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The evolving field of human-robot interaction (HRI) necessitates that we better
understand how social robots operate and interact with humans. This scoping review
provides an overview of about 300 research works focusing on the use of the NAO robot
from 2010 to 2020. This study presents one of the most extensive and inclusive pieces of
evidence on the deployment of the humanoid NAO robot and its global reach. Unlike
most reviews, we provide both qualitative and quantitative results regarding how NAO is
being used and what has been achieved so far. We analyzed a wide range of theoretical,
empirical, and technical contributions that provide multidimensional insights, such as
general trends in terms of application, the robot capabilities, its input and output
modalities of communication, and the human-robot interaction experiments that
featured NAO (e.g. number and roles of participants, design, and the length of
interaction). Lastly, we derive from the review some research gaps in current
state-of-the-art and provide suggestions for the design of the next generation of
social robots.
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1 INTRODUCTION

For some decades, social robots have been used for research purposes in an attempt to assist
humans and bring social benefits to their life. These social robots have been envisioned to
interact with humans in various application domains such as education, healthcare, industry,
entertainment, and public service. However, in order to claim that social robots reached
their full potential as social assistive agents, they have to be able to create sustainable and
intelligent interactions in the real world while acting in an acceptable and credible way.
Therefore, the field of human-robot interaction has fueled research into the design,
development and evaluation of social robots. There is a significant number of social robots
in research, such as Kaspar for autism therapy (Wood et al., 2019), iCub for cognitive
development (Natale et al., 2016), and Robovie for public spaces (Das et al., 2015), and the
NAO robot. NAO has been among the most widely used social robots in human-robot
interaction research due to its affordability and broad functionality. Developed by the
French company, Aldebaran Robotics, in 2008 and acquired by the Japanese company,
Softbank Robotics, in 2015, NAO is an autonomous and programmable humanoid robot
that has been successfully applied to research and development applications for children,
adults, and the elderly people. More than 13,000 NAO robots are used in more than 70 countries
around the world. Consequently, a number of recent large-scale interdisciplinary projects, such
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as ALIZ-E1, DREAM2, CoWriter3, SQUIRREL4, L2Tor5 have
explored child-centered research with the mission to enable
NAO to take a role of a tutor, a therapist, or a peer learner.

There have been several reviews about social robots used for
specific application domains, such as robot-assisted education
(Mubin et al., 2013; Belpaeme et al., 2018; Johal, 2020) and
autism therapy (Saleh et al., 2020). There is evidence that NAO
was among the heavily used social robots for these applications
(Belpaeme et al., 2018; Saleh et al., 2020; Henschel et al., 2021).
Among the most recent literature surveys, Robaczewski
et al. (2020) reviewed the use of NAO as a socially assistive
robot (SAR). The authors studied a total of 51 user-study
publications and discussed their major findings around six
themes: social engagement, affectivity, intervention, assisted
teaching, mild cognitive impairment/dementia, and autism/
intellectual disability. While providing a good overview of
some of the social assistive robotics studies that were
conducted with the NAO, this previous survey does not
consider technical contributions, thus is limited in
identifying research and development trends in its
deployment across application domains. Therefore, it is still
unclear how and why this social robot has been used in
research over the last 10 years and how this standardized
platform contributed more widely to the field of human-
robot interaction.

For these reasons, a scoping review was a necessary step to
systematically map the research done with the NAO robot in
HRI and identify research trends and potential gaps of
investigations that could lead to the development of a new
standard platform for social robotics research. It seems a
worthwhile effort to reflect on the dynamics of the socially
acceptable robot - a humanoid NAO robot - that has a particular
appeal for improving the social, behavioral, physical, and
cognitive well-being of humans of various age groups. The
present paper aims to provide a holistic understanding of the
NAO robot for research by analyzing the unrestricted type of
contributions, both theoretical and experimental. We also
report on technical contributions that helped the field of HRI
to grow over the years. While following a strict and reproducible
protocol, our review probably does not cover the complete
literature work in HRI research with the NAO robot.
However, we consider that our screening protocol allowed to
capture a good amount of the body of research using NAO and
to present useful insights, findings, and trends in the use of the
robot in the past decade. Unlike previous reviews, our research
approach allows us to present general and specific findings that
were gleaned from quantitative and qualitative analysis. We find
our review vital in understanding how the social robots like
NAO serve educational, professional, and social roles when
interacting with humans and what are the crucial insights

about its use and prospects. This research potentially benefits
a wider community of stakeholders such as novice and expert
HRI researchers, robotics labs or startups and those
professionals working at the intersection of interdisciplinary
fields like education and healthcare.

Our meta-analysis seeks to provide broad insights into the
use of NAO in HRI by annotating a wide range of categories
of applications (including but not limited to social assistive
robotics), geographical distribution, type of contribution,
application fields, experimental methodology, duration, and
the number of sessions, human-robot ratio, participant
demographics, human-robot roles, robot autonomy, input/
output data, and equipment used. We propose respectively:
a quantitative analysis allowing to observe objective
metrics on trends and qualitative analysis of the relevant
research topics to HRI covered by papers used in this review.

2 TECHNICAL OVERVIEW OF NAO OVER
THE YEARS

NAO is 58 cm in height and weighs 5.6 kg. The robot is
programmed by a specialised NAOqi framework, has an easy
to use graphical programming tool Choregraphe (for complex
applications and control of motions), and Monitor (for robot
feedback and verification of joints or sensors), all of which allow
to easily program and introduce the NAO behaviours
(Bertacchini et al., 2017). It can be connected via wired or
wireless (Wi-fi) network, thus allowing autonomous operation
and remote control, which is important, especially when the
robot is operating in a real-world setting. It has 25° of freedom,
of which 12 for legs, five for the arms, two for the head,
which enables it to move and perform actions. Furthermore,
it has four directional microphones and speakers and two
cameras that are necessary for basic modules such as built-in
text-to-speech and speech recognition for 20 languages, object
recognition, face detection, recognition, and tracking, all of
which provide the possibility to act more naturally and
human-like. Table 1 presents an overview of NAO’s
hardware and software improvements over the years. For
example, NAO’s V3 in 2008 supported only nine languages,
while the current V6 version provides support for 20 languages.
Additionally, NAO’s cameras, microphones, and storage
were improved in three instances: from V3 to V4 or V5
to V6.

The first NAO driver for Robot Operating System (ROS) was
released by BrownUniversity’s RLAB in November of 2009 (ROS,
2010) which supported head control, text-to-speech, basic
navigation, and access to the cameras. Later, the University of
Freiburg’s Humanoid Robot Lab improved NAO’s driver with
new capabilities, such as torso odometry and joystick-based
teleoperation. Already in December that year, the Humanoid
Robot Lab released a complete ROS stack for the NAO that
additionally contained IMU state, a URDF robot model,
visualization of the robot state in rviz, and more (ROS, 2010).

Additionally, NAO users around the world had an
opportunity to download an existing behavior or upload their

1http://www.aliz-e.org/
2http://dream2020.eu/
3http://chili.epfl.ch/cowriter
4http://www.squirrel-project.eu/
5http://www.l2tor.eu/
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own robot behavior to the Application Store. In 2014, ASK NAO6

was released to support ready robot behaviors for conventional
and special education. Similarly, but with a more general purpose,
Zora Solution Software7 was also offered to the market with more
than 50 different robot activities to be used via a tablet by a non-
technical user (such as a health professional).

3 METHODOLOGY

Our methodology followed similar works previously published
in HRI and presenting a review of articles in the domain

(Belpaeme et al., 2018; Johal, 2020; Obaid et al., 2020). We
adopted a scoping review framework to extract relevant
information from the literature to address our research
questions. This approach is helpful to provide an overview
of diverse research evidence in broad types of literature
(Sucharew and Macaluso, 2019). We describe below the
procedure carried out to collate the set of the relevant
article and analyze their content in Figure 1 which follow
the PRISMA flowchart.

3.1 Identification
To identify potentially relevant documents, the Scopus8

bibliographic database was searched for papers published

TABLE 1 | NAO’s evolution in technical characteristics over the years.

NAO version V3+ (2008) V3.2 (2009) V3.3 (2010) V4 (2011) V5 (2014) V6 (2018)

Storage 2 GB Flash memory 2 GB+8 GB Micro SDHC 32 GB SSD
2 × Cameras 640 × 480, 30 fps 1280 × 960, 30 fps 640 × 480, 30 fps or 2560 × 1920, 1 fps

58 Diagonal Field Of View 72.6 Diagonal FOV
(47.8 Horizontal FOV, 36.8 Vertical FOV) (60.9 Horizontal FOV, 47.6

Vertical FOV)
67.4 Diagonal FOV (56.3 Horizontal FOV, 43.7 Vertical FOV)

4 × Microphones Sensitivity: −40 mV/Pa ± 3 dB 20 mV/Pa ± 3dB Omnidirectional
250 mV/Pa ± 3dB
100 Hz to 10 kHzFrequency range: 20 Hz–20 kHz 150 kHz to 12 kHz

Languages 9 (English, French, Spanish, German, Italian,
Japanese, Korean, Chinese, Portuguese)

19 languages (+ Arabic, Czech,
Danish, Dutch, Brazilian, Greek,
Polish, Finnish, Swedish, Russian,
Turkish

20 languages (+ Norwegian)

FIGURE 1 | The screening process (adapted from PRISMA template 2009).

