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Abstract: The contact of two surfaces in relative rotating motion occurs in many practical applications, from 

mechanical devices to human joints, displaying an intriguing interplay of effects at the onset of sliding due to 

the axisymmetric stress distribution. Theoretical and numerical models have been developed for some typical 

configurations, but work remains to be done to understand how to modify the emergent friction properties in 

this configuration. In this paper, we extend the two-dimensional (2D) spring-block model to investigate friction 

between surfaces in torsional contact. We investigate how the model describes the behavior of an elastic surface 

slowly rotating over a rigid substrate, comparing results with analytical calculations based on energy conservation. 

We show that an appropriate grading of the tribological properties of the surface can be used to avoid a 

non-uniform transition to sliding due to the axisymmetric configuration. 
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1 Introduction 

The configuration of two surfaces subjected to frictional 

sliding under torsion is commonly encountered in 

many mechanical devices. The joints of car suspensions 

are composed by steel bearings rotating over a flat 

surface [1], in which friction is responsible for 

non-trivial fretting wear phenomena [2–5], and other 

examples are found in spherical and slewing roller 

bearings, crankshafts, and center plates of train bogies 

[6–8]. Joints involving torsional rotation can also be 

found in the human body, e.g., in spinal disks [9], knee 

[10, 11] and hip articulations [12, 13], and in bio-medical 

implants [14, 15]. For this reason, torsional contact has 

been investigated in experimental studies reproducing 

these systems [16, 17].  

Moreover, this configuration is intrinsically interesting 

for experiments involving fundamental aspects of 

friction between soft and rigid surfaces [18–22]. The 

main reason lies in the non-uniform stress distribution 

induced by rotation, so that a differential surface slip 

takes place. While the outer circumference borders are 

undergoing slippage, inner surface regions may not 

be doing so. Thus, torsional contact has been used to 

verify early theoretical predictions of partial surface 

slips in the Hertzian theory for a sphere on a plane 

under a torque and a normal force [23–25].  

More recent experimental works and theoretical 

models have focused on adhesion [26], viscoelasticy 

[27–29], and effects of surface patterning [30]. These 

studies have mainly considered a soft half plane with 

a rigid rotating punch, so that further theoretical and 

numerical work is required to address remaining 

questions regarding the transition to sliding or non- 
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trivial geometrical features such as surface textures, 

whose contact leads to complex friction behaviour due 

to the axisymmetric configuration.  

Recent studies have highlighted a complex interplay 

of effects at the onset of frictional sliding in nominally 

flat surfaces [31, 32]. These effects have been captured 

by simplified spring-block models, providing useful 

insights on basic microscopic phenomena determining 

emergent behavior [33–35]. A formulation of the 

spring-block model has been used to address the 

transition to sliding in the presence of non-uniform 

surface stress distributions induced by surface patterning 

[36–38]. The model has qualitatively explained the static 

friction reduction observed in recent experiments 

[39–45]. For these reasons, we expect to derive, using 

these models, useful information in the case of torsional 

contact, which could be useful for the manipulation 

of emergent frictional properties in this type of system. 

In particular, in Refs. [46, 47], we have investigated 

how an appropriate grading of surface tribological 

properties can be useful to manipulate macroscopic 

friction. We expect that these concepts can be applied 

to the present case.  

In this paper, we extend the two-dimensional (2D) 

spring-block model developed to torsional contact, to 

investigate the radial dependence of observables, the 

onset of sliding and effects due to surface grading 

[38]. Our study aims to find useful insights that can 

be exploited in practical applications in which a 

modification of standard torsional friction behavior of 

torsional contact is required.  

The paper is divided as follows: in Section 2, we 

present the model and the setup for studying torsional 

contact; in Section 3, we illustrate the transition to 

sliding that emerges from the model, comparing it 

with analytical calculations and literature results; in 

Section 4, we show the effect of the surface grading 

on the emergent friction properties, in Section 5 we 

provide the conclusions.  

2 Model 

We consider a flat elastic two dimensional circular 

surface slowly rotating at constant angular velocity 

around its vertical axis over a rigid substrate, 

approximating a cylinder whose thickness is much 

smaller than the radius (Fig. 1). The surface is discretized 

into a mesh of springs and masses, as shown in the 

enlargement of Fig. 1, also used in Ref. [38]. We will 

indicate this as spring-block model (SB).  

To implement an axisymmetric setup, we adopt 

the following procedure. We start from a square 

mesh of N  N blocks, whose internal distance along 

both axes is l. The block position inside the mesh 

can be labeled using two integer indexes  ( , )a n m , 

with      2 , 2 1N n m N  along the x and y axes, 

respectively. At the beginning, the mesh center of 

mass is placed at the origin of the coordinate system, 

 

Fig. 1 Schematic abstraction of the considered configuration. A thin elastic cylindrical surface (represented by the grey disk),
rotating around the vertical axis passing from its center and in torsional contact over a rigid substrate (represented by the orange plane). 
A uniform pressure is applied over the whole disk surface. The spring mesh used to model the contact problem is shown in the
enlargement, with internal springs between blocks (grey) and shear springs attached to the rotor (red). Coordinate axes, rotation angle θ and
angular velocity ω are also indicated. 
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so that the position vector of the block  ( , )i n m  is 

    ( (0 5 ), (0 5 ))i l n l mr . In this way, the rotational 

vertical axis passing through the origin will not 

intersect any block. To reproduce a circular surface 

using a square mesh, we eliminate all blocks whose 

distance from the origin is greater than the radius 

  2R l N . Thus, for sufficiently large N we obtain a 

disk approximated by small square elements.  

