
FPGA-to-CPU Undervolting Attacks
Dina G. Mahmoud∗, Samah Hussein∗, Vincent Lenders† and Mirjana Stojilović∗
∗EPFL, School of Computer and Communication Sciences, Lausanne, Switzerland
†armasuisse Science and Technology, Cyber-Defence Campus, Thun, Switzerland

Abstract—FPGAs are proving useful and attractive for many
applications, thanks to their hardware reconfigurability, low
power, and high-degree of parallelism. As a result, modern
embedded systems are often based on systems-on-chip (SoCs),
where CPUs and FPGAs share the same die. In this paper, we
demonstrate the first undervolting attack in which the FPGA
acts as an aggressor while the CPU, residing on the same SoC, is
the victim. We show that an adversary can use the FPGA fabric
to create a significant supply voltage drop which, in turn, faults
the software computation performed by the CPU. Additionally,
we show that an attacker can, with an even higher success rate,
execute a denial-of-service attack, without any modification of the
underlying hardware or the power distribution network. Our
work exposes a new electrical-level attack surface, created by
tight integration of CPUs and FPGAs in modern SoCs, and incites
future research on countermeasures.

Index Terms—FPGA, CPU, Security, Undervolting, Fault In-
jection

I. INTRODUCTION

Heterogeneous computing systems combining field pro-
grammable gate arrays (FPGAs) and central processing units
(CPUs) are commonly used in modern computing. FPGAs
offer hardware parallelism and reconfigurability, which makes
them suitable for workloads whose requirements change fre-
quently and for highly parallel applications such as machine
learning and computer vision. CPUs offer the advantage of
being general-purpose and easily programmable. As a result,
we find heterogeneous systems combining FPGAs and CPUs
inside the same package, embedded system, datacenter, or
cloud (e.g., Xilinx and Intel offer system-on-chip (SoC) solu-
tions combining their FPGAs with ARM processors [1], [2]).

Recently, researchers have demonstrated the use of dynamic
voltage frequency scaling (DVFS) interfaces for remote fault
injection exploits against ARM and Intel CPUs [3]–[5]. About
the same time, FPGA researchers have found that program-
ming FPGAs with so-called power-wasting circuits, which
draw considerable current, can produce notable fluctuations
of the supply voltage. The resulting voltage drop may then be
leveraged by an adversary to reset the target system [6], [7],
or, if carefully controlled, to inject computational faults in the
host FPGA [8]–[10].

In this work, we examine the possibility of leveraging the
effects of power-wasting circuits deployed on the FPGA to
affect the operation of a CPU in the same heterogeneous
system. We believe this to constitute a novel threat; the supply
chain and the design process for FPGAs can be separate
from those of the CPU and, therefore, defenses targeting only

This research is supported by armasuisse Science and Technology.

the CPU (e.g., simply limiting the level of voltage control
of the DVFS interfaces [4]) will not work against voltage
drops originating from the FPGA. The attacker thus possesses
more flexibility, potentially leveraging the combination of both
DVFS and FPGA power wasters. To the best of our knowledge,
we demonstrate the first successful undervolting attack, in
which an aggressor FPGA injects repeatable faults into the
computation of a CPU in the same SoC. We investigate the
possibility of, first, injecting faults into the software executing
on the CPU and, second, performing a denial-of-service (DoS)
attack.

II. BACKGROUND AND RELATED WORK

In this section, we explain the mechanisms used for remote
electrical-level fault-injection exploits on CPUs, FPGAs, and
heterogeneous systems, and discuss the recent works that
leveraged them.

A. CPU-based Attacks

For correct operation, electronic circuits must operate within
specific frequency and voltage ranges. When these constraints
are deliberately violated, faults may be injected into the
operation of the circuit. Researchers have recently leveraged
the possibility of manipulating the voltage and frequency
for remote attacks on CPUs. Tang et al. made use of the
DVFS interfaces available on ARM processors, to change
the operating frequency beyond the safe limits for the pro-
cessor [3]. Other researchers have also demonstrated the
possibility of manipulating DVFS interfaces to change the
voltage and fault Intel and ARM processors [4], [5], [11].
These exploits broke the security of encryption algorithms
and of trusted execution environments (e.g., Intel SGX and
ARM TrustZone). Furthermore, researchers have demonstrated
how to automatically generate highly effective stressor codes,
which increase the value of the minimum voltage necessary
for the correct operation of a CPU [12].

