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Asynchrony Increases Efficiency: Time Encoding of
Videos and Low-Rank Signals
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Abstract—In event-based sensing, many sensors independently
and asynchronously emit events when there is a change in their
input. Event-based sensing can present significant improvements
in power efficiency when compared to traditional sampling, be-
cause (1) the output is a stream of events where the important
information lies in the timing of the events, and (2) the sensor can
easily be controlled to output information only when interesting
activity occurs at the input. Moreover, event-based sampling can
often provide better resolution than standard uniform sampling.
Not only does this occur because individual event-based sensors
have higher temporal resolution (Rebecq et al., 2021) it also occurs
because the asynchrony of events within a sensor and therefore
across sensors allows for less redundant and more informative
encoding. We would like to explain how such curious results come
about. To do so, we use ideal time encoding machines as a proxy for
event-based sensors. We explore time encoding of signals with low
rank structure, and apply the resulting theory to video. We then
see how the asynchronous firing across time encoding machines can
couple spatial sampling density with temporal resolution, leading
to better reconstruction, whereas, in frame-based video, temporal
resolution depends solely on the frame-rate and spatial resolution
solely on the pixel grid used.

Index Terms—Event-based sensing, time encoding, low-rank
signals, bandlimited signals, video reconstruction.

I. INTRODUCTION

MANY aspects of our lives are governed by routine and
rythm: our work days, breathing patterns, or even mu-

sic. However, metronomic schedules aren’t always resource-
efficient. We generally say “hello” when we see someone we
know rather than saying it at regular intervals.

Many engineered systems, such as traditional sampling de-
vices, rely almost exclusively on clocked behavior. These sam-
pling schemes are powerful - they govern how we record music,
take images, transfer information - but they fail to adapt their
activity to the varying complexity of the input.

This drawback leads to inefficiencies which are apparent
when comparing the power consumption of human-engineered
technologies to biological equivalents.
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As demands for increased storage and processing coupled
with smaller devices has brought efficiency into the spotlight,
researchers have been turning to biology for inspiration.

Inspired by neurons, event-based sensing is growing in pop-
ularity [2]–[5]. The output of such a sensor is a series of spikes
which are characterized by their timing rather than their ampli-
tude, as is the case with traditional sampling [6]. In addition, the
spiking rate at the output can be made to depend on different
characteristics of the input, such as amplitude or rate of change,
by choosing an appropriate filter [7].

While efforts have recently been invested to better under-
stand event-based sensing and reconstruction of bandlimited
or finite-rate-of-innovation signals [9]–[11], comparisons be-
tween event-based sensing and standard sampling have mostly
considered the timing-based output of event based sensing to
be more of a pesky necessity that requires some work-around
rather than a blessing in disguise. In fact, this asynchrony be-
tween the events of different sensors allows for better resolution
and more flexibility when using event-based sampling than in
the uniform, synchronous sampling case. Having asynchrony
between events of different sensors is one way of ensuring that
the information gathered about an input signal provides linearly
independent—and therefore non-redundant—constraints on
this input.

We show this in a series of steps. First, we review time
encoding machines (TEMs), which are the ideal event-based
sensor [7], [12]. The input-output relationship of an integrate-
and-fire TEM follow similar rules to that of nonuniform sam-
pling [13], [14], and thus results in interesting consequences
when it comes to single-signal multi-channel time encod-
ing [15], [16].

The natural extension to time encoding multiple mixed signals
with multiple channels then offers optimal sampling efficiency
for low-dimensional signals with known structure. We find a
Nyquist-like criterion on the number of spikes needed for recon-
struction, requiring as many linearly independent constraints as
degrees of freedom.

Using this formulation, the video recording problem with
TEMs turns into a parametric estimation problem. We study
the setup in Fig. 1: multiple TEMs are used to encode multiple
locations in a scene and each TEM outputs a series of spikes. We
find that this setup offers interesting tradeoffs in terms of time
and space resolution: for once, increasing space resolution can
actually increase time resolution as well, precisely thanks to our
blessing in disguise—the asynchrony of spike times within and
across outputs of the TEMs.
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Fig. 1. Vision setup: we assume that we have an array of spiking devices, such as photoreceptors or TEMs, each of which is observing a scene at a particular
location. The input to the receptor at this location is a time varying signal and the receptor will output a stream of spikes, the timing of which is dependent on the
input. On the left, we show the projection of the scene which is being observed, with an overlay of event-based sensors shown in yellow. To its right, we zoom in
to view the spiking output of some of the sensors. The video used is taken from the Need for Speed dataset [8].

As a result, time encoding or event-based sensing encourages
increasing the number of sensors rather than the spiking rate
of sensors as a means to improve resolution in both time and
space. This, in turn, means that (1) there are fewer hardware
requirements on the sensors themselves, and (2) sensors can
integrate information over more time, thus avoiding issues with
low photon count that occur at higher shutter speeds with stan-
dard cameras.

This particular result does not usually hold in the equivalent
scenario in standard frame-based video recording. There, the
resolution in time and space are almost independent from one
another. The former depends on the frame-rate of the camera and
the latter depends on the sampling pattern of the camera, which
of course includes the number of pixels used for sampling. If
we increase the number of pixels used to record a frame, this
would not improve the resolution in time, because all pixels of a
frame are taken at the same moment in time. To fix this, different
pixels would need to record frames at different times. This is
possible but renders things more complicated: reconstruction
would either require that time shifts between pixel clocks be
known, or it becomes a difficult problem that has no uniqueness
guarantees. In contrast, when using time encoding, spike times
are—by design—almost surely different and this difference
comes at no extra cost.

II. BACKGROUND

As first presented in [17], time encoding machines (TEMs)
encode inputs using times that are dependent on the input itself.
TEMs can therefore be used to model neurons or sensory recep-
tors such as photoreceptors. In fact, the simpler neuron models
often encode their input currents using action potentials with

Fig. 2. Circuit of a Time Encoding Machine, with input x(t), threshold δ,
integrator constant κ and bias β.

fixed amplitude and varying timing, where the timing holds the
information about the input [18].

In this paper, we will consider one model for time encoding
machines which resembles an integrate-and-fire neuron with no
leak [13], [18]. Such TEMs can provide perfect encodings of
signals using one or many channels. The circuit of a TEM is
depicted in Fig. 2.

