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A B S T R A C T   

The use of Unmanned Aerial Vehicles (UAVs) has surged in the last two decades, making them popular in
struments for a wide range of applications, and leading to a remarkable number of scientific contributions in 
geoscience, remote sensing and engineering. However, the development of best practices for high quality of UAV 
mapping are often overlooked representing a drawback for their wider adoption. UAV solutions then require an 
inter-disciplinary research, integrating different expertise and combining several hardware and software com
ponents on the same platform. Despite the high number of peer-reviewed papers on UAVs, little attention has 
been given to the interaction between research topics from different domains (such as robotics and computer 
vision) that impact the use of UAV in remote sensing. The aim of this paper is to (i) review best practices for the 
use of UAVs for remote sensing and mapping applications and (ii) report on current trends - including adjacent 
domains - for UAV use and discuss their future impact in photogrammetry and remote sensing. Hardware de
velopments, navigation and acquisition strategies, and emerging solutions for data processing in innovative 
applications are considered in this analysis. As the number and the heterogeneity of debated topics are large, the 
paper is organized according to very specific questions considered most relevant by the authors.   

1. Introduction 

Unmanned Aerial Vehicles (UAVs) represent one of the most relevant 
emerging technologies in the geoscience and remote sensing fields of the 
last two decades. They have become a popular instrument for a wide 
range of applications and replaced other platforms thanks to their 
flexibility and (relatively) moderate costs. This is also reinforced by the 
number of scientific papers about UAVs published in different research 
communities in the last two decades. According to Scopus1, >80,000 
papers have been published using the term “UAV”, “drone” (or, less 
frequently, “UAS” and “RPAS”) in the title or the keywords since 2001 
(Fig. 1): most of these works belong to the engineering and computer 

science domains, while the majority of contributions come from remote 
sensing research (Chabot, 2018). This trend is confirmed by other cita
tion indexing databases, showing an increased interest in UAVs from the 
scientific community over the last few decades. UAV business has also 
been valued at several billion dollars a year2, and the trend looks 
promising for the future, despite the fact that the biggest share of the 
market is still in military applications. This economic interest, the 
technological development and the growing miniaturization of onboard 
sensors, as well as the development of new algorithms and software have 
been recent pushes for the conception of new applications that will 
further boost the use of UAVs. The initial UAV surveying applications 
have been flanked by more advanced applications, creating new needs 
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and (therefore) new businesses opportunities3. In this regard, UAV 
systems for rapid, automated and autonomous collectionof geospatial 
data are contributing to the fourth industrial revolution (Xu et al., 
2018). Construction and infrastructure monitoring, precision farming 
and search and rescue in indoor spaces are just some examples of new 
and emerging applications of UAVs. Behind all these applications, 
mapping and remote sensing research (in the broad sense) play a 
fundamental role in the development of successful solutions. 

The growing interest in UAVs has led to the publication of several 
peer-reviewed papers in the last years. Among the first works, (Colomina 
and Molina, 2014) and (Nex and Remondino, 2014) gave a broad 
overview on the use of UAVs for photogrammetric and mapping appli
cations. These contributions were part of the early growth of UAV ap
plications and considered challenges related to hardware and data 
processing workflows. Since then, the increasing number of publications 
and the growing specialization of UAV solutions have triggered new 
review papers focused on specific applications, onboard hardware or 
data processing strategies exploiting UAV data. Examples of reviews on 
specific applications are given in (Adão et al., 2017; Tsouros et al., 2019) 
for agriculture, (Torresan et al., 2017) for forestry, (Kerle et al., 2019a) 
for structural damage assessment, (Giordan et al., 2018) for natural 
hazards, (Ren et al., 2019) for mining areas, (Themistocleous, 2020) for 
cultural heritage, and (Rakha, 2018) for building inspection. In addition, 
reviews of UAV data processing or specific hardware development are 
presented in (Aasen et al., 2018) for UAV spectroscopy, (Aggarwal and 
Kumar, 2020) for path planning, and (Boukoberine et al., 2019) for 
power supply. The aim of these publications is mainly to give an over
view of the state of the art on specific uses. Only (Yao et al., 2019) 
attempt to give a broader overview of the different remote sensing ap
plications. The UAV domain is, however, characterized by the integra
tion of very different expertise, combining different hardware and 
software components on each platform depending on the intended use. 
These reviews, although very detailed, do not focus on cross-disciplinary 
perspective: research in adjacent domains (such as robotics and com
puter vision) already impact remote sensing, but too little attention has 
been given to these aspects so far. As a result, most of the aforemen
tioned works limit their investigations to their own topics and provide 
few hints about future trends. Lastly, despite the incredible 

improvement of both hardware and software solutions, best practices for 
specific problems, such as how to improve accuracy in UAV photo
grammetry, are often ignored, although they often represent a bottle
neck for wider UAV adoption. 

This paper aims to fill the remaining gaps from previous works by 
looking at UAV domain with two different (often interconnected) goals. 
The first goal is to tackle the existing unsolved or overlooked issues in 
the daily use of UAVs with currently available technologies. Issues 
include the selection of the best sensors for specific tasks and the most 
reliable way to acquire data for UAV mapping and remote sensing ap
plications. The aim is to review papers dealing with these issues to 
promote best practices for the use of UAVs. The second goal is to 
investigate current developments in UAV technology (often from adja
cent domains) to observe their potential and anticipate their future in
fluence on photogrammetry and remote sensing. These two elements 
have been analysed following a logical workflow from the selection of 
sensors to the new trends in the data processing. Given the heterogeneity 
of the topics being addressed by these goals, sections have been orga
nized according to “burning questions” considered relevant by authors. 
References are concise and point to the most relevant works. In Section 
2, the developments for onboard passive and active acquisition sensors 
are reviewed with the aim of discussing the specific properties of 
available sensors, the importance of their technical specifications ac
cording to the application and their differences compared to their 
counterpart on manned platforms. In Section 3, best practices on how to 
calibrate and integrate onboard sensors and fully exploit their potential 
in daily practice are given. Current endurance limits and the strategies to 
extend flight time are also debated. Section 4 has a double goal: it 
summarizes best practices for improving the quality of mapping prod
ucts and reports on emerging acquisition scenarios that promise to 
widen the extension of UAV surveys. Section 5 reports on trends in UAV 
data processing and analysis, focusing on real-time processing methods 
and on the surge of artificial intelligence onboard UAVs: the peculiar
ities of these algorithms are discussed in detail. Section 6 reports on 
lessons learned, and the future challenges for UAV technology are given. 

2. Data acquisition sensors 

A growing number of miniaturized active and passive sensors spe
cifically conceived to capture data from UAVs are available on the 
market. In this section, we review the quality of these instruments, 
analyse their pros and cons, compare them with their “full size versions” 

Fig. 1. Trend line showing the number of scientific papers published in the last 20 years using UAV, UAS, drone or RPAS as a keyword or in the title.  

3 https://www.mckinsey.com/business-functions/operations/our-insights/ 
imagining-constructions-digital-future accessed on 12 September 2021 
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on manned airborne platforms and give best practices for their opera
tional use. 

2.1. RGB cameras: UAV sensors state of the art and comparison with 
airborne sensors 

Compared to the conventional airborne case, UAVs normally operate 
closer to the ground and have hard constraints given by the payload and 
the speed of the platform (particularly for fixed-wing aircrafts). The first 
UAVs had cameras adapted from terrestrial applications (i.e., compact 
cameras) while a new generation of dedicated sensors has been 
conceived over the last few years. Although 3D photogrammetric 
reconstruction should be possible with any kind of overlapping images, 
photogrammetric cameras typically follow special design rules to obtain 
high levels of performance and efficiency rules that are highly con
strained by the weight and size limitations, making compromises 
inevitable. 

2.1.1. What are the specifications that determine the quality of a UAV 
camera? 

General design. Traditional mapping cameras are very sophisti
cated and complex. As a result, they are not only expensive but also 
bulkier and heavier systems that cannot be integrated on standard drone 
platforms. The most limiting factors for any kind of sensor equipment on 
UAVs are maximum-take-off-mass (MTOM) and size. This is also the 
reason why UAV cameras do not simply copy the concepts of large 
format mapping cameras. The image frame is not a limitation as most of 
the current UAV scenarios are much more restricted in mapping area 
size, and more compact cameras with smaller image formats have fewer 
negative impact on smaller projects. If a UAV has a Maximum Take-Off 
Weight (MTOW) of around 25 kg, 150 MPix camera is currently the best 
that can be integrated onto the platform. For a more standard UAV (with 
MTOW < 5 kg) the image formats range between 20 and 60 MPix, 
nowadays. In addition, as the UAV operates closer to ground and aims at 
a Ground Sampling Distance (GSD) of only few centimetres, the cameras 
placed on fixed-wing aircraft need to have fast shutter to avoid motion- 
blur due to the absence of forward-motion compensation. 

Optics. In comparison to larger imaging sensors, UAV cameras are 
mainly mono cone (i.e., have single sensitive element) and often use a 
lens with a shorter focal distance (28 – 50 equivalent). All the (typical) 
UAV cameras designed for mapping are built as single cone systems, 
which automatically excludes the use of multiple channels for separate 
colour bands. Single frame cameras often use special colour filter arrays 
to arrange RGB colour filters on the photosensor pixel matrix, called the 
Bayer-filter. Such Bayer-like colour filter arrangements need de- 
mosaicking which reduces the original spatial resolution. In the first 
years of UAV-based mapping almost all cameras were standard off-the- 
shelf cameras. These cameras were not specifically designed for photo
grammetric mapping and quite often used focusable, sometimes 
collapsible lenses or even zoom lenses. Such non defined and non-stable 
lens geometry negatively affects the quality of the photogrammetric 
processing. As the use of UAVs in mapping increases and users gain more 
experience, drone suppliers changed their approach and tried to transfer 
some of the main design features of traditional mapping cameras onto 
UAV cameras. The use of fixed focus lenses with no moveable parts, and 
with optical image stabilization and a stable camera body with rigid lens 
mount is now part of many systems to address mapping applications. 

Shutter design. Traditional photography has central and focal plane 
mechanical shutters. The central shutter usually comprises several 
shutter blades or leaves that open and close in the same way as a clas
sical lens aperture. Opening and closing can be regarded as instanta
neous, i.e., the whole image focal plane is illuminated at one distinct 
point of time, with one perspective centre position and attitude. Focal 
plane shutters, contrary to this, comprise two curtains moving one after 
the other to form a slit that captures the whole image in the focal plane. 
The width of this slit defines the exposure time. Unlike the central 

shutter, it takes some time to capture the whole image. Consequently, 
moving objects are distorted on the image plane, which is always the 
case when images are taken from airborne moving platforms. In digital 
imaging the global shutter and rolling shutter can be seen equivalently 
to the mechanical central and focal plane shutters. Similarly, the rolling 
shutter will introduce the same distortion effects as the focal plane 
shutter. This effect can be modelled mathematically as the six exterior 
orientation parameters of each image will not be seen as constant but 
variable over the exposure interval (Vautherin et al., 2016). This 
concept is adapted from the processing of line scanning sensors (Hinsken 
et al., 2002) and ideally uses measured orientation information from 
Inertial Measurement Unit (IMU) data (Colomina and Blázquez, 2014). 
If the true sensor movement is not observed by an inertial platform 
(especially the angular rate), the mathematical model only approxi
mates the real change in sensor orientation over time and the full sensor 
performance might not be fully exploited here. When UAV mapping first 
began, most of the metal-oxide semiconductor sensors (CMOS) were 
using rolling shutters due to their simple electrical design. Today most of 
the cameras designed for mapping feature electronical global shutters, 
and some of the high-end systems even use a mechanical central shutter 
or a combination of both. 

Reduction of image blur / motion compensation: In airborne 
mapping, images are captured during the movement of the platform. 
This movement can be divided into translational and rotational com
ponents. Both will affect the sharpness and thus the quality of the image 
data. The problem is fairly well known, and so-called forward-motion- 
compensation (FMC) was introduced in the mid-1980s for analogue 
mapping cameras. FMC moved the film during exposure to overcome the 
blur caused by the forward motion of the plane (Schöler, 1987). This 
linear correction was adopted for digital cameras too. The electronic 
design of charged-coupled-device (CCD) sensors used in the first gen
eration of airborne large-format mapping mimics the analogue FMC by 
moving the charges on pixel during integration (exposure) time (so- 
called time-delayed-integration, or TDI) (Hinz, 1999). For cameras 
based on CMOS imaging sensors, the sensor is physically moved as was 
done with film (Mueller and Neumann, 2016). In all these cases only the 
main part of the image blur can be compensated and deviations from 
mean flying height above ground or mean speed leave uncompensated 
effects. Additionally, any movements that are not aligned with the di
rection of the transport are not corrected. As a result, FMC only reduces 
image blur. As changes in rotation during exposure also generate sig
nificant blur, the FMC technique must be combined with fully stabilized 
platforms to actively compensate for the rotations of the carrier plat
form. Additional vibration dampeners compensate for the high- 
frequency angular effects present in multi-rotor UAVs. FMC combined 
with fully stabilized mount is called full-motion-compensation. For 
practical reasons, small UAVs do not have true-FMC with moving 
components, which limits the ground resolutions for fixed-wing drones 
as a function of ground velocity and shutter speed. Thus, the reduction of 
forward motion is accomplished by minimizing exposure times, some
times called the (radiometric) blur control technique. It is based on the 
radiometric performance of the sensor in combination with fast shutter 
speeds. This is not a specific modification in the sensor, it just relies on 
very-fast shutters and the extended radiometric performance of sensors 
based on larger pixels or higher sensitivity. This approach in principle 
can be applied for any kind of sensor but is often used for RGB frame 
cameras working with colour mosaic filters. 

From technical point, micro filter arrays (one filter evaporated onto 
every single pixel, so-called Bayer-pattern mentioned above) are used to 
capture colour information. Missing colours then will be interpolated 
from the neighbouring pixels, the so-called debayering or demosaicking 
(Meißner et al., 2018). This pixel-wise changing colours prevents charge 
moving technologies like the TDI (Time Delay Integration) approach, 
and it is often preferred because it does not need any specific sensor 
modification, and the camera can be offered at lower cost using standard 
(off-the-shelf) sensors. Just recently methods known from medical 
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external beam radiotherapy were adapted for the blur control in 
airborne mapping cameras4. Even though details on this adaption are 
not yet available, this purely software based adaptive motion compen
sation corrects for both forward and angular motions within different 
image scales, i.e., covering nadir and oblique views, and it might be 
transferable into future UAV mapping camera systems. 

2.1.2. What to consider when we choose a sensor? 
UAV mapping started with traditional off-the-shelf cameras but the 

need for more dedicated systems became obvious soon. Today many of 
the mapping drones use specifically designed or modified cameras. 
Practically, all of them implement CMOS sensors with single lens only 
and many of them use electronic global or mechanical central shutter. 
RGB information is derived from colour mosaic filters. Image blur is 
normally minimized by selecting shortest exposure times in combination 
with angularly stabilized mounts, which are standard for multi-rotor 
UAVs today. In principle those cameras can be classified according to 
their image sensor format and their overall weight, which is most critical 
for drone installations. Heavy systems are in the range or above 1 kg and 
may even reach close to 2 kg for large cameras. Very light systems are 
below 200 g, all inclusive (i.e., battery, optics, etc.) (Table 1). Further
more, other aspects can be considered, such as how well cameras fulfil 
photogrammetric requirements like geometric stability or how flexibly 
the systems can be integrated into different platforms. Accessibility of 
raw image data plays a role, as this is quite often linked with internal 
pre-distortion corrections (James et al., 2020). 

In Table 1 some cameras commonly used in today’s UAV mapping 
are listed and classified according to their sensor format. This parameter 
is often correlated with the camera weight as larger sensors need heavier 
lenses. There are generally proprietary systems, developed by big UAV 
system providers, optimized for their specific platforms and often not 
exchangeable to other drones (such as DJI sensors5) while other solu
tions (e.g., SenseFly6 cameras) offer open interface, which allows inte
gration in other platforms. Important to note, that some of these sensors 
come with so-called direct in-flight georeferencing: the full exterior 
orientation parameters from Global Navigation Satellite System (GNSS) 
and IMU position and exact orientation are recorded for each image 
capture and become part of the image header information. No additional 
GNSS/IMU units are needed here. Smaller UAV providers still rely on 
off-the-shelf Digital Single Lens Mirrorless (DSLM)-type cameras with 
full format sensors, like the Sony a7 series. These cameras are fully self- 
contained with internal power supply and storage, offer a variety of lens 
options and undergo continuous improvements as triggered by a large 
consumer market. On the other hand, they are not primarily designed for 
UAV applications, thus concessions have to be made, for example in 
terms of deep integration into the UAV controller or onboard data pre- 
processing. 