B. FPGA-based Attacks

Unlike CPUs, FPGAs do not usually have DVFS interfaces.
However, using the low-level programmability of FPGAs,
researchers have demonstrated how to design and deploy a va-
riety of designs to consume significant amounts of power [6],
[7], [13], [14]. The high power consumption results in a
voltage drop, which can inject faults, or even reset the entire
board [6]. Researchers have used this voltage drop to learn
AES keys, bias random number generators, and remotely ac-
tivate hidden Trojans [8]–[10]. The most basic power-wasting



Fig. 1. Threat model, where the attacker-controlled programmable logic
induces faults in the victim core, through the shared power delivery network.

design is a combinational ring oscillator (RO): an inverter in
a closed loop, oscillating at a very high frequency. Usually,
attacker designs turn the inverter into a NAND, where the
other input is an enable signal to ensure control over the attack
primitive. Alternative power-wasting designs do not draw as
much power, but are suitable for attacks on the cloud FPGAs
(as combinational ROs can be detected and are not allowed
on, e.g., Amazon EC2 F1 instances [15]). These designs make
use of CARRY primitives, registers, and long wires [7], [14].

C. Heterogeneous Systems Exploits

More recently, researchers have also started exploring
the types of exploits possible in a heterogeneous scenario.
Giechaskiel et al. demonstrated covert channels between
graphics processing units (GPUs), CPUs, and FPGAs, sharing
the same power supply unit in a datacenter [16]. Ring oscilla-
tors were used as both transmitters and receivers on the FPGA,
and for transmitters on the CPU and the GPU, computationally
heavy codes were used. Zhao et al. demonstrated the feasibility
of side-channel attacks against the CPU, using sensors on an
FPGA on the same chip [17]. Gnad et al. showed that the
reset resulting from the activity of ROs in the FPGA fabric
affects both the CPU and the FPGA on the same chip [6].
However, to the best of our knowledge, no previous work has
investigated the possibility of injecting faults from the FPGA
into the software executing on the CPU.

In this work, we utilize power-wasting circuits in the pro-
grammable logic (PL) of the FPGA to investigate the effects of
FPGA-induced undervolting on the operation of a CPU on the
same chip, which can potentially be leveraged to inject faults
or carry out a denial-of-service attack. Similarly to works on
CPU exploits [3], we assume that we can change the frequency
of the victim processor. Unlike them, we do not assume the
ability to change the processor voltage, and we increase the
frequency only to values for which the processor still operates
without faults. Unlike works on FPGA attacks, we do not aim
to inject faults into other circuits in the PL, but instead target
the CPU. Finally, similarly to previous work which has shown
that the reset induced by power wasters on the FPGA can affect
a CPU residing on the same chip [6], we observe DoS also
due to sending the victim CPU code into an infinite loop.

III. THREAT MODEL

Our threat model assumes an attacker targeting heteroge-
neous platforms which combine FPGAs with CPUs, and where
the power distribution network (PDN) is shared, as illustrated
in Fig. 1. While this sharing may occur at various levels
(silicon die, board, datacenter rack, etc.), we consider the
case where the FPGA and CPU share the same package and
the on-board voltage regulator, common to a variety of SoC
platforms [1], [2]. We assume an adversary with software
access to the device who can run a piece of code on the
processor cores and modify a part of, or the entire FPGA
hardware for a limited time. Additionally, we consider CPUs
equipped with frequency scaling capabilities, accessible to the
victim (for performance or power efficiency) or the attacker
(who has gained access to them, legitimately or not [4]). Our
victim runs an application on one of the CPU cores, while
the attacker aims for a DoS or a fault-injection attack. As
shown in Fig. 1, the key novel component of our attack is the
use of FPGA PL and, in particular, the power-wasting circuits
implemented in it. This threat is different from the traditional
attacks, which considered the overclocking and undervolting
limits of the CPU only, ignoring the impact the PL can have on
them. We do not make any assumptions on the activity or use
of other cores in the system—they may be attacker-controlled,
victim-controlled, or running a completely unrelated task.

