
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3136488, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 1

Learning of Continuous and Piecewise-Linear Functions with
Hessian Total-Variation Regularization

Joaquim Campos, Shayan Aziznejad, and Michael Unser, Fellow, IEEE
We develop a novel 2D functional learning framework that employs a sparsity-promoting regularization based on second-order

derivatives. Motivated by the nature of the regularizer, we restrict the search space to the span of piecewise-linear box splines
shifted on a 2D lattice. Our formulation of the infinite-dimensional problem on this search space allows us to recast it exactly as
a finite-dimensional one that can be solved using standard methods in convex optimization. Since our search space is composed
of continuous and piecewise-linear functions, our work presents itself as an alternative to training networks that deploy rectified
linear units, which also construct models in this family. The advantages of our method are fourfold: the ability to enforce sparsity,
favoring models with fewer piecewise-linear regions; the use of a rotation, scale and translation-invariant regularization; a single
hyperparameter that controls the complexity of the model; and a clear model interpretability that provides a straightforward relation
between the parameters and the overall learned function. We validate our framework in various experimental setups and compare
it with neural networks.

Index Terms—Supervised learning, variational methods, sparsity, box splines, barycentric coordinates.

I. INTRODUCTION

The primary task in supervised learning is to estimate a
target function f : Rd → R from finitely many noisy samples
{xm, ym}Mm=1, where ym ≈ f(xm),m = 1, . . . ,M [1].
Since there are arbitrarily many continuous models that can
fit the training data well enough, this problem is ill-posed in
general. To address this issue, the learning scheme generally
includes regularization and favors certain models based on
prior information on the target function [2], [3].

One way to make this problem computationally tractable
is to restrict the admissible solutions to a given family of
parametric functions fΘ, where Θ denotes the vector of the
underlying parameters. A celebrated example of this approach
is deep learning, whose underlying principle is the construction
of an overall map fΘ : Rd → R built as a neural network
via the composition of parameterized affine mappings and
pointwise nonlinearities known as activation functions. The
attribute “deep” refers to the high number of such module
compositions (layers), which is instrumental to improve the
approximation power of the network [4], [5], [6] and its
generalization ability [7].

Rectified-linear-unit (ReLU) networks, in particular, have
been the most prominently used in machine learning [8], [9].
These networks have spline activations of the form x 7→
max(x, 0) which results in a continuous and piecewise-linear
(CPWL) input-output relationship [4], [10]. Consequently,
they can be interpreted as hierarchical splines [11], [12], [13].
Furthermore, the opposite also holds: any CPWL function
can be represented by some ReLU network [14]. This leads
to the conclusion that ReLU networks provide a nonlinear
parameterization for the family of CPWL functions.

A more generic strategy to address supervised learning
problems is to adopt a functional approach where the model is

This work was supported in part by the European Research Council (ERC
Project FunLearn) under Grant 101020573 and in part by the Swiss National
Science Foundation, Grant 200020_184646/1.

The authors are with the Biomedical Imaging Group, École poly-
technique fédérale de Lausanne, 1015 Lausanne, Switzerland (e-mail:
joaquim.campos@epfl.ch; shayan.aziznejad@epfl.ch; michael.unser@epfl.ch)

optimized over a well-suited function space [15], [16]. In this
paradigm, the learning task is formalized as the minimization
problem

min
f∈X

M∑
m=1

E(f(xm), ym) + λR(f), (1)

where X is the search space, E : R×R 7→ R+ is an arbitrary
convex loss function (the data-fidelity metric), R : X 7→ R is
the regularization functional, and λ ∈ R+ its corresponding
(adjustable) weight.

A one-dimensional (1D) example of (1) is learning with
second-order total-variation regularization [17], [18], which
promotes sparse piecewise-linear models and leads to an alter-
native procedure to learn 1D CPWL functions. This problem
is formulated as

min
f∈BV(2)(R)

M∑
m=1

E(f(xm), ym) + λTV(2)(f), (2)

where the search space BV(2)(R) contains functions with
bounded second-order total variation such that f ∈
BV(2)(R) ⇔ TV(2)(f) < +∞. In the spirit of reproducing-
kernel Hilbert spaces [19], [20], there exists a representer
theorem for (2) that states that the extreme points of the
solution set are linear splines with the generic form

f(x) = b0 + b1x+
K∑
k=1

ak(x− xk)+, (3)

where a = (ak)∈ RK and b = (b0, b1)∈ R2 are expansion
parameters, K < M , and {xk}Kk=1 are adaptive (learnable)
locations that are known as knots. The regularization term for
these functions has the simple expression given by

TV(2)(f) = ‖a‖`1 . (4)

As a result, the original infinite-dimensional problem can be
recast as a finite-dimensional one, parameterized by K,a,b,
and {xk}Kk=1 [21]. The TV(2) regularization favors simple
models with few knots due to (4) and the sparsity-promoting
effect of the `1-norm [22], [23].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3136488, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 2

Interestingly, one can also use TV(2) regularization to learn
the activation functions of deep neural networks. In this case,
it has been shown that neural networks with linear spline
activation functions of the form (3) are optimal [24], [25].
The link between functional approaches to neural networks
and splines has also been observed in various works [26], [27],
[28], [29], [30].

A. Contributions

Our work presents a method to learn sparse CPWL functions
in 2D. It is based on three fundamental ingredients.

1) A regularization based on second-order derivatives, the
Hessian-nuclear total-variation (HTV).

2) A CPWL search space spanned by linear-box-spline
basis functions, which allows us to have a closed-form
parametric expression for the regularization.

3) An exact discretization of the infinite-dimensional learn-
ing problem. The resulting parameterized problem has a
structure that is reminiscent of the generalized LASSO
[31], and therefore can be efficiently solved using known
optimization algorithms. This discretization encapsulates
the sparsity-promoting effect of the HTV, while it reveals
the link with `1 regularization.

Our framework presents itself as an alternative to training
ReLU networks for the learning of CPWL functions, with the
following advantages:

1) the enforcement of sparsity, in the sense that we follow
Occam’s razor principle by promoting solutions with the
fewest CPWL regions;

2) the use of a rotation, scale and translation-invariant reg-
ularization;

3) the reliance on a single hyperparameter—the regulariza-
tion weight λ. This is in contrast with the numerous
hyperparameters found in neural networks such as the
choice of architecture and its components, learning rate
schemes, and batch size, among others;

4) an improved model interpretability since we provide a
linear parametrization for the learned CPWL mapping.

B. Related Works

One of the most widely used regularizers in image recon-
struction is the Rudin-Osher-Fatemi total-variation (TV) semi-
norm, given by R(f) =

∫
R2 ‖∇f(x)‖2 dx [32], [33], [34].

The success of TV is partly attributable to its capacity to
preserve edge information. However, TV has the tendency
to promote piecewise-constant solutions (vanishing first-order
derivatives), which creates an undesired staircase effect. Such
issue can be dealt with by the adoption of regularizers based
on higher-order differentials [35], [36].

The Hessian is the second-order counterpart to the gradient
operator. Accordingly, the works in [37], [38] introduce the
regularizer

R(f) = ‖H{f}‖∗,L1

M
=

∫
R2

‖H{f}(x)‖∗ dx, (5)

where ‖·‖∗ is the nuclear norm—the `1-norm of the singular
values of the Hessian. This regularizer preserves the desirable

affine-invariance of total-variation while it alleviates the stair-
case effect by promoting piecewise-linear solutions.

Here, in contrast with [37], we address supervised learning
rather than inverse problems. Moreover, the approach taken in
[37] raises two relevant concerns. First, the regularization term
(5) is inoperative for CPWL functions because the Hessian of
a CPWL function is zero almost everywhere. Second, [37]
resorts to a discretization of the Hessian with second-order
finite differences in order to establish a discrete formulation
of the problem, which leads to discretization errors. In our
work, we address these two concerns by using a novel HTV
seminorm as the regularization term. The proposed functional
is a generalization of (5). It has been introduced in [39] to
measure the complexity of neural networks. The foundation
for our work is that the HTV seminorm is properly defined
for CPWL functions and has an explicit closed-form formula
for these mappings. This allows us to discretize our problem
exactly.