Another element refers to the overall weight, which normally is in 1- 
kg range including lens, shutter design (focal plane versus global) and 
additional features like image stabilization which may influence the 
camera intrinsic parameters. Different to such off-the-shelf cameras, 
specific drone mapping systems try to combine larger formats and good 
quality with high compactness and less weight. Their design tries to 
fulfil the photogrammetric demands as mentioned for the proprietary 
systems. Here the Camlight designed by the IGN France research labs 
and now commercialized by Delair, one provider of UAV solutions, 
should be spotted (Martin et al., 2017). This camera offers full-format 50 
MPix images with below 500 g overall weight for many body-lens 
combinations. Analysis of data flown with the IGN engineering model 

showed extremely stable sensor geometry (Roth, 2019), very close to 
traditional photogrammetric cameras. No hidden internal pre-distortion 
corrections are applied. The mid-format up to 150 MPix cameras as 
offered by Phase One today mark the upper end of UAV-based cameras 
and already link to the manned airborne mapping platforms, where 
some of the large format camera systems are based on such camera 
components. These lens-camera combinations are close to 2 kg and 
therefore can only be used in larger UAVs. 

Precise 3D reconstruction needs high resolution imagery to accu
rately identify and measure corresponding image points. The quality of 
images is measured by the geometric resolving power, which is depen
dent on the camera-lens-system and the environmental conditions dur
ing image acquisition (including the motion blur compensation). 
Geometric resolution is visually obtained from defined bar pattern, like 
the USAF1951 resolution target. More objective measurements are given 
by the quantitative analysis of modulation transfer and point spread 
functions, that mathematically define the image resolution (Meißner 
et al., 2020). These values are obtained from resolution targets like 
Siemens star patterns or clearly defined edges (slanted-edge method). 
Another quality measure is the signal-to-noise ratio (SNR) which defines 
the radiometric quality. The SNR is determined from the noise at a 
specified average signal typically derived from homogenous surfaces 
(Reulke and Eckardt, 2013). This measure is not only important for 
remote sensing, but it also affects the matching between overlapping 
images. The size of individual pixels on the digital sensor is then an 
important factor to get low-noise imagery. For many manufacturers, a 
clear trend is to decrease size of individual pixel to bring more pixel on a 
given sensor frame, which reduces the individual area to collect photons 
per pixel and thus reduces the SNR. However, in the CMOS sensors 
significant portion of each pixel is non-sensitive to light as occupied by 
the electronics, at least if the pixel related electronics addressing each 
individual photo diode is left unmodified. Due to permanent innovation 
in CMOS design, even with reduced individual pixel sizes, high fill fac
tors (ratio between light sensitive part to total pixel area) and high 
quantum efficiency (ratio of incoming photons to collected electrons on 
pixel) (Blanc 2001) are possible guaranteeing a good SNR as well. 
Introduction of back-side-illumination (BSI) is one of these innovations, 
where the sensor is turned and now illuminated from the back-side. This 
increases the fill-factor (i.e., the light sensitive area per pixel with 
respect to its total area) as the control electronics do not limit the light- 
sensitive area and may outperform traditional front-side illuminated 
(FSI) sensors especially for smaller pixel sizes below 2 μm. In the BSI 
design the light sensitive elements are separated from the remaining 
electronical elements, optimizing the optical path independently from 
the electronics by inverting the light incidence (Paiva Gouveia and 
Choubey, 2020). Differently, the light has to further penetrate the silicon 
which limits miniaturization of pixel sizes on above 1 and 2 μm, where a 
BSI sensor still provides better signals than a FSI7. 

Although image distortions do not influence the camera resolution, 
they are relevant to determine the choice of a UAV camera. The 
correction of distortions is an essential part in the photogrammetric 
reconstruction process. Large distortions, as known from wider-angle 
lenses, affect the generation of an image, even in consumer photog
raphy. Therefore, some (especially small and lightweight) cameras on 
current UAVs internally pre-correct lens distortions by pre-defined 
models to generate “higher image qualities”. The images look distor
tion free, even though the original raw images underline strong distor
tion effects. Such approach might be nice for visual impression, but these 
pre-corrected images may not fit well the standard photogrammetric 
calibration models. As shown in (Hastedt et al., 2021) when the geom
etry of the image is pre-corrected in a way, the traditional models of in- 
situ calibration are not completely able to cope with this new camera 4 https://www.vexcel-imaging.com/brochures/UC_Osprey_4.1_en.pdf 

accessed on 11 June 2021  
5 https://www.dji.com/nl/products/professional?site=brandsite 

&from=nav#camera-gimbal accessed on 22 June 2021  
6 https://www.sensefly.com/ accessed on 26 June 2021 

7 https://www.stemmer-imaging.com/de-de/grundlagen/vorder-oder-ruec 
kseitig-beleuchtete-sensoren/ accessed on 12 September 2021 
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geometry. This requests for extended and modified models to describe 
the new geometry. This is the main reason why images with their 
original image geometry should be preferred in 3D reconstruction, or the 
original correction functions and parameters be made available. 

2.2. Multi- and hyper-spectral sensors: Evolution and trends 

Multi- and hyperspectral cameras are used to capture spectral in
formation of objects of interest (Aasen et al., 2015; Adão et al., 2017). 
Hyperspectral (HS) cameras provide contiguous spectral signatures by 
acquiring tens to hundreds of densely placed narrow spectral bands, e.g., 
with a spacing of 1 nm and<10 nm full width of half maximum (FWHM). 
Multispectral (MS) cameras have a few (typically 3–10) spectral bands 
optimized on specific spectral regions, such as blue, green, red, red-edge 
and near-infrared (NIR). Looking at the UAV domain, regular color 
(RGB) cameras and modified color-infrared (CIR) cameras equipped 
with Bayer matrix based mosaic filters (see also previous section) cap
ture spectral data, but they have less optimized spectral bands than the 
MS and HS cameras (Aasen et al., 2018). On the other hand, MS cameras, 
such as MicaSense Altum8 and RedEdge and SAL Engineering Maia9, 
have entered widely on markets because of their affordability and effi
cient processing chains in the commercial software (such as Agisoft 
Metashape10 and Pix4D11). UAV HS cameras are still used predomi
nantly in scientific and research purposes, because they are relatively 
expensive, heavy, capture vast volumes of data and are more chal
lenging to operate and process than the optimized MS cameras. 
Furthermore, understanding on how the more precise spectral charac
terization can be utilized in practical applications is still inadequate. As 
MS technology is already widely applied in practice, the rest of this 
section will focus on HS technology which represents our vision of the 
future, though many aspects are also applicable to MS systems. 

2.2.1. What are the differences between hyperspectral sensors? 
HS technologies differ based on the approach used to achieve the 

spatial and spectral discrimination capabilities and thus in the 

arrangement, range, number, and widths of bands that they feature 
(Aasen et al., 2018). They can be classified as: (i) pushbroom scanners 
(ii) 2D cameras using HS imaging techniques and (iii) point spectrom
eters that integrate spectral signatures over the projected footprint of the 
sensor, thus not providing continuous images. HS sensors can be further 
categorized according to their spectral sensitivities to visible and NIR 
(VNIR: 400–1000 nm), NIR (1000–1700 nm), shortwave-infrared 
(SWIR: 1000–2500 nm), mid-wave infrared (MWIR: 3–5 µm) and long 
wave infrared (LWIR: 7–12 µm) (Adão et al., 2017). State-of-the-art 
MWIR and LWIR cameras are still heavy and therefore seldomly used 
in UAV applications. 

A visualization of selected commercial miniaturized HS cameras is 
presented in Fig. 2 and in Table 2. The weights are indicative as they are 
based mostly on the information from the manufacturer webpages thus 
there can be differences due to the considered components such as 
lenses, covers, GNSS/IMU, onboard computers and batteries. In the 
VNIR spectral range, 2D frame format cameras weight 0.5–1 kg while 
pushbroom scanners weigh 1–3 kg; the NIR-SWIR range cameras are 
heavier, weighing 2–6 kg. 

Pushbroom scanning is the most common technical implementation 
of HS cameras. The object is scanned line by line by projecting the scene 
to the sensor through a slit and dispersing the slit image with a prism or a 
grating. Miniaturized pushbroom cameras for drones are commercially 
available for wide spectral ranges of 400–2500 nm. The entire 
400–2500 nm range is covered by the Corning VIS-SWIR camera that 
provides a single detector solution based on a Mercury Cadmium 
Tellurium (MCT) detector (Corning12), while Hyspex Mjolnir and 
Headwall are based on coaligned VNIR and SWIR sensors, with silicon 
and indium gallium arsenide detectors, respectively (Hyspex, 
Headwall13). 

In the cases of 2D-frame format cameras, the spectral discrimination 
is provided using techniques such as tuneable Fabry-Pérot 

Table 1 
Current cameras used in drone mapping applications (selection only, as of 2021). M and E refer to mechanical and electronic shutters, respectively. EFL stands for 
Equivalent Focal Length.  

Format < full frame full frame > full frame 

Camera / 
system 

DJI Phantom 4a 

RTK FC6310R 
senseFly S.O.D.A. 
(3D)b 

senseFly AERIA Xb DJI Zenmuse P1b Delair CamLightc Sony A7R IVd Phase One industrial 
iXM-RS150e 

Sensor 
[mm^2] 

1′′

13.2 × 8.8 
1′′

13.13 × 8.76 
APS-C full-frame 

35.9 × 24 
full-frame 
36.4 × 27.6 

full-frame 
35.7 × 23.8 

mid-format 
53.4 × 40.0 

# pixels 
(size μm) 

5472 × 3648 
(2.4) 

5472 × 3648 (2.4) 6000 × 4000 (3.8) 8192 × 5460 (4.4) 7920 × 6004 (4.6) 9504 × 6336 
(3.76) 

14204 × 10652 
(3.76) 

Focal [mm] 
(EFL) 

8.8 (24) 10.5 (29) 18.5 (28) 24 / 35 / 50 mm, dji 
DL-mount 

>1 lenses, Leica 
M− mount 

>1 lenses, Sony E- 
mount 

different lenses 
(32–180) 

Shutter Global (M) Global (E) Global (E) Global (M) Global (E) Focal-plane (E & 
M) 

Global (M) 

Weight [g] 1400 (complete 
drone) 

76 (222 with IMU 
and 1-axis gimble) 

~120 (276 with IMU 
and mount) 

800 (with gimbal) 180 + 280 (Zeiss 
Biogon 2.8/21) 

665 + 120 (Zeiss 
Sonnar 2.8/35) 

1000 + 800 
(Rodenstock 50 mm) 

Year 2018 2017 2019 2021 2019 2019 2018 
Comments Fully integrated, 

3-axis gimbal 
for senseFly, open 
interface, direct 
georef. 

for senseFly, open 
interface, direct 
georef. 

Compatible with 
DJI (3-axes gimbal)  

BSI-CMOS, with 
image stabilization 

BSI-CMOS  

a https://www.mckinsey.com/business-functions/operations/our-insights/imagining-constructions-digital-future accessed on 12 September 2021 
b https://www.vexcel-imaging.com/brochures/UC_Osprey_4.1_en.pdfhttps://www.sensefly.com/camera/sensefly-soda-3d-mapping-camera/https://www. 

sensefly.com/camera/sensefly-aeria-x-photogrammetry-camera/ accessed on 11 June 2021https://www.dji.com/de/zenmuse-p1 
c https://delair.aero/delair-camlight/ accessed on 23 June 2021 
d https://www.sony.nl/electronics/cameras-met-verwisselbare-lens/ilce-7rm4 accessed on 23 June 2021 
e https://www.dji.com/de/phantom-4-rtk?site=brandsite&from=nav accessed on 23 June 2021 

8 https://micasense.com/ accessed on 11 May 2021  
9 https://www.spectralcam.com/maia-tech/ accessed on 14 June 2021  

10 www.agisoft.com accessed on 28 June 2021  
11 www.pix4d.com accessed on 28 June 2021 

12 https://www.corning.com/emea/en/products/advanced-optics/produc 
t-materials/spectral-sensing.html accessed on 11 October 2020  
13 https://www.headwallphotonics.com/remote-sensing accessed on 11 

October 2020 
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interferometry (FPI) (Senop14; (Honkavaara et al., 2013), mosaic filters 
(IMEC, PhotonFocus15; (Melville et al., 2019)), or light field techniques 
(Cubert; (Aasen et al., 2015)). Current commercially available 2D HS 
sensors operate in the VNIR-range (400–900 nm) but also SWIR range 

cameras are becoming available (Honkavaara et al., 2016). 
Point spectrometers have been used onboard UAVs in a variety of 

studies (Becker et al., 2019; Burkart et al., 2014; Burkhart et al., 2017) 
and have also been implemented in whiskbroom scanning mode (Uto 
et al., 2016). An emerging application of point spectrometers is moni
toring of vegetation photosynthesis using sun-induced chlorophyll 
fluorescence (SIF); a narrow spectral range of 100–200 nm between the 
red and NIR regions is observed with FWHM ≤ 0.39 nm, a resolu
tion < 0.2 nm, and a high SNR on the level of ~ 1000:1 (Pacheco-Lab
rador et al., 2019). An advantage of the point spectrometers in 
comparison to pushbroom and 2D cameras is their superior spectral 
sensitivity and resolution; their disadvantage is the inferior spatial 
performance. Pushbroom scanners provide better spectral resolution 
than 2D-frame sensors, but the advantage of the latter is their superior 
spatial quality due to the rigid imaging geometry and capability to 
capture stereoscopic images, enabling a single-sensor solution for 
hyperspectral 3D reconstruction of objects (Aasen et al., 2015; Honka
vaara et al., 2013; Oliveira et al., 2019). However, the quality of point 
cloud extraction is not in general as good as with good quality RGB 
cameras due to the lower pixel resolution and SNR ratio of the HS images 
(Honkavaara et al., 2016, 2013). 

In recent years, rapid development has taken place in miniaturized 
HS sensor techniques although the situation has not stabilized, and new 
solutions are expected in the near future. In comparison to the previous 
reviews (Aasen et al., 2018; Adão et al., 2017), the numbers of alter
natives have increased, the weight of the sensors has decreased, and the 
availability of sensors in the extended NIR and SWIR ranges has 
improved. Increasingly, the manufacturers are offering fully integrated 
turn-key systems, which will lower the threshold to start using HS sys
tems while during earlier years the user him/herself often had to 
assemble the system from separate components. There is an increasing 
trend to integrate additional sensors to HS systems, particularly GNSS/ 
IMU or additional cameras for georeferencing, irradiance sensors, and 
LiDAR. 

Comparing the modern miniaturized MS and HS cameras to the 
mature cameras operated with manned aircraft, several differences can 
be observed (Fig. 3). The conventional spectral remote sensing sensors 
are predominantly pushbroom scanners, while a variety of technical 
implementations are offered on UAVs. The miniaturization of the de
tectors and lenses in UAV systems leads generally to poorer SNRs 
considering the radiometric performance. The aircraft-based systems 
offer typically>50 cm GSDs while the modern UAV systems capture 

Fig. 2. Illustration of commercial hyperspectral cameras. The blue circles indicate 2D-frame format cameras, and the orange circles indicate pushbroom scanners. 
They are grouped according to their spectral range, approximately VNIR: 400–1000 nm, NIR: 900–1700 nm, SWIR: 900–2500 nm; VNIR + SWIR: 400–2500 nm; (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Examples of commercially available hyperspectral cameras operating in 2D and 
1D (pushbroom) range.  

Geometry Spectral range; 
FWHM 

Examples 

2D VNIR; 5–15 nm Senop HSI (Senopa), Photon Focus cameras 
(Photonb); Cubert ULTIRS 20 (Cubert). 

1D VNIR; 2–6 nm HySpexc Mjolnir V, Headwall micro-hyperspec/ 
nano-hyperspec (Headwalld), Specim AFX10 
(Specim), Bayspec OCI™F NIR (Bayspece), 
Resonon Pika (Resononf) 

2D NIR; 10–15 nm Imec Snapshot UAV NIR-SWIR (IMECg) 
1D NIR; 8–10 nm Examples of extended NIR and SWIR range sensors 

include Bayspec OCI™F SWIR (Bayspec), and 
Specim AFX17 (Specimh). 