IV. SYSTEM DESIGN

To investigate the possibility of power wasters in the PL
injecting faults into the software running on the CPU, we
chose the Genesys-ZU development board, equipped with a
Zynq UltraScale+ MPSoC [18]. This system-on-chip contains
a quad-core ARM A53 application processing unit (APU),
a dual-core R5 real-time processing unit (RPU), a GPU,
and an XCZU3EG FPGA [1]. All four SoC components are
supplied by the same voltage source of 0.85 V. We made no
modifications to the power distribution network, including not
removing a single decoupling capacitor.

A. Programmable Logic

For our proof-of-concept, we consider that the adversary
can control the entire FPGA for a limited time (i.e., for the
duration of the attack). To maximize the power drawn from the
FPGA, we used combinational ring oscillators [6]. For better
control and flexibility of the attack, we divided all ROs that
the attacker deploys into groups of equal size (which we refer
to as nodes), composed of smaller blocks of ROs, as shown
in Fig. 2. In our setup, there were 15 nodes, each containing
NBLOCK = 16 blocks of NRO = 500 ring oscillators. From
software, the attacker can decide how many blocks, per node,
are to be enabled during the attack. Additionally, the timing
of the activation of each node is controlled independently. In
the PL, the control signals are converted to enable signals
for each node, including the start and the end of the attack,
and the choice of the duty cycle and the period of the enable
signals of the nodes. To observe the effects of the various
RO configurations and enable signal timing parameters on



Fig. 2. Block diagram of the evaluation setup.

the voltage drop, we implemented a delay-line based voltage
sensor in the PL [19]. The readings from this sensor during
the attack are stored in on-chip memory, to be later sent to
the processing system (PS) for the analysis. The PL operates
at 100 MHz clock frequency.

B. Processing System

Given that our target platform does not offer voltage scaling
(available on other platforms [20]), we only consider frequency
scaling. When the frequency is changed, all APU cores are
affected. Because the default frequencies of the APU and RPU
cores are 1.2 GHz and 500 MHz, respectively, we chose to as-
sign the victim to an APU core and the attacker to an RPU core
(Fig. 2). In that configuration, the victim has the possibility
of increasing the operating frequency (e.g., for improving the
performance) as long as its core remains least affected by the
frequency change. The PS and PL communicate through AXI
GPIOs. We ran all codes on bare metal, leaving the study of
the effects of running an operating system for future work.

We designed two attack modes: The first served to sweep
all the parameters of the attack and record the corresponding
sensor readings. This mode helped us find the configuration
that results in the most effective (i.e., the largest and longest-
lasting) voltage drop. In this mode, we ran each attack con-
figuration once and paused for 50 ms before testing the next
one. The second attack mode was more targeted as it used
the best attack configuration found with the first mode. This
mode was used for the fault injection. When the attack starts,
the number of blocks is fixed to the maximum (in our case,
16) and the duty cycle is fixed. For each attack run, we swept
the attack period within the range determined with the first
mode. Between each period value and the next, we paused for
20 ms. We repeated the attack for five times, with a pause of
120 ms between each two consecutive runs (to allow the PDN
to recover and reduce the likelihood of the board resetting).

V. EXPERIMENTAL EVALUATION

With the aim of discovering whether injecting faults into
the operation of the PS cores from the PL is possible, we
carried out various experiments. Our evaluation aimed to find
the attacker parameters that would result in both significant
as well as long-lasting voltage drop, to mimic what DVFS-
based exploits are capable of [4], [5]. We also identified
the operating frequency limits of the CPU, to understand

Fig. 3. Enable signals controlling the activation of attacker nodes and their
corresponding parameters: period, duty cycle, and total attack duration.

whether overclocking would be a realistic option. Finally, we
experimented with two target victim applications. We discuss
each of these experiments in the following subsections.

