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Abstract— The wide adoption of wireless devices in the
Internet of Things requires controllers that are able to operate
with limited resources, such as battery life. Operating these
devices robustly in an uncertain environment, while managing
available resources, increases the difficultly of controller design.
This paper proposes a robust self-triggered model predictive
control approach to optimize a control objective while managing
resource consumption. In particular, a novel zero-order-hold
aperiodic discrete-time feedback control law is developed to
ensure robust constraint satisfaction for continuous-time linear
systems.

I. INTRODUCTION

The operation of devices in the Internet of Things (IoT)
networks and wireless sensing systems are strongly impacted
by resource factors, including battery life and hardware
longevity. In order to avoid unnecessary resource consump-
tion caused by extra device triggers/updates, such as the
cold-boot power of a sensor, the controllers with aperiodic
triggers can be deployed under self-triggered and event-
triggered control schemes [1]–[4]. In particular, the control
action under an event-triggered scheme is updated reactively
by monitoring a trigger condition, whereas a self-triggered
scheme updates proactively by planning the next trigger
instant in advance, leaving sensors and controllers in idle
mode. Due to the limitation of the resource factors, especially
battery life, a self-triggered scheme can be preferable and is,
therefore, the research object of this work. More applications
refer to [5] [2, Section 4].

On top of the decision of triggering time sequences,
the operation of a self-triggered device in an uncertain
environment requires extra consideration of uncertainty prop-
agation due to the lack of state measurement between two
consecutive triggers. Most works decouple the triggering
time decision from uncertainty propagation. For example, a
tube-based method [6], [7] and a Lipschitz constant based
method [8] have been applied to quantify the uncertainty
evolution. In discrete-time systems, the triggering time se-
quence has been chosen to maximize the duration of open-
loop operation [7] or by monitoring the discrepancy between
nominal performance and actual performance [9]. Similar
strategies have been applied to continuous time systems,
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where either the system is discretized [10] or the actual
state is compared to a nominal state with continuous state
measurements [8].

In this work, we consider a resource-aware self-triggered
control problem for an uncertain continuous-time linear sys-
tem, where, to the best of our knowledge, no exisiting results
can be directly applied in a numerical reliable way. Notice
that because the system is confined by limited resource
factors such as battery life, continuous state measurement is
impractical. Instead, we unify the triggering time sequence
decision, feedback gain and the control input selection within
one optimization problem. The main contributions of this
work are summarized as follows:
• a novel decomposition of the dynamics into those

linked to process noise and those to feedback dynamics
is proposed. Accordingly, we present the continuous-
time ellipsoidal set propagation dynamics driven by a
discret-time affine feedback control;

• a robust resource-aware self-triggered MPC scheme is
proposed that enables a unified decision of triggering
time sequence and robust control input sequence;

• numerically stable implementation details are provided.
Outline Even though this paper study uncertain linear

dynamics, to better introduce the concept, Section II starts
with reviewing deterministic resource-aware model predic-
tive control in a generic form, alongside differential inequali-
ties and some necessary results from ellipsoidal calculus. The
main results are elaborated in Section III, where dynamics
driven by the proposed control law are summarized in
Lemma 1. A numerical validation of the proposed controller
is given in IV, followed by a conclusion in Section V.

Notation The Minkowski sum of two sets X,Y ⊂ Rn is
denoted by X ⊕ Y = {x + y | x ∈ X, y ∈ Y}. The set
of symmetric positive (semi-)definite matrices in Rn×n is
denoted by (Sn+)Sn++. An ellipsoid in Rn centered at q ∈
Rn is defined as E(q,Q) := {q + Q

1
2 v | v>v ≤ 1} with

Q ∈ Sn++. The support function of a convex set X ∈ Rn is
defined by V [X](c) := maxz{c>x|x ∈ X} for all c ∈ Rn.
The notation Zba = {z ∈ Z | a ≤ z ≤ b} is used to denote
integer ranges and we use the notation 0 to denote the zero
matrix. The set of compact subsets of Rn is denoted by Kn,
and the subset of compact convex subsets Kn by KnC.