C. Roadmap

In Section II, we introduce the two key mathematical
elements that underlie our framework: the Hessian-nuclear
total-variation (HTV) seminorm, along with box splines. We
then define an adequate CPWL search space in Section III,
where we define our HTV-regularized learning problem. In
Section IV, we discretize our problem exactly and provide the
algorithmic components to solve it. Finally, in Section V, we
validate our framework on numerical examples.

II. MATHEMATICAL PRELIMINARIES

A. Nuclear Norm

The nuclear norm of a matrix A ∈ Rm×n is defined as

‖A‖∗
M
=

min(m,n)∑
k=1

|σk| , (6)

where σk are the singular values of A [40]. Its dual norm is
the spectral norm, defined as ‖A‖S∞

M
= max

k
|σk|. The nuclear

norm plays a prominent role in the field of low-rank matrix
recovery, due to its sparsity-promoting effect [41], [42], [43].

B. Generalized Hessian Operator

The Hessian of a twice-differentiable function f : R2 → R
is defined as

H{f} =

 ∂2f
∂x2

1

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x2

2

 . (7)

Using this matrix, one can readily compute second-order
directional derivatives. Let us recall that the second-order
directional derivative of a twice-differentiable function f at
x along a direction u with ‖u‖2 = 1 is defined as

D2
uf(x) = lim

h→0

Duf(x + hu)−Duf(x)

h
. (8)

This quantity can be expressed as

D2
uf(x) = uTH{f}(x)u. (9)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3136488, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 3

If the Hessian of f is symmetric, for which it suffices
that the second partial derivatives be continuous (Schwarz’
theorem), then its eigendecomposition has an important geo-
metric interpretation: the two eigenvectors, v1 and v2, point
in the directions in which the magnitude of the second-order
directional derivative is maximal and minimal, respectively.
Furthermore, the magnitudes of the directional derivatives
along these directions are given by the corresponding eigenval-
ues, with

∣∣D2
v1
f(x)

∣∣ = |λ1|,
∣∣D2

v2
f(x)

∣∣ = |λ2|, respectively.
The Hessian operator can also be defined for functions

that are not twice-differentiable using the notion of weak
derivatives, as detailed in Appendix A.

C. Hessian-Nuclear Total Variation

In this section, we briefly recall the definition and relevant
properties of the HTV seminorm (see [39] for more details).
It is based on the nuclear-TV norm, which is defined for any
W ∈ S ′(R2;R2×2) as

‖W‖∗,M
M
= sup

{
〈W,F〉 : F ∈ S(R2;R2×2),

sup
x∈R2

‖F(x)‖S∞ ≤ 1
}
.

(10)

We refer to Appendix A for more details on the matrix-valued
spaces S(R2;R2×2) and S ′(R2;R2×2). What is relevant for
this paper is that, for any matrix of absolutely integrable
functions W ∈ L1(R2;R2×2), we have that

‖W(·)‖∗,M = ‖W(·)‖∗,L1
=

∫
R2

‖W(x)‖∗ dx. (11)

Furthermore, the nuclear-TV norm is defined for the Dirac-
like distributions that appear in the Hessian of CPWL func-
tions. This motivates the choice of our regularization func-
tional given in Definition 1.

Definition 1 (Hessian-nuclear total-variation regularization).
The Hessian-nuclear total-variation seminorm of f : R2 → R
is given by

HTV(f) = ‖H{f}‖∗,M. (12)

Last but not least, we mention that the HTV regularization
is rotation, scale and translation-invariant [39]. Indeed, for any
f : R2 → R with finite HTV, any unitary matrix U ∈ R2×2,
scaling factor α ∈ R, and shift x0 ∈ R2, we have that

1) HTV (f(U ·))) = HTV(f).

2) HTV (f(α ·)) = HTV(f).

3) HTV (f(· − x0)) = HTV(f). (13)

D. Continuous and Piecewise-Linear Functions

Definition 2 (CPWL function). A function f : R2 → R is
continuous and piecewise-linear if:

1) it is continuous R2 → R;
2) its domain R2 =

⊔N
n=1 Pn can be partitioned into a finite

set of non-overlapping convex polytopes Pn over which
it is affine, with f |Pn

(x) = aTnx + bk.

x

y

un,k

PkPn

Ln,k

(a) Top view, with junction
normal vector un,k.

Two Triangles

(b) αn,k > 0

Two Triangles

(c) αn,k = 0

Two Triangles

(d) αn,k < 0

Fig. 1: αn,k for different junctions.

The gradient of a CPWL function can easily be seen to be
piecewise-constant with discontinuities at the junctions of the
polytopes. For a CPWL function f : R2 → R, we have that

∇f(x) =
N∑
n=1

an1Pn
(x), (14)

for almost every x ∈ R2. We can show that the HTV of a
CPWL function f : R2 → R is finite if and only if it is
compactly supported up to an affine term, which means that
there exists a ∈ R2, b ∈ R such that g(x) = (f(x)−aTx−b)
is supported over a convex and compact set D ⊆ R2. We
call such CPWL functions “admissible”. We present now a
closed-form formula for the HTV of any admissible CPWL
function.

Setup: We consider the partitioning of D into N polytopes
{Pn}Nn=1 whose gradients, ∇f |Pn

, are denoted by an. More-
over, we gather the indices of the neighbors of a polytope
P into the set adj(P). Each pair of neighboring polytopes
Pn and Pk share a common line segment (junction) denoted
by Ln,k = Pn

⋂
Pk, whose length is len(Ln,k). Finally, we

use the notation un,k for the (unit) normal vector that is
perpendicular to Ln,k (Figure 1a). The proof of Theorem 1
can be found in [39].

Theorem 1 (HTV of admissible CPWL functions). Let f :
R2 → R be an admissible CPWL function. Then, we have that

HTV(f) =
1

2

N∑
n=1

∑
k∈adj(Pn)

∣∣uTn,k(ak − an)
∣∣ len(Ln,k) (15)

=
1

2

N∑
n=1

∑
k∈adj(Pn)

‖ak − an‖2 len(Ln,k). (16)

Given the central character of Theorem 1 in our work, we
now discuss it briefly. We first observe that αn,k = uTn,k(ak−

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3136488, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 4

an) is the difference of the directional derivatives inside
two polytopes along the junction normal un,k. Therefore, it
measures the degree of coplanarity of the adjacent piecewise-
linear regions. We illustrate how the shape of each neighboring
two-polytope region relates to αn,k in Figure 1: When the two
regions are coplanar, αn,k = 0; otherwise, |αn,k| gauges how
much the slope changes in the direction un,k (i.e., how far the
function is from being affine in this region), and sgn(αn,k)
determines the sign of that change.

It is also interesting to compare the discrete HTV expres-
sion (15) with (4), which relates to the TV(2) regularization
in 1D . We observe that, for a CPWL function f : R → R,
TV(2)(f) =

∑K
k=1 |ak|, where each ak is the difference

of the derivatives in two consecutive linear regions which
connect at the knot position xk. In 2D, this result is extended
by considering directional derivatives and junctions instead
of derivatives and knots, and by taking into account the
new factor of the length of a junction. This also highlights
the sparsity-promoting effect of HTV regularization: since
the HTV seminorm imposes a (weighted) `1 penalty on the
change of slopes of the neighbouring regions, it favors CPWL
functions with few linear regions.

The necessity to restrict our framework to admissible CPWL
functions is made evident by (16): the regularization only has
a finite value if a function has a finite number of non-coplanar
junctions, and each of these has a finite length.

Finally, we remark that, although the HTV of admissible
CPWL functions has a simple closed-form expression, it re-
quires the complete knowledge of the domain partition and the
gradients in each polytope. To circumvent this, we construct
a CPWL search space that is based on a uniform domain
partition. This allows us to obtain a tractable formula for
computing the HTV of any model in the space.

E. Box Splines

Box splines are a multivariate extension of B-splines [44].
In constrast to tensor products of 1D B-splines, they are non-
separable, which makes them suitable for interpolation algo-
rithms taylored to non-Cartesian (and often optimal) sampling
lattices [45], [46], [47], [48]. They also find applications in
areas such as finite-element methods [49], computer-aided
design [50], and edge detection [51].