1D SWIR HySpex Mjolnir S (HySpex), Headwall Micro- 
Hyperspec SWIR 

1D VIS-SWIR Headwall and HySpex Mjolnir VS-620 (coaligned); 
Corningi VIS-SWIR  

a https://senop.fi/industry-research/hyperspectral-imaging/ accessed on 11 
October 2020 

b https://www.photonfocus.com/ accessed on 11 October 2020 
c https://www.hyspex.com/hyperspectral-imaging/ accessed on 11 October 

2020 
d https://www.headwallphotonics.com/remote-sensing accessed on 11 

October 2020 
e https://www.bayspec.com/spectroscopy/oci-uav-hyperspectral-camera/ 

accessed on 11 October 2020 
f https://resonon.com/hyperspectral-cameras accessed on 11 October 2020 
g https://www.imechyperspectral.com/en/cameras/snapshot-uav-nirswir 

accessed on 11 June 2021 
h https://www.specim.fi/airborne/ accessed on 11 October 2020 
i https://www.corning.com/emea/en/products/advanced-optics/produc 

t-materials/spectral-sensing.html accessed on 11 October 2020 

14 https://senop.fi/industry-research/hyperspectral-imaging/ accessed on 11 
October 2020  
15 https://www.photonfocus.com/ accessed on 11 October 2020 
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5–10 cm GSDs, therefore providing improved levels of detail and pre
cision. An comparison of hyperspectral images used for forest health 
study captured with a 2D-frame format camera is given in Fig. 3: in this 
case, UAV images (GSD 10 cm) show greater details and better spectral 
separation of different health classes as compared to airborne images 
(GSD 50 cm). When miniaturized devices are installed onboard agile 
platforms, it is possible to perform object monitoring with high time 
resolution, in varying conditions below clouds, and year-round. The 
diversity of UAV-based devices and operating scenarios is significantly 
greater than that of traditional devices; this increases the challenges of 
data processing. In general, it can be considered that the aircraft and 
UAV-based technologies are complementary: mature and heavy aircraft 
solutions provide high-quality and stable spectral data and are feasible 
for infrequent capture over wide areas, while UAV solutions provide 
higher spatial and temporal resolutions, and their technologies and 
applications are in a rapid development stage. 

2.2.2. How do we need to process hyperspectral images? 
Processing of HS datasets has some differences in comparison to 

ordinary camera images. These differences are due to the geometric 
configuration of imaging systems as well to the requirement for quan
titative radiometric processing. 

The 2D-format spectral images can be georeferenced utilizing well 
established Structure from Motion (SfM) techniques (Section 4.1) with 
some sensor specific modifications; e.g., carrying out georeferencing and 
Digital Surface Model (DSM) extraction using high spatial resolution 
panchromatic images and combine the lower spatial resolution HS im
ages with them as in the case of the Cubert camera (Aasen et al., 2015) or 
to model (Berveglieri et al., 2019; Honkavaara et al., 2017; Tommaselli 
et al., 2019) or correct for the impacts of the time-sequential spectral 
scanning (Honkavaara et al., 2017). Pushbroom scanning results in a 
different position and orientation for each image line requiring accurate 
trajectory information to be captured utilizing a precise GNSS/IMU- 
systems (Lucieer et al., 2014) or integrating lower precision GNSS/ 
IMU, 2D camera images and SfM (Büttner and Röser, 2014; Jaud et al., 
2018; Suomalainen et al., 2014). The point spectrometers are the most 
challenging due to their dynamic nature (Natesan et al., 2018), 
furthermore, the location and size/shape of spectral footprint of each 
measured spectra is different and determined by the position, orienta
tion, Field of View (FoV), and integration time of the spectroradiometer, 
flying height and speed of the UAV, and the surface topography (Gautam 
et al., 2019). HS sensors are also often integrated with LiDAR (Lin et al., 
2019) or dense photogrammetric surface reconstruction (Aasen et al., 
2015; Honkavaara et al., 2013; Oliveira et al., 2019; Suomalainen et al., 
2014) to enable accurate georeferencing and characterization of 3D- 
objects. 

Quantitative radiometric processing is required in order to obtain 
unbiased spectral data (Schott, 2007). The image grey values (Digital 
numbers; DN) are subject to a number of factors that need to be 
compensated for. The essential radiometric processing steps include the 
correction based on sensor laboratory calibration, compensation of 
illumination related effects, atmospheric correction, object anisotropy 
correction i.e. so called bidirectional reflectance distribution correction 
(BRDF correction), and topography correction (Aasen et al., 2018). The 
following briefly describes four popular methods for producing reflec
tance outputs of drone datasets: (i) Empirical line methods (ELM) have 
been used in majority of studies (Aasen et al., 2018). ELM requires at 
least two reflectance targets to determine a linear model to transform 
the DNs to reflectance factors. (ii) Direct reflectance transformation 
transforms image radiances to reflectances utilizing the onboard irra
diance observations. Such techniques can be found in research systems 
(Burkhart et al., 2017; Hakala et al., 2018; Suomalainen et al., 2018) as 
well as increasingly in commercial products, e.g. MicaSense incident 
light sensor (Micasense) and the Headwall’s fiber optic downwelling 
irradiance sensors (FODIS) (Headwall). Independence from in situ 
reflectance targets makes the direct approach efficient, being particu
larly useful in environments where suitable places for installing reflec
tance panels are not available and in Beyond Visual Line Of Sight 
(BVLOS) operations. Irradiance sensors also provide valuable informa
tion about changes in illumination that can be used in the correction 
process (Honkavaara et al., 2013). (iii) Software based solutions esti
mate the irradiance using atmospheric radiative transfer models (Aasen 
et al., 2018; Zarco-Tejada et al., 2012). (iv) When utilizing blocks of 
images, it is also possible to use radiometric block adjustment based 
approaches that use radiometric tie points to model various factors 
causing differences in DNs in overlapping images, and can also use 
reflectance targets and irradiance observations to carry out the reflec
tance transformation (e.g. (Honkavaara et al., 2013)). 

Radiometric sensor calibration and characterization is a crucial 
manufacturing step of spectral cameras in order to enable quantitative 
spectral analyses. The fundamental calibration parameters concern the 
lens-falloff, absolute radiometric calibration coefficients, and spectral 
response functions. Furthermore, spectral distortions (keystone, smile, 
and temperature effects) (e.g., (Aasen et al., 2018)) as well as noise 
levels (Barreto et al., 2019) need to be characterized. There are situa
tions in which precise absolute radiometric and spectral sensor cali
bration is particularly important. Firstly, when reflectance calibration is 
performed using the direct method without any in-situ calibration tar
gets, the calibration of each sensor separately and together is crucial (e. 
g. (Burkart et al., 2014; Burkhart et al., 2017; Hakala et al., 2018; 
Suomalainen et al., 2018). Secondly, precise characterization is needed 
when analysing very narrow spectral responses, e.g. to measure SIF 

Fig. 3. Hyperspectral images from a forest health study site. (a) Drone (GSD 10 cm) and aircraft (GSD 50 cm) based hyperspectral images; (b) spectral data sampled 
from the drone and aircraft images, respectively. 
Source Näsi et al., 2018 
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(Pacheco-Labrador et al., 2019) and in general in high precision tasks, 
such as reflectance spectra measurements to reflectance libraries. In 
these situations, regular sensor calibration and in-situ validation pro
cedures are required. It is typically recommended to repeat the radio
metric calibration in 1–3 years intervals. On the other hand, 
requirements set for the absolute radiometric calibration can be relaxed 
in some cases: when reflectance panels are installed in the area, the 
analysers are calibrated using in-situ data (e.g., biomass or nitrogen 
content), if sensors are used in relative mode, e.g., using different 
indices, or if radiometric calibration is not critical for the analysis task. 

The previous processing steps are in most cases carried out as post- 
processing. For 2D frame format cameras the mainstream photogram
metric software, such as Pix4D16 or Agisoft Metashape17 can be used; for 
pushbroom cameras, for example, the Atcor4 and Parge18 are used. 
(Horstrand et al., 2019b, 2019a) demonstrated a real-time imple
mentation of the processing steps for the Specim FX100 pushbroom 
scanner. Their onboard processing chain included control of the flight 
trajectory, management of the data acquisition, georeferencing, image 
calibration and calculation of different vegetation indices as well as 
anomaly detection. As spectral remote sensing becomes more common, 
processing technologies must evolve to be automatic, efficient, reliable, 
and agile. 

2.2.3. What are the bands to use according to the application? 
HS cameras produce huge volumes of data while capturing tens to 

hundreds of spectral bands. To avoid capturing unnecessary data, a 
relevant question to pose is which bands are ideal for specific analysis 
tasks. The HS signatures are particularly relevant in scientific research to 
understand the behaviour of phenomenon that are not yet clearly 
defined. Precise spectral signature information enables detailed scien
tific studies of object characteristics, modelling of its function and 
composition, as well as studies of light matter interaction modelling 
(Forestier et al., 2013; Schaepman et al., 2009). HS signatures are, for 
example, needed in complex analysis tasks, such as mineral exploration, 
urban material detection, classification of species rich forests, and 
biodiversity assessment. Selection of optimal spectral bands is depen
dent on application: vegetation health and vigour assessment, mineral 
exploration, hazardous material detection etc. all have different re
quirements for the spectral bands combinations necessary to provide the 
desired information (e.g. (Alves et al., 2019; Askari et al., 2019; For
estier et al., 2013; Li et al., 2014; Moghimi et al., 2018; Näsi et al., 
2015)). Information about optimal spectral bands can be used to build 
sensors with optimized spectral bands, to select optimal spectral bands 
during data acquisition or to support analytics. 

Researchers have compared the performance of HS and MS sensors in 
different analysis tasks. HS imaging outperform MS imaging in complex 
analysis such as tree species classification in species rich scene (Tuo
minen et al., 2018) and crop quality parameter estimation (Askari et al., 
2019; Lu et al., 2019; Näsi et al., 2015; Oliveira et al., 2019), while 
similar performance can be obtained if the selected bands are in coin
cidence with MS-bands for a considered task. 

2.3. UAV LiDAR: evolution, present state and challenges 

The first works using laser scanning from a UAV were presented a 
decade ago by (Jaakkola et al., 2010; Lin et al., 2013; Wallace et al., 
2012). The flight times of these systems were typically only few minutes, 
and the scanners available had few kHz frequencies, much slower than 
sensors today. Since then, the positioning and LiDAR sensor 

technologies as well as the UAV platforms and autopilots have advanced 
significantly. UAV laser scanning has become a common tool for a wide 
variety of mapping and modelling applications, and the field is being 
rapidly developed by a diverse range of actors. 

2.3.1. Are laser scanners installed on UAVs comparable to airborne 
sensors? 

UAV laser scanning fills the gap between traditional airborne laser 
scanners (ALS) and terrestrial mobile laser scanners (MLS). Compared 
with ALS, UAV systems allow for denser point clouds and easier oper
ation, lower cost in small area projects, and short response times than 
those typical for high altitude aircraft or helicopter-based system. 
Compared with terrestrial and ground mobile systems, UAV laser scan
ning provides a multi-direction perspective that frees the platform from 
moving on the ground. The wider field of view of some UAV sensors, that 
are often installed on instruments with 360-degree capacity, provides 
along track views instead of a single nadir looking scan plane. This en
ables the improved capture of vertical features such as building walls 
(see Fig. 4). The relatively short (usually < 200 m) measurement ranges 
for UAVs keeps the beam spot size within centimetres on the target 
surfaces, instead of a few decimetres for ALS, and allows thus for the 
reconstruction of centimetre scale objects, supported by the reflectance 
or intensity information. This allows, for instance, to perform branch- 
level analyses of tree structure and use reflectivity for species classifi
cation (Hyyppä et al., 2020), the detection of road paintings, or vege
tation in proximity of cables, delivering results comparable to terrestrial 
instruments. 

There is a clear division in the market towards high-end and low-cost 
UAV platforms and instrumentation. High-end laser scanning systems 
provide faster data rates with more accurate and dense point clouds 
through high-end UAV platforms, positioning units and laser sensors, 
but they request a significant capital investment. Low-cost platforms use 
consumer sensors and are more affordable for many entry level users. 
These systems can reach similar point densities as compared to high-end 
systems, but the accuracy and precision of the acquired data is typically 
lower (e.g., point wise geometric accuracy). High-performance scanners 
provide longer ranging capability (up to 1 km) that requires high per
formance Inertial Measurement Units (IMUs) to be exploited, as the 
point wise spatial accuracy degrades with increasing range. Residual 
vibrations of the platform, not “reconstructed” by the IMU, propagate 
into the point cloud, and are difficult to compensate as there is no 
overlap between the adjacent scan lines. ALS systems are vibration- 
dampened, and often mounted on “2-axes-stabilised” platforms to 
maintain the sensor orientation towards the target regardless of turbu
lence, while UAV payloads are only suspended by wire or rubber 
dampers. 

LiDAR provides discrete points in 3D space, typically determined by 
the detected first, intermediate, last and strongest echoes solved from 
the backscattered ToF (Time-of-Flight) signal, though alternatives exist, 
e.g., phase-shift and frequency modulation ranging. LiDAR sensing does 
not suffer from sunlight shadowing which can hamper 3D reconstruc
tion, and has better penetration through vegetation as compared to 
passive sensors (Vastaranta et al., 2018; Wittke et al., 2019; Yu et al., 
2015). Early airborne scanner systems returned echo signal parameters 
such as echo length and/or amplitude of the strongest peak, while cur
rent high-end systems also provide reflectance data at large bit depth for 
multiple echoes solved from the signal of each transmitted laser pulse, 
enabling surface property characterization. These systems seem to pro
vide promising opportunities (Kukko et al., 2020), but their widespread 
adoption as well as the wide use of miniaturized multispectral LiDAR 
sensors will take several years to become the standard on UAVs. On the 
opposite, the reflectance properties are currently not considered in 
many low-cost instrument designs, due to their cost and complexity. In 
this regard, typical commercially available wavelengths implemented in 
UAV operable sensors are 532, 865, 905, 1064 and 1550 nm, though 
others may exist, while the spectral bandwidths are typically a few nm. 

16 https://www.sony.nl/electronics/cameras-met-verwisselbare-lens/ilce 
-7rm4 accessed on 23 June 2021  
17 https://delair.aero/delair-camlight/ accessed on 23 June 2021  
18 https://www.rese-apps.com/software/index.html accessed on 7 February 

2021 
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These bandwidths, integrated in a unique sensor, would allow for the 
implementation of a multi-spectral laser scanning system. 

Beam divergence, which defines the illuminated area by a single 
laser pulse, is around 0.3–0.5 mrad in high-end UAV laser scanning 
systems (such as Riegl miniVUX19 series, Amuse Oneself TDOT20, 
Optech21 CL-90), providing 1.5–2.5 cm and 3–5 cm beam footprints at 
50 m and 100 m distance from the scanner, respectively. On the con
trary, low-cost solutions (such as Velodyne Puck VLP-1622, Ouster OS2- 
12823, Livox AVIA24 and RoboSense RS-Lidar-3225), have a larger beam 
divergence (between 1.5 and 6 mrad) that provides 8–30 cm and 
15–60 cm footprints at 50 m and 100 m distance, respectively and in
troduces point localization uncertainty resulting in blurred point clouds 
independently from the beam direction and distance measurement ac
curacies. Low-cost instruments provide only the last and the strongest 
echoes of the returning signal, without guaranteeing that the highest 
canopy elevations are accurately captured. However, these types of 
sensors offer good detection thanks to designed mutual overlap of the 
adjacent beam spots, while small beam size of the high-end sensors 
brings forth a challenge for penetration as the whole beam gets easily 
blocked by branches or leaves of a few centimetres in size. 

The laser scanning sensors can be further categorized as single and 
multi-layer beamed instruments. Single-beam 2D scanners typically 
direct the laser beam perpendicular to the mirror rotation axis, as Riegl 
miniVUX-1UAV26 and Optech CL-9027 do, virtually spanning a single 
scan plane in 3D space. However, movement of the sensor along the 
mirror rotation axis direction generates a helix in the 3D space when 

projected on a cylinder coaxial with the direction of the movement. On 
the opposite, the multi-layer rotating scanners create a series of lines 
simultaneously. These systems often acquire along a set of parabolas 
when projected onto a planar surface as each beam draws a virtual cone 
with obtuse angle corresponding to its nominal off-nadir angle. The 
curvature of the parabola increases with the growing off-nadir angle of a 
particular laser line, which greatly affects the point pattern and density 
on the ground further away from the scanner nadir. When such a scanner 
is mounted in a tilted position, this effect is further amplified. Other 
solutions adopt more complicated scan patterns (e.g., Livox Horizon28) 
although their use is still limited in UAV literature. It is also worth 
noticing that low-cost sensors often suffer from severe inconsistencies in 
the geometry of the measurement layout, even up to a couple of degrees 
(Putkiranta, 2019). Interesting additions to sensors hosted on UAVs are 
given by arrayed LiDAR sensors initially conceived for the autonomous 
driving and traffic surveillance markets. One example is Cepton 
SORA20029, but also Neuvition Titan M130 fits in the weight range for 
large UAV applications, and the launch of Velodyne Velarray H800 is 
anticipated to breach into the UAV use at some point as well. 