II. PRELIMINARY

A. Deterministic Resource-aware Model Predictive Control
The dynamic of a linear time invariant (LTI) system in

continuous time is given by

∀t ∈ [0,∞),
dx(t)

dt
= Ax(t) +Bu(t) (1)



with coefficient matrices A ∈ Rnx×nx and B ∈ Rnx×nu ,
state x(·) : [0,∞)→ Rnx , control input u(·) : [0,∞) ∈ Rnu .
Here, the state and control inputs are subject to constraints

∀t ∈ [0,∞), x(t) ∈ X , u(t) ∈ U

with constraint sets X ⊆ Rnx and U ⊆ Rnu .
In the context of self-triggered control scheme, the control

inputs are changed at triggering time instances {tk}N−1
k=0 .

Therefore, one can represent the zero-hold control inputs by
using the direct optimal control approach [11] over the time
horizon [0, tN ], i.e.,

u(t) =

N−1∑
k=0

vk · ζk(t, tk, tk+1), (2)

with vk ∈ Rnu the coefficients, and ζk ∈ L2[t0, tN ], k ∈
ZN−1

0 model the triggering property with a piece-wise con-
stant function

ζk(t, tk, tk+1) =

{
1 t ∈ (tk, tk+1]

0 otherwise.
(3)

The update of the control input at each triggering time
is confined by a resource factor [12], in practice, which
can model the battery and bandwidth of the network. This
resource defined by r ∈ Rnr is recharged at a constant rate
ρ until saturation, i.e.,

∀t ∈ [tk, tk+1), ṙ(t) = h(r − r(t))ρ,

where r is a saturation value and h(·) is the heaviside
function with h(s) = 1 if s > 0 and 0 elsewhere. When the
agent is triggered to update the control input, the resource
is discharged by an amount η(∆k) to pay the update cost.
Thus, the resource at triggering time instants {tk}N−1

k=0 is

r(t) =


r0 t = t0

lim
t→t−k

r(t)− η(∆k) t ∈ {tk}N−1
k=1

(4)

with an initially available resource r0 at t0. Here, t → t−k
represents the left limits, i.e., t→ tk and t < tk. Moreover,
the resource r is further lower bounded by r ∈ [r, r]. For
the sake of compactness, we use the notation v ∈ RNnu :=
[v>0 , v

>
1 . . . , v>N−1]> to stack the control coefficients, and

define the triggering time interval ∆k := tk+1 − tk and
use the notation ∆ = [∆0, ...,∆N−1]>. And we denote
g(r(tk),∆k) := min {r(tk) + ρ∆k − η(∆k), r}.

Accordingly, the resource-aware model predictive control
(MPC) problem [2] can be summarized as

min
x(·),v,∆

M(x(tN )) +

N−1∑
k=0

∫ tk+1

tk

l(x(τ), vk)dτ (5a)

s.t. x(t0) = x0, r(t0) = r0, (5b)

∀ t ∈ [t0, tN ],
dx(t)

dt
= Ax(t) +Bu(t), (5c)

∀ t ∈ [t0, tN ], x(t) ∈ X , u(t) ∈ U , (5d)
∀ k ∈ {0, 1, ..., N − 1}

r(tk+1) = g(r(tk),∆k), (5e)
r(tk+1) ∈ [r, r], (5f)

∆k ∈ [∆, ∆], (5g)

where l(·, ·) and M(·) in (5a) are the stage and terminal
costs respectively, the saturated resource dynamics (5e) is a
simplified yet equivalent formulation of the resource dynam-
ics (4) [2]. The constraints of the triggering time interval
in (5g) protect the system from becoming Zeno/frozen,
meaning that the triggering time ∆ is zero/infinite. The initial
state and resource are given by (5b).