Definition 1: A time encoding machine (TEM) with param-
eters κ, δ, and β takes an input signal x(t), adds a bias β to it
and integrates the result, scaled by 1/κ, until a threshold δ is
reached. Once this threshold is reached, the time t� at which it
is reached is recorded, the value of the integrator resets to −δ
and the mechanism restarts. We say that the machine spikes at
the integrator reset and call the recorded time t� a spike time.

Note that a TEM can also be assumed to reset to zero after
each spike with only minor effects on the results.

The first results on time encoding machines that resemble this
model were, to the authors’ knowledge, established by Lazar and
Tóth [12].

The results operate under the following assumptions.
A1) The input signal x(t) is bandlimited with bandwidth Ω.
A2) The input signal x(t) is in L2(R).
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A3) The input signalx(t) is bounded by a constant c, |x(t)| <
c, ∀t ∈ R.

Under these assumptions, the input x(t) can be reconstructed
from the emitted spike times if the parameters of the machine
satisfy β > c and the bandwidth satisfies

Ω <
π(β − c)

2κδ
. (1)

The reconstruction scheme and the proof of convergence are
based on two key elements:

1) the time encoding scheme is tightly related to the scheme
of sampling averages, therefore the results developped for
the reconstruction from averages can be used for time
encoding and reconstruction [14], [19], and

2) when performing time encoding, the maximal delay be-
tween two consecutive spike times is dictated by the
parameters of the machine:

t�+1 − t� <
2κδ

β − c
. (2)

Given these two observations, and under Condition (1), the
input signal can be perfectly determined by the spike times using
algorithms based on alternating projections onto convex sets [9],
[12], [20].

Following these findings, studies were conducted to evaluate
the performance of different reconstruction approaches that
use results from uniform sampling [21]–[23], that use iterative
reconstruction which is implementable in hardware [9], [24],
that run in an online fashion [25], [26] or that apply to more
general classes of signals [7].

Later, the theory was extended to multi-channel time encoding
of a signal. On one hand, Lazar suggested a scheme for ban-
dlimited signal sampling and reconstruction using many time
encoding machines coupled with filter banks [15]. On the other
hand, we suggested a scheme for sampling and reconstructing
a bandlimited signal using many time encoding machines that
are similar and have no pre-filters [27]. In the latter scenario,
we showed that if one TEM can encode a signal with bandwidth
Ω, then M TEMs can encode a signal with bandwidth MΩ
assuming that the TEMs have unknown non-zero shifts between
their integrators α1, . . . , αM [27]. In other words, M time
encoding machines with parameters κ, δ, and β can encode a
signal which satisfies assumptions (A1), (A2), (A3) if

Ω < M
π(β − c)

2κδ
. (3)

As a result, instead of using one TEM with a certain spiking
rate to encode a signal, one can now use many TEMs with
lower spiking rates to encode the same signal. This is useful
if time encoding machines or neurons have an upper limit on
their spiking rate.

The result generalizes to multi-signal, multi-channel time
encoding, as partly studied in [28] and as we will see in the
next sections.

This, in turn, allows us to understand how we can uniquely
time encode video using multiple TEMs. Video time encoding
machines have been examined before, and results on perfect
reconstruction have already been established [29]. However,
previous work relied on applying linearly independent filters

to the video before it is processed by the TEMs. As a result, one
could deduce requirements on the minimal number of TEMs
used. Here, we propose a filter-less approach where the scene
is processed as is. Moreover, we clarify a dependency between
spatial sampling density and temporal resolution that was not
apparent before.

III. PROBLEM SETUP

For the remainder of this paper, we consider many time-
varying signals y(i)(t), i = 1 · · · I that are correlated with each
other. These signals are encoded using time encoding machines
and we assume that each signal follows a parametric model
which we know.

The goal is to recover the unknown inputs y(i)(t) from their
time encoding.

Correlated signals arise in applications where principle com-
ponent analysis yields little loss in information, such as, among
others, meteorological data, biomarkers in human patients, re-
gional economic data, audio, and video. The latter example will
be given particular attention later on.

In our setup, we let y(t) denote the vector signal composed
of y(i)(t)’s and let y(t) be such that

A4) each y(i)(t) has a finite parametric representation:

y(i)(t) =

K∑
k=1

ci,k(y)fk(t), (4)

where the ci,k(y) are fixed coefficients that are unknown
apriori and form a matrix C(y), and the fk(t)’s, k =
1· · ·K are known functions,

A5) each y(i)(t) can be written as a linear combination of
x(j)(t)’s, j = 1 · · · J where J < I:

y(t) = Ax(t), (5)

for x(j)(t)’s characterized by a matrix of coefficients
C(x) (where the x(j)(t)’s and C(x) are unknown apri-
ori) and a mixing matrix A ∈ RI×J , and

A6) each y(i)(t) is sampled using a time encoding machine
TEM(i) with parameters κ(i), δ(i) and β(i) which are
known and can vary between machines. The outputs of
the machines are denoted {t(i)� , � = 1 · · ·n(i)

spikes}.
The sampling setup we described is depicted in Fig. 3.
We will consider two options for the functions fk(t):
(A7.a) fk(t) is a sinc function

fk(t) = sincΩ(t− τk) =
sin (Ω(t− τk))

π(t− τk)
, (6)

for Ω and τk known, so that the y(i)(t)’s are a finite
sum of sincs, or

(A7.b) fk(t) is a complex exponential function,

fk(t) = exp

(
j
2π

T
kt

)
, (7)

so that the y(i)(t)’s are bandlimited periodic func-
tions.

Thankfully, the functions in (A7.a) and (A7.b) resemble each
other enough for the treatment of the two functions to be done
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Fig. 3. Sampling setup: J input signals x(j)(t), j = 1 · · ·J are mixed using a matrix A and produce signals y(i)(t), i = 1 · · · I . Each y(i)(t) is then sampled

using a time encoding machine TEM(i) which produces spike times {t(i)
�

, � = 1 · · ·n(i)
spikes

}.

at the same time. For both of them, we consider the reconstruc-
tion conditions with A satisfying either of the following two
assumptions.