A. Attacker Parameters Sweep

In our implementation, the adversary can control:
• the start of the attack (the trigger),
• the number of active blocks NBLOCKS,
• the total duration of the attack,
• the period of the enable signal, and
• the duty cycle (DC) of the enable signal.
The start of the attack is controlled from the PS, allowing

the PS to repeat the attack. The attack duration (i.e., the time
during which we activate the ROs according to the period
and duty cycle parameters provided by the adversary) can
be hardened into the design or controlled from the PS. As
shown in Fig. 3, one attack period corresponds to the time
between two subsequent activations of one attacker node. The
duty cycle parameter sets the number of clock cycles, within
one attack period, for which the enable signal remains active.
As shown in previous work [6], [9], [21], the frequency of
the activation signal matters; if it is close to the resonance
frequency of the board PDN, the obtained voltage drop is more
significant and, hence, fault injection is more likely. Similarly,
the duty cycle affects the obtained voltage drop.

Given that previous DVFS-based attacks had precise control
over either the voltage or the frequency, the undervolting or the
overclocking of the victim CPU could last for as long as the
adversary desired [3], [4]. To try to achieve an effect similar
to persistent undervolting with the FPGA logic resources, we
needed to first find the attack configuration that would not
only result in a low voltage, but also ensure that the voltage
remains low as long as possible. Therefore, we let the attacker
implement the ROs in as many LUTs as possible. Due to the
relatively small size of the programmable logic in our target
device, this resulted in 60,963 look-up tables (LUTs) occupied
by the ROs (or 86.4% of all the available LUTs).

Experimentally, we observed that the longer the attack
duration, the more likely it was that the board would reset
(DoS attack) before a fault could be injected. Therefore, we
limited the attack duration to 256 clock cycles (equivalent
to 2.56 µs). Then, we studied whether the activation pattern



Fig. 4. Delay-line sensor readings for simultaneous and staggered activation
of eight and 16 attacker nodes.

of the attacker nodes would have an impact on how long the
voltage drop lasted. To that end, we experimented with the
following activation patterns:

• simultaneous (de)activation of all the nodes and
• staggered (de)activation of the nodes.

We found that staggering the activation of the attacker nodes—
by activating one additional node at each subsequent clock
cycle—gave the most promising results. As shown in Fig. 4,
the simultaneous activation resulted in an immediately large
drop, which lasted for a very short time. Staggering the
activation instead achieved a more persistent voltage drop,
with a slightly reduced magnitude. We then swept the number
of active blocks, with various values for the attack period
(between 10 and 256 clock cycles), and tested various duty
cycles. As shown in Fig. 4, the larger the number of blocks
used, the more significant the voltage drop was and, hence, we
chose the maximum number of blocks. Based on the results
of the sweep, when the duty cycle was higher than 50%, the
reset would be more likely to occur. Therefore, we chose to
focus on duty cycles between 30% and 40%.

Fig. 5 shows a sample of the sensor readings for the
maximum number of RO blocks for three different attack
periods, each with a duty cycle within the 30–40% range.
We can observe that, when the frequency of the enable signal
was very high, the voltage drop was not as significant as
when the frequency is lower, because the power draw did
not last long enough. Lower frequency resulted in a more
substantial voltage drop, but only up to a certain point. Past
that point, an increase in the attack period meant that we
lost the extra drop resulting from the repetition of the RO
activation within the attack duration (period of 260 vs. period
of 140 in Fig. 5). Given the results, we selected the attack
parameters summarized in Table I for our next step: the fault-
injection attack. These parameters resulted in a minimum
observed voltage of 0.68 V for the PS (comparable to previous
work [4]), and 0.642 V for the PL, as reported from the on-
chip system monitor.

Fig. 5. Delay-line sensor readings for a selection of the attack parameters,
highlighting the effects of various periods of the enable signal.

TABLE I
TARGETED ATTACK PARAMETERS.

NBLOCKS Duration Period Duty Activation

(clock cycles) (clock cycles) Cycle

Sweep 0–16 128–16384 10–2200 10–50% Sim. or Stag.

Chosen 16 256 80–110 39% Stag.

B. CPU Operating Frequency Sweep

The default and the maximum operating frequency of the
APU cores are 1.2 GHz and 1.5 GHz, respectively [18].
However, the system allows the operating frequency to be
programmably increased, by reconfiguring the multipliers of
the phase-locked loop (PLL) that generates the APU clock.
We found that the APU operates correctly at frequencies up
to 1.92 GHz; at higher frequencies, the processor stopped
responding. The goal of the frequency sweep was to exper-
imentally find the maximum operating frequency of the APUs
within the frequency range 1.2–1.92 GHz for two target victim
applications: The first is the multiplication code, inspired
by the proof-of-concept from Plundervolt [5] (the code is
given in Listing 1). The second is the AES encryption from
the Wolfcrypt library [22]. Finding the maximum frequency
allowed us to understand whether overclocking would be a
valid option for the victim.