In the receding horizon scheme, a resource-aware self-
triggered agent can update its control input when its resource
is sufficiently high to stay above the lower bound r. Other-
wise, it must wait until enough resource is available. Once
the controller is triggered at the current time instance, the
resource-aware self-triggered controller solves (5) to plan the
next triggering time and the associated control input.

B. Differential Inequality

Let us consider the uncertain continuous time autonomous
dynamics ẋ(t) = f(x(t), w(t)) perturbed by w ∈ W for the
compact set W ⊂ Rnw . For a given set of initial states X0

at t1, we denote the reachable set at time t2 > t1 as

X(t2) :=

ξ ∈ Rnx

∣∣∣∣∣∣∣
∃ w(t) ∈ W, ∀ t ∈ [t1, t2],

ẋ(t) = f(x(t), w(t)),

x(t1) ∈ X0, x(t2) = ξ.

 .

Moreover, we define the set-valued mapping

Γf (c,X) :=
{
f(x,w)

∣∣c>ξ = V [X](c), x ∈ X, w ∈ W
}
.

The convex enclosure of the reachable set can be character-
ized by the following theorem.

Theorem 1 [13, Theorem 3] Let Y : [t1, t2] → Knx

C be a
set-valued function such that

1) the function V [Y (·)](c) is Lipschitz continuous on
[t1, t2] for all c ∈ Rnxand

2) the set-valued function Y satisfies the differential in-
equality

a.e. t ∈ [t1, t2], V̇ [Y (t)](c) ≥ V [Γf (c,X)](c)

with V [Y (t1)](c) ≥ V [X1](c) for all c ∈ Rnx .
Then, Y is an enclosure of the reachable tube of X(t) for
all t ∈ [t1, t2], i.e., X(t) ⊂ Y (t), ∀ t ∈ [t1, t2].

C. Ellipsoidal Calculus

This section recaps some useful results from ellipsoidal
calculus [14]. The support function of an ellipsoid E(q,Q)
is given by

V [E(q,Q)](c) = c>q +
√
c>Qc .

This value is obtained at the boundary of the ellipsoid as

Z[E(q,Q)](c) := arg max
z
{c>x|x ∈ E(q,Q)} =

Qc√
c>Qc

.



The Minkowski sum of two ellipsoids is not necessarily an
ellipsoid, and it can be outer approximated by ∀ λ ∈ (0, 1),

E(q1, Q2)⊕ E(q2, Q2) ⊂ E(q1 + q2,
Q1

λ
+

Q2

1− λ
). (6)

III. MAIN RESULTS

In this paper, we consider the following uncertain linear
time-invariant dynamics

dx(t)

dt
= Ax(t) +Buu(t) +Bww(t) , (7)

with matricies Bu ∈ Rnx×nu , Bw ∈ Rnx×nw , and un-
certainty w(t) ∈ E(0, Qw(t)) for Qw(·) ∈ Snw

++. In the
following, we will derive the continuous-time dynamics of
the ellipsoidal outer approximation of the reachable set X(·)
driven by a discrete-time feedback control law. Notice that
while the ellipsoidal outer approximation of a reachable set
under continuous-time feedback control has been widely
explored [15]–[18]. However, because the triggering time is
a decision variable in a self-triggered scheme, we observe
that a direct application of most previous works is numeri-
cally unstable when used in an optimization algorithm. This
motivates us to adopt differential inequality in this work.

In self-triggered schemes, the control input is only allowed
to change when the system is triggered. In particular, if the
system is triggered at tk with its state contained in the reach
set X(tk), which in turn is bounded within E(qk, Qk), we
propose to update its input via a nominal term vk and a
feedback term K as ∀ t ∈ (tk, tk+1],

uk(t, x) = vk +Kx, x ∈ E(qk, Qk). (8)

This control input must then remain constant until its next
trigger at tk+1. Before delving into the details of the
proposed controller, we summarize the mechanism to first
give an intuitive general viewpoint. Given any sequence of
{vi}N−1

i=0 , {ti}Ni=0 and a feedback control law K, we can
define the chain of reachable sets depicted in Figure 1.