(A8.a) The linear map from the low dimensional space A ∈
RI×J is known.

(A8.b) The linear map from the low dimensional space
A ∈ RI×J is unknown but the dimension of the low
dimensional space J is known.

We first consider the case where A is known and provide
conditions for perfect reconstruction in Section IV-A and a
reconstruction algorithm in Sections IV-B. We later provide
applications for this scenario in Sections V and VI, where we
deal with time encoding video.

Later, we will consider the case where A is unknown and
provide a reconstruction algorithm based on singular value
projection for low-rank matrix recovery in Section VII. We
then follow with simulations to show results and with example
applications for time encoding time-varying scenes.

IV. KNOWN LOW-RANK FACTORIZATION: TIME ENCODING

AND RECONSTRUCTION

A. Conditions for Perfect Reconstruction

We can establish the following sufficient conditions to ensure
that a series of inputs y(i)(t) drawn at random are reconstructible
from their time encoding using machines TEM(i).

Theorem 1: Let I signals y(i)(t), i = 1 · · · I satisfy assump-
tions (A4), (A5) and (A6), and their functions fk(t) satisfy
either of (A7.a) or (A7.b) with the corresponding coefficients
cj,k(x) being drawn from a Lipschitz continuous probability
distribution. Now assumeA ∈ RI×J as defined in (A5) is known
and has every J rows linearly independent. Then the inputs
y(i)(t), i = 1 · · · I are exactly determined by the spike times
{t(i)� , � = 1 · · ·n(i)

spikes}, i = 1 · · · I , with probability one, if:

I∑
i=1

min
(
nspikes(i) − 1,K

)
> JK. (8)

We can prove the above theorem by writing it as a problem
of rank one measurements, also called bi-linear measurements
in [30]. The full proof is provided in Appendix A.

B. Reconstruction Algorithm

The spike time outputs of the machines {t(i)� , � =

1 · · ·n(i)
spikes} provide constraints on the integral of the input

signals:

∫ t
(i)
�+1

t
(i)
�

y(i)(u) du = 2κ(i)δ(i) − β(i)(t
(i)
�+1 − t

(i)
� ) =: ḃ

(i)
� . (9)

These measurements can be rewritten to fit the rank one
measurements formulation [30]. LettingC(x) denote the matrix
of coefficients cj,k(x) for the underlying signals x(j)(t), we can
reconstruct C(x) (and therefore y(t)) by solving

ḃ
(i)
� = vec

(
ai

[
Ḟ

(i)
�

]T)T

vec (C(x)) , (10)

where ḃ
(i)
� is known, vec() denotes the vectorization operation,

[
Ḟ

(i)
� )
]
k
=

∫ t
(i)
�+1

t
(i)
�

fk(u) du,

and t
(i)
1 denotes the first spike time of TEM(i).

Under the conditions of Theorem 1, the linear system in (10)
is full rank and C(x) can be recovered perfectly. Once the
matrixC(x) has been recovered, one can recover the coefficients
ci,k(y) of the y(i)(t)’s by setting C(y) = AC(x) and can
therefore recover the original sampled signals.

Note that, given this formulation, there are different ap-
proaches to solving for C(x). One can either invert the system
in (10) by using a pseudo-inverse, or use iterative approaches to
minimize the mean-squared error, such as gradient descent or
projections onto convex sets (POCS) [9], [14], [20] as we did
in [28]. All of these methods converge to the same result, given
that a pseudo-inverse approach minimizes the mean-squared
error by definition, that the gradient descent approach is given a
convex loss function and that the POCS approach uses convex
sets which have a unique intersection. For the remainder of the
manuscript, we use the pseudo-inverse approach, mostly for its
speed of execution.
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C. Interpretation

The result in Theorem 1 establishes a Nyquist-like criterion
for recovery. It specifies how to count the number of linearly
independent constraints in the multi-channel TEM setup and
requires as many of these constraints as there are degrees of
freedom to recover the sampled signals. Given that each pair of
spike times corresponds to one linear constraint on the input, the
results can be summarized by a few key points:

1) When sampling a collection of signals with a known linear
mapping to or from a lower dimensional representation,
what matters is the number of degrees of freedom in
the low dimensional space, rather than the number of
degrees of freedom in the high dimensional space. More
practically, to ensure perfect reconstruction, we need the
number of linearly independent constraints to be at least
the number of degrees of freedom in the low dimensional
space JK. In the case where J << I , we can see how this
can be a major improvement in spiking rate.

2) When multiple correlated signals are sampled using dif-
ferent time encoding machines, a lower spiking rate of one
machine can be compensated for by higher spiking rates
from others. This can be seen by observing the summation
in (8) and noting that the total spiking rate of the machines
matters more than the individual spiking rates.

3) One machine can only compensate for another machine’s
low spiking rate up to a certain degree. This can be seen by
the min term in (8) which implies that every machine has
a maximal “useful” spiking rate depending on the signal
and that going above this spiking rate does not add further
information.

This has a series of implications. First, signals that have
lower dimensional representations can be sampled at lower rates
overall, increasing sampling efficiency. Second, if TEMs have
limited capacity in terms of spiking rates (for example they have
a refractory period), this can be compensated for by adding more
TEMs. This would still ensure reconstruction of the input since
the reconstruction condition in (8) is only linked to the number
of degrees of freedom in the low dimensional space. Third, we
will see in Section VI how the results help us solve time encoding
of time-varying spatial signals which have certain structure in
space.

Note that these results provide a stark improvement to sam-
pling high-dimensional but low-complexity signals using regu-
lar clock-based sampling. In fact, Theorem 1 holds because of
one key element: different dimensions of the signal are sam-
pled at different times with continuous probability distributions.
Uniform and synchronous sampling does not have this property;
indeed, it only takes a short mental exercice to see that the
recovery ofy(t) takes IK samples if the y(i)(t)’s are all sampled
at the same sampling times.

To be fair, one could ensure that different y(i)(t)’s are sampled
at different times (minus the continuous probability condition),
but this condition is much more elegantly ensured in the time
encoding scenario. Moreover, using different clocks in the clas-
sical sampling setup poses difficulties because it is hard to align
them. Clock alignment is not an issue in time encoding: the

outputs are trains of spikes and finding delays between TEMs is
solved by adding spike trains and comparing spike times on one
time axis.

