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A general set of equations that govern global resistive interchange, resistive internal kink and
resistive infernal modes in a toroidal axisymmetric equilibrium are systematically derived in detail.
Tractable equations are developed such that resistive effects on the fundamental rational surface
can be treated together with resistive effects on the rational surfaces of the sidebands. Resistivity
introduces coupling of pressure driven toroidal instabilities with ion acoustic waves, while compres-
sion introduces flute-like flows and damping of instabilities, enhanced by toroidal effects. It is shown
under which equilibrium conditions global interchange, internal kink modes or infernal modes occur.
The m = 1 internal kink is derived for the first time from higher order infernal mode equations, and
new resistive infernal modes resonant at the q = 1 surface are reduced analytically. Of particular
interest are the competing effects of resistive corrections on the rational surfaces of the fundamental
harmonic and on the sidebands, which in this paper is investigated for standard profiles developed
for the m = 1 internal kink problem.

I. INTRODUCTION

Pressure driven instabilities have unique and counter
intuitive properties in laboratory plasmas. The fact that
toroidal and full electromagnetic effects are leading order
of importance implies that pressure driven instabilities
should be weak. But nevertheless they often determine
the operating limits of experimental plasma scenarios.

The control of MHD oscillations such as tearing modes
and Edge Localised Modes (ELMs) has become critical
for developing scenarios for tokamak reactors such as
ITER and European DEMO. Experiments in JET show
that tearing modes enhance heavy impurity transport [1],
while infrequent large ELMs are dangerous for plasma
facing components, and also enhance the risk of heavy
impurity ingress. Consequently, experimental effort has
been focussed on constructing equilibria that can avoid
sawteeth (which can seed tearing modes) and also avoid
ELMs. A common feature of these scenarios can be an
extended region of low magnetic shear, something that
is particularly pronounced in so called hybrid scenarios,
which typically have the safety factor q ≈ 1 in the core
region. Pressure driven instabilities in equilibria with
such q-profiles are sometimes studied analytically with
so called infernal mode equations [2, 3], these equations
having been extended to include a vacuum region (so
called exfernal equations [4]) for modelling [5] of edge
harmonic oscillations (EHOs) which occur during ELM
free QH-modes. Nevertheless, these model equations are
not always appropriate for modelling experiments if the
safety factor evolves so that it is resonant with the main
harmonic of the pressure driven long wavelength insta-

bility, or its sidebands. An analytic model [6] has been
developed for resistive effects on the sidebands of infernal
modes, but not for resistive effects of the main harmonic,
or both. One of the topics treated in this paper is to
address these deficiencies.

The main aim of this paper is to develop a unified
set of equations which can treat long wavelength pres-
sure driven internal instabilities with resistive correc-
tions. The equations will also describe short wavelength
interchange modes. The only internal modes out of scope
are short wavelength ballooning modes. Hence, the sys-
tem of equations will be shown to reproduce toroidal in-
ternal kink modes (including m = 1 modes [7]) with resis-
tive corrections [8], resistive interchange (twisting) modes
[9–11] (as well as current driven tearing modes), and new
resonant resistive infernal modes. From the novel set of
equations it will be shown that new classes of pressure
driven internal kink modes can be described analytically
(though approximately), via both ideal and resistive de-
scriptions. Other more complicated modes are identified,
but their solution is left for future numerical analysis.
The derivation of these equations is quite involved, but
it is not too difficult to convey providing enough detail
is given. Indeed, justification of the lengthy derivation
provided here might readily be accepted given that the
m = 1 internal kink problem is developed fully, some-
thing that is beyond almost all papers and all textbooks.
The system of equations developed here also provides the
essentials for a code which aims to efficiently solve for
long wavelength pressure driven instabilities in a torus,
with or without resistive effects.

The paper is organised as follows. In section II the cou-
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pled toroidal resistive eigenvalue equations are derived in
detail. Following that section III summarises the eigen-
value equations, discusses appropriate boundary condi-
tions for ideal and resistive problems, and defines sim-
plified equations for equilibria with ultra-low magnetic
shear. Section IV derives the m = 1 ideal internal kink
mode in a torus, recovering the results of Bussac et. al.
[7]. Section V identifies the conditions under which the
resistive infernal equations describe resistive interchange
modes. Section VI investigates infernal modes with and
without rational surfaces. We identify new classes of res-
onant infernal modes, and as an example we investigate
in detail the competing effects of resistivity on the main
harmonic and sideband of the m = n = 1 internal kink
mode in an equilibrium with low magnetic shear in the
core. A summary of the paper and a list of future related
work is presented in section VII.

II. DEVELOPMENT OF A GLOBAL LINEAR
SYSTEM OF RESISTIVE MHD EQUATIONS FOR

LONG WAVELENGTH PRESSURE DRIVEN
INSTABILITIES IN A TORUS

This section derives the global linear resistive MHD
equations for long wavelength internal instabilities in a
torus. It is undertaken in detail, which we hope will be
valuable both for understanding the results of this pa-
per, and as a reference. In this paper we do not treat
instabilities fundamentally driven by corrections associ-
ated with magnetic fluctuations extending beyond the
plasma (e.g. external kink modes), nor those strongly af-
fected by them (e.g. EHOs). Such modes, which may be
treated in future work, are not internal modes for which
all fluctuations vanish at the plasma-vacuum interface.

A. Convenient displacement variables in a resistive
plasma

The following linearised momentum equation in a
static MHD plasma is valid also in a resistive plasma:

X ≡ −ργ2ξ+(δB·∇)B+(B·∇)δB−∇(δB·B)−∇δP = 0,
(1)

where (δB ·∇)B+ (B ·∇)δB−∇(δB ·B) is perturbed
j ×B, and δP is the total perturbed pressure:

δP = −ξ ·∇P − ΓP∇ · ξ, (2)

(Γ the adiabatic index). In the ideal MHD model ∂ξ⊥/∂t
is the perpendicular flow associated with E-cross-B flow,
i.e. ∂ξ⊥/∂t = δE ×B/B2. But, in the resistive MHD
model, resistive Ohm’s law δE+∂ξ/∂t×B = ηδj applies,
so that,

∂ξ⊥
∂t

= −η(∇× δB)×B
B2

+
δE ×B
B2

.

For resistive MHD problems it can be convenient to re-
tain ξ as an eigenfunction variable (in particular the ra-
dial component of ξ). We can develop resistive Ohm’s
law, using Faraday’s law, to yield,

∂δB

∂t
= ∇×

(
∂ξ

∂t
×B

)
− η∇× (∇× δB),

so that the expected ideal result is obtained in the limit
η = 0. Letting ∂/∂t = γ, as expected for modes of type
δB ∼ exp(γt), one may write

δB = δBI + ∆B (3)

where the ideal field δBI and resistive correction ∆B
are respectively

δBI = ∇× (ξ ×B) (4)

∆B = −η
γ
∇× (∇× δB) =

η

γ
∇2(δB). (5)

Now for the first novelty of this paper. We are free to
choose a gauge where the vector potential parallel to the
equilibrium magnetic field is zero. Thus, letting δA =
ξR × B one may write the perturbed magnetic field in
terms of a displacement ξR that accounts for ideal and
resistive motion,

δB = ∇× (ξR ×B). (6)

Equating Eq. (6) with Eq. (3), and using (4) one easily
sees that the resistive correction to the magnetic field is

∆B = −∇× (∆ξ ×B) (7)

where the following resistive corrected ‘displacement’
variable will be used:

∆ξ = ξ − ξR. (8)

Using all the above results one may write down the dif-
ferential equations for the resistive correction ∆ξ:

∆B(∆ξ) =
η

γ
∇2[δBI(ξ) + ∆B(∆ξ)], (9)

with ∇2[X] the vector-Laplacian, operating on vector
X. The radial component of Eq. (9) will ultimately be
the differential equation relating the radial components
of ξ and ∆ξ, which must be solved in concert with the
main eigenvalue equation. The toroidal component of
Eq. (9) establishes the relations between the radial and
poloidal components of ξ to relevant order, together with
consideration of the radial vorticity.

B. Inverse aspect ratio expansion of the
equilibrium

Concerning the equilibrium, the magnetic field for the
right handed flux coordinate system (r, θ, φ) is,

B = F (r)∇φ+
dψ

dr
∇φ×∇r,
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so that B ·∇φ = F/R2. In the above form of the field,

dψ

dr
=

rF (r)

q(r)R0
,

where R0 = R(r = 0) and we will later have B0 = B(r =
0). The equilibrium and linearised stability equations
are expanded in local inverse aspect ratio ε = r/R0 and
q(r) is the safety factor. The equilibrium will adopt β ≡
2P/B2 ∼ ε2. With this conventional beta ordering, one
obtains F (r) = F0+F2(r) where F0 = R0B0 is a constant
and F2(r)/F0 ∼ ε2 is a small radially varying correction,

dF2

dr
= B0

(
α

2q2
− ε

q2
(2− s)

)
,

where we recognise the important parameters for balloon-
ing modes and interchange modes, s = (r/q)dq/dr and
α = −2R0q

2(dP/dr)/B2
0 . Expansion of the equilibrium

also defines the Shafranov shift ∆(r), where

d∆(r)

dr
= ε

[
q(r)2

r4

∫ r

0

dr
r3

q(r)2
+ βp(r)

]
,

βp(r) = − 2q(r)2

B2
0ε

2r2

∫ r

0

dr r2 dP

dr
.

Ultimately the equilibrium is defined in terms of a
poloidal coordinate associated with Jacobian:

J =
1

∇r · (∇θ ×∇φ)
=
rR(r, θ)2

R0
. (10)

For the sake of brevity we do not outline the equilibrium
expansion in terms of this straight field line coordinate
in further detail.

C. Inverse aspect ratio expansion of perturbations

The recent paper on parallel magnetic fluctuations [12]
provides an explanation of the ε expansion of magnetic
and fluid fluctuations. A purpose of the current paper is
to generalise the results to include resistive contributions
to magnetic field fluctuations. It is a slightly awkward
problem. The reason being that the flute (fundamental
harmonic) component of the ideal radial perturbed field
δBI ·∇r vanishes on the rational surface, while the resis-
tive correction to the perturbed field (∆B ·∇r) does not.
As will be seen, this means that ∆ξ ·∇r is singular on
the rational surface. It nevertheless remains convenient
to use ∆ξ and ξR as variables because solution of the lin-
ear problem turns out to involve operations on ∆q∆ξr,
which is not singular (here ∆q = q −m/n). It is noted
that ∆Br ∝ ∆q∆ξr, which is of course not singular on
the rational, except under the special case approaching
marginal stability, where all variables are singular.

In this work we attempt a general approach which
encompasses solutions compatible with resistive inter-
change and resistive infernal modes in a torus. Resistive

interchange modes occur in the limit of large magnetic
shear in the region around qs = m/n, or large mode
numbers, while resistive infernal modes introduce impor-
tant corrections over the interchange description if the
magnetic shear s is weak. Both can be unstable in plas-
mas with standard tokamak pressure gradients. We will
apply our work to cases where strong ballooning correc-
tions are not important, though crucially we keep weak
ballooning effects associated with infernal mode correc-
tions. This is achieved by assuming long wavelength in-
stabilities (small toroidal and poloidal mode numbers),
for which it will be necessary to carry only nearest neigh-
bour poloidal harmonics that satellite the main harmonic
m in the assumed nearly circular cross section geome-
try. It is recalled [9] that resistive interchange modes can
be unstable for cases with large magnetic shear because
the addition of resistivity tends to nullify the large mag-
netic field line bending stabilisation occurring in an ideal
plasma. In the core of the plasma where the magnetic
shear is expected to be weak, a relatively weak ballooning
parameter α ∼ ε will drive infernal modes.

The following concerning spatial components and in-
verse aspect ratio ordering applies equally to ξR, ξ, and
∆ξ (given the relative ordering assumption described just
above), though in what follows directly below it is cho-
sen to apply the discussion to ξ (which reduces notation).
We follow [7] and allow

ξ = ξB + ζB, (11)

where ξB is chosen to have the property ξB ·∇φ = 0.
With this assumption, ξB has two covariant components.
The contravariant variables are defined as

ξr = (F/F0)ξB ·∇r and ξθ = (F/F0)rξB ·∇θ.

Now ξr and ∆ξr are chosen to be the fundamental vari-
ables for which the eigenvalue equations are to be solved.
On considering a (Shafranov) shifted near-circular equi-
librium, it can be shown that only the fundamental com-
ponent and the directly neighbouring poloidal sidebands
of ξr (and ξrR, ∆ξr) contribute to the stability prob-
lem to relevant order in the expansion of the equation
of motion. No other components are required (unless the
plasma cross section is manifestly non-circular), i.e.

ξr = ξr(m) + ξr(m+1) + ξr(m−1) +O(ε4) (12)

where

ξr(l) = ξ̂r(l)(r) exp(inφ− ilθ + γt).

We now consider the above in the context of an expansion
in the local inverse aspect ratio ε = r/R0. We expand
the radial eigenfunctions as follows:

ξr = ξr0 + εξr1 + ε2ξr2 + ε3ξr3 ,

where ε above is a tag used simply to identify the ordering
of the terms. It can be shown that the sidebands are
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order ε smaller than the fundamental harmonic in the
region where they coexist. An expansion that satisfies
Eq. (12) to relevant order is

ξr0 = ξ
r(m)
0 = ξ̂

r(m)
0 exp(inφ− imθ + γt)

ξr1 = ξ
r(m+1)
1 + ξ

r(m−1)
1 , ξ

r(l)
1 = ξ̂

r(l)
1 exp(inφ− ilθ + γt)

ξr2 = 0,

and it can be shown that ξ3 doesn’t enter the stability
problem to the order calculated in this work (this will be
discussed later). Freely setting ε2ξr2 = 0 in the expan-
sion of the equations that follow applies equally to the
resistive variable ∆ξr. In particular, with this choice, the
fundamental displacement is given by ξr0 at all relevant
orders of accuracy. When expanding the equations to
highest order, the necessary corrections to the ideal and
resistive displacement variables (ξ and ∆ξ) are taken up
by the poloidal component of the displacements. Hence
it is seen that,

ξθ = ξθ0 + εξθ1 + ε2ξθ2 + ε3ξθ3 .

It turns out the equations that involve ξθ2 are the same for
a cylindrical and toroidal equilibrium assumption. Since
eigenfunctions have a unique poloidal mode number in
a cylinder, it is clear that ξθ2 has fundamental harmonic
only. One thus has:

ξθ0 = ξ
θ(m)
0 = ξ̂

θ(m)
0 exp(inφ− imθ + γt)

ξθ1 = ξ
θ(m+1)
1 + ξ

θ(m−1)
1 , ξ

θ(l)
1 = ξ̂

θ(l)
1 exp(inφ− ilθ + γt)

ξθ2 = ξ
θ(m)
2 = ξ̂

θ(m)
2 exp(inφ− imθ + γt).

Hence, the role of ξθ2 is to correct the flute contribution
to ξB obtained at lower order in the governing equations.
As mentioned earlier, all that has been written here ap-
plies to ideal and resistive displacements. Finally, ξθ3 and
ξr3 will be considered in more detail later.

The parallel component of the fluid displacement ζ can
be similarly Fourier analysed, i.e,

ζ = ζ(m)+ζ(m+1)+ζ(m−1), ζl = ζ̂(l)(r) exp[inφ−ilθ+γt].

But, care needs to be taken with the expansion since it

is not found that ζ(m±1) ∼ εζ̂(m). For ideal MHD, it can

be shown that the flute component ζ̂(m) = 0, i.e. dom-
inant parallel displacements arrive from the sidebands.

For resistive MHD, a novel result is that ζ̂(m) ∼ ζ(m±1),
apparently indicating important flute-like inertia contri-
butions to the growth rate. Due to the rather different
nature of the ordering in ε encountered for ζ, the sub-
script notation denoting the ordering in ε is not adopted
for ζ.

Finally, as will seen in the forthcoming sections, it is
convenient to split X defined in Eq. (1) as follows,

X = XP +XI , with, (13)

XP = (δB ·∇)B + (B ·∇)δB −∇(δB ·B)

+ ∇(ξR ·∇P ) + ∇(∆ξ ·∇P )(m) + ∇(ΓP∇ · ξ)(m)

(14)

XI = −ργ2ξ + ∇(∆ξ ·∇P )(m+1) + ∇(ΓP∇ · ξ)(m+1)

+ ∇(∆ξ ·∇P )(m−1) + ∇(ΓP∇ · ξ)(m−1). (15)

Subscript I denotes inertia, and P potential. The re-
sult is general providing only one upper and one lower
sideband is required (which is valid for circular cross
section to relevant order in inverse aspect ratio). The
breaking up of X in this way is convenient when per-
forming vorticity operations, since near the rational sur-
face of the fundamental mode, the resistive corrections
of (ΓP∇ · ξ)(m±1) exactly cancel with (∆ξ ·∇P )(m±1),
both being inertia-like. The remaining inertia terms
(i.e. those involving the growth rate γ) in XI are
much simplified. Finally, the fundamental harmonic of
∇(∆ξ ·∇P )+∇(ΓP∇ ·ξ) provides important contribu-
tions to XP that are not connected to inertia.