We ran the victims in a loop, assigning each of them to
a random core, while changing the APU frequency between
1.2 GHz and 1.92 GHz, in steps of 15 MHz (the minimum
value of the step supported by the PLL). In every experiment,
we checked whether a fault or any other effects had occurred
(e.g., loss of communication with the APU). We repeated the
experiments with the remaining three APU cores idle or busy.
To render the cores busy, we let them perform multiplication
within a loop similar to the code in Listing 1, with the
exception that we let the multiplication run during the entire
experiment. We found that the maximum operating frequency
for the two victim applications was above 1.9 GHz when the
other cores were idle or busy, as shown in Fig. 6 and Fig. 7.
Therefore, there exists a real possibility and little risk for the
victim to overclock the design for better performance.



Correct operation
with the attack

Correct operation without the attack

Fig. 6. Operating and faulting frequency ranges with the attack, for the multiplication victim code shown in Listing 1.

while (var == expected_result
&& count <= attack_duration) {

var = initial_value;
var *= multiplier;
count++;

}

Listing 1: Multiplication victim code [5].

C. Fault Injection Attack: Multiplication

We started testing the fault injection by using the multi-
plication code shown in Listing 1 [5]. As the path for mul-
tiplication (implemented as a multiply-add instruction on the
APU) is expected to be longer than that of simple arithmetic
and logic operations, and as multiplication is used in many
real applications, it constitutes a good test for our proof-of-
concept. The victim code begins by initializing all required
variables, including the multiplicand, the multiplier, and the
attack counter. The main part of the code then takes place in
a loop, from which the code should not exit unless a fault
has occurred or the attack duration is over. Once the loop
terminates, we read the counter and the multiplication result.
If the counter value is smaller than the attack duration or the
multiplication result is faulty, the program displays the faulty
value and which bits are faulty.

As shown in Fig. 6, under normal operating conditions, the
maximum frequency for the multiplication code was 1.92 GHz
when all other APU cores were idle, and 1.905 GHz when they
were busy. Therefore, we tested the attack at APU frequencies
in the range 1.5–1.905 GHz, with other APU cores busy or
idle. The results revealed that, regardless of the activity of
other cores, the fault-injection attack was successful starting
from 1.59 GHz. We observed up to six faulty bits in the multi-
plication result, depending on the choice of multiplicands and
the APU frequency. Increasing the frequency beyond a certain
point, with the attack active, resulted in loss of communication
with the victim core. At the same time, the remaining parts
of the system did not reset and the communication with the
attacker core was maintained. This DoS from the victim APU
was observed starting from 1.755 GHz when the other cores
were idle, and from 1.74 GHz when the other cores were busy.

D. Fault Injection Attack: AES Encryption

The second victim we investigated was encryption. If
faulted, it can lead to serious security breaches. We chose AES
encryption code from the Wolfcrypt library [22], executing

on top of the Xilinx FreeRTOS. Similarly to the previous
experiment, the code begins by initializing all the variables, in
this case, the plaintext and the encryption key. We set the key
and then, within a loop, we encrypt the plaintext. After each
iteration, we compare the ciphertext with the expected value
(obtained under normal operating conditions), and the counter
with the attack duration. The loop terminates only if a fault
has been detected or if the attack duration is exceeded.

The results, presented in Fig. 7, show that, in the absence
of the attack, the AES encryption proceeded correctly up
until 1.92 GHz. With the attack active, we started observing
faults at 1.65 GHz, when all other cores were idle, and at
1.635 GHz, when all other cores were busy. However, unlike
with the multiplication code, where we had a large window
of frequencies where fault injection succeeded, in the case of
the AES, fault injection was successful at only two frequency
points for each configuration (1.65–1.665 GHz and 1.635–
1.65 GHz). At higher frequencies, we observed a DoS due
to the loss of communication with the victim core. If the
timing of the fault injection changed, for the obtained faulting
frequency range, we found that the injected fault sent the code
into an infinite loop, resulting in a DoS attack.

