020, 1, 045026.

[357] Bragato, M.; von Rudorff, G. F.; von Lilienfeld, O. A. Data enhanced Hammett-equation:

reaction barriers in chemical space. Chem. Sci. 2020, 11, 11859–11868.

132



Bibliography

[358] Skoraczyñski, G.; DIttwald, P.; Miasojedow, B.; Szymkuc, S.; Gajewska, E.; Grzybowski, B.;

Gambin, A. Predicting the outcomes of organic reactions via machine learning: Are

current descriptors sufficient? Sci. Rep. 2017, 7(1), 1–9.

[359] von Lilienfeld, O. A.; Burke, K. Retrospective on a decade of machine learning for chemi-

cal discovery. Nat. Commun. 2020, 11, 1–4.

[360] Li, X.; Zhang, S. .; Xu, L. .; Hong, X. Predicting Regioselectivity in Radical C-H Function-

alization of Heterocycles through Machine Learning. Angew. Chem. Int. Ed. 2020, 59,

13253–13259.

[361] Doney, A. C.; Rooks, B. J.; Lu, T.; Wheeler, S. E. Design of organocatalysts for asymmetric

propargylations through computational screening. ACS Catal. 2016, 6, 7948–7955.

[362] Rooks, B.; Haas, M.; Sepúlveda, D.; Lu, T.; Wheeler, S. Prospects for the Computational

Design of Bipyridine N, N ’-Dioxide Catalysts for Asymmetric Propargylation Reactions.

ACS Catal. 2015, 5, 272–280.

[363] Denmark, S. E.; Coe, D. M.; Pratt, N. E.; Griedel, B. D. Asymmetric Allylation of Aldehydes

with Chiral Lewis Bases. J. Org. Chem. 1994, 59, 6161–6163.

[364] Denmark, S. E.; Fu, J. On the mechanism of catalytic, enantioselective allylation of

aldehydes with chlorosilanes and chiral Lewis bases [14]. J. Am. Chem. Soc. 2000, 122,

12021–12022.

[365] Denmark, S. E.; Wynn, T. Lewis base activation of Lewis acids catalytic enantioselective

allylation and propargylation of aldehydes. J. Am. Chem. Soc. 2001, 123, 6199–6200.

[366] Denmark, S. E.; Beutner, G. L. Lewis base catalysis in organic synthesis. Angew. Chem.

Int. Ed. 2008, 47, 1560–1638.

[367] Ding, C. .; Hou, X. . Catalytic asymmetric propargylation. Chem. Rev. 2011, 111, 1914–

1937.

[368] Marshall, J. A. Chiral allylic and allenic metal reagents for organic synthesis. J. Org. Chem.

2007, 72, 8153–8166.

[369] Nakajima, M.; Saito, M.; Shiro, M.; Hashimoto, S.-I. (S)-3,3’-dimethyl-2,2’-biquinoline

N,N’-dioxide as an efficient catalyst for enantioselective addition of allyltrichlorosilanes

to aldehydes. J. Am. Chem. Soc. 1998, 120, 6419–6420.

[370] Nakajima, M.; Saito, M.; Hashimoto, S. Selective synthesis of optically active allenic and

homopropargylic alcohols from propargyl chloride. Tetrahedron Asymmetry 2002, 13,

2449–2452.

[371] Chen, J.; Captain, B.; Takenaka, N. Helical chiral 2,2’-bipyridine N-monoxides as cat-

alysts in the enantioselective propargylation of aldehydes with allenyltrichlorosilane.

Org. Lett. 2011, 13, 1654–1657.

133



Bibliography

[372] Lu, T.; Porterfield, M.; Wheeler, S. Explaining the disparate stereoselectivities of n-oxide

catalyzed allylations and propargylations of aldehydes. Org. Lett. 2012, 14, 5310–5313.

[373] Lu, T.; Zhu, R.; An, Y.; Wheeler, S. Origin of enantioselectivity in the propargylation of

aromatic aldehydes catalyzed by helical N-oxides. J. Am. Chem. Soc. 2012, 134, 3095–

3102.

[374] Vu, K.; Snyder, J.; Li, L.; Rupp, M.; Chen, B.; Khelif, T.; Müller, K.-R.; Burke, K. Under-

standing kernel ridge regression: Common behaviors from simple functions to density

functionals. Int. J. Quantum Chem. 2015, 115, 1115–1128.