D. Plasma compression: resistive effects and
magnetic shear

The purpose of this section is to identify the limita-
tions of the problem investigated, and to examine some
fundamental properties. This section is redundant in the
ideal limit. It is first noted that the contravarient defini-
tions of the magnetic fields are defined exactly in terms
of the full resistive displacement:

δBr ≡ δB ·∇r = B ·∇ξrR =
F0

R2

[
1

q

∂

∂θ
+

∂

∂φ

]
ξrR,

(16)

δBθ ≡ rδB ·∇θ = −F0

R2

[
∂

∂r

(
rξrR
q

)
− ∂ξθR

∂φ

]
, (17)

δBφ ≡ RδB ·∇φ = − F0

rR

[
∂ξθR
∂θ

+
∂(rξrR)

∂r

]
, (18)

with ∂/∂φ = in. Also note that the magnetic operator
B · ∇ has been defined above. The three components
of the field are given by two components of the resistive
displacement. The properties of these equations will be
examined in detail in the next section. Similarly

∆Br ≡∆B ·∇r = −B ·∇∆ξr =

− F0

R2

[
1

q

∂

∂θ
+

∂

∂φ

]
∆ξr (19)

∆Bθ ≡ r∆B ·∇θ =
F0

R2

[
∂

∂r

(
r∆ξr

q

)
− ∂∆ξθ

∂φ

]
(20)

∆Bφ ≡ R∆B ·∇φ =
F0

rR

[
∂∆ξθ

∂θ
+
∂(r∆ξr)

∂r

]
, (21)
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where it is recalled that δB = δBI + ∆B.
The toroidal component of Ohm’s law Eq. (5) is exam-

ined next:

∆Bφ =
η

γ

[
∇2δB

]
· eφ.

It is instructive to briefly consider perturbations in an
(R,Z, φ) coordinate system. The equilibrium can be ex-
panded easily in this orthogonal coordinate system. A
covariant expansion of the perturbed field is,

δB = δBReR + δBZeZ + δBφeφ

where eZ , eZ and eφ are unit vectors and δBφ = δBφ,
i.e. Eq. (18) applies to the toroidal covariant and con-
travariant forms. With this coordinate system the vector
Laplacian operating on δB is exactly,

∇2δB =

[
∇2δBR −

1

R2
δBR −

2

R2

∂δBφ
∂φ

]
eR +

[
∇2δBZ

]
eZ

+

[
∇2δBφ −

1

R2
δBφ +

2

R2

∂δBR
∂φ

]
eφ.

The toroidal component of resistive Ohm’s law Eq. (5) is
therefore,

∆Bφ =

(
η

γR2
0

)
R2

0

r2

[(
r2∇2 −

( r
R

)2
)
δBφ + 2

( r
R

)2

inδBR

]
.

δBR can be constructed from the contravariant compo-
nents δBr and δBθ defined in Eqs. (16) and (17). From
inspection of the dependence of δBr, δBθ and δBφ on ξR
in Eqs. (16) - (18) it is clear that formally δBr ∼ εδBφ

and δBθ ∼ εδBφ. It therefore follows that formally

δBR ∼ εδBφ and thus, using ∆Bφ = δBφ − δBφI gives

δBφI = δBφ − η

γ

[
∇2 − 1

R2
0

]
δBφ +O(εδBφ).

We drop the 1/R2
0 term in the expansion above, since

∇2 ∼ ε−2/R2
0 or faster. Hence,

δBφI = δBφ − η

γ
∇2δBφ +O(εδBφ). (22)

We may now attempt to develop an evolution equation
for the perturbed pressure Eq. (2), i.e. δP = −ξ ·∇P −
ΓP∇ · ξ. The first job is to consider ∇ · ξ. From Eq.
(11), and ∇ ·B = 0, we have

∇ · ξ = ∇ · ξB +B ·∇ζ. (23)

Now using ξB ·∇φ = 0 the following properties hold:

∇ · ξB =
1

J

[
∂

∂r
(J ξB ·∇r) +

∂

∂θ
(J ξB ·∇θ)

]
=

1

J

[
∂

∂r

(
JF0

F
ξr
)

+
∂

∂θ

(
JF0

rF
ξθ
)]

=
1

J

[
rξr

∂

∂r

(
JF0

rF

)
+ ξθ

∂

∂θ

(
JF0

rF

)
+

(
∂(rξr)

∂r
+
∂ξθ

∂θ

)
︸ ︷︷ ︸

−R0J
F0R

δBφI

JF0

rF

]
. (24)

We let

K =
1

J

[
rξr

∂

∂r

(
JF0

rF

)
+ ξθ

∂

∂θ

(
JF0

rF

)]
and we note that K is related to a projection of ξB with
the magnetic curvature, in particular:

K = −2ξB · κ[1 +O(ε)].

It follows that,

∇ · ξ = −R
F
δBφI +K +B ·∇ζ

and therefore from Eq. (2),

δP = −ξ ·∇P − ΓP

[
K +B ·∇ζ − R

F
δBφI

]
.

On substituting Eq. (22), we obtain to relevant order,

δP = −ξ·∇P−ΓP

[
K +B ·∇ζ − R

F

(
δBφ − η

γ
∇2δBφ

)]
To develop an approximate equation for the evolution
of δP , we recall that flute dominated modes conserve
the magnetic curvature (see e.g. Ref. [12], which for
an isotropic plasma requires that δP = −BδB‖). Since

δB‖ = δBφ[1 + O(ε)], we may adopt δBφ = −δP/B in
the above, to yield to relevant order,

δP = −ξ ·∇P − ΓP

[
K +B ·∇ζ − η

γB2
∇2δP

]
, (25)

where we keep, for now, the ∇2δP term, despite it be-
ing order β2 smaller than the other terms, in case radial
derivatives are very strong (which, as will be seen later,
will manifest itself as large magnetic shear). In the above,
we recognise each term in Eq. (6d) of [10]. In particular,
we recognise the last term, which is related to cross field
classical transport. The differential equation for δP is
therefore,[

1− ΓP

B2

η

γ
∇2

]
δP = −ξ ·∇P − ΓP [K +B ·∇ζ] .

The resistive term on the left hand side introduces con-
siderable complexity. The main results section of GGJ [9]
dropped this term, but it was retained as a major line of
research in Refs. [11] and [10] in order to investigate the
stablisation of resistive interchange and resistive balloon-
ing modes by compression in a strongly sheared plasma.
It is instructive at this point to write down a schematic
of the terms that comprise the toroidal vorticity opera-

tion on the equation of motion V
(m)
φ (see definition later)

for the resistive infernal mode problem studied here. We
heuristically include contributions we expect from the in-
clusion of cross field classical transport, as indicated in
the governing stability criteria equations of Refs. [11] and
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[10]. In particular where ideal modes are stable, we ex-
pect, assuming a parabolic type pressure profile, and an
exact resonance at q(rs) = qs:

V
(m)
φ

ξr
∼s2

R + εα

[
1− 1

q2
s

]
+ sεα− 1

m

qa
qs

(rs
a

)2

α2

+ s2βΓ(1 + 2q2
s), (26)

marginal stability being V
(m)
φ = 0. The first term in V

(m)
φ

above corresponds to field line bending stabilisation as-
sociated with resistive modes. Here we use subscript R
to indicate diminished effective shear by resistivity. It is
well known that field line bending stabilisation caused by
magnetic shear is strongly impaired for cases where ideal
modes are stable but resistive modes are unstable, hence
the effective shear sR has the property sR � s. The
second term is the standard Mercier-interchange contri-
bution. The third term is a correction to the interchange
contribution due to compression and resistivity. We de-
rive it and include its effects in this work, but it has been
seen before in Ref. [10], e.g. the content of the square
bracket in Eq. (40h) in Ref. [10]. The fourth term is the
drive from infernal modes. It is written here in terms
of the ideal drive, where the scaling compared to the
Mercier term can be seen directly in Eq. (33) of Ref. [12]
(note the scaling is obtained via a particular choice of q-
profile). The last term is the stabilising effect of classical
transport on compression. It is directly associated with
the last term in Eq. (25).

It is clear that the classical transport term can com-
pete with the Mercier term and the compression effect in
the third term only if s ∼ 1. And, it can compete with
the infernal mode drive only if s ∼ m−1(α/ε)1/2, where
we take (rs/a)2qa/qs ∼ 1. We recall that our main inter-
est is for infernal modes, where for core modes typically
s ∼ ε and α ranges from α ∼ ε to α ∼ 1 at rs. Near
the edge where we might use infernal mode physics to
describe edge harmonic oscillations, we may indeed have
s ∼ 1, but we would have α ∼ 1 and again β ∼ ε2. It
therefore appears that there are no obvious regimes of in-
terest in a tokamak where the classical resistive diffusion
contribution is leading order for long wavelength pres-
sure driven resistive instabilities. Mathematically, it is
clear that we may neglect classical transport correction
providing that s < α, or at most, s ∼ α. We will later
treat ε and s as separate expansion parameters, adopting
α ∼ ε, and in the final collection of terms s ∼ ε. This
is done to ease the analytical calculations, but the final
equations can in principle treat applications where α ∼ 1
with β ∼ ε2, together with s ∼ ε or s ∼ 1 (e.g. for edge
harmonic oscillations).

Treating problems for which s ∼ α, or less, thereby
legitimately dropping the classical transport contribution
in all the follows, we henceforth adopt

δP = −ξ ·∇P − ΓP [K +B ·∇ζ] . (27)

Hence, we deploy δP = −ξ ·∇P − ΓP∇ · ξ, with

∇ · ξ =
1

J

[
rξr

∂

∂r

(
JF0

rF

)
+ ξθ

∂

∂θ

(
JF0

rF

)]
+B ·∇ζ.

(28)
In addition, for convenience we take the magnetic shear
to be a small expansion parameter, and legitimately, keep
only linear terms in s for all contributions except the
field line bending terms, where clearly quadratic terms
are needed. This will be explained in more detail later.

E. Elimination of poloidal displacements

One can either solve the radial vorticity equation, or
the poloidal projection of the equation of motion, to yield
the results of this section. In either case, operations are
on X defined in Eq. (1). We choose the radial vorticity
operation on X = 0:

V (l)
r (X) =

1

2π

∫ π

−π
dθ

exp(ilθ)

il
J∇ ·

(
X ×∇r

B ·∇φ

)
= 0.

(29)
The effects of finite inertia are not necessary for the cal-
culations in this section, whose purpose is to identify the
poloidal components of the displacement in terms of the
radial displacements. The effects of inertia appear at an
order in ε higher than is relevant for this section. Hence
our purposes are then met by solving:

V (l)
r (XP ) = 0.

Noting P = P (r) one then solves the following for l =
m− 1, l = m, l = m+ 1:

0 = V (l)
r [(δB ·∇)B + (B ·∇)δB −∇(δB ·B)

+∇
{

(ξrR0 + ∆ξr0 + ∆ξrΓ0)
dP

dr

}]
, (30)

with δB given in terms of ξR according to Eq. (6) (here
we drop for convenience the (m) notation for leading or-
der displacements). Since β ∼ ε2, the displacements in-
side the {} brackets are required only to leading order,
and it is sufficient to take F = F0 inside the {} brack-
ets. Concerning ∆ξrΓ0 in Eq. (30), the section that solves

the parallel momentum equation obtains (ΓP∇ ·ξ)(m) in
terms of the convenient variable ∆ξrΓ0 (see Eq. (48)). It
will be shown that on adopting the definition of ΓP∇ · ξ
from Eq. (28), one has

(ΓP∇ · ξ)(m) = ∆ξrΓ0

dP

dr
, with

∆ξrΓ0 = −∆ξr0

(
ω2
s(nq −m)2

ω2
s(nq −m)2 + γ2q2

)
,

where we note already the connection with sound waves
which have dispersion relation ω2 = k2

‖v
2
s = (nq −

m)2ω2
s/q

2, with ωs = Vs/R =
√

ΓP/(ρR2
0) the sound
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frequency. Note that ∆ξrΓ0 will play a role in the vicinity
of the rational surface unless γ � (n − m/q)ωs, which
will not be the case except very close to the rational sur-
face (note that we may expect γ / ε ωs. This convenient
representation for (ΓP∇ · ξ)(m) would not be possible if
we had included the classical transport contribution to
δP .

1. Resistive displacements variables

The contravarient definitions of the magnetic fields are
defined exactly in terms of the full resistive displacement,
as given in Eqs. (16) - (18). Covariant forms of δB are
also easily obtained in terms of ξR, as required in Eq.
(30). Those properties help fulfill an objective of this
section, which is to obtain ξθR in terms of ξrR, ∆ξr0 and
∆ξrΓ0 for each order in ε. The result of the expansion of
the radial vorticity is:

O(ε0) : V (m)
r (X) = 0 −→ ξθR0 = −i [rξ

r
R0]
′

m
(31)

O(ε1) : V (m±1)
r (X) = 0 −→ ξ

θ(m±1)
R1 = −i

[
rξ
r(m±1)
R1

]′
m± 1

(32)

O(ε2) : V (m)
r (X) = 0 −→ ξθR2 = i

ε

m

{
α

2q2
(ξr0 + ∆ξrΓ0)

+ ε
n

mq

[(
n

m
+

2

q

)
∆qξrR0 +

n

m
r (∆qξrR0)

′
]}

(33)

O(ε3) : V (m)
r (X) = 0 −→ ξ

θ(m)
R3 = 0 (34)

where we have used ξr0 = ξrR0 + ∆ξr0 , X ′ = ∂X/∂r. Sub-
stitution of the above results into Eq. (18) gives that δBφ

is zero to order ε0 and ε1. In addition, δBφ to order ε2

is obtained by substituting the solution ξθR2 given above,
and ξrR2 = 0, into Eq. (18):

δBφ = −B0

R

(
iε

m

)−1

ξθR2

= −B0

R

{
α

2q2
(ξr0 + ∆ξrΓ0) +

ε
n

mq

[(
n

m
+

2

q

)
∆qξrR0 +

n

m
r (∆qξrR0)

′
]}

.

Finally, as we see above, O(ε3) : V
(m)
r (X) = 0

yields that ξ
θ(m)
R3 = 0. One can also obtain from

O(ε3) : V
(m±1)
r (X) = 0 relationships between ξ

θ(m±1)
R3

and ξ
r(m±1)
R1 and ξrR0, but neither these harmonics, nor

higher harmonics, contribute to the stability problem at
relevant order.

2. Fluid displacement variables

We now obtain the important relations between the
fluid displacement components ξr and ξθ (note, so far we
have obtained the relations for the resistive displacements
ξrR, ξθR). This is undertaken via the relation of Eq. (22),

i.e. δBφI = δBφ − (η/γ)∇2δBφ. We recall it was argued
that it is appropriate to drop the classical transport term
in the pressure evolution equation (25). Doing so clearly
requires that

η

γ
∇2 ∼ ε−1

or smaller, on assuming β ∼ ε2 and Γ ∼ 1. Since we have

obtained that δBφ = δBφ2 , i.e. δBφ0 = 0 and δBφ1 = 0, it
follows that

δBφI0 ≡ −
F0

rR

[
∂ξθ0
∂θ

+
∂(rξr0)

∂r

]
= 0, −→ ξθ0 = −i [rξ

r
0 ]
′

m
.

(35)
Had we retained the classical diffusion effect via assum-
ing an ordering β(η/γ)∇2 ∼ 1, we would obtain a leading
order correction in the relationship between ξθ0 and ξr0 .
Presumably this explains partly why the associated con-
tribution manifests itself in Refs. [11] and [10] with the
toroidal inertia enhancement factor 1 + 2q2. Finally, it
will be seen later that we do not require a relationship be-
tween ξr and ξθ to the next order in ε. However, for solv-
ing the global problem, we may wish to take inertia into
account in the sideband equations, and this will require a

relationship between ξ
θ(m±1)
1 and ξ

r(m±1)
1 . Importantly,

inertia for the sidebands matters only in the high shear
region, where the sidebands are resonant, and in this re-
gion clearly classical transport associated with the main
mode is negligible. In addition, any classical transport
effects associated directly with the sidebands is negligible

to the required order of accuracy. Thus δBφI1 = δBφ1 = 0,
so that where required, we may safely adopt,

ξ
θ(m±1)
1 = −i

[
rξ
r(m±1)
1

]′
m± 1

. (36)

Equation (35) will be required in the solution for the
parallel momentum equation, and in all the inertia con-
tributions to the toroidal vorticity.

It is useful to point out some additional properties that
follow from the results of this section, and the last one.
Since ∇ · δB = 0, it is seen that

∂

∂r
[J δBr] +

∂

∂θ
[J (δBθ/r)] +

∂

∂φ
[J (δBφ/R)] = 0.

Since δBφ = 0 to order ε:

∂

∂r
[J δBr] +

∂

∂θ
[J (δBθ/r)] +O(ε2) = 0, (37)

which can easily be verified on inspection of Eqs. (16) -
(18), recalling that J = R2r/R0 and setting δBφ = 0.
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The poloidal component of the field can be Fourier anal-
ysed in terms of the radial component of the field if
needed (the perturbed magnetic fields will be looked at
in detail later when considering the radial component of
Ohm’s law and the closure of the resistive MHD equa-
tions).

