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Abstract

Today, automatic control is integrated into a wide spectrum of real-world systems such as
electrical grids and transportation networks. Many of these systems comprise numerous
interconnected agents, perform safety-critical operations, or generate large amounts of
data. Their automation, therefore, must address the challenges pertinent to these three
characteristics. Specifically, in multi-agent systems (MASs), one common objective is
that agents reach consensus on state or output variables for achieving a desired collective
behavior. For consensus in large MASs, distributed controllers employing a communi-
cation network are required. When distributed architectures are used, the security of
the closed-loop system can be compromised due to the vulnerability of the communi-
cation network to adversarial interferences called cyber attacks. Timely detection of
attacks is vital for ensuring security of safety-critical systems. Finally, it is relevant in
data-rich systems to develop control and state-estimation methods that provide guar-
antees by using a finite amount of data and bypassing the need of knowing system models.

Composed of three parts, this thesis contributes to address the abovementioned challenges
of modern control systems. As an example, DC microgrids (DCmGs) are considered
throughout the thesis for the development and validation of the proposed methods. The
first part focuses on distributed consensus protocols. We first investigate the problem of
state consensus in general linear interconnected MASs (LIMASs), for which we provide
conditions based on the physical and communication graph properties as well as system
matrices. Our results show that weak physical coupling and well-connected graphs are
favorable features for consensus. We then focus on nonlinear DCmGs and propose a novel
distributed controller to achieve voltage balancing and current sharing, which is a specific
case of output consensus. By exploiting the structure of DCmG dynamics, we provide
conditions on the attainment of these objectives and the stability of the closed-loop system.

In the second part, a distributed cyber-attack detection scheme is developed for LIMASs
controlled in a distributed fashion. The detection architecture comprises local monitoring
units collocated with each agent and checking the presence of cyber attacks in variables

iii



Abstract

communicated by neighboring agents. Each unit estimates the states of local and nearby
agents, and detects an attack if a suitably defined error is sufficiently large. A thorough
detectability analysis considering different types of attacks is also performed.

The final part of the thesis provides direct data-driven methods for control and state
estimation based on finite data. First, we look at the worst-case optimal tracking
problem in presence of measurement noises satisfying a quadratic bound. Control design
is formulated as a semidefinite program (SDP), whose computational complexity is
independent of the amount of data. Then, we turn our attention to state estimation in
presence of unknown inputs, for which we present data-driven necessary and sufficient
conditions. Under these conditions, a novel data-driven state estimation method with
stability guarantees is provided.

Keywords: interconnected multi-agent systems, microgrids, distributed consensus,
cyber-attack detection, unknown-input observers, data-driven control, data-driven state
estimation.
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Résumé

Aujourd’hui, l’automatisation est intégrée dans un large éventail de systèmes du monde
réel, tels que les réseaux électriques et de transport. Beaucoup de ces systèmes com-
prennent de nombreux agents interconnectés, effectuent des opérations critiques en termes
de sécurité ou génèrent de grandes quantités de données. Leur automatisation doit donc
relever les défis liés à ces trois caractéristiques. Plus précisément, dans les systèmes
multi-agents (MAS), un objectif commun est que les agents parviennent à un consensus
sur les variables d’état ou de sortie pour obtenir un comportement collectif souhaité.
Pour obtenir un consensus dans les grands MAS, des contrôleurs distribués utilisant un
réseau de communication sont nécessaires. Lorsque des architectures distribuées sont
utilisées, la sécurité du système en circuit fermé peut être compromise en raison de la
vulnérabilité du réseau de communication aux interférences adverses appelées attaque
cybernétique. La détection opportune des attaques est vitale pour assurer la sécurité
des systèmes critiques de sécurité. Enfin, il est pertinent dans les systèmes riches en
données de développer des méthodes de contrôle et d’estimation d’état qui fournissent
des garanties en utilisant une quantité finie de données et en contournant la nécessité de
connaître les modèles du système.

Composée de trois parties, cette thèse contribue à relever les défis susmentionnés des
systèmes de contrôle modernes. A titre d’exemple, les microgrids DC (DCmG) sont
considérés tout au long de la thèse pour le développement et la validation des méthodes
proposées. La première partie se concentre sur les protocoles de consensus distribués.
Nous étudions d’abord le problème du consensus d’état dans les MAS linéaires inter-
connectés (LIMAS) généraux, pour lequel nous fournissons des conditions basées sur
les propriétés du graphe physique et de communication ainsi que sur les matrices du
système. Nos résultats montrent que le couplage physique faible et les graphes bien
connectés sont des caractéristiques favorables au consensus. Nous nous concentrons en-
suite sur les DCmG non linéaires et proposons un nouveau contrôleur distribué pour
réaliser l’équilibrage de la tension et le partage du courant, qui est un cas spécifique de
consensus de sortie. En exploitant la structure de la dynamique des DCmG, nous fournis-
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Résumé

sons des conditions sur l’atteinte de ces objectifs et la stabilité du système en circuit fermé.

Dans la deuxième partie, un schéma distribué de détection d’attaque cybernétique est
développé pour les LIMAS contrôlés de manière distribuée. L’architecture de détection
comprend des unités de surveillance locales colocalisées avec chaque agent et vérifiant la
présence d’attaque cybernétique dans les variables communiquées par les agents voisins.
Chaque unité estime les états des agents locaux et proches, et détecte une attaque si une
erreur définie de manière appropriée est suffisamment grande. Une analyse approfondie
de la détectabilité, prenant en compte différents types d’attaques, est également réalisée.

La dernière partie de la thèse fournit des méthodes directes de contrôle et d’estimation
d’état basées sur des données finies. Tout d’abord, nous examinons le problème du suivi
optimal dans le pire des cas en présence de bruits de mesure satisfaisant une limite
quadratique. La conception du contrôle est formulée comme un programme semi-défini
(SDP), dont la complexité de calcul est indépendante de la quantité de données. Ensuite,
nous nous intéressons à l’estimation d’état en présence d’entrées inconnues, pour laquelle
nous présentons des conditions nécessaires et suffisantes basées sur les données. Sous ces
conditions, une nouvelle méthode d’estimation d’état pilotée par les données avec des
garanties de stabilité est fournie.

Mots-clés : Systèmes multi-agents interconnectés, micro-réseaux, consensus distribué,
détection de cyber-attaques, observateurs à entrées inconnues, contrôle piloté par les
données, estimation d’état pilotée par les données.
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1 Introduction

1.1 Pervasive automation

The increasing availability of computational resources and the advancements in the fields
of actuation and sensor technologies allow for automating an ever-growing variety of
industrial processes. Moreover, the rise of embedded information technology in the past
decades has accelerated the penetration of automatic control into a myriad of real-world
systems. Examples of ubiquitous automation include urban infrastructure systems (e.g.,
electricity and transportation networks), vehicles, industrial processes, and consumer
electronics [ÅM10]. Moreover, economics is a major field, where complex systems
involving human agents can benefit from automation algorithms [LVLN92]. Recently,
controllers have been proposed even for biological processes such as stimulation of brain
networks [GPC+15, MPG+16] as well as cell growth and gene expression [MASSO+11,
MARA+16].

More accurate sensors, better actuators, and more powerful computing platforms pave
the way for the control of larger systems that can have a substantial number of vari-
ables and span vast geographical areas. Today’s large-scale control systems include
country-wide electrical grids, city-level traffic networks [GHR12], and swarms of robots
consisting of thousands of agents [RCN14]. Control theory is also used to model,
analyze, and act upon opinion dynamics [HK02, AO11] as well as the spread of epi-
demics [PSCVMV15, NKCdW+20] in human populations. It is noteworthy that most
modern large-scale systems (LSSs) possess a distributed structure, i.e., they consist of
smaller subsystems (also called agents) interconnected through a network enabling local
interactions. For instance, the european power grid consists of more than 3000 genera-
tors and substations woven together via more than 200,000 kilometers of transmission
lines [RCVS07], and opinions in a human society can be seen as millions of dynamical
systems interacting through various norms of social circles [HK02], be it close relatives
and friends, colleagues, or social network followers. This inherent structure has lead to
the analysis and manipulation of modern LSSs through the lens of multi-agent systems
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(MASs).

The abundance of digital elements in control loops also results in the generation of an
unprecented and still increasing volume of data [LFK+14]. This inevitable rise calls for
new paradigms of efficiently integrating data in the analysis and control of dynamical
systems, which is evident from the rich array of data-driven methods recently proposed
by the control community [DMM+20, MKK20, TMP20, MMWJ20, FGMFT21, BBP21,
AKAJ21, DPT21].

In summary, inherent distributed structure with a large number of agents and vast
quantities of available data can be identified as two prominent features of many modern
systems. Next, we elaborate more on these characteristics and describe several associated
control problems.

1.2 Challenges and existing work

In this section, we highlight three classes of modern control systems, identify some open
questions in their automation, and provide a discussion of the existing body of work
addressing these points (see Figure 1.1 for a visual summary). Note that a control system
can belong to more than one of these classes, i.e., they are not mutually exclusive.

1.2.1 Interconnected multi-agent systems

The size of MASs raises several problems in terms of analysis and control. Indeed, it is
very challenging to obtain accurate models and parameter estimates for the entire system
when it has many variables and is possibly distributed over broad geographical areas.
Moreover, various subsystems of today’s MASs can be owned or operated by different
entities (e.g., the european power grid [Web10]) that might not be interested in disclosing
local parameters to a single control center. Even if an exact global model exists, it might
still be infeasible to deploy centralized control structures, as they would require high
transmission bandwidth and be susceptible to single-point failures [DD03]. This has
motivated a large body of work on designing controllers ensuring decentralized/distributed
operations [BPD02, DD03, SSS+03, Sil11]. Such architectures consist of several local
units that require real-time information from a subset of nearby subsystems.

Consensus

In the context of MASs, a central problem is how to achieve coordinated behaviors
among the subsystems. Examples include formation control in robotic MASs [BA98]
and power sharing in microgrids [DPWD18]. Many desired coordination tasks in MASs
can be formulated in the context of consensus [OPA15, OSFM07], which means that the
subsystems come to an agreement on one or several output variables. Consensus protocols
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Figure 1.1: Three categories of modern control systems: interconnected MASs (left),
safety-critical systems (middle), and data-rich systems (right).

often have a distributed structure, in which a communication network (equivalently called
cyber coupling network) enables local information exchange among control modules of
subsystems. The analysis and properties of the resulting control system depend heavily on
the characteristics of the communication network and the subsystem dynamics [OSFM07,
RB08].

There has been substantial research regarding the networked nature of distributed
consensus protocols. For instance, the effects of quantization due to finite-bandwidth
communication channels have been studied using hybrid systems theory in [CDPF11].
For output consensus in MASs with switching communication topologies, the authors
of [WZF19] develop an approach based on the Lyapunov exponent of subsystem dynamics
and a suitably defined synchronizability exponent for the switching topology. Their results
reveal connections between consensus protocols, agent dynamics, and switching topology.
Switching topologies and time delays in communication network have been considered
in [OSM04], which shows the existence of a trade-off between the time to reach consensus
and robustness to time delays. Moreover, the works [BFT08, LFZL18, ZXXY19, XZX19]
consider communication delay among agents and derive upper bounds on the admissible
delays to guarantee consensus. The authors of [ZTHK16] look at the sampled-data
consensus problem for linear MASs under another communication nonideality: packet
losses. They show that the asymptotic achievement of consensus heavily relies on the
packet drop rate and the connectivity of the communication graph. The problem of
finite-time consensus for linear MASs has been addressed in [ZLW+19], where a controller
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is proposed for achieving consensus in a prespecified time.

It must be noted that most of the existing work on consensus in MASs assume that the
subsystems have decoupled dynamics. This is not the case in interconnected MASs, in
which the subsystems are physically coupled with nearby peers. Modern infrastructure
(e.g., traffic, power, and water) networks are indeed interconnected MASs. The coexistence
of both physical and cyber coupling impacts in a nontrivial way on the analysis and
development of consensus protocols for interconnected MASs, which requires special
attention.

1.2.2 Safety-critical systems

Systems whose failure can result in injury or death of humans, serious economical loss, or
dire environmental consequences are termed safety-critical. Many large-scale MASs such
as infrastructure networks have this feature; therefore, their safe and reliable operation
is paramount [Kni02]. In particular, controllers must be designed to provide certificate
guarantees for stability and performance, especially when using decentralized or dis-
tributed structures. Originally conceived for robotic systems, passivity-based control
theory exploits energy-balancing properties of certain classes of systems to guarantee
stability [OPNSR13]. This framework has been successfully used to ensure global sta-
bility of MASs regulated with decentralized controllers [NST+20, FGS+11, AML21].
Moreover, stability of distributed model-predictive controllers has been investigated for
interconnected MASs in [SVR+10, CJMZ16, CJKT02]. The adoption of distributed
control structures and the integration of a communication network renders the closed-
loop system a cyber-physical system (CPS). There has been a huge academic inter-
est in analyzing the stability and performance of CPSs in presence of network non-
idealities [SSF+07, HNX07, LMT01, ZBP01].