[375] Hansen, K.; Montavon, G.; Biegler, F.; Fazli, S.; Rupp, M.; Scheffler, M.; von Lilien-

feld, O. A.; Tkatchenko, A.; Müller, K.-R. Assessment and Validation of Machine Learning

Methods for Predicting Molecular Atomization Energies. J. Chem. Theory Comput. 2013,

9, 3404–3419.

[376] Westermayr, J.; Faber, F.; Christensen, A.; von Lilienfeld, O. A.; Marquetand, P. Neural

networks and kernel ridge regression for excited states dynamics of CH 2 NH 2 + : From

single-state to multi-state representations and multi-property machine learning models.

Mach. Learn.: Sci. Technol. 2020, 1, 025009.

[377] Nguyen, Q.; De, S.; Lin, J.; Cevher, V. Chemical machine learning with kernels: The

impact of loss functions. Int. J. Quantum Chem. 2019, 119(9), e25872.

[378] Becke, A. Density-functional thermochemistry. V. Systematic optimization of exchange-

correlation functionals. J. Chem. Phys. 1997, 107, 8554–8560.

[379] Schafer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets of

triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 1994, 100, 5829–5835.

[380] Grimme, S. Semiempirical hybrid density functional with perturbative second-order

correlation. J. Chem. Phys. 2006, 124, 034108.

[381] Cancés, E.; Mennucci, B. New applications of integral equations methods for solvation

continuum models: Ionic solutions and liquid crystals. J. Math. Chem. 1998, 23, 309–

326.

[382] Cancés, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polar-

izable continuum model: Theoretical background and applications to Isotropic and

anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041.

[383] Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models.

Chem. Rev. 2005, 105, 2999–3094.

[384] Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.;

Barone, V.; Petersson, G.; Nakatsuji, H., et al. Gaussian 16 rev. Gaussian Inc.: Wallingford

2016, CT, USA.

134



Bibliography

[385] Fukui, K. The Path of Chemical Reactions - The IRC Approach. Acc. Chem. Res. 1981, 14,

363–368.

[386] Hammond, G. A Correlation of Reaction Rates. J. Am. Chem. Soc. 1955, 77, 334–338.

[387] Ross, B. Mutual information between discrete and continuous data sets. PLoS ONE 2014,

9, e87357.

[388] Malkov, A.; Westwater, M.-M.; Gutnov, A.; Ramírez-López, P.; Friscourt, F.; Kadlčíková, A.;

Hodačová, J.; Rankovic, Z.; Kotora, M.; Kočovský, P. New pyridine N-oxides as chiral

organocatalysts in the asymmetric allylation of aromatic aldehydes. Tetrahedron 2008,

64, 11335–11348.

[389] Vaganov, V.; Fukazawa, Y.; Kondratyev, N.; Shipilovskikh, S.; Wheeler, S.; Rubtsov, A.;

Malkov, A. Optimization of Catalyst Structure for Asymmetric Propargylation of Aldehy-

des with Allenyltrichlorosilane. Adv. Synth. Catal. 2020, 362, 5467–5474.

[390] Suo, Q.; Zhong, W.; Ma, F.; Ye, Y.; Huai, M.; Zhang, A. Multi-task sparse metric learning

for monitoring patient similarity progression. 2018 IEEE International Conference on

Data Mining (ICDM). 2018; pp 477–486.

[391] Sun, F.-Y.; Hoffmann, J.; Verma, V.; Tang, J. Infograph: Unsupervised and semi-

supervised graph-level representation learning via mutual information maximization.

arXiv:1908.01000 2019, pre-print.

[392] Hao, Z.; Lu, C.; Huang, Z.; Wang, H.; Hu, Z.; Liu, Q.; Chen, E.; Lee, C. ASGN: An active

semi-supervised graph neural network for molecular property prediction. Proceedings

of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining. 2020; pp 731–752.

[393] Berthelot, D.; Carlini, N.; Goodfellow, I.; Papernot, N.; Oliver, A.; Raffel, C. Mixmatch: A

holistic approach to semi-supervised learning. arXiv:1905.02249 2019, pre-print.