3. Special case m = 1

Note for the m = 1 special case (e.g. quasi-interchange
mode for the case m = n = 1), Eq. (32) does not hold
for the lower sideband displacement m − 1 = 0. The

vorticity definition V
(m−1)
r is not useful, since the fact

that ∂/∂θ = 0 for lower sideband perturbations of m = 1
modes means that the radial covariant component of X

does not enter V
(m−1)
r . We perform instead

1

2π

∫ π

−π
dθ exp[i(m− 1)θ)]

(
XP · er
B ·∇φ

)
= 0

with m = 1, where we note that XP · er = 0, due to
there being no inertial layer for this special case (unless
q = 0 exists in the plasma). At the required order, we
may interchange between a radial contravarient or radial
covariant representation XPr. The result is

r2 d

dr

[
1

r

d

dr

(
rξ
r(0)
R1

)]
= 0

which is simply

d δB
φ(0)
1

dr
= 0

on noting that ∂ξθ(0)∂θ = 0 for m = 1. The general

solution is ξ
r(0)
R1 = c1r

−1 + c2r. Noting that this is the
solution in the whole plasma, boundary conditions at r =
0 and r = a are met only for c1 = c2 = 0. Hence the
result of this section is that

ξ
r(0)
R1 = 0 (38)

so that the development of equations involving the lower

sibeband for the m = 1 case will involve ξ
θ(0)
R1 , which will

ultimately be analytically eliminated from the governing
eigenvalue equations. Regarding the fluid displacement

for m = 1 we find that δB
φ(0)
I1 = 0, and

ξ
r(0)
1 = 0.

F. Parallel flow in a resistive plasma, inertia XI

and plasma compression

In this section we eliminate the parallel displacement
in favour of the radial displacement. In so doing, we
can obtain tractable forms for the inertia XI and the
effect of compression on the perturbed pressure. This is
undertaken most conveniently by taking the dot product
of the full momentum equation with the full magnetic
field B + δB, then linearising afterwards, i.e.

Linearisation
{[
−ργ2ξ + (j + δj)× (B + δB)−∇(P + δP )

]
· (B + δB)

}
= 0

−ργ2ξ ·B − δB ·∇P −B ·∇δP = 0 (39)

where B and P are considered equilibrium quantities in
the above. The parallel momentum equation of Eq. (39)
will also be Fourier analysed, with both the sidebands
and main harmonic playing a role. It is important to
highlight the contribution −δB ·∇P , which vanishes for
ideal MHD on the rational surface (i.e. where the iner-
tia is relevant), but fundamentally does not vanish for
resistive MHD.

Adopting Eq. (11) for the full plasma displacement ξ,
the parallel momentum equation of Eq. (39) becomes, on
setting B · ξ = ζB2 (noting that B · ξB ∼ εζB2 and thus
neglecting it),

ργ2B2ζ = −dP
dr

∆Br + ΓPB ·∇ (∇ · ξ) (40)

where the following has been used:

δBr = δBrI + ∆Br and B ·∇ (ξ ·∇P ) =
dP

dr
δBrI ,

and where

δBrI = (B ·∇)(ξ ·∇r) =
F0

F
(B ·∇)ξr,

∆Br = −(B ·∇)(∆ξ ·∇r) = −F0

F
(B ·∇)∆ξr.

The objective of this section is to solve Eq. (40) for ζ
(noting that the last term in Eq. (40) is dependent on ζ),
thus ultimately enabling the construction of XI required
for the toroidal vorticity calculation. The plasma is not
incompressible. It is therefore necessary to examine ∇·ξ,
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for which we may refer to Eq. (28), i.e.

∇ · ξ =
1

J

[
rξr

∂

∂r

(
JF0

rF

)
+ ξθ

∂

∂θ

(
JF0

rF

)]
+B ·∇ζ.

It is only necessary to obtain ∇ · ξ directly in terms of
leading order fluid displacement. From Eq. (35), and in
addition using J (r, θ) = rR0[1 + 2(r/R0) cos θ + O(ε2)]
and F = F0(1 + O(ε2)), easily yields the leading order
result,

∇·ξB =
2R0

R2

[
ξr0 cos θ − ξθ0 sin θ

]
, with ξθ0 = −i [rξ

r
0 ]
′

m
.

(41)
It is now possible to solve for ζ, which is written in the
general convenient form:

ζ(r, θ, φ, t) = ζ̂(r, θ) exp(inφ− imθ + γt).

Since

B ·∇ =
F

qR2

(
q(r)

∂

∂φ
+

∂

∂θ

)

(where ψ′ = rF/(qR0) has been used) one obtains

B ·∇ζ =
F0

qR2

[
∂ζ̂

∂θ
+ ζ̂i(nq −m)

]
exp(inφ− imθ + γt).

(42)
Hence

B ·∇ (∇ · ξ) =
F0

q2R0R2

{
B0

[
∂2ζ̂

∂θ2
+ i(nq −m)

∂ζ̂

∂θ

−(nq −m)2ζ̂
]
− 2q

[
ξ̂r0(r) cos θ − ξ̂θ0(r) sin θ

]}
exp(inφ− imθ + γt).

Substituting these results into Eq. (40) and noting the
sound frequency ωs = ΓP/(ρR2

0) yields,

γ2q2

(
RB

R0B0

)2

B0ζ̂ =
ω2
s

Γ

(
r

P

dP

dr

)(
iq2∆χ

ε

)
exp(−inφ+ imθ − γt)

+ ω2
s

{
B0

[
∂2ζ̂

∂θ2
+ i2(nq −m)

∂ζ̂

∂θ
− (nq −m)2ζ̂

]
− 2qω2

s

[
ξ̂r0(r) sin θ − ξ̂θ0(r) cos θ

]}
, (43)

where

∆χ = i
R2∆Br

F0
≡ −i

(
1

q

∂

∂θ
+

∂

∂φ

)
∆ξr.

Equation (19) has been used in the last identity. We
solve Eq. (43) for ζ to significant order in ε. We may
replace (RB/(R0B0))2 with unity since corrections occur
at order ε2. We will check after Fourier analysing ζ that
it was consistent to drop ξB ·b on the left hand side of the
parallel momentum equation, and to drop higher order
terms in Eq. (41). The following Fourier expansion is
assumed:

ζ̂(r, θ) = ζ̂(m−1)(r) exp(iθ)+ζ̂(m)(r)+ζ̂(m+1)(r) exp(−iθ).

Similarly,

∆χ(r, θ, φ) =
[
∆̂χ

(m−1)
(r) exp(iθ) + ∆̂χ

(m)
(r)

+∆̂χ
(m+1)

(r) exp(−iθ)
]

exp(inφ− imθ + γt)

so that,

q∆̂χ
(m−1)

(r) = [nq(r)− (m− 1)]∆̂ξ
r(m−1)

(r),

q∆̂χ
(m)

(r) = [nq(r)−m]∆̂ξ
r(m)

(r)

q∆̂χ
(m+1)

(r) = [nq(r)− (m+ 1)]∆̂ξ
r(m+1)

(r).

It is therefore seen that,
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γ2q2B0

[
ζ̂(m−1) exp(iθ) + ζ̂(m) + ζ̂(m+1) exp(−iθ)

]
=

ω2
s

Γ

(
r

P

dP

dr

)
iq

ε

[
q∆̂χ

(m−1)
exp(iθ) + q∆̂χ

(m)
+ q∆̂χ

(m+1)
exp(−iθ)

]
− ω2

sB0

{
ζ̂(m−1) exp(iθ) + ζ̂(m+1) exp(−iθ) + 2(nq −m)

[
ζ̂(m−1) exp(iθ)− ζ̂(m+1) exp(−iθ)

]
+(nq −m)2

[
ζ̂(m−1) exp(iθ) + ζ̂(m) + ζ̂(m+1) exp(−iθ)

]}
+ ω2

sq
[
iξ̂r0(exp(iθ)− exp(−iθ))− ξ̂θ0(exp(iθ) + exp(−iθ))

]
.

One then obtains the Fourier coefficients:

B0ζ̂
(m−1) = q

[(
r

P

dP

dr

)(
iq∆̂χ

(m−1)

Γε

)
− (ξ̂θ0 − iξ̂r0)

] [
ω2
s

ω2
s(1 + (nq −m))2 + γ2q2

]
(44)

B0ζ̂
(m) = q

(
r

P

dP

dr

)(
iq∆̂χ

(m)

Γε

)(
ω2
s

(nq −m)2ω2
s + γ2q2

)
(45)

B0ζ̂
(m+1) = q

[(
r

P

dP

dr

)(
iq∆̂χ

(m+1)

Γε

)
− (ξ̂θ0 + iξ̂r0)

] [
ω2
s

ω2
s(1 + (nq −m))2 + γ2q2

]
, (46)

where of course Eq. (35) is used to eliminate ξ̂θ0 in favour

of ξ̂r0 . Resistive corrections are those involving the har-
monics of ∆χ. In standard ideal MHD the flute harmonic
is zero at the order in which the ideal sidebands appear.
This justifies the approximation adopted for the deriva-
tives of the Jacobian, and the neglect of b·ξB in b·ξ. How-
ever, resistivity introduces apparently potentially large
flute flows, associated with the radial magnetic pertur-
bation on the rational surface (the fluctuation that causes
the magnetic island). For locally large magnetic shear,
the flute corrections can be expected to be as large as the
sideband flows, which generate the usual ideal MHD en-
hanced inertia factor. The effect of the new flute flow will

need to be carefully established. Although ζ(m) appears
to be singular on the q = m/n surface (at the ideal MHD
accumulation point γ2 = 0), the inertia γ2B0ζ

(m) has
no singularity. The parallel flow is clearly connected to
sound waves, which have dispersion relation ω2 = k2

‖V
2
s ,

with Vs = ωsR the sound velocity as mentioned earlier.
Resistive corrections to the sidebands in the parallel

displacement are also considered. However, it will now
be seen that the effect of the resistive corrections to side-
bands cancel in the inertia contribution to X, i.e. in Eq.
(15). It is seen that XI and X requires calculation of
∇ ·ξ. Noting Eqs. (28), (41) and Eq. (42), and using the
above solutions for the ζ harmonics yields,

∇ · ξ =
1

R0

(
exp(inφ− imθ + γt)

ω2
s(1 + (nq −m))2 + γ2q2

)[
ω2
s

(
r

P

dP

dr

)(
q∆̂χ

(m+1)
exp(−iθ)− q∆̂χ

(m−1)
exp(iθ)

Γε

)
+ 2q2γ2

(
ξ̂r0 cos θ − ξ̂θ0 sin θ

)
−ω2

s

(
r

P

dP

dr

)
q∆̂χ

(m)

Γε

(
(nq −m)[ω2

s(1 + (nq −m))2 + γ2q2]

(nq −m)2ω2
s + γ2q2

)]
. (47)

Concerning the contribution (ΓP∇ · ξ)(m) in XP , using q∆χ(m) = (nq −m)∆ξr, it is clearly seen that,

(ΓP∇ · ξ)(m) = −dP
dr

(nq −m)q∆χ(m)

(
ω2
s

(nq −m)2ω2
s + γ2q2

)
= −dP

dr
(nq −m)2∆ξr(m)

(
ω2
s

(nq −m)2ω2
s + γ2q2

)
.

Hence adopting the convenient notation employed in Eq. (30):

(ΓP∇ · ξ)(m) = ∆ξrΓ0

dP

dr
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we clearly obtain

∆ξrΓ0 = −∆ξr0

(
ω2
s(nq −m)2

(nq −m)2ω2
s + γ2q2

)
. (48)

Moving to the inertia component of the momen-

tum equation, XI , we note that q∆̂χ
(m+1)

= −(1 −
n∆q)∆̂ξ

r(m+1)
and q∆̂χ

(m−1)
= (1 + n∆q)∆̂ξ

r(m−1)
.

Adopting γ2q2 � ω2
s , and dropping terms of type

n∆q∆ξ(m±1) which vanish for ∆q → 0 (unlike ∆q∆ξ(m)

which does not vanish for ∆q → 0) we easily obtain, for
Eq. (15), to leading relevant order in ∆q and ε:

XI = −ργ2
{
ξ

(m)
B +B0ζ

(m)b

−R0∇
[
2q2

(
ξr0 cos θ − ξθ0 sin θ

)]}
, (49)

with B0ζ
(m) given by Eq. (45). The resistive sidebands

associated with ∆χ(m±1) contained in (ΓP∇ · ξ)(m±1)

cancel with terms of type (∆ξ · ∇P )(m±1) in XI (to
leading order in ∆q), which justifies the convenient defi-
nition of XI in Eq. (15).

G. Ohm’s Law

This section obtains the required relation between ξr

and ∆ξr, which together with the toroidal vorticity op-
eration on X, closes the system of equations. The gov-
erning eigenvalue equation will depend only on the main
harmonic of ∆ξr and ξr, and thus only this harmonic
is required in radial Ohm’s law. Note in this section
that subscript zero is removed from the displacements
(all expressions are in terms of leading order (in ε) dis-
placements). The radial component of resistive Ohm’s
law Eq. (5) is

∆Br =
η

γ

(
∇2δB

)
· er with δB = δBI + ∆B.

Notice that the relation involves the vector-Laplacian.
It turns out that it is sufficient to neglect toroidicity to
the required accuracy. Thus, adopting (r, θ, z) cylindrical
geometry, and using ∂/∂z = (1/R)∂/∂φ, we have that,

(
∇2δB

)
· er = ∇2δBr − 1

r2
δBr − 2

r2

∂δBθ

∂θ
, with

∇2δBr =
1

r

∂

∂r

(
r
∂δBr

∂r

)
+

1

r2

∂2δBr

∂θ2
+

1

R2

∂2δBr

∂φ2

and δBr = δB ·∇r = δB · er, and δBθ = δB · eθ =
rδB ·∇θ. We may eliminate δBθ via Eq. (37), i.e. to
required order in ε:

∂

∂θ
δBθ0 = − ∂

∂r
(rδBr0) .

For the main harmonic we have ∂2δBr0/∂θ
2 = −m2δBr0 ,

and to relevant order R−2∂2/∂φ2 = 0. Thus,

(
∇2δB0

)
· er = ∇2δBr0 −

1

r2
δBr0 +

2

r2

∂

∂r
(rδBr0) , with

∇2δBr0 =
1

r

∂

∂r

(
r
∂δBr0
∂r

)
−m2 δB

r
0

r2

=
1

r3

[
∂

∂r

(
r3 ∂δB

r
0

∂r

)
+ r(1−m2)δBr0

]
.

Substituting these results into radial resistive Ohm’s law
gives:

∆Br0 =
η

γ

(
∇2δB0

)
· er

=
η

γ

1

r3

[
∂

∂r

(
r3 ∂δB

r
0

∂r

)
+ r(1−m2)δBr0

]
Writing the latter equation in terms of the magnetic oper-
ator and radial displacements (Eqs. (16) and (19)) gives
for the main harmonic:

−B ·∇∆ξr(m) =
η

γ

1

r3

[
∂

∂r

(
r3 ∂

∂r
{B ·∇ξR0}

)
+ r(1−m2)B ·∇ξ

r(m)
R

]
=
η

γ

1

r3

[
∂

∂r

(
r3 ∂

∂r

{
B ·∇(ξr(m) −∆ξr(m))

})
+ r(1−m2)B ·∇(ξr(m) −∆ξr(m))

]
.

This equation can be written conveniently in terms of the variable ∆χ(m) = q−1(nq −m)∆ξr(m) used in the parallel
momentum equation above. Taking the leading order identity for the magnetic operator, and the leading order
perturbations (fundamental harmonic), one obtains

χ(m) =
η

γ

1

r3

[
d

dr

(
r3 d

dr

{
qs

(
1

q
− 1

qs

)
ξr(m) + χ(m)

})
+ r(1−m2)

{
qs

(
1

q
− 1

qs

)
ξr(m) + χ(m)

}]
(50)

where we identify the variable,

χ(m) ≡ ∆χ(m)

n
=

∆q∆ξr(m)

q
. (51)

As will be seen, similar expressions to (50) can be iden-
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tified for the sideband variables providing that the main
harmonic is not dominant near the rational surfaces of
the sidebands (this is usually the case). Such an equa-
tion will be required where resistive effects are included
on all relevant rational surfaces.

It is useful to clearly write down the full radial mag-
netic field in various ways in terms of the variables we
have used in this paper. The standard ideal and resistive
corrected component in terms of these variables should
be clear in the following:

δBr = δBrI + ∆Br

= B ·∇ξr(m) −B ·∇∆ξr(m)

= −B0

R0
im

[(
1

q
− n

m

)
ξr(m) −

(
1

q
− n

m

)
∆ξr(m)

]
= −B0

R0
in

[
qs

(
1

q
− n

m

)
ξr(m) + ∆q

∆ξr(m)

q

]
= −B0

R0
in

[
qs

(
1

q
− n

m

)
ξr(m) + χ(m)

]
. (52)

Or, in terms of the magnetic flux δψ and the resistive
displacement,

δBr =
im

r
δψ = −B0

R0
inqs

(
1

q
− n

m

)
ξ
r(m)
R . (53)

H. Resolution of eigenvalue equations via toroidal
vorticity

Having obtained the parallel and poloidal components
of the displacements in terms of the radial displacements
(resistive and ideal), we can now use the toroidal vor-
ticity operation to yield an eigenvalue equation in terms
of radial component of the displacements. The toroidal
vorticity operating on X is

V
(l)
φ (X) ≡ 1

2π

∫ π

−π
dθ

exp(ilθ)

il

R0J
B0

∇ ·
(
X ×∇φ

B ·∇φ

)
.