Cyber security

The use of a communication network also exposes the system to adversarial interferences.
Indeed, a malicious agent can tamper with the network to eavesdrop communication,
change the operating point, or completely destabilize the system [TSSJ15b]. There has
been numerous real-world examples to such attacks, one of which is the Maroochy water
breach in Queensland, Australia. In March 2000, a disgruntled former employee hacked
into the control network of the local wastewater system to control more than 100 pumping
stations and release one million liters of sewage to local waterways [SM07]. This incident
clearly demonstrated that, if security measures are not taken, cyber attacks can jeopardize
the operation of many safety-critical CPSs. Differently from computer systems with
communication protocols, CPSs also contain a physical component. As such, system- and
control-theoretic approaches to cyber-security of CPSs have gained popularity in the recent
years [CSS17, CPH+20]. In the context of secure control, as highlighted in [POM+18],
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attack detection and resilience schemes can be often divided in data-driven [KP20] and
knowledge-based approaches. In this thesis, we focus on the latter class. Among the
numerous works in the field, some study resilient control systems maintaining closed-loop
stability under certain classes of adversarial actions [RGM09, DPT15], while others
tackle the problem of detecting these attacks [PDB13, MWS15, TSSJ15a, PDB15a]. For
a comprehensive review of recent cyber-attack detection works, see [SRE+19, TGX+20].

Many of today’s safety-critical systems are large-scale MASs, which hinders the use of
centralized detection methods. Although the limitations to centralized architectures are
well known, existing work on distributed detection methods is limited [NI14, PDB15b,
DPA+18, AKP18, BRBP20, HRSJ21]. Note that most of these methods require the
knowledge of the whole dynamics of the MAS for design and implementation. Therefore,
their deployment in a large-scale MAS still poses modeling problems.

It is worth noting that attack-detection methods can be inspired by Fault Detection and
Isolation (FDI) algorithms, for which distributed solutions have indeed been proposed
[STSJ11, TSSJ14, BKLS16, DMK16, RBFTP16, BFK+17]. An analysis of the differences
between fault and cyber-attack detection is provided in [PBB12].

1.2.3 Data-rich systems

All digital control systems embody sensors and actuators; therefore, data regarding
control systems have long been available. A related challenge is to most efficiently and
effectively exploit these data in control-related tasks. As such, the idea of using data
in control system analysis and synthesis pipelines is hardly new. In fact, one of the
earliest uses of data in control applications dates back to 1942, when Ziegler and Nichols
provided an empirical method to tune the parameters of PID controllers [ZN42].

Shortly after the outset of state-space representation in the early 1960s, system identifi-
cation was born in an effort to use data to infer system models instead of solely relying
on first principles [Gev06]. Since then, several seminal works [HK66, ÅT65, ÅE71] and
books [Lju98, Eyk74, SS89] have been published in the field. Consequently, system
identification has quickly become one of the most vital instruments for incorporating
data into control workflows. In the context of data-driven control, design approaches
that first identify a model are referred to as indirect methods, while those that bypass
system identification and construct controllers directly from data are termed direct. In
this thesis, we focus on the latter class.

Direct data-driven control

Direct methods avoid building a model, which can be costly or require expertise when
the underlying system has complex dynamics. As a result, the past three decades
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have seen a surge of model-free control synthesis approaches including, but not limited
to, iterative feedback tuning [HGGL98], correlation-based tuning [KMB04, MKBG07],
virtual reference feedback tuning [GS00, CLS02], and model reference control [VHKB11].
We defer the reader to [HW13] for a comprehensive survey and classification of model-free
control methods. Spurred by the rise of powerful machine learning algorithms, the
control community started augmenting control synthesis with learning methods that were
previously not feasible [PZ95, FL98]. More recently, learning-based direct data-driven
controllers with stability guarantees have been proposed [NFM13, TFNM17].

Inspired by human psychology and banking on the idea of dynamic programming devel-
oped by Bellman [Bel57], a class of direct methods for solving optimal control problems
emerged in late 1980s: reinforcement learning [SB18]. Originally formulated for Markov
decision processes with discrete action and state spaces, they need effective function
approximation methods to be applicable to most control tasks [BBDSE17]. Therefore,
reinforcement learning has enjoyed a renewed interest in the last decade, owing to the
increasing availability of powerful machine-learning algorithms for solving regression
problems [VL10, MKS+15, SLA+15, LHP+15, SWD+17, HZAL18]. For an overview of
modern reinforcement-learning algorithms as well as a discussion of the challenges in the
field, see [ADBB17, HIB+18, DAMH19]. The review in [Rec19] focuses on continuous
control problems and adopts a control-theory perspective. As highlighted in [DAMH19],
most reinforcement-learning methods suffer from sample inefficiency and cannot ensure
safety constraint satisfaction, making them not suitable for today’s safety-critical control
systems. In fact, it is a pertinent question in data-driven control to provide guarantees
with a finite amount of data [Tu19, MPRT19, DMM+20].

The behavioral theory framework proposed by Jan Willems and his coworkers [WP97,
MWVHDM06] has recently given rise to a new class of direct data-driven control meth-
ods. The behavioral approach provides a characterization of linear time-invariant (LTI)
systems in terms of a collection of finite-length input-output trajectories (called behav-
ior) instead of a model. The Fundamental Lemma (FL), developed in the context of
behavioral theory, allows one to express all input-output trajectories of an LTI system as
a combination of its past data [WRMDM05], under the assumption that these data are
persistently exciting 1. The work in [MR08] provides algorithms and sufficient conditions
for uniquely predicting output trajectories of a system. It was not until recently, however,
that the behavioral theory caught the attention of the control community due to the
works [CLD19b, DPT20]. The former builds on the method in [MR08] to introduce a
direct data-enabled predictive control (DeePC) formulation for LTI systems, and show
its equivalence to model-predictive control. This formulation has later been extended
to robustly account for noise in data [CLD19a, BKMA20, CLD21, BKSA20], to capture
nonlinear systems [BA20, LJ21, ABL+21, LWJ21], and to adapt to changes in system

1“Persistency of excitation” is a common concept in system identification and data-driven control,
implying that the input sequence results in a sufficient exploration of the state space. See Section 5.2 for
a precise definition.
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dynamics [LSKJ21]. On the other hand, [DPT20] reformulates the FL for state-space
representation and provides a completely data-driven parameterization of the open-
and closed-loop dynamics of a system. This parameterization enables the authors to
design robustly stabilizing state feedback controllers and linear quadratic regulators.
The persistence of excitation requirement is relaxed in [vWETC20], where the authors
provide necessary and sufficient conditions about the informativity of historical data for
testing system properties and building stabilizing control laws. Similar parameterizations
have been developed to tackle robust stabilization [BKSA20, vWCM20], robust linear
quadratic regulation [DPT21], H2 and H∞ control [vWCM20, BKSA20], system-level
synthesis [XM21], model-reference control [BDPFT21], robust invariance [BDPT20a], and
minimum-energy control [BP20]. Other applications of such parameterizations include ad-
dressing multiple datasets [vWDPCT20], verifying system properties [KBA20, RBKA19],
and stabilizing nonlinear systems [BDPT20b, GDPT20, LDPT21].

In the next section, we provide a motivating real-world example of modern control systems,
which has all three characteristics outlined in this section (see Figure 1.1). Moreover, this
system will be used throughout the thesis for the development and validation of results.

1.3 Islanded DC microgrids

Thrust by the growing need to leverage the benefits of renewable energy sources, to rein
in climate change and electricity costs, and to guarantee safe and reliable supply to areas
lacking electric infrastructure, power generation is becoming increasingly distributed. A
key component of this shift are microgrids (mGs), small-scale electric networks integrating
distributed generation units (DGUs) (e.g., wind turbines, photovoltaic (PV) panels),
storage devices, and loads. Microgrids, compatible with both alternating current (AC)
and direct current (DC) operating standards, have been demonstrated to offer manifold
advantages like enhanced power quality, reduced transmission losses, and capability to
operate in grid-connected and islanded modes [BC12, PLMM06]. The latter proves pivotal
in enabling autonomy in their operation and providing robustness in case of failure of
connection to the main grid [SGV14]. In the islanded mode, an mG is an interconnected
MAS, where DGUs, batteries, and loads are physically coupled via power lines (see
Figure 1.2). Although practically smaller in size when compared to the conventional grid,
islanded mGs can, in fact, be as large as entire islands [SCGGV14].

Nowadays, direct-current microgrids (DCmGs) are gaining ground. Their mounting
popularity can be ascribed to technological improvements in power electronics devices
and computational power of real-time controllers. Other contributing factors include the
availability of inherently DC electronic loads (various appliances, LEDs, electric vehicles,
computers, etc.) and presence of a natural interface with renewable energy sources (for
instance PV modules) and batteries [MSFT+17]. As reviewed in [KAA19], DCmGs
are now an economically viable solution for many types of residential and industrial
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Figure 1.2: An islanded microgrid as an interconnected MAS. DGUs, batteries, and loads
constitute the subsystems (numbered gray boxes), which are coupled through RL power
lines.

applications such as data centers, telecom stations, fast electric vehicles (EVs), net-zero
energy buildings, electric ships, and hybrid energy storage systems.

As islanded mGs are large-scale interconnected MASs, decentralized and distributed
architectures have been very popular for their control [CIF17, NST+20, TFT20, SPM+20,
KK17, SSK17, GCLL13]. Moreover, distributed consensus protocols are often used in mGs
to achieve power or current sharing [DPWD18, CTDP+18, TCCS19, TMGFT18, ZD15].
All power networks, including islanded mGs, are safety-critical infrastructures. Thus,
an area that has received specific attention has been the secure control and estimation
of power networks, with specific focus on smart grids [MKB+12, MM09, KHLF10,
ME10, SDB19], and mGs [ZYBV15, FIDSDB17, BNJD18, SMPD18]. Among the works
addressing the security problem in mGs, [BNJD18, SMPD18] offer techniques to detect
cyber attacks in DCmGs. In particular, the authors of [BNJD18] exploit signal temporal
logic (STL) to detect whether an attack is present, by verifying whether given STL
requirements are violated. In [SMPD18], on the other hand, the authors consider
“balanced” attacks, and define a cooperative vulnerability factor for detection, exploiting
secure knowledge of control inputs of neighboring DGUs. Thanks to the integration
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of digital and smart elements [GCLL13], mGs also generate large quantities of data,
which is already exploited for implementing data-driven control methods in recent
works [ZZS+17, HNM17, MK19, DL19, MKK20]. In particular, model-free adaptive
control has been used for stabilization [HNM17] and power sharing [ZZS+17]. The latter
objective is also robustly achieved in [MK19, MKK20], where the data-driven control
design is formulated as a convex program. Finally, an energy-management system based
on reinforcement learning is proposed in [DL19]. This method allows for the operator of
a distribution system composed of multiple mGs to determine electricity prices in order
to maximize its profit.

1.4 Thesis contributions

This thesis contributes to the development of methods that address the challenges related
to today’s interconnected multi-agent, safety-critical, and data-rich control systems,
as highlighted in Section 1.2. In particular, we investigate distributed consensus in
interconnected MASs, develop a distributed cyber-attack detection scheme for safety-
critical interconnected MASs, and propose direct data-driven methods for general LTI
systems.

Correspondingly, the main body of the thesis is organized in three parts.

• Divided into two chapters, Part I concerns the study and development of distributed
consensus protocols for interconnected multi-agent systems. In Chapter 2, we
consider the problem of achieving consensus in general linear interconnected multi-
agent systems (LIMASs) using linear protocols. Specifically, we give conditions
that are either sufficient or necessary for the existence of control gains achieving
consensus. Not taking advantage of the structure of subsystem dynamics, the
results in this section are developed by adopting a worst-case analysis and, therefore,
are conservative. In Chapter 3, we examine a modified consensus problem in a
specific type of interconnected MASs, an islanded DCmG with nonlinear loads. By
exploiting the inherent structure of subsystem dynamics, we propose a distributed
control scheme to achieve sophisticated output consensus objectives.

• In Part II, which consists of Chapter 4, a distributed cyber-attack detection scheme
for LIMASs is developed. The scheme comprises separate attack monitors collocated
with each subsystem and combining two parallel modules that complement each
other’s performances. By means of a thorough detectability analysis, we provide
theoretical guarantees on the detection characteristics of the proposed scheme.

• Part III is composed of two chapters, relating to direct data-driven control and state
estimation methods, respectively. The results in this part are obtained for general
LTI systems and based on behavioral theory. Chapter 5 presents a worst-case
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optimal tracking control formulation based on semidefinite programs (SDPs). The
proposed method provides robustness against measurement noise terms satisfying
a quadratic bound. A novel direct approach for data-driven unknown-input state
estimation is provided in Chapter 6. We give necessary and sufficient conditions
based on data, under which the proposed estimator is shown to converge to the
true system state.

Next, we include a brief summary of each chapter.

Chapter 2

In this chapter, we study the consensusability of LIMASs, which is a binary property
certifying the existence of a distributed controller capable of driving the states of each
subsystem to a consensus value. In particular, we consider LIMASs with scalar control
inputs computed using linear consensus protocols. We show that consensusability is
related to the simultaneous stabilizability of multiple LTI systems, and present a novel
sufficient condition in form of a linear program (LP) for verifying this property. We
also derive several necessary and sufficient consensusability conditions for LIMASs in
terms of parameters of the subsystem matrices and the eigenvalues of the physical and
communication graph Laplacians. The results show that weak physical couplings among
subsystems and densely-connected physical and communication graphs are favorable for
consensusability. We validate our results through simulations of real-world examples of
LIMASs, namely, networks of supercapacitors and DCmGs.

The contents of this chapter are based on the following published articles.