[394] Xie, Q.; Luong, M.-T.; Hovy, E.; Le, Q. V. Self-training with noisy student improves

imagenet classification. Proceeding IEEE: CVF Conference on Computer Vision and

Pattern Recognition. 2020; pp 10687–10698.

[395] Van Engelen, J. E.; Hoos, H. H. A survey on semi-supervised learning. Mach. Learn. 2020,

109, 373–440.

[396] Wang, M.; Hua, X.-S.; Song, Y.; Dai, L.-R.; Zhang, H.-J. Semi-supervised kernel regression.

Sixth International Conference on Data Mining (ICDM’06). 2006; pp 1130–1135.

[397] Kostopoulos, G.; Karlos, S.; Kotsiantis, S.; Ragos, O. Semi-supervised regression: A recent

review. J. Intell. Fuzzy Syst. 2018, 35, 1483–1500.

[398] Jean, N.; Xie, S. M.; Ermon, S. Semi-supervised deep kernel learning: Regression with

unlabeled data by minimizing predictive variance. arXiv:1805.10407 2018, pre-print.

135



Bibliography

[399] Fabregat, R.; Pustelnik, N.; Gonçalves, P.; Borgnat, P. Solving NMF with smoothness and

sparsity constraints using PALM. arXiv:1910.14576 2019, pre-print.

[400] Cichocki, A.; Zdunek, R.; Phan, A. H.; Amari, S.-i. Nonnegative matrix and tensor factor-

izations: applications to exploratory multi-way data analysis and blind source separa-

tion; John Wiley & Sons, 2009.

[401] Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric

hypothesis. Psychometrika 1964, 29, 1–27.

[402] Kruskal, J. B. Nonmetric multidimensional scaling: a numerical method. Psychometrika

1964, 29, 115–129.

[403] Tenenbaum, J. B. A Global Geometric Framework for Nonlinear Dimensionality Reduc-

tion. Science 2000, 290, 2319–2323.

[404] Ceriotti, M.; Tribello, G. A.; Parrinello, M. Demonstrating the transferability and the

descriptive power of sketch-map. J. Chem. Theory Comput. 2013, 9, 1521–1532.

[405] Roweis, S. T. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science

2000, 290, 2323–2326.

[406] Zhang, Z.; Wang, J. MLLE: Modified locally linear embedding using multiple weights.

Advances in neural information processing systems. 2007; pp 1593–1600.

[407] Donoho, D. L.; Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for

high-dimensional data. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 5591–5596.

[408] Zhang, Z.; Zha, H. Principal manifolds and nonlinear dimensionality reduction via

tangent space alignment. SIAM J. Sci. Comput. 2004, 26, 313–338.

[409] Thorndike, R. L. Who belongs in the family? Psychometrika 1953, 18, 267–276.

[410] Ketchen, D. J.; Shook, C. L. The application of cluster analysis in strategic management

research: an analysis and critique. Strateg. Manag. J. 1996, 17, 441–458.

[411] Dempster, A. P.; Laird, N. M.; Rubin, D. B. Maximum likelihood from incomplete data

via the EM algorithm. J. R. Stat. Soc. 1977, 39, 1–22.

[412] Kriegel, H.-P.; Kröger, P.; Sander, J.; Zimek, A. Density-based clustering. Wiley Interdiscip.

Rev. Data Min. Knowl. Discovery 2011, 1, 231–240.

[413] Ankerst, M.; Breunig, M. M.; Kriegel, H.-P.; Sander, J. OPTICS: Ordering points to identify

the clustering structure. ACM Sigmod Rec. 1999, 28, 49–60.

[414] Boyd, S.; Boyd, S. P.; Vandenberghe, L. Convex optimization; Cambridge university press,

2004.

136



Bibliography

[415] Polikar, R. Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 2006, 6,

21–45.

[416] Ho, T. K. Random decision forests. Proceedings of 3rd international conference on

document analysis and recognition. 1995; pp 278–282.

[417] Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32.

[418] Freund, Y.; Schapire, R. E. A decision-theoretic generalization of on-line learning and an

application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139.

[419] Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. Proceedings of the 22nd

acm sigkdd international conference on knowledge discovery and data mining. 2016;

pp 785–794.