(54)

First we solve for V
(m)
φ (XP ), then for V

(m)
φ (XI), and

then sum them together V
(m)
φ (XP ) + V

(m)
φ (XI) = 0,

thus giving the main eigenvalue equation. The main
eigenvalue equation depends on the sidebands of the fun-
damental displacement. The latter are eliminated by
solving the sideband harmonics of the toroidal vorticity:

V
(m±1)
φ (X) = 0. It is first necessary to explain that a

double expansion is performed, in ε and in shear s. Hence
the main vorticity equation is expanded as:

Vφ = ε0Vφ0 + ε1Vφ1 + ε1Vφ1 + ε2Vφ2 + ε3Vφ3

where

Vφi = s0Vφi,0 + s1Vφi,1 + s2Vφi,2 + s3Vφi,3

and εisj appearing in front of coefficients Vφi,j are just
tags, which are used to indicate the above expansion, but
are not included in the expansion that follows below.

1. Solving for V
(m)
φ (XP )

We now solve the main harmonic V
(m)
φ (XP ). We do

this using the variables ξr, ∆ξr and ∆ξrΓ. Hence we write
ξrR in terms of ξr, ∆ξr, and we use the properties from the
earlier sections to eliminate poloidal displacement com-
ponents etc (note for m = 1 case the radial component
of the lower sideband is eliminated instead). The main
harmonic displacements that appear in the following ex-
pressions are the leading order (in ε), and for convenience
we henceforth drop the subscript zero denoting the order-
ing of the displacement. The lowest order expression for

V
(m)
φ (XP ) = 0 in ε, to all orders in s is:

V
(m)
φ0 (XP ) =

1

r

d

dr

[
r3

(
1

q
− 1

qs

)2
dξ
r(m)
R

dr

]

− (m2 − 1)

(
1

q
− 1

qs

)2

ξ
r(m)
R . (55)

This expression can be written in terms of the ∆q∆ξr(m)

(and hence in χ(m) = ∆q∆ξr(m)/q, which is not singular
on the rational surface):

V
(m)
φ0 (XP ) =

1

r

d

dr

[
r3

(
1

q
− 1

qs

)2
dξr(m)

dr

]

+
1

r

d

dr

[
r3

qs

(
1

q
− 1

qs

)
d

dr

(
∆q∆ξr(m)

q

)
−r

3

qs

(
∆q∆ξr0
q

)
d

dr

(
1

q

)]
− (m2 − 1)

(
1

q
− 1

qs

)2

ξr(m)

− (m2 − 1)
1

qs

(
1

q
− 1

qs

)(
∆q∆ξr(m)

q

)
(56)

where we have also used the identity,

1

q
− 1

qs
= −∆q

qqs
.

The expression V
(m)
φ0 (XP ) ∼ ε0s2ξr near the rational sur-

face in an ideal plasma. But, in a resistive plasma, where
ideal modes are stable, it can be seen from inspection
of Ohm’s law that χ(m) ≡ ∆q∆ξr(m)/q ≈ ∆qξr(m)/q.
As a consequence, field line bending is much dimin-
ished in the resistive regime. We may thus write that

V
(m)
φ0 (XP ) ∼ ε0s2

Rξ
r, where sR is an effective shear that

is diminished by resistivity, i.e. s2
R � s2.

Moving now to the next order in ε it is found that

V
(m)
φ1 = 0. To the next order in ε it is noted that it is

not only convenient, but necessary to first exploit Eq.
(32) (or Eq. (38) for the case of m = 1). Not doing so
would require unnecessary higher order calculation of the
metric. Hence using the properties from the section on
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radial vorticity (or equivalent for the m = 1 case), we obtain the following expansion in the shear:

V
(m)
φ2 (XP ) =V

(m)
φ2,0(XP ) + V

(m)
φ2,1(XP ) +O(ε2, s2)

V
(m)
φ2,0(XP ) =

α

q2
s

[
ε

(
1

q2
s

− 1

)
− α

2

](
ξr(m) + ∆ξ

r(m)
Γ

)
+

α

2q2
s

[
Z

(m+1)
1,0 + Z

(m−1)
1,0

]
, (57)

V
(m)
φ2,1(XP ) =

α

2q2
s

[
Z

(m+1)
1,1 + Z

(m−1)
1,1

]
− 1

q3
s

(
εα

2q2
s

)
r
d

dr

[
∆q
(

∆ξr(m) + ∆ξ
r(m)
Γ

)]
− α∆′

q3
s

r
d

dr

[
∆q(ξr(m) + ∆ξ

r(m)
Γ )

]
− ∆q

q3
s

[2(1 +m)ε+ (2 +m)α− (4 + 3m)∆′]Z
(m+1)
1,0

− ∆q

q3
s

[2(1−m)ε+ (2−m)α− (4− 3m)∆′]Z
(m−1)
1,0

− ∆q

q3
s

∆′
{
r
d

dr

(
Z

(m+1)
1,0 + Z

(m−1)
1,0

)
− r d

dr

[
α
(
ξr(m) + ∆ξ

r(m)
Γ

)]}
+

∆q

q3
s

[ε+ α− 4∆′]
[
(2 +m)ξ

r(m+1)
R1,0 + (2−m)ξ

r(m−1)
R1,0

]
+

∆q

q3
s

[
8ε2 + α(5ε+ 2α)−∆′ (6ε+ 7α) + 12(∆′)2 − 2ε

q2
s

(2ε+ α)

](
ξr(m) −∆ξr(m)

)
+

∆q

q3
s

[
α2 + 2εα− ε

q2
s

(
4α+

1

2
r
dα

dr

)
−∆′r

dα

dr

](
∆ξr(m) + ∆ξ

r(m)
Γ

)
. (58)

(where we have used dq/dr = d∆q/dr), with Z
(m±1)
1,j the

expansion (in components ε and s) of Z
(m±1)
1 , where

Z
(0)
1 = −iξθ(0)

R1 (59)

Z
(m±1)
1 =

r−(1±m)

1±m
d

dr

(
ξ
r(m±1)
R1 r2±m

)
, (60)

where the second expression is not valid for (m−1) = (0)
(the first expression should be used). The equations for

the sidebands ξ
r(m±1)
R will be identified from the sideband

components of the toroidal vorticity. It is in fact quite
difficult to fully identify Z(m±1) in a convenient analytic
expression to order s1 as will be seen. Even explicitly
identifying Z(m±1) to order s0 is delicate, but crucial, due

to constants of integration in the equation for ξ
r(m±1)
R ,

which must be calculated by matching procedure if an
analytic treatment is pursued. In the above,

Z
(m±1)
1,0 =

r−(1±m)

1±m
d

dr

(
ξ
r(m±1)
R1,0 r2±m

)
,

Z
(m±1)
1,1 =

r−(1±m)

1±m
d

dr

(
ξ
r(m±1)
R1,1 r2±m

)
,

except for (m− 1) = 0, for which, clearly,

Z
(0)
1,0 = −iξθ(0)

R1,0, Z
(0)
1,1 = −iξθ(0)

R1,1.

Finally it can be shown that V
(m)
φ3 = 0. Vorticity to

this order depends on ξ3. One can obtain the neighbour-

ing sidebands ξ
θ(m±1)
3 in terms of ξ

r(m±1)
1 and ξ

r(m)
0 via

the radial vorticity, but their effects integrate to zero in

V
(m)
φ3 = 0, as do arbitrary higher harmonics of ξ3. The

flute component ξ
θ(m)
3 is obtained to be zero in the ra-

dial vorticity (see Eq. (34) and associated discussion).
The effects of ξ0, ξ1 and ξ2 are also shown to be zero

in V
(m)
φ3 . The fact that V

(m)
φ3 = 0 means that the prob-

lem outlined in this document is valid mathematically if
∆q ∼ s ∼ ε, in particular it is valid to include ∆q correc-

tions in V
(m)
φ2 , i.e. with contributions V

(m)
φ2,1 ∼ ε2∆qξ(m)

and ∆q corrections in the low shear region of V
(m±1)
φ1 , in

particular V
(m±1)
φ1,1 ∼ ε∆qξr(m) . These higher order cor-

rections are important for recovering and even extending
the correct results for some instabilities with an exact
rational surface, e.g. for the m = 1 internal kink mode.
Another ordering which is easier to handle analytically is
considered later, in particular where ∆q ∼ α ∼ ε2.

2. Equations for V
(m±1)
φ (XP ) and reduction of V

(m)
φ (XP )

for m 6= 1

This section is valid for all cases except for the lower
sideband of a fundamental harmonic having m = 1,
where, as stated earlier, we require a different treatment
of the lower sideband. So, provided (m−1) 6= 0 we obtain

the following expansion for V
(m±1)
φ (XP ):

V
(m±1)
φ (XP ) = ε0V

(m±1)
φ,0 (XP ) + ε1V

(m±1)
φ,1 (XP )
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where εi are tags, which are henceforth dropped. The

first contribution V
(m±1)
φ,0 (XP ) = 0 (note that ξr(m±1) ∼

εξr). Solving to the next order in ε, zeroth order in s,
yields, on using Eq. (32):

V
(m±1)
φ1,0 (XP ) =

{
1

r

d

dr

[
r3

(
1

q
− n

m± 1

)2 dξ
r(m±1)
R1,0

dr

]
−m(m± 2)

(
1

q
− n

m± 1

)2

ξ
r(m±1)
R1,0

}
q→qs

− r1±m

q2
s(1±m)

d

dr

{ α

2r±m

(
ξr(m) + ∆ξ

r(m)
Γ

)}
=

r1±m

q2
s(m± 1)2

d

dr

[
r−(1±2m) d

dr

(
r2±mξ

r(m±1)
R1,0

)]
− r1±m

q2
s(1±m)

d

dr

[ α

2r±m

(
ξr(m) + ∆ξ

r(m)
Γ

)]
, (61)

where in the low shear region, essentially, ξ
r(m±1)
R = ξr(m±1), but we keep the resistive notation in case we wish to

add resistive effects for the sidebands (relevant on their own singular surfaces) later on. Note that, in the low shear

region, the expression for Zm±1
1,0 is obtained by neglecting sideband inertia (setting XI =0 in V

(m±1)
φ (X)). So, direct

integration of Eq. (61) yields:

Zm±1
1,0 =

α

2

(
ξr(m) + ∆ξ

r(m)
Γ

)
+ C±r±m, (62)

where the constants of integration comprise the crucial drive for infernal modes. Notice from Eq. (62) that the fourth

line of V
(m)
φ2,1 in Eq. (58) cancels except for the integration constant associated with infernal mode drive.

Identifying V
(m±1)
φ1 (XP ) to the next order in s, we obtain,

V
(m±1)
φ1,1 (XP ) =

{
1

r

d

dr

[
r3

(
1

q
− n

m± 1

)2 dξ
r(m±1)
R1,0

dr

]
−m(m± 2)

(
1

q
− n

m± 1

)2

ξ
r(m±1)
R1,0

}
Linear in s

+
r1±m

q2
s(m± 1)2

d

dr

[
r−(1±2m) d

dr

(
r2±mξ

r(m±1)
R1,1

)]
− r1±m

q2
s(1±m)

d

dr

{
∆′

r±m
r
d

dr

(
∆qξr(m)

qs
− ∆q∆ξr(m)

qs

)}
+

r1±m

q2
s(1±m)

d

dr

{
[(1± 2m)ε+ (1±m)(α− 3∆′)]

∆qξ
r(m)
R

qsr±m
+

α

r±m

(
∆q∆ξr(m)

qs
+

∆q∆ξ
r(m)
Γ

qs

)}

+ (2±m) (ε+ α− 4∆′)
∆qξ

r(m)
R

q3
s

. (63)

This equation can be written in terms of the new variable ξ
r(m±1)

R1,1 defined as :

Z
(m±1)

1,1 =
r−(1±m)

1±m
d

dr

(
r2±mξ

r(m±1)

R1,1

)
=
r−(1±m)

1±m
d

dr

(
r2±mξ

r(m±1)
R1,1

)
−∆′r

d

dr

(
∆qξ

r(m)
R

qs

)

+ [(1± 2m)ε+ (1±m)(α− 3∆′)]
∆qξ

r(m)
R

qs
+ α

(
∆q∆ξr(m)

qs
+

∆q∆ξ
r(m)
Γ

qs

)

=Z
(m±1)
1,1 −∆′r

d

dr

(
∆qξ

r(m)
R

qs

)
+ [(1± 2m)ε+ (1±m)(α− 3∆′)]

∆qξ
r(m)
R

qs
+ α

(
∆q∆ξr(m)

qs
+

∆q∆ξ
r(m)
Γ

qs

)
.

(64)

In terms of this variable, we have for the following results for the linear shear contributions to the main vorticity and
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the sideband vorticty:

V
(m)
φ2,1(XP ) =

α

2q2
s

[
Z

(m+1)

1,1 + Z
(m−1)

1,1

]
− 1

q3
s

(
εα

2q2
s

)
r
d

dr

[
∆q
(

∆ξr(m) + ∆ξ
r(m)
Γ

)]
− α∆′

q3
s

r
d

dr

[
∆q(∆ξr(m) + ∆ξ

r(m)
Γ )

]
+ R̃(m) (65)

V
(m±1)
φ1,1 (XP ) =

{
1

r

d

dr

[
r3

(
1

q
− n

m± 1

)2 dξ
r(m±1)
R1,0

dr

]
−m(m± 2)

(
1

q
− n

m± 1

)2

ξ
r(m±1)
R1,0

}
Linear in s

+
r1±m

q2
s(m± 1)2

d

dr

[
r−(1±2m) d

dr

(
r2±mξ

r(m±1)

R1,1

)]
+ (2±m) (ε+ α− 4∆′)

∆qξ
r(m)
R

q3
s

. (66)

where

R̃(m) =− ∆q

q3
s

[2(1 +m)ε+ (2 +m)α− (4 + 3m)∆′]Z
(m+1)
1,0

− ∆q

q3
s

[2(1−m)ε+ (2−m)α− (4− 3m)∆′]Z
(m−1)
1,0

− ∆q

q3
s

∆′
{
r
d

dr

(
Z

(m+1)
1,0 + Z

(m−1)
1,0

)
− r d

dr

[
α
(
ξr(m) + ∆ξ

r(m)
Γ

)]}
+

∆q

q3
s

[ε+ α− 4∆′]
[
(2 +m)ξ

r(m+1)
R1,0 + (2−m)ξ

r(m−1)
R1,0

]
+

∆q

q3
s

[
8ε2 + α(4ε+ α)−∆′ (6ε+ 4α) + 12(∆′)2 − 2ε

q2
s

(2ε+ α)

](
ξr(m) −∆ξr(m)

)
+

∆q

q3
s

[
2εα− ε

q2
s

(
4α+

1

2
r
dα

dr

)
−∆′r

dα

dr

](
∆ξr(m) + ∆ξ

r(m)
Γ

)
. (67)

We obtain, on summing Eqs. (57) and (65), and also Eqs. (61) and (66),

V
(m)
φ2 (XP ) =

α

q2
s

[
ε

(
1

q2
s

− 1

)
− α

2

](
ξr(m) + ∆ξ

r(m)
Γ

)
+

α

2q2
s

[(
Z

(m+1)
1,0 + Z

(m+1)

1,1

)
+
(
Z

(m−1)
1,0 + Z

(m−1)

1,1

)]
− 1

q3
s

(
εα

2q2
s

)
r
d

dr

[
∆q
(

∆ξr(m) + ∆ξ
r(m)
Γ

)]
− α∆′

q3
s

r
d

dr

[
∆q(∆ξr(m) + ∆ξ

r(m)
Γ )

]
+ R̃(m) (68)

V
(m±1)
φ1 (XP ) =

1

r

d

dr

r3

(
1

q
− n

m± 1

)2 d
(
ξ
r(m±1)
R1,0 + ξ

r(m±1)

R1,1

)
dr

−m(m± 2)

(
1

q
− n

m± 1

)2 (
ξ
r(m±1)
R1,0 + ξ

r(m±1)

R1,1

)
q→qs

+

{
1

r

d

dr

[
r3

(
1

q
− n

m± 1

)2 dξ
r(m±1)
R1,0

dr

]
−m(m± 2)

(
1

q
− n

m± 1

)2

ξ
r(m±1)
R1,0

}
linear in s

− r1±m

q2
s(1±m)

d

dr

{ α

2r±m

(
ξr(m) + ∆ξ

r(m)
Γ

)}
+ (2±m) (ε+ α− 4∆′)

∆qξ
r(m)
R

q3
s

. (69)

These two latter equations are simplified by defining:

ξ
r(m±1)
R1,0 + ξ

r(m±1)

R1,1 = ξ
r(m±1)

R1

and correspondingly,

Z
(m+1)
1,0 + Z

(m+1)

1,1 = Z
(m+1)

1 .