Q0

Qfb,0

Qop,0

⊕
Q1

Qfb,1

Qop,1

⊕
. . .

t0 t1 t2

time direction

feedback

open loop

over
bound

feedback

open loop

(t0, t1)

Fig. 1: Chain of ellipsoidal reachable set propagation (The tiny blue dots
about Q0, Q1 is exaggerated to better depict that the accumulation of
Qop,0, Qop,1 starts from zeros (See boundary condition in Lemma 1))

Without loss of generality, we consider the triggering time
instances {tk}2k=0 shown in this figure, and the following two
ingredients govern the evolution of the reachable set:
• The reachable set dynamics between two consecutive

triggers: Consider the time interval (t0, t1), the reach-
able set dynamics are decomposed into a closed-loop
(i.e. feedback) component (the path between the green

ellipsoids Q0 and Qfb,0 in Figure 1) and an open-loop
component (the path between the blue dot and Qop,0 in
Figure 1), each of which evolves independently due to
the self-triggered mechanism. These dynamics will be
summarized in Lemma 1.

• The reachable set outer-approximation at triggering
time instances: Consider the trigger at t1, the reachable
set developed over the interval (t0, t1) is outer approx-
imated by an ellipsoid E(q1, Q1) (Big green ellipsoid
Q1 in Figure 1).

Based on the discussion above, characterization of the
reachable set propagation between two consecutive triggers
is vital to the MPC design. The propagation of the reachable
set outer approximation between two consecutive triggers
(tk, tk+1] is stated in the following.

Lemma 1 Let X(tk) ⊆ E(qk, Qk) and dynamics (7) be
driven by control law (8). The reachable set X(t) for all
t ∈ [tk, tk+1] is outer bounded by

X(t) ⊆ E(qk(t), Qfb,k(t))⊕ E(0, Qop,k(t, λk(t))), (9)

where λk(·) : R → R+ is any positive real-valued function
on [tk, tk+1] and the shape of the outer approximation is
characterized by

dqk(t)

dt
= Aqk(t) +Bvk (10a)

dQfb,k(t)

dt
= AQfb,k(t) +Qfb,k(t)A>

+BuKQcr,k(t)> +Qcr,k(t)(BuK)> (10b)
dQcr,k(t)

dt
= AQcr,k(t) +BKQk (10c)

dQop,k(t, λk(t))

dt
= AQop,k(t, λk(t)) +Qop,k(t, λk(t))A>

+λk(t)Qop,k(t, λk(t)) +
BwQw(t)B>w

λk(t)
(10d)

with Qfb,k(tk) = Qcr,k(tk) = Qk, Qop,k(tk, λk(tk)) = 0.

Proof. In our proof, we first derive the decomposition in (9) and
then, work out the dynamics (10) for k-th interval [tk, tk+1].

Reachable set decomposition: Note that the reachable set driven
by control law (8) is

X(t) :=ξ ∈ Rnx

∣∣∣∣∣∣∣
∃w(τ) ∈ E(0, Qw(τ)), ∀ τ ∈ [tk, t],

ẋ(τ) = Ax(τ) +Bu(vk +Kx̃) +Bww(τ)

x(tk) = x̃ ∈ E(qk, Qk), x(t) = ξ


=

{
ξ ∈ Rnx

∣∣∣∣ẋ(τ) = Ax(τ) +Bu(vk +Kx̃)

x(tk) = x̃ ∈ E(qk, Qk), x(t) = ξ

}
︸ ︷︷ ︸

Xfb,k(t)

(11)

⊕

ξ ∈ Rnx

∣∣∣∣∣∣∣
∃ w(τ) ∈ E(0, Qw(τ)), ∀ τ ∈ [tk, t],

ẋ(τ) = Ax(τ) +Bww(τ),

x(tk) = 0 , x(t) = ξ

︸ ︷︷ ︸
Xop,k(t)

,

where Equality (11) follows the linearity of the dynamics (7).



