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Abstract We report on an application of superstatistics to particle-laden turbulent flow. Four flush-
mounted hot-film wall shear sensors were used to record the fluctuations of the wall shear stress in sand-
laden flow. By comparing the scaling exponent in sand-free with that in sand-laden flows, we found that
the sand-laden flow is more intermittent. By applying the superstatistics analysis to the friction velocity,
we found that the large time scale is smaller when the flow is sand-laden. The probability density of a fluc-
tuating energy dissipation rate measured in sand-laden flow follows a log-normal distribution with higher
variances than for sand-free flow. The variance of this dissipation rate is a power law of the corresponding
time scale. The prediction based on the superstatistics model is consistent with our structure function
exponents ζn for sand-free flow. Nevertheless, it overestimates ζn for sand-laden flow, especially at higher
Reynolds numbers.

1 Introduction

Horizontal wind moving in the atmospheric bound-
ary layer (ABL) carries a large amount of horizontal
momentum which could be transferred from high level
downward to the bottom surface through turbulent
and molecular diffusion [1]. The momentum transferred
downwards finally leads to the shear force on the sur-
face, resulting in the movement of the surface material
(especially the particulate matter), causing the natural
phenomena of dust storms, wind blown snow, wind ero-
sion, sediment transport and accumulation, and many
more [2]. The driving surface shear force is crucial to the
study of above physical processes. In general, the mean
value of surface shear force is always considered in rele-
vant studies [2–4]. But recent studies indicate that the
distribution of surface shear is also significant because
of related nonlinear processes [5–7]. This motivates a
more detailed investigation of the distribution of fluc-
tuating surface shear force in the turbulent boundary
layer (TBL).

The full understanding of the statistical properties
of the fluctuating physical quantities in turbulent flow
remains a challenging problem in theoretical physics. In
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recent years, there has been some experimental progress
in measuring the statistics of the fluctuating parameters
in both Eulerian and Lagrangian ways [8–11]. These
advances together with DNS simulations [12–14] pro-
vide insight to the stochastic properties of turbulence,
including the probability density of the velocity dif-
ference [15], the correlation functions [10,16], and the
Lagrangian scaling exponents [10,16,17]. These recent
experimental results verified the early DNS results [18].
In order to provide a theoretical explanation for the
most significant statistical features of turbulence, Beck
[9] introduced a model based on superstatistics that can
predict the measured correlation functions, the statis-
tical dependencies between components of the velocity,
and the scaling exponents in 3D. This model is able to
dissociate the fast from the slow processes from a super-
position of several stochastic processes. The superstatis-
tics model specifically shows an excellent agreement at
high Reynolds numbers [19,20].

The superstatistics method has been shown to be effi-
cient to reconstruct the statistical properties of turbu-
lence of Newtonian fluid carrying no suspended par-
ticles. However, what would be the situation for a
particle-laden flow? It is known that particles dragged
by a fluid gain momentum from the fluid. There is a
complex interaction between particles and fluid. For
instance, large particles (1100 µm ) seem to increase the
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turbulent intensity near a wall, whereas small particles
exhibit the opposite effect [21]. Moreover, in particle-
laden flow, the intensity of turbulence of streamwise and
especially vertical velocity is reduced for z+ > 10 − 20
but enhanced in the very near-wall region (z+ < 5),
where “z” is normalized by wall unit ν/u∗ [22]. Mean-
while, simulations of particle-laden flow show that par-
ticles smaller than the dissipative length scale reduce
the intensity of turbulence, whereas particles some-
what larger than this length increase the intensity
[23]. Similar results are reported by Lee and Lee [24],
who argue that particles with Stokes numbers equal
to “0.5” enhance turbulence by increasing the occur-
rence of quasi-streamwise vortices, whereas particles
with larger Stokes numbers attenuate turbulence. These
results from experiments and simulations clearly indi-
cate that particles have an important effect on tur-
bulent flow. It is reasonable to consider the effect of
particles as an additional stochastic process. Neverthe-
less, there has been no application of the superstatistics
model to particle-laden flow. It would be interesting to
see if it can predict the statistical properties of particle-
laden flow successfully.