It is of course difficult to calculate the linear s contribution in V
(m±1)
φ (XP ) above. And it is not necessary, nor con-

venient to try. Even though negligible close to the main resonance, it is convenient to include quadratic contributions
together with the linear contributions in s in such a way that the sideband equations are valid in both the low and
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high shear regions. The result is evidently,

V
(m±1)
φ1 (XP ) =

1

r

d

dr

[
r3

(
1

q
− n

m± 1

)2
dξ
r(m±1)

R1

dr

]
−m(m± 2)

(
1

q
− n

m± 1

)2

ξ
r(m±1)

R1

− r1±m

q2
s(1±m)

d

dr

{ α

2r±m

(
ξr(m) + ∆ξ

r(m)
Γ

)}
+ (2±m) (ε+ α− 4∆′)

∆qξ
r(m)
R

q3
s

. (70)

The standard sideband equations in the high shear region coincide with Eq. (70) on setting ξr(m) = 0 and ∆ξ
r(m)
Γ = 0,

which is indeed the case in the high shear region due to strong field line bending damping of the main harmonic. It
is noted that

Z
(m±1)

1 =
r−(1±m)

1±m
d

dr

(
ξ
r(m±1)

R1 r2±m
)

is obtained in full from the solution for ξ
r(m±1)

R1 of the equation V
(m±1)
φ (XP ) + V

(m±1)
φ (XI) = 0, with V

(m±1)
φ (XP )

given in general by Eq. (70), and V
(m±1)
φ (XI) will be obtained in the next section. Boundary conditions would be

applied at r = 0 and r = a. One may choose instead to solve V
(m±1)
φ (XP ) = 0, with boundary conditions applied

in the high shear region where ξr(m) is negligible. For the latter approach, the boundary conditions require careful

matching of ξ
r(m±1)

R across the transition. Including the field line bending terms of Eq. (56), Z
(m±1)

1 enters into the
main equation as follows:

V
(m)
φ (XP ) =

1

r

d

dr

[
r3

(
1

q
− 1

qs

)2
dξr(m)

dr

]
+

1

r

d

dr

[
r3

qs

(
1

q
− 1

qs

)
d

dr

(
∆q∆ξr(m)

q

)
− r3

qs

(
∆q∆ξr0
q

)
d

dr

(
1

q

)]

− (m2 − 1)

(
1

q
− 1

qs

)2

ξr(m) − (m2 − 1)
1

qs

(
1

q
− 1

qs

)(
∆q∆ξr(m)

q

)
α

q2
s

[
ε

(
1

q2
s

− 1

)
− α

2

](
ξr(m) + ∆ξ

r(m)
Γ

)
+

α

2q2
s

[
Z

(m+1)

1 + Z
(m−1)

1

]
− 1

q3
s

(
εα

2q2
s

)
r
d

dr

[
∆q
(

∆ξr(m) + ∆ξ
r(m)
Γ

)]
− α∆′

q3
s

r
d

dr

[
∆q(∆ξr(m) + ∆ξ

r(m)
Γ )

]
+ R̃(m). (71)

It is finally noted that Eqs. (70) and (71) are valid continuously in the whole plasma domain, so that when added to
global inertia contributions, we can expect to develop global continuous solutions to the eigenvalue problem.

3. Equations for V
(m±1)
φ (XP ) and reduction of V

(m)
φ (XP ) for m = 1

This section treats the lower sideband equation for the case where m = 1. The equations for the upper sideband,
e.g. Eq. (70), remain valid for m = 1. We could address the problem once again with the toroidal vorticity, though

with renormalisation to remove the singularity, i.e. we calculate ilV
(l)
φ (X) = 0, defined by Eq. (54). For the case

l = 0, it turns out that the contribution from the radial covariant component of XP in ilV
(l)
φ (XP ) does not appear.

Neglecting the inertia contribution XI at this order it can be shown that

ilV
(l)
φ (X) ∝ 1

2π

∫ π

−π
dθ exp(ilθ)

∂

∂r

(
XPθ

B ·∇φ

)
= 0, with l = m− 1 = 0,

where XPθ is the poloidal covariant component of XP . The solution, on using Eq. (38), is

ξ
θ(m−1)
1 = i

α

2

(
ξr(m) + ∆ξ

r(m)
Γ

)
+ i∆′r

d

dr

[
∆q

qs
ξ
r(m)
R

]
+ iε

∆q

qs
ξ
r(m)
R − iα∆q

qs

(
∆ξr(m) + ∆ξ

r(m)
Γ

)
+ Cr, for m = 1,

with C an integration constant. Again, we note that the above solution is valid for all r. Since ξ
θ(m−1)
1 (a) = 0,

ξr(m)(a) = 0, ∆ξr(m)(a) = 0 and ∆ξ
r(m)
R (a) = 0, the constant of integration is zero. Hence, from Eq. (59) we have

Z
(0)
1,0 =

α

2

(
ξr(m) + ∆ξ

r(m)
Γ

)
(72)

Z
(0)
1,1 = ∆′r

d

dr

[
∆q

qs

(
ξr(m) −∆ξr(m)

)]
+ ε

∆q

qs

(
ξr(m) −∆ξr(m)

)
− α∆q

qs

(
∆ξr(m) + ∆ξ

r(m)
Γ

)
. (73)
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The modified variable defined by Eq. (64) is then

Z
(0)

1 =
α

2

(
ξr(m) + ∆ξ

r(m)
Γ

)
which together with ξ

(m−1)
R = 0 for m = 1 can be substituted directly into Eq. (71) (note some terms don’t appear

for the case of m2 − 1 = 0). The upper sideband is treated by solving Eq. (70) for ξ
(m+1)
R and Z

(m+1)

1 for m = 1, and
substitution into Eq. (71).

4. The inertia contribution V
(m)
φ (XI)

It remains to evaluate the V
(m)
φ (XI) so that when added to Eq. (71) we can establish the governing equation

V
(m)
φ (X) = 0. RecallXI given by Eq. (49). The calculation is so straightforward that computer algebra simplification

is not required. Via the toroidal vorticity definition of Eq. (29) and following the approach given by Eqs. (20) and
(21) in Ref. [13] by writing XI = Y + ∇W , we have

V
(m)
φ (XI) =

1

2π

∫ π

−π
dθ

(
R0

B0

){
1

im

∂

∂r

[(
R2

F

)
Ŷθ − Ŵ

∂

∂θ

(
R2

F

)]
+

[(
R2

F

)
Ŷr − Ŵ

∂

∂r

(
R2

F

)]}
, (74)

with W = (ργ2R0)
[
2q2

(
ξr0 cos θ − ξθ0 sin θ

)]
and Y = −ργ2(ξB + ζ(m)B). We require the covariant form Y =

Yr∇r + Yθ∇θ + Yφ∇φ, where

Yr ≈ |∇r|−2
[
−ργ2(ξ

(m)
B + ζ(m)B)

]
·∇r ≈ −ργ2ξr0

Yθ ≈ |∇θ|−2
[
−ργ2(ξ

(m)
B + ζ(m)B)

]
·∇θ ≈ −ργ2r

(
ξθ0 +

ε

q
B0ζ

(m)

)
.

The problem can be solved trivially. Note Eq. (45) written in terms of χ(m) is

B0ζ
(m) = inq2χ(m) R0

ΓP

dP

dr

(
ω2
s

(nq −m)2ω2
s + γ2q2

)
= −inα

2
χ(m)

(
ω2
A

(nq −m)2ω2
s + γ2q2

)
,

where ω2
s = ω2

AΓP/B2
0 has been used, where ω2

A = B2
0/(ρR

2
0) is the square of the Alfvén frequency. Using also Eq.

(35) for eliminating ξ
θ(m)
0 in favour of ξ

r(m)
0 gives

V
(m)
φ (XI) =

1

r

d

dr

[
r3

(
γ2(1 + 2q2)

m2ω2
A

)
dξr(m)

dr

]
− (m2 − 1)

(
γ2(1 + 2q2)

m2ω2
A

)
ξr(m)

+
1

2q2
s

(
2εα+ εr

dα

dr

)(
γ2χ(m)

(nq −m)2ω2
s + γ2q2

)
+

εα

2q2
s

r
d

dr

(
γ2χ(m)

(nq −m)2ω2
s + γ2q2

)
. (75)

Equation (75) can be written in more convenient form by noting that

χ(m)γ2q2

(nq −m)2ω2
s + γ2q2

= χ(m) + χ
(m)
Γ with χ

(m)
Γ =

∆q∆ξ
(m)
Γ

q
= −χ(m)

(
ω2
s(nq −m)2

(nq −m)2ω2
s + γ2q2

)
. (76)

Hence, we obtain

V
(m)
φ (XI) =

1

r

d

dr

[
r3

(
γ2(1 + 2q2)

m2ω2
A

)
dξr(m)

dr

]
− (m2 − 1)

(
γ2(1 + 2q2)

m2ω2
A

)
ξr(m)

+
1

2q4
s

(
2εα+ εr

dα

dr

)(
χ(m) + χ

(m)
Γ

)
+

(
εα

2q4
s

)
r
d(χ(m) + χ

(m)
Γ )

dr
. (77)
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5. The inertia contribution V
(m±1)
φ (XI)

We may follow the results of the last subsection, and the results for the parallel momentum equation, in order
to obtain the results needed here. We note that inertia matters for the sidebands only close to their own rational
surfaces. In those regions, the main harmonic is usually negligible. The two sidebands therefore decouple from the
main harmonic, and also decouple from one another. Hence, for constructing XI , we therefore identify Eq. (49) as
the relevant inertia, but with m → m ± 1. In addition, for calculation to relevant order in ε in the main eigenvalue
equation, we set ζ(m±1) = 0. Hence,

XI = −ργ2
{
ξ

(m±1)
B −R0∇

[
2q2

(
ξr(m±1) cos θ − ξθ(m±1) sin θ

)]}
. (78)

Following the last subsection which constructed V
(m)
φ (XI), and noting Eq. (36), we clearly obtain,

V
(m±1)
φ (XI) =

1

r

d

dr

[
r3

(
γ2(1 + 2q2)

(m± 1)2ω2
A

)
dξr(m±1)

dr

]
−m(m± 2)

(
γ2(1 + 2q2)

(m± 1)2ω2
A

)
ξr(m±1), (79)

valid for all cases except (m − 1) = (0), i.e. the lower sideband of the m = 1 case. An important point to note is
that since the inertia is important on the rational surface of the sideband, the value of q in Eq. (79) will be essentially

q
(m±1)
s = (m ± 1)/n. Therefore, for the upper sideband, the toroidal inertia enhancement 1 → 1 + q2 is larger than

for the main harmonic.

III. GOVERNING EIGENVALUE EQUATIONS

We now consider V
(m)
φ (X) = 0 by summing Eqs. (71) and (77) and setting the result to zero. In Eq. (71) we will

adopt the resistive variable χ(m) ≡ ∆χ(m)

n = ∆q∆ξr(m)

q as defined in Eq. (51), which will cleanly define the field line

bending terms. In the terms that are not associated with field line bending, we are free to replace ∆q∆ξr(m)/qs with
∆q∆ξr(m)/q = χ(m), since the corresponding corrections to Eq. (71) would appear at the next order in s. Similarly

we are free to replace ∆q∆ξ
r(m)
Γ /qs with ∆q∆ξ

r(m)
Γ /q = ∆ξ

r(m)
Γ in Eq. (71). Noting the cancelation of the first term

on the last line of Eq. (71) with the last term of Eq. (77), and dropping over-line notation (and numerical subscripts)

in Z(m±1) and ξ
r(m±1)
R , we have

0 =
1

r

d

dr

{
r3

[
γ2(1 + 2q2)

m2ω2
A

+

(
1

q
− 1

qs

)2
]
dξr(m)

dr

}
− (m2 − 1)

[
γ2(1 + 2q2)

m2ω2
A

+

(
1

q
− 1

qs

)2
]
ξr(m)

+
1

r

d

dr

[
r3

qs

(
1

q
− 1

qs

)
dχ(m)

dr
− r3

qs
χ(m) d

dr

(
1

q

)]
− (m2 − 1)

1

qs

(
1

q
− 1

qs

)
χ(m)

+
εα

q2
s

(
1

q2
s

− 1

)(
ξr(m) + ∆ξ

r(m)
Γ

)
+

α

2q2
s

[
Z(m+1) + Z(m−1) − α

(
ξr(m) + ∆ξ

r(m)
Γ

)]
− α∆′

q2
s

r
d

dr

[
χ(m) + χ

(m)
Γ

]
+R(m) (80)

with,

R(m) =− ∆q

q3
s

[2(1 +m)ε+ (2 +m)α− (4 + 3m)∆′]Z
(m+1)
1,0

− ∆q

q3
s

[2(1−m)ε+ (2−m)α− (4− 3m)∆′]Z
(m−1)
1,0

− ∆q

q3
s

∆′r
d

dr

[
Z

(m+1)
1,0 + Z

(m−1)
1,0 − α

(
ξr(m) + ∆ξ

r(m)
Γ

)]
+

∆q

q3
s

[ε+ α− 4∆′]
[
(2 +m)ξ

r(m+1)
R1,0 + (2−m)ξ

r(m−1)
R1,0

]
+

1

q2
s

[
8ε2 + α(4ε+ α)−∆′ (6ε+ 4α) + 12(∆′)2 − 2ε

q2
s

(2ε+ α)

](
∆qξr(m)

qs
− χ(m)

)
+

1

q2
s

[
εα

(
2− 3

q2
s

)
−∆′r

dα

dr

](
χ(m) + χ

(m)
Γ

)
. (81)
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and

∆ξ
r(m)
Γ =

qχ
(m)
Γ

q − qs
, and χ

(m)
Γ = −χ(m)

(
ω2
s(q − qs)2

(q − qs)2ω2
s + (γ2/m2)q2

sq
2

)
.

A. Governing sideband equations

We develop the general sideband equations V
(m±1)
φ (X) = 0 by summing Eqs. (70) and (79), giving on dropping

the overline notation,

0 =
1

r

d

dr

[
r3

(
γ2(1 + 2q2)

(m± 1)2ω2
A

)
dξr(m±1)

dr

]
−m(m± 2)

(
γ2(1 + 2q2)

(m± 1)2ω2
A

)
ξr(m±1)

+
1

r

d

dr

[
r3

(
1

q
− n

m± 1

)2
dξ
r(m±1)
R

dr

]
−m(m± 2)

(
1

q
− n

m± 1

)2

ξ
r(m±1)
R

− r1±m

q2
s(1±m)

d

dr

{ α

2r±m

(
ξr(m) + ∆ξ

r(m)
Γ

)}
+ (2±m) (ε+ α− 4∆′)

1

q2
s

(
∆qξr(m)

qs
− χ(m)

)
. (82)

Solution of this equation defines ξ
r(m±1)
R in R(m) (if needed) and

Z(m±1) = r−(1±m) d

dr

(
ξ
r(m±1)
R r2±m

)
which is required in Eq. (80). Note, for the special case m = 1, we use, instead of the above,

Z(m−1) =
α

2

(
ξr(m) + ∆ξ

r(m)
Γ

)
, ξ

r(m−1)
R = 0, for m = 1. (83)

Inertia and resistivity is not required for the calculation of Z(0) providing that q = 0 does not exist somewhere in the
plasma. Hence a different treatment would be required for the interesting case of the edge of a reverse field pinch.

B. Resistive (radial) Ohm’s law

Clearly an equation is required which relates χ(l) to
ξr(l) in the main harmonic and sideband equations. As-
suming that the main harmonic displacement is not
larger than sideband displacement on the sideband ra-
tional surface, radial Ohm’s law (Eq. (50) for the main
harmonic) applies for each harmonic separately, i.e.

χ(l) =
η

γ

1

r3

[
d

dr

(
r3 d

dr

{
qs

(
1

q
− 1

qs

)
ξr(l)

+χ(l)
})

+ r(1− l2)

{
qs

(
1

q
− 1

qs

)
ξr(l) + χ(l)

}]
,

with qs = l/n and l = m − 1,m,m + 1. In the

sideband equation Eq. (82) ξ
r(l)
R = ξr(l) − ∆ξr(l), with

χ(l) = (q− l/n)∆ξr(l)/q . It is thus possible to write Eq.
(82) in terms of ξr(m±1) and χ(m±1). In this paper either
resistive effects are ignored on the rational surfaces of the
sidebands, or analytic solutions can be used for treating
the narrow layer. Notice that there is no explicit toroidal
coupling in these equations.

C. Boundary conditions and associated
approximations

The general internal plasma problem is solved with
Dirichlet boundary conditions (BCs) for all variables
placed at r = 0 and the plasma edge r = a. We now con-
sider the consequences and potential remedies for having
rational surfaces associated with the sidebands. If the
fully global problem is attempted, with BCs applied at
r = 0 and r = a, one requires inertia in the sideband
equations, and if resistivity is considered for the side-
bands, then Ohm’s law for the sidebands has to be solved
too.

1. Ideal sidebands

First, if we wish to consider the fully global problem

with ideal sidebands, we note that ξ
r(m±1)
R = ξr(m±1),

and resistive Ohm’s law isn’t required for the sidebands.
We will nevertheless require inertia in the sideband equa-
tions if the sideband has a rational inside the plasma.