The equivalence of the spring mesh with a 

homogeneous isotropic elastic material of Young’s 

modulus E and Poisson’s ratio   1/3 can be imposed 

by following the procedure illustrated in Ref. [48] 

applied to our case. The stiffness of springs connecting 

the nearest neighbors blocks is  
int

3 4
z

K EL , where 

z
L  is the thickness of the layer, and the stiffness of 

springs connecting to the next-nearest neighbors must 

be 
int

2K  [35]. Hence, the internal elastic force on a 

generic block i exerted by the neighbor j is 

    ( )

int
( )( )i j

ij ij ij j i ij
k r l rF r r            (1) 

where 
ij

r  is the modulus of the distance between i 

and j, 
ij

l  is the modulus of the rest distance, and 
ij

k  is 

the stiffness of the spring connecting them.  

All blocks are attached, through shear springs of 

stiffness 
s

K , to a massless rotor subjected to uniform 

rotational motion around the vertical axis. In this 

formulation, the rotor plays the same role of the 

slider in the linear motion of the model described in 

Ref. [38]. The position vector of the rotor point 

attached to the block i at time t can be written as s

i
r  

 0 0 0 0(( ) cos( ) ( ) sin( ),( ) sin( ) ( ) cos( ))i x i y i x i yr t r t r t r at   , 

where 0( )
i x

r , 0( )
i y

r  are the x, y components of the 

position vector of the block i at time zero and   is the 

constant angular velocity. The rotation angle of the 

rotor is defined as   t. Thus, the shear force on the 

i-th block given by the circular motion is 

 ( ) s

s s
( )i

i i
KF r r                 (2) 

We define the total longitudinal force on the block i as 

  ( )( ) ( )

mot int s

iji i

j

F F F                (3) 

This force lies in the x, y plane and represents the sum 

of internal spring forces and the shear force due to 

the rotational motion.  

A viscous damping force is added to eliminate 

artificial block oscillations, i.e.,   ( )
d

i
imF r , where   

is the damping frequency. Friction itself could provide 

sufficient damping and prevent artificial oscillations, 

but in the present study we will also consider a grading 

in which the friction coefficient is close to zero. In 

this case, the block may surpass its equilibrium 

position during sliding and then return back. An 

additional viscous damping term prevents this type 

of phenomenon. A uniform pressure P is applied on 

the system along the vertical axis, so that each block 

is subjected to a normal force ( ) 2i

n
F Pl . The total 

normal force is  ( )

n

i

ni
F F .  

The interactions between the blocks and the rigid 

substrate are introduced by means of the classical 

Amontons–Coulomb (AC) friction force with a statistical 

dispersion on the friction coefficients [38]. While the 

block i is at rest, the friction force ( )

fr

iF  opposes the 

total driving force, i.e.,  ( ) ( )

fr mot

i iF F , up to a threshold 

value ( ) ( )

fr ns

i i

i
F F , where 

s i
 is the static friction 

coefficient and ( )

n

iF  is the normal force on i. When 

this limit is exceeded, a constant dynamic friction force  

opposes the motion, i.e., 


 ( ) ( )

fr nd

i i

ii
F F r , where 

di
  

is the dynamic friction coefficient and 


i
r  is the velocity 

direction of the block.  

The friction coefficients are extracted from a Gaussian 

statistical distribution to introduce a noise in the system 

and mimic statistical fluctuations of the local roughness. 

Without a statistical dispersion, sliding would start 

simultaneously from all points on the edges, but after 

the first slip, all points on the external edge would be 

stuck again, due to static friction, until the force threshold 

is exceeded with the rotation. Thus, there would be a 

sort of rotational stick–slip motion. The same happens 

with the spring-block model formulation in linear 

sliding. This is a completely different phenomenology, 

which is not the main focus of the study.  

Therefore, we introduce the following statistical 

distribution on both static and dynamic friction 

coefficients. In the following, we will drop the subscript 

s, d every time the considerations apply to both the 

coefficients.  

    1 2 2
m( ) ( 2 ) exp[ ( ( ) ) (2 )]i ip         (4) 

where 
m

( )  denotes the mean of the microscopic 

friction coefficients and   its standard deviation. 
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Although the occurrence of negative values or values 

such that  
d si i

 is a rare event, we check this 

possibility and, if verified, we discard the friction 

coefficients and new ones are extracted, until they 

satisfy the required conditions. Thus, the complete 

equation of motion for the i-th block is 

    ( ) ( ) ( ) ( )
int s fr d

ij i i i
i

j

mr F F F F           (5) 

The overall system of differential equations is solved 

using a fourth-order Runge–Kutta algorithm. In order 

to calculate the average of any observable, the simulation 

must be iterated, extracting each time new random 

friction coefficients. In repeated tests, an integration 

time step of  810h s proves to be sufficient to reduce 

integration errors under the statistical uncertainty in the 

range adopted for the parameters of the system. 

Realistic macroscopic elastic properties are chosen, 

e.g., a Young’s modulus  1E MPa, which is typical for 

a soft polymer or rubber-like material, and a density 

  1 2  g/cm3. The cylinder sizes are  1R  cm and 

 1
z

L  mm, the pressure is  10P  kPa and the angular 

velocity is in the range 0.01 rad/s w 0.2 rad/s, as 

adopted in experiments of Ref. [26]. The damping 

parameter is an arbitrary parameter that does not 

influence the final results if it is fixed in the under-

damped regime (   
int

K m ) [35] and, in our case 

the fixed value is   5  m·s-1. The number of blocks N 

will be specified in each case. A study of its influence 

as arbitrary model parameter will be provided in 

Section 2.2. For the friction coefficients, the quantity 

of effective interest is the ratio between static and 

dynamic coefficient, so that we fix conventionally the 

static one to   
s m

( ) 1 0  and perform the simulations 

varying the dynamic one in the range    
d m

0 5 ( ) 0 8 , 

covering most of the measured values of the ratio for 

standard materials. Their standard deviations are set 

to five percent.  