In this study, we will introduce a superstatistical
model to reproduce the statistical properties of the aeo-
lian flow investigated in a wind tunnel experiment. Wall
shear stress was recorded as an indication of turbu-
lence, which is reasonable since the wall shear stress
is the footprint of the turbulent structures in the outer
region. In our experiment, we used flush-mounted hot-
film wall shear sensors fabricated with a new tech-
nique to measure wall shear fluctuation in a sand-
laden wall-bounded turbulent flow [25]. We present wall
shear stress measurements of sand-laden flow and cal-
culate the structure function exponents ζn of the fric-
tion velocity. Next, we compare our scaling exponents in
sand-free and sand-laden flows to discuss the effects of
airborne sand particles in the boundary layer. Finally,
the superstatistics model is applied to reconstruct our
experimental data and compare the prediction of ζn for
sand-free flow and sand-laden flow. This work attempts
to fill the gap between the applications of superstatistics
in fluid mechanics and particle-fluid mechanics, which
has significant benefits for the theoretical development
of the particle-fluid flow and enhances our understand-
ing for statistical properties of the fluctuating shear
force in particle-ladenturbulent boundary layer.

2 Methods

In order to record the fluctuating wall shear stress in
sand-laden flow, we use four hot-film shear sensors lon-
gitudinally glued on the bottom surface of a wind tun-
nel (Fig. 1d). The wind tunnel with working section
1.3 × 1.45 × 22m3 provides a good tool to characterize
turbulent flow in the near-wall region. In the experi-
ment, the coordinates for the streamwise, spanwise, and
vertical directions are given by X, Y and Z, respectively.
The incoming wind velocity is adjustable between 3 and

40 m s−1. To generate a turbulent boundary layer, we
set spires and roughness elements in front of the work-
ing section. See Zhang et al. [26] for a more detailed
description of the facility.

As shown in Fig. 1a, the inlet wind profiles were mea-
sured using Pitot tube anemometry. The friction veloc-
ity uτ and roughness height z0 could be obtained by
fitting the measured wind speed data to the following
logarithmic equation:

U(z) =
uτ

κ
ln

z

z0
(1)

where U is the time-averaged horizontal wind velocity
at height z and κ = 0.41 is the von Karman constant.
For the experiments, two wind conditions are consid-
ered and the corresponding wind profiles are seen in
Fig. 1b.

Following the Pitot tube anemometry, a sand bed
being 4 m long and 0.03 m thick was arranged to gen-
erate a sand-laden flow. The sand is collected from the
Tengger Desert in Inner Mongolia of China (inset of
Fig. 1c). As seen in Fig. 1c the probability distribution
of the sand particles is log-normal and the averaged
diameter of sand particles is 326 µm.

The hot-film sensors are flush-mounted behind the
sand bed and a gap of 0.5 m was left between the first
hot-film sensor and the sand bed in order to avoid the
sensor to be buried by sand. The thickness of the hot-
films is about 80µm, corresponding to z+ = 1.6 and 2.9
at two inlet wind conditions, where z+ = uτ z

ν and ν is
the kinematic viscosity of the air. The calibration and
validation for the hot-film sensor are performed before
the experiments. Five fan speeds of the tunnel without
sand bed were select to produce clean-wind condition.
Based on the measured wind profiles, five friction veloc-
ities uτ were extracted by fitting the wind profiles with
Eq. (1). These friction velocities were converted to wall
shear stress via τw = ρa(uτ )2. The relationship of τw