[TXFT20] M. S. Turan, L. Xu, and G. Ferrari-Trecate, “Consensusability of linear
interconnected multi-agent systems,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 2915–2920, 2020, 21th IFAC World Congress

[TXFT21] ——, “On consensusability of linear interconnected multi-agent systems
and simultaneous stabilization,” IEEE Transactions on Control of Network
Systems, 2021, doi: 10.1109/TCNS.2021.3106446

Chapter 3

This chapter represents the study of a consensus problem specifically for DCmGs by
exploiting the structure of the subsystem dynamics. In particular, we present a novel
consensus-based secondary control scheme for current sharing and voltage balancing
in DCmGs, composed of DGUs, dynamic resistive, inductive, and capacitive (RLC)
lines, and nonlinear ZIE (constant impedance, constant current, and exponential) loads.
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Note that current sharing is a modified output consensus condition. Situated atop a
primary voltage control layer, our secondary controllers have a distributed structure,
and utilize information exchanged over a communication network to compute necessary
control actions. Besides showing that the desired objectives are always attained in steady
state, we deduce conditions for the existence and uniqueness of an equilibrium point
for constant power loads – exponential loads with zero exponent. Our control design
hinges only on the local parameters of the DGUs, facilitating plug-and-play operations.
This means that connecting or disconnecting a DGU does not necessitate the controllers
of the neighboring DGUs to be modified. We provide a voltage stability analysis, and
illustrate the performance and robustness of our designs via detailed computer simulations.
All results hold for arbitrary, albeit connected, physical and communication network
topologies.

The contents of this chapter are based on the following article, which has been accepted
for publication on the IEEE Transactions on Control Systems Technology (TCST).

[NTFT20] P. Nahata, M. S. Turan, and G. Ferrari-Trecate, “Consensus-based current
sharing and voltage balancing in DC microgrids with exponential loads,”
arXiv preprint arXiv:2007.10134, 2020

Chapter 4

Shifting our attention to cyber-attack detection in LIMASs, in this chapter, we present a
residual-based distributed attack-monitoring scheme. The proposed architecture relies on
a Luenberger observer together with a bank of unknown-input observers (UIOs) at each
subsystem, providing attack detection capabilities. UIOs allow for estimation of the states
of an LTI system without knowledge of all inputs. As such, they are used to estimate
the states of the nearby subsystems. We analyze the monitoring architecture and derive
conditions under which attacks are guaranteed to be detected, and, conversely, when they
are stealthy. Our analysis shows that some classes of attacks cannot be detected using
either module independently. Rather, by exploiting both modules simultaneously, we are
able to improve the detection properties of the diagnostic tool as a whole. Theoretical
results are backed up by simulations, where our method is applied to a realistic model of
a DCmG under attack.

The contents of this chapter are based on the following published articles.

[GTB+20] A. J. Gallo, M. S. Turan, F. Boem, T. Parisini, and G. Ferrari-Trecate, “A
distributed cyber-attack detection scheme with application to DC microgrids,”
IEEE Transactions on Automatic Control, vol. 65, no. 9, pp. 3800–3815,
2020
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[GTN+18] A. J. Gallo, M. S. Turan, P. Nahata, F. Boem, T. Parisini, and G. Ferrari-
Trecate, “Distributed cyber-attack detection in the secondary control of
DC microgrids,” in 2018 European Control Conference (ECC). Limassol,
Cyprus: IEEE, 2018, pp. 344–349

A preliminary analysis and an extension of our detection scheme for a specific type of
attack have been presented in the following paper; however, its contents are not included
in this thesis.

[GTB+18] A. J. Gallo, M. S. Turan, F. Boem, G. Ferrari-Trecate, and T. Parisini, “Dis-
tributed watermarking for secure control of microgrids under replay attacks,”
in 7th IFAC Workshop on Distributed Estimation and Control in Networked
Systems (NecSys’18), Groningen, The Netherlands, 2018, pp. 182–187

Chapter 5

This chapter focuses on direct data-driven control of discrete-time LTI systems using
finite data. In particular, we study finite-horizon robust tracking control based on
input-output data. Instead of using an explicit system model, we leverage behavioral
theory to represent system trajectories through a set of noiseless historical data collected
before the start of the control task. We consider that the recent output measurements,
required for determining the initial conditions for the control horizon, are affected
by noise terms verifying a quadratic bound. Then, we formulate an SDP for solving
the robust tracking problem without any approximations. Our approach hinges on
a parameterization of noise trajectories compatible with the data-dependent system
representation and on a reformulation of the tracking cost, which enables the application
of the S-lemma [PT07]. In addition, we propose a method for reducing the computational
complexity and demonstrate that the size of the resulting SDP does not scale with the
number of historical data. Finally, we show that the proposed formulation can easily
incorporate actuator disturbances as well as constraints on inputs and outputs.

The contents of this chapter are based on the following articles.

[XTGFT21a] L. Xu, M. S. Turan, B. Guo, and G. Ferrari-Trecate, “A data-driven
convex programming approach to worst-case robust tracking controller
design,” arXiv preprint arXiv:2102.11918, 2021

[XTGFT21b] ——, “Non-conservative design of robust tracking controllers based on
input-output data,” in 3rd Annual Learning for Dynamics and Control
(L4DC) Conference. Zurich, Switzerland: PMLR, 2021, pp. 138–149
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Chapter 6

By combining the behavioral theory, which is also leveraged in Chapter 5, with the
existing results on UIOs, this chapter provides a novel data-driven UIO. We give necessary
and sufficient conditions on the data collected from the system for the existence of a
UIO providing asymptotically converging state estimates, and propose a purely data-
driven algorithm for their computation. Even though we focus on UIOs, our results also
apply to the standard case of completely known inputs. As an example, we apply the
proposed method to distributed state estimation in DCmGs and illustrate its potential
for cyber-attack detection.

The contents of this chapter are taken from the following article.

[TFT22] M. S. Turan and G. Ferrari-Trecate, “Data-driven unknown-input observers
and state estimation,” IEEE Control Systems Letters, vol. 6, pp. 1424–1429,
2022

Finally, thesis conclusions as well as a discussion of future research directions are presented
in Chapter 7. Appendix A contains the common notation and definitions used throughout
the thesis.
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2 Consensusability of linear inter-
connected multi-agent systems

2.1 Introduction

In this chapter, we discuss the problem of consensusability for interconnected MASs with
linear dynamics, also called LIMASs for short. Consensusability refers to the existence of a
distributed protocol from a predefined class such that agents can reach consensus on their
states or outputs. As such, it is a binary property of the MAS. In the context of linear
MASs, consensusability has been extensively studied in the past decades. For example,
the authors in [MZ10] show that a continuous-time linear MAS can reach consensus if the
dynamics of each agent is controllable and the communication topology is connected. The
work [YX11] shows that, for discrete-time linear MASs, consensusability is guaranteed
if the unstable eigenvalues of the agent state matrix verifies certain conditions related
to the eigenvalues of the communication graph Laplacian. For consensus of MASs with
switching topologies, [WZF19] shows that if the Lyapunov exponent of agent dynamics
is less than a suitably defined synchronizability exponent of the switching topology, the
MAS can achieve consensus. The authors of [XZXX18] and [XMX20] study consensus
in presence of communication channels affected by fading and packet dropouts, and
show that the consensusability condition is closely related to the statistics of the noisy
communication channel, the eigenvalues of the communication graph Laplacian, and the
instability degree of the agent dynamics.

The above research works assume that agents in MASs are coupled only through a cyber
layer, i.e., a communication network. This is not the case in LIMASs, where the agents also
interact through an additional physical layer, called a physical network. The presence of
physical couplings necessitates the study of how they affect consensusability. This problem
has been considered in [WWHL15, CU15, CLDA15]. The authors of [WWHL15] focus
on consensus of multiple linear systems with uncertain subsystem interconnections for
tracking a reference. They propose a distributed adaptive controller based on hierarchical
decomposition and prove that the consensus error converges to a compact set if physical
interconnections are sufficiently weak. Leader-follower tracking problems for LIMASs are
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Chapter 2. Consensusability of linear interconnected multi-agent systems

considered in [CU15]. Interactions between systems are treated as dynamic uncertainties
and are described in terms of integral quadratic constraints. Two methods are proposed
to design consensus-like tracking protocols. Sufficient conditions to guarantee that
the system tracks the leader are obtained in terms of the feasibility of linear matrix
inequalities (LMIs). The authors of [CLDA15] investigate the state consensus problem of
a general LIMAS. They propose a linear consensus protocol and derive a sufficient and
necessary criterion to guarantee convergence to consensus, which is expressed in terms
of the Hurwitz stability of a matrix constructed from the parameters of the agents and
the protocols. However, the aforementioned works lack a quantitative analysis of the
relations of consensusability with physical interconnection and communication graphs.

2.1.1 Contributions

In this chapter, we study the consensusability of LIMASs equipped with linear distributed
controllers, while providing analytic characterizations on how the physical and cyber cou-
plings impact on it. In particular, we consider homogeneous LIMASs, whose subsystems
have identical dynamics and control gains (see Section 2.2). Moreover, we direct our
attention to LIMASs consisting of single-input subsystems interconnected via physical
coupling with a Laplacian structure.

Our contributions to the existing literature are as follows. First, we show that the
consensusability problem for LIMASs is related to a simultaneous stabilizability problem.
Second, we present a sufficient condition, based on an LP, for verifying the simultaneous
stabilizability of multiple LTI systems, which provides a simple alternative to existing
methods relying on convex programming (CP). Third, we present several sufficient
conditions, as well as a necessary condition, for the consensusability of LIMASs. Our
results illustrate how consensusability is influenced by physical and communication
coupling among subsystems.

This chapter is organized as follows. In Section 2.2, we introduce LIMASs and provide
the problem formulation. Section 2.3 discusses the simultaneous stabilization problem of
multiple LTI systems. Consensusability analysis of LIMASs is presented in Section 2.4.
Simulation results are given in Section 2.5 and concluding remarks are presented in
Section 2.6.

2.2 Problem formulation

The interaction among agents in a LIMAS equipped with distributed controllers is de-
scribed by two undirected graphs with a common set of nodes V = {1, . . . , N} associated
with subsystems. A physical graph Gp = (V,Wp, Ep) represents the physical interconnec-
tion among subsystems and a cyber graph Gc = (V,Wc, Ec) represents the communication

18



2.2 Problem formulation

S1

S4S3

S2

C1

C4C3

C2

Physical
Layer

Cyber
Layer

Figure 2.1: Illustration of a LIMAS. Blue arrows represent physical couplings among
subsystems Si, dashed gray lines indicate connections between each subsystem and
its corresponding controller, and red arrows represent communication channels among
controllers Ci.

network enabling information exchange among distributed control modules. Figure 2.1
shows an example LIMAS. Throughout the thesis, we assume that Gc is connected. In
this chapter, the physical graph Gp is allowed to be disconnected. For a subsystem i, the
sets of its neighbors in Gp and Gc are denoted by N p

i and N c
i , respectively.

We consider a homogeneous LIMAS with subsystem dynamics described by

x+
i = Axi +Ap

∑
j∈N pi

aij(xj − xi) +Bui, i = 1, . . . , N, (2.1)

where xi ∈ Rn are the states, ui ∈ R are the scalar control inputs, aij = aji ∈ R>0 are
the symmetric physical interconnection weights, and Ap ∈ Rn×n is a matrix determining
the physical coupling. We are interested in linear distributed controllers given by

ui = K
∑
j∈N ci

bij (xi − xj) , i = 1, . . . , N, (2.2)

where K ∈ R1×n is the control gain common to all subsystems and bij = bji ∈ R>0 denote
the symmetric communication weights in the cyber graph Gc. The control gain K is a
design parameter while bij , Gc are assumed to be given.

Remark 2.2.1. Typical examples of LIMASs that can be modeled by (2.1), (2.2) are
DCmGs, where distributed generation units are physically coupled through electric lines
and communication networks are used for obtaining global coordinated behaviors, such as
current sharing and voltage balancing [TMGFT18]. A detailed example is provided in
Section 2.5. We note that, in the field of consensus for MASs, it is common to assume
identical subsystem dynamics as in (2.1). Such an assumption is reasonable in several
application scenarios, where the hardware of subsystems is standardized for efficient serial
production. For instance, individual converters in a DCmG can be chosen as identical,
resulting in a homogeneous LIMAS. The simplifying assumption that each subsystem
is assigned the same feedback gain K is required to facilitate the following analysis.
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Chapter 2. Consensusability of linear interconnected multi-agent systems

Moreover, this assumption alleviates the burden of designing different consensus gains for
each subsystem, which is critical in deploying control architectures for large-scale MASs.

By combining (2.1) and (2.2), the overall dynamics of the LIMAS can be compactly
written as:

x+ = (IN ⊗A− Lp ⊗Ap + Lc ⊗BK)x, (2.3)

where x =
[
x>1 , . . . , x

>
N

]>
∈ RNn is the cumulative state whereas Lp and Lc are the

Laplacian matrices of Gp and Gc, respectively. Note that the structure of physical
interconnections in (2.1) gives the term Lp ⊗Ap in (2.3) involving the Laplacian matrix
Lp. For this reason, the coupling is termed Laplacian. Physical interconnections hamper
the use of existing methods for analyzing consensusability of MASs. We define the
consensusability problem in LIMASs as follows.

Problem 1: Given the LIMAS (2.3), provide conditions for the existence of a static
feedback gain K ∈ R1×n such that the states of all subsystems converge to a global
consensus vector, i.e.,

lim
t→∞
|xi(t)− v̄| = 0n, ∀i ∈ V, (2.4)

for some v̄ ∈ Rn.