D. Extensions

The results in this section assumed a fixed signal model and
relied on two key elements: the structure of the matrixA and the
timing of the spikes which is asynchronous across machines. In
this case, the asynchrony of the spikes across TEMs occurs be-
cause the matrixA has different rows. However, this asynchrony
can also be ensured by TEMs having different parameters, as
done in [27]. In such as scenario, repeated (or linearly dependent)
entries in A are allowed and our assumptions can be relaxed, so
that A does not have to have every J rows linearly independent.
We choose not to further explore this possibility, here, but rather
to provide a basic framework to understand time encoding of
mixed signals.

V. REPRESENTING 2D SIGNALS WITH SPIKES: VIDEOS WITH 1
SPATIAL DIMENSION

The results obtained in previous sections provide considerable
improvements in sample requirements for multi-signal recon-
struction when these signals have a low dimensional structure.

Interestingly, the problem of time encoding bandlimited video
can be rephrased to fit this framework.

First, we start with a simpler case and consider a two-
dimensional (2D) signal y(d, t) that is bandlimited in both
components. Note that, exclusively when using the terms “2D”
and “3D,” when we refer to “dimension,” we mean the spatial
and time dimensions, i.e. the signal varies along each of these
two components. We do not refer to the complexity of the signal
(as it relates to I , J and K) as we did before.

y(d, t)

=

K0∑
k0=−K0

K1∑
k1=−K1

ck0,k1
(y) exp

(
j2π

(
tk0
T

+
dk1
D

))

=

K0∑
k0=−K0

K1∑
k1=−K1

ck0,k1
(y)

exp

(
j2π

(
tk0
T

))
exp

(
j2π

dk1
D

)
,

where the ck0,k1
(y)’s denote the 2D Fourier series coefficients

of y(d, t). Note that we assume that y(d, t) has (2K0 + 1)×
(2K1 + 1) of these coefficients with periods T and D in the
time and space components, respectively.

The results here will concern any such signal but, to make
the treatment more intuitive, we will assume that we are dealing
with a visual scene that has one continuous spatial component d
and is varying along time t. To be clearer, taking a picture of this
scene at time t provides the light intensity along one direction,
which we assume to be the horizontal direction, without loss of
generality. See Fig. 4 for illustration.

Now assume that we sample this time-and-horizontally-
varying scene using I TEMs. Each TEM(i) is associated with a
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Fig. 4. 2D signal y(d, t) with spatial component d and time component t.

location in “space,” i.e. a position on the horizontal axis, d(i),
such that the sampled signal y(i)(t) satisfies:

y(i)(t) = y(d(i), t). (11)

To make the connection to the theory in Section IV, we first
need to define an auxiliary vector signal x(t) with 2K1 + 1
components, such that

x(k1)(t) =

K0∑
k0=−K0

ck0,k1
(y) exp

(
j
2π

T
k0t

)
. (12)

We now notice that we can rewrite

y(i)(t) = y(d(i), t) =

K1∑
k1=−K1

x(k1)(t) exp

(
j
2π

D
k1d

(i)

)
.

(13)

We can directly see that this brings back the structure we saw
earlier, we have y(t) = Ax(t) where x(t) is as defined in (12)
and [A]i,k1

= exp(−j 2π
D k1d

(i)), where i denotes the sampled
channel.

VI. REPRESENTING 3D SIGNALS WITH SPIKES: VIDEOS WITH

2 SPATIAL DIMENSIONS

A. Theory

We can use a similar treatment to understand how to time
encode and reconstruct 3D signals y(d1, d2, t). These signals
can be interpreted as scenes that have 2 spatial components d1
and d2 (horizontal and vertical) and one time component t, as in
videos.

We again assume that such a signal y(d1, d2, t) is bandlimited
along all components:

y(d1, d2, t) =

K0∑
k0=−K0

K1∑
k1=−K1

K2∑
k2=−K2

ck0,k1,k2
(y).

exp

(
j2π

(
tk0
T

+
d1k1
D1

+
d2k2
D2

))
(14)

Once again we assume that y(d1, d2, t) is sampled in space
at locations specified by d where sample i is taken at spatial

location d(i) = (d
(i)
1 , d

(i)
2 ) for some d

(i)
1 and d

(i)
2 in R. An

example is provided in Fig. 5.
We define x(k1,k2)(t) in a similar fashion to (12):

x(k1,k2)(t) =

K0∑
k0=−K0

ck0,k1,k2
(y) exp

(
j2π

(
tk0
T

))
, (15)

and we obtain the input signals to the TEMs

y(i)(t) =

K1∑
k1=−K1

K2∑
k2=−K2

x(k1,k2)(t)

exp

(
j2π

(
d
(i)
1 k1
D1

+
d
(i)
2 k2
D2

))
. (16)

Once more, we have found that we are time encoding y(t) =
Ax(t) with the entries of x(t) satisfying (15), and a matrix
A which is known if we know the locations of the time en-
coding machines d(i). If the locations of the time encoding
machines d(i) are such that A has every (2K1 + 1)(2K2 + 1)
rows linearly independent, then all coefficients ck0,k1,k2

(t) can
be recovered using

∏2
n=0(2Kn + 1) appropriate measurements.

This means that the continous scene can also be recovered, so
we can interpolate the scene between spike times in both space
and time components.

One example of a matrix A that satisfies the above constraint
arises when one follows sufficient uniform gridding.

Definition 2: Sufficient Uniform Gridding defines the sam-
pling locations d(i) to follow a uniform grid over a spatial
period, with 2K1 + 1 positions in the d1 direction and 2K2 + 1
positions in the d2 direction. More formally, i ranges between
zero and (2K1 + 1)(2K2 + 1) and

d
(i)
1 =

�i/(2K2 + 1)�
2K1 + 1

D1, (17)

d
(i)
2 =

(i mod (2K2 + 1))

2K2 + 1
D2. (18)

Lemma 1: The matrix A obtained from using sufficient
uniform gridding with entries as defined in (16) has every
(2K1 + 1)(2K2 + 1) rows linearly independent.