[420] Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A

highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30,

3146–3154.

[421] Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep learning; MIT press Cambridge,

2016; Vol. 1.

[422] Balaji, A.; Allen, A. Benchmarking automatic machine learning frameworks.

arXiv:1808.06492 2018, pre-print.

[423] Olson, R. S.; Moore, J. H. TPOT: A tree-based pipeline optimization tool for automating

machine learning. Workshop on automatic machine learning. 2016; pp 66–74.

[424] Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J. T.; Blum, M.; Hutter, F. Automated

Machine Learning; Springer, Cham, 2019; pp 113–134.

[425] Feurer, M.; Eggensperger, K.; Falkner, S.; Lindauer, M.; Hutter, F. Auto-sklearn 2.0: The

next generation. arXiv:2007.04074 2020, pre-print.

[426] Fraux, G.; Cersonsky, R. K.; Ceriotti, M. Chemiscope: Interactive structure-property

explorer for materials and molecules. J. Open Source Softw. 2020, 5, 2117.

[427] Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: an open-source program for

chemistry aware data visualization and analysis. J. Chem. Inf. Model. 2015, 55, 460–473.

[428] Harrison Jr, D.; Rubinfeld, D. L. Hedonic housing prices and the demand for clean air. J.

Env. Econ. Manag. 1978, 5, 81–102.

[429] Van Der Walt, S.; Colbert, S. C.; Varoquaux, G. The NumPy array: a structure for efficient

numerical computation. Comput. Sci. Eng. 2011, 13, 22–30.

[430] McKinney, W., et al. Pandas: a foundational Python library for data analysis and statistics.

Python High Performance Scientific Computing. 2011; pp 1–9.

137



Bibliography

[431] Wes McKinney, Data Structures for Statistical Computing in Python. Proceedings of the

9th Python in Science Conference. 2010; pp 56 – 61.

[432] Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95.

[433] Abadi, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

2015; https://www.tensorflow.org.

[434] Palkovits, S. A Primer about Machine Learning in Catalysis–A Tutorial with Code. Chem-

CatChem 2020, 12, 3995–4008.

[435] Larsen, A. H. et al. The atomic simulation environment—a Python library for working

with atoms. J. Phys. Condens. Matter 2017, 29, 273002.

138

https://www.tensorflow.org


Raimon Fabregat
Curriculum Vitae B raimon.fa@gmail.com

Education
2017–2021 Ph.D. in Computational Chemistry, EPFL, Lausanne, Switzerland, Direc-

tor: Prof. C. Corminboeuf.
2016–2017 M.Sc. in Theoretical Physics/Computer Science, ENS Lyon, Lyon,

France.
2011–2016 B.Sc. in Theoretical Physics, Universitat de Barcelona, Barcelona, Spain.

Publications
{ Gallarati, S.; Fabregat, R.; Laplaza, R.; Bhatacharjee. S.; Wodrich. M.
D.; Corminboeuf, C. Reaction-based machine learning representations for
predicting the enantioselectivity of organocatalysts Chem. Sci. 2021, 12,
6879–6889.

{ Blaskovits, J. T.; Lin, K. H.; Fabregat, R.; Swiderska, I.; Wu H.; Corminboeuf,
C. Is a Single Conformer Sufficient to Describe the Reorganization Energy of
Amorphous Organic Transport Materials? J. Phys. Chem. C 2021, 125, 31,
17355–17362.

{ Blaskovits, J. T.; Vela, S.; Fumanal, M.; Fabregat, R.; Corminboeuf, C.
Identifying the Trade-off between Intramolecular Singlet Fission Requirements
in Donor-Acceptor Copolymer Chem. Mater. 2021, 33, 7, 2567–2575.

{ Vela, S.; Scheidegger, A.; Fabregat, R.; Corminboeuf, C. Tuning the Thermal
Stability and Photoisomerization of Azoheteroarenes through Macrocycle
Strain Chem. - Eur. J. 2020, 27, 419.

{ Fabregat, R.; Fabrizio, A.; Engels, E. A.; Meyer, B.; Jurasokva, V.; Ceriotti, M.;
Corminboeuf, C. Addressing molecular flexibility in oligopeptides withmachine
learning, Submitted for publication.