To study this problem, we define the average state

x̄ ,
1
N

N∑
i=1

xi = 1
N

(
1>N ⊗ In

)
x,

and the deviation from x̄

δ ,
[
x>1 − x̄>, . . . , x>N − x̄>

]>
= x− 1N ⊗ x̄ =

((
IN −

1
N

1N1>N
)
⊗ In

)
x. (2.5)

The dynamics of δ can be derived from (2.3) and (2.5) as

δ+ = (IN ⊗A− Lp ⊗Ap + Lc ⊗BK) δ. (2.6)

The consensusability of the LIMAS is, therefore, equivalent to the stabilizability of (2.6).

Consider the following facts regarding the subspaces H1 and H1
⊥ (defined in Appendix A.2):

1. the columns of 1N ⊗ In/
√
N span the subspace H1

⊥ ⊗ Rn

2. (H1 ⊗ Rn) ⊥ (H1
⊥ ⊗ Rn)

3. (H1 ⊗ Rn)⊕ (H1
⊥ ⊗ Rn) = RNn
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Together, they imply that there exists a unitary matrix Φ =
[
1N/
√
N,φ2, . . . , φN

]
where

{φ2, . . . , φN} form a basis for H1, such that, by defining δ̃ =
[
δ̃>1 , . . . , δ̃

>
N

]>
,
(
Φ> ⊗ In

)
δ,

we have

δ̃+ =
(

IN ⊗A−
[

0n×n 0n×(N−1)n
0(N−1)n×n L̃p

]
⊗Ap +

[
0n×n 0n×(N−1)n

0(N−1)n×n L̃c

]
⊗BK

)
δ̃.

(2.7)

L̃p is a positive semidefinite matrix with eigenvalues {λp,2, . . . , λp,N}. Similarly, the
positive definite matrix L̃c has eigenvalues {λc,2, . . . , λc,N}. The transformation in (2.7)
decomposes the dynamics of δ into two noninteracting parts: δ̃1 and [δ̃>2 , . . . , δ̃>N ]>
representing the evolution of δ in H1

⊥ ⊗ Rn and in H1 ⊗ Rn, respectively. Furthermore,
we can show that δ̃1 = 0n by definition. Therefore, δ(t) asymptotically converges to zero
if and only if the dynamics of [δ̃>2 , . . . , δ̃>N ]> is stable, i.e., the matrix

IN−1 ⊗A− L̃p ⊗Ap + L̃c ⊗BK (2.8)

is Schur stable. As will be shown in Section 2.4, the stability of (2.8) is related to the
problem of simultaneous stabilization of a group of low-dimensional systems. Therefore,
in the next section, we make a detour and provide novel conditions for simultaneous
stabilization that, besides being useful for analyzing consensusability, also have an
independent value.

2.3 A simultaneous stabilization test based on linear pro-
gramming

The simultaneous stabilization problem has attracted the interest of several researchers,
especially in the area of robust control [CS98]. Despite a number of results for linear
systems [KY91, VV82, Blo94], prior work has shown that providing algebraic conditions
for simultaneous stabilization of more than three systems is a difficult problem [BG93].
Extensive effort, therefore, has been put in developing numerical tests [CS98], mainly
relying on CP and non-convex programming (NCP) [HTŠ99, BBFE93, HL91, Ack80]. In
this section, we study the simultaneous stabilization of multiple LTI systems via linear
static feedback. Existing criteria include sufficient and necessary conditions in terms of
NCP [HL91, Ack80] and LMI-based sufficient conditions [BBFE93]. Here, we present a
sufficient condition in terms of a LP, which requires less computational resources than
its CP- and NCP-based counterparts [BV04].

We consider M single-input LTI systems described by

x̌+
l = Alx̌l +Blǔl, l = 1, . . . ,M, (2.9)

where x̌l ∈ Rm are system states and ǔl ∈ R are control inputs. In the sequel, we assume
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Chapter 2. Consensusability of linear interconnected multi-agent systems

that all pairs (Al, Bl) are reachable. A first result is stated in Lemma 2.3.1, which
relies on a conservative parameterization of stabilizing controllers based on Ackermann’s
formula [Shi98]. Note that controller parameterization using Ackermann’s formula has
been exploited for simultaneous stabilization also in [Ack80, HL91]; however, these works
provide necessary and sufficient conditions in terms of NCP, which can not be efficiently
checked for very large m andM . Before presenting the lemma, we introduce the following
definitions.

For l = 1, . . . ,M , Ml = [Bl, AlBl, . . . , Am−1
l Bl] is the reachability matrix of the pair

(Al, Bl), and the last row of its inverse is denoted as rl,m = [0 . . . 0 1]M−1
l . Accordingly,

we define

Vl = col(−rl,mIm,−rl,mAl, . . . ,−rl,mAm−1
l ),

vl = −rl,mAml .
(2.10)

Finally, let Γ = col(Γr,1,Γr,2, . . . ,Γr,2m) ∈ R2m×m, where Γr,j are the different vectors in
the set {−1, 1}1×m.

Lemma 2.3.1. For the group of reachable systems (Al, Bl), l = 1, . . . ,M , there exists K
such that Al+BlK is Schur stable for every l if there exists a vector c = [c>1 . . . c>M ]> ∈
RMm satisfying

V c = v, Hc ≤ h, (2.11)

where

V =


V >1 −V >2 0m×m . . . 0m×m

0m×m V >2 −V >3
. . . 0m×m

... . . . . . . . . . ...
0m×m . . . 0m×m V >M−1 −V >M

 ,
v = [v2 − v1, . . . , vM − vM−1]>,
H = IM ⊗ Γ, h = 1M2m .

(2.12)

Moreover, if such a c exists, the vectors c>l Vl + vl are identical and any of them provides
a simultaneously stabilizing gain K.

Proof. We first describe the controller parametrization for the pair (Al, Bl) and later
show how to design a simultaneously stabilizing controller for all pairs (Al, Bl) based on
this parameterization.

In view of Ackermann’s formula, we know that, for the reachable pair (Al, Bl) and a vector
collecting desired closed-loop eigenvalues λDl , [λDl,1, . . . , λDl,m]> ∈ Cm, the state-feedback
controller Kl = −rl,mpDl (Al) ∈ R1×m assigns the eigenvalues of Al+BlKl to the elements
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2.3 A simultaneous stabilization test based on linear programming

of λDl , where the desired characteristic polynomial pDl (Al) is written as

pDl (Al) =
(
Al − λDl,1Im

)
. . .
(
Al − λDl,mIm

)
, Aml + cl,m−1A

m−1
l + · · ·+ cl,1Al + cl,0Im.

(2.13)

Defining cl , [cl,0 . . . cl,m−1]>, one sees that cl = g(λDl ) is a polynomial function of
order m. Therefore, a set Kl of stabilizing controllers Kl for (Al, Bl) can be parameterized
by λDl as Kl = {Kl = −rl,mpDl (Al)|λDl ∈ ΛD}, where

ΛD = {λD ∈ Cm|λDj ∈ B1 ∀j ∈ {1, . . . ,m} and λDj are real or in conjugate pairs}.

Since the set ΛD has a complex geometry, the computation of the set Kl is convoluted. To
circumvent this problem, we leverage a classic result on Schur stable polynomials [Jur64]:
λDl ∈ ΛD if

m−1∑
j=0
|cl,j | < 1, (2.14)

which can equivalently be written as Γcl ≤ 12m . Further noting that the polynomial
pDl (Al) is an affine function of cl and Kl ∈ Kl is a linear function of pDl (Al), we can define
a new set Ksl ⊆ Kl of stabilizing controllers for system l in terms of cl as Ksl = {Kl =
c>l Vl + vl|Γcl ≤ 12m}, where Vl and vl are defined in (2.10).

Based on the above results, we know that if ⋂Ml=1 Ksl 6= ∅, there exists K ∈ ⋂Ml=1 Ksl
simultaneously stabilizing all (Al, Bl) pairs. The above condition is equivalent to the
existence of vectors cl ∈ Rm for l ∈ {1, . . . ,M} such that c>l Vl+vl = c>l+1Vl+1+vl+1, ∀l ∈
{1, . . . ,M − 1}, which yields the feasibility condition given by (2.11). The proof of the
second part is straightforward as the feasibility of (2.11) means that stabilizing control
gains Kl = C>l Vl + vl, l = 1, . . . ,M are identical. Therefore, it suffices to pick one. �

Remark 2.3.1. In Lemma 2.3.1, the only source of conservativity is the use of the
condition in (2.14) for Schur stability of polynomials, which is only sufficient for m > 1,
and gets more and more conservative as the system order m increases. Indeed, (2.14)
is the main novelty of the proposed method, compared with the necessary and sufficient
conditions in [Ack80, HL91]. Therefore, for scalar systems, i.e., m = 1, the results in
Lemma 2.3.1 are necessary and sufficient. The conservativity of this lemma, however,
does not increase with the number of systems M .

We observe that the structure of the equality constraints in (2.11) can be further exploited
to simplify the redundancies in the proposed LP. Therefore, in the following, we show
that the result in Lemma 2.3.1 can be equivalently cast into a simpler LP with a smaller
number of decision variables.
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Theorem 2.3.1. For the group of reachable systems (Al, Bl), l = 1, . . . ,M , the following
hold:

1. The matrices Vl in (2.10) are invertible

2. The matrix V in (2.12) has full row rank and its right inverse V † is given by

V † =



(
V >1

)−1 (
V >1

)−1
. . .

(
V >1

)−1

0m×m
(
V >2

)−1
. . .

(
V >2

)−1

... . . . . . . ...
0m×m . . . 0m×m

(
V >M−1

)−1

0m×m 0m×m 0m×m 0m×m


. (2.15)

Moreover, the null space of V is spanned by columns of the matrix

Ψ =
[
V −1

1 V −1
2 . . . V −1

M

]>
. (2.16)

3. Pairs (Al, Bl) are simultaneously stabilizable by a common gain K if there exists a
vector w ∈ Rm such that

HΨw ≤ h−HV †v. (2.17)

Furthermore, if such a w exists, the feedback gain

K = vM + w> (2.18)

stabilizes (Al, Bl) for every l ∈ {1, . . . ,M}.

Proof. 1. We prove that the matrix Vl is invertible if the pair (Al, Bl) is reachable, by
showing that the rows of Vl are linearly independent. For m = 1 it is trivial. For
m > 1, we denote the inverse ofMl as

M−1
l =

[
r>l,1 . . . r>l,m

]>
.

From the last row of the equalityM−1
l Ml = Im, one has that rl,mBl = rl,mAlBl =

· · · = rl,mA
m−2
l Bl = 0 and rl,mAm−1

l Bl = 1.

Considering the definition of Vl in (2.10), we show by contradiction that the vectors
{−rl,mAjl }j∈{0,...,m−1} are linearly independent. First, assume that they are linearly
dependent. Then, there exists a nonzero vector β = [β0, . . . , βm−1]> 6= 0m such
that

−β>Vl =
m−1∑
j=0

βjrl,mA
j
l = 01×m. (2.19)

24



2.3 A simultaneous stabilization test based on linear programming

Multiplying (2.19) from the right by Bl yields that

m−2∑
j=0

βj rl,mA
j
lBl︸ ︷︷ ︸

=0

+βm−1 rl,mA
m−1
l Bl︸ ︷︷ ︸

=1

= 0.

Thus, βm−1 = 0 is implied by (2.19). Then, one can rewrite (2.19) by removing
the last term:

−β>Vl =
m−2∑
j=0

βjrl,mA
j
l = 01×m. (2.20)

Again, one can multiply (2.20) from the right with AlBl to obtain

m−1∑
j=1

βj−1rl,mA
j
lBl =

m−2∑
j=1

βj−1 rl,mA
j
lBl︸ ︷︷ ︸

=0

+βm−2 rl,mA
m−1
l Bl︸ ︷︷ ︸

=1

= βm−2 = 0.

By iterating the same procedure, one has that (2.19) implies β = 0m, which is a
contradiction. Therefore, the matrix Vl is invertible.

2. Given that the matrices Vl are invertible, it is straightforward to see that the matrix
V has full row rank, i.e., rank(V ) = (M−1)m. Therefore, it is possible to find a right
inverse for it. Given the definition of V † in (2.15), we can verify that V V † = I(M−1)m.
Moreover, from the rank-nullity theorem, dim(ker(V )) = Mm− rank(V ) = m. As
the full-rank matrix Ψ ∈ RMm×m given in (2.16) satisfies VΨ = 0(M−1)m×m, we
conclude that its columns form a basis for ker(V ).

3. Lemma 2.3.1 shows that the pairs (Al, Bl) are simultaneously stabilizable if the
LP (2.11) is feasible. Next, we will prove that the LP in (2.11) is equivalent to
the LP in (2.17), which has a smaller number of decision variables and constraints.
Considering point 2) of this theorem, all solutions c to the equality constraint in
(2.11) can be written as

c = V †v + Ψw (2.21)

for a free vector w ∈ Rm, i.e., w parametrizes all c solving V c = v. On replacing c in
the inequality constraint in (2.11) and removing the equality constraint, one obtains
the equivalent reduced-order LP in (2.17). Furthermore, in view of Lemma 2.3.1,
for a given solution c to (2.11), K = c>1 V1 +v1 is a simultaneously stabilizing control
gain. From the parameterization of c in (2.21), we have c1 = (V −1

1 )>(v>M − v>1 +w).
Therefore, the common control gain can be calculated as K = c>1 V1 +v1 = vM +w>,
concluding the proof.