6https://www.asknao-tablet.com/en/home/
7https://www.robotlab.com/store/zora-robot-solution-for-healthcare 8https://www.scopus.com
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from 2010 to October 2020. The term search was performed
in October 2020. The Scopus database includes IEEE,
Springer, and ACM DL and allows it to cover a wide range
of publication venues. Because our goal is to broadly look
at the research works done in HRI with NAO, we kept
the search term open. We limited our search string to
English-written publications as we searched for the terms
“NAO” AND “human-robot interaction” in title, abstract,
or keywords.

Overall, an initial 452 records were retrieved and
underwent the screening process. They were stored on
Zotero and then were exported into BibTeX and CSV. The
following steps of the analysis of the collected documents
were done by entering information on an online Google
spreadsheet.

3.2 Screening Process
After identifying the records, we first consulted abstracts to
ensure that they used NAO in the study. We excluded 106
studies provided only a quick overview (e.g., workshop,
demonstration) in one or two pages in length. We removed
the review and off-topic papers that lack any NAO
intervention, both theoretically and practically.

In the second round, we consulted full texts to ensure that the
chosen records do not replicate results. Since we had some studies
produced by the same group of authors, we screened them in-
depth and kept an extended version of the work. In addition,
seven papers were excluded from review as we could not access
full texts. As a result, we were left with 288 papers for the final
analysis - annotation.

3.3 Coding Framework
To identify the categories for data analysis, we integrated and
adapted the HRI taxonomies from previous studies (Yanco and
Drury, 2004; Bethel and Murphy, 2010; Salter et al., 2010;
Tsiakas et al., 2018; Baraka et al., 2020; Onnasch and
Roesler, 2020) and annotated the papers by the predefined
categories. We describe below the different annotations used.
These were used to produce quantitative analysis and to identify
trends.

3.3.1 Geographical Distribution
This information is not easy to infer from the publication; we
chose to manually extract this information by checking the
author’s affiliation and address, and country on the paper.
While not perfect, we believe that it should give us a
reasonable estimation of the country where the research was
conducted for most articles.

3.3.2 Type of Contribution
The field of HRI is very interdisciplinary. Inspired by the
research themes of the ACM/IEEE HRI conference9, we
chose to annotate the type of contribution according to four
themes:

• User studies provide rigorous data on and analysis of HRI
in the laboratory or in-the-field settings. They also
should present sound methodology (quantitative,
qualitative, or both) and accurate analyses that result
in novel insights and acknowledge the limitations and
relevance of the methods. Papers that presented an
empirical evaluation with human participants were
annotated as a user study.

• Technical papers are motivated to improve robot’s
behaviors for the purposes of better interaction and
collaboration with humans. The question of how
technology advances HRI is key to these studies. They
should include novel robot system algorithms, software
development technologies, and computational
advancements in support of HRI.

• Design contributions target research that takes a design-
centric approach to HRI. They usually discuss the design of
new robot morphologies and characteristics, behavior
patterns, and interaction methods and scenarios, among
many others. They should demonstrate essential or better
interaction experiences or behaviors for robots.

• Theory and methods aim at unpacking fundamental HRI
principles that include interaction patterns, theoretical
concepts, updated interpretations of existing results, or
new evaluation methodologies. Such papers might
originate from original studies and existing research and
methods or may take solely theoretical or philosophical
perspectives.

3.3.3 Research Contributions
Looking at all the papers in the selection, we identified the main
research objective (e.g., facial recognition, non-verbal
communication, programming framework) for each paper. We
then grouped these objectives into several classes of
contributions: robot perception and recognition (emotion,
facial, object, body, sound, speech, gesture, color, gender, text),
robot’s communication (verbal, non-verbal), reinforcement
learning, and cognitive architecture. Imitation and display of
emotions are separated from non-verbal communication due to a
greater focus on them in observed studies. Apart from them, we
included kinesthetic learning, physical exercises, taking an object,
walking, and moving body parts. Some studies are both technical
and user study, and there is more than one contribution example
per paper.

3.3.4 Application Field
Baraka et al. (2020) provided a cross-sectional snapshot of key
application areas for social robots, and, intuitively, robots are
used in more than one field. Our categories included: autism
therapy, education, elderly care, healthcare, learning disabilities,
public service, entertainment, art, sport, and generic.

3.3.5 Human-Robot Ratio
Goodrich and Schultz (2007) considered that the ratio of people
to robots directly influences the human-robot interaction. This
taxonomy classification defines the number of a robot(s) and a
participant(s).9https://humanrobotinteraction.org/2021/full-papers/
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3.3.6 Participant’s and Robot’s Role
Goodrich and Schultz (2007) identified HRI roles, which were
adopted by other researchers (Yanco and Drury, 2004; Tsiakas
et al., 2018; Onnasch and Roesler, 2020). Based on their
classification, 12 distinct participant’s roles and eight robot’s
roles were defined. The description of each role is shown in
Table 2.

3.3.7 Input and Output Channels
Onnasch and Roesler (2020) presented a taxonomy category
which is named as the communication channels, split into
input and output to highlight the human-robot interaction.
Input describes how the robot “perceives” information coming
from the human. Humans may provide information either using
an electronic (e.g., remote control through the device), a
mechanical (e.g., robot’s kinematic movement), an acoustic
(e.g., commands), or an optical channel (e.g., gesture control).
In turn, the robot’s output can be transmitted to humans through
tactile communication (e.g., haptics), an acoustic (e.g., sounds),
and a visual channel (e.g., eye movements). In the current study,
the major distinction is that we view the input as any information
coming from the environment (e.g., camera), while the output is
what the robot produces through its channels (e.g., speech).

3.3.8 Robot’s Autonomy Levels
According to Salter et al. (2010), the robot’s level of autonomy is
defined as shown in Table 3.

3.3.9 Experimental Methodology
Based on the classification proposed by Bethel and Murphy
(2010), a study design is grouped into three categories:

• Within-subjects design - each participant undergoes the
same experimental condition and is exposed to all levels of
the independent variables.

• Between-subjects design - participants are exposed to
different groups where each group experiences different
conditions.

• Mixed-model factorial design - the use of both between-
subjects and within-subjects design components.

3.3.10 Duration of Interaction
Human-robot interaction studies can be grouped on the basis of
the duration of interaction, which means the certain period of
time when the human interacts with the robot (Baraka et al.,
2020). Albeit it is challenging to define set boundaries between
interaction times, we decided to follow the proposed duration

TABLE 2 | The description of roles for participant and robot.

Role Description

Participant peer interacts with a robot to achieve a shared goal
coperator works with a robot to fulfil a shared goal and does not directly depend on a robot
collaborator works as a teammate together for joint task completion
learner learns something from a robot
imitator imitates a robot’s gestures or action
interviewee answers to the questions from a robot
mentor takes on a leadership or teaching role
supervisor monitors a robot and gives instructions on how to perform the task
operator is aware of where and what a robot is doing
mechanic works with robotic software or hardware and controls the physical setting
information consumer does not necessarily interact with a robot, but uses information that comes from it
bystander does not interact with a robot but shares the same space

Robot peer acts as a friend to achieve a common interaction goal
learner acquires new skills or behaviors from humans
tutor supports learning by being in a teaching position
mediator enables an interaction between two or more people, so that they can engage through a robot
assistant performs actions alongside humans (e.g. a teaching assistant)
interviewer asks questions
demonstrator shows model behaviors or actions
testbed platform validates or tests theories and algorithms in an experiment

TABLE 3 | The level of robot autonomy.

Level Description

Wizard of Oz (Woz) the robot is controlled by a human in the non-collocated environment where the robot is present
Autonomous the robot acts based on its input without any external human control during decision-making
Combination the robot integrates different levels of autonomy (e.g. controlled fixed command patterns)
Scripted/fixed the robot follows scripted spatio-temporal command patterns, despite the external factors
Teleoperation the robot is controlled by a human present in the same environment as the robot is
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looking at the number of sessions. We annotated according to the
following categories: short-term (single or few interactions),
medium-term (several days or weeks), long-term (extended
period).

4 QUANTITATIVE RESULTS

We propose to address our research questions with quantitative
analysis to look at research trends over the years and the different
categories identified above. All the graphs were generated using
Altair, which is the declarative statistical visualization library for
Python (VanderPlas et al., 2018).

4.1 Geographical Distribution
Figure 2 shows the frequency of publications across countries
and per year. Earlier works that date back to 2010 were produced
in anglophone countries such as the US and UK and European
countries including Austria and Italy. France being the NAO’s
homeland, it also figures among the countries reporting a lot of
research works. From the figure, it is apparent that the
(predominantly) English-speaking world continues to
dominate the HRI research with NAO. When compared to
other parts of Europe, Nordic countries and Eastern Europe
are substantially underrepresented. Notably, NAO has been
used regularly in economically wealthy Asian countries such as
China and Japan. Over the years, the largest number of papers
were published by researchers from the USA (N � 33), China (N �
30), and France (N � 25). These results may serve as an example

of widening digital inequity between countries with different
economies.

Having said that, it is interesting to note that NAO was used
quite broadly around the globe. Evidently, increasing the number
of languages supported by the robot as shown in Table 1 has been
an important factor in the integration of the robot. The language
options for its text-to-speech API covering 20 languages can
explain this broad use. We also can note that this multilingualism
supports cross-cultural reproductibilty of previous studies and
theories that were tested with NAO.