Proof: The proof of Lemma 1 relies on calculating the
Gram matrix of A and noticing that it is diagonal and there-
fore full rank. Consequently A also has a full rank (2K1 +
1)(2K2 + 1) and has every (2K1 + 1)(2K2 + 1) rows linearly
independent. �

This is not the only case in whichA satisfies our assumptions,
it seems that more general configurations of the spatial sampling
can also work provided the samples cover the space.

As was the case in Section IV, admitting that TEMs are receiv-
ing input signals that have a low dimensional structure allows
one to manipulate the number of time encoding machines while
keeping the same total spiking rate, and without compromising
on reconstructibility.

In other words, every TEM does not have to be able to
perfectly reconstruct its own input for the entire scene to be
reconstructed. On the contrary, emitted spikes from all machines
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Fig. 5. A time-varying scene is sampled at different spatial locations using TEMs. On the left, we see the scene with varying spatial and time components taken
from the Need for Speed dataset [8]. On the right, we see a time-varying patch which we will record using time encoding machines placed at the yellow dots.
Originally, the video data we use was captured using a standard frame-based camera. We smoothly interpolate the video by assuming that the underlying structure
is bandlimited and periodic and we aim to estimate the corresponding Fourier Series coefficients using the spikes emitted by the TEMs. In this case, we use a
9 × 9 grid of TEMs on an interpolated version of a 9 × 9×Nf video patch where Nf is the number of frames used for the interpolation and time encoding.
Therefore the number of Fourier Series coefficients to obtain is 9 × 9×Nf .

are used collaboratively in order to reconstruct the scene which
has a parametric representation.

Therefore, if we have TEM-like receptors or sensors that have
a limited spiking rate, spatial and temporal resolution can be
regained by adding more sensors at new locations.

B. Simulations

We would like to illustrate the theoretical results obtained
in the previous section on an actual video, to illustrate the
relationship between spatial and temporal sampling density.
First we choose a video recorded with a standard frame-based
camera [8], and examine a patch of this video as shown in Fig. 5.
This patch has H ×W ×Nf samples where H refers to the
height of the patch in pixels, W refers to the width of the patch
in pixels and Nf refers to the number of frames.

We assume the underlying scene has a periodic bandlimited
structure (which is also the assumption that allows for finite
uniform sampling). This allows us to (1) express the scene as
in 14 and (2) fix the corresponding number of Fourier series co-
efficients to match the number of samples (2K0 + 1)× (2K1 +
1)× (2K2 + 1)whereK0 = �H/2� for example. The patch we
consider is therefore a smooth function with a fixed number
of parameters we are interested in and which can be sampled
anywhere in time and space.

Given the smoothly varying patch, we place TEMs, for ex-
ample, at the yellow dots in Fig. 5. In this case, we have a patch
which is 9 pixels high and 9 pixels wide and we place a 9 × 9
grid of time encoding machines, according to the definition of
sufficient uniform gridding. We will show, in our experiments
that this is the minimum number of TEMs required to achieve
perfect reconstruction.

We will also show how we can use more TEMs in the spatial
components to obtain better resolution in the time component.
This will not necessarily be the case the other way around:
more sampling in time does not always provide improved spatial
frequency resolution.

The interpolated patch from Fig. 5 is sampled using a fixed
number of TEMs and we vary the number of spikes per TEM
to see how this effects the reconstruction error in the left part of
Fig. 6.

We consider three scenarios from top to bottom: we have
a 9× 15 uniformly spaced grid of TEMs, a 9× 9 uniformly
spaced grid of TEMs (similar to uniform sufficient gridding),
and a 9× 5 uniformly spaced grid of TEMs.

We examine the evolution of the reconstruction error as the
number of spikes per TEM increases. Having JK constraints
provided by the spikes (dashed green lines in the figure) will
not always ensure that the reconstruction error decrease signif-
icantly. The results rather match the predictions of Theorem 1,
as indicated by the vertical orange line. Moreover, as validated
by our experiments, Theorem 1 cannot place any guarantees on
reconstruction for the case where there are fewer TEMs than
spatial components (i.e. when we have a 9× 5 grid of TEMs).
In fact, perfect reconstruction is never possible: the system will
always be underdetermined because of too few sensors in the
spatial domain.

On the other hand, we examine the scenario where we vary
the number of TEMs for a fixed spiking rate per machine in the
right part of Fig. 6. We similarly set the spiking rate to different
levels from top to bottom: 5 spikes per TEM, 9 spikes per TEM
and 15 spikes per TEM. Here, the sufficient number of spikes
per machine 2K0 + 1 = 9 is the one that allows each machine
to perfectly resolve its own input.

We notice that the reconstruction error undergoes a significant
decrease once the number of TEMs is such that the condition of
Theorem 1 is satisfied. As was the case for the left part of Fig. 6,
the threshold at which this decrease occurs does not depend
on the total number of constraints (in green) but rather on the
number of linearly independent constraints.

We can draw a similar conclusion to that drawn for the left
part of Fig. 6: increasing the number of spikes per TEM beyond
a certain point is not helpful and it is generally more beneficial
to have more TEMs or sensors that spike less frequently.
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Fig. 6. On the left, we show the mean-squared reconstruction error as the number of spikes per time encoding machine varies. On the right, we show the
mean-squared reconstruction error as the number of time encoding machine varies for fixed numbers of spikes. We assume the video has 9× 9× 9 Fourier series
coefficients that we wish to recover. On the left-hand side, we show, from top to bottom, the evolution of the error as number of spikes increases for 9× 15, 9× 9
and 9× 5 uniformly spaced TEMs. Note that the second row assumes sufficient uniform gridding. On the right-hand side, we show, from top to bottom, the the
evolution of the error as number of spikes increases for 5, 9 and 15 spikes emitted per machine. Note that the second row assumes a spiking rate which matches
the sufficient rate starting from which each TEM can perfectly reconstruct its input. For each plot, the dashed green line marks the number of spikes per machine
or the number of TEMs (for the left and right hand sides respectively) starting from which we have more constraints than unknowns, not accounting for linear
independence. The vertical orange line instead marks the threshold provided by Theorem 1 and marks the number of spikes per TEM (left) or the number of TEMs
(right) starting from which we have more linearly independent constraints than unknowns. Note that, if we assume no underlying structure, one would always need
at least 9 TEMs in each spatial direction and at least 9 spikes per time encoding machine.