In 2D, we denote by kΞ : R2 7→ R, the box spline associated
to the matrix Ξ =

[
ξ1 · · · ξn

]
∈ R2×n. For n = 2 and an

invertible matrix Ξ ∈ R2×2, kΞ is an indicator function of the
form

kΞ(x) =
1

|det (Ξ)|
1S2

(x), (17)

where S2 =
{
Ξα : α ∈ [0, 1)2

}
. For n ≥ 3, the box spline

is defined recursively as

k[Ξ ξ](x) =

∫ 1

0

kΞ(x− tξ) dt. (18)

Box splines are nonnegative functions and have a unit inte-
gral over the entire space, with

∫
R2 kΞ(x) dx = 1. Moreover,

they are supported over the set
{
Ξα : α ∈ [0, 1)n

}
and are

symmetric with respect to the center of their support [52].

x

y

ξ1

ξ2

ξ3

Fig. 2: Hexagonal box-spline vectors.

III. SEARCH SPACE

Motivated by the results of section II, we construct a search
space that only contains admissible CPWL functions. More
precisely, we let this space be spanned by shifts of a CPWL
basis function ϕ of the form

ϕ(x1, x2) = [1−max(0, a1, a2) + min(0, a1, a2)]+ , (19)

where a1 = (x1 − x2/
√

3), a2 = (−2x2/
√

3), and
[x]+

M
= max(x, 0) (see Figure 3). We note that ϕ =

√
3

2 kΞ

is, in fact, a scaled hexagonal box spline [48], with the matrix
Ξ given by (see Figure 2)

Ξ =
[
ξ1 ξ2 ξ3

]
=

[
1 − 1

2 − 1
2

0 −
√

3
2

√
3

2

]
. (20)

Consequently, its Fourier transform is given by

ϕ̂(ω) =

√
3

2

3∏
n=1

sinc

(
〈ω, ξn〉

2

)
. (21)

We refer to Appendix B for the proof.
Additionally, we construct a hexagonal lattice on which

we shift these basis functions. This lattice is determined by
the primitive vectors r1 = ξ1 and r2 = (−ξ2). For ease of
representation, we concatenate the primitive vectors into the
lattice matrix R =

[
r1 r2

]
[53]. Then, the search space with

grid size h ∈ R+ is defined as

XRh
(R2) = span

({
ϕ
(·
h
−Rk

)}
k∈Z2

)
. (22)

We observe that any model f ∈ XRh
(R2) can be expressed

as
f(x) =

∑
k∈Z2

c[k]ϕ
(x

h
−Rk

)
(23)

for some set of box-spline coefficients {c[k]}k∈Z2 .
Analogous to the space of cardinal linear splines [54], [55],

our search space satisfies some desirable properties that are
listed in Theorem 2. The proof can be found in Appendix C.

Theorem 2. The search space XRh
(R2) satisfies the following

properties.
1) It reproduces any affine mapping, in the sense that any

function of the form f(x) = aTx + b can be expressed
as (23).

2) The collection {ϕ(·/h−Rk)}k∈Z2 forms a Riesz basis for
XRh

(R2). This ensures a unique and stable link between
each model function and its coefficients [56].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3136488, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 5

Box Spline

(a) Basis function ϕ.

0
r1

r2

(b) Hexagonal lattice.

Fig. 3: Principal elements of our search space.

3) The approximation error of our search space decays with
h−2 as h→ 0.

4) The atoms satisfy the interpolatory condition

∀k∈ Z2 : ϕ(Rk) =

{
1, k = 0

0, otherwise.

Consequently, we have that f(hRk) = c[k] for any f ∈
XRh

(R2) and any k∈ Z2.
5) The basis element ϕ is refinable, in the sense that ϕ(·/2h)

can be exactly represented in XRh
(R2) with finitely many

coefficients.

Additionally, this search space has three desirable char-
acteristics. First, the hexagonal lattice provides an optimal
packing density [57], [58], which leads to an improved ap-
proximation power for a given number of basis functions.
Second, the domain of f ∈ XRh

(R2) is partitioned into
equilateral triangles (see Figure 3b), which results in simplified
computations (see Section IV). Third, Property 5 allows for
efficient multiresolution algorithms.

Finally, we formalize the functional-learning problem in our
search space as the minimization

min
f∈XRh

(R2)

(
M∑
m=1

E
(
f(xm), ym

)
+ λHTV(f)

)
. (24)

where E : R×R→ R+ is a strictly convex loss function (e.g.,
E(y, z) = (y − z)2 for the quadratic loss). Let us mention
that our framework is compatible with any open connected
bounded domain (such as Euclidean disks) [39]. Nonetheless,
working with R2 has the advantage of learning an affine
extrapolation.

IV. DISCRETIZATION OF THE PROBLEM

In this section, we detail the algorithm we have developed
to solve problem (24). For this purpose, we first show how
to efficiently evaluate (23) for a given x ∈ R2, and then
exactly express the HTV of any f ∈ XRh

(R2) in terms of
its parameters.

A. Data Fidelity

Due to the finite support of the atoms (Figure 3b), we infer
that, at each location x ∈ R2, there are at most three basis
functions that are nonzero. These active atoms are located
at the vertices of the triangle to which x belongs. For each

n k1

k2 k3

Pn

Fig. 4: Indices for two neighboring polytopes.

datapoint xm, let us denote its triangle by the index set
{km,1,km,2,km,3}. From this, we express f(xm) as

f(xm) =
3∑

n=1

c[km,n]ϕ
(xm
h
−Rkm,n

)
= hTm(c[km,1], c[km,2], c[km,3]), (25)

where hm,n = ϕ(xm/h−Rkm,n), n = 1, 2, 3.

B. Regularization
The central result of this section is presented in Theorem 3.

Theorem 3. For any f ∈ XRh
(R2) of the form (23), we have

that

HTV(f) = ‖d1 ∗ c‖1,1 + ‖d2 ∗ c‖1,1 + ‖d3 ∗ c‖1,1 , (26)

where ‖A‖1,1 = ‖vec(A)‖1 is the sum of the absolute values
of the entries of A, and

d1 =

[
a −a 0
0 −a a

]
, d2 =

 a 0
−a −a
0 a

 , d3 =

[
−a a
a −a

]
,

(27)
with a = 2

√
3

3 .

Proof. Let ∆ denote the set of triangles that form the domain
partition of our search space. Adapting (16) to our search
space, we have that

HTV(f) =
h

2

∑
P∈∆

∑
P̃∈adj(P)

∥∥∇f
∣∣
P
−∇f

∣∣
P̃

∥∥
2
. (28)

Due to the specific form of our search space, we can rewrite
(28) as a summation over the lattice vertices rather than the
triangles and associate three junctions to each vertex. This
leads to

HTV(f) = h
∑
n∈Z2

3∑
k=1

‖ank
− an‖2 , (29)

where an is the gradient of the triangle Pn associated with the
vertex n (Figure 4). Similarly, the vector ank

is the gradient
of the neighboring triangle that shares a border with Pn in the
direction of rk, where r1 and r2 are illustrated in Figure 3b
and r3 = (− 1

2 ,
√

3
2). By changing the order of summation, we

obtain that

HTV(f) = h
∑
n∈Z2

‖an1 − an‖2 + h
∑
n∈Z2

‖an2 − an‖2

+ h
∑
n∈Z2

‖an3 − an‖2 . (30)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3136488, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 6

Each of the three terms of (30) can be computed via a
filtering operation. Here, we just prove this for the last term
in the summation and we deduce the other two using similar
computations.