�

Remark 2.3.2. The LPs (2.17) and (2.11) are equivalent in spite of the reduction of the
number of decision variables from Mm to m and the elimination of equality constraints.
As such, the LP in (2.17) can be used to check the simultaneous stabilizability of a larger
number of systems compared to (2.11).
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Table 2.1: Summary of Consensusability Results

Result Type Feature Assumptions
Theorem 2.4.1 Sufficient Algebraic Test Scalar Subsystems
Corollary 2.4.1.1 Sufficient Linear Program Assumptions 2.4.1, 2.4.2
Theorem 2.4.2 Sufficient Algebraic Test Assumptions 2.4.1, 2.4.2, 2.4.3
Theorem 2.4.3 Necessary Algebraic Test Assumptions 2.4.1, 2.4.2

Remark 2.3.3. The modified LP formulation (2.17), compared to (2.11), utilizes matrices
V † and Ψ which, according to (2.15) and (2.16), can be computed by inverting the m×m
matrices Vl associated to individual agents.

Remark 2.3.4. As expected, (2.17) is always feasible if (Al, Bl) = (A,B) for every l,
as this condition implies v = 0(M−1)m. Therefore, h − HV †v = 1M2m and w = 0m
is a feasible solution to (2.17). Moreover, V †v changes continuously with the matrices
Al and Bl if all pairs (Al, Bl) are reachable. As such, the right-hand side of (2.17) is
still nonnegative if the differences between the pairs (Al, Bl) are sufficiently small, and
w = 0m is still a feasible solution to (2.17). Therefore, a group of reachable systems is
always simultaneously stabilizable if the pairs (Al, Bl) are sufficiently similar.

Having presented our results on simultaneous stabilization, we resume our discussion of
consensusability.

2.4 Conditions for consensusability of LIMASs

In this section, we analyze the consensusability of LIMASs with subsystems of order
n = 1 and n ≥ 1 separately. Indeed, the former case can be studied without restrictive
assumptions while still giving important insight into the consensusability problem. In-
stead, the latter case is more difficult to analyze and requires additional assumptions.
Table 2.1 summarizes the results presented in this section along with their applicability
conditions. After presenting our results for these two cases in Sections 2.4.1 and 2.4.2,
respectively, we discuss their implications in Section 2.4.3.

Our consensusability conditions are given in terms of the following quantities.

λp,max , max
i∈{2,...,N}

λp,i, λp,min , min
i∈{2,...,N}

λp,i, ∆p , λp,max − λp,min,

λc,max , max
i∈{2,...,N}

λc,i, λc,min , min
i∈{2,...,N}

λc,i, γc ,
λc,max
λc,min

.

We call the scalar γc ≥ 1 the eigenratio of Lc, where γc = 1 if and only if the graph
is complete [YX11]. A low eigenratio means the graph is close to a complete graph.
Furthermore, the eigenratio can be decreased by adding edges to the graph, meaning
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that a γc close to 1 generally implies a densely-connected graph [BP02]. ∆p denotes the
difference between the largest and second smallest eigenvalues of Lp. A low ∆p value
indicates that the eigenvalues of Lp are close to each other, which holds when the eigenratio
of the physical interconnection graph is low, i.e., Gp is densely-connected [YX11, BP02].
A low ∆p value is also achieved if eigenvalues of Lp are small, and consequently, the
physical coupling between subsystems is weak.

2.4.1 Scalar subsystems

In this subsection, we present results for scalar subsystems. Without loss of generality,
we assume B = 1 and denote matrices A and K as a and k, respectively. To simplify the
analysis, the matrix Ap is omitted, as it can be lumped into the weights aij . Then, (2.8)
simplifies to

aIN−1 − L̃p + kL̃c. (2.22)

Next, we present analytical sufficient conditions, which are based on results on the
eigenvalues of the sum of two Hermitian matrices.

Theorem 2.4.1. The LIMAS (2.1) with scalar subsystems is consensusable if either of
the following conditions holds

S1. λp,min > a− 1 and (γc − 1) (1− a+ λp,min) < γc (2−∆p),

S2. λp,max < 1 + a and (γc − 1) (1 + a− λp,max) < γc (2−∆p).

Moreover, the control gain k can be selected as k ∈ K+ ∩ R≥0 if S1 is satisfied and
k ∈ K− ∩ R<0 if S2 is satisfied, where

K+ =
(
−1− a+ λp,max

λc,min
,
1− a+ λp,min

λc,max

)
,

K− =
(
−1− a+ λp,max

λc,max
,
1− a+ λp,min

λc,min

)
.

(2.23)

Proof. Since aIN−1 − L̃p and kL̃c are symmetric matrices, upper and lower bounds on
the eigenvalues of their summation can be found as a direct consequence of Weyl’s
inequalities [HJ12, Theorem 4.3.7]:

λmax
(
aIN−1 − L̃p + kL̃c

)
≤ λmax

(
aIN−1 − L̃p

)
+ λmax

(
kL̃c

)
,

λmin
(
aIN−1 − L̃p + kL̃c

)
≥ λmin

(
aIN−1 − L̃p

)
+ λmin

(
kL̃c

)
.

(2.24)

Therefore, (2.22) is Schur stable if k ∈ R satisfies

a− λp,min + λmax
(
kL̃c

)
< 1 and a− λp,max + λmin

(
kL̃c

)
> −1. (2.25)
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Since the sign of k changes the expression of λmin(kL̃c) and λmax(kL̃c), we inspect the
two possibilities k ≥ 0 and k < 0 separately. For k ≥ 0, we have λmin(kL̃c) = kλc,min and
λmax(kL̃c) = kλc,max, and the conditions (2.25) simplify to k ∈ K+ ∩ R≥0, where K+ is
as given in (2.23). This is possible if K+ 6= ∅ and K+ ∩ R≥0 6= ∅, which directly translate
into the conditions in S1. The result for k < 0 can be proved similarly, completing the
proof. �

Remark 2.4.1. The only sources of conservativity in Theorem 2.4.1 are the upper and
lower bounds used in (2.24). From the proof of Weyl’s inequalities [HJ12, Theorem 4.3.7],
it can be seen that the equalities in (2.24) hold when the eigenpairs of matrices aIN−1−L̃p
and kL̃c coincide. This is satisfied when L̃p = 0(N−1)×(N−1), i.e., there is no physical
coupling, and when Lp and Lc commute. The latter means that the matrix Φ can be
selected such that L̃p and L̃c are both diagonal [HJ12]. Therefore, the conditions S1 and
S2 are necessary and sufficient when there is no physical coupling or Lp and Lc commute.
Indeed, in the former case, it is straightforward to see that Theorem 2.4.1 recovers the
necessary and sufficient condition for consensusability of MASs in [YX11]. Furthermore,
from the proof of [HJ12, Theorem 4.3.7], it can be seen that the inequalities (2.24) are
tighter when the eigenpairs of aIN−1 − L̃p and kL̃c (consequently, of Lp and Lc) are
closer to each other.

As discussed later in Section 2.4.3, conditions S1 and S2 help understanding the roles of
the physical interconnection and communication graphs in consensusability. We next
analyze the consensusability problem for general subsystems.

2.4.2 General subsystems

From (2.8), the consensusability problem can be seen as the problem of designing a
control gain K̃ = (IN−1 ⊗K) ∈ R(N−1)×(N−1)n with structural constraints to make the
matrix

IN−1 ⊗A− L̃p ⊗Ap +
(
L̃c ⊗B

)
K̃

Schur stable. Prior work shows that this problem is difficult to tackle without focusing
on special system structures [RL05]. Therefore, to facilitate the analysis, we introduce
the following technical assumption.

Assumption 2.4.1. The Laplacian matrices Lp and Lc commute.

Remark 2.4.2. Assumption 2.4.1 is fulfilled when the two Laplacians are equal to each
other up to scaling with a constant, i.e., Lp = βLc, β ∈ R≥0. Moreover, two Laplacians
commute also when one of them is the Laplacian of a complete graph with uniform edge
weights. Nevertheless, a necessary and sufficient condition for two generic Laplacians to
commute is not yet available in the literature.

Under Assumption 2.4.1, one can simultaneously diagonalize the two Laplacians Lp and
Lc [HJ12], i.e., a unitary transformation matrix Φ can be chosen such that Φ>LpΦ =
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2.4 Conditions for consensusability of LIMASs

Λp = diag (0, λp,2, . . . , λp,N ) and Φ>LcΦ = Λc = diag (0, λc,2, . . . , λc,N ). Note that, for
each i ∈ {2, . . . , N}, λp,i and λc,i have the same eigenspace. As such, the diagonal
entries of Λp and Λc, hence λp,i and λc,i, are not necessarily ordered by their magnitude.
Assumption 2.4.1 thus allows one to decouple the dynamics of δ̃i, i ∈ {2, . . . , N} from
each other:

δ̃+
i = (A− λp,iAp + λc,iBK) δ̃i, ∀i ∈ {2, . . . , N}. (2.26)

Consequently, the consensusability of (2.3) is equivalent to the simultaneous stabilizability
of (2.26). The following assumption is required before further derivations.
Assumption 2.4.2. The pairs (A− λp,iAp, B) are reachable for all i ∈ {2, . . . , N}.
Remark 2.4.3. Assumption 2.4.2 is necessary as the reachability of the pair (A −
λp,iAp, B) is not implied by that of the pair (A,B) in general. We also stress that the
reachability of (A − λp,iAp, B) implies that of (A − λp,iAp, λc,iB), as λc,i > 0, ∀i ∈
{2, . . . , N}.

Defining Ai , A−λp,iAp and Bi , λc,iB, i ∈ {2, . . . , N}, consensusability of LIMAS (2.3)
is equivalent to the simultaneous stabilizability of pairs (Ai, Bi), which is the problem
addressed in Section 2.3. As mentioned in that section, this problem is difficult to
analytically solve in general and we separate our discussion in two parts. Firstly, a
numerical sufficient condition for consensusability is proposed based on Theorem 2.3.1.
Secondly, for special LIMASs with Ap = αA for some scalar α, we give an algebraic
sufficient condition for consensusability in Theorem 2.4.2. Finally, in Theorem 2.4.3, we
present a necessary condition for the consensusability of (2.3).

Sufficient conditions

The following corollary presents an LP-based test for consensusability with generic system
matrices A, Ap, and B. The result directly follows from Theorem 2.3.1; therefore, the
proof is omitted.
Corollary 2.4.1.1. Suppose that Assumptions 2.4.1 and 2.4.2 hold. The LIMAS (2.3)
is consensusable if there exists a vector w ∈ Rn satisfying (2.17), where the matrices V ,
v, H, h, V †, and Ψ are computed as in (2.11)-(2.12),(2.15)-(2.16), by replacing (Al, Bl)
with (A− λp,iAp, λc,iB). Moreover, if such a w exists, a control gain achieving consensus
is given by K = vN + w>.

In view of Remark 2.3.1, we point out that Corollary 2.4.1.1 can be applied to very
large LIMASs. We also highlight that the above result relies on the knowledge of the
eigenvalue pairs (λp,i, λc,i) having the same eigenspace. As such, the Laplacian matrices
Lp and Lc need to be known.

Next, we seek an analytical sufficient condition for consensusability of LIMASs. As
discussed in Section 2.3, it is difficult to provide analytical conditions on simultaneous
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stabilizability of more than three systems [BG93]. For this reason, we limit our analysis
to LIMASs verifying the following condition.

Assumption 2.4.3. The physical interconnection matrix Ap satisfies Ap = αA for a
scalar α ∈ R.

Remark 2.4.4. Assumption 2.4.3 is satisfied when the states xi and xj impact on the
dynamics of xi in the same way. In particular, consider a LIMAS where the subsystem
dynamics is as follows:

x+
i = Ǎxi + Ǎ

∑
j∈N pi

aijxj +Bui.

In this case, the effect of xj on x+
i is the same as that of xi, up to a scalar multiplication.

Indeed, one can rewrite this dynamics in the form of (2.1) with A = (1 +∑
j∈N pi

aij)Ǎ
and Ap = Ǎ, which verifies Assumption 2.4.3. Although restrictive, this assumption
enables us to develop sufficient conditions that provide insights into the effects that various
components of a LIMAS have on consensusability.

Under Assumption 2.4.3, consensusability is equivalent to the simultaneous stabilizability
of pairs ((1 − αλp,i)A, λc,iB), i.e., Ai and Bi are now only characterized by scalar
multiplications of common matrices A and B, respectively. This allows for easier analysis
of Schur stability of matrices Ai +BiK, for a given control gain K. For this purpose, we
first define αi , 1− αλp,i, αmax , maxi |αi|, αmin , mini |αi|, Ā , αmaxA, and

σc , 1− 1∏
k

∣∣∣λuk (Ā)∣∣∣2 , (2.27)

where λu1(Ā), λu2(Ā), . . . denote the unstable eigenvalues of Ā. Moreover, in the sequel, we
leverage the results in [SSF+07] stating that if σ > σc, there exists a matrix P = P> � 0
solving the modified algebraic Riccati equation (MARE)

Ā>PĀ− σĀ>PB
(
B>PB

)−1
B>PĀ− P ≺ 0. (2.28)

The following theorem presents an algebraic sufficient condition for consensusability
under Assumption 2.4.3. Note that, unlike Corollary 2.4.1.1, following results do not
require the knowledge of the specific eigenvalue pairs (λp,i, λc,i) associated to the same
eigenspace.