2.1 Observables 

The quantity that is measured for the setup in Fig. 1 

in an experimental apparatus can be identified as the 

total torque   ( )

s

i

ii
M r F , i.e., the sum over all blocks 

of the vector product between the distance from the 

center and the force exerted by the rotor (Eq. (2)). 

Since both the force and the distance vectors lie in the 

horizontal plain, the torque has only one non-zero 

component that will be indicated with M.  

The rotation angle of the block i is indicated with 
i
. 

In the absence of friction, this is equal to the nominal 

rotation angle   of the rotor, but in the presence of 

friction we may expect  
i

 for all i values. We define 

the rotation lag    
i i

, i.e., the angular difference 

between the nominal rotation and the effective 

rotation undergone by i. Moreover, we define the 

critical angle  ( )

c

i  as the rotation angle corresponding 

to the first sliding of the block i, i.e., the first transition 

from static to dynamic friction, which can be deduced 

from the equation of motion. 

Finally, we define the normalized surface force field 

f, i.e., the modulus of the total longitudinal driving 

force of Eq. (3) applied to the i-th block normalized 

by its normal force:    ( ) ( )

mot n

i i if FF .  

It is convenient to express quantities having an 

average axisymmetric distribution as a function of the 

distance from the center r, so that they can be averaged 

on all blocks placed at the same distance. For example, 

the torque ( )M r  is calculated in a thin annulus of 

radius r, i.e., the sum on the blocks i is restricted to 

those having a distance 
i

r  from the center such that 

  
i

r r l . Similarly, we define the quantities ( )r , 


c
( )r , and ( )f r , i.e., average rotation lag, critical angle, 

and applied force, respectively, of points located at 

distance r from the center.  

2.2 Trend with N 

In Fig. 2, we show the typical behavior of the total 

torque M as a function of time. It is useful to define the 

effective static friction coefficient 
s

( )
M

 as the value 

reached by the first peak of the torque normalized 

with the disk radius and the applied normal force, 

and the dynamic one 
d

( )
M

 as the average of the curve 

after therotation onset. These quantities characterize 

the behavior of M, but they must not be compared with 

the friction coefficients measured with experiments 

of linear sliding, since frictional force depends on the 

radial coordinate.  

In the inset of Fig. 2, we show the influence of 

discretization, i.e., number of blocks N determining 

the discretization length  l R N , on the friction 

coefficients. Both these quantities are decreasing with 

N, but variations are limited to few percent. For other  
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Fig. 2 Time evolution of the total normalized torque for 120N   
and 0 2    rad/s. In the inset, the effective friction coefficients as 
a function of N, showing variations within a few percent. 

observables, effects of discretization are also negligible. 

Thus, we conclude that  120N  is sufficient to reduce 

discretization errors below statistical uncertainties for 

the main observables and that our general qualitative 

conclusions are not influenced by this issue.  

3 Benchmark results 

3.1 Transition to sliding 

Due to the axisymmetric configuration, a non-uniform 

stress distribution arises before sliding. Applied forces 

are directed tangentially with respect to the rotation 

and are linearly increasing in modulus with the radius. 

Slippage starts from surface points on the outer 

circumference with smaller static friction coefficient 

values and involves the external part of the disk. 

However, this initial sliding does not involve the whole 

surface and stops at some point between the outer 

circumference and the center, where the tangential 

force is no longer large enough to trigger a further slip 

avalanche. After this phase, the external parts of the 

disk rotates at uniform velocity, while the central part 

slides gradually towards the center.  

This sequence is illustrated in Fig. 3. Figure 3(a) 

shows the surface force field as a function of the radial 

distance from the center and the rotation angle  , 

while Fig. 3(b) shows the torque as a function of the 

rotation angle  . The peak of the total torque occurs 

when the maximum stress is reached at the outer 

border, while after a readjustment, the stationary 

dynamic rotational motion takes place. For points 

towards the center, instead, dynamic motion takes 

place with an incoherent stick–slip motion of single 

blocks without a sharp transition. This is because, in 

the internal region, the stored elastic energy is smaller 

due to the axisymmetric stress distribution, and the 

dynamics of the internal part is dominated by the 

statistical noise on the static friction thresholds. This 

is also illustrated in Fig. 3(c), showing the critical angle 

 

 

Fig. 3 (a) Normalized longitudinal force distribution ( )f r  as 
a function of the radius (vertical axis) and the rotation angle 
(horizontal axis) t  ; (b) evolution of the total torque (green 
line) and torque calculated in annular regions of radius r; (c) critical 
angle as a function of the radial coordinate. These simulations were 
performed with 120N  , 0 2    rad/s, d m m( ) ( ) 0 6s    . 
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
c
( )r  corresponding to each radial coordinate. The 

external part of the surface slips almost simultaneously 

at the same angle corresponding to the maximum 

stress peak.  
The fractions of disk involved in the two phases are 

separated by a critical radius 
c

R : Points located at a 

greater distance from the center slips in the first phase 

and those located at a smaller distance in the second 

one. The critical radius can be estimated from the plot 

in Fig. 3(c), showing the curve of the critical angle 

corresponding to the radial coordinate: the critical 

radius corresponds to the “knee” of the curve, i.e., the 

radius where the slope abruptly increases. We have 

conventionally estimated this point as the radius in 

which the derivative of the curve exceeds a 5% percent 

of relative increase, as indicated in the plot.  