C. Coupling of Spatial and Temporal Resolution: Intuition
and Consequences

In a nutshell, the theory developed and experiments conducted
all indicate that, if one would like to increase resolution, whether
spatial or temporal, it is better to increase spatial sampling
density. Increasing spatial sampling density is always useful,
unlike increasing the number of spikes per machine, as indicated
by the condition in (8) of Theorem 1.

In fact, a TEM can only output as much information as it
receives, so if a TEM perfectly characterizes its own input using
15 spikes, there is no point in generating 20, 30 or 40 spikes.

On the other hand, increased spatial sampling can aid spatial
and temporal resolution because TEMs located at different
locations will almost surely spike at different times because they
either have different inputs or different initial conditions [27],
or both.

This particular characteristic is not met by standard, frame-
based video recordings where all pixels record information at
the same time. Unfortunately, when all information is recorded
at the same time, any information obtained from oversampling
in the spatial domain is redundant and every pixel should
be able to reconstruct its input on its own. On the other
hand, with firing times that are asynchronous across sensors,
more spatial information contributes to better resolution in
the time domain and pixels can collaborate to reconstruct the
scene.

In practice, this means two things: (1) TEMs or event-based
sensors that have a limited spiking rate can be compensated for
by simply having more sensors in space and (2) it is better to
increase sampling capacity in the spatial domain when perform-
ing time encoding because this can improve both spatial and
temporal resolution.

Of course, one can theoretically also achieve the same result
with pixels that sample uniformly at different times. However,
this can pose problems in practice because it can be difficult to
determine the shift of out-of-sync uniform samplers when they
do not have the same clock. This is not a problem with time
encoding because TEMs output events which hold information
in their timing. The clocks of TEMs can therefore be aligned by
summing the outputs such that events are timed using the same
clock [27]. That being said, if the shift between uniform samplers
can be perfectly determined, one would obtain similar effects as
exposed here. Our main message is that the frame-based video
paradigm that resulted from stacking images can be improved by
using out-of-sync samplers. TEMs naturally provide out-of-sync
sampling in addition to providing other advantages such as low
power consumption and an input-dependent spiking rate.

VII. UNKNOWN LOW-RANK FACTORIZATION

A. Problem Formulation and Algorithm

We revisit the setup exposed in Section III. So far, we have
assumed that we are given the time encodings of a collection of



ADAM et al.: ASYNCHRONY INCREASES EFFICIENCY: TIME ENCODING OF VIDEOS AND LOW-RANK SIGNALS 113

Algorithm 1: Singular Value Projection.
Input:S , b, tolerance ε, ηm for m = 0, 1, 2. . .
1: X0 = 0 and m = 0
2: repeat
3: Y m+1 ← Xm − ηmST (S(Xm)− b)
4: Compute top J singular vectors of

Y m+1 : UJ ,ΣJ , VJ

5: Xm+1 ← UJΣJV
T
J

6: m← m+ 1
7: until ‖S(Xm+1 − b)‖22 ≤ ε

signals y(i)(t) with a low dimensional structure which we can
reach by a known linear transformation A ∈ RI×J and that we
are asked to reconstruct the inputs y(i)(t). While this is a useful
model in itself, we are also interested in studying the case where
the linear transform A is unknown.

Once again, we assume we have the time encodings of a col-
lection of signals y(i)(t) which satisfy assumptions (A4), (A5)
and (A6). Furthermore, we assume the functions fk(t) of y(i)(t)
satisfy either of (A7.a) or (A7.b) and that the linear transforma-
tion A is unknown as in (A8.b).

We wish to recover the signals y(i)(t), i = 1· · ·I from their
time encoding, with as few samples as possible.

To do so, we aim to reconstruct the coefficients of the para-
metric representation of y(t), ci,k(y) as defined in (A4). These
coefficients are placed in the matrixC(y), with row i containing
the coefficients of signal y(i)(t). We note once more that C(y)
can be written:

C(y) = AC(x)

where A ∈ RI×J , C(x) ∈ RJ×K , J < I and J is known.
In words, C(y) is a matrix which has a low rank matrix

decomposition with a known rank.
The matrix C(y) is probed using a sensing operator which

we will call S . The sensing operator performs the measurements
in (10), i.e.

Sn (C(y)) = ḃn, (19)

where we index a pair (i, �) by n so that ḃn = ḃ
(i)
� is as defined

in (9)
Given this measurement setup, we can adopt the Singular

Value Projection approach to recover the matrix C(y) from few
measurements [31].

The Singular Value Projection (SVP) algorithm alternately
applies the low-rank constraint and the measurement constraint
on the matrix of interest C(y). In Algorithm 1 we let Xm be
the estimate at iteration m of the target matrix to reconstruct (in
our case this is C(y)) and Y m be a proxy matrix to perform the
iterations.

The SVP algorithm is based on projected gradient descent.
Reconstruction guarantees for this algorithm were initially es-
tablished in cases where the sensing operator satisfies the Re-
stricted Isometry Property [31]–[33]. This property does not
hold in our case, given that our measurement operators Sn have
rank one. The rank one scenario has been treated in [34] where

Fig. 7. Reconstruction error of one out of twenty signals that have rank two,
as the number of emitted spikes increases. The red dashed line marks the perfect
reconstruction condition assuming the transform to the low dimensional space
is known, and the purple dashed line marks the perfect reconstruction condition
assuming there is no lower dimensional representation of the signals. We show
the median and quartiles of the reconstruction error for 25 random trials, when
assuming the signals have no low dimensional structure, when assuming they
have a low dimensional structure with a known linear mapping, and when they
have a low dimensional structure with an unknown linear mapping.

Gaussianity assumptions are made. Again, these assumptions
do not hold for our case and we leave the theoretical anal-
ysis of convergence for future work. We do, however, illus-
trate the utility of our approach with simulations in the next
section.

B. Simulations

We provide simulation results to evaluate the reconstruction
performance in different regimes. We consider the scenario
where we time encode and reconstruct twenty signals that are
composed of 25 sinc functions at known locations and that can
be written as linear combinations of two such signals.