{ Fabregat, R.; Fabrizio, A.; Meyer, B.; Hollas, D.; Corminboeuf, C. Hamiltonian-
reservoir Replica Exchange and Machine Learning Potentials for Computa-
tional Organic Chemistry, J. Chem. Theory Comput. 2020, 16, 5, 3084–3094.

{ Fabrizio, A.; Meyer, B.; Fabregat, R.; Corminboeuf, C. Quantum Chemistry
Meets Machine Learning CHIMIA 2019, 73, 983-989.

139



{ Fabregat, R.; Pustelnik, N.; Gonçalves, P.; Borgnat, P. NMF with smoothness
and sparsity constraints using PALM arXiv:1910.14576, 2017.

Teaching Activities
2017-2021 Teaching assistant, Advance General Chemistry I by Prof. C. Corminboeuf,

EPFL.
2018 Teaching assistant, Chemical Thermodynamics by Prof. A. Hagfeldt, EPFL.

Computational Skills
Programming languadges, Python, Bash, Git, FORTRAN, HTML/CSS,
Markdown, Latex.
Software, Matlab, Mathematica, Blender, WordPress.

Areas of experise
Statistical analysis, Monte Carlo integration methods, Signal processing, data
analysis with Pandas.
Machine learning and pattern decomposition, Linear models, kernel meth-
ods, neural networks, matrix factorization, dimensionality reduction, clustering,
similarity learning.
Molecular simulations, Molecular dynamics, Monte Carlo simulations, en-
hanced sampling, free energy computations, response functions.
Dynamical Systems, Nonlinear dynamics, chaotic systems.
Network Science and graph theory, Network properties, centrality mea-
sures, topology, community detection, graph signal processing, epidemic
processes.
Fundamental theoretical physics, Statistical physics and thermodynamics,
quantum physics, classical optics and electromagnetism.
Graphical Design, Image and video editing, vector image editing, 3D modeling.

Languadges
Spanish, Mother tongue.
Catalan, Mother tongue.
English, Fluent.
French, Intermediate.

Awards
2016 ENS Lyon, Ampere Excellence Scholarship for master studies.

140


	Acknowledgements
	Abstract (English/Français)
	Contents
	List of Figures
	Introduction
	Theory
	Machine learning from chemical data
	Encoding Molecular information: Molecular representations
	The SLATM representation
	Unsupervised Machine Learning Pipeline
	Supervised Machine Learning Pipeline
	Similarity-based regression: Kernel methods
	Supervised feature selection, similarity measures, and metric learning

	Conformational sampling and Replica Exchange methods
	Canonical Sampling
	Replica Exchange methods


	Hamiltonian-Reservoir Replica Exchange and Machine Learning Potentials for Computational Organic Chemistry
	Introduction
	Methods and Computational Details
	Overview
	Quantum chemical potentials: targets and baseline
	Machine Learning Methods
	Hamiltonian-reservoir Replica Exchange
	Technical details

	Results
	Dithiacyclophane
	Cinchona Alkaloid

	Conclusions

	Local Kernel Regression and Neural Network Approaches to the Conformational Landscapes of Oligopeptides
	Introduction
	Methods
	Machine learning models

	Enhanced sampling methods for the tripeptide
	Computational details
	Results and Discussion
	Performance of the trained machine learning models

	Extrapolation
	Free energy surface of tripeptides
	Conclusion

	Reaction-based machine learning representations for predicting the enantioselectivity of organocatalysts
	Introduction
	Methods
	Reaction and Organocatalysts Database
	General ML Workflow

	Computational Details
	Quantum Chemistry
	Machine Learning

	Results and Discussion
	Molecular representations
	Chemical Insight on Asymmetric Propargylation Catalysts

	Conclusions

	General Conclusions and Outlook
	Conclusions
	Outlook
	Metric learning in the chemical space
	Semi-supervised kernel regression


	Elemental supervised and unsupervised ML algorithms
	Unsupervised learning algorithms
	Dimensionality reduction algorithms
	Clustering algorithms

	Supervised ML algorithms
	Linear models
	Decision Tree
	Ensemble models
	Neural Networks
	Automatic supervised learning


	MORESIM
	MolView
	ML hands on tutorial for Chemists
	Artworks
	Bibliography
	Curriculum Vitae