Using the notations in Figure 4, we write that
aTn3

Rh(k3 − k2) = c[k3]− c[k2]

aTn3
Rh(k3 − k1) = c[k3]− c[k1]

aTnRh(k1 − n) = c[k1]− c[n]

aTnRh(k2 − n) = c[k2]− c[n]

⇔

RT
han3

=

[
c[k3]− c[k2]

c[k3]− c[k1]

]

RT
han =

[
c[k1]− c[n]

c[k2]− c[n]]

]
,

(31)

where Rh = h
[
r1 r2

]
is the lattice matrix. Combining these

equations, we obtain that

RT
h (an3

− an) = (c[n]− c[k1]− c[k2] + c[k3])1, (32)

where 1 = (1, 1). The application of
(
R−1
h

)T
to both sides

of (32) leads to

(an3 − an) = (1,−1,−1, 1)T z
(
R−1
h

)T
1, (33)

where z = (c[n], c[k1], c[k2], c[k3]). Using the homogeneity
of the `2-norm, we verify that

‖an3
− an‖2 =

∣∣(1,−1,−1, 1)T z
∣∣ ∥∥∥(R−1

h

)T
1
∥∥∥

2

=
2
√

3

3h

∣∣(1,−1,−1, 1)T z
∣∣ . (34)

By plugging in k1 = n + (1, 0), k2 = n + (0, 1) and k3 =
n + (1, 1), we express the last term in (30) as

h
∑
n∈Z2

‖an3
− an‖2 =

2
√

3

3

∑
n∈Z2

∣∣c[n]− c[n + (1, 0)]−

c[n + (0, 1)] + c[n + (1, 1)]
∣∣

= ‖d3 ∗ c‖1,1. (35)

�

Theorem 3 provides a simple algorithm to evaluate HTV(f)
in terms of three convolutions, whose filters are depicted in
Figure 5. We also remark that, for any admissible CPWL
model f , the outputs of the digital filters dn, n = 1, 2, 3, are
zero outside of a compact domain. This in effect allows us to
consider an equivalent finite lattice to represent f in practice.

C. Generalized LASSO

We now merge the results of sections III, IV-A, and IV-B
to derive an exact finite-dimensional discretization of Problem
(24). We consider a finite lattice of square size (N × N) in
such a way that all training data are contained in it. The lattice
coefficients are grouped into the vector c ∈ RN2

which is a
(row-wise) vectorization of the 2D array c[k],k ∈ Ω, where

a
−a

−a a

a

−a

−a

a
a

−a
−a

a

d1

d2

d3

Fig. 5: Convolutional filters; a = 2
√

3
3 .

Ω ⊂ Z2 is the set of lattice indices. Consequently, we define
the regularization matrix L ∈ R3N2×N2

as

L =

L1

L2

L3

 , (36)

where Ln is a Toeplitz-like matrix associated to the 2D digital
filter dn such that, for n = 1, 2, 3, Lnc is the vectorized
version of (dn ∗ c)[k],k ∈ Ω. Further, we define the forward
matrix H ∈ RM×N2

such that its mth row corresponds to the
datapoint xm, with f(xm) = [Hc]m for m = 1, . . . ,M . Using
these, we restate (24) as the finite-dimensional minimization

arg min
c∈RN2

M∑
m=1

E ([Hc]m, ym) + λ ‖Lc‖1 . (37)

Ultimately, the finite-dimensional problem (37) has the
composite structure of the generalized LASSO [31] which can
be solved efficiently using known convex optimization solvers
(e.g., ADMM or its variants [59], [60], [61]). We denote the
corresponding solution by c0.

The discrete formulation (37) also highlights the sparsity-
promoting effect of the HTV regularization, due to the pres-
ence of the `1 penalty in (37). Consequently, we expect to
learn models with few linear regions. In order to find a sparser
solution, we use the simplex algorithm [62], [63] to solve the
minimization

arg min
c∈RN2

‖Lc‖1 , s.t. Hc = Hc0. (38)

This post-processing step is known to provide an extreme point
of the solution set of (37) [21] which, in our case, often leads
to a sparser CPWL mapping.

D. Discussion

In an attempt to generalize our framework, we could also
consider learning higher-order splines. Indeed, the HTV is
fully compatible with these smooth functions, and we can even
define different flavors of it by choosing other Schatten-norms
[39]. The main challenge would be to obtain a parametric
expression (akin to (26)) for the HTV of a given element in the
restricted search space. This is crucial for obtaining an exact
discretization of the continuous-domain learning problem.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3136488, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 7

(a) (b)

(c) (d)

Fig. 6: Solutions of the minimum-norm interpolation
problem.

V. EXPERIMENTS

In this section, we demonstrate the advantages of our
pipeline by comparing it to other existing learning methods.
The Python code to reproduce all the experimental results is
available on Github1.

A. Mininum-Norm Interpolation

We demonstrate the sparsity-promoting effect of the HTV
regularizer in a controlled environment in which we sample
M = 12 points from a pyramid function fpyr whose vertices
are positioned on the lattice. This ensures that the target
function can be represented exactly in our search space. To
isolate the effect of the regularization, we use simplex solver
to find

arg min
f∈XRh

(R2)
HTV(f), s.t. f(xm) = fpyr(xm),

m = 1, . . . ,M (39)

by recasting it as a discrete minimization problem of the form
(38).

In Figure 6, we show the results of successive experiments
where we use a lattice of size (20 × 20) (a total number of
421 parameters) with zero boundary conditions. We chose a
colormap based on the triangle normals so that co-planarities
can be identified. Due to randomness in the implementation
of the algorithm, we obtained different solutions of (38). They
all resulted in the same minimal HTV(f). We observe that the
algorithm leads to sparse solutions in all cases, with few faces.
Indeed, from a search space which can model functions with
hundreds of faces (Figure 6a), we reached solutions with just
12 (6b), 7 (6c), and 6 (6b) faces, respectively.

B. Data Fitting

In this experiment, we tackle a data-fitting problem and
compare three approaches.

1https://github.com/joaquimcampos/HTV-Learn

1) Ours, using HTV regularization and a CPWL search
space (22).

2) ReLU neural networks, which also construct CPWL
models.

3) Radial basis functions with Gaussian kernels—a classi-
cal approach in supervised learning [64], [65], [66].

The dataset consists of samples from a CPWL function with
noisy labels. More precisely, the labels are of the form

ym = h(xm) + ε, (40)

where ε ∼ N (0, σ2) and h is the CPWL function shown
in Figures 7a and 7f. We use 200 datapoints and set σ =
1
20 ‖f‖L∞ . Note that the model cannot be represented exactly
in our search space since the data points do not fall on the
lattice; however, the error can be mitigated by a sufficient
reduction of the stepsize of the grid.

The setup is as follows: for the data-fidelity term in (37),
we use the quadratic loss E(y, z) = (y − z)2. For the ReLU
network, we use a fully connected architecture with 4 hidden
layers, each with 256 hidden neurons. The total number of
parameters of the neural network is 198401. We train the
neural network for 500 epochs using an Adam optimizer
[67] with a batch size of 10 and weight decay. The initial
learning rate is set to 10−3 and is decreased by 10 at epochs
375 and 425. For the HTV, we use a lattice size of size
(64 × 64), giving a total of 4225 parameters. In all methods,
we tune the corresponding hyperparameter on a validation set
(regularization weight λ for the HTV and radial-basis function
[RBF], kernel size γ for the RBF, and weight-decay parameter
µ for the neural network) to have a fair comparison. To
assess sparsity, we sample the learned neural network and RBF
models in the position of the lattice vertices and vectorize these
values (we denote the resulting vector by c), as done for our
method. Finally, for all methods, we compute the percentage
of non-negligible “changes of slope” as ‖Lc>ε‖0

3N2 · 100, where
ε = 10−4 and 3N2 is the number of rows of L.

The results are shown in Table I and Figure 7, along with
the ground-thruth (GT). We observe that the HTV model
performs significantly better than the radial-basis functions
and on par with the neural network. Furthermore, as seen in
the last column of the table and from the Figures, the HTV
leads to a much sparser result. Moreover, we observe that
the level of sparsity for the HTV can be controlled with the
regularization weight (higher leads to sparser results). In the
extreme case λ → +∞, the model should converge to the
least-squares linear approximation of the training data. The
very high regularization weight λ = 10 allows us to verify
this in practice. Indeed, the resulting model is linear and the
data-fitting error is precisely the same as the one obtained with
a least-squares fit.