3.2 Comparison with analytical results and the 

literature 

In order to validate the model, we have developed 

analytical calculations based on energy conservation 

in a quasi-static regime. As shown in Section 3.1, the 

external part of the disk slides abruptly in the first 

phase of the transition to sliding, whereas the internal 

part slides gradually in a second phase. These regions 

are separated by a critical radius 
c

R . Before any slip, 

elastic energy is accumulated due to the rotor. After 

the sliding of the external part, the elastic energy has 

been partially dissipated by friction, is partially still 

stored in the slider due to the angular lag ( )r  with 

respect to the rotor, and is partially stored as shear 

elastic deformation of the disk itself. All these energies 

can be written in terms of the system elastic and 

frictional parameters, the critical radius 
c

R , and the 

angular lag ( )r . By imposing energy conservation and 

assuming that, after the first phase of the sliding, the 

system readjusts at the minimum energy, the quantities 

c
R  and ( )r  can be calculated. The detailed description 

of the calculation is reported in the Appendix. 

In particular, from the calculation we can deduce 

that, in the limit of 
z

L R, the critical radius is 

proportional to the ratio between dynamic and static 

friction, i.e.,    
c d s

R R . The thickness introduces a 

correction, which can be also computed semi-analytically 

with the energy balance approach. As shown in Fig. 4(a), 

numerical results of the SB model confirm the linear 

trend and are close to the semi-analytical curve. Moreover, 

data approaches the semi-analytical curve for smaller 

velocities, as expected since calculations are performed 

in a quasi-static regime neglecting the rotational kinetic 

energy. For larger angular velocities, the critical radius 

decreases since the increase of the kinetic energy implies 

the simultaneous sliding of a larger surface fraction, 

i.e., smaller 
c

R  value. Examples of critical angles as a 

function of the radius to estimate 
c

R  are reported in 

Fig. 4(b) for various 
d m

( ) . 

Similar results can be found in the literature for 

axisymmetric systems, e.g., two elastic spheres in  

 

 

Fig. 4 (a) Critical radius as a function of the ration between 
friction coefficients for various angular velocities obtained with 
the SB model. These are compared with the predictions of analytical 
calculations reported in the Appendix. (b) Critical angle as a 
function of the radial coordinate for various ratios of the friction 
coefficients, allowing to estimate the critical radius of each curve 
(indicated by the dotted line). 
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reciprocal rotation in the work by Lubkin [24]. According 

to his results, there is a critical radius separating the 

external sliding region and the internal region still at 

rest. In particular, this distance is a linear function of the 

dynamic friction coefficient, consistently with Fig. 4(a), 

confirming the general validity of our analytical and 

numerical results.  

In Fig. 5, we report the macroscopic torque behavior 

for various ratios of the friction coefficients. The 

transition to sliding is qualitatively similar to that 

illustrated in Fig. 3, but the torque curve changes shape 

as the peak due to the sharp sliding of the external 

part disappears for larger dynamic friction. This is due 

to the reduced fraction of disk involved in this phase. 

Moreover, the curve for the torque with the dynamic 

friction coefficient closer to the static one is similar to 

that reported in Ref. [24], which, indeed, is obtained 

for a quasi-static rotation without static friction. In 

the stationary rotation regime, all curves for various 

dynamic friction coefficients collapse with a good 

approximation to the same value by dividing the 

normalized torque by 
d m

( ) , as shown in the inset of 

Fig. 5. In Ref. [24], the value predicted for this quantity 

is     d n( ) 3 16 0 59M RF , consistently with our 

estimates, ranging from 0.6 and 0.67, depending on the 

sliding velocity.  

Finally, The surface stress fields as a function of 

radius for various rotation angles are reported in Fig. 6, 

showing that the behavior is qualitatively similar to  

 

Fig. 5 Total torque for various ratios of microscopic friction 
coefficients. If the ratio between dynamic and static friction coeffici-
ents tends to one, the curve shape approaches the curve predicted 
in Ref. [24]. In the inset, the torque value after the transition to 
sliding can be rescaled to a constant value by dividing all curves 
by d m( ) . 

those observed in experimental work with a sphere 

rotating over a flat surface [26]. From all these results, 

we can conclude that the SB model can capture the 

underlying dynamics of similar axisymmetric systems 

observed in previous works.  

3.3 Angular lag 

In Section 3, we have analyzed the transition to sliding 

of the rotating surface, which can be divided in two 

parts: an abrupt slip of the external part of the disk, 

followed by a gradual transition to sliding towards 

the center, separated by acritical radius 
c

R . Thus, the 

onset of sliding takes place at different times depending 

on the point location. This behavior induces a distortion 

of the elastic disk during the subsequent rotation: 

although all points rotate at the same angular velocity 

 , the angular lag ( )r  is not a constant along the 

radius r. In other words, points towards the center slide 

at larger angular distance from the nominal rotation 

angle than those located at the border.  