2.3.2. What are the technological challenges? 
Beside the issues discussed above, UAV LiDAR has still some tech

nological challenges to face. 
Point cloud georeferencing. The GNSS/IMU integration allows for 

precise positioning and attitude determination of the sensors to be car
ried out during the flight. In the last years, many companies (such as 
Applanix31, iMAR32, NovAtel33, Advanced Navigation and SBG34) have 
presented GNSS/IMU systems sufficiently light and efficient to be 
adapted to UAV. A centimetric level of accuracy can typically be ensured 
on the global positioning using multi-constellation satellite observations 

Fig. 4. (a) Urban UAV sensor data from 100 m above ground level (AGL) captures the building, street, vegetation and terrain characteristics for detailed urban and 
traffic environment mapping and planning purposes. (b) National open ALS data (0.5pt/m^2) of the same location for comparison shows significantly less detail, lack 
of building walls and traffic infrastructure due to low point density and limited field of view in connection to longer ranges/higher altitude used primarily for ground 
topography, and larger laser beam size on the surfaces. (ALS data courtesy to NLS, 2021). 

19 http://www.riegl.com/products/unmanned-scanning/riegl-vux-1uav/ 
accessed on 14 June 2021  
20 https://amuse-oneself.com/en/service/tdotgreen/ accessed on 14 June 

2021  
21 https://www.teledyneoptech.com/en/products/compact-lidar/cl-90/ 

accessed on 14 June 2021  
22 https://velodynelidar.com/products/puck/ accessed on 28 June 2021  
23 https://ouster.com/products/os2-lidar-sensor/ accessed on 28 June 2021  
24 https://www.livoxtech.com/avia accessed on 28 June 2021  
25 https://www.robosense.ai/en/rslidar/RS-LiDAR-32 accessed on 28 June 

2021  
26 https://www.bayspec.com/spectroscopy/oci-uav-hyperspectral-camera/ 

accessed on 11 October 2020  
27 https://www.imechyperspectral.com/en/cameras/snapshot-uav-nirswir 

accessed on 11 June 2021 

28 https://www.livoxtech.com/avia accessed on 14 June 2021  
29 https://www.businesswire.com/news/home/20171024005521/en/Cepton 

-Introduces-Lightweight-3D-LiDAR-Sensing-Solution-for-UAV-Mapping 
accessed on 14 June 2021  
30 https://www.neuvition.com/products/titan-m1.html accessed on 14 June 

2021  
31 https://www.applanix.com/ accessed on 12 April 2021  
32 https://imar-navigation.de/de/produkte-uebersicht/product-overvie 

w-by-product/category/imu accessed on 12 April 2021  
33 https://novatel.com/ accessed on 12 April 2021  
34 https://www.sbg-systems.com/ accessed on 12 April 2021 
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and DGNSS post-processing. Though rapidly developing, the current 
UAV LiDAR sensors do not acquire data with high-resolution at wide 
longitudinal (along track) angles: this limits the adoption of scan-to-scan 
matching algorithms to orient the acquired data in real-time solutions, 
making the use of GNSS/IMU systems mandatory. The attitude accuracy 
(i.e., roll, pitch and yaw/heading) depends on the type of adopted in
ertial sensors. In this regard, Microelectromechanical systems (MEMS) 
technology is mostly used on UAVs because of the reduced weight, and 
low price (Sahawneh and Jarrah, 2008; Strohmeier and Montenegro, 
2017), although it is still unable to deliver precise enough orientation 
data for long range scanning in terms of angular accuracy and data rate, 
which limits the achievable accuracy in high dynamic conditions. 
Relatively short measurement ranges and altitudes typical of UAV laser 
scanning serve to maintain the spatial accuracy achievable to within 
reasonable limits, and processing of the point cloud can improve the 
internal data accuracy through subsequent trajectory optimizations. 
Long range / high altitude applications, however, necessitate higher 
grade IMU units. As an example, a measurement accuracy of roll/pitch 
and heading of 0.015 and 0.035 degrees respectively, which is typical of 
many instruments installed on a UAV, translates to 2.6 and 6.1 cm 
spatial errors at 100 m range. Points at the nadir and at the far end of the 
field-of-view at 50 m above the ground are measured at an accuracy 
better than 3.6 cm and 7.1 cm, respectively. This value needs to be 
summed to the positioning and ranging errors, which further increases 
the cumulative errors of a single point (although these errors are often 
temporally correlated and can be reduced by data adjustment in post- 
processing). The typical low flight altitudes forced by the drone avia
tion regulations along with the development of data post-processing and 
matching methods compensate for these performance deficits. The final 
point cloud accuracy can be considered below 10 cm in most of the 
cases. Narrow FoV sensors are very well suited for the airborne 
perspective for area and corridor mapping, as they typically provide 
higher single-pass data density, while scanners with 360-degree FoV can 
collect 3D data for building and infrastructure asset modelling, detection 
of vertical objects and improved ability to reach beneath forest canopy 
and structures with lower angular resolution (see Section 4.2). 

Weight. LiDAR instruments are still relatively heavy (payload with 
GNSS/IMU and battery easily about 1,5–3 kg) and their use is thus 
limited to larger UAV platforms, though smaller sensors have just 
recently become available35. Heavy payload, comprising of LiDAR and 
positioning sensors, control and data storage unit and necessary batte
ries, has negative implications on flight times, operability in high winds, 
different weather conditions, and operations in populated areas (Stöcker 
et al., 2017). 

Flight time. On multi-rotor UAV systems, point density can be 
thousands of points per square metre, as such platforms could fly very 
slow, and even hover stationary, although this is avoided because of the 
lower heading accuracy achievable under such conditions. The typical 
flight speeds are around 5–10 m/s to allow for adequate along track 
sampling (5–10 cm for a sensor with 100 Hz scan frequency), and flight 
duration is typically around 15–30 min on battery operated UAVs. 
Fixed-wing UAVs typically need air speeds from 80 km/h and above 
with the current LiDAR payloads, so their performance is similar to those 
of manned aircrafts. ALS data acquisition usually exhibits parallel flight 
lines with a limited number of crossing lines, and narrow side overlap for 
efficiency, while implementation of UAV laser scanning is often carried 
out in a grid pattern, or some other form that ensures data coverage over 
the desired objects or area with a different density. With gasoline hybrid 
fixed wing aircrafts, copters or multi-copters, the flight time can be 
increased significantly, up to 2–3 h. In these cases, the flight operations 
require more careful planning in terms of air space reservation and 
weather forecasting. 

Calibration. LiDAR sensors usually constitute fast moving parts in 

the form of rotating mirrors and laser heads, depending on the imple
mentation. This has currently two main consequences in their use on 
UAVs: (i) sensors are consume much more power than cameras, and (ii) 
these instruments necessitate maintenance/calibration during the life 
span, which typically are not under user’s capacity, in contrast to the 
widely adopted calibration schemes for image data. In this regard, the 
developments of solid state LiDARs (Lemmetti et al., 2021) with reduced 
costs could represent a turning point for this technology. 

3. System calibrations and flight endurance 

The last decade witnessed the improvement of the hardware installed 
on UAVs. In this section we focus on how these components can be better 
exploited, with specific regards to onboard sensor integration and bat
tery life. An overview on the strategies to fuse data acquisition sensors 
with the onboard navigation instruments is first presented with the aim 
of exploiting these instruments at their full potential. Additionally, we 
describe the performance of modern batteries, traditionally a bottleneck 
for UAV applications, and we give some hints on promising strategies 
that could change our use of UAVs paving the road for new applications. 

3.1. System lever-arms and bore-sight: What you need to know 

The observations from optical and navigation sensors principally 
refer to different origins and axes orientation. As the latter may signif
icantly affect even the lever-arm of the GNSS antenna(s) and IMU, all 
offsets need to be resolved in precise (cm-level) mapping. 

3.1.1. How to determine a lever-arm? 
Although the spatial separation (lever-arm) between devices on a 

micro-UAV is relatively small, employing Real-Time Kinematic/ Post 
Processed Kinematic (RTK/PPK) technology generally requires its 
consideration. In such a case the first spatial offset to examine is the 
distance between the IMU navigation center and the phase center of the 
GNSS antenna, rGPS

IMU, the second one is between the navigation solution 
and an optical device rc

IMU,(Fig. 5). If the bundle adjustment does not use 
directly raw inertial data (Cucci et al., 2017), the former lever-arm needs 
to be expressed in IMU-body axes, so the GNSS/IMU software can ac
count for the differences in relative velocities between those two sen
sors. This fact faces two practical challenges: (i) the IMU-body axes are 
not directly observable; (ii) in contrast to larger airborne devices, the 
accuracy of small IMUs prevents static self-alignment with respect to 
geographical North. 

Although an INS/GNSS software may allow “estimating” the lever- 
arm, the obtained precision is sufficient only for larger carriers with 
more precise IMUs. Different methods are then needed whenever the 
errors in level-arm measurements (e.g., performed by a caliper via a 3D 
UAV model) exceeds 1 cm once expressed in the camera reference frame 
(Daakir et al., 2017). It should be noted that this limit is already reached 
for a 30 cm long lever-arm if the error in the assumed camera bore-sight 
exceeds 2 degrees. In these cases, the surveying method exploits the 
concurrent determination of the lever-arms among IMU, GNSS-antenna 
and an optical device, e.g., camera, together with the orientation of the 
camera while considering the bore-sight between camera and IMU 
(determined separately). This method is based on taking pictures of a 
field equipped with many optical targets while simultaneously 
measuring the position of the GNSS antenna with a theodolite (Fig. 6 and 
Rehak and Skaloud, 2015). For all small UAVs this method can be per
formed on ground. This approach is also applicable without IMU, i.e. for 
determining the GNSS antenna-camera lever-arm in the camera axes, 
and generally more precise than its determination via bundle adjustment 
(BBA) (Rehak and Skaloud, 2017a) where it is often (strongly) corre
lated with other parameters. 

Larger uncertainties of the lever-arm between the navigation and 
optical devices can, however, be tolerated when BBA uses relative aerial 35 https://blk2021.com/blk2fly/ accessed on 15 September 2021 
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positions within the (straight) flight-line, e.g. (Blazquez, 2008) for a 
general airborne case and (Rehak and Skaloud, 2016, 2017a) for UAVs. 
The absorption effect using relative positioning with unknown lever-arm 
is similar to that of GNSS-position biases, e.g., due to a wrong- 
determined carrier-phase ambiguity within RTK/PPK (Skaloud et al., 
2014) because of existing correlations among these parameters within 
regular flight-lines. The presented approaches refer to fixed-wing plat
forms, while the estimation of the lever-arm on rotor platforms is further 
complicated by the rotations of the gimbal and the uncertainties in their 
measurement (Ekaso et al., 2020). 

3.1.2. When is the bore-sight needed?. The determination of an orienta
tion offset, so called bore-sight, between an IMU and an optical device 
on a micro-UAV needs to be performed in-flight. Methods based on the 
static alignment of the IMU (thanks to gravity and Earth rotation), e.g., 
(Bäumker and Heimes, 2001), cannot be used due to the previously 
mentioned incapacity of small IMUs to complete its “alignment” without 
certain velocity and orientation dynamic while using GNSS observa
tions. The dynamical aspects of UAV trajectory are needed for deter
mining not only the azimuth but also mitigating the influence of (large) 
accelerometer biases on roll and pitch angles. Once the IMU is aligned (i. 
e., the uncertainty of its attitude reaches its stated capacity) the deter
mination of bore-sight follows. In aerial-triangulation the need for 

determining bore-sight depends on the chosen method of orientation 
(Blazquez and Colomina, 2012a; Colomina, 1999). The integrated 
approach, i.e., the concurrent use of image observations together with 
INS/GNSS trajectory, allows for the determination of bore-sight within 
the BBA. In such a case even inaccurate IMU alignment can be tolerated 
because it will be “absorbed” via bore-sight parameters due to similar 
influences. However, such absorption is valid only for the current flight 
and not for subsequent projects. 

The correct “calibration“ of bore-sight requires the de-correlation 
between the IMU-alignment, bore-sight and other parameters, such as 
interior orientation (lens calibration parameters). For that purpose the 
strategy follows that which has been user for larger platform (Lichti 
et al., 2008): the block geometry should be strong in terms of sufficient 
overlap, possibly some converging images, existence of cross-strips with 
variations (>15%) in AGL and depth of field, the use of precise obser
vation of poses through INS/GNSS (e.g. also called exterior orientation 
or aerial position and attitude control) and possibly some Ground 
Control Points (GCPs). Obviously, the choice of interior models also 
affects the bore-sight (Cledat et al., 2020a). Achieving or maintaining 
sufficient accuracy of IMU alignment is generally challenging for some 
small UAVs, especially in (frequent) hovering operations. In such a case 
the desirable approach of dealing with UAV bore-sight is either using 
relative orientation within the BBA that removes its need analytically 
(Rehak and Skaloud, 2016; Skaloud et al., 2014), or the introduction of 
raw inertial observations (Cucci et al., 2017). Nevertheless, a correct 
knowledge of bore-sight is required for direct orientation, which is the 
chosen orientation method for UAVs with LiDAR. There, the bore-sight 
determination technique may, for instance, follow (Skaloud and Lichti, 
2006). The obtained accuracy is likely to be driven by the quality of IMU 
attitude. For a given inertial hardware the attitude performance can be 
considerably increased when using redundant configuration sensors (for 
reducing random noise), or by applying on-site calibration before take- 
off (for improving absolute attitude precision) as discussed in (Clausen 
and Skaloud, 2020). 

3.1.3. How to check time-stamping?. A key prerequisite of the correct 
usage of navigation sensors for orientation purposes is the correct time 
stamping of acquired imagery in the global time frame in which the 
navigation sensors operate. This issue is especially critical when utilising 
UAVs with consumer-grade cameras for which the precise time regis
tration with navigation components is not trivial to realize and its per
formance not easy to assess. Even professional drones with factory 
payloads may experience some issues with correct time-stamping such 
as limited resolution of a system (autopilot) time, some residual offset 

Fig. 5. Scheme of lever arm and boresight displacements between navigation and mapping for (a) camera and (b) lidar sensors (Armenakis and Patias, 2019).  

Fig. 6. Schematic (top view) of the pre-flight lever-arm calibration, after 
(Rehak and Skaloud, 2015). 
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between system and GNSS time, registration of start or end time of 
exposure rather than mid-exposure, etc. The influence or tolerance of 
time-stamping errors will depend on the ground sampling resolution and 
trajectory accuracy w.r.t. UAV operational speed and angular rate (e.g., 
see graphics in (Rehak and Skaloud, 2017b)). There are several tech
niques for determining whether registration delay is present in the op
tical data. The methodology depends on the available observations and 
on the a-prior knowledge of system and sensor calibration parameters. 

The classical models for using absolute (w.r.t. to mapping frame) or 
relative (between successive images) observations of pose through INS/ 
GNSS (aerial position and attitude control) can be extended to spatio- 
temporal aerial control. This, under certain conditions, may allow 
determining time-stamping delays within the BBA as investigated by 
(Blazquez, 2008) for the case of manned aircraft and by (Rehak and 
Skaloud, 2017b) for UAVs. The latter work confirmed that a correct 
recovery of a constant time-stamping offset is possible within the BBA 
using velocity observations when the UAV ground speed varies suffi
ciently. At the same time, it showed that its final impact on mapping 
accuracy is relatively small in block configurations where it gets 
absorbed/compensated by other self-calibrated parameters, e.g., the 
principal point coordinates. However, in scenarios of lower redundancy 
such as the single strip operation, the induced errors cannot be absorbed 
and therefore, the impact on ground accuracy is significant. 

3.1.4. When to use an IMU?. As the answer to this question is linked to 
other navigation-orientation topics presented in Section 4.2, we provide 
only a general response herein. The use of IMU is required for direct 
orientation (implicit for LiDAR) of the platform w.r.t. the local mapping 
frame (e.g. E, N, h system). It is also needed for mount stabilization 
(frame or line cameras) and very useful for aiding the final orientation of 
line and even frame cameras in corridors, or other geometrically less 
favourable scenarios (Rehak and Skaloud, 2015). 

It should be considered that a multi-rotor UAV without an IMU 
cannot fly at all, and generally, all UAV autopilots need IMU for drone 
stabilisation, control and guidance. The fact that an IMU is practically 
always onboard, but not always available or exploited for orientation 
purposes, has more historical than pragmatic reasons, because its ben
efits have been known for more than two decades (Colomina, 1999). The 
evolution of the professional drone market started with frame-cameras 
and there it caught up with academic propositions of IMU usage (e.g., 
(Bäumker et al., 2013; Rehak et al., 2013)) by implementing separate 
IMU/GNSS boards (initially almost exclusively from Trimble-Appla
nix31) on high-end hovering drones, e.g., (Mian et al., 2015). Manu
factures of small fixed-wing drones identified its benefits only later and 
those producing its own payload, employed a conceptually better design 
where only the IMU is rigidly mounted to the camera and the small 
payload is isolated from vibrations. The hardware quality of such newer 
small IMUs is potentially sufficient for performing good relative- 
orientation (Rehak and Skaloud, 2016) and with advanced INS/GNSS 
processing (Clausen and Skaloud, 2020) or tight integration (Cucci et al., 
2017) even absolute orientation applicable to lasers (Cledat et al., 
2020a; Vallet et al., 2020). Nevertheless, the IMU potential remains 
underexploited in the popular UAV photogrammetric packages, e.g., 
Pix4D11, AgiSoft Metashape10. This is not only in the absence of possi
bility of using raw inertial observations in both programs but also the 
missing input for relative orientation or even user-definition of weights 
for absolute orientation. Especially in difficult scenarios (geometry, 
texture) using the IMU data correctly according to its capacities (Blaz
quez and Colomina, 2012a; Cucci et al., 2017; Rehak and Skaloud, 2016) 
can improve not only the final orientation and calibration of frame- 
cameras but also the automated process of tie-feature identification 
and matching. 