Theorem 2.4.2. Suppose that Assumptions 2.4.1, 2.4.2, and 2.4.3 hold. If Ā is Schur
stable, the LIMAS in (2.3) is consensusable by using the control gain K = 01×n. Besides,
if Ā is not Schur stable and the following condition holds(maxi,j αi

λc,j
−mini,j αi

λc,j

2

)2

<
α2

min − α2
maxσc

λ2
c,max

, (2.29)
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the LIMAS in (2.3) is consensusable by using the control gain K = −k∗(B>PB)−1B>PA

where k∗ =
mini,j

αi
λc,j

+maxi,j
αi
λc,j

2 and P is the solution to the MARE (2.28) with σ =
mini,j

2αiλc,jk∗−λ2
c,j(k

∗)2

α2
max

.

Proof. Under Assumptions 2.4.1 and 2.4.3, consensusability of (2.3) is equivalent to the
simultaneous stabilizability of

δ̃+
i = (αiA+ λc,iBK) δ̃i ∀i ∈ {2, . . . , N}. (2.30)

It is straightforward to see that, if Ā is Schur stable, so are αiA; therefore, the LIMAS
(2.3) is consensusable with the control gain K = 01×n.

Next, we will show that when Ā is not Schur stable, and if (2.29) holds, δ̃i in (2.30) are
simultaneously stabilized by the control gain designed in the theorem. For this purpose,
we will first show in the sequel that if (2.29) holds, we have

min
i,j

2αiλc,jk∗ − λ2
c,j(k∗)2

α2
max

> σc. (2.31)

We start by realizing that k∗ =
mini,j

αi
λc,j

+maxi,j
αi
λc,j

2 is the minimizer of a function
f(k) , maxi,j |k − αi

λc,j
| ≥ 0. Moreover, one can show that

arg min
k

max
i,j

(
k − αi

λc,j

)2

= arg min
k
f(k) = k∗;

therefore, it directly follows that

min
k

max
i,j

(
k − αi

λc,j

)2

=
(maxi,j αi

λc,j
−mini,j αi

λc,j

2

)2

.

Thus, in view of (2.29), we have

max
i,j

(
k∗ − αi

λc,j

)2

<
α2

min − α2
maxσc

λ2
c,max

. (2.32)

Noticing that
λ2
c,j

(
k∗ − αi

λc,j

)2

= −(2αiλc,jk∗ − λ2
c,j(k∗)2) + α2

i ,

we get

max
i,j

λ2
c,j

(
k∗ − αi

λc,j

)2
≥ −min

i,j

(
2αiλc,jk

∗ − λ2
c,j(k∗)2)+ α2

min. (2.33)
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Furthermore, from the fact that

λ2
c,max max

i,j

(
k∗ − αi

λc,j

)2

≥ max
i,j

λ2
c,j

(
k∗ − αi

λc,j

)2

,

and using (2.32), (2.33), we can obtain

−min
i,j

(
2αiλc,jk∗ − λ2

c,j(k∗)2
)

+ α2
min < α2

min − α2
maxσc. (2.34)

This inequality is equivalent to (2.31); therefore, a solution P to the MARE (2.28) exists
with

σ = min
i,j

2αiλc,jk∗ − λ2
c,j(k∗)2

α2
max

> σc.

Further, defining σi ,
2αiλc,ik∗−λ2

c,i(k
∗)2

α2
max

, we see that σ ≤ σi holds by definition. Therefore,
P also satisfies the following for each i,

Ā>PĀ− σiĀ>PB
(
B>PB

)−1
B>PĀ− P ≺ 0,

which further implies

α2
maxA

>PA+
(
λ2

c,i(k∗)2 − 2αiλc,ik
∗)A>PB (B>PB)−1

B>PA− P ≺ 0. (2.35)

This is equivalent to the existence of P � 0 and K = −k∗(B>PB)−1B>PA such that

(αiA+ λc,iBK)> P (αiA+ λc,iBK)− P ≺ 0,

for all i ∈ {2, . . . , N}. Therefore, the systems (2.30) are simultaneously stabilizable,
which further shows that the LIMAS (2.3) is consensusable by the designed controller. �

The algebraic conditions in Theorem 2.4.2 are easily verifiable and do not require to solve
any optimization problem. Moreover, they provide important insights about the effects of
physical interconnection and communication graphs on consensusability, as discussed in
Section 2.4.3. We stress that the derivations (2.31)-(2.34) consider the worst-case scenario
in terms of eigenvalue pairs (λp,i, λc,i), hence contributing to the conservativeness of the
result. Furthermore, without physical couplings (α = 0), the inequality (2.29) cannot
recover the sufficient and necessary condition for consensusability of MASs proposed
in [YX11].

Necessary conditions

We now provide algebraic necessary conditions for the consensusability of the LIMAS
in (2.3), which will allow us to identify features of the LIMAS disfavoring consensusability.
We note that the following theorem does not require Assumption 2.4.3.
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Theorem 2.4.3. Suppose that Assumptions 2.4.1 and 2.4.2 hold. If the LIMAS in (2.3)
is consensusable, at least one of the following conditions N1-N3 holds:

N1. maxi |det(Ai)| < 1,

N2. maxi |det(Ai)| ≥ 1 and mini |det(Ai)| < 1 and (2.36),

N3. mini | det(Ai)| ≥ 1 and (2.36) and (2.37),

where Ai = A− λp,iAp and

max
i
|det(Ai)| − 1 < γc min

i
|det(Ai)|+ γc, (2.36)

γc(min
i
|det(Ai)| − 1) < max

i
|det(Ai)|+ 1. (2.37)

Proof. The proof is a modification of the proof of Lemma 3.1 in [YX11]. Under As-
sumption 2.4.2, without loss of generality, each pair (A− λp,iAp, B) can be written in
reachable canonical form

A− λp,iAp =


0 1 0 . . .
... . . . . . . . . .
0 . . . 0 1
−ai,1 −ai,2 . . . −ai,n

 , B =


0
...
0
1

 ,

where |ai,1| = | det(A − λp,iAp)|. Given a simultaneously stabilizing feedback gain
K = [k1, . . . , kN ], one can see that |det(Acl,i)| = |ai,1 − λc,ik1| for the closed-loop matrix
Acl,i = A − λp,iAp + λc,iBK. Since K is selected to stabilize (A − λp,iAp, λc,iB) for
all i ∈ {2, . . . , N}, it holds that ρ(Acl,i) < 1. Therefore, it holds that | det(Acl,i)| =∏
j λj(Acl,i) < 1, yielding |ai,1 − λc,ik1| < 1, which can be further manipulated to give

|ai,1| − 1
λc,i

< |k1| <
|ai,1|+ 1
λc,i

.

This implies that ⋂Ni=2

(
|ai,1|−1
λc,i

,
|ai,1|+1
λc,i

)
6= ∅; therefore,

max
i

|ai,1| − 1
λc,i

< min
i

|ai,1|+ 1
λc,i

. (2.38)

Below, we will show that the above inequality implies that at least one of the conditions
N1-N3 holds. We start by noting that, the left-hand side of (2.38) can either be
negative or nonnegative. In the former case, (2.38) is always satisfied and it holds that
maxi |ai,1| < 1, yielding the condition N1. On the contrary, when the left-hand side of
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(2.38) is nonnegative,

max
i

|ai,1| − 1
λc,i

≥ max
i

|ai,1| − 1
maxj λc,j

= maxi |ai,1| − 1
λc,max

and
min
i

|ai,1|+ 1
λc,i

≤ min
i

|ai,1|+ 1
minj λc,j

= mini |ai,1|+ 1
λc,min

hold. Therefore, combining these inequalities with (2.38), one gets (2.36). In addition,
we note that

max
i

|ai,1| − 1
λc,i

≥ max
i

minj |aj,1| − 1
λc,i

,

which means that (2.38) implies

max
i

minj |aj,1| − 1
λc,i

< min
i

|ai,1|+ 1
λc,i

. (2.39)

We again make the distinction of two cases where minj |aj,1|−1 is negative or nonnegative.
When the former holds, (2.39) is always satisfied. Hence, combining minj |aj,1| < 1 with
maxi |ai,1| ≥ 1 and (2.36), one forms the condition N2. Otherwise, when it is nonnegative,
one can show that

max
i

minj |aj,1| − 1
λc,i

= minj |aj,1| − 1
λc,min

.

We can also derive an upper bound to the term on the right-hand side of (2.39) as

min
i

|ai,1|+ 1
λc,i

≤ min
i

maxj |aj,1|+ 1
λc,i

= maxj |aj,1|+ 1
λc,max

.

Incorporating the last two equations with (2.39), we get (2.37). Finally, condition N3 is
obtained by combining (2.36) and (2.37) with minj |aj,1| ≥ 1. �

Note that the conditions N1-N3 involve only the three quantities maxi |det(Ai)|,
mini | det(Ai)|, and γc, making them easy to verify. These conditions also provide
an understanding of how these variables effect consensusability, as discussed in the next
section. Finally, observe that N3 reduces to the necessary and sufficient condition for the
consensusability of MASs provided in [YX11] when physical couplings are absent, i.e.,
when Ap = 0n×n.

We also highlight that, in addition to providing sufficient conditions for consensusability,
Theorems 2.4.1 and 2.4.2 as well as Corollary 2.4.1.1 also show how to design the controller
gain K for reaching consensus. Note that Corollary 2.4.1.1 and Theorem 2.4.2 each
provide one such gain K, instead of a range as in Theorem 2.4.1. Our results hinge
on the assumption that these gains are precisely computed and implemented in the
control module of every subsystem Si. Analysis of our results when this assumption is
not satisfied is deferred to future work. Nevertheless, a numerical study of this case is
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presented at the end of Section 2.5.2.

2.4.3 Discussion of the consensusability results

Hereafter, we discuss implications of the results given in the previous section. Specific
comments provided below point out that consensusability is easier to achieve in LIMASs
with

1. weak physical coupling and

2. densely-connected physical and communication graphs.

Specifically, the conditions S1 and S2 in Theorem 2.4.1 can be satisfied only if ∆p < 2.
This is possible if λp,max is close to λp,min, or if the physical coupling is weak. We
also note that, by assuming ∆p < 2 and that the first inequality of S1 is satisfied, γc
values satisfying the second inequality can always be found in a neighborhood of γc = 1.
Moreover, this also holds for condition S2, showing that communication graphs whose
Laplacian have eigenvalues that are close to each other favor consensusability. These
conditions imply that both graphs Gp and Gc are densely connected. Therefore, this
feature favors consensusability.

The LP in (2.17) is easier to solve when the pairs (Ai, Bi) are closer to each other, as
discussed in Remark 2.3.4. With the definition Ai = A − λp,iAp, it is straightforward
to see that these matrices are close to each other when ‖λp,iAp‖ is small, or λp,i are
similar. Analogously, Bi = λc,iB are close to each other when λc,i are similar. These
observations point out once more that the LP in (2.17) is more likely to be feasible when
the physical interconnection is weak and both physical and communication graphs are
densely connected.

Considering Theorem 2.4.2, the condition (2.29) can be satisfied only if α2
min > α2

maxσc.
Taking into account that σc increases with αmax, the inequality is fulfilled only when
αmax is sufficiently small and close to αmin. Note that αmax takes small values for small
values of α, i.e., when the effect of physical coupling is weak. Moreover, αmin and αmax
are close to each other when λp,min and λp,max are close. Also note that the left-hand
side of the inequality (2.29) decreases as the ratio λc,min

λc,max
increases, i.e., as the eigenvalues

of the communication graph get closer to each other. Therefore, the implications of the
Theorem 2.4.2 match with the observations made for Theorem 2.4.1.

In order to show the role of physical coupling in Theorem 2.4.3, we look at the extreme
case A = 0n×n, for which condition N1 is not satisfied for strong physical coupling
characterized by large values of | det(Ap)| and λp,i. Similarly, the inequality (2.36) is
more difficult to satisfy for stronger physical coupling for fixed γc, since maxi |det(Ai)|
will be much larger than mini | det(Ai)|. One can also see that, for fixed Ai, the inequality
(2.37) gets more difficult to satisfy as γc grows, which corresponds to a decrease in the
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(a) Schematic of the network of identical super-
capacitors arranged in multiple clusters. Lines
in blue and red represent, respectively, the
physical and communication interconnections.

S8 S9

C RI8V8 CRI9 V9

R89

(b) Electrical scheme of supercapacitors S8 and
S9 in Cluster 3.

Figure 2.2: Network of identical supercapacitors considered for simulations in Sec-
tion 2.5.1.

connectivity of the communication graph [BP02]. This, in turn, means that, it is more
difficult to satisfy the condition N3 as the communication graph gets more sparse.

2.5 Simulation results

In this section, we present two different sets of simulations to validate the results in
Sections 2.4.1 and 2.4.2, respectively.

2.5.1 Consensusability of a network of supercapacitors

In recent years, supercapacitors have been popularized as an alternative to batteries
in application domains such as mGs, transportation systems, and automotive [IPQB13,
FME15]. In some of these applications, a network of multiple supercapacitors can
be utilized, making it a LIMAS. In the sequel, we consider a network of identical
supercapacitors, which are arranged in clusters, as shown in Figure 2.2a. Such a system
represents the scenario where groups of supercapacitors are far away from each other
and no physical interconnection between them is possible.