This is illustrated by the angular lag ( )r , i.e., the 

angular distance between the nominal rotated angle 

  by the rotor and the average rotation performed 

by the points at radius r. In Fig. 7(a), we report ( )r  

for the same disk at various times (rotation angle). The 

lag of the internal part of the disk, being still at rest, 

corresponds to  , and the fraction of disk at rest 

reduces as the rotation proceeds. For the external part, 

the lag decreases but is never zero due to friction. From 

analytical calculations reported in the Appendix, the  

 
Fig. 6 Stress fields ( )f r  as a function of radius at different 
time (rotation angle) snapshots, for various ratios of microscopic 
friction coefficients. A qualitatively similar behavior has been 
reported in experimental results [26]. These simulations were 
performed for 0 2    rad/s and 120N  . 
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Fig. 7 (a) Angular lag ( )r  as a function of the rotation angle 
for d m s m( ) ( ) 0 6    . After the slippage of the external disk 
region ( 0 0013    rad), the model curve is well fitted by that 
predicted by semi-analytical calculations. By increasing the 
rotation angle, the lag increases, until it stabilizes in the dynamic 
sliding regime, as can be observed from the two largest   for 
which the curves coincide. (b) Angular lag as function of the ratio 
between static and dynamic friction coefficient. These simulations 
were performed for 0 2    rad/s and 120N  . 

lag behaves as  ( ) 1r r :  


  d 1

( ) z
PL

x c
GR x

              (6) 

where  x r R  and c is a constant. This is valid in 

the small thickness regime and soon after the sliding 

of the external part. Results in Fig. 7(a), for a   

corresponding to the sliding of the external part, 

approximate these results very well.  

In the dynamic sliding regime, i.e., when all disk points 

slides, the lag follows the decreasing trend reported 

in Fig. 7(b). If the ratio of the friction coefficients 

tends to one, since the initial sliding involves a smaller 

fraction of the surface, the lag between the center 

and the circumference is increased. Moreover, the lag 

for points towards the edge follows with a good 

approximation the law  ( ) 1r r, indicating that the 

system preserves a memory of the distortion occurred 

during the first phase of the sliding.  

4 Graded surfaces 

In this section, we show how the axisymmetric 

transition to sliding is modified by variations of the 

local mean value of the friction coefficients. In other 

words, we suppose that the Gaussian distribution 

adopted to assign the local friction coefficient depends 

on the surface position and, in particular, its mean 

value is a function of the disk radial coordinate. This 

can represent many situations, for example an 

appropriate grading of the local tribological properties 

to modify the transition to sliding and the disk distortion 

during the rotation. This can be useful in applications 

where torsional friction is present and severe fretting 

fatigue can occur, due to an axisymmetric stress 

distribution. In this case, appropriate grading of the 

local tribological properties can achieve a modification 

in the evolution of disk sliding during rotation.  

In real systems, this can be achieved in various 

ways. Recent experiments have demonstrated how 

to manipulate the friction coefficients by means of 

microtextures, either 3D printed or realized with 

laser texturing or lithographic techniques, so that it is 

possible to design and combine different types of 

microtextures to produce a locally variable friction 

coefficients along the surface. Local tribological pro-

perties can also be modified by means of composite 

materials, coatings, or a varying polishing of the 

contact surfaces.  

Moreover, a non-uniform local friction can be the 

result of wear phenomena. In a rotating junction 

between a harder and a softer material, the presence 

of asperities on the harder surface can produce circular 

grooves in the softer one, modifying the local contact 

properties. Thus, a radial variation of the local friction 
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can describe a surface subjected to wear and material 

losses in axisymmetric configurations. For these reasons, 

it is useful to study how the behavior of the uniform 

case is modified by radial gradients of the local friction.  

In the following, we omit the subscripts s, d for static 

and dynamic friction coefficients since considerations 

apply to both separately and, for convenience, we denote 

with 
m

 the mean value of the Gaussian distribution 

of Eq. (4) to assign the local friction coefficients. Thus, 

we suppose that this mean value is a function of the 

radius,   
m m

( ) ( )r g r , where 
m

 is the same mean 

value corresponding to the uniform case, and ( )g r  is 

a radial function whose mean value over the radius 

is equal to 1. Standard deviations are fixed to 5% of 

the mean value 
m

( )r  and the angular velocity to 

  0 2  rad/s.  

We consider two types of functions representative 

of the situations previously described: A linear grading 

and a sinusoidal grading, as shown in Fig. 8, with a 

maximum variation   with respect to the mean value. 

In the case of linear grading,    ( ) 1 (2 1)g r r R , 

where   is the constant slope of the gradient. In the 

sinusoidal case,     ( ) 1 cos( (1 ))g r f r R , where f 

is a constant determining the number of oscillations. 

These functions are defined to reduce the local friction 

coefficients in the center by a factor   and, conversely, 

to increase them by a factor   along the outer 

circumference, but the overall mean value along the 

radius is the same of the uniform case.  

In the model, this effect can also be achieved by 

means of a non-uniform pressure distribution, e.g., a 

linearly increasing load towards the disk edge. However, 

we prefer to address the grading from the point of 

view of surface texturing, as in recent experimental 

approaches [43–45].  

 
Fig. 8 (a) Linear grading of local friction coefficients with the 
notation used in the text and (b) sinusoidal grading with 5f  . 