Tracing the location of the injected faults, which were not
exploitable for breaking the encryption, we found that they
occurred in XMEMCPY (the old value was copied instead of
the new value) or in ByteReverseWord32 (the entire data
word was reset to zero). These functions are called twice in
each encryption, once with the input plaintext (to copy it into
the function’s local variables and to reverse the bytes order
for endianness) and once with the ciphertext. This suggests
that our attack, instead of faulting the AES computation,
worked directly on the plaintext or the ciphertext. Such effects
are useful for a DoS attack, and provide insight into which
instructions are more vulnerable to undervolting. Moreover,
targeting AES within an operation scheme such as cipher block
chaining, the ability to manipulate the inputs (plaintext and
initialization vector) can lead to compromised security [23].

VI. DISCUSSION AND FUTURE WORK

The results presented in Section V show that power wasters
in the FPGA programmable logic are capable of affecting the
CPU software execution, when the CPU and the FPGA share
the PDN. In this section, we discuss some limitations of the
discovered exploit and future work.

In this work, we have explored many attack parameters.
However, for the fault injection exploration against AES and



Correct operation with the attack

Correct operation without the attack

Denial-of-service with the attack

Denial-of-service with the attack

Fig. 7. Operating and faulting frequency ranges with the attack, for the AES encryption from wolfCrypt library [22].

multiplication, we fixed the size of the attacker (in our case, the
maximum occupancy of the LUTs in the PL). A reduced size
would result in shifting the fault injection interval to higher
frequencies. Therefore, we believe that interesting future work
could be to automate the selection of the attack parameters. At
higher frequencies, the attacker can opt for a smaller number
of power wasters to reduce the likelihood of a DoS attack.
Furthermore, a characterization of various instruction types
and their vulnerability to the undervolting can allow for a more
targeted attack, which may result in exploitable faults for the
AES. This understanding can then be combined with side-
channel analysis to carefully control the timing of the fault
injection [4]. The adversary can use cache side channels or,
given the availability of the FPGA, implement voltage sensors
in the PL [17].

Optimizing the attack and fully understanding its capa-
bilities and limitations will then allow for designing com-
prehensive countermeasures. For instance, on-board sensors
could be tested for detecting voltage drops and preventing
the fault injection (e.g., by resetting the board, clearing the
PL, or changing the voltage or the frequency). Decreasing
side-channel leakage and countermeasures against cache-based
side-channels and FPGA voltage sensors can also prove useful
for reducing the attacker capabilities. Software defenses in crit-
ical parts of the code would also be a possibility [5]. Finally,
investigating the attack on multiple platforms, potentially with
different power wasters [13], [14], or even with stressor codes
on the CPU [12] are interesting future research directions.

VII. CONCLUSION

In this work, we presented the first proof-of-concept for
undervolting-based fault injection from the programmable
logic of an FPGA to the software executing on a processing
system in the same SoC. We have investigated the operating
limits of the tested platform and shown that overclocking is
a possibility. We have also explored the effects of various
attack parameters on the voltage drop and duration. Using
the best attack parameters found, our attack resulted in the
successful injection of faults into a multiplication code and
AES encryption. We managed to inject up to six single-bit
faults in a single multiplication, for frequencies in the range
1.59–1.74 GHz. Our exploit also injected faults into the inputs
of the AES encryption. Future work will focus on automating
the attack and combining it with side-channels for a better
controlled fault injection.

REFERENCES

[1] “Zynq UltraScale+ MPSoC,” Xilinx. [Online]. Available: xilinx.com
[2] “Cyclone V hard processor system technical reference manual,” Intel,

2020. [Online]. Available: intel.com
[3] A. Tang, S. Sethumadhavan, and S. Stolfo, “CLKSCREW: Exposing the

perils of security-oblivious energy management,” in USENIX, 2017.
[4] P. Qiu, D. Wang, Y. Lyu, and G. Qu, “VoltJockey: Breaching TrustZone

by software-controlled voltage manipulation over multi-core frequen-
cies,” in CCS, 2019.