4.2 Research Contributions
Figure 3 demonstrates research topics that were identified as the
papers’ main contributions. We group them by paper type and
show their frequencies over the years. As of 2010, earlier
contributions represent verbal communication, cognitive
architecture, and imitation in technical and user studies. We
cannot observe straightforward trends in design, theory and
methods, but verbal communication and cognitive architecture
seem to have a proper representation as common contribution
topics. Our analysis shows that verbal (e.g., dialogues) and non-
verbal communication (e.g., joint attention) were the most
common contributions among user studies published in 2019.
Gesture recognition was generally observed to be a popular
contribution topic in technical papers, especially in 2017.
Color, face, touch, and sound recognition were among the
least popular topics for contributions, probably because of
NAO’s limited perception abilities. It is important to note that
some technical contributions (e.g., emotion recognition) are

FIGURE 2 | Number of publication per country.

FIGURE 3 | Contributions made over the years grouped by each study type.
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present within user studies or theory and method groups due to a
single paper having several contributions. The more consistent
distribution of design, theory and methods, and technical
contributions, and the increasing rate of user studies through
the years shows how the first three have contributed to the
integration and testing of the robot in various domains
through user studies.

4.3 Application Fields
The applications contexts of NAO are displayed in Figure 4.
Evidently, generic fields are prevalent across all types of studies.
This hints on how the community has been keen on developing
the generic technology with the NAO robot with the goal of
integrating it in various applications. Which, in turn can
contribute to integrating the robot not only in the research
domain but also in the real-world applications. Furthermore,
this means that NAO is being used for non-specific purposes such
as addressing general hypotheses and technical questions, as can
be seen from the share of technical studies. In user studies, the use
of NAO has expanded stably in healthcare, autism therapy, and
education since 2015. We separated studies on autism therapy
from healthcare as this context is receiving a growing attention
within HRI. Some unusual application areas are space (helping
astronauts in space flight-operations in Sorce et al. (2015), art
(drawing on canvas in Gurpinar et al. (2012) and performing in
theatrical play in Petrović et al. (2019).

4.4 Human-Robot Ratio
Figure 5 displays the ratio of participants to robots for various
kinds of robot and participants’ roles. The vast majority of studies
used one-to-one interaction with the roles of the robot as a
testbed platform (N � 55) and the role of the human as an
information consumer (N � 33). In a dyadic interaction, the robot
quite often played a role of a peer (N � 28), demonstrator

(N � 22), tutor (N � 17), assistant (N � 17), followed by
learner (N � 10), mediator (N � 7) and an interviewer (N �
5). Participants often played the role of a mentor (N � 28), learner
(N � 25), and peer (N � 24).

The ratio of many participants to a robot (M: 1) comes second
with the robot roles of assistant (N � 9) and demonstrator (N � 8).
In this context, humans were introduced as information
consumers and learners in 10 studies for each. Triadic
interaction was common among mediator and assistant robot
roles and human learners (N � 13). Only a few studies had the
ratio of 3 : 1 with no obvious trends.

The first trend shows that the majority of studies were carried
out using dyadic interactions. The limited number of studies with
two robots or more can imply either on the difficulties of
developing multi-robot interactions or lack of interest in the
community. Furthermore, while there are quite a few number of
studies on triadic interactions with two humans and one robot,
they are still limited to specific types of interaction where the
human is a learner or an information consumer. On the other
hand, after dyadic interactions, the most number of publications
were carried out with one robot to more than five human ratio,
with the robot being a demonstrator, assistant, or tutor. The
analyses shows the number of studies using such dynamic has
increased over the years.

4.5 Human-Robot Roles
In Figure 5 (right), we also demonstrate robot-participant
interaction roles. It becomes clear that NAO generally plays
collaborative and mediating roles. Our analysis shows that the
most common HRI roles with NAO have been: peer-to-peer (N �
28) and demonstrator-to-information consumer (N � 22). When
the human was in the learner’s role, a robot was most frequently
in the role of either a tutor (N � 19), mediator (N � 17) or an
assistant (N � 14). Our analysis presents the interviewee-

FIGURE 4 | Application fields grouped by each study type over the years.

FIGURE 5 | Human-robot ratio per role of robot and participant, and co-occurrence of robot and participant role (right).
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interviewer dyad as an exceptional and interesting case in HRI.
The examples of peer interaction include learning a language
(Kim et al., 2019), playing a game (Hirose et al., 2015), and
working as a team (Mubin et al., 2014). NAO as demonstrator or
presenter performs actions in front of the participants (Krogsager
et al., 2014; Wang et al., 2014; Kaptein et al., 2017). Learner-tutor
interaction occurs in educational settings where NAO is engaged
with language teaching (Kose et al., 2014; de Wit et al., 2020) and
providing emotional support (Miskam et al., 2015; Cuadrado
et al., 2016). NAO as a mediator predominantly helps children
with autism or learning disabilities to scaffold social and
communication skills (Shamsuddin et al., 2012; Huskens et al.,
2016; Ioannou and Andreva, 2019). A further analyses of the
dynamics between the role of the robot versus participant show
some pairs of roles appear more than others. For example, there is
a consistent use of robot as a testbed platform with human
acquiring various roles such as mentor, mechanic, or
information consumer. On the other hand, we can see lots of
studies with human as a learner where the robot might have been
a tutor, mediator, or assistant. It is also important to mention,
some dynamics such as peer/peer or learner/tutor are more
common in education and autism therapy.

4.6 Number of Participants and Age Groups
Figure 6 juxtaposes how often the user studies had various ranges
of participants. For the most part, the number of participants
ranges from 1 to 20 people, having the greatest number in the
range “10–20.” A smaller number of participants (up to three
people) is mostly used for autism therapy, generic, and healthcare
applications. A fair amount of generic studies recruited a large
number of participants ranging from 30 to 75. Interestingly,
studies conducted for education recruited the biggest number
of participants that can go up to 125 people. There were a few
entertainment, generic, and healthcare studies that hadmore than
150 participants.

Figure 6 (right) demonstrates the total number of studies that
had various age groups for each application field. Children at
preschools and primary schools participate in studies that focus
on education (N � 17) and autism therapy (N � 25). Generic fields
work with much older age groups since the studies are typically

conducted with university students or staff (e.g., (Stadler et al.,
2014; Celiktutan and Gunes, 2015)). The figure also reveals that
senior adults interact with NAO for elderly care and learning
disabilities applications. Infants and adolescents are the least
represented age groups.

Figure 6 (left) shows that some application types such as
autism therapy and healthcare use a smaller number of
participants per study (< 20). A quick look at the distribution
of age groups in autism therapy showed more focus on preschool
and primary school aged children. This can explain the possible
difficulties in recruiting participants for autism therapy studies
which can be one of the causes of small sample sizes. On the other
hand, educational user studies tend to have a higher number of
participants (between 20 and 125) with the age group distribution
of primary school and young adults. One of the interesting trends
is the higher population of young adults and adults in generic
studies, which can be explained by the possible easier procedure
to recruit them for user studies. Whereas, most studies with
children and the elderly that might be harder to recruit are
conducted for specific applications such as autism therapy,
education, and elderly care.

4.7 Input and Output Data
Figure 7 provides the frequency of input and output data
throughout the application fields. Primarily, generic studies
deployed speech (N � 36), full-body (N � 27), face (N � 22),
and gestures (N � 21) as an input data for recognition.
Interestingly, tactile input is mostly used within generic types
of applications, with a few studies in autism therapy, elderly care,
and learning disabilities. Tablet and mobile devices were mostly
used for autism therapy, education, and generic fields. The least
popular types of input data come from wristbands and
electroencephalography (EEG). This might be due to the
intrusive features of most wearables.

In line with these results, NAO’s output data is mostly speech
and gestures in generic fields, autism therapy, and education. Eye
contact and LEDs were comparatively less used by the robot.

Considering the various types of studies conducted with the
NAO robot, we also looked at the type of equipment used
alongside the robot. Figure 7 shows the input data (left),

FIGURE 6 | Number and age group of participants per application field.
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output data (middle), and equipment (right) used over all
application fields. Speech recognition dominates the type of
input data, which has been used on almost all of the
application types, and it is proceeded by gesture, face, body,
and object recognition. It is notable that apart from generic
applications, higher use of speech recognition can be seen in
autism therapy and education. Considering the target age groups
for these applications, this calls for more attention in developing
speech recognition technologies for children. As for the output
data, 7 (middle), most applications seem to have utilized the
robot’s speech and gestures. Autism therapy, entertainment, and
healthcare had shown a higher tendency of using gestures in
comparison to other applications.

4.8 Equipment
Figure 7 (right) also presents the use of different equipment that
researchers make use of during their user studies. The most
popular equipment are RGB-D cameras, ordinary cameras, and
physical objects (e.g., a ball, geometric figures). Again generic
studies employed these equipment more often than any other
field. Tablet or mobile devices are commonly used in educational
settings. Some examples of wearable devices are a helmet with
electrodes (Gomilko et al., 2016), pluggable eyebrows to express
emotions (De Beir et al., 2016) and peripheral devices such as a
microphone, keyboard, and LCD monitor to show visual stimuli
(Hu et al., 2016). Looking at the additional equipment used with
the NAO robot, one notable trend is the additional usage of the

camera and RGB-D camera alongside the NAO robot. While the
camera might have been used to provide additional data from
different angles to analyze the participant or the interaction, the
use of RGB-D cameras, specifically in case of its placement from
the robot’s point of view, can hint on the possible use cases of
adding such a gadget to the robot, even as a supplementary item.
Other equipment frequently used are laptop/computer and
objects which depending on the activity, can add more
interaction dimensions and modalities to the robot.