and the normalized voltage recorded by the hot-films
was subsequently established as the calibration func-
tion for the hot-film sensors (Fig. 2a). To further con-
firm the performance of the hot-film in sand-laden flow,
we also operated some tests to compare under the same-
conditions of with time-averaged shear stress between
the hot film sensor and the Irwin sensor which had been
successfully applied in sand-laden flow [27]. As shown in
Fig. 2b, the difference between the two types of shear
sensors is within 6%, indicating that hot-film sensors
are reliable enough to measure aerodynamic wall shear
stresses in wind–sand flow. It should be pointed out
that the response speed of the hot-film sensor (2 K Hz)
is much higher than that of the Irwin sensor (∼ 100 Hz),
so we choice the hot-film in this experiment to measure
the instantaneous surface shear stress. A sand collec-
tor is installed at the end of the working section of the
wind tunnel to measure the sand mass flux. The pro-
files of sand mass flux at two experimental conditions
are shown in Fig. 1e. It is convenient to normalize the
sand mass flux by:
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Fig. 1 a Experimental setup featuring the four-point simultaneous hot-film measurements of wall shear stress with sand
bed supplying airborne sand particles upstream. The wall probes of thickness 80µm are glued on the bottom surface of the
wind tunnel, the insets are b inlet wind profiles, c size distribution of sand bed, d the array of wall shear sensors, and e
profiles of sand mass flux

Fig. 2 a Calibration of the hot-film sensors. The wall shear stress τw is obtained by log fitting the wind profiles, E0 is
the voltage measured by hot-films in the absence of wind, and Ew is the voltage with airflow. b Comparison of wall shear
stresses measured by hot-film and Irwin sensors under different sand mass flux

F+ =
F

ρa

√
(s − 1)gdp

(2)

where F is the sand mass flux, s = ρp/ρa, ρp and ρa

are density of sand particle and of air, and dP is the
diameter of a sand particle.

Except the wind condition, other parameters of the
experimental conditions are listed in Tables 1 and 2.
The Reynolds number Re∞ = U∞L0/ν and Reτ =
UτL0/ν, where U∞ is the central wind speed mea-
sured at a height of 50 cm in the wind tunnel and
the characteristic length scale L0 = 0.65 m, which
equals half the height of the wind tunnel. 〈τw〉 and
τstd are respectively the mean and standard deviation
of the surface shear stress measured by the hot-film.
The Kolmogorov scale was calculated as η = (ν3

ε )
1
4 ,

where ν = 1.48 × 10−5 m2 s−1 is the kinematic viscos-

ity of the air and ε = C
3
4
μ

k
3
2

l the global average energy

dissipation. Here, I = 0.16Re
1
8∞ is the turbulent inten-

sity of the incoming airflow, k = 1.5(U∞I)2 is the tur-
bulence kinetic energy, l = 0.07L0 is the characteris-
tic scale of the channel flow in the wind tunnel. The
Stokes numbers (St) were estimated via St = t0U∞

L0
,

where t0 = ρpd2
p

18μg
is the relaxation time of particles.

Here, ρp = 2650 kg m−3, dp = 3.26 × 10−4 m, and the
viscosity of the air (20 ◦C) μg = 1.79 × 10−5 N m−2s.
The gravity factor (Gf) of the particles is established

as ut

uη
, where ut = gd2

p(ρp−ρa)

18μg
is the terminal velocity

of sand grains, uη = (εν)
1
4 is the Kolmogorov velocity

scale, the air density ρa = 1.25 kg m−3 and the gravita-
tional acceleration g = 9.8m s−2.

∑
F+ represents the

integration of normalized sand mass flux in height.