[5] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and
F. Piessens, “Plundervolt: Software-based fault injection attacks against
Intel SGX,” in S&P, 2020.

[6] D. R. E. Gnad, F. Oboril, and M. B. Tahoori, “Voltage drop-based fault
attacks on FPGAs using valid bitstreams,” in FPL, 2017.

[7] K. Matas, T. M. La, K. D. Pham, and D. Koch, “Power-hammering
through glitch amplification – attacks and mitigation,” in FCCM, 2020.

[8] J. Krautter, D. R. E. Gnad, and M. B. Tahoori, “FPGAhammer: Remote
voltage fault attacks on shared FPGAs, suitable for DFA on AES,”
TCHES, vol. 2018, no. 3, 2018.

[9] D. Mahmoud and M. Stojilović, “Timing violation induced faults in
multi-tenant FPGAs,” in DATE, 2019.

[10] D. G. Mahmoud, W. Hu, and M. Stojilović, “X-attack: Remote activation
of satisfiability don’t-care hardware Trojans on shared FPGAs,” in FPL,
2020.

[11] Z. Kenjar, T. Frassetto, D. Gens, M. Franz, and A.-R. Sadeghi,
“V0LTpwn: Attacking x86 processor integrity from software,” in
USENIX, 2020.

[12] Y. Kim and L. K. John, “Automated di/dt stressmark generation for
microprocessor power delivery networks,” in ISLPED, 2011.

[13] M. M. Alam, S. Tajik, F. Ganji, M. Tehranipoor, and D. Forte, “RAM-
Jam: Remote temperature and voltage fault attack on FPGAs using
memory collisions,” in FDTC, 2019.

[14] T. M. La, K. Matas, N. Grunchevski, K. D. Pham, and D. Koch, “FP-
GADefender: Malicious self-oscillator scanning for Xilinx UltraScale +
FPGAs,” ACM TRETS, 2020.

[15] “FPGA-based Amazon EC2 F1 computing instances,” Amazon AWS.
[Online]. Available: aws.amazon.com/ec2/instance-types/f1/

[16] I. Giechaskiel, K. B. Rasmussen, and J. Szefer, “C3APSULe: Cross-
FPGA covert-channel attacks through power supply unit leakage,” in
S&P, 2020.

[17] M. Zhao and G. E. Suh, “FPGA-based remote power side-channel
attacks,” in S&P, 2018.

[18] “Genesys ZU: Zynq UltraScale+ MPSoC development board,” Digilent.
[Online]. Available: digilent.com

[19] K. M. Zick, M. Srivastav, W. Zhang, and M. French, “Sensing
nanosecond-scale voltage attacks and natural transients in FPGAs,” in
FPGA, 2013.

[20] B. Salami, E. B. Onural, I. E. Yuksel, F. Koc, O. Ergin, A. C. Kestelman,
O. Unsal, H. Sarbazi-Azad, and O. Mutlu, “An experimental study
of reduced-voltage operation in modern FPGAs for neural network
acceleration,” in DSN, 2020.

[21] H. Zhu, X. Guo, Y. Jin, and X. Zhang, “PowerScout: A security-oriented
power delivery network modeling framework for cross-domain side-
channel analysis,” in AsianHOST, 2020.

[22] “wolfCrypt embedded crypto engine,” WolfSSL. [Online]. Available:
https://www.wolfssl.com/products/wolfcrypt-2/

[23] S. Vaudenay and D. Vizár, “Under pressure: Security of Caesar can-
didates beyond their guarantees,” Cryptology ePrint Archive, Report
2017/1147, 2017.

xilinx.com
intel.com
aws.amazon.com/ec2/instance-types/f1/
digilent.com
https://www.wolfssl.com/products/wolfcrypt-2/

	Introduction
	Background and Related Work
	CPU-based Attacks
	FPGA-based Attacks
	Heterogeneous Systems Exploits

	Threat Model
	System Design
	Programmable Logic
	Processing System

	Experimental Evaluation
	Attacker Parameters Sweep
	CPU Operating Frequency Sweep
	Fault Injection Attack: Multiplication
	Fault Injection Attack: AES Encryption

	Discussion and Future Work
	Conclusion
	References