4.1 Linear gradient 

In the uniform case, the slip of the external part stops 

before the center at a point where the longitudinal 

forces are no longer sufficient to exceed the static 

friction thresholds and trigger a further slip. Thus, 

if local friction coefficients in the central region of 

the disk are reduced, we may expect that the sliding 

proceeds further and spans the whole disk surface at 

the same time. Moreover, during the rotation, points 

towards the center slide with a smaller dynamic friction, 

balancing the smaller torque and, consequently, 

reducing the angular lag. These effects can be achieved 

by a linear gradient for both friction coefficients: 

μm(r) = μ
_

m (1 + (2r/R – 1))           (7) 

Thus, friction is increasing from the center to the 

outer circumference. In Fig. 9(a), we show the critical 

angles for various  values as a function of the radial 

coordinate for the case (μ
_

d)m/(μ
_

s)m = 0.6. As expected, 

the critical radius decreases with , so that the area 

simultaneously slipping at the onset of the sliding 

increases. For  = 0.9 the whole surface slides abruptly 

at the same time and, consequently, the difference of 

angular lag between the center and the edge of the 

disk is almost zero. 

The drawback is that such a sharp transition, 

triggered by larger friction at the edges, implies a 

larger static friction peak, as shown in Fig. 9(b) reporting 

the time evolution of the total torque exerted by the 

rotating slider. Moreover, in the dynamic rotation 

regime, the total torque is increased. This is an effect 

due to the average of the friction coefficients over all 

the surface. Indeed, with the linear function proposed 

is not possible to keep simultaneously the same mean 

value along the radius and on the total area. In the inset 

of Fig. 9(b), we show all curves divided by the factor 

n normalizing the total average: 

d m

s m

)
)





(

(
n  (1 + /3)           (8) 

The collapse is not perfect as found for the uniform 

case in Section 3.2 and there is a residual discrepancy 

increasing for larger , which can be ascribed to the 

larger frictional force contribution of the external part  
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Fig. 9 (a) Critical angle as a function of the radial coordinate 
of the disk for various grading slopes , with a fixed ratio    
(μ

_
d)m/(μ

_
s)m = 0.6. (b) Time evolution of the total torque for 

various . In the inset, the same curves are scaled by a factor    
n = (μ

_
d)m/(μ

_
s)m (1 + /3). 

of the disk. Thus, the gradient can be also used to 

increase the torque in the dynamic rotational sliding. 

This behavior can be explained by means of the 

analytical calculations reported in the Appendix. 

According to Eq. (6), the lag Δ in the limit of small 

thickness is proportional to the inverse of the 

radius. By replacing μd with Eq. (7), the lag of Eq. (6) 

becomes 

Δ(x) = 
  

 
1

2z
PL

GR x
d c            (9) 

Thus, if  tends to one, the dependence on x vanishes, 

so that the lag is approximately constant along the 

radius. 

By varying the ratio between dynamic and static 

friction coefficients, we find the same qualitative 

behavior, but all the effects observed in the uniform 

case are also retained. Thus, by increasing the ratio 

for a fixed gradient , the effect of simultaneous 

slip is progressively less efficient. In particular, for 

(μ
_

d)m/(μ
_

s)m = 0.8, even a  = 0.9, which corresponds to 

ninety percent of relative reduction at the center, is not 

sufficient to induce the sliding of the whole surface, 

although the critical radius is reduced. This is evident 

from Eq. (9), since for a larger μ
_

d, the reduction of the 

lag between external and internal part of the disk is 

less effective. 

4.2 Sinusoidal gradient 

We consider a sinusoidal function g(r), so that both 

friction coefficients are a function of the radius as 

follows:  

        m m
( ) 1 cos( (1 ))r f r R       (10) 

To gain some insight, we focus on the case  5f , as 

in Fig. 8(b). In this way, the disk is characterized by a 

reduced friction around the center and in two concentric 

rings. In other regions, friction is increased by the 

same amount so that the mean value is the same of the 

uniform case, and   is the maximum relative variation 

with respect to the average.  

The critical angle as a function on the radial 

coordinate is shown in Fig. 10(a). For   0 2  the 

curve is qualitatively similar to the uniform case. 

Despite the oscillations of the function ( )g r , the 

transition to sliding begins from the edge and ends to 

a critical radius larger than in the uniform case. After 

this, the rest of the surface slips progressively. However, 

for a larger   this behavior is significantly modified. 

The sliding begins abruptly from an annular region 

across the points with smaller friction, so that it is 

not possible to define a single critical radius. In the 

subsequent dynamic regime, the sliding propagates 

to the neighboring areas of these regions and, finally, 

towards the center. These effects are enhanced for 

larger  , so that the angular lag increases.  

Thus, for smaller   this type of gradient slightly 

reduces the angular lag but increases the critical  
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Fig. 10 (a) Critical angle as a function of the radial coordinate 
of the disk for sinusoidal gradients, with 5f   and a fixed 
ratio d m s m( ) ( ) 0 6    . (b) Critical angle for various f deter-
mining the number of oscillations of ( )g r  for 0 5    and 

d m s m( ) ( ) 0 6    . 

radius. For larger   values, which is a configuration 

similar to the case of deep grooves on the disk, it is 

totally ineffective to reduce the critical radius and the 

distortion of the disk during the rotation increases. 

On the contrary, in time evolution of the total torque, 

there is smaller peak due to the transition from static 

to dynamic phase. This is obviously due the transition 

to sliding nucleating in various separated regions of 

the disk.  

If we change the number of oscillations of ( )g r , we 

observe the same phenomenology. In particular, for 

larger f the transition to sliding has a stepwise shape, as 

shown in Fig. 10(b), but the angular lag is increased. 

4.3 Friction coefficients 

As reported in Section 2.2, it is useful to define 

effective friction coefficients to characterize the time 

evolution of the torque. The effective dynamic friction 

coefficient, 
d

( )
M

, represents the average of the torque 

after the transition to sliding divided by the radius 

and the normal force. The effective static coefficient, 


s

( )
M

, represents the maximum of the torque in the 

time range between the beginning and the onset of 

sliding of the center, so as to take also into account the 

behavior without a force peak, e.g., Fig. 4(a). In these 

cases, effective dynamic and static friction coefficients 

coincide.  