We now show how we may reduce the size of the prob-
lem, and avoid explicit inclusion of sideband inertia (note
inertia is always required for the main harmonic, even if
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an exact rational for the main harmonic does not ex-
ist). It is always assumed that a rational for the main
mode exists, or there is an extremum in q where the field
line bending stabilisation is minimised. For both cases in
this subsection the associated radius is denoted rs. There
might in fact be two main mode rational surfaces, but it
is assumed here that the sidebands do not have rational
surfaces in between the main mode rational surfaces. If
there are two rational surfaces, the below assumes that
rs is the closest rational surface to the rational of the
sideband considered.

Consider now the region 0 < r < rs. If there exists

a rational r
(m±1)
s < rs for which q(r

(m±1)
s ) = (m ± 1)/n

then for that variable, one may apply a Neumann BC:

lim
δ→0

dξ
r(m±1)
R

dr

∣∣∣∣∣
r
(m±1)
s +δ

= 0

while adopting Dirichlet BCs for the other variables. If
no sideband rationals exist in 0 < r < rs, then Dirichlet
BC’s are deployed for all variables at r = 0. Note that
what is written here does not hold for the m = 1 mode,
where Neumann BC’s must be placed at r = 0 for the
main harmonic, Dirichlet BC for the upper sideband, and
the lower sideband isn’t required. In addition, for the
m = 2 mode, Neumann BC’s will be applied for the lower

sideband, at r = 0 if it has no rational in 0 < r
(m−1)
s < rs,

or at r
(m−1)
s if it does have a rational in 0 < r

(m−1)
s < rs.

For the region rs < r < a, if there exists a rational

r
(m±1)
s > rs for which q(r

(m±1)
s ) = (m ± 1)/n then for

that variable, one may apply a Neumann BC:

lim
δ→0

dξ
r(m±1)
R

dr

∣∣∣∣∣
r
(m±1)
s −δ

= 0 (84)

while adopting Dirichlet BCs for the other variables. If
no sideband rationals exist in rs < r < a, then Dirichlet
BC’s are deployed for all variables at r = a. BC’s at
r = a should be modified if magnetic perturbations are
allowed to propagate into the vacuum region r > a. This
is required for the study of Edge Harmonic Oscillations
[4].

2. Resistive sidebands

The separation of regions described in the last sub-
section hold, but the BC’s for the resonant sideband is
adjusted to an appropriate Robin BC in order to take into
account the effect of resistivity. We follow the derivation
given in [6]. In the below we assume a sideband rational

r
(m+1)
s > rs, but it can easily be applied to other cases

too, using the logic of the last subsection. We write the
resistive displacement for the upper sideband in terms of
its associated magnetic flux,

ξ
(m+1)
R = −R0

B0

(
1

q
− n

m+ 1

)−1
ψ

r
. (85)

In the region r � rs we may neglect the main harmonic
in the sideband equation of Eq. (82). Avoiding the iner-
tial region of the sideband too, the associated sideband
equation in terms of δψ = ψ (Eq. (53)),(

1

q
− n

m+ 1

)[
d

dr

(
r
d

dr
ψ

)
− (m+ 1)2ψ

r

]
− ψ

r2

d

dr

[
r3 d

dr

(
1

q

)]
= 0, (86)

which can be reconciled with the usual cylindrical tear-
ing mode equation in the ‘outer’ region, noting that
(R0/B0)dJφ/dr = (1/r2)(d/dr)[r3(d/dr)(1/q)].

We construct ψ on the basis of large and small solutions
ψs and ψL. Here ψL is chosen to be continuous across
the rational, while ψs provides the jump in the deriva-
tive associated with ∆′R. Both a jump in the derivative,
and a non-zero value in ψ are required at the rational
for tearing. Here, ∆′R is written explicitly in terms of
the growth rate (the standard ‘inner’ region result with
toroidal inertia corrections):

∆′R =

(
2πΓ(3/4)

Γ(1/4)

)
(1 + 2q2)1/4(γ/ωA)5/4S3/4

r
(m+1)
s [(m+ 1)s/q]1/2

, (87)

where q and shear s etc are evaluated at the rational
surface of the sideband. Here S = τRωA with τR =

(r
(m+1)
s )2/η.
The advantage of composing ψ(r) in terms of ψL(r)

and ψs(r) is that they can both be established in the

region rs < r < r
(m+1)
s in advance of the eigenvalue cal-

culation. Both ψs(r) and ψL(r) for rs < r < r
(m+1)
s are

obtained by solving Eq. (86) with boundary conditions

applied at r
(m+1)
s − δ. The boundary conditions are

ψs(r
(m+1)
s − δ) = 0,

dψs
dr

∣∣∣∣
r
(m+1)
s −δ

= (ψ−s )′

ψL(r(m+1)
s − δ) = ψ−L ,

dψL
dr

∣∣∣∣
r
(m+1)
s −δ

= (ψ−L )′.

Note that one may freely choose e.g. (ψ−s )′ = −1. How-
ever, we have to establish values of ψ−L and (ψ−L )′. This
is achieved by solving Eq. (86) with BC’s ψL(a) = 0 and

dψL/dr|a = −1, shooting inwards towards r
(m+1)
s from

a, calculating

ψL(r(m+1)
s + δ), and

dψL
dr

∣∣∣∣
r
(m+1)
s +δ

which are identified with, and therefore define respec-
tively, ψ−L and (ψ−L )′.

From the above results we may obtain the full radial

dependence of ψ in region rs < r < r
(m+1)
s − δ. We

construct ψ as a linear sum of the two solutions,

ψ(r) = ψL(r) + Λψs(s).
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From the definition of ∆′R, and from the characteristics
of ψs(r) and ψL(r) across the rational surface, it is clear
that

Λ = −∆′R
ψ−L

(ψ−s )′
.

A bit of elementary algebra gives,

r

ψ

dψ

dr
=

r

ψL(r) + Λψs(r)

d

dr
(ψL(r) + Λψs(r))

=

(
1

1 +A(r)

)[
r

ψL(r)

dψL(r)

dr
+A(r)

r

ψs(r)

dψs(r)

dr

]
with A(r) = Λψs(r)/ψL(r). Hence, in terms of ∆′R:

A(r) = −∆′R
ψ−L

(ψ−s )′
ψs(r)

ψL(r)
,

which for an analytic approach is identified in terms of
eigenvalue γ via Eq. (87).

Finally, we obtain the Robin boundary condition for

ξ
(m+1)
R upon consideration of Eq. (85), where in the re-

gion rs < r < r
(m+1)
s − δ we have

r

ξ
(m+1)
R

dξ
(m+1)
R

dr
=

(
1

q
− n

m+ 1

)−1
r

q

dq

dr
+
r

ψ

dψ

dr
− 1.

(88)

This final quantity will be evaluated at a location r <

r
(m+1)
s where Dirichlet BC’s may safely be applied to the

main harmonic (and lower sideband), noting that ξ
(m+1)
R

is singular exactly at r
(m+1)
s , so proximity to the up-

per rational needs to be avoided. An analytic treatment
evaluates Eq. (88) at rb (or ra depending on the problem
considered - see definitions of ra and rb below). Note
that for the ideal limit S →∞, ∆′R →∞ and A→ −∞,
so that ψ → ψs, which indeed recovers ideal results for
the upper sideband displacement when substituted into
Eq. (88).

3. Solution for Z
(m±1)
1,0

To make analytic progress on some problems, it is use-

ful to be able to calculate Z1,0. That is to evaluate Z
(m±1
1

to lowest order in ∆q. Referring to Eq. (62) this requires
calculating the constants of integration C±. We define
radial positions ra < rs and rb > rs, whereby |∆q/q| � ε
for r < ra and r > rb, and |∆q/q| ∼ ε for ra < r < rb.
For this lowest order problem, we impose Dirichlet BC’s
for the main harmonic at ra and rb. The solutions for

C± in Z
r(m±1)
1,0 are easily shown [14] to be,

C+ = −
[

(1 +m)(2 +m+ bm+1)(2 +m+ cm+1)

(m− bm+1)(2 +m+ cm+1)r2+2m
a − (m− cm+1)(2 +m+ bm+1)r2+2m

b

] ∫ rb

ra

dr r1+mα
(
ξr(m) + ∆ξ

r(m)
Γ

)
(89)

C− = −
[

(1−m)(2−m+ bm−1)(2−m+ cm−1)

(m+ cm−1)(2−m+ bm−1)r2−2m
b − (m+ bm−1)(2−m+ cm−1)r2−2m

a

] ∫ rb

ra

dr r1−m
(
ξr(m) + ∆ξ

r(m)
Γ

)
,

(90)

where

bm±1 = lim
r→r−a

r

ξ
(m±1)
R

dξ
(m±1)
R

dr
,

cm±1 = lim
r→r+b

r

ξ
(m±1)
R

dξ
(m±1)
R

dr
.

The limit in bm±1 is taken to mean r approaching ra
from within the range 0 ≤ r < ra, and the limit in cm±1

is taken to mean r approaching rb from within the range

rb < r ≤ a. Note that ξ
(m±1)
R are obtained in these two

regions by solving the sideband equations (82) in the ab-
sence of the main harmonic and inertia. Those equations
are solved using the boundary conditions described in the
previous two subsections. Note, if we wish to include re-
sistive effects on upper sideband for example, we would

reconcile cm±1 with Eq. (88) and preceding equations,
evaluating the latter at rb.

D. Equations for very low shear and pressure
gradients

Here we address the comment in Ref. [3] that there is
an alternative ordering problem for α ∼ ε2 and ∆q ∼ ε2.
Waelbroeck [2] considered this ordering for the case qs =
1, and separately for m = 1. We again treat a double
expansion in ε and s:

Vφ = ε0Vφ0 + ε2Vφ2 + ε4Vφ4
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where

Vφ0 = s2Vφ0,2

Vφ2 = ε2sVφ2,1

Vφ4 = ε4Vφ4,0.

All of these terms are formally the same order if s ∼ ∆q ∼
ε2. Clearly, we already have terms of type Vφ0 and Vφ4

in Eq. (80), which are respectively the field line bending
contributions and the infernal (and Mercier) contribu-
tions to the pressure. In the development of Eq. (80)
we kept some terms of type Vφ2, in particular the con-
tribution of Eq. (58). But, we did not specifically calcu-
late R(m), which is defined by Eq. (81). With the mod-
ified ordering, terms in Eq. (81) are of leading order. In
particular those terms proportional to ∆qε2, ∆q∆′ε and
∆q(∆′)2. The other terms can be ignored. In the limit
of very low magnetic shear we have ∆′ = ε/4, giving,

R(m) =
ε2∆qξ

(m)
R

q3
s

[
13

4
− 4

(
1

q2
s

− 1

)]
. (91)

Terms in R(m) related to Z(m±1) do not enter because
Z(m±1) ∼ αξ(m) with α ∼ ε2. Terms in R(m) related

ξ
(m±1)
R1,0 cancel to relevant order for the very low shear

case (since ε+α−4∆′ ∼ O(ε2)). The sideband equations
that govern Z(m±1) can neglect the last term in Eq. (82)
for the same reason.

We now write the equations for the specific case of very
low shear and pressure gradients by depositing Eq. (91)
for R(m) in Eq. (80),

0 =
1

r

d

dr

{
r3

[
γ2(1 + 2q2)

m2ω2
A

+

(
1

q
− 1

qs

)2
]
dξr(m)

dr

}

− (m2 − 1)

[
γ2(1 + 2q2)

m2ω2
A

+

(
1

q
− 1

qs

)2
]
ξr(m)

+
1

r

d

dr

[
r3

qs

(
1

q
− 1

qs

)
dχ(m)

dr
− r3

qs
χ(m) d

dr

(
1

q

)]
− (m2 − 1)

1

qs

(
1

q
− 1

qs

)
χ(m)

+
εα

q2
s

(
1

q2
s

− 1

)(
ξr(m) + ∆ξ

r(m)
Γ

)
+

α

2q2
s

[
Z(m+1) + Z(m−1) − α

(
ξr(m) + ∆ξ

r(m)
Γ

)]
− α∆′

q2
s

r
d

dr

[
χ(m) + χ

(m)
Γ

]
− ε2

q2
s

[
13

4
− 4

(
1

q2
s

− 1

)][
qs

(
1

q
− 1

qs

)
ξr(m) + χ(m)

]
.

(92)

The sideband equation is, on setting ∆′ = ε/4 +O(ε2):

0 =
1

r

d

dr

[
r3

(
γ2(1 + 2q2)

(m± 1)2ω2
A

)
dξr(m±1)

dr

]
−m(m± 2)

(
γ2(1 + 2q2)

(m± 1)2ω2
A

)
ξr(m±1)

+
1

r

d

dr

[
r3

(
1

q
− n

m± 1

)2
dξ
r(m±1)
R

dr

]

−m(m± 2)

(
1

q
− n

m± 1

)2

ξ
r(m±1)
R

− r1±m

q2
s(1±m)

d

dr

{ α

2r±m

(
ξr(m) + ∆ξ

r(m)
Γ

)}
. (93)

As will be seen, for the special case m = 1, Eq. (92),
together with the lowest order solution (62) of Eq. (93),
is valid also for α ∼ ε and ∆q ∼ ε. After demonstrating
that in the next section, we thus use Eqs. (92) and (62)
for the rest of this paper, neglecting error imposed for
cases with m 6= 1, hoping that these are small. It is
expected in any case that the results will be qualitatively
correct, probably nearly correct quantitatively. We will
assess this in future work.

IV. RECOVERY OF IDEAL m = 1 TOROIDAL
INTERNAL KINK FROM INFERNAL

EQUATIONS

We now solve the m = 1 ideal problem analytically, as-
suming that there is an exact rational surface at q(rs) =
m/n. It will be shown later that near marginal stability,
for arbitrarily low shear, an infernal mode with an exact
rational surface will have leading order radial displace-
ment of the form ξr(m) = ξ0(r/rs)

m−1H(r − rs), where
H(r−rs) is unity for r < rs and zero for r > rs, where in
the following we assume that ∆q ∼ ε in the region r < rs.
Following Eqs. (83) and (62) gives

Z(m−1) =
α

2
ξ0, ξ

r(m−1)
R = 0

Z
(m+1)
1,0 =

α

2
ξ0 + C+r, ξ

r(m+1)
1,0 = ξ0

(
∆′ − r

4R0

)
+
C+r

2
(94)

for m = 1 in the low shear region, where we note that

ξ
r(m+1)
1,0 satisfies the definition of Z

(m+1)
1,0 having used

r∆′′ = α+ r/R0 − 3r2∆′ to leading order in ∆q. Substi-
tuting these results into Eq. (81) gives

R(m) =
∆q

qqs

[
13

4
ε2 − 4ε2

(
1

q2
s

− 1

)
+
α

4
(12∆′ − 4α− 3ε)

]
ξ0

+O(ε∆qC+)

for m = 1 to necessary order. We still require Z
(m+1)
1,1 in

the low shear region for the definition of Z(m+1) in the
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main harmonic equation. From Eq. (66) we may obtain
in the low shear region,

Z
(m±1)
1,1 = 2

∆q

qs
Z

(m±1)
1,0

− 2(2±m)r±m
∫
dr
ξ

(m±1)
1,0

r±m
d

dr

[
∆q

qs

]
− (2±m)(1±m)r±m

∫
dr r−(1±m) ∆qξr(m)

qs
r2 d

dr

[
∆′

r

]
,

where we have used ε+α− 4∆′ = r2d/dr(∆′/r). Hence,
for the case at hand m = 1, using above expressions for

Z
(m+1)
1,0 and ξ

r(m+1)
1,0 we obtain,

Z
(m±1)
1,1 = −∆q

qs

α

2
(12∆′ − 4α− 3ε)ξ0 +O(ε∆qC+)

in the low shear region for m = 1. Substituting these
results into the governing equation (80) we obtain

0 =
1

r

d

dr

{
r3

[
γ2(1 + 2q2)

m2ω2
A

+

(
1

q
− 1

qs

)2
]
dξr(m)

dr

}

− (m2 − 1)

[
γ2(1 + 2q2)

m2ω2
A

+

(
1

q
− 1

qs

)2
]
ξr(m)

+
εα

q2
s

(
1

q2
s

− 1

)
ξr(m) +

α

2q2
s

[
C+rm (1 +O(∆q))

]
− ε2

q2
s

[
13

4
− 4

(
1

q2
s

− 1

)]
qs

(
1

q
− 1

qs

)
ξr(m). (95)

in the low shear region for m = 1. We now see why we did
not need to calculate the O(ε∆qC+) corrections. Notice
that this is the result that would also have been obtained
from the ultra-low shear and α equations of (92) together
with the lowest order solution for Z(m+1) given by Eq.
(62).