C. Real Dataset

In this section, we benchmark the three methods of the
experiment of section V-B on a (non-CPWL) facial dataset.
This dataset is a 2D height map f : R2 → R that we construct

https://github.com/joaquimcampos/HTV-Learn

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3136488, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 8

(a) GT and training data. (b) HTV, λ = 0.006. (c) Neural network. (d) RBF. (e) HTV, λ = 10.

(f) GT and training data. (g) HTV, λ = 0.006. (h) Neural network. (i) RBF. (j) HTV, λ = 10.

Fig. 7: HTV regularization vs. ReLU neural network vs. radial basis functions.

Model Hyperparameters Test MSE Sparsity

HTV λ = 2× 10−3 3.6× 10−5 27%

HTV λ = 4× 10−3 3.8× 10−5 19%

HTV λ = 6× 10−3 4.4× 10−5 16%

HTV λ = 10 3.1× 10−3 00%

ReLU µ = 1× 10−6 3.7× 10−5 63%

RBF λ = 0.08, γ = 7 5.5× 10−5 88%

TABLE I: Test MSE and sparsity of each method in the data-
fitting example.

by cutting a 3D face model2 (Figure 8a). We then sample 8000
data points for training (Figure 8b).

Relative to Section V-B, the setup has the following dif-
ferences: for the HTV, we use a lattice of size (194 × 194)
(38025 parameters) and skip the simplex post-processing step;
for the neural network, we incorporate one additional hidden
layer (264193 parameters), increase the number of epochs to
2000 and the batch size to 100, and, lastly, decrease the initial
learning rate at epochs 1750 and 1900.

The results are shown in Table II and Figure 8. The HTV
achieved the lowest test mean-square error (MSE) on par with
the RBF which is expected to perform well due to the high
density of datapoints and the absence of noise. Regarding the
effect of the regularization, we again observe that, for the
HTV, increasing it results in a model with fewer faces. In
the case of the RBF, the solutions present ringing artifacts,
especially in a low-regularization regime. Finally, we remark
that the neural network constructs a coarse approximation of
the data.

VI. CONCLUSION

We have introduced a method to solve two-dimensional
learning problems regularized with Hessian-nuclear total-
variation (HTV) seminorm. The starting point of our work has
been the observation that the HTV of (admissible) continuous
and piecewise-linear (CPWL) functions has a closed-form ex-
pression. Its computation, however, requires knowledge of the
gradient and boundaries of each partition. To circumvent this

2https://www.turbosquid.com/3d-models/3d-male-head-model-1357522

Model Hyperparameters Test MSE Sparsity

HTV λ = 2× 10−3 3.0× 10−6 10%

HTV λ = 7× 10−3 4.8× 10−6 8%

HTV λ = 5× 10−2 1.9× 10−5 6%

ReLU µ = 1× 10−6 5.1× 10−6 12%

RBF λ = 10−4, γ = 50 3.2× 10−6 31%

RBF λ = 10−2, γ = 50 3.4× 10−6 24%

TABLE II: Test MSE and sparsity of each method in the face
dataset.

drawback, we have formulated the problem in a search space
consisting of shifts of CPWL box-splines in a lattice. By doing
so, we are able to evaluate any model in the search space, as
well as compute its HTV, from the values at the lattice points
(model parameters). In particular, we showed that the latter
can be computed with a three-filter convolutional structure;
this allows us to discretize the problem exactly and to recast
it in the form of the generalized least-absolute shrinkage-and-
selection operator. Finally, we have demonstrated the sparsity-
promoting effect of our framework via numerical examples
where we have compared its performance with ReLU neural
networks and radial-basis functions.

APPENDIX

A. Generalized Hessian Operator

Let S(R2) be the Schwartz space of smooth and rapidly
decaying functions over R2. Its topological dual, denoted by
S ′(R2), is the space of tempered distributions. An element
w ∈ S ′(R2) is a linear functional whose action for any ϕ ∈
S(R2) is given by the duality product ϕ 7→ 〈w,ϕ〉.

For any w ∈ S ′(R2), the weak partial derivative ∂
∂xk

:

S ′(R2)→ S ′(R2) is a continuous linear map whose action is
given by〈 ∂w

∂xk
, ϕ
〉

=
〈
w,− ∂ϕ

∂xk

〉
, ∀ϕ ∈ S(R2), k = 1, 2, (41)

where the partial derivative on the right-hand side is in the
usual sense (with the limit definition) ∂

∂xk
: S(R2)→ S(R2).

We refer to [68, Section 3.3.2] for more details on extensions
by duality.

https://www.turbosquid.com/3d-models/3d-male-head-model-1357522

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3136488, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 9

(a) GT. (b) GT and training data. (c) RBF, λ = 0.0001. (d) RBF, λ = 0.01.

(e) HTV, λ = 0.002. (f) HTV, λ = 0.007. (g) HTV, λ = 0.05. (h) Neural network.

Fig. 8: HTV regularization vs. ReLU neural network vs. radial basis functions.

To define the generalized Hessian operator, we first need to
extend the two spaces S(R2) and S ′(R2) for matrix-valued
functions. Concretely, any F ∈ S(R2;R2×2) is of the form

F =

[
f1,1 f1,2

f2,1 f2,2

]
, fm,n ∈ S(R2). (42)

Similarly, any W ∈ S ′(R2;R2×2) is of the form

W =

[
w1,1 w1,2

w2,1 w2,2

]
, wm,n ∈ S ′(R2). (43)

Consequently, the duality product associated with these two
spaces is the sum of the entrywise duality products

〈W,F〉 =
2∑

m=1

2∑
n=1

〈wm,n, fm,n〉. (44)

Finally, the generalized Hessian operator is denoted by H :
S ′(R2) → S ′(R2;R2×2) and is defined for any f ∈ S ′(R2)
as

H{f} =

 ∂2f
∂x2

1

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x2

2

 . (45)

B. Atoms of the Search Space

Let α = 2/
√

3 and Ξ ∈ R2×3, the matrix given in (20). It
follows from Definition (18) that

kΞ(x) = α

∫ 1

0

1S2
(x− tξ3),∈ dt

= α supp
(
[0, 1] ∩ {t : x− tξ3 ∈ S2}

)
, (46)

where supp(B) is the length of the interval B ∈ R and S2 ={
t1ξ1 + t2ξ2 : t1, t2 ∈ [0, 1)

}
. By expressing x in the basis

{ξ1, ξ2}, with x = a1ξ1 + a2ξ2, a1, a2 ∈ R, and using the
relation (−ξ3) = ξ1 + ξ2, we deduce that

khΞ(x) = α supp
(
[0, 1] ∩ {t : (a1 + t)ξ1+

(a2 + t)ξ2 ∈ S2}
)

= α supp
(
{t : 0 ≤ t ≤ 1, 0 ≤ a1 + t ≤ 1,

0 ≤ a2 + t ≤ 1}
)

= α [min(1, 1− a1, 1− a2)−max(0,−a1,−a2)]+

= α [1−max(0, a1, a2) + min(0, a1, a2)]+ . (47)

Finally, dividing both sides by α, we reach the desired result.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3136488, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 10

C. Proof of Theorem 2

We prove the properties for a unit grid size (h = 1), without
any loss of generality. To do so, we rely on the Fourier-domain
characterization of a generic box spline [69, Proposition (17)].
Specifying it for the case of the hexagonal box spline whose
vectors are given in (20), and using ξ1 + ξ2 + ξ3 = 0 and the
relation ϕ =

√
3/2 kΞ (Appendix B), we get that

ϕ̂(ω) =

√
3

2

3∏
n=1

sinc

(
〈ω, ξn〉

2

)
, (48)

where sinc(x) = sin(x)
x .

Item 1 (Reproduction of affine mappings): We begin by
proving that {ϕ(· −Rk)}k∈Z2 satisfies the partition-of-unity
property ∑

k∈Z2

ϕ(x−Rk) = 1, ∀x ∈ R2. (49)

This condition implies that the search space is able to repro-
duce any constant function.