In Fig. 11, we compare the variation of these 

macroscopic quantities for various gradients, obtained 

for a ratio of the average microscopic friction coefficients 

   
d m s m

( ) ( ) 0 6. The values have been normalized 

by the factor n  to take into account the difference 

between total averages. In the linear case, there is an 

increasing trend with  , which is the result of the 

transition to sliding detailed in the Section 4.1. In the 

sinusoidal case, the slippage mechanism described in 

Section 4.2 induces a smooth increase of the macroscopic 

torque, so that the static friction coefficient tends to 

the value of the dynamic one for increasing  . In 

both cases, the dynamic friction coefficient is increasing 

with  , although the relative variation is smaller than 

10%, as explained in Section 4.1.  

 

Fig. 11 Comparison between static and dynamic effective friction 
coefficients as a function of   for linear and sinusoidal grading. 
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5 Conclusions 

In this paper, we have applied for the first time the 

framework of the two-dimensional (2D) spring-block 

model to an axisymmetric configuration, describing 

the case of a thin elastic disk in torsional contact 

over a rigid substrate. Since this is representative of 

many experiments and practical applications, we have 

focused on the description of the transition from static 

to dynamic friction and on the manipulation of the 

tribological properties of this setup by an appropriate 

design of the surface. 

We have shown that a simple formulation of the 2D 

spring-block is able to reproduce qualitative processes 

observed in experiments at the onset of sliding, allowing 

to study the time evolution of the surface stress 

distribution and the resulting macroscopic forces. 

In particular, due to the axisymmetric configuration, 

we have highlighted that the transition to sliding is 

characterized by a sharp slippage of the outer regions 

of the disk, which stops at a critical radius. Regions 

inside the critical radius progressively slide during 

the dynamic rotational regime. Consequently, the disk 

is deformed, since regions close to the center rotate at 

larger angular lag those on the edge. This angular lag 

can lead to non uniform wear and fatigue. We have 

qualitatively shown how this lag and the critical radius 

depend on the angular velocity and on the ratio between 

static and dynamic friction of the materials.  

Further, we have analyzed how this behavior can 

be modified by a grading of the local friction coefficients 

of the rotating surface. By using a linear grading, the 

disk distortion caused by the axisymmetric sliding 

can be reduced and avoided, provided that an appropriate 

gradient slope is present. We have also considered 

the case with a sinusoidal grading, mimicking the 

presence of rings with smaller friction on the disk 

surface. Their presence is detrimental for the disk 

deformation and enhances the effect of the regions 

rotating with larger angular lag. Overall, we have shown 

how it is possible to use a simple numerical tool such 

as the spring block model to gain qualitative insights 

on the phenomenology of the tribological properties 

of the considered axisymmetric geometry. This can be 

exploited for the design of modified contact surfaces 

for enhanced performance in mechanical devices and 

biomedical implants.  
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Appendix 

We consider an elastic disk of radius R, thickness 
z

L , 

shear modulus G. The external part of the disk slips 

abruptly at the beginning of the transition to sliding, 

whereas the internal part slides gradually. These 

regions are divided by a critical radius, namely cR . 

In order to estimate the critical radius, we write an 

energy balance. We divide the external part of the disk 

in thin annuli of width dr at a distance r from the 

center, as depicted in Fig. A1.  

Before the sliding, the shear elastic energy due to 

the rotor is stored. We assume that the slippage of the 

external part and the disk readjustment is instantaneous 

with respect to the rotation velocity. After the first 

phase of the transition to sliding, the rotor is rotated 

by an angle 
0

, whereas each annulus of the external 

part of the disk is rotated from the initial position,  

 
Fig. A1 Schematic of the analytical calculations with the notation 
used in the text.  



Friction 13 

www.Springer.com/journal/40544 | Friction 
 

but with a smaller angle  ( )r  than 
0

 due to the 

frictional resistance. The difference between the nominal 

rotation angle 
0

 and the angle rotated by the annulus 

is the angular lag, namely    
0

( ) ( )r r , which is in 

general a non-trivial function of r. The internal part is 

still stuck, so that  
c 0

( )R .  

Thus, for each annulus of the external part we can 

write an energy balance before and after the first phase 

of the transition to sliding. The initial elastic energy 

due to the rotor has been partially dissipated by friction, 

is partially still stored in the rotor due to the lag ( )r , 

and is partially stored as shear elastic energy due to 

the deformation between adjacent annuli.  

The total shear elastic energy 0

e
U  before the sliding 

for an infinitesimal sector d d dS r r  of an annulus 

is 0 21
e 2

d
z z

U G L S , where the shear strain 
z

 due 

to the rotor is zθ = rθ0/Lz. By integrating over the full 

angle and between 
c

R  and R, we obtain: 

 
   

c

2
0 1 2 3

e 00

1
d d

2

R

zR
U GL r r         (A1) 


 0 2 4 4

e 0 c
( )

4
z

G
U R R

L
              (A2) 

After the sliding of the external part, the energy 

dissipated by friction, 
fr

U , for an annulus can be 

calculated as the work performed by the friction 

force:  
d

( ) dr r P S . By substituting  ( )r  as a function 

of ( )r , the integration leads to:  

    
c

2

fr d 0
2 ( ( )) d

R

R
U P r r r        (A3) 

The final elastic energy fin

e
U  after the sliding is 

made of two contributions, the residual elastic energy 

due to the shear deformation in the vertical plane due 

to rotor, i.e., zU , and the shear energy for an annulus 

due to its neighbors, i.e., rU , accounting for the shear 

deformation of the disk on the horizontal plane. 