3.2. Energy consumption and flight time 
UAV flight time is one of the main limiting factors compared to 

airborne platforms, limiting the extension of the surveyed area and the 
temporal frequency of data collection. However, battery limits and the 
introduction of recharging stations promise to drastically mitigate this 
drawback in many applications. 

3.2.1. Where is the battery limit?. Energy consumption and battery life 
are two limiting factors affecting the productivity of UAVs in all their 
applications. For this reason, many studies on the optimization of energy 
consumption (Dietrich et al., 2017; Hwang et al., 2018) have been 
published in the last years. The first prototypes of UAVs developed 
>10 years ago were often powered by internal combustion engines 
(Eisenbeiss et al., 2005). However, the introduction of smaller and 
lighter models has pushed the widespread adoption of electrical engines 
powered by Lithium batteries. Batteries are usually characterized by 
their capacity (indicated in mAh) that measures how much energy the 
battery can store. The number of cells in each battery determines the 
voltage of the battery, while another important element is given by the 
number of cycles each battery is able to perform. These devices are 
lighter and with higher power to weight ratios compared to combustion 
engines, representing most propulsions of UAVs used in geoscience and 
remote sensing. Lithium batteries have improved incredibly over the last 
few years enabling UAV flight times to double (sometimes triple). The 
energy density of these devices has been constantly improved in the last 
decade, allowing their extensive uses in several fields, while the balance 
between energy and size/weight of the battery has strongly influenced 
the design of platforms and sensors to host onboard. Among the different 
typologies of batteries, Lithium Polymer (i.e. LiPo) batteries are most 
commonly used on UAVs because of their reduced weight compared to 
their alternatives such as Lithium-Ion. LiPo batteries have shown an 
increase in their energy density of about 3% per year (Zu and Li, 2011) 
and could reach their performance ceiling in 2025 (Galkin and DaSilva, 
2018). Other types of batteries such the Lithium-sulphur are showing 
extremely promising results and could lead to better solutions in the 
near future (Service, 2018). Hybrid-powered systems (i.e. solar coupled 
with hydrogen) have replaced internal combustion engines only for 
larger and long-endurance flight drones (Lei et al., 2019). 

Off the shelf UAVs have different flight endurances according to the 
type of platform considered. Large differences (a factor 1:3) is usually 
noticeable between rotor and fixed-wing drones: quadcopter can fly for 
30–35 min max in optimal conditions while several fixed-wing models 
can stay in action for almost 2 h. On rotor UAVs the number of sensors 
installed in the payload has a large influence on the flight time: in this 
regard, many manufacturers report detailed analysis on this (e.g., DJI 
Matrice 60036). Live streaming of images, lights and other accessories 
can further reduce the battery level. The way to conduct a flight (number 
of turns, speed variations and average speed) can also drain batteries 
(Dietrich et al., 2017). Environmental conditions, such as higher wind 
speed (Tseng et al., 2017) and changes in altitude (Paredes et al., 2017), 
can negatively influence the flight time up to 20%. 

3.2.2. Are 24/7 UAV applications possible?. The use of UAVs in moni
toring applications, with repeated flights and 24/7 acquisitions has 
recently pushed the development of autonomous procedures to recharge 
the platforms without human intervention. All these approaches are 
mainly conceived for rotor UAVs, as the ones more limited by flight time 
(Galkin and DaSilva, 2018). Repeated flights can be tackled according to 
three different approaches. (i) using multiple drones that alternate their 
flight over the interest area. (ii) automated battery swapping where 
robotic actuators can change autonomously the UAV batteries: several 
prototypes have been developed in the last years (Barrett et al., 2018; 
Herath et al., 2017) that have the capacity to change a battery within 

36 https://www.dji.com/nl/matrice600-pro?site=brandsite&from=eol_mat 
rice600 accessed on 22 June 2021 
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60 s. (iii) wireless transfer power approaches that can be divided in 
electromagnetic field (EMF) chargers and non-EMF chargers (Lu et al., 
2018). In this last category, magnetic induction or similar techniques are 
used to transfer energy to the drone, adopting specific recharging sta
tions where the UAV lands to be recharged (Junaid et al., 2017; Rohan 
et al., 2018). The recharge is performed using short distances (i.e., few 
centimetres) and it is often unable to refuel the battery in very short 
times. Non-EMF systems refer to photo-voltaic cells installed on the 
UAVs (Jung et al., 2019) to keep the battery level high: these solutions 
are usually adopted for large drones, as they are not feasible for small 
solutions. Other solutions adopted directional laser beams (Achtelik 
et al., 2011) directed on a modified photo-voltaic panel installed on the 
drone. In this case, the visibility between recharging station and UAV is 
a requirement of the method. 

In the last few years, the number of commercial solutions embedding 
UAV, recharging station (often called “drone in a box”, see Fig. 7) and 
data processing, has largely increased, providing solutions for contin
uous monitoring of entire areas (Percepto37, Skydio38, AirRobotics39, 
Mapture40, etc.). The search for more efficient and long-lasting flights 
have also pushed to improve the aerodynamics and the configuration of 
the platform (Dai et al., 2019). Dedicated platforms have designed 
propellers specifically optimized for specific tasks such as hovering. 
Other asymmetric configurations of UAV propellers have been 
conceived to optimize the energy consumption for specific tasks (Ver
beke et al., 2014). 

4. Flight planning, acquisition and adjustment 

UAV data acquisitions are devoted to a growing number of applica
tions requiring different accuracies and facing different challenges ac
cording to the environmental conditions where UAVs operate. In this 
section, we give an overview on the best practices for “conventional” 
mapping and we present the main challenges to be faced in GNSS-denied 
environments. We then describe two new emerging operational sce
narios (i.e., collaborative UAVs and BVLOS) and we discuss their current 
limitations and the possible solutions for their wider adoption in our 
domain. 

4.1. Mapping tolerances and orientation requirements 

The mapping tasks and therefore the specifications for individual 

UAV-projects might differ considerably in daily practice or research. For 
projects where geometric properties of target objects need to be deter
mined, the achievable 3D-point position accuracy in object space is the 
most important parameter. Depending on the discipline in which UAV- 
projects are embedded, we need to distinguish between tolerances and 
standard deviation. In mechanical or civil engineering, a tolerance is a 
maximum allowable difference to an optimal (or pre-defined) value, 
while in measuring disciplines accuracy or error very often refers to a 
standard deviation. In order to convert between tolerance T and stan
dard deviation σ, we assume that besides the random error inherent in 
any measurement process no systematic or gross errors remain and that 
the random error is normally distributed. According to (Kuhlmann et al., 
2017), σ = T/4, applies for a probability of error of 5% for the measuring 
accuracy to be maintained. In the following, the standard deviation will 
be considered as reference parameter. 

4.1.1. RTK and PPK: How accurate can they be? 
With the development of UAV photogrammetry, where very high- 

resolution images are acquired, a “dilemma” becomes obvious: the 
inner or relative accuracy within the image block is usually very high 
(rule of thumb: ½GSD to 1xGSD in X, Y, 1xGSD to 2xGSD in Z). To ensure 
this accuracy also within the reference frame (datum) and to prevent so- 
called block deformations, it is necessary that the standard deviation of 
control points is better by at least a factor of 3 compared to the required 
standard deviation. According to the application, required standard 
deviations can be 2–3 cm in planimetry and height (e.g., topographic 
surveys) or up to 2 mm in planimetry and 3 mm in height (e.g., engi
neering surveys). This means that the inner or relative accuracy can only 
be assumed over the whole block under certain conditions. 

If, for example, only GNSS RTK is available for the determination of 
control points (optimistic assumption: σX,Y,Z = 2 cm), a thorough accu
racy analysis can only be performed for a GSD of 5–6 cm. If, on the other 
hand, a (local) total station network is created (realistic assumption: σX, 

Y,Z<=3mm), a GSD of approximately 1 cm can be checked and realized 
in the entire network, given that the control point arrangement is good 
enough. An example for a possible solution to combine very high ac
curacy terrestrial network survey with UAV-based image acquisition is 
shown in Fig. 8: A reflector-based GCP signalisation for tachymetric 
survey is integrated with a coded target for the airborne image data, so it 
can be used as a 3D point for image orientation. This system has been 
developed and tested within a rail inspection project (Ghassoun et al., 
2021). 

Research has shown (Benassi et al., 2017; Gerke and Przybilla, 2016; 
Varbla et al., 2021) that a direct observation of the sensor position on the 
UAV leads to better overall block accuracy compared to only using in
direct sensor orientation through GCPs. When it is concluded that a 
differential GNSS (DGNSS) on the UAV for direct position estimation 
might be good enough for a particular project, there might still be a 
choice between RTK and PPK as shown in Table 3. From this table, it is 
clear that many factors can influence this choice. In addition, the ex
pected accuracy is better for PPK, especially under higher dynamic or 
sub-optimal signal reception (Cledat et al., 2020b) because more historic 
and forward correction data can be used. When – however – DGNSS is 
needed for accurate navigation and not only for photogrammetric ap
plications, RTK is indispensable. A general problem using DGNSS on
board is that of sensor synchronisation and lever-arm alignment, as 
discussed in Section 3.1. 

4.1.2. UAV mapping: What are the strategies to improve the accuracy?. It 
is known that point measurement accuracy increases with multiple 
image overlaps. For example, (Förstner, 1998) has shown that the 
theoretical accuracy improves parallel to the image plane (X, Y) direc
tion with 

̅̅̅
k

√
, and in depth direction (Z) with 

̅̅̅̅̅
k3

√
, where k (k > 2) 

represents the number of images in which a point is observed. In UAV 
photogrammetry a high overlap can be realized very well, however, the 

Fig. 7. Example of UAV recharging station (courtesy of Mapture.ai).  

37 https://percepto.co/ accessed on 16 June 2021  
38 https://www.skydio.com/ accessed on 16 June 2021  
39 https://www.airoboticsdrones.com/ accessed on 16 June 2021  
40 https://mapture.ai/ accessed on 16 June 2021 
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side-lap usually depends on the available flight time and thus might be 
more difficult to be realized. 

Ground control points basically have two functions: they are needed 
to transform the image block into the mapping datum and to increase the 
overall block accuracy, that is, to minimize block deformations. For the 
first task, the datum definition, three well distributed 3D-GCPs are 
theoretically sufficient to perform the similarity transformation between 
the image block and the datum, defined through the GCPs. If onboard 
GNSS is used, no additional GCPs are theoretically needed, but research 
(Benassi et al., 2017; Gerke and Przybilla, 2016) showed that a 
remaining absolute shift parameter might be needed to be solved 
through one GCP. However, if a minimal quality control and verification 
is needed it is advisable to follow the usual rules of distributing GCPs in a 
regular pattern in the site (Stöcker et al., 2020). The density of this 
pattern is also depending on terrain complexity. 

With the exception of large photogrammetric camera installed in 

professional, manned aircrafts, it cannot be assumed that the internal 
camera geometry is stable over a longer period of time (see Section 2.1). 
This means that the parameters of the interior orientation, i.e., focal 
length, the position of the image principal point and the parameters that 
determine the lens distortion should be estimated in the BBA. There is a 
strong correlation between focal length and flight altitude, or distance of 
the camera to the object space, in the case of vertical images. For this 
reason, it is advisable to realize different flying altitudes during the 
mission. If the target area does not show large natural differences in 
altitude (20–30% difference), it is advisable to “artificially” create this 
scale difference by realizing two flights at different heights (Gerke and 
Przybilla, 2016). Furthermore, it is shown that oblique images (nick 
angle 20–45 degrees) contribute to the increase in accuracy (James and 
Robson, 2014; Nesbit and Hugenholtz, 2019; Rupnik et al., 2015; Ver
ykokou and Ioannidis, 2018). This means that in addition to vertical 
images, flight patterns with oblique images aligned in all four cardinal 
directions are introduced into the BBA. The reason for the increase in 
accuracy is that the correlation focal length - distance is thereby 
reduced. Experiments have shown that in the ideal case all three coor
dinate components can be estimated with equal accuracy (Rupnik et al., 
2015). 

4.1.3. How to plan flights for accuracy in complex environments?. So far, 
we assumed that flight planning is done in simple terrain and above 
three-dimensional structures, that is, GNSS reception is guaranteed and 
reliably available. However, the mapping quality is not intuitively pre
dictable, particularly in complex environments (e.g., in urban and in
dustrial surveying, or in cluttered mountainous environments), where 
the accuracy of the RTK or PPK positioning varies, and it might be 
difficult or time intensive for operators to conceive a flight plan that 
would cover the entire area of interest with uniform resolution and 
without leaving any uncovered part. In such a case, the conventional 
loop of data acquisition, post-flight processing, and derivation of the 
quality control at the end of the survey process is not ideal, as aerial 
position control quality is likely to depend on the time of a flight. While 
conventional aerial surveys can be easily planned in two dimensions, 
cluttered environments call for flight planning software that allows for 
the definition of complex three-dimensional trajectories (Gandor et al., 
2015; Gómez-López et al., 2020): such tools provide the user with fine 
control of the flight trajectory and allow them to check for the GSD 
variation, the image footprints, and ensure that the area of interest is 
fully covered and with sufficient overlap, according to the digital models 
available for the area. Some features of those are now implemented in 

Fig. 8. High-precision reflector for tachymetric network survey integrated with a coded target for photogrammetric processing: left terrestrial view, right: image 
from UAV-based acquisition @ GSD = 0,9mm (Ghassoun et al., 2021). 

Table 3 
Comparison of properties of PPK and RTK-based DGNSS solution onboard. VRS: 
virtual reference station, CORS: Continuously Operating Reference Station, 
BVLOS: Beyond visual line of sight (see Section 4.3).  

Property RTK PPK 

Full precision 
availability 

Immediately, during flight After postprocessing in the 
office using a service or 
dedicated software    

Need for 
additional 
hardware 

Yes: 1) GNSS ground station (or 
live CORS/VRS network- 
connection alternatively)2) 
permanent data link from 
ground station to UAV 

Only a GNSS static receiver to 
record raw observations/ 
RINEX or data from 
permanent network    

Sensitivity to 
correction 
data loss 

Very high: loss of link to 
correction data worsen 
location quality 

Very low    

Usage in BVLOS 
flights? 

No – loss of correction link Yes, because no correction 
link over long distance is 
needed    

In-flight 
accuracy 

Subject to extrapolation errors 
due to communication delays, 
lower reliability in reaching 
cm-level precision and lower 
accuracy due to 1-directional 
filtering 

Higher reliability in 
ambiguity determination and 
generally higher accuracy due 
to smoothing  
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advanced commercial flight planning software41. In addition, planned 
trajectory at different times can be considered already in the planning 
phase to obtain a probabilistic measure of expected GNSS precision. 

As demonstrated practically on a number of flights in (Cledat et al., 
2020b) this information can be further combined with other elements 
depicted in Fig. 9, as the requirement of calibration of interior orienta
tion, prevailing type of texture or foreseen placement of GCPs, to 
simulate the acquisition process realistically and derive the expected 
mapping quality before the mission. (Cledat et al., 2020b) demonstrated 
practically that the PPK approach is preferable over the RTK technology 
in an environment where frequent occlusion of satellite signals occurs 
owing to either the drone motion or its surroundings. For the sake of 
navigation safety, the method of predicting the satellite positioning 
quality is thus worth considering not only at camera stations, but also 
(possibly using a different criteria) over the entire drone trajectory, 
including the take-off and landing zones. 

4.2. Poor or deniable GNSS environments and other operational scenarios 

The use of UAVs in unconventional spaces such as indoor or GNSS 
denied environments (where no GNSS signals can be received or they are 
unreliable, e.g., because of multi-path or strong electromagnetic in
terferences) are getting more popular, despite the additional challenges 
for the safety and the quality of the collected information. 