4.9 Robot’s Autonomy
Figure 8 illustrates the levels of robot autonomy by year and
application fields. We observe clear trends that NAO is becoming
more autonomous in recent years, with a significant increase
from 2016 to 2019. Wizard of Oz is the second most widely
chosen control type that has been evenly spread across the given
years, except for 2011. Only generic fields appear to use all levels
of robot autonomy, as a rule, autonomous mode, when compared
to other fields. Novel application fields (space, art, and sports)
constitute the least share in robot autonomy. Essentially, we can
also report that technical studies use autonomous mode, while
user studies give preference to the WoZ setting. In fact, a robot’s
autonomy greatly varies in user studies as the modes are divided
proportionately. The combination mode appears to be unpopular
across all study types.

As we know NAO robot comes with NAOqi, a visual
interface called Choregraphe and can be programmed using

FIGURE 7 | Input data (left), output data (middle), equipment (right) for each application field.

FIGURE 8 | Robot’s autonomy per year and application fields.
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ROS. These all give the user plenty of opportunities to develop
behaviors and interactions with the robot. As a result, in
Figure 8, we looked at the distribution of the robot’s
autonomy over the years (left), per application fields
(middle), and study types (right). One noteworthy trend is
the increasing rate of studies with the fully autonomous robot
through the years, more specifically in 2016, 2017, and 2019.
This can hint on how the technical developments and
increasing interest in using the robot have contributed to
the more autonomous deployment of the robot. After generic
applications, education, autism therapy, and healthcare had
the highest population in using NAO robot autonomously. It
is worth mentioning that more studies in autism therapy have
used Wizard of Oz than fully autonomous, which can also be
explained by the restriction associated with running studies in
this field. Looking at the autonomy versus study types (right),
it can be seen that Wizard of Oz autonomy was more popular
in user studies which can be explained by considering the
difficulties of deploying a fully autonomous robot to interact
with users. On the other hand, the fully autonomous robot has
been used more in technical studies, then in user studies, and
finally in design studies.

4.10 Experimental Methodology
Figure 9 illustrates the frequency of using three types of
experimental methodology across years and application
fields. Seemingly, a within-subject design was commonplace
from 2012 onwards. It reached the maximum number of
publications (N � 13) in 2019, and the three most common
fields of its use are generic, autism therapy, and education.
Generic fields again lead the field by deploying both within-
and between-subject design. Studies on autism therapy and
education adopt the two designs. Studies in healthcare and
public service choose between-subjects design rarely than any
other field.

We have also analyzed the experimental methodologies used
in user studies, both through the years and based on application
fields as shown in Figure 9. As seen from the figure, the use of
within-subject experimental design has increased through the
years, and it is generally used more than between-subject and
mixed designs. And among application fields, autism therapy,
education, and entertainment were more prone to using within-
subject designs. Apart from methodology, we also looked at
experiment duration, as categorised in short, medium, and
long-terms.

4.11 Duration of Experiment and Sessions
Figure 10 shows how long human-robot interaction lasts
across years and fields. We see clearly that the majority of
studies are short-term, specifically between 2015 and 2019.
This obvious trend is explained by the prevalence of generic
fields. Medium-term and long-term studies were scarce before
2014, but their numbers relatively increased by the mid-2010s.
Only several studies that focus on autism therapy with NAO
used a long-term approach. Despite no explicit trends, we can
observe that the interaction up to 30 min is more common
compared to other periods of time, mostly in generic and
autism studies. Considerably, a few studies (N � 5) lasted
for more than 60 min.

Figure 10 (left) shows the majority of the studies have been
conducted on a short-term basis, and as the number of studies
increased through the years the number of short-term studies has
increased as well. There is no visible trend of increasing long-term
studies at least with the NAO robot which can be thought
provoking and worth understanding its underlying causes. As
human-robot interaction field is thriving to understand the
dynamics between human and the robot, we need more long-
term studies to be able to show how the robots can integrate into
our lives and society. Looking at Figure 10 (middle), we can see
all generic studies have been conducted with short-term duration.
It is intuitive to conduct a short-term study when developing or
testing technology for generic purposes and invest more in
running long-term studies with the specific application in
mind. For example, studies on autism therapy and healthcare
were more likely to have medium and long-term duration than
the rest of the applications. The Figure 10 (right) shows a quick
overview of the duration of the sessions in minutes. The duration
of sessions is a function of the application and the interaction;
hence we cannot observe a particular trend. However, it is
interesting to see that people have been participating in
experiments with NAO robots that had lasted up to 120 min.
In general, the more we are trying to integrate robots into society
andmove them from research labs into the wild, wemight need to
run more long-term studies.

4.12 Concluding Remarks
The noteworthy findings that emerge from this quantitative
data are:

• While studies with NAO have been produced all over the
world, the great majority of studies are published by

FIGURE 9 | Experimental methodology per year (left) and application fields (right).
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researchers in the Global North, particularly in the U.S and
Western Europe.

• NAO has been used for generic purposes, yet it appears
to gain traction in autism studies and education since
2015.

• Despite physical limitations, speech, and gestures are the
main communication channels for NAO to interact with the
environment. The lack of accurate speech recognition and
natural behaviours such as emotions and spontaneity causes
mixed feelings about its social use.

• Although efforts have been made to allow NAO to function
autonomously in generic fields, it still depends on human
control and supervision when interacting with the end-users
(such as children).

• Humans from different age groups can interact with NAO,
depending on the variation in contexts of use. Therapeutic
and educational studies recruit primary age children, while
generic studies mix up all available age groups. Dyadic
interaction prevails significantly.

• The most recurrent robot roles for NAO are found to be
peer, demonstrator, tutor, and mediator.

• The studies with NAO are predominantly short-term and
may last for approximately 15–30 min.

• The available studies apply within-subject design more
often than between-subject or mixed-subject. This is
indicative of its relatively easier process as the number of
participants can be smaller.

5 QUALITATIVE RESULTS

We also conducted a qualitative narrative review to discuss the
primary research focus reported in the papers present in our
collection. This section is concluded with the key findings that
emerge from the literature.

5.1 The Human Perception of NAO
The way robots interact with humans is critical to evaluate the
overall quality of robot capabilities. HRI has drawn great
attention in studying how humans perceive robots in terms
of their appearance, task performance, and communication
skills, among many other robot features. User perceptions and
experiences with NAO vary from one context to another as
well as between user populations, including children, parents,
teachers, and experts. Due to its small size, NAO is

predominantly used in the child-robot interaction scenarios
(see Figure 6), with some exceptions, in elderly care.
Nevertheless, the majority of users perceive NAO as a
friendly and sociable robot (Hernandez-Cedeño et al., 2019;
Turp et al., 2019). There were also reports of mixed
feelings about the robot, considering its physical and
technical limitations (Cruz Maya et al., 2015; Sarabia et al.,
2018). Additionally, the human-like appearance and non-
judgemental characteristics of NAO are highly appreciated by
users (Henkel et al., 2019; Olde Keizer et al., 2019). Users would
like NAO to be more emotionally expressive, responsive, and
have a natural voice and gesturing (Anastasiou et al., 2013;
Ahmad et al., 2017). Authors used a variety of questionnaires to
evaluate NAO’s characteristics and performance based on:
anthropomorphism (Zlotowski et al., 2014; Kraus et al.,
2016), user experience (Alenljung et al., 2018; Olde Keizer
et al., 2019), user acceptability (Ahmad et al., 2017), robot
personality (Liles and Beer, 2015; Peters et al., 2017; Kraus
et al., 2018), robot behaviors (Pan et al., 2013; Njeri et al., 2016;
Rossi et al., 2019), user expectations and evaluation (Anastasiou
et al., 2013; Henkel et al., 2019), and perceived trustworthiness
(Jessup et al., 2019). Table 4 presents common questionnaires
that are used in evaluating human-oriented perception
of NAO.

When touching the robot, positive experiences with NAO
were characterized as fun and engaging, while negative
experiences were described to be odd and unsafe due to its
small size and hard surface (Alenljung et al., 2018).
Comparing low and high interactivity, Tozadore et al.
(2017) found that children enjoy their experience with the
high interactive NAO that use a warm greeting and recognizes
their names. When compared to the virtual agent, users still
favored NAO to be engaging and responsive (Artstein et al.,
2017). Both teachers and students were comfortable with the
use of NAO, yet they emphasised the need for facial
expressions in NAO (Ahmad et al., 2017). Gender might
influence how robots are perceived. For example, users
found a male NAO more trustworthy and competent than
a female one, which was only rated as likable (Kraus et al.,
2018). In another study, children at different developmental
stages had varying preferences towards NAO’s gender:
younger children (5–8 years old) wanted a robot that
matched their own gender, while older children (9–12 years
old) did not have such gender-driven preferences (Sandygulova
and O’Hare, 2015).