123



    5 Page 4 of 10 Eur. Phys. J. E            (2022) 45:5 

Table 1 Parameters characterizing the experiment: sand-free flow

U∞ (m s−1) Re∞ Reτ uτ (m s−1) z0 (mm) 〈τw〉 (Pa) τtsd (Pa) η (m)

9.28 3.99 × 105 1.34 × 104 0.305 0.00204 0.117 0.044 3.70 × 104

17.41 7.49 × 105 2.45 × 104 0.558 0.00127 0.388 0.151 2.45 × 104

Table 2 Parameters characterizing the experiment: sand-laden flow

U∞ (m s−1) Re∞ Reτ uτ (m s−1) 〈τw〉 (Pa) τtsd (Pa) St Gf η (m)
∑

F+

9.28 3.99 × 105 1.26 × 104 0.287 0.108 0.056 12.5 467.4 3.70 × 104 0.155
17.41 7.49 × 105 2.20 × 104 0.502 0.337 0.187 23.4 461.4 2.45 × 104 2.256

Fig. 3 a Example of fluctuating wall shear stress for
Re∞ = 7.49×105 in sand-free and sand-laden flows; b Prob-
ability density function of the normalized wall shear stress

τ
′
w /〈τw〉

3 Results and discussion

An example of fluctuating wall shear stress measured by
the hot-film is given in Fig. 3, where a stronger fluctu-
ation in sand-laden flow can be observed. Furthermore,
the probability distribution of the measured wall shear
stress signal is shown in Fig. 3, with skewness of 0.64 in
sand-free flow and of 0.89 in sand-laden flow. Large pos-
itive peaks seem to occur more frequently in sand-laden
flow.

The time-averaged correlation function between two
hot-film sensors 1 and i (i = 2, 3, 4) is defined as

Rτ
′
w,1τ

′
w,i

(Δt) =
τ

′
w,1(t, x)τ ′

w,i(t + Δt, x + Δx)
τ(w, 1)′(x)rmsτ

′
w,i(x + Δx)rms

(3)

where τ
′
w,1 and τ

′
w,i are the streamwise fluctuations

in aerodynamic wall shear stress, and Δt is the time
delay. Correlations were averaged over sampling peri-
ods of 5 s and normalized with the root mean square
(rms) to eliminate uncertainties arising from calibra-
tion. Figure 4a illustrates strong correlations between

τw upstream and downstream. This justifies the appli-
cation of Taylor’s frozen field approximation to sand-
free and sand-laden flows within the range of our mea-
surements. The convection velocity is obtained by lin-
early fitting the streamwise distance between hot-films
sensors (Δx) against the time shift of the peak of the
correlation functions, as shown in Fig. 4b.

The structure function of turbulence is defined
through the difference between friction velocities on a
given length scale r as

〈(δuτ )n〉 = 〈[uτ (x + r) − uτ (x)]n〉 (4)

where uτ = (τw/ρa)
1
2 is the friction velocity and τw is

the aerodynamic wall shear stress measured by the hot-
film sensors. The time-resolved measurement of shear
stress was used to compute the structure function via
Taylor’s frozen hypothesis r = Uct, where Uc was
obtained from Fig. 4b. As n increases, the structure
functions measure more the rare events. In fully devel-
oped turbulent flow, changes in friction velocity are
found to scale as a power law of r

〈|Δuτ |n〉 ∼ rζn (5)

The 1st–9th order structure functions of sand-free
flow and sand-laden flow are shown in Fig. 5a, where we
rescaled the structure functions as Sn×lζn−n

0 /(εn/3ηζn)
and the abscissa as r/η, where ζn is the correspond-
ing scaling exponent of the structure function. Follow-
ing the relevant work [28–32], here we used the abso-
lute value of Δuτ to reach a statistically stable result.
To obtain proper spatial length scales, we cropped
the structure functions by removing the segments of
the data affected by measurement noise (small r) and
by finite measurement volume (large r). As shown in
Fig. 5b, the local slope of the normalized structure func-
tion is relatively stable within r = 0.25 to 0.65, this part
was kept to obtain the scaling exponents. The straight
lines of slope ζn shown in Fig. 5a establish the relation
Sn = Cn(εr)n/3(r/L0)ζn−n/3, which is a more general
form of the scaling relation for the structure functions,
that takes into account turbulent intermittency [33].