We evaluate the reconstruction performance that varies as the
number of spikes of all machines increase uniformly. We do this
in the following cases:

(S1) when assuming the signals have no underlying low
dimensional structure

(S2) when assuming the signals have an underlying low
dimensional representation which we can reach through
a known linear transform A, and

(S3) when the signals have an underlying low dimensional
representation with an unknown mapping A.

For each of these cases, we draw the entries of C(x) and A
uniformly at random and time encode and reconstruct all twenty
signals, computing the obtained normalized mean-squared er-
ror for the first signal among the twenty, assuming a random
mapping A to low dimensional space. Then we plot the median
and quartiles of the mean-squared error on a log plot to compare
performance. Results are included in Fig. 7.

Note that, if we assume no underlying low dimensional struc-
ture (S1), the signals should be reconstructible assuming there
are I ×K linearly independent constraints. In this case, since
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the number of spikes of all machines increase uniformly, we will
need I ×K = 500 spikes. As for the scenario (S2), according to
Theorem 1, the signals should be reconstructible assuming that
there areJ ×K linearly independent constraints. As before, this
means we would need J ×K = 50 spikes.

We draw each of these conditions in Fig. 7 to see if the
performance is consistent with our expectations.

Assuming we know the transformation A to a low-
dimensional space (S2) greatly improves reconstruction com-
pared to when we assume that there is no low rank structure for
the input (S1): the error decays much earlier in the first case than
it does in the second case.

Assuming such a transformation exists but that we do not
know it (S3), also offers benefit. While the reconstruction al-
gorithm can be quite unstable in regimes where the number of
spikes is not sufficient, it can yield a very good reconstruction for
a higher number of spikes, where the scenario (S1) fails entirely.

VIII. CONCLUSION

We have shown how time encoding can be used to encode
and reconstruct multiple signals that have lower-dimensional
representations.

The general case can be treated by reformulating our problem
as a rank-one matrix measurement problem: we have shown
that signals that have a known lower dimensional representation
require fewer spikes for perfect reconstruction than if this lower
dimensional representation did not exist.

Time encoding videos can then be rewritten as a special case of
low-rank signal estimation. As a consequence, we show through
theory and experiments that, if one wishes to increase spatial or
temporal resolution, it is better to sample densely in space than
to have TEMs emit more spikes. More practically, in the case of
an event-based camera, it is better to have more pixels that fire
asynchronously than to have pixels that fire more often.

Finally we have also examined the case where the signals of
interest are low rank but we do not know the transformation to
the low rank space. We applied low rank factorization algorithms
and found significant experimental improvements compared to
the case where no low rank structure is assumed.

In future work, we would like to further investigate low rank
factorization within the time encoding setup and understand how
it can be used to encode multi-dimensional data with a different
structure to that presented in the paper.

APPENDIX A
KNOWN LOW DIMENSIONAL MAPPING - ELABORATION AND

PROOF OF THEOREM 1

To prove Theorem 1, we will use results about rank-one
matrix measurements [30]. The work in [30] assumes that one
is attempting to reconstruct a matrix C using measurements of
the form:

bn = gn
TChn, (20)

and rewrites the measurements as

bn = vec(gnhn
T )T vec(C), (21)

where vec() is the vectorization operator.
Note that we adopted a change of notation with respect to [30]

to avoid confusion.
The results of [30] then hold under two further assumptions.
A9) hn can be parametrized by one variable t ∈ R. More

precisely, we assume the k-th entry of hn has the form
[hn]k = hk(tn)where hk : I → R, k = 0, . . . ,K − 1
are linearly independent functions from a linear space
of fucntions F , I ∈ R is an interval or the whole
real line and tn ∈ I, n = 0, ..N − 1 are sampling
times. Moreover, it is assumed that the sampling times
(t0, . . .tN−1) follow a continuous probability distribu-
tion on IN and that for every non-zero element h ∈ F ,
the set of zeros of h has Lebesgue measure (λ) equal
to zero: λ({t|f(t) = 0}) = 0.

A10) The vectors gn are taken from a set A, where every J
elements of A are linearly independent.

As a result, a uniqueness condition can be obtained.
Theorem 2 (Pacholska ’20): Consider the set of KJ vectors

of the form vec(gnh
T
n ). It is a basis in RKJ if and only if no

more than K vectors gn are equal.
We are able to rewrite our problem as a rank-one measurement

problem.
We will use the following lemmas to prove Theorem 1.
Lemma 2: Under the assumptions of Theorem 1, the spike

times {t(i)� , � = 1 · · ·n(i)
spikes}, i = 1 · · · I follow a continuous

probability distribution.
Proof: This closely follows the proof in [30]. �
Lemma 3: Let the fk(t)’s be the functionals as defined

in (A7.a) or (A7.b) and define Fk(t) =
∫ t

t0
fk(u) du. Then the

Fk’s are linearly independent functions from a linear space
of functions F which is the space of bandlimited functions.
Moreover, every non-zero element of F has a set of zeros with
Lebesgue measure equal to zero.

Proof: This follows by construction of the fk’s which are
linearly independent, leading to their integrals being linearly
independent. The second part of the lemma follows from both
sums of complex exponentials and sinc functions having a
countable number of zeros. The sum of complex exponentials
has a countable number of zeros because it can be rewritten as
a polynomial, which has zeros described by the fundamental
theorem of algebra, and the sum of sincs can also be written as a
polynomial of a function of time, divided by the time, which also
yields countable zeros [35]. Given that the set of zeros of each
of these functions is countable, they have Lebesgue measure
zero [36]. �

Before proving Theorem 1, we prove the following lemma.
Lemma 4: Let I signals y(i)(t), i = 1 · · · I satisfy assump-

tions (A4), (A5) and (A6), and their function fk(t) satisfy
either of (A7.a) or (A7.b) with the corresponding coefficients
cj,k(x) being drawn from a Lipschitz continuous probability
distribution. Now assumeA ∈ RI×J as defined in (A5) is known
and has every J rows linearly independent. Then the inputs
y(i)(t), i = 1 · · · I are exactly determined by the spike times
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{t(i)� , � = 1 · · ·n(i)
spikes}, i = 1 · · · I if:

I∑
i=1

min
(
nspikes(i) ,K

)
> JK, (22)

if the time encoding machines start sampling at t0 with a known
integrator value ζ

(i)
0 .