Let R̃ be the lattice matrix expressed as R̃ =
[
ξ1 ξ2

]
. One

can readily verify that
∑

k∈Z2 ϕ(x − Rk) =
∑

k∈Z2 ϕ(x −
R̃k). From the Poisson-sum formula for lattices [53], the
partition-of-unity property holds if and only if, for any k ∈ Z2,
we have that

1∣∣∣det(R̃)
∣∣∣ ϕ̂(2πR̃−Tk) =

{
1, k = 0

0, k 6= 0.
(50)

Evaluating the Fourier transform (48) at the selected locations
and using

∣∣∣det(R̃)
∣∣∣ =

√
3

2 , we infer that

1∣∣∣det(R̃)
∣∣∣ ϕ̂(2πR̃−Tk) =

3∏
n=1

sinc
(
π〈R̃−Tk, ξn〉

)
=

3∏
n=1

sinc
(
π〈k, R̃−1ξn〉

)
. (51)

We then observe that R̃−1ξ1 = (1, 0), R̃−1ξ2 = (0, 1), and
R̃−1ξ3 = (−1,−1). This results in

1∣∣∣det(R̃)
∣∣∣ ϕ̂(2πR̃−Tk) = sinc

(
π(k1 + k2)

) 2∏
n=1

sinc(πkn)

=

{
1, k = 0

0, k 6= 0,
(52)

where, in the last equality, we have used that sinc(πk) = δ[k]
for any k∈ Z.

Now, we show that the search space can approximate any
linear function. Following the Strang-Fix conditions [46], [70],
we just need to prove that

∇ϕ̂(2πR̃−Tk) = 0, ∀k∈ Z2 \ {0}. (53)

Using the product rule for differentiation, we observe that

∇ϕ̂(ω) =

√
3

2

3∑
n=1

∇ sinc

(
〈ω, ξn〉

2

) ∏
m6=n

sinc

(
〈ω, ξm〉

2

)
.

(54)

Evaluating this expression at ω = 2πR̃−Tk and defining
βn,k =

(√
3/2
)
∇ sinc(π〈R̃−Tk, ξn〉), we obtain that

∇ϕ̂(2πR̃−Tk) =
3∑

n=1

βn,k
∏
m6=n

sinc
(
π〈R̃−Tk, ξm〉

)
. (55)

Then, we use that sinc
(
π〈R̃−Tk, ξm〉

)
=

sinc
(
π〈k, R̃−1ξm〉

)
to deduce that

∇ϕ̂(2πR̃−Tk) = β1,k sinc(πk2) sinc(π(k1 + k2))

+ β2,k sinc(πk1) sinc(π(k1 + k2))

+ β3,k sinc(πk1) sinc(πk2). (56)

Finally, since sinc(πk) = δ[k] for any k∈ Z, all terms in (56)
vanish for k∈ Z \ {0}.

Item 2 (Riesz basis): The collection {ϕ(· −Rk)}k∈Z2 is
a Riesz basis if there exist λmin > 0 and λmax < +∞ such
that, for any sequence c ∈ `2(Z), we have that

λmin ‖c‖22 ≤

∥∥∥∥∥∥
∑
k∈Z2

c[k]ϕ(· −Rk)

∥∥∥∥∥∥
2

L2

≤ λmax ‖c‖22 . (57)

To show that (57) is valid for the collection of our shifted
search-space atoms, we use Fourier-based conditions in the
spirit of [53] and [56]. This leads to the bounds

λmin = min
[0,2π)2

1

|det(R)|
∑
k∈Z2

∣∣ϕ̂(R−T
(
ω + 2πk)

)∣∣2 ,
λmax = max

[0,2π)2

1

|det(R)|
∑
k∈Z2

∣∣ϕ̂(R−T
(
ω + 2πk)

)∣∣2 . (58)

To obtain a more tractable expression for the summation on
the right-hand side of (58), we set x = 0 in the Poisson-sum
formula for lattices [53] and deduce that∑

k∈Z2

f(Rk) =
1

|det(R)|
∑
k∈Z2

f̂(2πR−Tk). (59)

Then, we consider the function f(τ) = cϕϕ(τ)e−j〈R−Tω0,τ〉,
where cϕϕ(τ) = 〈ϕ(· − τ), ϕ〉, which results in∑

k∈Z2

〈ϕ(· −Rk), ϕ〉e−j〈ω,k〉 =

1

|det(R)|
∑
k∈Z2

∣∣ϕ̂(R−T (ω + 2πk)
)∣∣2 , (60)

where we have used that ĉϕϕ(ω) = |ϕ̂(ω)|2 and taken
advantage of the modulation property of the Fourier transform.

Due to the fact that ϕ is finitely supported, the summation
on the left-hand side of (60) contains only 7 nonzero terms:
1 term corresponding to the energy of the atom and 6 others
corresponding to the inner product with overlapping replicas
(Figure 9). Therefore, (60) can be expanded as

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3136488, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 11

ϕϕ1

ϕ2 ϕ3

ϕ4

ϕ5ϕ6

Fig. 9: Overlapping replicas of ϕ. The non-white region
indicates the union of the support of the replicas.

∑
k∈Z2

〈ϕ(· −Rk), ϕ〉e−j〈ω,k〉 =

〈ϕ(· − r1), ϕ〉e−jω1 + 〈ϕ(·+ r1), ϕ〉ejω1

+ 〈ϕ(· − r2), ϕ〉e−jω2 + 〈ϕ(·+ r2), ϕ〉ejω2

+ 〈ϕ(·+ r1 − r2), ϕ〉e−j(ω2−ω1)

+ 〈ϕ(· − r1 + r2), ϕ〉ej(ω2−ω1) + ‖ϕ‖2L2
. (61)

We remark that the pairs of conjugate exponentials in (61)
do arise due to the symmetry in the location of the replicas.
By simple computations, we deduce that ‖ϕ‖2L2

=
√

3
4 and

〈ϕn, ϕ〉 =
√

3
12 for any of the replicas ϕn, n = 1, . . . , 6. (Due

to symmetries, the inner products are all equal.) Combining
(61) with (58) and (60), we conclude that

λmin =

√
3

12
min

[0,2π)2
(3 + cos(ω1) + cos(ω2) + cos(−ω1 + ω2))

=

√
3

8
> 0,

λmax =

√
3

12
max

[0,2π)2
(3 + cos(ω1) + cos(ω2) + cos(−ω1 + ω2))

=

√
3

2
< +∞, (62)

which completes the proof.
Item 3 (Order of approximation): From Items 1 and

2, we know that the collection of the search-space atoms
{ϕ(· − Rk)}k∈Z2 forms a Riesz basis and reproduces first-
degree polynomials. Hence, it satisfies the first-order Strang-
Fix conditions [71, Theorem 2.2.]. It follows that∥∥∥f − ProjXRh

{f}
∥∥∥
L2

= O(h−2), h→ 0 (63)

for any sufficiently smooth function f : R2 → R [70].
Item 4 (Interpolatory atoms): Evaluating the partition of

unity at x = Rk′, we have that∑
k∈Z2

ϕ(R(k′ − k)) = ϕ(0) +
∑
k6=k′

ϕ(R(k′ − k)) = 1. (64)

Since ϕ(0) = 1 and ϕ(x) ≥ 0, ∀x∈ R2, it follows that

∀k∈ Z2 : ϕ(Rk) =

{
1, k = 0

0, Otherwise.
(65)

Item 5 (Refinable search space): We want to show that
there exists a refinability filter h ∈ `2(R2) such that

ϕ
(x

2

)
=
∑
k∈Z2

h[k]ϕ(x− R̃k), (66)

where R̃ =
[
ξ1 ξ2

]
. In the Fourier domain, this condition is

equivalent to

22ϕ̂(2ω) = H(ejR̃Tω)ϕ̂(ω). (67)

Computing 22ϕ̂(2ω)/ϕ̂(ω), we deduce that

H(ejR̃Tω) =
4ϕ̂(2ω)

ϕ̂(ω)
= 4

3∏
n=1

sinc(〈ω, ξn〉)

sinc
(
〈ω,ξn〉

2

)
= 2

3∏
n=1

sin(〈ω, ξn〉)

sin
(
〈ω,ξn〉

2

) = 4
3∏

n=1

cos

(
〈ω, ξn〉

2

)
,

(68)

where we have used the identity sin(x) =
2 cos(x/2) sin(x/2). Observing that H(ejω) =