For the case at hand, the last two lines of Eq. (95) will
adopt the Heaviside step function, but the inertia term
and field line bending terms do not, as these contribu-
tions require finer resolution. We now integrate Eq. (95)
from 0 to rs, giving,

1

ξ0

{
rm∆Q2 d

(
r1−mξr(m)

)
dr

}∣∣∣∣∣
r=rs

= ˆδW (96)

for m = 1, where

∆Q2 =
γ2(1 + 2q2)

m2ω2
A

+

(
1

q
− 1

qs

)2

. (97)

and

ˆδW =

∫ rs

0

r dr

r2
s

1

qs

(
1

q
− 1

qs

)[
13

4
− 4

(
1

q2
s

− 1

)](
r

R0

)2

−
∫ rs

0

dr r

r2
s

rα

R0

1

q2
s

(
1

q2
s

− 1

)
− 1

q2
s

[
3 + c

1− c

] [∫ rs

0

dr

rs

αr2

r2
s

]2

.

(98)

In ˆδW we have set c = cm+1 in the definition of C+ given by Eq. (89) for m = 1. In addition, we have taken ra = 0
which gives bm+1 = 0 and we have set rb = rs which is a valid choice for the resonant problem (as will be seen later).

Also, as mentioned above, we have taken ξr(m) = ξ0H[r − rs] in the terms in ˆδW . The result can be written in the
form,

ˆδW = (1− q2
s) ˆδWC + q2

s
ˆδWT

with

ˆδWC = − 1

q2
s

{
εs
q2
s

∫ rs

0

dr r2

r3
s

α+ 4ε2s

∫ rs

0

dr r3

r4
s

1

qs

(
1

q
− 1

qs

)}
(99)

ˆδWT = − 1

q4
s

{[
3 + c

1− c

] [∫ rs

0

dr r2

r3
s

α

]2

− 13

4
ε2s

∫ rs

0

dr r3

r4
s

qs

(
1

q
− 1

qs

)}
, (100)

where εs = rs/R0. The growth rate can be easily established for the case where resistive effects at rs are ignored by
careful calculation of the left hand side of Eq. (96), giving

γ

ωA
= − mπ

qss(rs)
√

1 + 2q2
s

q2
s

ˆδW, (101)

where it is reminded that m = 1.
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A. Bussac form for internal kink mode and agreement with infernal mode description for small ∆q/qs

The normalisation for ˆδW used in this paper differs from ˜δW in Ref. [7] by a factor ε2sq
−4
s . Hence multiplying the

relations in Ref. [7] by ε2sn
4 = ε2s/q

4
s (for m = 1) the internal kink mode in a torus with circular cross section, assuming

∆q/qs ∼ 1, gives:

ˆδW = (1− q2
s) ˆδWC + q2

s
ˆδWT

with

ˆδWC = − ε
2
s

q2
s

{
βp
q2
s

+

∫ rs

0

dr r3

r4
s

(
3

qs
+

1

q

)(
1

q
− 1

qs

)}
, βp = −2

q(rs)
2

B2
0ε

2
s

∫ rs

0

dr r2

r2
s

dP

dr
(102)

ˆδWT =
ε2s
q4
s

{
32(b− c)σ + 9(b− 1)(1− c)

64(b− c)
− 3(b− 1)(c+ 3)

8(b− c)
(βp + σ)− (c+ 3)(b+ 3)

4(b− c)
(βp + σ)2

}
, (103)

where

σ =

∫ rs

0

dr

rs

(
r

rs

)3(
q2
s

q2
− 1

)
, (104)

and

b =
r

ξr(m+1)

dξr(m+1)

dr

∣∣∣∣
rs−δ

, c =
r

ξr(m+1)

dξr(m+1)

dr

∣∣∣∣
rs+δ

,

with m = 1, and we note c has the same definition as for infernal modes. We may define,

b = 1 + ∆b, c = −3 + ∆c

where for an unsheared q-profile ∆b = ∆c = 0. For the infernal mode applications considered here, where ra = 0, we
have ∆c ∼ 1 and ∆b ∼ ∆q. Noting also that σ ∼ ∆q, we obtain the following expansion:

q4
s

ε2s
ˆδWT =

1

2
σ +

[
9

64
− 3

8

(
3 + c

1− c

)
βp

]
∆b+

(
3 + c

1− c

)
βp (βp + 2σ) +O(∆q2)

It is shown in the appendix that ∆b = 8σ[1 +O(∆q/qs)] for arbitrary rs, and we may use,

σ = −2

∫ rs

0

dr

rs

(
r

rs

)3
∆q(r)

qs
+O(∆q2/q2

s) = 2

∫ rs

0

dr

rs

(
r

rs

)3

qs

(
1

q
− 1

qs

)
+O(∆q2/q2

s),

Expanding ˆδWC in ∆q we may finally write the Bussac expressions in expanded form:

ˆδWC = − ε
2
s

q2
s

{
βp
q2
s

+ 4

∫ rs

0

dr r3

r4
s

1

qs

(
1

q
− 1

qs

)
+O(∆q2)

}
(105)

ˆδWT = − ε
2
s

q4
s

{[(
3 + c

1− c

)
β2
p −

13

4

∫ rs

0

dr

rs

(
r

rs

)3

qs

(
1

q
− 1

qs

)]
+O(∆q2,∆qβp)

}
. (106)

The corrections O(∆q2,∆qβp) cannot be ignored for
the standard ordering used in reference Ref. [7] (βp ∼ 1,
∆q/qs ∼ 1). But for infernal modes, we have that
∆q ∼ ε, βp ∼ 1, so that we can neglect O(∆q2,∆qβp)
terms in the results from Bussac. Thus the above ex-
pressions expanded from Bussac are identical to those
derived from the infernal mode approach, i.e. Eqs. (99)
and (100). This point is further emphasised by noting
that the O(∆q2,∆qβp) terms do not appear in the well

known internal kink result for the specific safety factor
profile

q = qs + ∆[(r/rs)
ν − 1], (107)

qs = 1, in particular the expression for δWT on page
1641 in Ref. [7] (here c is solved analytically in the limit
of small rs, i.e c = −3 + 12ν∆/(4 − ν)). We recover
these well known results with the higher order infernal
mode equations of this paper, i.e. for n = 1 and qs = 1,
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substituting c = −3 + 12ν∆/(4 − ν) and 1/q − 1/qs =
∆[1− (r/rs)

ν ] into Eq. (100) or Eq. (106) we obtain,

ˆδWT = −ε2sν∆

{
3

4− ν
β2
p −

13

16(4 + ν)

}
. (108)

This agrees exactly with Eq. (7) of Ref. [17], and in-
deed with the results at the end of Ref. [7], i.e. marginal
poloidal beta βp = [13(4−ν)/(48(4+ν))]1/2, which for the
quadratic q-profile ν = 2 gives the well know marginal
value βp ≈ 0.3 (which is α(rs) = 1.2εs for a parabolic
pressure profile for which βp = α/(4ε)).

V. RESISTIVE INTERCHANGE MODES

The previous section on the m = 1 internal kink mode
has demonstrated that the low-shear, low-beta main har-
monic equation (92) together with the lowest order so-
lution (62) in the ideal limit recovered the ideal internal
kink result of Ref. [7]. We therefore adopt (92) together
with (62) for the rest of the analytic calculations in this
paper, also for resistive studies. We choose to drop the
resistive-compression contribution ∆ξΓ from (62) and in
the definitions of C+ and C− given by Eqs. (90) and
(89). Dropping this compression effect will increase the
growth rate by a factor, this factor vanishing where resis-
tive effects are negligible. We also drop terms in (92) that
involve χ, except those involving derivatives in χ, since
we know that χ is localised near the rational surface.
The consequences of the approximations mentioned here
will be addressed in future work where the full governing

equations will be solved numerically. Setting ∆ξ
r(m)
Γ = 0

is expected to be the worst approximation in the forth-
coming results in this paper, which is based on solutions
of:

0 =
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d

dr

{
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γ2(1 + 2q2)

m2ω2
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+

(
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q
− 1
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]
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}

− (m2 − 1)
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m2ω2
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+

(
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q
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)2
]
ξr(m)

+
1

r

d

dr

[
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(
1
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)
dχ(m)
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χ(m) d
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(
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+
εα

q2
s

(
1

q2
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− 1

)
ξr(m) − α∆′

q2
s

r
d

dr

[
χ(m) + χ

(m)
Γ

]
+

α

2q2
s

[
C+rm + C−r−m

]
− ε2

q2
s

[
13

4
− 4

(
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)]
qs

(
1

q
− 1

qs

)
ξr(m), (109)

with C+ and C− defined by Eqs. (90) and (89) in the

limit ∆ξ
r(m)
Γ → 0.

We consider now interchange modes. These occur in
the limit when the radial scale length of the instability is
short, i.e. when the magnetic shear is large, and/or when
m is large. Since this paper deals with ∆q/qs ∼ ε, we

thus consider that interchange modes occur where m �
1. Under such conditions, the infernal mode corrections
associated with C+ and C− are insignificant. This can
be seen by inspection of Eq. (26), the last term on the
first line being due to C+, and it is seen [15] that it
scales as ∼ 1/m. As mentioned, interchange modes are
highly localised, so the last term in Eq. (109) can also
be neglected (since it vanishes at the rational surface).
Hence, resistive interchange modes are governed by,

1

r

d
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+
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+
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= −εα
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1
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)
ξr(m) +

α∆′
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s

r
d

dr

[
χ(m) + χ

(m)
Γ

]
,

(110)

the left hand side being the field line bending and inertia
terms.

1. Ideal Interchange

In the ideal limit we set χ = χΓ = 0. The left hand
side of Eq. (110) providing field line bending stabilisation,
and the right hand side causing potentially the drive for
interchange instability[16]. One obtains ideal instability
if

s2

4
< εα

(
1

q2
s

− 1

)
and under those conditions, the growth rate normalised
to the Alfvén frequency is given by

γ

ωA
=

16 s exp{π
[
εα(1/q2

s − 1)/s2 − 1/4
]−1/2 − C + π/2}

qs
√

1 + 2qs
,

where C = 0.577.. is the Euler-Mascheroni constant.

2. Resistive Interchange

We now investigate the modification of the ideal stabil-
ity criteria and growth rates for interchange modes given
above due to resistive effects. At marginal stability resis-
tive Ohm’s law of Eq. (50) dictates that magnetic field
line bending at the rational surface vanishes, and we re-
call that interchange modes are essentially confined to
the rational surface at marginal stability. In particular
that,

qs

(
1

q
− 1

qs

)
ξr(m) + χ(m) ≈ 0 (111)
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at marginal stability, and thus ∆qξ
r(m)
R = 0, so that the

field line bending terms on the left hand side of Eq. (110)
vanish. While the s2/(4q2

s) stabilising term in the ideal
interchange criteria is lost due to resistivity, a new con-
tribution is gained from the last term on the right hand

side of Eq. (110). Evaluating d/dr(χ(m) +χ
(m)
Γ ) at r = rs

for small (but non-zero γ), using Eq. (76) for χ(m) +χ
(m)
Γ

and Eq. (111) we arrive at

d

dr

[
χ(m) + χ

(m)
Γ

]∣∣∣∣
rs

≈ ξr(m) dq

dr

near the rational surface. Hence with the addition of this
new contribution, and the loss of the field line bending
contribution, resistive interchange are unstable for,

0 < s2DR, s2DR = εα

(
1

q2
s

− 1

)
− s2H, H =

α∆′

s
.

(112)
Ordinarily in a tokamak, with monotonically decreasing
pressure, and positive magnetic shear, H is stabilising.
This definition of H is important for internal kink modes,
and so is λ, the growth rate normalised as follows in a
resistive plasma,

λ = γτ
2/3
H τ

1/3
R , τH =

τAqs
√

1 + 2q2
s

sm
, τR =

r2

η
,

(113)
where τA = 1/ωA. Following the dispersion relation of
Ref. [9],

∆′R =
2πΓ(3/4)λ5/4

Γ(1/4)LR

(
1− πDR

4λ3/2

)
, LR = rτ

1/3
H τ

−1/3
R ,

(with LR the resistive interchange layer width) the re-
sistive interchange growth rate is obtained with the ap-
proximation ∆′R = 0, i.e. the dispersion relation is

λ3/2 =
π

4
DR, (114)

all evaluated at rs. In terms of Lundquist number S =
τR/τA,

λ = S1/3 γ

ωA

(
qs
√

1 + 2q2
s

sm

)2/3

so that,

γ

ωA
= S−1/3

(
πsm

4qs
√

1 + 2q2
s

)2/3 (π
4
DR

)2/3

.

Important here to notice is the relatively slow scaling of
growth rate on Lundquist number (compared to standard
current driven tearing modes where γ ∼ S−3/5), and that
the growth rate increases with reducing magnetic shear,
γ ∼ s−2/3 (compared to standard current driven tearing
modes γ ∼ s2/5). This clearly motivates the study on
resistive infernal modes, which is the correct treatment
for long wavelength modes where the shear is weak.

VI. ANALYTICAL RESISTIVE INFERNAL
MODES WITH qs = 1

Having investigated resistive interchange modes from
the infernal mode description, we now investigate resis-
tive infernal modes and resistive kink modes. We choose
to simplify the problem by setting qs = 1, which removes
the interchange drive in an axisymmetric toroidal equi-
librium with circular cross section. Combined infernal
and interchange drive have been investigated previously
in Refs. [12, 15] in the ideal limit, but equilibria with
qs 6= 1 are out of scope for the resistive studies investi-
gated in the rest of this paper. We also set ra = 0 so
that the low shear region extends to the axis, assuming
a monotonically increasing q-profile, ensuring that the
lower sideband is not resonant. In order to look at the
nature of such resistive infernal modes, we first need to
consider ideal infernal modes, with and without exact
resonance of the fundamental harmonic.

A. Ideal problem in absence of q(rs) = 1 rational
surface, assuming ∆q ∼ ε or larger

We start from Eq. (109), simplifying the term involving
(∆Q2)′ (neglecting spatial variation in the inertia contri-
bution in the (1−m)(∆Q2)′ term) and treating the ideal

problem (χ(m) → 0, χ
(m)
Γ → 0) for qs = 1. Thus

r−m
d

dr

[
r2m+1∆Q2 d

(
r1−mξr(m)

)
dr

]

=

[
13

4

(
r

R0

)2

+ 2(m− 1)s(r)

](
1

q
− 1

)
ξr(m)

− αC+

2
rm, (115)

where s = (r/q)dq/dr. Integrating from 0 to r, and using
BC at r = 0 yields,

r2m+1∆Q2 d
(
r1−mξr(m)

)
dr

=

∫ r

0

dt

[
13

4

(
t

R0

)2

+ 2(m− 1)s(t)

](
1

q
− 1

)
tmξr(m)

−
∫ r

0

dt
αC+

2
t2m. (116)

If there is no rational surface, the left hand side of Eq.
(116) is not singular even as γ → 0. The left hand side
of Eq. (116) provides stabilising field line bending effects
at all radial positions, and it permits the establishment
of marginal stability conditions, where the destabilising
effect comes predominantly from the last term on the
right. As we will see, if on the other hand an exact ratio-
nal surface exists, the only means of obtaining marginal
stability conditions will be if we retain the first term on
the right of Eq. (116), since the left hand side will be
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singular. By avoiding the rational, the pressure must
be reasonably large in order for a mode to be unstable
(since the field line bending term on the left hand side
of Eq. (116) produces a strong stabilising contribution).
We may therefore argue that it could be reasonable to
drop the first integral on the right hand side of Eq. (116)
providing that an exact rational is avoided, the shear is
weak (so (m − 1)s isn’t large), and ∆q isn’t too small.
We will address this approximation in the next subsec-
tion, but currently adopting the approximation and not-
ing that by avoiding the rational we can always neglect

resistive effects in the core (so we can interchange ξ
r(m)
R

and ξr(m)), we now have,

r2m+1∆Q2
d
(
r1−mξ

r(m)
R

)
dr

= −C
+

2

∫ r

0

dt α(t)t2m.

This equation can be integrated again, and we apply
boundary conditions at r = 0, and r = rb. We note that
the outer boundary condition at rb will better defined if
there is a rational, but if there is not, we nevertheless
apply ξr(m)(rb) = 0. It can be shown that the eigenvalue
equation is

1 =
1 +m

2
r−2−2m
b

[
m+ 2 + c

m− c

]
×
∫ rb

0

dr
r−2m−1

∆Q2(r, γ)

(∫ r

0

dv v2mα(v)

)2

. (117)

This yields γ through the definition of ∆Q2, and from
knowledge of γ, the eigenvector can be obtained:

ξr(m)(r) = ξ0r
m−1[1− I(r)/I(rb)],

I(r) =

∫ r

0

dt
t−2m−1

∆Q2(t)

[∫ t

0

dv v2mα(v)

]
(118)

where the constant

ξ0 =
C+

2
I(rb).

The critical point to notice here is that if there is an
exact resonance at r = rs, rs = rb, then as we approach
marginal stability we have ∆Q2(rs)→ 0, and hence

lim
γ→0

ξr(m)(r) = ξ0(r/rs)
m−1H(r − rs), (119)

where we recognise the Heaviside step function H(r −
rs) = 1 for r < rs and H(r − rs) = 0 for r > rs. And, if
there is a rational surface, the marginal stability criterion
γ → 0 occurs only for α→ 0. Hence, if there is an exact
rational, under the approximation we have made in this
section (dropping the first term on the RHS of (116)),
physical marginal stability criteria cannot be obtained.