Figure 6 shows our scaling exponents as a function of
n for sand-free and sand-laden flows. In sand-free flows,
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Fig. 4 a Time-averaged
correlation function
R

τ
′
w,1τ

′
w,i

(Δt) of Eq. (3) as

function of the distance
Δx between sensors, b
convection velocity
obtained by linearly fitting
Δt against Δx in sand-free
and sand-laden flows

Fig. 5 a Longitudinal structure functions from 1st to 9th order. Normalized by intermittent scaling relation at U∞ =
9.28 m s−1 in sand free and sand-laden flows. The solid lines stand for a linear fitting with slope ζn which results in
Sn = Cn(εr)fracn3( r

L0
)ζn−fracn3, after cropping the structure function [removing the measurement noise (small r) and

finite size effects (large r)]. b local slopes of Δlog(Sn)
Δlog(r)

versus r for n = 4, 6, 8 (dashed lines) and smoothed by a running

average method (solid lines)

the value of ζn seems insensitive to the Reynolds num-
ber, which is consistent with the results of [31,33]. It
was found that ζn = n/2.78 for n ≤ 5 and ζn < n/2.78
for n > 5. This behavior of the scaling exponents of
the friction velocity is similar to wind velocity measure-
ments and just differs in the slopes within the linear
range. We see that the Kolmogorov’s scaling relation
is not perfectly satisfied, since ζ3 is not exactly unity.
In sand-laden flows, the scaling exponents are affected
by the sand mass flux,

∑
F+. For Re∞ = 3.99 × 105,∑

F+ = 0.155, ζn = n/2.63 for n ≤ 5 and ζn < n/2.63
for n > 5, which is similar to what is measured for sand-
free flows. For Re∞ = 7.49×105,

∑
F+ = 2.256, which

is 14.6 times higher than for the lower Reynolds num-
ber flow. In this case we find ζn = n/2.33 for n ≤ 3
and ζn < n/2.63 for n ≥ 3 which is different from
the results of Re∞ = 3.99 × 105. Moreover, Fig. 6b
illustrates stronger intermittent flow when sand-laden
because the deviation between ζn and Kolmogorov’s law
is more pronounced than in sand-free flows.

Beck [9] proposed a superstatistical model to analyze
stochastic processes including turbulence. This model
describes a superposition of several stochastic processes
including a fast one given by the basic stochastic dif-
ferential equation (SDE) and a slow one for the param-

eters of the SDE. To apply the superstatistical SDE
to wall shear fluctuations, we extend this superstatis-
tical model to the wall shear stress by replacing u by
Δuτ . First, a linear approach is considered to define the
velocity difference:

Δu̇τ = −γF (Δuτ ) + σ̂L(t) (6)

here the damping constant γ describes the dissipation of
turbulent energy, F (Δuτ ) is a drifting force, σ̂ describes
the strength of the noise, and L(t) is a Gaussian white
noise. In a most natural way, β = γ/σ̂2 acts as a sim-
ple function describing the fluctuating energy dissipa-
tion [35]. β varies from cell to cell on the large spatio-
temporal scale T . To further specify the stochastic pro-
cess βT,l(t), the large time scale T is needed. As intro-
duced by Straeten and Beck [36], the total time series
of Δuτ is divided into N equal slices of length Δ. A
function κΔ is introduced as s

κδ =
1
N

∑N

l=1
κΔ,l, with κΔ,l =

〈(Δuτ )4〉Δ,l

〈(Δuτ )2〉2Δ,l

(7)

where κΔ,l is the kurtosis of the lth time slice. The
superstatistical large time scale T is then defined by
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Fig. 6 Comparison of the
scaling exponents ζn from
a sand-free flow and b
sand-laden flow at
Re∞ = 3.99 × 105 (black
dots) and
Re∞ = 7.49 × 105 (red
dots). The solid lines show
Kolmogorov’s theory,
namely ζn = n/3, standing
for the absence of
intermittency in wind
velocity measurement [34]

Fig. 7 An example for the extraction of the large time
scale T from the condition κΔ = 3 for the difference of
friction velocities δuτ on a given time scale δt=10. We show
results for sand-free (black lines) and sand-laden flow (red
lines) at Re∞ = 3.99×105 (solid lines) and Re∞ = 7.49×105

(dashed lines)

the condition κΔ = 3. Figure 7 shows an example for
the extraction of the large time scale T from the time
series of the difference of friction velocities uτ on a given
time scale δt = 10. With increasing Reynolds number,
this large time scale decreases. For sand-laden flow, T is
smaller, indicating a less stable β due to the disturbance
of the saltating sand particles.