Dynamics of feedback component: The set Xfb,k(t) can be
rewritten as

Xfb,k(t) :=

ξ ∈ Rnx

∣∣∣∣∣∣∣∣
∃ z ∈ Rnx , z>z ≤ 1, ∀ τ ∈ [tk, t],

ẋ(τ) = Ax(τ) +Bu(vk +Kx̃)

x(tk) = x̃ = qk +Q
1
2
k z, x(t) = ξ



=



eAtqk +

∫ t

0

eA(t−τ)Buvkdτ︸ ︷︷ ︸
(a)

+

∫ t

0

eA(t−τ)Budτ(KQ
1
2 z)︸ ︷︷ ︸

(b)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
z>z ≤ 1


, (12)

where (12) utilizes the explicit solution of ẋ(t) = Ax(t) +Bu(t).
Notice that, by definition of an ellipsoid, Xfb,k(t) is also an
ellipsoid, whose center is given by the term (a) and the shape
is defined by the term (b). For simplification, we denote it by
E(qk(t), Qfb,k(t)). In particular,

qk(t) = eAtqk +

∫ t

0

eA(t−τ)Budτvk

=⇒ dqk(t)

dt
= Aqk(t) +Buvk ,

which is the dynamics (10a). Moreover, we denote B̃(t) :=∫ t
0
eA(t−τ)dτBu such that we have

Qfb,k(t) = B̃(t)KQk
(
B̃(t)K

)>
=⇒ dQfb,k(t)

dt
= AQfb,k(t) +Qfb,k(t)A>

+BuKQk
(
B̃(t)K

)>
+ B̃(t)KQk︸ ︷︷ ︸

Qcr,k(t)

(BuK)>

dQcr,k(t)

dt
= AQcr,k(t) +BuKQk ,

which recovers (10b) and (10c).
Dynamics of open-loop component: The remaining proof

will construct an outer approximation of Xop,k(t) with ellipsoid
E(0, Qop,k(t, λk(t))). Note that the autonomous dynamics consid-
ered in the reachable set Xop,k(t) are

ẋ(t) = fw(x,w) := Ax(t) +Bww(t).

In order to apply Theorem 1, we introduce support function

V [Γfw (c, E(0, Qop,k(t, λk(t))) )](c)

= max
w∈E(0,Qw(t))

c> (AZ[E(0, Qop,k(t, λk(t)))](c)) +Bw)

= max
w∈E(0,Qw(t))

c>
(
A

Qop,k(t, λk(t))c√
c>Qop,k(t, λk(t))c

+Bww

)

= c>A
Qop,k(t, λk(t))c√
c>Qop,k(t, λk(t))c

+
√
c>BwQw(t)B>w c .

We apply Theorem 1 to outer approximate the shape of the
E(0, Qop,k(t, λk(t))), which yields

V̇ [E(0, Qop,k(t, λk(t)))](c) ≥

max
w∈E(0,Qw)

c>
(
A

Qop,k(t, λk(t))c√
c>Qop,k(t, λk)c

+Bww

)
=⇒1

2
c>Q̇op,k(t, λk(t))c ≥ c>AQkc

+
√
c>BwQw(t)B>w c

√
c>Qop,k(t, λk(t))c.

By applying the tight arithmetic-geometric mean inequality [19],
we reformulate the second inequality above as

1

2
c>Q̇op,k(t, λk(t))c

≥c>AQkc+ inf
λ>0

1

2λ
c>BwQwB

>
w c+

λ

2
c>Qop,kc .