Therefore, the total elastic energy after the sliding 

is   fin

e z r
U U U . The first term is similar to the total 

one, except for the replacement of 
0

 with ( )r : 




 
c

3 2( ) d
R

z R
z

G
U r r r

L
         (A4) 

The second term can be written as   21
2

d
r r z

U G L S, 

where  r
 is the shear strain of an annulus due to 

the neighbors. This can be calculated as    ( )
r

r r , 

where we have indicate with the dot the derivative 

with respect to r. Thus, the integration leads to:  

    
c

23 d( )
R

r z R
U GL r rr         (A5) 

The total energy balance is:  0 fin

e e fr
U U U . By 

substituting the expressions (A3)–(A5), grouping the 

constants in front of the integral, and defining non- 

dimensional distances  x r R  (the critical radius 

becomes  
c c

x R R ), the energy balance can be 

written as:  


      

c

2
1 23 2 3 2d

02
( ) 2 ( ( ))d( )z z

x

L P L
U x x x x x xx

G RR
 

(A6) 

In order to solve this equation, we must find an 

explicit expression for the function ( )x  and the 

value of 
c

x . After the sliding of the external part, the 

system readjusts to a new equilibrium position at a 

minimum of the energy. Thus, for every 
c

x , there is 

a function ( )x  minimizing Eq. (A6). Once that the 

function ( )x  is known, the correct 
c

x  can be found by 

imposing that the quantity fin

e fr
U U  calculated with 

the integrals in Eqs. (A3)–(A5) corresponds exactly 

to the initial one 0

e
U . Therefore, we must find the 

function ( )x  so that the following integral assumes 

the minimum value:  

       
c

2
1 23 2 3 2

02
( ) 2 ( ( ))d( )z

x

L
U x x x x x xx

R
 (A7) 

where we have indicated the parametric constant 

  
d

( )
z

PL GR . This problem can be solved by means 

of the Euler–Lagrange equation for ( )x , leading to 

the differential equation:  

  
    

d
0

d ( ) ( )

U U

x x x
          (A8) 


 

      
 


2

3 3 2

2

d
2 ( ) 2 ( ) 2 0

d
z

L
x x x x x

x R
    (A9) 

By solving this equation with initial conditions 

 
c 0

( )x  and  c( ) 0x  to ensure the continuity of 

the derivative with the internal part where  ( ) 0x , 

we can find a solution in the range 
c

[ 1]x  for any 

given 
c

x . Then, the integrals Eqs. (A3)–(A5) can be 

calculated as a function of 
c

x , and the energy balance 

Eq. (A6) can be imposed to find 
c

x .  
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The solution of the differential equation, the integration, 

and the final solution for 
c

x  due the energy balance 

can be solved numerically for the adopted system 

parameters. We have adopted fourth-order Runge–Kutta 

method to solve the differential equation. Given the 

numerical expression of ( )x , the integrals Eqs. (A3)– 

(A5) can be calculated with the trapezoidal rule. Finally, 

the algebraic expression originating from Eq. (A6) can 

be solved with the Newton–Raphson technique to 

find 
c

x  and ( )x . This is a semi-analytical approach 

leading to an approximate numerical solutions, which 

can be close to the exact one with arbitrary chosen 

precision. Results of Fig. 4 in the main text have been 

obtained by dividing the range 
c

[ 1]x  into 10,000 

intervals and adopting the mentioned techniques.  

However, an analytical approximate solution can 

be found by observing that the thickness 
z

L  of the 

disk is much smaller than the radius R , and that the 

term with the derivative in Eq. (A7) is smaller than 

the other due to the factor  2( )
z

L R . Thus, Eq. (A9) can 

be solved by neglecting the derivative term, obtaining 

straightforwardly:  


    d 1

( ) z
PL

x c c
x GR x

            (A10) 

where c is a constant, which can be fixed by imposing 

the initial condition  
c 0

( )x . A similar parameter 

combination relevant for the problem, i.e.,  
d
P G , 

was also found by Lubkin [24].  

Equation (A10) is only an approximation and loses 

the continuous derivative in 
c

x , but it allows to perform 

analytically integrals Eqs. (A3)–(A5). After some 

calculations of polynomial integrals, a simple expression 

for the critical radius can be found:  





c

0
2

x                   (A11) 

The rotation angle 
0

 can be deduced by con-

sidering that the first slipping points are located on 

the edge of the disk, when the shear force due to the 

rotor exceeds the static friction force. By equating the 

two forces and assuming a zero standard deviation 

for the same static friction thresholds, we find 0  

 1
s2

( )
z

PL GR . By substituting this into Eq. (A11), 

we find the direct proportionality 

 d

sc
x  discussed 

in Section 3.2.  

This procedure can be also applied in the presence 

of a gradient of the friction coefficients, provided that 

the constant 
d

 is replaced with the function 
d
( )x . In 

particular, for the linear grading of Eq. (7) in Section 4.1, 

the lag ( )x  becomes:  

 
   d 1

( ) 2z
PL

x c
GR x

       (A12) 

This demonstrates that, if   tends to one, the depen-

dence on x vanishes, so that the lag is approximately 

constant along the radius, as reported in Section 4.1. 

In this equation, it is also clear that, for a larger 
d

, the 

reduction of the lag between external and internal 

part of the disk is less effective.  
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