4.2.1. Can UAVs navigate without GNSS? 
Open-sky navigation can nowadays be considered as solved 

employing low-cost GNSS and inertial sensors available on the consumer 
electronics market. These are commonly employed, for example, in 
mature open-source and open-hardware ecosystems, e.g., (Meier et al., 
2012). On the contrary, when navigating without GNSS (e.g., because of 
obstructions, multi-path or jamming) no absolute position/velocity 
measurements are available with respect to a well-defined Earth ellip
soidal reference frame (e.g., WGS-84). Inertial sensors could fill the gaps 
between GNSS fixes, however, the ones currently employed in autopilots 
do not allow to cope with outage times greater than a few to dozens of 
seconds: after that, the position drift will become too severe (it can be 
hundreds of meters in a matter of minutes) even to ensure safe landing. 
Many ideas have been proposed to tackle this problem, which can be 
essentially divided in the following two approaches. The first is to obtain 
position/velocity measurements from other sources or sensors. Replac
ing or augmenting GNSS with other positioning methods requires us to 
distinguish whether we need absolute positioning with respect to 
geographic coordinates (e.g., in mapping applications) or if relative 
positioning with respect to the environment is sufficient. The second 
approach consists of attempting to reduce the drift in the position and 
attitude estimates obtained with inertial sensors by means of more so
phisticated models of such sensor and/or the platform. The main source 
of relative positioning observations is nowadays led by the visual and 
visual/inertial methods, such as visual and laser Simultaneous Locali
zation and Mapping (SLAM) (Artieda et al., 2009; Caballero et al., 2009; 
Cadena et al., 2016; Stachniss et al., 2016). In visual SLAM, monocular 
or stereo images are used in real-time to simultaneously construct a map 
of the environment and localize the camera (and thus the platform) with 
respect to it (Armenakis and Patias, 2019; Durrant-Whyte and Bailey, 
2006; Thrun and Liu, 2005) thus solving the guidance problem of UAVs 
without the need of a GNSS sensor (Cioffi and Scaramuzza, 2020; 
Scaramuzza et al., 2014). Visual SLAM algorithms can be divided in 
feature-based methods and direct methods. Feature-based methods rely 
on the tracking of distinctive features in the images (Campos et al., 2020; 
Mur-Artal et al., 2015) while direct methods rely on the actual pixel 
intensities, attempting to employ the entire image frame (Cremers, 

2017; Engel et al., 2014; Yang et al., 2020). Direct methods can generate 
denser representation of the environment (useful for collision avoid
ance) than feature-based algorithms, although their reconstruction can 
have lower geometric qualities (Gaoussou and Dewei, 2018). Both 
feature-based and direct methods are unable to detect tiny objects, 
making necessary the use of ultrasonic, infrared or time-of-flight sensors 
to further improve the collision avoidance in proximity of objects 
(typically <2 m). 

Typically, the maps generated with visual SLAM methods are not 
geo-referenced and their scale is not well determined (except for visual/ 
inertial systems, where the metric scale is determined to some extent, 
depending on the quality of the inertial sensors and their real-time bias 
determination). The limitation of these systems is that they depend on 
the presence of a sufficient unambiguous information in the images. 
SLAM systems can be deceived by repeating or self-similar patterns and 
cannot be used during night or in high dynamic range lighting condi
tions. However, promising research based on event cameras has been 
shown to largely mitigate lighting conditions issues (Gallego et al., 2020; 
Vidal et al., 2018). Another limitation is that cameras need to be care
fully calibrated beforehand. If an a priori, geo-referenced map is avail
able, visual based methods can localize with respect to it and thus 
produce absolute position estimates. In the last years, laser SLAM, or 
LOAM (Lidar Odometry and Mapping) has been implemented using low- 
cost multi-layer scanners (e.g., Velodyne24, Ouster25 and RoboSense42) 
and low-cost inertial sensors. While the sensor directly outputs a point 
cloud of the surroundings, successive scans need to overlap to recover 
the platform motion. Laser SLAM is applicable only with 3D scanners, 
2D scanners mounted on rotating supports (such as CSIRO/HoverMap, 
Zeb Horizon, GeoSLAM), or solid-state lidars (Nam and Gon-Woo, 
2021). Typically, laser SLAM algorithms rely on the successive regis
tration of locally consistent 3D scans by means of the Iterative Closest 
Point (ICP) algorithm (Chetverikov et al., 2002). However, fast platform 
motion, as is typical in UAVs, introduces non-negligible distortions in 
single scans which need to be corrected, e.g., by employing inertial 
sensors (Bosse et al., 2012; Ceriani et al., 2015). Modern laser SLAM 
algorithms are based on factor-graph formulation of the localization and 
mapping problem and are also capable of incorporating measurements 
from cameras (Lowe et al., 2018). The advantage of laser SLAM 
compared to visual SLAM is mainly given by the possibility to work in 
dark environments too (Sofonia et al., 2019). 

Alternative ways, to replace GNSS sensors or augment them with 
similar concepts are given, for instance, by Ultra-Wide Band (UWB) 
ranging sensors (Adams et al., 2001), or pseudolites (Amt and Raquet, 
2007; Rizos, 2013). These technologies mimic the GNSS principle of 
operation, where the receiver measures the distance with respect to 
multiple beacons for which the location is known a priori. These are 
typically placed on the ground and their position must be surveyed 
separately. Thus, operations are only possible in environments that have 
been structured beforehand. UWB signals are also affected by the 
environment (reflections, multi-path, etc.) and by obstructions. Never
theless, UWB beacons allow UAV to navigate even indoor (Queralta 
et al., 2020; Tiemann et al., 2015) and enable mapping in GNSS denied 
environments in the decimeter-level accuracy (Masiero et al., 2017). 

Other approaches attempt to reduce the drift caused by the inte
gration of noisy inertial readings without the need of position updates, 
as in the case of vision-based systems using Visual Odometry (VO) 
(Leutenegger et al., 2015; Wang et al., 2017), where the change of the 
camera position and orientation is determined by tracking local visual 
features and can be fused with inertial readings to control the position 
and orientation drift. While VO is substantially simpler than SLAM, the 
distinction between SLAM and VO is fading, as loop closure and global 
trajectory optimization are being added to VO systems to reduce the 

41 https://www.sensefly.com/whitepaper/generating-highly-accurate-3d-data 
-using-sensefly-albris-drone/ accessed on 12 September 2021 

42 https://www.robosense.ai/en/RS-LiDAR-M1 accessed on 12 September 
2021 

F. Nex et al.                                                                                                                                                                                                                                      

https://www.sensefly.com/whitepaper/generating-highly-accurate-3d-data-using-sensefly-albris-drone/
https://www.sensefly.com/whitepaper/generating-highly-accurate-3d-data-using-sensefly-albris-drone/
https://www.robosense.ai/en/RS-LiDAR-M1


ISPRS Journal of Photogrammetry and Remote Sensing 184 (2022) 215–242

230

long-term drift. In this regard, the first hardware implementations are 
also appearing (Suleiman et al., 2019). 

The knowledge of the physical properties of the UAV can be used to 
obtain extra observations useful for navigation without adding any 
further sensor: the control inputs to the motors and to the control sur
faces, as issued by the autopilot, can be used together with a physical 
model of the platform to obtain angular and linear acceleration pseudo- 
observations. These can then be fused with inertial ones in Extended 
Kalman Filters (EKFs) (Khaghani and Skaloud, 2016) and dynamic 
networks (Nisar et al., 2019). This approach is still in its infancy but has 
been shown to have the potential to mitigate position drift in GNSS 
denied environments by orders of magnitudes (Khaghani and Skaloud, 
2018). 

While nowadays the technology is ready for guiding a UAV in 
controlled environments without the need of a GNSS sensor, the appli
cation of academic research to the commercial sector is still young, 
namely because of the additional costs of the setup or because of diffi
culties of guaranteeing the performances, e.g., of vision-based systems in 
arbitrary conditions. On the other hand, no system is currently able to 
match the accuracy of RTK and PPK GNSS observations if not replacing 
those with special pseudolites (Rizos and Yang, 2019). In summary, all 
this makes it difficult today to perform accurate metric surveys of un
known environments without the stable and reliable reception of GNSS 
signals. 

More accurate navigation sensors, especially inertial ones, would be 
greatly beneficial in high-accuracy mapping applications: every time an 
accurate orientation estimate is needed, e.g., in LiDAR, aerial triangu
lation for corridor mapping and direct geo-referencing, the current 
generation of inertial sensors that fits the weight, size and cost con
straints of UAVs don’t provide sufficient quality, in terms of noise and 
bias instability. Advanced processing methods have been proposed to 
cope with lower quality inertial sensors in such applications, as 
described, for example, in (Cucci and Skaloud, 2019; Cucci et al., 2017) 
for rigorous integration of MEMS inertial measurements into BBA, and 
(Cledat and Skaloud, 2020) for photogrammetry to LiDAR integration. 
At the same time, simpler methods that were introduced long ago such 
as the use of absolute or relative position and/or orientation information 
obtained for INS/GNSS systems (Blazquez and Colomina, 2012b, 2012a) 
and whose potential for UAV orientation was practically demonstrated 
(e.g., (Rehak and Skaloud, 2017a, 2016; Skaloud et al., 2014)) are not 
available in commercial photogrammetric software yet (c.f., discussion 
in Section 3.1). 

4.2.2. What are the emerging operational scenarios? 
Beside the “classical” use of UAVs for mapping applications, new and 

more challenging operational scenarios have been emerging in the last 
years. Among them (i) the use of collaborative drones (swarms and 
integration with other systems, such as unmanned ground vehicles, 
UGV) and (ii) new solutions considering BVLOS flights promise to bring 
unmanned platforms closer to manned performances in many 
applications. 

Collaborative vehicles. Small unmanned aerial mapping platforms 
have limited payload capacity, and therefore may be limited to a single 
sensor, and limited flying time. This has pushed the use of two or more 
unmanned vehicle platforms in synergistic mode to perform cooperative 
exploration and mapping tasks, such as executing complimentary tasks 
for data collection, information sharing, path planning, co-mapping 
generation and validation, and change detection between the 3D map 
databases and the actual 3D geometry captured by the sensors of the 
platforms. Such multi-UAV collaborative operations offer higher scal
ability of the operations, more limited mission execution times, reduc
tion in risk due to redundancy, possibility of multi-modal data capturing 
and overall improvement in the performance for example in time-critical 
operations such as search and rescue (Arnold et al., 2018; Ruetten et al., 
2020). According to the implementation, UAVs could carry different 
sensors, could have partial / complete overlap between the surveyed 
areas and be operated in local or global reference systems. With UAV 
platforms operating in tandem over a large area and collecting data in 
sync (i.e., swarm type missions), tasks and actions can be divided 
amongst the platforms to operate in fully collaborative mode. The 
operating architectures vary from centralized control and communica
tion base-station of each UAV to distributed schemas of operations and 
information sharing among the UAVs. In this regard, more efficient 
communications (Chen et al., 2020) as well as Edge Computing (Ai et al., 
2018) are enabling the efficient exchange of tasks and data sharing 
information. 

In multi-UAV missions, path coordination and synergistic navigation 
(Albani et al., 2019; Jospin et al., 2019), environment exploration, task 
identification and sharing, operation synchronization and data fusion 
are areas to be addressed (Cledat and Cucci, 2017; Madridano et al., 
2021; Merino et al., 2012; Tosato et al., 2019). Many algorithms have 
been developed to guarantee the efficient coverage, complimentary 
sensing and mapping due to environmental complexity (e.g., occlu
sions), and mapping operations with data sharing (e.g., pose, area 
coverage, complimentary mapping from two sensors, rendezvous loca
tions). However, 3D navigation and mapping in large scale, natural, 
complex, and dynamic environments still remain an open research 

Fig. 9. Workflow for predicting mapping precision as in (Cledat et al., 2020b).  
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problem despite significant progress in this area (Cadena et al., 2016). 
The interest for multi-UAV SLAM approaches has grown in the last years, 
in many cases considering GNSS denied or low signal quality environ
ments (Trujillo et al., 2018). Most of the works on this topic consider 
centralized architectures for collaborative UAVs that allow for the 
sharing and fusion of information to efficiently produced fused maps, 
extending the features (e.g., relocalization, loop closure) of the classical 
(single platform) SLAM approaches to the multi-platform case (Mahdoui 
et al., 2020; Schmuck and Chli, 2017; Yang et al., 2018). Although most 
of these approaches are still in the simulation phase, the improvement of 
onboard sensors and communication technologies is spurring, wider 
adoption of AI approaches (e.g., reinforcement learning-based naviga
tion), as well as their clear potential in many applications are expected 
to further boost their development in the future. 

Synergistic operations are mostly between UAV-UAV but a growing 
number of examples of integrations between UAV and a ground moving 
vehicle manned or unmanned (UGV), where the cooperative mapping 
extends the capability of a single robot by sharing and merging data 
between group members (Butzke et al., 2015; Lin et al., 2013; Olson, n. 
d.; Zhang and Singh, 2018), is available in literature as well. Teams of 
mobile mapping platforms (UAV/UGV) can effectively explore and map 
the environment where they can ensure consistency by combining their 
data in shared maps (Ropero et al., 2019). Collaboration of aerial and 
ground unmanned mapping platforms improves the planning of a global 
path. Aerial views or a-priori terrain data can provide information for 
global route planning while the platform’s sensors can focus on 
resolving the surrounding local environment (Molina et al., 2017). UAV 
and UGV collaboration could involve real-time operations where UAV 
provide map data to the ground vehicle for route planning, ground 
mapping and synergistic mapping of occlusion based on multi-view data 
collection (Qin et al., 2019). 

Beyond Visual Line-of-Sight operations (BVLOS). The flying field 
operation of UAV is subject to jurisdiction of the regions where they 
operate and needs to comply to numerous restrictions. While the regu
lations may vary from country to country, the common denominator is 
to ensure the elimination and mitigation of risks from potential in-flight 
accidents with manned aircrafts operating in the same air space as well 
as accidents with people and damage to properties, and security con
cerns. The most common accepted rule is the operation of UAVs under 
Line of Sight (LOS) (Stöcker et al., 2017). That is, the platform is oper
ated under the unaided visual contact of the operator thus enabling the 
operator to maintain operational control of the UAV, scan the air space, 
scan for objects and know its location. An extension of LOS is the 
Extended Visual of Sight operation (EVLOS) where an extension of the 
beyond visual line of sight is obtained by using observers at different 
locations who keep the UAV in their line of sight and communicate their 
visual observations to the pilot. However, progress with the UAV ca
pabilities and the recognition of the benefits to cover far greater dis
tances for maximum efficiency (e.g., to handle extreme emergencies, 
fewer deployments to complete an air survey mission) has led to increase 
demand for Beyond Visual Line of Sight, where the UAV flies beyond the 
visual range of the operator while the operator pilots the UAV via a 
virtual cockpit (Davies et al., 2018). This allows UAVs to navigate 
without the direct supervision of human operator and conduct more 
complex asks (Dąbski et al., 2020; Wood et al., 2020). BVLOS is no 
longer dependent on the pilot to avoid any obstacles and the controlling 
of the UAV highly depends on data provided by onboard instruments 
transmitted via telemetry links as well as the ability of the UAV for 
situation awareness, that is the ability to sense and avoid obstacles. 
Certain countries are already considering permission for BVLOS opera
tions under various conditions such as in isolated areas, atypical 
airspace, and uncontrolled airspace (Alamouri et al., 2021). In general, 
safe UAV BVLOS operations require systems able to perform different 
tasks (Fang et al., 2018): (i) stream real-time UAV trajectories using 
telemetry transmitters and Automatic Dependent Surveillance- 
Broadcast (ADS-B) systems (Ropero et al., 2019); (ii) employ extended 

and reliable communication links; (iii) detect and track non-cooperative 
aircraft using Traffic Collision Avoidance System (TCAS) or a Unmanned 
Aerial System (UAS) Traffic Management system (UTM) (Hsieh et al., 
2020; McCarthy et al., 2020); (iv) be equipped with evasive maneu
vering algorithms for collision mitigation actions; (v) give the pilot vi
sual and audible alerts, including in case of any reduced functionality, 
such as latency and failure (vi) provide First Person View (FPV) video 
system, a flight termination system, and a Geo-fence and return-to- 
launch point functionalities. Additionally, pilots must be trained 
accordingly, including awareness of existing airspace classes, temporary 
flight restrictions, and the necessary mitigation actions in the event of an 
in-flight failure. 

5. Trends in UAV data processing and analysis 

UAV technology is at the cross-road of many domains. Research 
undertaken in adjacent fields (such as robotics and computer vision) 
influences how data are processed and exploited in geoscience and 
remote sensing too. This section only reports on the emerging trend in 
the development of autonomous UAVs for real-time mapping and deep 
learning methods for semantic analysis of UAV-collected data. These 
two elements look most promising to innovate the use of UAVs in remote 
sensing. Other topics such as offline image orientation or dense recon
struction are largely covered in other review papers and are intention
ally overlooked in this section. 

5.1. Towards autonomous UAVs 

Automation in UAV flights has been often perceived as a strategy to 
perform safer and more complete data acquisitions. Many developments 
in robotics show that autonomous flights could strongly boost data 
collection in remote sensing applications, paving the road for new 
research and applications. In Section 4.2.1, the potential of SLAM al
gorithms for real-time localization and mapping has been already dis
cussed. In the following, we report the state of the art and trends of 
autonomous navigation algorithms for UAVs and describe the current 
solutions to process the collected data in real-time. 