Figure 8 shows that T is roughly proportional to the
time scale δt that is used to calculate the difference of
the friction velocities. In sand-free flow, the large time
scale T exceeds the one for sand-laden flow and this
trend tends to be more pronounced as δt increases. In
addition, this trend is enhanced at the larger Reynolds
number of Re∞ = 7.49×105 and we speculate that this
might be due to a higher mass flux of saltating sand
particles.

After the large time scale T is determined, welta uτ

process as βT,l(t) = 〈βe(Δuτ )2〉βT,l. The probability
density function f(β) is obtained through the histogram
of the time series of β(t). Figure 9 shows the distribu-
tion of β(t) for various δt for sand-free and sand-laden
flow. Motivated by the cascade picture of turbulence
and previous successful models [19,37,38], the stochas-
tic process β(t) is assumed to be close to a log-normal

Fig. 8 The superstatistical large time scale T as a function
of the time scale δt for sand-free and sand-laden flow at
Re∞ = 3.99 × 105 and Re∞ = 7.49 × 105

distribution for sand free flow:

f(β) =
1

βs
√

2π
exp

[
− log(β/m)2

2s2

]
(8)

here m and s stand for mean and variance. For sand-
laden flow, the prediction of Eq. (8) is also consistent
with experimental results. Since the early papers by
Kolmogorov in 1962, there is consensus that the prob-
ability density of energy dissipation ε is approximately
log-normal in turbulent flow. For sand-free and sand-
laden flow, the log-normal distribution of β(t) implies
a simple power-law relation between β and ε.

When the stochastic processes reach a local equilib-
rium after a time T , the local distribution of Δuτ can
be approximated by a Gaussian distribution:

P (Δτ |β) =
√

β/2πe− 1
2β(Δuτ )2 (9)

This Gaussian distribution will vary since β fluctu-
ates on large time scales. By substituting Eq. (8) into
this distribution, we get a superposition of Gaussians
with variance parameter β−1:

P (Δuτ ) = 1/
√

2π

∫ +∞

0

β
1
2 f(β)e− 1

2β(Δuτ )2dβ (10)
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Fig. 9 The distribution of
the stochastic process β for
a sand-free and b sand
laden flow at
Re∞ = 3.99 × 105. The
solid lines are fits using the
distribution of Eq. (8)

Fig. 10 Experimentally measured probability distribution
P (Δuτ ) at the shortest time scales for δt = 0.5 ms for sand-
free and sand-laden flow. The experimental data is fitted by
Eqs. (8) and (10) with s2 = 0.47 and 0.68, respectively

This formula is in good agreement with the experimen-
tally measured histogram of Δτ , as shown in Fig. 10.

According to Beck [9], the superstatistical model can
predict the structure function exponent of the velocity
difference. He obtained the moments as

〈(δuτ )n〉 = (j − 1)!!m− n
2 w

1
8n2

(11)

with w = es2
Here m and s are the mean and variance

in Eq. (8) where m (δt)a and w (δt)b. The notation (j-
1)!! stands for a product of all odd positive integers up
to j − 1. Figure 11 shows the power law, w (δt)b for
sand-free and sand-laden flows. For sand-free flow, this
scaling law is in excellent agreement with our measured
data points. For sand-laden flow, however, the corre-
lation between fitting curves and experimental data
is reduced by the saltating sand particles. Figure 11
also presents the averaged result of four hot-film sen-
sors. With increasing Reynolds number, the value 〈b〉
increases, especially for sand-free flow.