(13)

According to Theorem 1, we can construct a ellipsoidal outer
approximation of Xop,k(t) by enforcing the following inequality

c>Q̇op,k(t, λk(t))c

=
1

2

(
c>Q̇op,k(t, λk(t))c+ (c>Q̇op,k(t, λk(t))c)>

)
︸ ︷︷ ︸

(d)

≥ inf
λ>0

c>

AQop,k(t, λk(t)) +Qop,k(t, λk(t))A>

+
BwQw(t)B>w

λk(t)
+ λk(t)Qop,k(t, λk(t))

 c ,

where the decomposition in (d) is used to build a symmetric form
of Qop,k(t) from the asymmetric form that appeared in (13). The
final step is to get rid of the inequality and the infimum operator.
Note that if there exists λk(·) : R → R+ such that the following
dynamics is satisfied, then the inequality (13) is satisfied.

dQop,k(t, λk(t))

dt
=AQop,k(t, λk(t)) +Qop,k(t, λk(t))A>

+
BwQw(t)B>w

λk(t)
+ λk(t)Qop,k(t, λk(t)).

This recovers the dynamics (10d), which results in the inclusion
Xop,k(t) ⊂ E(0, Qop,k(t)) by construction, we thus have

X(t) ⊆ E(qfb,k(t), Qfb,k(t))⊕Xop,k(t)

⊂ E(qfb,k(t), Qfb,k(t))⊕ E(0, Qop,k(t, λk(t)))

for any t ∈ [tk, tk+1], which concludes the decomposition (9). �

Remark 1 Lemma 1 indicates that the evolution of the
uncertainty between two consecutive triggers [tk, tk+1] can
be decomposed into two dynamic parts. Both are inde-
pendently driven by the zero-order-hold feedback gener-
ated at tk and by the open-loop accumulation of the
disturbance w(t), respectively. The former corresponds to
E(qk(t), Qfb,k(t)) and the latter is an outer approximation
given by E(0, Qop,k(t, λk(t))). Moreover, as the trigger
occurs at tk, Qcr,k(t) can be perceived as the correlation
between the uncertainty at t and tk, see (10c). This, in terms,
reflects the self-triggered property.

A. Robust Resource-Aware MPC

This section summarizes a robust MPC controller that
incorporates the dynamics derived in the last section into
the self-triggered MPC scheme. In particular, the controller
optimizes the nominal performance while ensuring a robust
input/state constraint satisfaction. In general, the nominal
inputs {vk}N−1

k=0 , the feedback control K, and the trigger-
ing time instances {tk}Nk=1 are determined by solving the
following problem:

minimize
K,v,∆,qfb,λ(·)
Qfb,Qcr,Qop,κ

M(q(tN )) +

N−1∑
k=0

∫ tk+1

tk

l(qfb,k(τ), vk)dτ



subject to

X(t0) = E(q0, Q0), r(t0) = r0, (14a)
∀ t ∈ (t0, tN ), ∀ k ∈ ZN−1

0 ,

X(t) ⊆ X , vk +KX(tk) ⊆ U , r(tk+1) ∈ [r, r]

r(tk+1) = g(r(tk),∆k), ∆k ∈ [∆,∆],

(14b)



∀ t ∈ [tk, tk+1], ∀ k ∈ ZN−1
0 ,

X(t) ⊆ E(qk(t), Qfb,k(t))⊕ E(0, Qop,k(t, λk(t))),

dqfb,k(t)

dt
= Aqfb,k(t) +Bvk , qfb,k(tk) = qk,

dQfb,k(t)

dt
= AQfb,k(t) +Qfb,k(t)A>,

+BuKQcr,k(t)> +Qcr,k(t)(BuK)>,

dQcr,k(t)

dt
= AQcr,k(t) +BKQi,

dQop,k(t, λk(t))

dt
= AQop,k(t, λk(t)),

+Qop,k(t, λk(t))A> + λk(t)Qop,k(t, λk(t)),

+
BwQw(t)B>w

λk(t)
, Qop,k(tk, λk(tk)) = 0,

Qfb,k(tk) = Qcr,k(tk) = Qk,

(14c)

∀ tk with k ∈ ZN−1
1 :

Qk =
Qfb,k−1(tk)

κk
+
Qop,k−1

1− κk
, κk ∈ (0, 1).