As shown in Figure 2.2b, we model each subsystem i as a parallel RC circuit with C = 10
F , R = 5 kΩ, and a current source supplying a time-varying current Ii. The resistance
models the power leak from the capacitor. Subsystems are coupled through resistive
electrical lines (see Figure 2.2b), whose resistance values Rij are chosen randomly from
the interval [10, 50] Ω. We are interested in the problem of controlling the charging
currents Ii such that the voltages across each supercapacitor reach consensus. In practical
applications, this might be needed to ensure the same voltage level across all storage
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Figure 2.3: Voltages of the supercapacitors initialized with random initial voltages.

devices, as they might feed the same load during a discharge period (not considered here).
We assume that, the input currents Ii are computed using the controller (2.2), utilizing
the communication network represented in Figure 2.2a with unit edge weights. Applying
Kirchoff’s current and voltage laws, the voltage dynamics of the supercapacitor i is given
by

CV̇i = − 1
R
Vi −

∑
j∈Np

i

1
Rij

(Vi − Vj) + k
∑

j∈N c
i

(Vi − Vj) . (2.40)

In order to match the model (2.3), we discretize (2.40) in time by using the forward
Euler method with a sampling period of Ts = 0.1 ms. We obtain the dynamics

x+ = (aIN − Lmp + kLmc )x,

where x = [V1, . . . , V9]>, a = 1− Ts 1
RC ≈ 1, Lmp , Ts

C Lp, and Lmc ,
Ts
C Lc. Moreover, Lp

and Lc are the Laplacian matrices of the physical and communication graphs, respectively.
The modified Laplacian matrices Lmp and Lmc account for the effect of discretization, and
are used in the analysis of consensusability.

On applying Theorem 2.4.1 to this system, we see that both conditions S1 and S2 are
satisfied; therefore, any control gain k in the intervals K+ ∩ R≥0 = [0, 4.071 × 10−5)
and K− ∩ R<0 = (−4.071× 104, 0) guarantees the achievement of consensus. We choose
k = −200 and initialize each supercapacitor with a random voltage value between 4V and
6V when running the continuous-time simulations of the LIMAS. As shown in Figure 2.3,
all voltage levels converge to a common value, as guaranteed by Theorem 2.4.1. In order
to see how tight the computed interval K = (−4.071× 104, 4.071× 10−5) of control gains
is, we create a fine grid of k values strictly including K to check the values for which the
matrix in (2.22) is Schur stable. We find that consensus is reached for k values in the
interval (−4.071 × 104, 1.532 × 10−4), which is very close to K. This is expected since
Lmp is close to a zero matrix due to the small sampling time Ts (see Remark 2.4.1).
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(a) Schematic of the DCmG. Blue lines rep-
resent the physical interconnection between
DGUs, realized as resistive power lines.
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Figure 2.4: DCmG considered for simulations in Section 2.5.2.

Finally, because this LIMAS is consensusable and there exists a control gain k reaching
consensus, Theorem 2.4.3 asserts that at least one of the conditions N1-N3 should hold.
Upon setting Ai = a− λi(Lmp ), one sees that N1 is satisfied.

2.5.2 Consensusability of a DC microgrid
In this section, we consider a DCmG consisting of identical DGUs that are interconnected
as shown in Figure 2.4a and study the consensusability problem. Each DGU is modeled
as a Buck converter with an RLC filter, connecting a voltage source to a resistive load and
neighboring DGUs, as shown in Figure 2.4b. We utilize the linear averaged state-space
model [MS77] and assume that the voltage Vti at the output of the Buck converter can
be set to the desired value. Each DGU then includes a primary voltage controller to
ensure voltage stability while steering the voltage value Vi at the PCC to the reference
value V r

i by manipulating Vti. As depicted in Figure 2.4b, these primary controllers,
developed in [NST+20], have a static state-feedback structure captured by the gain
Kpr = [kpr,1, kpr,2, kpr,3] and integral action. On applying Kirchoff’s voltage and current
laws, the dynamics of the DGU i is written as

CtV̇i = − Vi
RL

+ Iti −
∑
j∈N pi

1
Rij

(Vi − Vj),

Ltİti = (kpr,1 − 1)Vi + (kpr,2 −Rt)Iti + kpr,3vi,

v̇i = −Vi + V r
i ,

(2.41)

where Iti is the filter current passing through the inductance and vi is the integrator
state of the primary controller. In this section, we seek to develop a secondary controller
modifying the voltage references V r

i of each DGU to achieve consensus on the states of
all DGUs in the DCmG. Specifically, we consider a networked controller given by

V r
i = V r +K

∑
j∈N ci

bij(xi − xj), (2.42)
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where xi , [Vi, Iti, vi]> is the state of DGU i and V r = 48 V is a common nominal
voltage reference for all DGUs. We note that DGUs in the DCmG are physically coupled
to each other and the secondary controller (2.42) is based on a communication network
(inducing the set of neighbors N c

i ). Therefore, after discretizing (2.41) with forward
Euler method with a sampling period of Ts = 0.1 ms, the overall dynamics of the DCmG
can be written as

x+ = (IN ⊗A− Lp ⊗Ap + Lc ⊗BK)x+ (1N ⊗B)V r,

where the system matrices are defined as A = I3 − TsAct,

Act =

−
1

RLCt
1
Ct 0

kpr,1−1
Lt

kpr,2−Rt
Lt

kpr,3
Lt

−1 0 0

 , Ap =


Ts
Ct

0 0
0 0 0
0 0 0

 , B =

 0
0
Ts

 . (2.43)

Note that the presence of the constant input (1N ⊗B)V r does not hinder the application
of our results. Indeed, by undertaking the derivations in equations (2.3)-(2.5), it is
straightforward to show that the deviation δ follows the dynamics (2.6). We use the
parameter values Rt = 0.2 Ω, Ct = 2.2 mF , Lt = 1.8 mH, RL = 9 Ω, and Kpr =
[−2.13,−0.16, 13.55] taken from [NST+20]. Moreover, Lp is derived from the physical
interconnection topology in Figure 2.4a and edge weights 1/Rij , ∀i ∈ {1, . . . , 9}, j ∈ N p

i ,
where power line resistances Rij are selected randomly in the interval [4, 8] Ω. In order
to verify Assumption 2.4.1, we assume a complete communication graph with uniform
edge weights. Therefore, Lc = I9 − 1

9191>9 . With these definitions, it is easy to verify
that Assumption 2.4.2 also holds. Hence, Corollary 2.4.1.1 can be utilized.

We construct the necessary matrices as shown in (2.11)-(2.12), (2.15)-(2.16) and verify
that the LP in (2.17) is feasible. Hence, a consensus-enabling controller gain K can be
designed. With this controller in place, we run a simulation from random initial conditions
of DGUs, based on their continuous-time dynamics in (2.41). Figure 2.5 shows that
consensus is quickly reached as Corollary 2.4.1.1 certifies, and the voltages are regulated,
albeit relatively slowly, towards the nominal reference value of 48 V . Furthermore,
condition N1 is satisfied, as Theorem 2.4.3 guarantees for this consensusable LIMAS.

In order to show the effect of physical coupling on consensusability, we gradually increase
∆p by scaling down the line resistances, i.e., we use R̃ij , ξRij in the definition of Lp
for ξ ∈ (0, 1). For ξ = 0.072, the LP in (2.17) becomes infeasible. Similarly, if a DCmG
is not consensusable using the proposed results, weakening its physical coupling could
make it consensusable.
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Chapter 2. Consensusability of linear interconnected multi-agent systems

Figure 2.5: States of the DGUs in the DCmG equipped with consensus controllers. The
zoomed-in figures show that consensus is achieved very quickly.

Violation of assumptions

We next investigate whether our consensusability test in Corollary 2.4.1.1 can be used
even when Assumption 2.4.1 is not satisfied. We do this by changing the topology of
Gc. We see that the LP in (2.17) is infeasible for Gc with circle and star topologies
and unit edge weights. Moreover, although (2.17) is feasible for a complete Gc, it can
become infeasible upon removal of 2 edges. By keeping the complete topology of Gc
and selecting non-uniform edge weights between 0 and 1, we see that (2.17) becomes
infeasible as well. This study reveals that our results depend critically on the satisfaction
of Assumption 2.4.1.

We also discuss the effect of violating two implicit assumptions of our technical results,
namely, that
A1. the control gain K = vN + w> is precisely computed by solving (2.17);
A2. every subsystem Si uses the same control gain K.
For this purpose, we conduct new simulations where each DGU adopts a different control
gain

Ki = K ◦ (1 + ∆̃i),
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Figure 2.6: Proportion of simulation runs where consensus is reached.

where ◦ denotes element-wise matrix multiplication and ∆̃i is a matrix whose elements
are randomly chosen between [−η, η]. This definition captures the scenario in which the
control gain is inaccurately known in each subsystem Si. Corollary 2.4.1.1 states that K
ensures the achievement of consensus; however, the perturbation in gains Ki may hinder
consensus. Indeed, the intensity of this perturbation increases with the parameter η,
which takes values in {10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102} in our simulations.
In particular, for each value of η, the continuous-time DCmG dynamics is simulated
10 times from random initial conditions. The proportion of simulation runs where the
DCmG asymptotically reaches consensus are displayed in Figure 2.6 for different values
of η. It is seen from this figure that the DGUs eventually reach consensus in most cases
for η ≤ 10.

Nevertheless, the perturbation in control gains results in large transient fluctuations
of the DGU states. Recalling that the consensus state is denoted as v̄, we define the
maximum absolute fluctuation from v̄ as

x̃max =

 Ṽmax
Ĩt,max
ṽmax

 , max
t>0, i

|xi(t)− v̄|.

Figure 2.7 shows, for each value of η, the average x̃max among all simulations that reach
consensus. It is seen in this figure that, despite the asymptotic attainment of consensus,
high perturbations on gains Ki can lead to very large transient voltage and current values,
thus limiting the applicability of the proposed controllers when A1 and A2 are violated.

2.6 Conclusions

In this chapter, we considered linear MASs with physical interconnections among sub-
systems (LIMASs) and studied their consensusability properties. We show that consen-
susability of LIMASs is related to a simultaneous stabilization problem and present an
LP-based method for verifying simultaneous stabilization. Based on this result, we give a
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Figure 2.7: Average transient fluctuations x̃max among all simulations reaching consensus.

numerical sufficient condition for the consensusability of a LIMAS. Moreover, we propose
several algebraic consensusability conditions that are either sufficient or necessary. The
derived results show that weak physical coupling and densely-connected physical and
communication graphs are favorable for consensusability. The results are verified in
computer simulations of a network of supercapacitors and a DCmG.

We note that the results of this chapter apply for any LIMAS satisfying the assumptions.
As such, they do not exploit the system structure that comes with a specific application
example (see the sparsity patterns of the matrices in (2.43)). Indeed, in particular
applications, it might be possible to achieve more sophisticated consensus objectives
by exploiting these structures. In the next chapter, we show this by developing a
consensus-based control scheme for current sharing and voltage balancing in DCmGs.
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3 Consensus for current sharing in
microgrids

3.1 Introduction

In control of islanded DCmGs, the main objective is voltage stability as it prevents
voltages from either exceeding a critical level or dropping suddenly, consequently damaging
connected loads [MSFT+17]. As discussed in Section 2.5.2, a primary voltage control layer
is often employed for achieving voltage stability and tracking desired voltage references
at the PCC [SGV14, MNF18, SPM+20, NST+20, TRFT18]. Besides stability, another
desirable objective is current sharing, that is, DGUs share mG loads in accordance with
their current ratings. Indeed, unregulated currents may otherwise overload generators
and eventually lead to an mG failure. An additional goal of voltage balancing, requiring
boundedness of weighted sum of PCC voltages, is often sought to complement current
sharing [TMGFT18]. Being blind voltage reference emulators, primary controllers are
unable to attain the aforementioned objectives all by themselves. Higher-level secondary
control architectures [IRD+19, BNF19] are, therefore, necessary to coordinate the voltage
references provided to the primary layers.

Distributed, consensus-based secondary regulators guaranteeing current sharing and
voltage balancing have been the subject of many recent contributions. Centralized
approaches to their synthesis are proposed in [NMDL15, SDA+14], but are prohibitive for
large-scale mGs as they require knowledge of mG topology, lines, loads, and DGUs. Indeed,
temporally varying DCmGs call for scalable design of decentralized controllers [NST+20,
TRFT18], enabling the plug-in/-out of DGUs on the fly without spoiling the overall
stability of the network. Scalable consensus-based secondary controllers discussed in
[TMGFT18, ZD15] remedy the above limitations; but introduce a time-scale separation
by abstracting primary-controlled DGUs as ideal voltage generators or first-order systems.
Moreover, they assume static power lines. Efforts to incorporate DGU dynamics and
RL lines have been made in [TCCS19, CTDP+18]. In [CTDP+18], a robust distributed
control algorithm considering both objectives is studied; however, a suitable initialization
of the controller is needed. The resistance of the DGU filter is neglected in [TCCS19] and
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hence, voltage balancing cannot be guaranteed in steady state. Unlike [TMGFT18, ZD15,
TCCS19, CTDP+18] limited to linear loads, [DPWD18] presents a power consensus
algorithm intended for DCmGs feeding ZIP (constant impedance, constant current, and
constant power) loads. However, this work assumes simplified DCmG dynamics and
existence of a suitable steady state.