FIGURE 10 | Timespan of the experiment per year (left) and application fields (middle) and duration of sessions in application field (right).
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5.2 Verbal Communication With NAO
NAO can also be presented as a conversational companion to
assist people with daily tasks, serving as language tutors in autism
therapy (Fuglerud and Solheim, 2018), facilitators in speech
therapy for hearing-impaired children (Ioannou and Andreva,
2019), and peers for self-disclosure among people with visual
impairments and intellectual disabilities (Eyssel et al., 2017; Groot
et al., 2019). Interestingly, NAO can also act as a storyteller that
sustains children’s attention due to novelty and gesture
frequency, while human storytellers may become fatigued to
deliver the story (Wu et al., 2018; Ruffin et al., 2020). These
studies also suggest that timely feedback during human-robot
communication has been regarded as a success factor
contributing to the quality of interaction. By presenting NAO
as a talking partner, Omokawa et al. (2019) distinguished between
two dialog types for verbal interaction: query type is a question-
and-answer format, and phatic type is a casual format that
involves small talk and/or personal feelings (e.g. acceptance).
As the authors noted, human utterances are hardly recognized in
the latter dialog type due to short words that probably express
emotions. In Da Silva et al. (2018), NAO as a motivational
interviewer also enabled verbal communication with humans,
yet its lack of personalization was disliked by many participants
(e.g. repeating the question an user had already answered).
Recently, Graña and Triguero (2019) proposed a spoken
dialogue system for the NAO to learn to answer
autonomously based on human input10. For human-friendly
communication, Manome et al. (2020) developed a machine
translation system in which the NAO correctly speaks
Japanese words that were converted into morphemes to enable
easier pronunciation. The examples above indicate great
prospects for the NAO to improve its verbal skills that are
necessary for natural communication with humans.

5.3 Non-verbal Communication With NAO
In the same way, NAO’s non-verbal social cues play an important
role during human-robot interaction. Non-verbal
communication happens in many instances that help facilitate
joint attention, turn-taking, shared attention during HRI.
Although NAO lacks orientable eyes, which may be counted
as a serious limitation, results indicate that head rotations
typically help imitate eye contact (Cuijpers and van der Pol,
2013). For instance, NAO can serve the needs of children with
autism who often find eye contact with other people
uncomfortable and therefore try to avoid it. Additionally,
different visual stimuli such as changing eye colour cyclically
and blink by NAO were added to encourage eye contact with
children (Ismail et al., 2012; Ali et al., 2020). Eye contact and turn-
taking usually fit together, for example, when children kick the
ball and wait for NAO to kick it back (Tariq et al., 2016). Gazing
behavior, however, is the important sign of communication
because it allows people to infer engagement and intent. NAO
gazes over objects of its attention and points to them to elicit joint
attention (Anzalone et al., 2015). These examples demonstrate
the extent to which the child’s eye movements would be
responsive when NAO directs its attention to other objects.
NAO was able to perform Turkish Sign Language gestures
(Kose et al., 2014). In a buyer-seller negotiating, a human-
robot handshake prior to negotiation may benefit both sides
to reach a more positive outcome (Bevan and Stanton Fraser,
2015).

5.4 NAO as a Support for Affective
Computing Research
NAO cannot directly express emotions through facial
expressions, yet it can perform acoustic and physical
expression of emotions. It is viewed as one of the limitations
in its design. Most research studies proposed to express emotions
through utterances (De Beir et al., 2016), gestures (Beck et al.,

TABLE 4 | Perception questionnaires commonly utilized in the reviewed studies.

Name Author Measurements Item type

Godspeed Questionnaire Series (GQS) Sturgeon et al. (2019) anthropomorphism, animacy, likeability, perceived intelligence, and
perceived safety

5-item with 5-point
Likert scales

Unified Theory of Acceptance and Use of
Technology (UTAUT)

Sinnema and
Alimardani. (2019)

anxiety, attitude towards technology, perceived enjoyment, perceived
sociability, perceived usefulness, social influence, and trust

7-item with 5-point
Likert scales

Negative Attitude Toward Robots Scale
(NARS)

Mirnig et al. (2017) attitude toward interaction with robots, social influence of robots, and
emotions in interaction with robots (e.g. I would feel relaxed talking with
robots)

10-item with 5-point
Likert scales

System Usability Scale (SUS) Olde Keizer et al.
(2019)

attitude towards usability (e.g. “I thought the systemwas easy to use,” “I felt
very confident using the system”)

10-item with 5-point
Likert scales

Individual Differences in Anthropomorphism
Questionnaire (IDAQ)

Zlotowski et al. (2014) anthropomorphic (“durable,” “useful,” “good-looking,” “active” and
“lethargic”) and nonanthropomorphic traits (intentions, emotions,
consciousness, free will, mind)

30-item with 10-point
Likert scales

Complacency-Potential Rating Scale (CPRS) Zlotowski et al. (2014) attitudes towards automation (confidence-related, reliance-related, trust-
related, and safety-related complacency

20-item with 5-point
Likert scales

Propensity to Trust Technology (PTT) Jessup et al. (2019) attitudes towards technology and collaboration with technology (e.g.
“Generally, I trust technology”; “Technology helps me solve many
problems”)

6-item 5-point Likert
scales

Robot Interactive Experiences Questionnaire Mubin et al. (2014) attitudes towards engagement and social interaction (e.g. alive, friendly,
social)

8-item with 7-point
Likert scales

10https://zenodo.org/record/2567595#.YPVq0y8RoUs
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2012; Erden, 2013; Miskam et al., 2013; Rudovic et al., 2017), or
both (Aly and Tapus, 2013; Tielman et al., 2014; Miskam et al.,
2015). A few others attempted to use innovative ways such as
eyebrows showing emotions (De Beir et al., 2016) and motion
planning for four emotional patterns (Wei and Zhao, 2016).

Beck et al. (2012) designed six key poses that were
implemented on the NAO to display emotions such as anger,
pride, sadness, happiness, fear, and excitement, as captured by a
motion camera system. Similarly, Erden (2013) adapted
emotional human postures to the robot that expressed anger,
happiness, and sadness through 32 different postures for each
emotion. Creatively, De Beir et al. (2016) used 3D-printed and
wearable eyebrows that allow NAO to show anger or sadness
while doing other tasks simultaneously. In a play scenario, NAO
can also show excitement and enjoyment using matching phrases
such as “I am really excited!,” “I enjoy playing with you!”while no
emotional posture or saying is expressed in a boring or tiresome
state (Franco, 2015). Miskam et al. (2015) proposed to use NAO
for teaching emotions using LEDs, hand or body gestures to the
children with autism, who then imitate the robot by repeating the
emotions such as being happy or hungry. Rudovic et al. (2017)
also used NAO for robot-assisted autism therapy, where children
had to recognize different robot emotions as shown in emotion
cards. Through LabanMovement Analysis (LMA),Wei and Zhao
2016) integrated four emotional patterns into robot behaviours
using motion planning. Interestingly, (Manohar and Crandall,
2014) studied how novice people program robot’s behaviors to
express emotions through recorded audios and gestures and then
recognized them. The study found that non-verbal emotions were
not easy to discern than those expressed via verbal channels.
NAO can also recognize human emotions through speech cues
and facial expressions. For instance, Bechade et al. (2015)
proposed an emotion recognition game in which the robot
had to recognize emotions through the speech of humans.
Likewise, Diaz et al. (2018) implemented a text2emotion
system that enables NAO to execute behaviors based on its
ability to recognize audiovisual stimuli. Stojanovska et al.
(2018) tested NAO’s emotion recognition rate by recruiting
participants to act emotions in front of the robot. Lopez-
Rincon (2019) enabled NAO to recognize human emotions
based on their photos on the computer screen, from which
NAO detected one-half of the face images (535/1192) from the
Child Affective Facial Expression (CAFE) dataset. Roshdy et al.
(2019) applied a human brain-basedmapping system for emotion
recognition through Emotiv headset, motivated by the mapping
of the human brain activity into NAO. In general, the robot can
express and recognize emotions successfully except if users are
not good at displaying them.

5.5 NAO as a Tool for Therapy and Learning
Despite many generic use cases implemented for NAO, this robot
is widely deployed withinmedical and educational institutions for
use by children.

Learning by imitation refers to observing and performing a
new behaviour by replicating the action of others. Within HRI,
imitation is generally practiced with children with health
problems (e.g., autism) because they have difficulties in motor

and/or turn-taking skills. When children mirror robot gestures
and other behaviours, they can improve social interaction skills.
In this way, most human-robot interaction occurs in a playful
environment, where children, robot, or both imitate. In Arent and
Kruk-Lasocka (2019), NAO played two interactive games with
children to improve their turn-taking skills through movement
imitation. Arias-Aguilar et al. (2017) designed a child-robot
interaction in which NAO proposes typically developing
children to a “play” by imitating the same arms and legs
movements that it makes itself. Chevalier et al. (2017)
designed a playful task in which NAO performed several hand
gestures in the background of music with the same duration and
rhythm. Both the robot and children with ASD had to imitate
each other’s arm movements, but children were a bit confused to
initiate them. In Di Nuovo et al. (2020), NAO presented itself and
engaged with the children by playing music and storytelling and
then asked to imitate its dance movements. Greczek et al. (2014)
developed a Copy-cat game played between an NAO robot and a
child with ASD. In the game, the robot asks a child to mirror its
pose, saying, “Can you copy me?.” In learning by imitation
framework, some authors propose to use Dynamic Time
Warping that observes joint angles trajectories instead of
Hidden Markov Models (HMM) for time normalization
(Thobbi and Sheng, 2010).

Meanwhile, some researchers (Cazzato et al., 2019) proposed a
system where NAO recognizes the presence of a user in real-time
and imitates the human’s head pose. To augment motor skills,
NAO may encourage imitation learning (e.g., sit-to-stand) in
children with cerebral palsy, despite its physical limitation to
move naturally (Rahman et al., 2015). In Ros et al. (2014), NAO
taught children dance moves while providing verbal support with
music. Tapus et al. (2012) developed a motor imitation task in
which NAO imitates gross arm movements of children with ASD
in real-time. The results show a high variation in children’s
reactions to the NAO, which means that not all children can
benefit in the same way. For rehabilitation and prevention of
scoliosis (abnormal curve of the backbone), Vircikova and Sincak
(2013) presented NAO in hospital and school settings. The
participating children imitated NAO’s motions accurately,
which also increased their motivation to exercise more. Quite
similarly, NAO, as a trainer, performed physical exercises with
elderly people who tried to imitate movements (Werner et al.,
2013). In this context, users had to imitate mood-modified NAO’s
arm gestures in a game, after which the robot provided verbal
feedback about user performance (e.g., “Yes, those were the right
gestures” for a correct movement). Imitation is one of the
important skills for individuals with developmental disorders
who need to understand social cues from a young age.
Therefore, research shows that NAO is able to facilitate
initiation and turn-taking skills through imitation tasks or games.