5.1.1. Is autonomous navigation getting real? 
Until a few years ago, UAV flights were mainly maneuvered by a 

pilot with a remote control: take-off, landing as well as the execution of a 
given flight were under the control of a human operator, though simple 
way point trajectories were controlled by an autopilot. In the last 
5–10 years, we have seen a growing number of commercial platforms 
(fixed-wing and rotor) able to reliably take-off, land and execute flight 
acquisitions in an autonomous way according to more complex different 
patterns (Cabreira et al., 2019; Murtiyoso and Grussenmeyer, 2017). 
These solutions are performed according to pre-planned flights (as no 
autonomous decision is taken) and rely on GNSS-based navigation (as 
discussed in Section 4.1). Additional sensors (such cameras and distance 
sensors) have been added on newer commercial platforms to detect big 
obstacles and avoid collisions preventing their flight too close to ob
stacles (or at least stopping them before the collision) but only very few 
recent models have the capability of detecting and circumventing ob
stacles (e.g., DJI Mavic Air 25). 

Autonomous navigation in unknown environments requires contin
uous spatio-temporal perception of environmental elements, under
standing of the scene situation through data and information, decisions 
on next stages to take, and ability to make quick knowledge-based de
cisions based on all these previous elements, with minimal or no inter
vention from any human operator. All this has been an open research 
topic in robotics for the last two decades, as witnessed by the huge 
number of scientific works published, most of them devoted to indoor 
environments (De Croon and De Wagter, 2018). Approaches to create 
maps from mobile platforms are either passive where one perceives the 
environment to simply build a map or active ones where additionally the 
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trajectory of the platform is planned to travel through the environment 
(Stachniss, 2009). These last approaches can be often divided in three 
different iterative steps: (i) sensing, (ii) localization and mapping (Sec
tion 4.2.1) and (iii) path planning. Different sensors are normally 
adopted in the autonomous navigation of a drone: mono- or stereo- 
cameras as well as lasers are used for mapping the surrounding envi
ronment. Inertial units and GNSS can be combined to localize the plat
form while ultrasound and IR cameras have been more recently added to 
detect obstacles in proximity of the UAV. Despite the development of 
miniaturized active sensors, the current trend in literature is the 
exploitation of RGB cameras that, beside their reduced weight, cost and 
energy consumption (Carrio et al., 2017), can be efficiently processed 
with onboard units delivering more complete and flexible information in 
real-time. 

Autonomous path planning refers to the sequence of decisions that 
the autonomous vehicle takes to create a set of collision free waypoints 
and reach the destination point. Each autonomous flight needs an 
overall objective to be accomplished, being it (i) to reach a target point 
or (ii) explore an unknown environment, with the aim of maximizing its 
information coverage (Zhou et al., 2020). The path is then constrained 
by different elements such as completeness of the acquisition, flight 
time, energy consumption, shortest path to fly or maneuverability limits 
of the used platform (Cabreira et al., 2019; Wang et al., 2015). 

If the goal of the approach is to reach a destination point, both offline 
and online algorithms can be found in literature. In the offline ap
proaches, trajectories are planned in advance given an already rough 
geometric knowledge of the environment that allows to plan a safe flight 
(Li et al., 2018). Different strategies can be used for this task (Aggarwal 
and Kumar, 2020; Bircher et al., 2016): in most cases the 3D environ
ment is discretized in sets of nodes and then the flight is optimized ac
cording to algorithms such as Rapid-exploring Random Trees (RRT) 
(Yang et al., 2013), RRT-star (RRT*), A-star (A*), probabilistic roadmaps 
(PRM), or particle swarm optimization (PSO) aiming at the generation of 
collision free and shortest paths (Roberge et al., 2013). According to the 
implementation, these algorithms can be exclusively run offline or can 
update the plan considering the new information collected during the 
flight: in this case, the next move of the platform is iteratively re- 
computed to reach the final target. These online methods consider a 
dynamic and partially unknown environment where the exploration of a 
new part of the space progressively builds the surrounding 3D envi
ronment in a map. Most of the approaches use octomaps (Wurm et al., 
2010) to quickly represent and update the 3D environment. Obstacles 
can be typically divided in static and dynamic and in many approaches 
the merging of two different types of path (global and local) are com
bined together (Oleynikova et al., 2016). Global flight path defines the 
best possible path according to the prior knowledge of the path, while 
local planners recalculate the path to avoid possible dynamic obstacles 
(Marin-Plaza et al., 2018). The interaction among these two planners 
can vary according to the implementation changing the way the drone 
avoids obstacles (Roberge et al., 2013; Tordesillas et al., 2019). 

The absence of a target destination allows the exploration of 
completely unexplored environments: the general idea is to maximize 
the information gain achieved at each movement of the drone, deter
mining the next point of view on the boundary between the known and 
the unexplored space. These frontier-based approaches are generally 
conceived to generate 3D reconstruction, detect objects or classify the 
captured regions. Algorithms devoted to 3D reconstruction are often 
called next-best-view and optimize a function considering parameters 
such as 3D uncertainty of the 3D reconstructed points (Bai et al., 2016; 
Palazzolo and Stachniss, 2018) or completeness of the generated point 
cloud (Mostegel et al., 2016). Other methods aim at maximizing the 
coverage of a certain area according to a utility function that considers a 
certain information gain or to increase the knowledge of an area ac
cording to some rationale such as the presence of an object of interests in 
the neighborhood. Most of the early implementations of autonomous 
navigation were implemented for the exploration of confined (indoor) 

unknown environments, while a growing trend of autonomous ap
proaches are nowadays developed for outdoor spaces and a larger va
riety of tasks (Popović et al., 2020). 

The development of autonomous driving strategies coupled with the 
surge in deep learning have outsourced several solutions (such collision 
avoidance strategies) that influenced the development of drone algo
rithms (Fraga-Lamas et al., 2019; Zhao et al., 2018). Traditional SLAM 
algorithms (see Section 4.2.1) are frequently supported by deep learning 
networks (Tateno et al., 2017; Yang et al., 2020) and the 3D recon
struction is fused with semantic segmentation, to reduce the effect of 
dynamic objects in the scene (Yu et al., 2018) or combining geometric 
and semantic information mutually improving the scene understanding 
of the 3D environment (Bavle et al., 2020; Dang et al., 2019). The 
generation of quick depth maps thanks to single (Luo et al., 2019; 
Madhuanand, 2021; Marcu et al., 2019) and stereo image (Cigla et al., 
2018) depth estimations as well as the improvement of miniaturized 
GPU devices installed on drones (Cetin and Yilmaz, 2016) had boosted 
the large adoption of these algorithms to detect obstacles (Fraga-Lamas 
et al., 2019), and scale the scene only relying on images (using Single 
Image Depth Estimation algorithms, see Section 5.2). On the other hand, 
collision avoidance can be embedded in end-to-end data driven solu
tions where Convolutional Neural Networks (CNNs) output commands 
such as speed and change in direction from a pre-planned path instead of 
outputting simple depth maps (Chakravarty et al., 2017; Dai et al., 2020) 
or to avoid obstacles. Networks trained with dedicated datasets have 
also shown to follow path, rails or roads, dynamically avoiding obstacles 
(Loquercio et al., 2018; Smolyanskiy et al., 2017). Autonomous navi
gation along specific trajectories can also be trained using reinforcement 
learning, where the UAV receives rewards for actions taken in the 
environment that work towards achieving its objectives (Szeremeta and 
Armenakis, 2021). 

Most of the approaches have been conceived for indoor (confined) 
environments, or to follow structured features like roads or rivers 
(Nuske et al., 2015), however, some fully autonomous navigation so
lutions in cluttered environments are also available (Maciel-Pearson 
et al., 2019). Different frameworks such as reinforcement learning from 
simulated or real datasets (Gandhi et al., 2017; Ramezani Dooraki and 
Lee, 2021; Tai et al., 2017) or networks learning the temporal de
pendencies (such as Recurrent Neural Networks) (Kelchtermans and 
Tuytelaars, 2017) for image sequences are further increasing the adop
tion of these methods in new and more challenging applications. Despite 
the great interest for all these solutions, most of them are still “research” 
solutions while their market adoption will need the implementation of 
further rigorous tests to assess and certify their safety in unattended 
operational conditions. 

5.1.2. How to process UAV data in real-time?. Both real-time mapping 
and autonomous navigation entail the capacity to quickly process the 
acquired images and reliably deliver the needed information. In this 
regard, onboard computing and communication technologies are en
ablers for intelligent small UAV mapping systems. Communications 
between mobile platforms or between platforms and infrastructure 
through Wi-Fi, radio as well as edge computing serve for exchange of 
tasks and data sharing information (Zeng et al., 2019). Fast (near real- 
time) processing can be achieved through onboard dedicated devices 
or streaming the data to remote computers (Fraga-Lamas et al., 2019). 

In the aerial photogrammetric domain, some first examples of real- 
time 3D mapping have been implemented on UAV platforms with the 
aim of delivering real-time image orientation and rough orthophoto 
generation (Bu et al., 2016; P. Chen et al., 2018b; Hein et al., 2019; 
Hinzmann et al., 2018; Kern et al., 2020; Wang et al., 2019; Zhao et al., 
2021; Zhou, 2009). These methods have mainly adapted robotics ap
proaches (such as SLAM algorithms) to photogrammetric needs with the 
aim of delivering geometrically consistent maps looking at the pro
cessing speed as a priority more than the geometric accuracy of the 
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delivered results. The main bottleneck/challenge lies in the reduced 
processing capabilities that has limited the number of tasks that can be 
performed onboard. This is often mitigated by using approximations in 
the image orientation, adopted in robotics, or simplified intermediate 
products (such as the use of sparse point clouds or rough point cloud 
densification strategies) in the orthophoto generation. 

The surge in deep learning has been recently pushed by the devel
opment of efficient GPUs capable of processing complex CNNs in 
reduced time. Beside the adoption of GPU installed on powerful work
stations, miniaturized solutions have been developed to process data on 
the edge (i.e., close to the sensor) to prevent problems due to limited or 
absent connection in the field. The commitment of many leader com
panies (such as NVIDIA43, Google44 and Intel45) to develop relatively 
cheap (few hundreds euro) devices, easy to program using conventional 
libraries (e.g., PyTorch46, TensorFlow47) is boosting their large adoption 
on UAVs deployed in the field (Wang et al., 2018). The development of 
deep learning algorithms for collision avoidance and dense re
constructions is further extending the potential of these boards to 
traditional mapping purposes (Bloesch et al., 2018; Tateno et al., 2017). 
The processing speed of these devices is not comparable to high-end 
desktop boards (almost one order slower) but several applications 
with relatively shallow networks can be performed in real-time 
(Loquercio et al., 2018). These devices have relatively little energy 
consumptions compared to their full-size versions and they can be still 
embedded on many UAVs (Qasaimeh et al., 2019). Examples of these 
methods can be currently found in road monitoring (Fan et al., 2019), 
emergency management (Tijtgat et al., 2017), vehicle detection (Azimi, 
2019; Balamuralidhar et al., 2021; Meng et al., 2020; Wu et al., 2019) 
and multiple object tracking (Hossain and Lee, 2019), among others. 
The effort in the miniaturization of these devices has led to the devel
opment of autonomous platforms of few grams in weight (Palossi et al., 
2019) designed for exploration purposes. These solutions are perme
ating the market, with the introduction of commercial drones able to 
track objects, perform 3D reconstructions and semantic understanding 
for recreational purposes48. 

Although miniaturized solutions are growing, onboard computing 
still has some limitations given by the processing speed, power con
sumption and the level of customization of the drone. When small la
tencies are acceptable, streaming the data on a remote PC for processing 
can still be an option. Several examples of these approaches have been 
developed using local networks (such as wi-fi) or radio connections and 
cloud engines to allow the stream of images, videos and geolocalization 
of the drone (Li-Chee-Ming and Armenakis, 2014). Traditional GSM 
connections (i.e., 4G) can be also used for relatively limited amounts of 
data. The development of Software Development Kit (SDK) for many 
commercial platforms has allowed for the implementation of these so
lutions for different applications too (Meng et al., 2020; Nex et al., 
2019). The advent of 5G communications could further increase these 
typologies of architecture in the near future (Ullah et al., 2019; Zeng 
et al., 2019). Further edge computing and IoT (Internet of Things) so
lutions will allow the computing to be done at or near the source of data. 

Dedicated 24/7 solutions aiming at surveillance and monitoring of 
large industrial plants using UAVs are currently offered by a growing 
number of companies in the World (Percepto37, Mapture40 and 

Skydio38) coupling UAVs with dedicated docking stations to recharge/ 
replace the batteries and exchange data (See Section 3.2.2). In many 
cases, UAVs are considered flying sensors, already embedded in larger 
IoT networks (Saha et al., 2018; Sterbenz, 2016): the acquired images 
become part of a larger on-line processing of heterogeneous data in real- 
time. In these solutions, the development of hybrid strategies with on
board computing and remote processing on a cloud seems the most 
effective solution, at the moment. The coming development given by 
faster communication and smaller latencies (i.e. 5G) will probably 
further revolutionize the way to process the data, pushing the devel
opment of real-time solutions and new services adopting UAVs. 

5.2. What are the peculiarities of deep learning for UAV image semantic 
analysis? 

Despite the great interest in the last years, the number of published 
works adopting deep learning methods for UAV images for semantic 
scene analysis is still relatively limited (Osco et al., 2021). UAVs offer 
high potentials, and additional challenges for the extraction of semantic 
information, due to the very high spatial resolution and the 3D data 
acquisition capability. Papers using deep learning mainly focused on (i) 
image classification, (ii) semantic segmentation (or pixel-wise classifi
cation) and (iii) object detection. Examples of image classification are 
presented by (Natesan et al., 2019) to classify individual tree species 
using high-resolution RGB images, or by (Kerle et al., 2019b) to detect 
structural building damages after earthquakes. Segmentation algorithms 
are used to process UAV data in a wide range of applications, such as 
weed mapping over rice fields (Huang et al., 2018), semantic segmen
tation of plant species from high-resolution UAV imagery (Kattenborn 
et al., 2019), monitoring of mining activities (Giang et al., 2020) and 
delineation of visible cadastral boundaries (Crommelinck et al., 2019; 
Xia et al., 2019). (Gevaert et al., 2020) propose a deep learning frame
work to detect changes in an informal settlement using UAV imagery 
and a detailed elevation model (Fig. 10) while (Ferreira et al., 2020) 
incorporate different architectures to map individual palm trees in the 
Amazon forest using RGB UAV images.At last, example of object 
detection are discussed by (Tang et al., 2017) for vehicle detection, 
while (Han et al., 2019) customized a network to detect tiny objects in 
UAV images. Environmental applications such as mammal detection in 
the African savannah (Kellenberger et al., 2018), muck pile character
ization (Schenk et al., 2019), diseases on crops such as the detect fla
vescence dorée on grapevine (Musci et al., 2020) or detection of Antarctic 
seals and flying birds (Mustafa et al., 2019) can be also found in the 
literature. 

The used networks vary in-depth, number of parameters, complexity, 
memory and computational cost (Bianco et al., 2018). Most of these 
works start from popular computer vision networks that often lead to 
satisfactory results thanks to fine-tuning or small modifications to pro
cess UAV data. Resnet-like networks (He et al., 2016) are often adopted 
in classification, while encoder-decoder networks (Badrinarayanan 
et al., 2017; Noh et al., 2015; Ronneberger et al., 2015), dilated (or 
atrous) convolutions (Persello and Stein, 2017; Sherrah, 2016; Yu and 
Koltun, 2016) or their combinations such as DeepLab efficiency (Chen 
et al., 2018a) are frequently used in semantic segmentation. State of the 
art Yolo networks (Liu et al., 2020) are commonly used as a starting 
point in object detection. This can be explained considering that UAV 
data have higher resolution compared to airborne and satellite images. 
In this regard, traditional machine learning techniques, based on feature 
handcrafting, easily stagnates in the analysis of sub-meter and sub- 
decimetre resolution nadir imagery, where spatial-contextual features 
carry most of the discriminative information (Gevaert et al., 2016). Deep 
learning has shown the ability to improve accuracies by learning high- 
level, deeper spatial features. This has often led to consider UAV ac
quisitions comparable to common computer vision applications, over
looking the additional variability of used sensors, typologies of 
acquisitions and applications of interest. 