The integrator value ζ(i)0 indicates the value of the integral of
TEM(i) at time t0, before the time encoding begins.

Proof of Lemma 4: We will assume that we operate under the
assumptions set out in Lemma 1.

We start by showing that different constraints imposed by the
time encoding machines can be written as in (20). In fact, two
consecutive spike times t

(i)
� and t

(i)
�+1 from a machine TEM(i)

impose a constraint on the integral of the concerned signal:

∫ t
(i)
�+1

t
(i)
�

y(i)(u) du = 2κ(i)δ(i) − β(i)
(
t
(i)
�+1 − t

(i)
�

)
= b

(i)
� .

(23)
We define Y (i)(t) =

∫ t

t0
y(i)(u) du to be the integral of the

signal y(i)(t) between t0 and any later time t. Given (23), and
that we know the initial integrator value ζ

(i)
0 , we can compute

Y (i)(t
(i)
� ) for any spike time t

(i)
� :

Y (i)(t
(i)
� ) =

∫ t
(i)
�

t0

y(i)(u) du = 2�κ(i)δ(i)

− β(i)
(
t
(i)
� − t

(i)
0

)
+ ζ

(i)
0 . (24)

We define this quantity to be b(i)� := Y (i)(t
(i)
� ) and denote the

function Fk(t) =
∫ t

t0
fk(u) du. We then rewrite the right-hand

side of (24) in terms of the parametrization of y(i)(u):

b
(i)
� =

∫ t
(i)
�

t0

K∑
k=1

ci,k(y)fk(u) du

=

K∑
k=1

ci,k(y)

∫ t
(i)
�

t0

fk(u) du

=
K∑

k=1

ci,k(y)Fk(t
(i)
� )

=
[
F
(
t
(i)
�

)]T
[C(y)]Ti (25)

Where we defined [F(t
(i)
� )] to be the vector of integrals

Fk(t
(i)
� ) for k = 1. . .K. We also defined C(y) to be the matrix

of coefficients ci,k(y) as defined in (A4) and [C(y)]i is the ith

row containing the coefficients for signal y(i)(t).
We further rewrite C(y) = AC(x) (from (A5)) and obtain

[C(y)]i = [A]iC(x). We thus obtain:

b
(i)
� =

[
F
(
t
(i)
�

)]T
([A]i C(x))T

b
(i)
� =

[
F
(
t
(i)
�

)]T
C(x)T [A]Ti

b
(i)
� = [A]i C(x)

[
F
(
t
(i)
�

)]
(26)

We can thus reindex the above equations: we let every n cor-
respond to a single pair (�, i) and let bn = b

(i)
� , gn = [A]i and

hn = [F(t
(i)
� )].

We can now see that the vectors hn can be parametrized by
one variable t ∈ R using a set of functions hk which satisfy
assumption (A9), as stated by Lemma 3. Moreover, according
to Lemma 2, the spike times follow a continuous probability
distribution, as required in assumption (A9).

We can also see that the vectors gn just defined satisfy
assumption (A10) by construction since this is a condition in
Lemma 4.

Then, we note that under the conditions of Lemma 4, one can
extract KJ constraints that satisfy the constraints of Theorem 2,
thus ensuring perfect reconstruction of the matrix of parameters
C(x). �

Proof of Theorem 1: Using similar notation used for the Proof
of Lemma 4, we note that the value b(i)� is not known, when the

initial integrator values ζ(i)0 are not known, instead, we know the
value of

b̃
(i)
� = b

(i)
� + ζ

(i)
0 = [A]i C(x)

[
F
(
t
(i)
�

)]
+ ζ

(i)
0 . (27)

Continuing in the same logic as before, we let b̃n = b̃
(i)
� , gn =

[A]i and hn = [F(t
(i)
� )].

We then obtain

b̃n = vec(gnhn
T )Tvec(C(x)) + ζ

(in)
0 . (28)

To keep things in matrix form, we first denoteR to be a matrix
with rows rn = vec(gnhn

T )T and then denote R̃ to be a matrix
with row vectors r̃n = [rn, ein ] where ein is a length-I row vec-
tor with a 1 in the column corresponding to the machine that gen-
erated measurement n and zeros otherwise. We also denote the
column vector C̃(x) = [vec(C(x))T , ζ

(1)
0 , ζ

(2)
0 , . . . , ζ

(I)
0 ]T .

The measurement therefore satisfies

b̃n = r̃nC̃(x). (29)

For the system to be invertible we need J × (K + 1) of the
vectors r̃n to be linearly independent.

If we satisfy the condition set by Theorem 1 in (8), we also
satisfy the condition set by Lemma 4 in (22). This means that
there are JK rows rn of R that are linearly independent. Now
let us consider the extension R̃, the corresponding JK rows
from R̃ will still be linearly independent (otherwise we reach a
contradiction).

According to the assumptions of the corollary, R̃ has, in
addition to the JK rows already mentioned, one extra row γ̃(i)

coming from each TEM(i).
We would therefore like to check if there exist JK + I

coefficients p(i)� such that

I∑
i=1

n
spikes(i)∑
�=1

p
(i)
� r̃

(i)
� = 0
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I∑
i=1

n
spikes(i)∑
�=1

p
(i)
�

[
r
(i)
� ei

]
= 0 (30)

Because the ei’s are orthogonal, the above constraint can be
translated to:

n
spikes(i)∑
�=1

p
(i)
� r

(i)
� = 0, and

n
spikes(i)∑
�=1

p
(i)
� = 0, ∀i = 1, . . . , I (31)

Becausenspikes(i) ≤ K + 1 for TEM(i), and the firstnspikes(i) −
1 rows r̃

(i)
k ’s from TEM(i) have full rank equal to

min(spikes(i) − 1,K) (according to Lemma 4), there is at most
one solution for the p

(i)
� ’s. This solution will depend on the

r
(i)
� ’s which follow a continuous probability distribution (given

that the t(i)� ’s also follow a continuous probability distribution).

Therefore the p(i)� ’s almost surely don’t satisfy the second condi-
tion of (31), and the measurement vectors of R̃ are almost surely
linearly independent, making the system uniquely invertible
with probability one. �
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