NAO is generally welcomed by students who view this robot as
a learning peer, a more knowledgeable tutor, or a less
knowledgeable learner (Johal, 2020). Rosenberg-Kima et al.
(2019) found that the physical presence of robots brought
positive changes for university students because of the
technical functionality, social, and psychological activity.
Namely, students pointed out the benefits as follows:
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“accessible to multiple people,” “immediate feedback,” “he is not
judgmental like human beings,” “pleasant and motivating.” Some
research has targeted specific skills required for language
learning: reading (Yadollahi et al., 2018), grammar (Belpaeme
et al., 2018), handwriting (Hood et al., 2015), alphabet
(Sandygulova et al., 2020) or vocabulary learning (Balkibekov
et al., 2016). Other research demonstrated that learners cultivate
favorable impressions toward robots as learning companions, and
the child-robot interaction may lead to increased self-confidence
(Hood et al., 2015) and better task performance requiring
creativity and problem-solving. Other studies e.g., Vogt et al.
(2019) explored long-term learning between NAO and children
to better understand this type of HRI in a real-world
environment.

5.6 Typical Comparisons in HRI Studies
With NAO
To identify the robustness and applicability of the social robot,
comparative studies have been undertaken in terms of interaction
roles and behaviors. Comparison occurs not only between robots
but also between participants and interaction types. The
comparisons between humans include children vs. adults
(Kaptein et al., 2017), expert vs. non-expert (Ansermin et al.,
2017), autistic vs. typically developing children (Anzalone et al.,
2015), programmer vs. non-programmer (Stadler et al., 2014),
and people from different cultures (Rudovic et al., 2017;
Shidujaman and Mi, 2018). This shows that different groups
of humans may have different experiences with a social robot.

Bethel et al. (2013) compared a human interviewer and a robot
interviewer to find out which of them impacts participants when
presented misleading information. The results show that the
misinformation effect was significant in the human interviewer
condition than in the robot interviewer condition. The authors
suggest that its TTS system caused the lack of speech
comprehension, which results in issues with the robot’s
understandability. In Henkel et al. (2019), participants found
the robot interviewer as non-judgemental with whom they were
likely to share secrets. In a language learning context, a human
teacher and robot teacher performed sign language gestures in a
real and virtual environment, addressing the embodiment effect
(Kose et al., 2012). Tapus et al. (2012) explored whether children
with autism engage more with a robot partner or a human partner
during a movement imitation task, in which no significant
differences were found. In performing physical exercises
(Werner et al., 2013), users perceived NAO as less motivating
than humans, but they also rated the robot as more motivating
than a standard training plan they use regularly.

When exploring robot embodiment, most users perceive NAO
better in terms of its engagement and social characteristics.
Artstein et al. (2017) found that a physical robot was more
preferred and engaging to participants when compared with a
virtual agent, which in turn led to better memorization over a
longer period. Bevan and Stanton Fraser (2015) were interested in
comparing telepresent NAO against non-telepresent NAO when
shaking hands with participants during negotiations, whereas
Tozadore et al. (2017) evaluated controlling the robot

autonomously and through WoZ. Both studies suggest that a
robot’s presence did not affect the degree of trustworthiness and
appraisal, and user enjoyment, but the perceived level of robot
intelligence may decrease when people know about teleoperation.
Some studies explored robot personality effect on interaction
quality such as extroverted vs. introverted (Aly and Tapus, 2013;
Celiktutan and Gunes, 2015), low interactive vs. high interactive
(Tozadore et al., 2016; Horstmann and Krämer, 2020), active vs.
passive (Mubin et al., 2014), affective vs. non-affective (Tielman
et al., 2014), emotional vs. unemotional and high vs. low
intelligence (Zlotowski et al., 2014), lack of ability vs. lack of
effort (van der Woerdt and Haselager, 2019), and simulated vs.
real robot (Riccio et al., 2016). The robot-to-robot interaction and
comparisons were also carried out in different contexts. However,
only some papers compared the efficacy and utility benefits of the
robots, mainly using the other robot as an alternative to the NAO
or vice versa. Although children prefer NAO, they find easier to
understand the gestures of a taller R3 (Kose et al., 2014) and rate
Baxter robot as more positive and acceptable than NAO (Cuan
et al., 2018). NAO was reportedly used along with Aibo in gesture
experiments (Andry et al., 2011), iCub in eliciting behaviors on
humans (Anzalone et al., 2015), Wifibot to carry the NAO (Canal
et al., 2016), Pepper in human head imitation (Cazzato et al.,
2019), Turtelbot in providing elderly care (DiMaria et al., 2017),
Robokind R25 in interviewing humans (Henkel et al., 2019), Reeti
(Johal et al., 2014) in expressing different parenting styles, R3
(Kose et al., 2014) in performing sign language gestures, Palro and
Gemini (Pan et al., 2013) in evaluating interaction styles, and PR2
in identifying preferred human-robot proxemics (Rajamohan
et al., 2019).

5.7 Novel Developments in Human-NAO
Interaction
NAO has been used for unique purposes, which paved the way for
new developments in human-robot interaction. One of the
limitations of NAO is linked to physical abilities. Therefore,
researchers try to improve physical contact with humans based
on sensory information coming from them. Technical studies
demonstrate promising results in relation to kinesthetic teaching
by humans (Cho and Jo, 2011; Stadler et al., 2014). For instance,
Bellaccini et al. (2014) proposed manual guidance of NAO
without force sensors to improve physical human-robot
interaction (pHRI). In a quite similar way, Berger et al. (2013)
introduced a machine learning approach that enables NAO to
follow human guidance by identifying human forces during a
joint transportation task. Cao et al. (2014, 2017) presented a novel
collaborative behavior controller ROBEE that selects actions
based on homeostatic drive theory for NAO to jointly perform
a task with participants more autonomously. In other words, this
controller allows NAO to be aware of users’ psychological (e.g.,
valence) and physical (e.g., thirst) needs. The brain-machine
interface (BMI or BCI) has been commonplace in studies that
address the problems of people with motor disabilities.
Accordingly, some researchers proposed a novel BMI interface
such as EOG/ERP hybrid human-machine interface (Ma et al.,
2013), EEG-based recognition of imaginary movements of fingers
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(Stankevich and Sonkin, 2016) and Emotive EPOC (Gomilko
et al., 2016) to control NAO behaviours through commands by
translating human brain activity. These findings show that NAO’s
limitations might be overcome by using more advanced deep
learning solutions that enable the robot to function in natural
environments.

5.8 From Close-Loop Systems Towards
Real Autonomy
The realization of versatile and human-like intelligence and
cognitive modules in robots remains a challenge for the HRI
field. As shown by our analysis, all autonomous systems used
in user studies were targeting a specific application field.
Generic reasoning relates to developmental robotics that
can include various theories and methods such as deep
learning, sensorimotor information processing,
metacognition, memory, and decision making (Miyazawa
et al., 2019). Several studies proposed a cognitive
architecture for NAO’s system design. For instance, Adam
et al. (2016) presented Cognitive and Affective Interaction-
Oriented architecture (CAIO) that allows NAO to perceive its
environment multi-modally, to manipulate mental states, to
respond emotionally, and to execute physical and verbal
actions. Aly and Dugan (2018) proposed Experiential
Robot Learning in which NAO must autonomously learn
and gradually acquire knowledge and skills through
experience in the real world, achieved through
reinforcement learning. Dindo and Zambuto (2010)
focused on a multi-instance learning algorithm for NAO to
learn the word-to-meaning associations through visual
perceptions. Andry et al. (2011) presented an artificial
neural network control architecture that allows rhythm
detection to build an internal reward for learning inspired
by human behavior. It has implications on the quality of the
interaction in which NAO is capable of predicting and
following human actions. To endow NAO with more
adaptive behaviours, Bertacchini et al. (2017) designed a
cognitive architecture that consists of human identification,
emotions and gestures recognition and exhibition, and speech
sentiment analysis in customer-robot interaction. Using
computational modeling, Cantucci and Falcone (2019)
endowed NAO with social autonomy in which it serves the
role of infoPoint assistant that helps users to find out the
location of their point of interest (e.g., a restaurant) and how
to get to the place. Quite similarly, through the Internet of
Things framework (IoT), Mondal and Nandi (2017) created a
customizable assistant by enabling NAO to perform daily
tasks that its owner requests. To increase the emotional
aspect of interaction, Chella et al. (2013) built the cognitive
architecture of NAO based on perceptual, emotional, and
behavioural data. Another attempt in this area is made by
Ribeiro et al. (2016) that presented the Socially Expressive
Robotics Architecture (SERA) ecosystem for NAO as an
autonomous and emphatic robot tutor in teaching
sustainable development. These multiple examples of
cognitive architectures for NAO are important to enable

human-like intelligence and develop more natural HRI. A
more detailed overview of research on cognitive architectures
can be found in Ye et al. (2018) and Kotseruba et al. (2020).