(14d)

The initial conditions are enforced by (14a) with poten-
tially uncertain measurements. The dynamics summarized in
Lemma 1 is enforced in constraints (14c). (14d) models how
the reachable sets from adjacent intervals connect to each
other (see the over bound arrow in the middle of Figure 1).
In particular, the reachable set in time interval [tk−1, tk] links
to the reachable set in [tk, tk+1] at tk, where the ellipsoid
Qk is used to generate the outer approximation of

E(qk(t), Qfb,k(t))⊕ E(0, Qop,k(t, λk(t))).

Finally, we summarize a few important notes to enable an ef-
ficient implementation of the proposed MPC controller (14).
• To solve the problem within a direct optimal control

scheme, the integration of the ordinary differential equa-
tions can be achieved by numerical integration meth-
ods such as the Runge-Kutta method or the colloca-
tion method [?]. In this case, the collocation method is
preferable because the integration is linear with respect
to the triggering time difference {∆k}N−1

k=0 , while other
numerical integration methods depend on high order terms
of {∆k}N−1

k=0 , which results in low numerical stability.
• When the feasible sets X , U are ellipsoidal, equation (6)

can be used to determine the satisfaction of both con-
straints. If these sets are polytopic, then calculus of support
functions can be applied. Each linear constraint can be re-
written as
∀x ∈ E(qk(t), Qfb,k(t))⊕ E(0, Qop,k(t, λk(t))), c>x ≤ C,
=⇒ c>qk + V [E(0, Qfb,k(t))](c)

+ V [E(0, Qop,k(t, λk(t)))](c) ≤ C.

Remark 2 If the sampling time is fixed, the proposed robust
controller will coincide with the discrete-time ellipsoidal

robust MPC method by discretizing the continuous time
dynamics (7) explicitly. To see this, recall that the first
component in (9), E(qk(t), Qfb,k(t)) is derived from the
discrete-time explicit solution (12). Meanwhile, the second
component in (9), E(0, Qop,k(t, λk(t))) coincides with the
ellipsoidal additive process noise generated by explicit dis-
cretization [20, Theorem 5.1 and Remark 5.2]. Hence, the
proposed robust controller will not introduce extra conser-
vativeness in comparison with the state-of-art discrete-time
ellipsoidal robust MPC.

IV. NUMERICAL RESULTS

The proposed algorithm has been tested on a double
integrator with state x(t) = (x1(t), x2(t)), whose dynamics
are

dx(t)

dt
=

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t) +

[
0
1

]
w(t).

The controller is designed to track a reference signal os-
cillating between 1 and −0.2 by choosing the stage cost
to be l(x(t), u(t)) = 10(x1(t) − xref(t))2, where xref is
the tracking reference. The recharging rate is 0.8 with a
trigger cost of 0.4. To show the effectiveness of the proposed
algorithm, we consider two different cases. In the first case,
the disturbance w(t) is bounded within [−0.04, 0.04], and in
the second case, w ∈ [−0.2, 0.2]. In both cases, we consider
an input constraint of [−5, 5] and an output constraint of[
−1
−10

]
≤ x ≤

[
1
10

]
with a prediction horizon N = 8. The

triggering time is bounded within [0.1, 1.5] with a resource
constraint r ∈ [0, 1]. In both experiments, we also compare
the proposed scheme to a closed-loop robust MPC with
fixed sampling time, and we set the sampling frequence
as high as possible regarding the resource dynamics (i.e.
∆ = µ/ρ = 0.5s).
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Fig. 2: Comparison: open-loop vs closed-loop robust self triggered MPC