B. Ideal problem with exact rational surface
q(rs) = 1

We have seen that near marginal stability, for the case
with an exact rational, the eigenfunction has a disconti-

nuity at the rational, but is otherwise smooth, with the
eigenfunction given approximately by Eq. (119). We now
use this knowledge in a more refined ideal model with an
exact rational surface. The first step is to evaluate Eq.
(116) at r = rs. The right hand side of Eq. (116) simply
yields Eq. (96) but now with

ˆδW =

∫ rs

0

dr

[
13

4

(
r

R0

)2

+ 2(m− 1)s(r)

] [
1

q
− 1

]
× rmξr(m)(r)

rm+1
s ξ0

−
∫ rs

0

dr
C+αr2m

2rm+1
s ξ0

.

We note that only the left hand side of Eq. (96) is sensi-

tive to the details of ξr(m) near r = rs. In ˆδW we may

neglect the effects of finite inertia, and hence in ˆδW we
adopt Eq. (119) for ξr(m)(r). Using also rb = rs in C+,
and thus also ξ0 = (C+/2)I(rs) we obtain,

ˆδW =

∫ rs

0

dr
r2m−1

r2m
s

[
1

q
− 1

][
13

4

(
r

R0

)2

+ 2(m− 1)s(r)

]

−
(

1 +m

2

)[
m+ 2 + c

m− c

] [∫ rs

0

dr
αr2m

r2m+1
s

]2

,

(120)

also with c evaluated at rs. The first line in Eq. (120) is
stabilising (assuming monotonically increasing q in 0 <
r < rs), while the second line is the destabilising effect
of infernal drive. The left hand side of Eq. (96) for the
ideal case has already been treated earlier.

The ideal dispersion relation for modes where the gen-
eralised Heaviside step function (119) applies is Eq. (101).

With the new expression of ˆδW given by Eq. (120) we
have generalised Eq. (98) for arbitrary m (but with
qs = 1). Corresponding growth rates (101) are plot-
ted in Fig. 1 for a parabolic pressure profile for which
α(rs) = 4εsβp. Figure 1 plots the growth rate with re-
spect to α(rs) for different poloidal mode number m on
choosing the q-profile of Eq. (107) for ν = 4, ∆ = 0.01,
rs = 0.25, a = 1 and εs = 0.25/3. For m = 1 one can
use Eq. (100) or Eq. (122), with c given by Eq. (12), or
more accurately, Eq. (43) of Ref. [17]. For m > 1 we
solve c numerically, dropping inertia and the last line of
Eq. (82), and applying the boundary condition (84).

As expected, these resonant ideal modes are increas-
ingly stabilised by magnetic shear as m is increased. Such
modes form the basis for resistive infernal modes, the
main features of which will be investigated next.

1. Resistive Infernal Modes

When resistive effects are to be included on the main
rational surface, we require a resistive treatment of the
left hand side of Eq. (96). This has been undertaken for
m = 1 in Ref. [8] in the cylindrical limit, and a generali-
sation with toroidal effects in the layer is reported in Ref.
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FIG. 1: The growth rate of resonant ideal m = n modes, plot-
ted with respect to α(rs) for different m. The plots assume
a parabolic pressure profile, and q-profile given by Eq. (107)
with ν = 4, ∆ = 0.01 and rs = 0.25.

[18]. The toroidal correction involves H of Eq. (114), i.e.

the effect of d/dr(χ(m) +χ
(m)
Γ ) has to be included on the

left hand side of Eq. (96). The resistive dispersion rela-
tion generalised for arbitrary m but qs = 1 can be shown
to be approximately:

1

γI
=
λ9/4

8γ

(
λ3/2 +H

) (
λ3/2 −H

)
λ3

×
Γ

[
(λ3/2−H)(λ3/2+H−1)

4λ3/2

]
Γ

[
(λ3/2+H)(λ3/2−H+1)

4λ3/2 + 1

] (121)

where Γ is the Gamma function, and γI is the ideal

growth rate related to ˆδW by Eq. (101), i.e.

γI
ωA

= − mπ

s(rs)
√

3
ˆδW,

for qs = 1, where again ˆδW is given by Eq. (120) and λ is
given by Eq. (113). If we wish to include resistive effects

on the m+ 1 upper sideband, we reconcile c in ˆδW with
Eq. (88), evaluating the latter at rs. The ideal limit, i.e.
γ = γI in Eq. (121), is obtained in the limit λ� 1 (note
that H ∼ ε for s ∼ ε). The toroidal resistive kink-infernal
mode is obtained for the case where γI = 0 (at marginal
ideal MHD stability conditions), which occurs when the
gamma function on the numerator of Eq. (121) is infinite,
and thus the argument of the gamma function on the
numerator vanishes. The relevant root is λ3/2+H−1 = 0.
The tearing-infernal mode is obtained for λ� 1, though
the inclusion of H makes the derivation of convenient
analytic forms (by taking suitable limits of the gamma
functions) slightly awkward. Nevertheless, it is noted
that H yields a stabilising effect in all regimes providing
α/s > 0. Either hollow pressure profiles or hollow q-
profiles instead produce a destabilising effect via H.

In this section we will separately examine the effects
of resistivity on the main rational surface and the up-

per sideband. We choose to investigate m = 1 resistive
modes, with coupling to the m + 1 = 2 tearing mode.
Cases with m > 1 are no more difficult to treat analyt-
ically than m = 1 now that the ideal resonant problem
has been explored, and shown in Fig. 1. We choose to
highlight specifically m = 1 to make contact with the re-
sistive toroidal coupling problem investigated previously
in Ref. [19] and subsequent papers. The infernal mode
approach developed in the present paper provides the
advantage of an arguably more transparent and simple
calculation than that of Ref. [19]. The simplification in
the present work is due to the ordering of the magnetic
shear at the outset, which essentially means that loga-
rithmic b contributions, which are explicit in the general
toroidal contribution of Eq. (103), are algebraically han-
dled due to ∆q ∼ s ∼ ε. In addition, due to the order-
ing expansion developed at the start, the main harmonic
displacement functions, and magnetic fields (including
the island contributions) are an order (in ε) larger than
the sidebands, and resultingly the sideband equations are
those of the cylinder in the sideband-resonance region.
The self-consistent resistive infernal mode approach de-
veloped here offers hope for inclusion of further physics
to be added in future work.

We choose the q-profile deployed in Ref. [7], i.e. Eq.
(107) for qs = 1. For arbitrary m we would use Eq. (120),
which for m = 1 is (see also Eq. (100)),

ˆδW = −ε2s
{[

3 + c

1− c

]
β2
p −

13ν∆

16(4 + ν)

}
(122)

with c calculated numerically via Eq. (88) and preceding
equations if resistive effects are required on the upper
sideband rational surface. If the upper rational surface
is treated in the ideal limit we choose to solve c numeri-
cally, dropping inertia and the last line of Eq. (82), and
applying the boundary condition (84). To make contact
with the most well know ideal results, in Fig. 2 we take
ν = 2, and we choose ∆ = 0.1 and rs = 0.25. In that
plot we adopt a parabolic pressure profile, and Lundquist
number S = 107 on both rational surfaces. The varia-
tion in α(rs) = 4εsβp, and the parameters and profiles
just mentioned, fully defines the equilibrium, including
H. The results of three physical models are visible in
Fig. 2, which plots normalised growth rate obtained from
the roots of Eq. (121) verses α(rs). If the main harmonic
is treated in the ideal limit, we solve Eq. (101) (which
is more convenient than solving Eq. (121) in the limit
S → ∞), but we may again handle the upper sideband
in the ideal or resistive limit by calculating c appropri-
ately, as described above.

The most stable case in Fig. 2 is where both the main
rational surface and its sideband are treated in the ideal
limit. Slightly more unstable is the case where the main
mode is treated in the ideal limit while the upper side-
band includes resistive effects on its own rational surface;
this model is stable for small α(rs) because, for the cho-
sen equilibrium, the uncoupled m+ 1 mode is stable (to
current gradients). This can be verified by solving Eq.
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FIG. 2: The growth rate of m = 1 resonant infernal modes
plotted as a function of α(rs), for parabolic pressure profile
and for a q-profile given by Eq. (107) with ν = 2, ∆ = 0.1
and rs = 0.25. Different curves show results were the main
harmonic and upper sideband are treated in different combi-
nations of ideal or resistive limits.

(86) and evaluating the sign of ∆′R (negative if stable).
The next most unstable case is where the main harmonic
is treated in the resistive limit, but the upper sideband is
treated in the ideal limit. For the particular equilibrium
deployed in Fig. 2, that case is indistinguishable from the
most unstable case where both surfaces are treated in the
resistive limit. It is verified that near ideal marginal sta-
bility the growth rate of the most unstable case scales
with S as γ ∼ S−1/3 and for small α(rs) one obtains
γ ∼ S−3/5.

The results shown in Fig. 3 differ from Fig. 2 only
because a different q-profile has been selected. In partic-
ular, we assume Eq. (107) once again in Fig. 3 but this
time with ν = 4, and we choose ∆ = 0.02 and rs = 0.25.
The q-profile is similar to that used for the ideal calcula-
tions of Fig. 1, and indeed the must stable curve shown
in Fig. 3 is seen to be similar to the m = 1 curve of Fig.
1. This most stable case is of course where both rational
surfaces are taken as ideal. The next most stable case
(the red curve) shown in Fig. 3 is where the main har-
monic is taken as ideal, but the upper sideband is treated
resistively. Unlike in Fig. 2, this latter case is unstable
for all α(rs). The reason for this is that the chosen q-
profile drives the m + 1 mode unstable via the current
gradient. In fact, the growth rate for the red curve in the
limit α(rs) → 0 is identical to that obtained by solving
the uncoupled cylindrical equation for the upper side-
band, Eq. (86), evaluating ∆′R from that equation, and
substituting the result into the left hand side of Eq. (87),
and rearranging for γ/ωA. The next most unstable case
is where the main mode is treated in the resistive limit,
but the upper sideband is treated in the ideal limit. Due
to the fact that ∆′R > 0 for the upper sideband, the most
unstable case (where both surfaces are treated in the re-
sistive limit) is this time visibly more unstable than the
case where the main mode is resistive and the sideband
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m Res., m+1 Ideal

m Ideal, m+1 Res.

m Ideal, m+1 ideal
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FIG. 3: The growth rate of m = 1 resonant infernal modes
plotted as a function of α(rs), for parabolic pressure profile
and for a q-profile given by Eq. (107) with ν = 4, ∆ = 0.02
and rs = 0.25. Different curves show results were the main
harmonic and upper sideband are treated in different combi-
nations of ideal or resistive limits.

is ideal. It is important to point out that the four cases
would most likely be more distinct if the stabilising ef-

fect associated with ∆ξ
r(m)
Γ had been self consistently

included. The effects of compression on resistive infernal
modes, and the coupling to sound waves, will be investi-
gated in future work.

Finally it is pointed out that it is possible to calculate
m > 1 cases, and make plots similar to those shown in
Figs. 2 and 3. The curves would be shifted to the right
and stretched, relative to the m = 1 cases shown here,
as expected from the ideal cases shown in Fig. 1, but the
qualitative features of such simulations would be similar
to those seen in Figs. 2 and 3. Of course, such results
are made possible by the novel analytic identification of
ideal m ≥ 1 resonant infernal modes.

VII. CONCLUSIONS

This paper attempts to treat the fundamentals of in-
ternal long wavelength pressure driven MHD instabili-
ties in a resistive, axisymmetric, toroidal plasma equilib-
rium. We use the term ‘long wavelength’ to distinguish
from ballooning instabilities, which are the only pressure
driven modes not covered in this derivation (though infer-
nal modes do have certain ballooning features, and indeed
we treat interchange modes which are seen by some as
a short wavelength, secular, limit of ballooning modes).
From a general global set of equations we have been able
to recover the known analytic descriptions of interchange
modes, internal kink instabilities, non-resonant infernal
modes, as well as identify new resonant infernal mode in-
stabilities. Concerning these instabilities, resistive effects
have been taken into account on the rational surfaces of
the coupled harmonics. The derivation relies on an ex-
pansion which assumes the magnetic shear is quite small,
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and it relies on an inverse aspect ratio expansion of gener-
alised perturbed displacement variables which are valid
in a resistive plasma. A great deal of detail is given,
which is justified as follows: the derivation of pressure
driven plasma instabilities in a torus, either ideal or re-
sistive, is very involved. The step by step guide in this
paper fills, we think, a significant gap in papers and text-
books, for example we provide a simple complete deriva-
tion of pressure driven internal kink modes in a torus.
But the higher-level set of equations are shown to de-
scribe also interchange instabilities and infernal modes.
The latter are classified as non-resonant and resonant in-
fernal modes, the properties of which are explored and
exploited for a dedicated study into fully resistive infer-
nal modes. Potential cascades of such modes are likely to
be relevant for sawteeth, together with other non-linear
processes [20]. This will likely be explored in the future,
advanced further by inclusion of modes with faster radial
oscillations.

While an objective of this paper has been to derive a
broad set of known, and new, analytic results, the equa-
tions are presented in a general form for the future estab-
lishment of an efficient resistive eigenvalue solver. This
will be required in order to investigate items that were
out of scope in this paper, such as treating infernal modes
with qs > 1 or qs < 1 where the drive or damping from
interchange physics changes the nature of the eigenfunc-
tions [15]. In particular it would enable investigation into
the weakened stability properties of internal transport
barriers by resistive effects, should fundamental rational
surfaces exist at qs > 1. Also to be explored in more
detail in future work will be the effects of compression
and the coupling of sound waves with resistive infernal
modes. Collecting these improvements in the linear the-
ory of resistive infernal modes will establish a platform
for a non-linear treatment that will investigate the po-
tential seeding [21, 22] of neoclassical tearing modes by
resistive infernal modes. The robust theoretical platform
presented here, with its consistent expansions in inverse
aspect ratio and magnetic shear, should enable the in-
clusion of further physics attributes in future work, such
as large equilibrium shear flows and coupling with zonal
modes [13]. Inclusion of such advanced physics is likely
intractable in previously presented coupled toroidal prob-
lems where the magnetic shear is taken to be large every-
where from the outset [19]. We therefore hope that the
present contribution will be a useful detailed reference
for long wavelength ideal and resistive instabilities in a
torus, and a platform for deeper studies.

VIII. APPENDIX

Here we show that ∆b = 8σ[1 + O(∆q/qs)] for arbi-
trary rs and q-profile. This is a necessary result for re-
producing in this paper the m = 1 internal kink prob-
lem of Ref. [7]. We allow the q profile to adopt the
form q(r) = qs[1 − ∆f(r)] where ∆ is a constant such

that ∆/qs � 1. f(r) has the property f(0) = 1 and
f(rs) = 0 but is otherwise arbitrary, and it is seen
that ∆q(r) = −qs∆f(r). Hence the magnetic shear is
s = −∆rdf/dr to leading order in ∆. Also, σ, defined by
Eq. (104), is to leading order in ∆:

σ = 2∆

∫ rs

0

dr

rs

(
r

rs

)3

f(r). (123)

To obtain b we require the solution of

r2 d
2ξ+

dr2
+ 3r

dξ+

dr
− 3ξ+ = −4r2 df

dr
∆
dξ+

dr
(124)

which is the upper sideband equation of (82) for m = 1
in the absence of inertia and the main harmonic (i.e. the
homogeneous form). We write the solution ξ+ = ξ+

0 +
∆ ξ+

1 , where ξ+
1 /ξ

1
0 ∼ O(1). The boundary conditions

are ξ+
0 (0) = 0 and ξ+

1 (0) = 0. Clearly ξ+
0 (r) = ξ

+

0 r/rs,

with ξ
+

0 a constant, since this satisfies Eq. (124) with the
right hand side being zero at order ∆0. We now consider
Eq. (124) at the next order, multiplying by r2 we may
write it in the form,

∆
d

dr

[
r5 d

dr

(
ξ+
1

r

)]
= −4r4 df

dr
∆
dξ+

0

dr
.

Integrating from 0 to rs, substituting ξ+
0 = ξ

+

0 r/rs and
Eq. (123), applying the boundary conditions, and inte-
grating by parts gives:

rs

ξ
+

0

∆
dξ+

1

dr

∣∣∣∣∣
rs

− ∆

ξ
+

0

ξ+
1 (rs) = 8σ.

The left hand side of the last equation can be seen to be
∆b, where b = 1 + ∆b. This is shown via the definition
of b:

b =
r

ξ+

dξ+

dr

∣∣∣∣
rs−δ

=
r

ξ+
0

dξ+
0

dr

∣∣∣∣
rs−δ

+
r

ξ+
0

∆
dξ+

1

dr

∣∣∣∣
rs−δ

− r∆ξ+
1(

ξ+
0

)2 dξ+
0

dr

∣∣∣∣∣
rs−δ

+O(∆2)

= 1 +
rs

ξ
+

0

∆
dξ1
dr

∣∣∣∣∣
rs−δ

− ∆

ξ
+

0

ξ+
1 (rs − δ) +O(∆2).

Hence, it is seen that in the limit δ → 0,

∆b = 8σ

independent of rs and the q-profile, providing that ∆
is small, i.e. ∆q/qs ∼ ε. The fact that the result is
independent of q(r) and rs is a reason that the infernal
mode equations are obtained in such a convenient and
general form.
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