5.9 Concluding Remarks
NAO is a well-accepted social robot valued for its fun and
enjoyable appearance. However, there were mixed feelings
about its interaction capabilities, which manifest diverse
individual preferences and perceptions. Its interactive abilities
can be empowered when displaying and recognizing emotions.
Commonly, its body language is a medium for expressing
emotions. NAO can detect emotions from facial expressions,
and therefore, there is an emotional contagion in which NAO
adapts to a human’s emotional state or vice versa (Xu et al., 2015;
Stojanovska et al., 2018). Users also want NAO to feel and show
different kinds of emotions. For instance, students thought they
wanted NAO to “feel life” and feel happiness and togetherness
when interacting with them (Omokawa and Matsuura, 2018). As
compared to the unemotional NAO, the emotional robot was
considered more anthropomorphic, while its intelligence may not
affect the perception of anthropomorphism (Zlotowski et al.,
2014).

NAO is widely accepted as a socially assistive robot, which
communicates with users socially rather than physically (Sarabia
et al., 2018). A great body of research has used NAO as a mediator
in autism therapy and other therapeutic interventions with older
people. Using social robots can offer alternative or
complementary ways to support traditional treatment. As a
viable approach to autism treatment, robot-mediated autism
intervention is designed to improve children’s verbal and non-
verbal behaviours as well as social skills. Levels of autism are
known to be the most defining factor that accounts for different
social interaction experiences and engagement rates (Ahmad
et al., 2017). So far, the autism studies with NAO found that it
has a great potential in helping children with autism to maintain
eye contact (Anzalone et al., 2015), prefer specific instructions
over spontaneity (Arent and Kruk-Lasocka, 2019) and augment
communication skills (Hamid et al., 2013). Some other therapies
focus on physical therapy, for instance, to improve motor
learning skills of children with cerebral palsy (Rahman et al.,
2015; Buitrago et al., 2020). Children with motor disabilities may
become motivated and encouraged to do imitation and motor
learning tasks. In addition, hearing-impacted children’s sound
detection improved over sessions, meaning that NAO can be used
for auditory-verbal therapy (Ioannou and Andreva, 2019). Verbal
communication with NAO has occurred in different learning and
communication scenarios. Its speech is mainly based on scripted
texts and therefore usually lacks personalized responses. Thus,
autonomous and natural human-NAO verbal interaction is still at
its infancy.

Users liked the robot’s nonjudgemental behavior (Da Silva
et al., 2018), and they were more engaged when the robot
asked for personal details than quiz-like questions (Eyssel
et al., 2017). In particular, game-based relationship with the
robot may result in more self-disclosure (Groot et al., 2019).
Furthermore, NAO was seen as more trustworthy and
persuasive when compared to a virtual agent in either voice
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or virtual embodiment (Artstein et al., 2017). This distinctive
characteristic hints that NAO can deal with sensitive issues
carefully without making people feel uncomfortable when
revealing oneself.

It was found that robots playing games with humans have an
entertainment value (Johnson et al., 2016). Especially, it holds
true for young children since their learning is mainly based on
free play activities than instructed guidance on task performance.
For instance, users preferred the R3 robot for learning, while
NAO was associated with play (Kose et al., 2014). In another
study, NAO played a board game known as tic-tac-toe with users
on a tablet and showed that its behaviors could be robust with the
help of voice synthesis and recognition. A more active,
interactive, and extrovert robot is preferred as a partner in
meetings (Mubin et al., 2014). There was no significant
difference in user enjoyment between the system conditions,
but most children tend to favor autonomous robot (Tozadore
et al., 2017). Learning with NAO is interesting for children, and
the content of play may affect the result of the learning process.
Character recognition also plays an important role, how NAO
recognises the kids’ writing, and it can be spelled back towards
them. In this case, the kids can learn how to pronounce English
much better and learn the handwriting of the alphabet (Kim et al.,
2019). The two-way communication is found to be effective since
each child can respond to the questions from NAO (Miskam
et al., 2013).

Personalization is a much-needed feature for all social robots,
and NAO’s case is no exception. It is commonly regarded that the
robot may become more effective and human-like when it is able
to tailor to user’s needs and preferences and build a sustainable
and long-term relationship. Personalized human-robot
interactions are specifically suitable when robots interact with
humans for longer periods (Irfan et al., 2019). In such context,
robots may develop a certain kind of memory storage that allows
them to remember and record all available information about
people through continuous interaction with humans.
Considering the variation in autism symptoms, there is a clear
need for robot personalization in autism therapy (Fuglerud and
Solheim, 2018). To illustrate, Greczek et al. (2014) emphasized
that varied feedback may be more effective and less discouraging
than descriptive feedback in an imitation game for children with
autism. Also, Mirnig et al. (2011) found that human-robot
interaction might be affected due to the provision or
withholding of feedback. Users’ perception of the robots could
be distinguished based on different interaction styles even when it
is a short-lived encounter (Pan et al., 2013). We come back to this
subject later in the paper.

Personal characteristics of NAO are essential as each human
shows idiosyncratic preferences in behaviours. What is
interesting is that both introverted and extroverted humans
wanted to interact with the personality-matching robot (Aly
and Tapus, 2013). This posits that the personality traits of the
robot are a relatively significant factor in relation to its non-verbal
behavior. Users prefer to have a robot partner that shares the
same personality as in the human-human interaction. Not
surprisingly, it is suggested that extroverted robots positively
affect interaction flow (Celiktutan and Gunes, 2015).

Similar to a human-human relationship, it may not be realistic
if the human-robot interaction imitates faultless and impeccable
communication. In psychology, the pratfall effect explains that a
mistake would increase the interpersonal appeal and make
humans more likable (Aronson et al., 2014). In this regard,
Mirnig et al. (2017) highlights that the same phenomenon can
be applied to social robots. In their study, participants liked
the faulty robot significantly better than the robot that
interacted flawlessly. The timing of the errors might also
play an important role. Much interestingly, Lucas et al.
(2018) found that NAO having conversational errors
during warm-up conversation may recover sooner.
Nevertheless, some users may develop biases toward the
robot to be faulty and have limited skills (Turp et al.,
2019). Although an erroneous robot is generally under-
studied, it certainly is one of the key areas to understand
human-robot interaction in an unrestricted way.

Researchers have used external measurement devices such as
RGB-D camera, eye tracker, motion detector, and many other
tools for some decades. They make it possible to measure human
features such as body postures, movement, speech, and gaze in a
more accurate and reliable way. They can fill the gap in the robot’s
capabilities in measuring a human’s input and engagement. In
Craig et al. (2016), gaze tracking hardware is used to create gaze-
based language command in order to facilitate the
communication barriers between NAO and users. In another
study, a speech recognition system called Cloud technology was
used to assess the correct understanding of Chinese language
words that were transmitted to NAO (Han et al., 2018). Other
researchers use gesture recognition system based on external
cameras (Ajili et al., 2017) and object detection algorithm to
recognize the face from NAO’s main camera (Cheng et al., 2012;
Cuijpers and van der Pol, 2013). These advancements are
significant as service robots are becoming popular in our
domestic and social lives. In some way, it would be innovative
if these technologies could also evaluate the quality of human-
robot interaction. For instance, there might be some level of
subjectivity in coding behaviours, especially in autism therapy
(Baraka et al., 2017).

Existing research studies found no conclusive evidence
regarding the benefits of social robots over other
technologies. NAO’s advantage over other technologies is
still unclear as there are insufficient evidence for its benefit
compared to tablets and computers. It might be intuitive to
consider that users prefer to interact with a physical robot
because of its animate and lively appearance. However, a user
preference may depend on other factors, such as age and
context. Notably, older adults who have serious underlying
health issues may be inclined towards physical robots. For
example, elderly people preferred robots over a tablet, despite
technical limitations of the NAO (Olde Keizer et al., 2019).
Furthermore, students perceived NAO as a sociable agent and
favored it over other learning aids, e.g., a computer (Liles and
Beer, 2015). Focusing on a language learning context,
Zhexenova et al. (2020) reported that there is no significant
difference in children’s perceptions of NAO’s effectiveness in
comparison with a tablet and a human teacher. In the
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entertainment area, Wong et al. (2018) revealed that physically
present NAO improved information dissemination and hence
increased visibility of the advertised product.

6 KEY INSIGHTS: STRENGTHS AND
LIMITATIONS

Our overall impression of the current review demands a further
reflection on how research could be conducted with a social robot
NAO. Although some points may be generic, we believe the
research-based insights will benefit researchers either working or
intending to work with NAO.

6.1 Strengths
NAO is commonly regarded as a widely used platform. Researchers
tend to skip the details of why they choose NAO over other social
robots except acknowledging its wider use. The most
straightforward reason is that NAO has become the standard
platform for RoboCup, an international robotics competition, for
over 10 years.

NAO enjoys a great appeal from its end-users. Its child-like and
non-threatening appearance makes it appealing. In particular,
children at younger ages appear to engage with NAO more
successfully than those at later childhood stages. This idea is
supported by the significant number of studies that have been
conducted in the educational and therapeutic context.

NAO is certainly not just an eye-catcher robot as its portability
is highly appreciated by the researchers. Its small size in addition
to light weight is helpful for easy transportation in a standard
car (e.g. a taxi) which makes in the wild research possible.

NAO can be regarded as a plug-and-play robot due to its robust
and easy setup characteristics. This allows researchers to have a
reliable platform for a real-world deployment as confirmed by
numerous research works conducted in diverse settings, ranging
from schools to hospitals.