43 https://www.nvidia.com/en-us/autonomous-machines/embedded-syste 
ms/ accessed on 12 June 2021  
44 https://www.datacenterknowledge.com/machine-learning/google-more- 

doubles-its-ai-chip-performance-tpu-v4 accessed on 12 June 2021  
45 https://www.intel.com/content/www/us/en/products/details/processors 

/movidius-vpu.html accessed on 12 June 2021  
46 https://pytorch.org/ accessed on 28 June 2021  
47 https://www.tensorflow.org/ accessed on 28 June 2021  
48 https://builtin.com/artificial-intelligence/drones-ai-companies accessed on 

14 June 2021 
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Successful off-the-shelf computer vision models are not always the 
best solution for the task at hand as domain knowledge can often help 
design or adapt networks to the specific characteristics of the UAV data 
and the semantic problem. Computer vision networks are designed for 
RGB images, but they need to be adequately modified to fully exploit the 
spectral information acquired by multispectral and hyperspectral sen
sors. This may require more than naively incrementing the number of 
filters in the first network layer (Li et al., 2019) that are often not 
considered. Compared to airborne and satellite data, the UAV spatial 

resolution influences the expected spatial auto-correlation and, there
fore, the network’s required receptive field. It is therefore expected that 
higher-resolution imagery demands for networks with larger filters’ 
FoV. Another information that significantly influences the analysis task 
(and the design of deep learning networks) is the acquisition geometry of 
UAV imagery. In contrast to large computer vision datasets (often used 
for pre-training), where the same object (e.g., a person) could be at 
different distances from the camera, in UAV imagery, the distance to the 
object of interest is generally fixed, although oblique and nadir views 

Fig. 10. Results of the semantic change detection between the UAV imagery at t1 (a) and t2 (b) using RGB + DSM data (c) to determine the change mask (Gevaert 
et al., 2020). 
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make a large difference in terms of appearance of the objects. This can 
often reduce the variability in the appearance of objects and can provide 
an important prior knowledge of the average object size (in pixels). In 
these cases, lighter networks tailored to the characteristics of the data 
and problem at hand could be preferred to facilitate training, reducing 
computational cost, and improving generalization ability. 

A significant challenge that often precents the use of deep learning 
for UAV is the lack of freely available datasets for training. Some recent 
introduced benchmarks are trying to mitigate this problem (Lyu et al., 
2020), but collecting field data or manual digitization is the only solu
tion for generating a representative training set. The lack of dedicated 
datasets also limits the use of multi-task learning techniques, despite 
their higher performance achieved taking advantage of the relationship 
between tasks. 

In most of the acquisitions, UAV data provide the additional op
portunity to extract 3D information in the form of digital models or point 
clouds. This additional information contributes to characterize spatial 
features of target objects in the 3D environment. Promising results have 
been shown in Gevaert et al. (2018) where 2.5D topographic and 3D 
geometric features are integrated into a classical machine learning 
workflow to improve accuracy in complex classification problems. This 
integration of 2D and 3D information could lead to improved perfor
mance in many other applications in the future. Another interesting 
trend is given real-time applications (discussed Section 5.1). These de
velopments also boost the need for optimized and lighter architectures, 
which can run on small processor and achieve performances similar to 
deeper networks (Balamuralidhar et al., 2021; Yang et al., 2021). 

6. Conclusions 

This paper has critically reviewed the most prominent developments 
on UAVs for geoscience and remote sensing applications, paying atten
tion to the elements coming from adjacent domains that could influence 
their use in the upcoming years. Onboard sensors development and their 
optimal use, flight planning and orientation/navigation issues as well as 
some relevant issues on efficient processing and analysis of the collected 
data have been detailed. The best practises to follow using the available 
technologies as well as their still existing limitations have been reported. 
The adoption of new solution and technologies that will influence future 
trends of UAVs have also been presented. From this analysis, several 
technological and scientific challenges as well as many opportunities 
can be observed. 

6.1. Current challenges 

Both passive and active sensors installed on UAVs have largely 
improved in the last few years. If past sensors were mainly “adaptations” 
of terrestrial applications, customized solutions for UAVs are nowadays 
on the market. Low-cost solutions enable the acquisition of decent 
quality data in many applications, while high-end solutions are often 
very close, in terms of performance, to airborne solutions. In this case, 
costs, energy consumption and (often size and weight) still represent a 
limit to make UAV technology more competitive with traditional solu
tions in a wider range of applications. 

While multispectral cameras have already reached mature levels and 
are used in practical applications, hyperspectral is evolving rapidly and 
is largely used by the research community. Further development is 
required to reach the consumer or wider professional/commercial 
markets. Hyperspectral sensors must be further miniaturized preferably 
to weight well below one kilogram. The wide variety of technical 
implementations makes the development of efficient solutions for pro
cessing and analytics challenging. The radiometric correction of 
hyperspectral datasets is challenging as UAVs are operated in varying 
conditions, while efficient and established chains for data capture and 
processing as well as solutions to manage large spectral data are still 
missing. In the same way, LiDAR instruments are still relatively 

expensive and heavy to cover large areas. However, the implementation 
of low-cost and smaller sensors, the tighter integration with navigation 
and/or image sensors, and the higher point cloud density compared to 
airborne systems promise to make these instruments a valid alternative 
to traditional terrestrial surveys too. 

UAVs install miniaturized (and often high-quality) inertial and 
positioning sensors: these instruments need to be carefully integrated 
together when assembling a UAV or often re-calibrated to verify the 
specifications provided by the manufacturer. The steps to accomplish 
this process have been presented, showing how the airborne procedures 
can be adapted to UAV platforms. These procedures could allow to 
periodically calibrate the platforms with relatively easy and reproduc
ible steps. If the quality of the data collected has improved, the UAV 
productivity has also increased thanks to the improvement of the bat
tery life, although surveyed areas are still at least one order of magni
tude lower than using a manned airplane. 

Nowadays best practices on flight planning, data acquisition and 
adjustment allow for the effectiveness of UAV flights to be maximized, 
reaching accuracies compatible with the requirements of many mapping 
applications. The introduction of more automated and intuitive software 
to plan flights and acquire data has enabled many (often unexperienced) 
practitioners to adopt UAVs in their everyday surveying activities. As a 
countereffect, this has often generated false expectations on the quality 
of the used platforms (installing low-cost sensors) and in the accuracy of 
the performed surveys. Many problems such as best practices on the use 
of RTK/PPK sensors, synchronization and calibration of multiple sensors 
are often overlooked. 

Although regulations provide clarity on the use of flying platforms, 
several restrictions are still in place, limiting their use. BVLOS applica
tions could represent a big game-changer for UAV technology, but they 
are still largely unexplored, not only due to lack of platforms capable of 
long duration flights with reasonable payloads. A challenge of the 
research community will be, therefore, to implement safer and more 
reliable BVLOS flight strategies to expedite the acceptance of these types 
of flights. One possible solution could be given by the integration of 
GNSS/IMU, SLAM and communication technologies for robust failsafe 
navigation and collision avoidance in automated operations. In addition 
to the mentioned technical challenges, still the ongoing development of 
currently quite complex regulation procedures may delay the use of 
BVLOS in practice (Alamouri et al., 2021). 

Traditional data processing has reached its maturity, as confirmed 
by the flourishing of commercial and open-source photogrammetry 
workflow solutions. However, users’ needs are evolving, pushing the 
implementation of new algorithms and solutions to enable UAV tech
nology with new features. Faster and miniaturized hardware compo
nents for real-time processing as well as the surge of deep learning 
algorithms are influencing all the steps of data processing from the 
autonomous navigation of the UAV to the 3D reconstruction and the 
semantic understanding of the scenes. Many algorithms on UAVs require 
the complex interaction and integration of sensing, planning and “un
derstanding” in interpreting and reacting to the external environment. 
Early semi-autonomous path planning algorithms are currently 
conceived for infrastructure monitoring, patrolling, 3D reconstruction as 
well as simple classification or detection tasks, but their extended use on 
more general applications has still to come. Although some solutions 
appear in commercial platforms, their wider adoption seems to be still 
quite far as no rigorous ways to assess (and in the future to certify) the 
reliability and safety of such systems, particularly during unattended 
operations outside classical test scenarios, already exist. 

Considering scene semantic understanding tasks, UAV acquisitions 
have specific characteristics in terms of acquisition conditions (illumi
nation, viewing angle), phenological state of vegetation, and set of se
mantic classes or target objects, where customized networks should be 
coupled with large, dedicated training datasets. Although available an
notated UAV datasets are progressively increasing, their number is still 
insufficient resulting in the request of collecting extra field data for each 
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acquisition campaign. 

6.2. Future opportunities 

Despite the massive growth seen in the last decade, the demand for 
unmanned vehicles capable of replacing traditional surveying and 
mapping techniques in several activities is still high. The market for 
UAVs had been expanding in unexpected domains until a few years ago. 
UAVs are at the crossroad between computer science, robotics and 
remote sensing, as well as other application domains and promise to be 
an active investigation area in the upcoming years too. The general 
demand from the market is for even more accurate, autonomous, reli
able (and possibly) cost-limited platforms. In particular, the increase in 
the level of automation of UAV operations will open new opportunities 
for this technology: precision farming, infrastructure and natural hazard 
monitoring or, still, smart cities pledge to be among the most popular 
application areas in geoscience and remote sensing in the near future. 

On the hardware domain, the improvement in the sensor miniatur
ization and surge of new solutions, quality and accuracy as well as in the 
battery-life have so far only partially made UAV an alternative to 
airborne systems and traditional surveying instruments. However, the 
yearly release of new and more efficient sensors, platforms and power 
systems are progressively closing this gap. Compared to manned plat
forms, UAVs could represent a valuable solution thanks to higher reso
lutions and flexibility in data collection (allowing for customized 
acquisitions) and every day closer productivities. The development of 
more reliable frameworks to increase the use of emerging scenarios such 
as collaborative (air-air and ground-air) platforms and the growing 
automation of flights will further close the gap between UAV and 
manned aerial and terrestrial surveys. The extensive use of recharging 
stations for commercial UAVs and their easier connection to larger 
sensor networks (making UAVs part of IoT networks) will give an 
additional degree of freedom to conceive new applications with short 
revisiting periods and ubiquitous data collections. In this regard, UAV- 
based data capture and processing could replace traditional surveying 
methods in many activities requiring repeated data collection (e.g., 
progress monitoring in construction). 

Autonomous UAVs will become a reality thanks to more advanced 
algorithms enabling safer navigations, understanding of the environ
ment and autonomous decision-making capacity. Collision avoidance 
and autonomous navigation in unknown environments, semantic anal
ysis of the collected and even SLAM algorithms are already taking 
advantage of deep learning methods: this process promises to lead to a 
major improvement in the development of safe and autonomous UAVs 
and will be the main driver in the improvement of multiple applications. 
Given the concurrent work of different domains and the optimization of 
dedicated hardware to run them onboard and in real-time, this trend will 
grow in the future. This process will be facilitated by the availability of 
more complete training datasets (including synthetic data as well) or by 
emerging approaches such as self-supervised learning, reinforcement 
learning or the automatic generation of pseudo-labels exploiting already 
existing data (Gevaert et al., 2018). Questions regarding the trans
ferability of these models to heterogenous and unexpected operational 
conditions will need to be addressed with rigorous and innovative 
strategies. 

The technological and scientific improvements highlighted in this 
paper will pave the path for the adoption of UAVs in new domains and 
applications. However, an important role will be played in all these 
scenarios by the establishment of trusted (and regulation compliant) 
BVLOS frameworks that will enable UAVs to overcome current con
straints facing the technology in terms of extension and human 
supervision. 
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Näsi, R., Honkavaara, E., Blomqvist, M., Lyytikäinen-Saarenmaa, P., Hakala, T., 
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Tuominen, S., Näsi, R., Honkavaara, E., Balazs, A., Hakala, T., Viljanen, N., Pölönen, I., 
Saari, H., Ojanen, H., 2018. Assessment of Classifiers and Remote Sensing Features of 
Hyperspectral Imagery and Stereo-Photogrammetric Point Clouds for Recognition of 
Tree Species in a Forest Area of High Species Diversity. Remote Sensing 10, 714. 
https://doi.org/10.3390/rs10050714. 

Ullah, H., Gopalakrishnan Nair, N., Moore, A., Nugent, C., Muschamp, P., Cuevas, M., 
2019. 5G Communication: An Overview of Vehicle-to-Everything, Drones, and 
Healthcare Use-Cases. IEEE Access 7, 37251–37268. https://doi.org/10.1109/ 
ACCESS.2019.2905347. 

Uto, K., Seki, H., Saito, G., Kosugi, Y., Komatsu, T., 2016. Development of a Low-Cost 
Hyperspectral Whiskbroom Imager Using an Optical Fiber Bundle, a Swing Mirror, 

F. Nex et al.                                                                                                                                                                                                                                      

https://doi.org/10.3390/s19081821
https://doi.org/10.3390/s19081821
https://doi.org/10.1109/TII.2012.2198665
https://doi.org/10.3390/asi1040044
https://doi.org/10.1007/978-3-319-24574-4_28
http://refhub.elsevier.com/S0924-2716(21)00328-2/h1075
http://refhub.elsevier.com/S0924-2716(21)00328-2/h1075
http://refhub.elsevier.com/S0924-2716(21)00328-2/h1075
https://doi.org/10.1016/j.isprsjprs.2014.12.020
https://doi.org/10.1109/CCWC.2018.8301662
https://doi.org/10.1109/ISMA.2008.4648819
https://doi.org/10.1109/MRA.2014.2322295
https://doi.org/10.1016/j.rse.2009.03.001
https://doi.org/10.5194/isprs-annals-IV-2-W5-163-2019
https://doi.org/10.5194/isprs-annals-IV-2-W5-163-2019
https://doi.org/10.1109/ICRA.2017.7989445
http://refhub.elsevier.com/S0924-2716(21)00328-2/h1120
http://refhub.elsevier.com/S0924-2716(21)00328-2/h1120
http://refhub.elsevier.com/S0924-2716(21)00328-2/h1125
http://refhub.elsevier.com/S0924-2716(21)00328-2/h1125
https://doi.org/10.1016/j.isprsjprs.2006.07.003
https://doi.org/10.5194/isprsarchives-XL-3-W1-123-2014
https://doi.org/10.1109/IROS.2017.8206285
https://doi.org/10.1016/j.jag.2019.05.011
https://doi.org/10.1016/j.jag.2019.05.011
http://refhub.elsevier.com/S0924-2716(21)00328-2/h1160
https://doi.org/10.3390/rs9050459
https://doi.org/10.3390/rs12213625
https://doi.org/10.3390/electronics6010015
https://doi.org/10.3390/electronics6010015
https://doi.org/10.1109/JSSC.2018.2886342
https://doi.org/10.1109/JSSC.2018.2886342
https://doi.org/10.3390/rs61111013
https://doi.org/10.3390/rs61111013
https://doi.org/10.3390/rs10122068
https://doi.org/10.1109/IROS.2017.8202134
https://doi.org/10.1109/IROS.2017.8202134
https://doi.org/10.1109/RSIP.2017.7958795
https://doi.org/10.1109/CVPR.2017.695
https://doi.org/10.1109/CVPR.2017.695
http://refhub.elsevier.com/S0924-2716(21)00328-2/h1225
http://refhub.elsevier.com/S0924-2716(21)00328-2/h1225
http://refhub.elsevier.com/S0924-2716(21)00328-2/h1225
http://refhub.elsevier.com/S0924-2716(21)00328-2/h1225
http://refhub.elsevier.com/S0924-2716(21)00328-2/h1225
https://doi.org/10.1007/11008941_27
https://doi.org/10.1109/IPIN.2015.7346960
https://doi.org/10.1109/ICCVW.2017.247
https://doi.org/10.1109/ICCVW.2017.247
https://doi.org/10.1109/JSTARS.2019.2911547
https://doi.org/10.1109/JSTARS.2019.2911547
https://doi.org/10.1080/01431161.2016.1252477
https://doi.org/10.1109/WoWMoM.2019.8793043
https://doi.org/10.1109/WoWMoM.2019.8793043
https://doi.org/10.3390/s18051351
https://doi.org/10.3390/info10110349
https://doi.org/10.3390/info10110349
https://doi.org/10.3390/rs10050714
https://doi.org/10.1109/ACCESS.2019.2905347
https://doi.org/10.1109/ACCESS.2019.2905347


ISPRS Journal of Photogrammetry and Remote Sensing 184 (2022) 215–242

242

and Compact Spectrometers. IEEE J Sel. Top. Appl. Earth Observations Remote 
Sensing 9, 3909–3925. https://doi.org/10.1109/JSTARS.2016.2592987. 

Vallet, J., Gressin, A., Clausen, P., Skaloud, J., 2020. Airborne and mobile LiDAR, which 
sensors for which application? ISPRS - International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B1-2020, 
pp. 397–405. https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-397-2020. 

Varbla, S., Ellmann, A., Puust, R., 2021. Centimetre-range deformations of built 
environment revealed by drone-based photogrammetry. Automation in Construction 
128, 103787. https://doi.org/10.1016/j.autcon.2021.103787. 

Vastaranta, M., Yrttimaa, T., Saarinen, N., Yu, X., Nurminen, K., Karila, K., Kankare, V., 
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