In the first case, we further compare the closed-loop
scheme with the open-loop scheme (i.e., K = 0). A relatively
small process noise is considered (w(t) ∈ [−0.04, 0.04])
in 20 runs of Monte-Carlo test, whose output responses
are plotted in Figure 2. These three controllers guarantee
robust output constraint satisfaction. In comparison with the
open-loop scheme, the proposed controller shows tacking
performance when the reference signal and the output upper
bound overlap at 1. More frequent trigger is also observed in
the open-loop scheme (Figure 3), as resource consumption of
the closed-loop controller is much lower, which accordingly
implies that the sensors/CPUs in the closed-loop controller
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Fig. 3: Comparison: open-loop vs closed-loop robust self triggered MPC

can stay longer in idle/deep-sleep mode to save more energy.
This phenomenon is more significant when the reference
signal is at −0.2, which is distant from the output constraints,
the closed-loop controller quickly recharges its resources
while the open-loop controller still actuates at the highest
frequency. It is noteworthy to point out that longer idle
mode does not necessarily lead to a better performance. For
example, in the step change at around 11 seconds in Figure 2,
the closed-loop controller does not response to the reference
change as it is still in idle mode. However, these problems
can be fixed by forced triggering the agent when a reference
change is detected.
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Fig. 4: Output of the proposed controller with larger disturbance

To show the advantage of the proposed scheme over a
controller with a fixed sample period ∆, a second experiment
has been conducted with a disturbance 10 times stronger,
w(t) ∈ [−0.4, 0.4], whose output and resource responses are
shown in Figure 4 and 5, respectively. In both cases, the pro-
posed controller shows comparable performance against the
fixed ∆ controller. However, the proposed controller triggers
less frequently, with an adaptivity to the working condition,
such that the average ∆ is 0.82s and 0.492s in these two
cases, respectively. Figure 5 also shows this adaptivity in the
resource consumption: from 0s to around 9s, the controller
triggers slightly faster than 0.5s by consuming the initial
resource. Meanwhile, when the reference is far from the
output constraint at round 10s to 16s, the proposed controller
triggers slightly faster than 0.5s, which is visualized by the
recharging pattern from around 9s to 16s in Figure 5.
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Fig. 5: Resource response of the proposed controller with larger disturbance

V. CONCLUSION

This paper proposes a novel resource-aware robust self-
triggered MPC, which generalizes resource-aware self-
triggered MPC to an uncertain environment. The dynamics
ellipsoidal outer approximation of the reachable sets that are
governed by a discrete-time feedback control law, is derived
to accommodate a continuous-time uncertain disturbance.
This feedback law is intentionally designed to be compatible
with a self-triggered control scheme. Finally, the proposed
scheme is validated through a numerical example.
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mpc for constrained linear systems: A tube-based approach,” Automat-
ica, vol. 72, pp. 73–83, 2016.

[8] H. Li and Y. Shi, “Event-triggered robust model predictive control
of continuous-time nonlinear systems,” Automatica, vol. 50, no. 5,
pp. 1507–1513, 2014.

[9] L. Dai, M. Cannon, F. Yang, and S. Yan, “Fast self-triggered mpc for
constrained linear systems with additive disturbances,” IEEE Trans.
Autom. Control, vol. 66, no. 8, pp. 3624–3637, 2021.

[10] M. Farina and R. Scattolini, “Tube-based robust sampled-data mpc for
linear continuous-time systems,” Automatica, vol. 48, no. 7, pp. 1473–
1476, 2012.

[11] H. G. Bock and K.-J. Plitt, “A multiple shooting algorithm for direct
solution of optimal control problems,” IFAC-PapersOnLine, vol. 17,
no. 2, pp. 1603–1608, 1984.

[12] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[13] M. E. Villanueva, B. Houska, and B. Chachuat, “Unified framework for
the propagation of continuous-time enclosures for parametric nonlinear
odes,” J. Global Optim, vol. 62, no. 3, pp. 575–613, 2015.
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