NAO is an affordable robot with a cost of around 6000 Euro11.
Although it might be more expensive in comparison to other
smaller humanoid robots, NAO is one of the most complete
humanoid robots on the market in terms of functional and
technical abilities.

NAO’s customizable features also meet the needs of multi-
disciplinary researchers worldwide. This is surely thanks to the
multi-level programming framework proposed to researchers.
While the block-based programming framework, Choregraphe,
allows researchers from social sciences to easily implement
novel behaviors, the C++/Python API allows engineers to
develop novel technical contributions (i.e. computer vision,
control, etc.) and deploy directly on the robot. The HRI field
being so multi-disciplinary, its programming framework positively
contributed to the success of the NAO platform.

NAO is multimodal in both its input and output
communication modalities. It is relatively well equipped with

internal sensors to perceive its environment as well as external
actuators to perform verbal and non-verbal behaviors (e.g. body
motion and LEDs).

NAO can take on a unique social role of one’s learner. NAO as
an educational robot has assisted poorly performing children to
engage in a learning activity by taking up a unique social role of
their learner. This can positively affect meta-cognitive abilities
such as increased self-confidence and problem-solving (Hood
et al., 2015). Other notable examples include handwriting
practicing, second language learning, and studying school
subjects like mathematics and science classes. With remarkable
achievements in education, NAO is not much used in traditional
and formal learning settings and rather acts as a one-to-one tutor,
peer, or a learner (Johal, 2020).

NAO can bring cognitive and affective values when interacting
with humans that have social and learning barriers. Although the
robot can not replace the key social actors such as therapists and
teachers, it can make learning and therapy engaging and fun
experience, while educators can focus on creative as well as
differentiated teaching practices.

NAO could be a great help for individuals who have less social
experience and companionship in their life. For instance, in
treating dementia and for other elderly care therapies, it could
be applied to assist in daily life by monitoring and reminding to
take the pills and do physical exercises following a certain plan
instructed by medical staff. NAO as a companion may enhance
the quality of life that most people expect to enjoy in their
later lives.

Gendered stereotypes seem to persist in human-robot
interaction. Multiple research indicate that users may perceive
the robot in different ways based on gender markers such as voice
and verbal commands (Sandygulova and O’Hare, 2015; Jackson
et al., 2020). To a great extent, NAO is among the genderless
robots (Obaid et al., 2016) compared to other robots (e.g., Kaspar,
Milo). Thus, research with less gendered robots is important to
eliminate gendered attitudes towards feminine and masculine
qualities, which appear to contribute to the interaction outcomes.

6.2 Weaknesses
NAO has a low battery life and overheating issues that make it
less durable than other social robots (e.g., Pepper). Generally, it
works for 60 min in active use and 90 min in normal use. These
issues question its sustainability and long-term efficacy. As our
review shows, the majority of experiments with NAO usually
happen on a short-term basis lasting for no more than 30 min.
For instance, some participants are concerned with the robot
being not active and responsive as they expected it to be. With
that in mind, the activities and experimental design need to be
adjusted time-wise.

Although NAO is relatively well equipped to perform near-
human actions, it is quite often supported by input/output external
devices such as high-quality or depth cameras and microphones.
While NAO has two internal cameras, the low resolution does not
allow to perform complex vision recognition tasks. For example,
the closer a person is, the better the robot detects facial expressions
and other visual cues, while it cannot recognize people who are
more than 2 m away (Bolotnikova et al., 2017). Oftentimes, the use

11https://www.generationrobots.com/en/403100-programmable-humanoid-robot-
nao-v6.html
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of additional equipment such as touchscreens, tablets, or wearables
can substitute for perceptual limitations (Johal, 2020).

NAO can hardly function in a noisy environment and recognize
human speech. User’s age influences speech recognition as young
children and older people have different speech characteristics
and coherence (Vargas et al., 2021). In particular, it is not yet
practicable for NAO to recognize children’s speech (Kennedy
et al., 2017). Alternatively, researchers could use Google Cloud
Speech recognition services that allow NAO understand different
languages and optimize its workflow.

Hard surfaces are needed for NAO’s movements and stable
positioning. Aldebran first designed NAO as bipedal robot to
walk in open loop. Closed loop walk algorithm was adopted on
NAO humanoids that became capable of omnidirectional walking
(Gouaillier et al., 2010; Kasari et al., 2019). NAO has a particular
way of walking, and while the robot can move freely on flat and
hard surfaces, it lacks robustness on surfaces such as on carpets or
rugs (Shamsuddin et al., 2011). For instance, RoboCup teams like
Berlin United (previously NAO Team Humboldt) have long been
exploring the robot’s ability to move and kick the soccer ball
autonomously based on visual spatial perception12.

Autonomy is undoubtedly the most demanding feature that
most social robots lack. NAO has been predominantly used in the
Wizard of Oz approach, a frequently employed method; wherein
the interaction is controlled remotely by human input along the
autonomy spectrum (Riek, 2012). Scripted, although highly
constrained interactions are also commonly used solutions.

7 FUTURE RESEARCH WITH NAO

Our results allow us to make a number of recommendations for
future research using NAO:

Data-driven behavior generation: While rule-based behaviour
generation approaches perform well, they are often costly, time-
consuming and bound up to expert knowledge. The cost of creating
production rules and the need for manual configurations in order
to generate complex and natural human behaviours put a limit to
the complexity and diversity of generated behaviours. Thus, the
development of data-driven behaviour generating systems using
machine learning have to become the research focus as the actual
human-human interaction data can provide a more human-like
and multimodal behaviour generation (see Liu et al. (2021) for a
review on gesture generation).

Long-term engagement: Although cross-sectional studies are
commonplace due to different technological and methodological
constraints, it is feasible to commit to long-term goals and test the
efficacy of NAO and its capabilities. The user studies in robot-
assisted educational and therapeutic settings need convincing
evidence of the robot’s long-term efficacy, especially those
working with underserved populations (Rakhymbayeva et al., 2021).

Multi-party interaction: It would be suitable to observe and
refine NAO’s behaviors and its relationship with study
participants in the presence of co-present others. One-on-one

interaction has long been practiced, however, it is still unclear how
NAO interacts with multiple participants. This type of interaction
deserves much attention because it allows to maintain collaborative
HRI. The robot’s mediating role is important to facilitate human
relationships such as student-student, student-tutor, and child-
parent. In addition, professionals from other fields such as
psychology and education can also contribute to evaluating the
quality of human-robot interaction. For instance, in an educational
setting, teachers may assess the interaction outcomes based on
rubrics and observation.

Natural communication: Social dialogues should be more
uplifting and engaging using more affective reactions. They may
be based on a real interaction scenario where different participants
react in varying ways. Interaction roles might be specified in
advance, or users may find out in the course of the dialogue.
Open-ended interactions can be designed where the robot is faulty
or make errors during the interaction from which they can recover
during the session. However, it might be helpful to maintain a
cooperative imagined contact relying on real-life scenario. Research
shows that imagined contactmay provide humanswith a behavioral
guide, which probably improves their feelings of self-efficacy and
confidence in future interaction (Kuchenbrandt and Eyssel, 2012).

Personalization: One cannot fit all, especially when it comes to
social interaction. For that reason, it seems that adaptation and
personalization have been under investigated as the NAO robot was
used across various populations and cultures without much
changes. Interventions have to be aware of user demographics
which is the most straightforward way to adapt the content by
adding specific verbal and non-verbal cues. The decision over how
much personalization to use has to derive from study focus and
population, which is highly anticipated of any experiment. In the
case of young children with autism, there is a strong need for
customized robot behaviors, as these children show varying degrees
of autism symptoms that develop individually. For this reason, the
NAO can target different social skills development activities and
then find out what works best for a certain child. It would be an
important objective forNAO to learn child preferences from session
to session and adapt its behaviors accordingly.

Impact of COVID-19 on HRI: If we consider the significant
decrease in an experiment-basedHRI, it becomes clear that some of
us may not embrace an online research environment. There might
be a serious disparity between subject areas, institutional support,
and early-career and expert researchers. Besides, there is a
geographical factor that might influence research activity as
some countries (e.g. Israel, New Zealand) cope better with
COVID-19, while others (e.g. USA, Italy) have been hardest hit
by it. Thus, a collaboration between researchers within and beyond
the field can be a silver lining of current research-related challenges.

8 CONCLUSION AND LIMITATIONS

In HRI, we often work and develop closer ties with a particular
robot, and may overlook how other robots contribute to the field.
In this review, we presented a comprehensive overview on the use
of NAO, which is a remarkable social robot in many instances. So
far, NAO has been exposed to challenging yet rewarding journey.12https://www.naoteamhumboldt.de/en/team/
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Its social roles have expanded thanks to its likeable appearance
and multi-modal capabilities followed by its fitness to deliver
socially important tasks. Still, there are gaps to be filled in view of
sustainable and user-focused human-NAO interaction. We hope
that our review can contribute to the field of HRI that needs more
reflection and general evidence on the use of the social robots,
such as NAO in a wide variety of contexts. The main limitation to
this study is that our search was limited to keywords in abstract
and titles. It means that we could not cover other studies that
might enrich the current review. Nevertheless, we believe that our
research may engender important insights into the use of NAO
across different domains and shape a broader understanding of
human-robot interaction over the last decade. An implication of
the findings shows a greater need for increasing the value and
practical application of NAO in user-centered studies. Future
studies should consider the importance of real-world and
unrestricted experiments with NAO and involve other humans
that might facilitate human-robot interaction.
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