H(ejR̃T (R̃−Tω)), we get that

H(ejω) = 4
3∏

n=1

cos

(
〈ω, R̃−1ξn〉

2

)
= 4 cos

(w1

2

)
cos
(w2

2

)
cos
(w1 + w2

2

)
=

1

2

(
1 + e−jw1

)(
1 + e−jw2

)(
1 + ej(w1+w2)

)
, (69)

where 〈R̃−Tω, ξn〉 = 〈ω, R̃−1ξn〉 and ξ3 = (−ξ1 − ξ2).
Taking the inverse Fourier transform of (69), we write that

h[k1, k2] = δ[k1, k2] +
1

2

(
δ[k1 − 1, k2] + δ[k1 + 1, k2]

+ δ[k1, k2 − 1] + δ[k1, k2 + 1]

+ δ[k1 − 1, k2 − 1] + δ[k1 + 1, k2 + 1]
)
. (70)

Finally, replacing (70) in (66), and again using that ξ3 =
(−ξ1 − ξ2), we obtain that

ϕ
(x

2

)
=

1

2

∑
k∈{0,1}3

ϕ(x−Ξk) =

+ ϕ(x) +
1

2

(
ϕ(x− ξ1) + ϕ(x− ξ2)

+ ϕ(x− ξ3) + ϕ(x− ξ1 − ξ2)

+ ϕ(x− ξ1 − ξ3) + ϕ(x− ξ2 − ξ3)
)
. (71)

REFERENCES

[1] C. M. Bishop, Pattern Recognition and Machine Learning, ser. Infor-
mation Science and Statistics. Springer, 2006.

[2] K. P. Murphy, Machine Learning: A Probabilistic Perspective, ser.
Adaptive Computation and Machine Learning Series. MIT Press, 2012.

[3] F. Girosi, M. Jones, and T. Poggio, “Regularization Theory and Neural
Networks Architectures,” Neural Computation, vol. 7, no. 2, pp. 219–
269, Mar. 1995.

[4] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the Number
of Linear Regions of Deep Neural Networks,” in Proceedings of the
27th Conference on Advances in Neural Information Processing Systems,
vol. 27, Montréal, Canada, Dec. 2014.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3136488, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 12

[5] R. Eldan and O. Shamir, “The Power of Depth for Feedforward Neural
Networks,” in Proceedings of the 29th Conference on Learning Theory,
vol. 49, New York, USA, Jun. 2016, pp. 907–940.

[6] H. N. Mhaskar and T. Poggio, “Deep vs. Shallow Networks: An
Approximation Theory Perspective,” Analysis and Applications, vol. 14,
no. 06, pp. 829–848, Nov. 2016.

[7] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao, “Why
and When can Deep—But Not Shallow—Networks Avoid the Curse of
Dimensionality: A Review,” International Journal of Automation and
Computing, vol. 14, no. 5, pp. 503–519, Oct. 2017.

[8] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521,
no. 7553, pp. 436–444, May 2015.

[9] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural
Networks,” in Proceedings of the 14th International Conference on
Artificial Intelligence and Statistics, vol. 15, Florida, USA, Apr. 2011,
pp. 315–323.

[10] R. Pascanu, G. Montufar, and Y. Bengio, “On the Number of Response
Regions of Deep Feed Forward Networks With Piece-Wise Linear
Activations,” arXiv preprint arXiv:1312.6098, Feb. 2014.

[11] T. Poggio, L. Rosasco, A. Shashua, N. Cohen, and F. Anselmi, “Notes
on Hierarchical Splines, DLCNs and i-theory,” Center for Brains, Minds
and Machines (CBMM), Memo 37, 2015.

[12] R. Balestriero and R. Baraniuk, “A Spline Theory of Deep Learning,” in
Proceedings of the 35th International Conference on Machine Learning,
vol. 80, Stockholm, Sweden, Jul. 2018, pp. 374–383.

[13] R. Balestriero and R. G. Baraniuk, “Mad Max: Affine Spline Insights
Into Deep Learning,” Proceedings of the IEEE, vol. 109, no. 5, pp.
704–727, May 2021.

[14] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee, “Understanding Deep
Neural Networks with Rectified Linear Units,” in Proceedings of the
6th International Conference on Learning Representations, Vancouver,
Canada, Apr. 30.

[15] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, 2001.

[16] M. Unser, “A Unifying Representer Theorem for Inverse Problems and
Machine Learning,” Foundations of Computational Mathematics, Sep.
2020.

[17] T. Debarre, Q. Denoyelle, M. Unser, and J. Fageot, “Sparsest Con-
tinuous Piecewise-Linear Representation of Data,” arXiv preprint
arXiv:2003.10112, Mar. 2020.

[18] M. Unser, J. Fageot, and J. P. Ward, “Splines are Universal Solutions
of Linear Inverse Problems with Generalized-TV regularization,” SIAM
Review, vol. 59, no. 4, pp. 769–793, Jan. 2017.

[19] N. Aronszajn, “Theory of Reproducing Kernels,” Transactions of the
American Mathematical Society, vol. 68, no. 3, pp. 337–337, Mar. 1950.

[20] B. Schölkopf, R. Herbrich, and A. J. Smola, “A Generalized Repre-
senter Theorem,” in Computational Learning Theory. Springer Berlin
Heidelberg, 2001, vol. 2111, pp. 416–426.

[21] H. Gupta, J. Fageot, and M. Unser, “Continuous-Domain Solutions of
Linear Inverse Problems with Tikhonov versus Generalized TV Regu-
larization,” IEEE Transactions on Signal Processing, vol. 66, no. 17, pp.
4670–4684, Sep. 2018.

[22] D. L. Donoho, “For Most Large Underdetermined Systems of Linear
Equations the Minimal `1-Norm Solution Is Also the Sparsest Solution,”
Communications on Pure and Applied Mathematics, vol. 59, no. 6, pp.
797–829, 2006.

[23] R. Tibshirani, “Regression Shrinkage and Selection via the LASSO:
A Retrospective,” Journal of the Royal Statistical Society: Series B
(Statistical Methodology), vol. 73, no. 3, pp. 273–282, Jun. 2011.

[24] M. Unser, “A Representer Theorem for Deep Neural Networks,” Journal
of Machine Learning Research, vol. 20, no. 110, pp. 1–30, Jan. 2019.

[25] S. Aziznejad, H. Gupta, J. Campos, and M. Unser, “Deep Neural Net-
works with Trainable Activations and Controlled Lipschitz Constant,”
IEEE Transactions on Signal Processing, vol. 68, pp. 4688–4699, Aug.
2020.

[26] R. Parhi and R. D. Nowak, “The Role of Neural Network Activation
Functions,” IEEE Signal Processing Letters, vol. 27, pp. 1779–1783,
2020.

[27] ——, “Neural Networks, Ridge Splines, and TV Regularization in the
Radon Domain,” arXiv preprint arXiv:2006.05626, Jun. 2020.

[28] T. Ergen and M. Pilanci, “Revealing the Structure of Deep Neural
Networks via Convex Duality,” in 38th International Conference on
Machine Learning, Jul. 2021.

[29] ——, “Convex Geometry and Duality of Over-parameterized Neural
Networks,” arXiv preprint arXiv:2002.11219, Apr. 2020.

[30] P. Bohra, J. Campos, H. Gupta, S. Aziznejad, and M. Unser, “Learning
Activation Functions in Deep (Spline) Neural Networks,” IEEE Open
Journal of Signal Processing, vol. 1, pp. 295–309, Nov. 2020.

[31] R. J. Tibshirani and J. Taylor, “The Solution Path of the Generalized
LASSO,” The Annals of Statistics, vol. 39, no. 3, pp. 1335–1371, Jun.
2011.

[32] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60,
no. 1-4, pp. 259–268, Nov. 1992.

[33] P. Getreuer, “Rudin-Osher-Fatemi Total Variation Denoising using Split
Bregman,” Image Processing On Line, vol. 2, pp. 74–95, May 2012.