From Eq. (11), we can imply

ζn = −n

2
a +

n2

8
b (12)

Fig. 11 Power law between w and δt of No. 2 wall shear
sensor for sand-free and sand-laden flow at Re∞ = 3.99×105

and Re∞ = 7.49 × 105. At right we show the mean value of
four sensors 〈b〉, which is introduced into Eqs. (12) and (13)
to obtain ζn

It is usually assumed that the scaling exponent ζn

equals to unity for wind velocity measurements [28],
however, this is not applicable to friction velocity mea-
surements due to the different slopes as shown in Fig. 6.
In sand-free flows, from ζ2.78 = 1 we get a = 2.78

4 b− 2
2.78

and thus:

ζn =
(

1
2.78

+
2.78
2

λ2

)
n − 1

2
λ2n2 (13)

where we defined a positive parameter λ2 = −0.25b [10].
In sand-laden flows, Eq. 13 corresponds to the slope of
the dashed line shown in Fig. 6. As shown in Fig. 11,
b is obtained by a power law fit between w and δt. As
indicated in Fig. 12, Eq. (13) is in good agreement with
the data for sand-free flow. However, this formula over-
estimates ζn for sand-laden flow, especially for higher
Reynolds number due to the enhanced sand mass flux.

The turbulence structure in sand-laden flow is impor-
tant to understand the interaction of transported parti-
cles and turbulent atmosphere boundary flow, which is
still unknown so far. Our work is a preliminary attempt
to find a theoretical analysis on it and could be help-
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Fig. 12 Structure function exponent ζn as measured in our
experiment and as predicted by the superstatistical model
of Eq. (13)

ful to improve the numerical model of aeolian trans-
port, especially in intermittent aeolian transport flow
[39]. Aeolian processes are common in solar system,
such as Mars or the Comet Churyumov–Gerasimenko
[40]. However, the viscous sublayer is larger on these
extra-terrestrial worlds due to the low gravity. In that
situation, the turbulent structure created by particle
motions should be more obviously since the air flow is
laminar flow, which could give us a clearer image about
the turbulent flow of aeolian particles. Thus, it could
be also useful to explain the formation of aeolian land-
forms on Earth and these extra-terrestrial worlds, such
as dunes, ripples, and mega-ripples [41–43], through
more nature analysis of the particle motions.

4 Conclusion

In this paper, we obtained the scaling exponents ζn

of structure function of turbulence, which is defined
through the difference between friction velocities (Δuτ )n

on a given length scale r, by using hot-film wall shear
sensors in sand-free and sand-laden flows. The results
show that Kolmogorov’s scaling relation for the struc-
ture function is only to a limited extent applicable to
both flows. In sand-free flow, the scaling exponent is
insensitive to the Reynolds number. Scaling exponents
for sand-laden flow exhibit a more intermittent flow
condition. In order to analyze the statistics of turbu-
lence from a different point of view, we introduced the
superstatistics model to analyze friction velocity data
from sand-laden flow. The large time scale T is pro-
portional to the time scale δt that is used to calculate
the difference of the friction velocities. The large time
scale T is shorter for sand-laden flow and this trend
becomes more pronounced as δt increases. In addition,
this trend increases at higher Reynolds number due to
an enhanced sand mass flux. We found that the proba-
bility distribution of the stochastic process β(t) in sand-
laden flow is close to a log-normal distribution with
larger variance than in the sand-free case. This feature
implies that β is a simple power-law function of energy
dissipation. We verified the power law, w ∼ δtb in sand-
free flow, finding that this scaling law is in excellent
agreement with our measured data points. In the sand-
laden flow, however, the correlation between the fitting
curves and experimental data is smaller. At the end,
we found that the superstatistics theory predicts the
scaling exponents ζn in sand-free flow very well. How-
ever, it overestimates ζn in sand-laden flow, especially
in the context of higher Reynolds numbers due to the
enhanced sand mass flux.
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