[34] J. M. Bioucas-Dias, M. A. T. Figueiredo, and J. P. Oliveira, “Total
Variation-Based Image Deconvolution: A Majorization-Minimization
Approach,” in Proceedings of the IEEE International Conference on
Acoustics Speech and Signal Processing Proceedings, vol. 2, Toulouse,
France, May 2006, pp. II–861–II–864.

[35] J. Yuan, C. Schnörr, and G. Steidl, “Total-Variation Based Piecewise
Affine Regularization,” in Scale Space and Variational Methods in
Computer Vision. Springer Berlin Heidelberg, 2009, vol. 5567, pp.
552–564.

[36] M. Lysaker and X.-C. Tai, “Iterative Image Restoration Combining Total
Variation Minimization and a Second-Order Functional,” International
Journal of Computer Vision, vol. 66, no. 1, pp. 5–18, Jan. 2006.

[37] S. Lefkimmiatis, J. P. Ward, and M. Unser, “Hessian Schatten-Norm
Regularization for Linear Inverse Problems,” IEEE Transactions on
Image Processing, vol. 22, no. 5, pp. 1873–1888, May 2013.

[38] S. Lefkimmiatis, A. Bourquard, and M. Unser, “Hessian-Based Norm
Regularization for Image Restoration with Biomedical Applications,”
IEEE Transactions on Image Processing, vol. 21, no. 3, pp. 983–995,
Mar. 2012.

[39] S. Aziznejad, J. Campos, and M. Unser, “Measuring Complexity
of Learning Schemes Using Hessian-Schatten Total-Variation,” arXiv
preprint arXiv:2112.06209, Dec. 2021.

[40] R. Bhatia, Matrix Analysis, ser. Graduate Texts in Mathematics.
Springer New York, 1997, vol. 169.

[41] E. J. Candès and B. Recht, “Exact Matrix Completion via Convex
Optimization,” Foundations of Computational Mathematics, vol. 9, no. 6,
p. 717, Apr. 2009.

[42] D. Gross, “Recovering Low-Rank Matrices from Few Coefficients in
Any Basis,” IEEE Transactions on Information Theory, vol. 57, no. 3,
pp. 1548–1566, Mar. 2011.

[43] B. Recht, “A simpler approach to matrix completion,” Journal of
Machine Learning Research, vol. 12, no. 104, pp. 3413–3430, Dec.
2011.

[44] A. Entezari, M. Nilchian, and M. Unser, “A Box Spline Calculus for
the Discretization of Computed Tomography Reconstruction Problems,”
IEEE Transactions on Medical Imaging, vol. 31, no. 8, pp. 1532–1541,
Aug. 2012.

[45] A. Entezari, “Optimal sampling lattices and trivariate box splines,” Ph.D.
dissertation, Simon Fraser University, Jul. 2007.

[46] A. Entezari, D. Van De Ville, and T. Möller, “Practical Box Splines for
Reconstruction on the Body Centered Cubic Lattice,” IEEE Transactions
on Visualization and Computer Graphics, vol. 14, no. 2, pp. 313–328,
Mar. 2008.

[47] H. Kunsch, E. Agrell, and F. Hamprecht, “Optimal Lattices for Sam-
pling,” IEEE Transactions on Information Theory, vol. 51, no. 2, pp.
634–647, Feb. 2005.

[48] L. Condat and D. Van De Ville, “Three-Directional Box-Splines: Char-
acterization and Efficient Evaluation,” IEEE Signal Processing Letters,
vol. 13, no. 7, pp. 417–420, Jul. 2006.

[49] W. Dahmen and C. A. Micchelli, “On the Optimal Approximation Rates
for Criss-Cross Finite Element Spaces,” Journal of Computational and
Applied Mathematics, vol. 10, no. 3, pp. 255–273, Jun. 1984.

[50] H. Prautzsch and W. Boehm, “Box Splines,” in Handbook of Computer
Aided Geometric Design. Amsterdam: North-Holland, 2002, pp. 255–
282.

[51] W. Guo and M.-J. Lai, “Box Spline Wavelet Frames for Image Edge
Analysis,” SIAM Journal on Imaging Sciences, vol. 6, no. 3, pp. 1553–
1578, Jan. 2013.

[52] H. Prautzsch, W. Boehm, and M. Paluszny, “Box Splines,” in Bézier and
B-Spline Techniques. Springer Berlin Heidelberg, 2002, pp. 239–258.

[53] D. Van De Ville, T. Blu, M. Unser, W. Philips, I. Lemahieu, and R. Van
de Walle, “Hex-Splines: A Novel Spline Family for Hexagonal Lattices,”
IEEE Transactions on Image Processing, vol. 13, no. 6, pp. 758–772,
Jun. 2004.

[54] M. Unser, “Splines: A Perfect Fit for Signal and Image Processing,”
IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22–38, Nov. 1999.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3136488, IEEE Open
Journal of Signal Processing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 13

[55] ——, “Sampling—50 Years After Shannon,” Proceedings of the IEEE,
vol. 88, no. 4, pp. 569–587, Apr. 2000.

[56] A. Aldroubi and M. Unser, “Sampling Procedures in Function Spaces
and Asymptotic Equivalence with Shannon’s Sampling Theory,” Numer-
ical Functional Analysis and Optimization, vol. 15, no. 1-2, pp. 1–21,
Jan. 1994.

[57] H.-C. Chang and L.-C. Wang, “A Simple Proof of Thue’s Theorem on
Circle Packing,” arXiv preprint arXiv:1009.4322, Sep. 2010.

[58] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups,
ser. Grundlehren Der Mathematischen Wissenschaften. Springer New
York, 1999, vol. 290.

[59] S. Boyd, “Distributed Optimization and Statistical Learning via the
Alternating Direction Method of Multipliers,” Foundations and Trends
in Machine Learning, vol. 3, no. 1, pp. 1–122, Jan. 2011.

[60] Z. Lin, R. Liu, and Z. Su, “Linearized alternating direction method
with adaptive penalty for low-rank representation,” in Proceedings of the
24th Conference on Advances in Neural Information Processing Systems,
vol. 24, Granada, Spain, Dec. 2011.

[61] N. Parikh and S. Boyd, “Proximal Algorithms,” Foundations and Trends
in Optimization, vol. 1, no. 3, pp. 123–231, Jan. 2014.

[62] G. B. Dantzig, A. Orden, and P. S. Wolfe, Notes on Linear Program-
ming: Part I: The Generalized Simplex Method for Minimizing a Linear
Form Under Linear Inequality Restraints. RAND Corporation, 1954.

[63] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, ser.
Operations Research & Management Science. Springer New York,
2008, vol. 116.

[64] F. Girosi, M. Jones, and T. Poggio, “Priors Stabilizers and Basis
Functions: From Regularization to Radial, Tensor and Additive Splines,”
Massachusetts Institute of Technology, USA, Artificial Intelligence
Memo 1430, 1993.

[65] I. Steinwart, D. Hush, and C. Scovel, “An Explicit Description of the
Reproducing Kernel Hilbert Spaces of Gaussian RBF Kernels,” IEEE
Transactions on Information Theory, vol. 52, no. 10, pp. 4635–4643,
Oct. 2006.

[66] S. Aziznejad and M. Unser, “Multikernel Regression with Sparsity
Constraint,” SIAM Journal on Mathematics of Data Science, vol. 3, no. 1,
pp. 201–224, Feb. 2021.

[67] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
arXiv preprint arXiv:1412.6980, Jan. 2017.

[68] M. Unser and P. Tafti, An Introduction to Sparse Stochastic Processes.
Cambridge University Press, 2014.

[69] C. De Boor, K. Höllig, and S. D. Riemenschneider, Box Splines.
Springer, 2011.

[70] G. Strang and G. Fix, “A Fourier Analysis of the Finite Element
Variational Method,” in Constructive Aspects of Functional Analysis.
Springer Berlin Heidelberg, 2011, pp. 793–840.

[71] M. Unser, “Approximation Power of Biorthogonal Wavelet Expansions,”
IEEE Transactions on Signal Processing, vol. 44, no. 3, pp. 519–527,
Mar. 1996.