All the foregoing contributions exclude E (exponential) loads — generalized static loads
which cover a wide variety of physical loads like industrial motors, fluorescent lighting,
pumps, fans, etc. [Kun94, Rom02]. We highlight that, in DCmGs catering to E loads,
steady-state current sharing and voltage balancing need to be backed by certificate
guarantees. This is due to the fact that these nonlinear loads may jeopardize the stability
of the DCmG by introducing a destabilizing negative impedance into the network (see
Section 3.4).

3.1.1 Contributions

In this chapter, we introduce a distributed secondary control layer for proportional
current sharing and weighted voltage balancing in DCmGs consisting of DGUs, loads,
and interconnecting power lines. Compared to Section 2.5.2, in this chapter, we switch
to a continuous-time setting, consider a more realistic DCmG model, and formulate a
different consensus problem. In particular, the DCmG is allowed to have non-identical
DGUs supporting ZIE (constant impedance, constant current, and exponential) loads
instead of only resistive loads. Moreover, dynamic RLC power lines connect DGUs rather
than static resistive ones. As it will be shown later, Assumption 2.4.1 is not needed in this
chapter, as the communication graph can have any topology as long as it is connected.
Consequently, the considered DCmG model corresponds to an interconnected MAS (see
Figure 2.1). We stress that it is no longer a LIMAS due to the existence of non-linear
ZIE loads. In this chapter, we do not consider a static feedback controller as in (2.2),
but rather a dynamic one with a different structure. Finally, the objective in this chapter
is not full state consensus, but current sharing, which is a specific example of output
consensus in DCmGs.

The main novelties of this chapter when compared to the existing literature are four-fold.
First, this work does away with the modeling limitations of several existing contributions.
In addition to RLC lines, we consider DGU dynamics and filter resistances. Our Buck
converter–interfaced DGUs are modeled after the linear, averaged state-space model
[MS77]. On the load modeling front, we take into account nonlinear E loads, which are
popularly referred to as generalized ZIP loads, and whose power consumption depends on
the exponent of the PCC voltage. From what we know, this work is the very first treatise
of E loads in the context of DCmGs. Second, we propose a new consensus-based secondary
control scheme relying on the exchange of variables with the nearest neighbors over a
connected communication network. To achieve current sharing and voltage balancing,
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these secondary regulators operate at the same time scale as the primary controllers
while appropriately modifying primary voltage references. In spite of their distributed
structure, their control design is completely decentralized, allowing for plug-and-play
operations. Third, we thoroughly investigate the steady-state behavior of the DCmG
under secondary control, and show that the desired goals are always attained in steady
state. In particular, the steady-state regime is governed by the physics of the DCmG,
and our specific controller has no bearing on the existence of equilibria. Moreover, for the
specific case of P loads — E loads with zero exponent, we deduce sufficient conditions on
the existence and uniqueness of an equilibrium point meeting secondary goals. Such an
analysis is not trivial due to the introduced nonlinearities, and entails finding solutions to
DC power-flow equations constrained to a hyperplane. To the best of our knowledge, this
has not been addressed in the literature before. Fourth, we present a voltage stability
analysis of the closed-loop DCmG, which shows that stability is independent of the
physical and communication topologies, and lays out conditions on the controller gains
and power consumption of E loads. To substantiate the efficacy of our controllers, we also
conduct realistic simulations accommodating non-ideal DGUs with nonlinear switching
behavior, and abrupt load variations.

Section 3.2 recaps the DCmG model and primary voltage control. Section 3.3 sets forth
our secondary control scheme, and details the steady-state behavior of the closed-loop
DCmG in the presence of ZIE loads. Section 3.4 houses a stability analysis, which proves
the convergence to an equilibrium point simultaneously fulfilling both current sharing
and voltage balancing objectives. Simulations validating theoretical results are provided
in Section 3.5. Finally, conclusions are drawn in Section 3.6.

3.2 DCmG model and primary voltage control

In this section, we start by reviewing the considered DCmG model [NST+20, TRFT18]
comprising multiple DGUs interconnected with each other via power lines, and recall the
concepts of primary voltage control.

DCmG Model: The DCmG is modeled as an interconnected MAS shown in Figure 2.1
consisting of two undirected and connected graphs: a physical coupling graph Gp =
(V,Wp, Ep) and a cyber coupling graph Gc = (V,Wc, Ec). To each node, also referred
to as PCC, is connected a DGU and a load. The interconnecting power lines are
represented by the edges of Gp. On assigning a number to each line, we equivalently
express Ep = {l1, . . . , lM} with M denoting the total number of lines. After defining B
as the incidence matrix of Gp, the Kirchoff’s Current Law (KCL) can be represented
as x = Bξ, where x ∈ R|V| and ξ ∈ R|E| respectively represent the nodal injections and
edge flows. Assume that the edge l ∈ {1, ..., |E|} is oriented from i to j, then for any
vector V ∈ R|V|, (B>V )l = Vi − Vj . Note that edge directions are arbitrarily assigned,
and provide a reference system for positive currents.
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Figure 3.1: Schematic diagram showing primary and secondary control layers of the
DCmG, as well as the electric scheme of ith DGU and load. Note that the topology of
the communication network is not shown.

Dynamic model of a power line: Modeled after the π-equivalent model of transmission
lines [Kun94], the dynamic behavior of lth power line is given by

ΣLine
[l] :

dIldt = −Rl
Ll
Il + 1

Ll

∑
i∈Nl

BilVi , (3.1)

where Nl is the set of DGUs incident to the lth line, Bil represents the element in ith
row and lth column of the incidence matrix B, and the variables Vi and Il represent
the voltage at PCCi and the line current, respectively. Note that the line capacitances
are assumed to be lumped with the DGU filter capacitance Cti. Therefore, as shown
in Figure 3.1, the RLC power line l is equivalently represented as an RL circuit with
resistance Rl > 0 and inductance Ll > 0.

Dynamic model of a DGU: As in Section 2.5.2, the DGU comprises a DC voltage source
(usually generated by a renewable resource), a Buck converter, and a series RLC filter.
The ith DGU, feeding a local load at PCCi, is connected to other DGUs via power lines.
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3.2 DCmG model and primary voltage control

A schematic electric diagram of the ith DGU along with load, connecting line(s), loads,
and local PnP voltage controller is represented in Figure 3.1. Note the differences in this
figure with respect to Figure 2.4b in terms of a ZIE load, RL power line, and different
primary controller structure. Correspondingly, the electrical dynamics are written as

ΣDGU
[i] :


Cti

dVi
dt

= Iti − ILi(Vi, ri)−
∑
l∈Ep

BilIl

Lti
dIti
dt

= −Vi −RtiIti + Vti

, i ∈ V, (3.2)

where ILi(Vi, ri) is the current drawn by the nonlinear load and ∑l∈Ep BilIl captures the
total current injected into the DCmG by DGU i. The other terms and definitions are the
same as in Section 2.5.2. Namely, Rti ∈ R>0, Lti ∈ R>0, and Cti ∈ R>0 are the internal
resistance, capacitance (lumped with the line capacitances), and inductance of the DGU
converter, respectively.

Remark 3.2.1. (Modeling DC–DC converters). We remind that we bank on the
standard space averaging method [MS77] in developing the DCmG model, enabling us
to disregard the switching behavior of Vti. Consequently, we have Vti = diVsi, where
di ∈ [0, 1] is the duty cycle of the Buck converter, and Vsi ∈ R the voltage of its power
source. Throughout, we suppose Vsi is large enough to avoid saturation of di.

Each DGU is equipped with a local voltage regulator, which along with other such
regulators constitutes the primary control layer. The main objective of these controllers
is to ensure that the voltage at each DGU’s PCC tracks a reference voltage Vref,i. For
this purpose, we augment each DGU with a multivariable PI regulator (see Figure 3.1)

v̇i = e[i] = Vref,i − Vi − ωi,
C[i] : Vti = K[i]x̂[i] + k4,iωi,

(3.3)

where x̂[i] = [Vi Iti vi]> ∈ R3 is the state of augmented DGU, K[i] = [k1,i k2,i k3,i] ∈ R1×3

and k4,i ∈ R are feedback gains, and ωi is an exogenous variable generated by the
secondary controller (see Section 3.3 for more details). From (3.2)–(3.3), the closed-loop
DGU model is similar to (2.41) except a few updated terms:

Σ̂DGU
[i] :



dVi
dt

= 1
Cti

Iti −
1
Cti

ILi(Vi, ri)−
1
Cti

I∗i

dIti
dt

= αiVi + βiIti + γivi + δiωi

dvi
dt

= −Vi + Vref,i − ωi

, (3.4)

where
αi = (k1,i − 1)

Lti
, βi = (k2,i −Rti)

Lti
, γi = k3,i

Lti
, (3.5)
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and
δi = k4,i

Lti
. (3.6)

We highlight that variable ωi = 0 when the secondary control layer is inactive or absent.
The primary control architecture is hence decentralized as the computation of Vti requires
only the state of Σ̂DGU

[i] .

Load model: The ith load is the parallel combination of Z, I, and E loads. The total
current ILi(Vi, ri), a function of voltage at PCCi, is given as

ILi(Vi, ri) = YLiVi︸ ︷︷ ︸
Z

+ ĪLi︸︷︷︸
I

+V ri−1
i P ∗Li︸ ︷︷ ︸

E

, (3.7)

where YLi is the conductance of the Z load while ri ∈ R the exponent of the E load. The
constant ĪLi is the current consumed by the I load, and P ∗Li is the power constant of
the E load. Note that an E load corresponds to a constant-power load when ri = 0,
and covers wide range of physical loads depending upon the value of ri. Some common
examples are air conditioners (ri ∈ (0.50, 2.50)), resistance space heaters (ri = 2), and
fluorescent lighting (ri ∈ (1, 3)) [Kun94, Rom02].

Assumption 3.2.1. The reference signals Vref,i and PCC voltages Vi are strictly positive
for all t ≥ 0.

We remark that Assumption 3.2.1 is not a limitation, and rather reflects a common
constraint in mG operation. Notice that, in Figure 3.1, one end of the load is connected
to the PCC and the other to the ground, assumed be at zero potential by convention.
Since the electric current and hence power flows from higher to lower potential, negative
references and PCC voltages will reverse the role of loads and make them power generators.
In order to ensure power balance in the network, the generators will have to absorb
this surplus power. This, in effect, defeats the fundamental goal of the mG, that is, the
satisfiability of the loads by virtue of the power generated by the DGUs. Furthermore, if
Vi, Vref,i ∈ RN , then a zero-crossing for the voltages may take place. As voltages tend to
zero, the power consumed by the ZIE loads with exponents ri < 1 approaches infinity.

3.3 Secondary control in DCmGs

3.3.1 Problem formulation

The primary control layer is designed to track a suitable reference voltage Vref,i at the
PCCi. As such, they do not ensure proportional current sharing and voltage balancing,
defined as follows.

Definition 3.3.1. (Current sharing [TMGFT18, ZD15]). The load is said to be
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shared proportionally among DGUs if

Iti
Isti

= Itj
Istj

for all i, j ∈ V, (3.8)

where the constant Isti > 0 is the rated current of DGU i.

Current sharing ensures proportional sharing of loads amongst multiple DGUs, avoiding
situations of DGU overloading, and preventing harm to the converter modules. As will
be shown in the subsequent sections, the steady state voltages need not necessarily be
equal to Vref,i when currents are shared proportionally. It is, however, desirable that
PCC voltages remain close to the nominal reference voltages for normal operation of the
DCmG. To this aim, we state the objective of weighted voltage balancing in the following
definition.

Definition 3.3.2. (Weighted voltage balancing [CTDP+18]). The voltages are
said to be balanced in the steady state if

〈[Ist ]V 〉 = 〈[Ist ]Vref 〉, (3.9)

with Vref , [Vref,1 . . . Vref,N ]> ∈ RN being the vector of reference voltages.

Voltage balancing implies that the weighted sum of PCC voltages is equal to the the
weighted sum of voltage references, ensuring boundedness of DCmG voltages. As
noticed in [ZD15], in its absence, the PCC voltages may experience drifts and increase
monotonically despite the filter currents’ being shared proportionally.

3.3.2 Consensus-based secondary control

To achieve the aforementioned objectives, we use a consensus-based secondary control
layer. Consensus filters are commonly employed for achieving global information sharing
or coordination through distributed computations [OSM04, Bul17]. In our case, we
propose the following consensus scheme

Ω̇i =
N∑

j=1,j 6=i
aij

(
Iti
Isti
− Itj
Istj

)
, (3.10)

ωi = 1
Isti

N∑
j=1,j 6=i

aij (Ωi − Ωj) , (3.11)

where aij > 0 if DGUs i and j are connected by a communication link (aij = 0, otherwise).
Information is exchanged according to the cyber coupling graph Gc defined in Section 3.2.
We remind that Gc is assumed to be connected, but its topology can be completely
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arbitrary. As shown in Figure 3.1, the consensus variable ωi modifies the primary voltage
controllers; see (3.3).

Remark 3.3.1. (Structure of secondary voltage regulators). The proposed con-
trollers have a distributed structure, and exchange Ωi and Iti with their communication
neighbors. Utilizing the received information, the ith DGU simultaneously computes the
variable ωi used to adapt the voltage references Vref,i and the DGU command Vti, with a
view to attaining (3.8)-(3.9). It is worth noting that the scheme discussed in this work is
different from [TMGFT18], where only Iti is communicated, and uniquely Vref,i is altered.
In addition, this work does not reduce DGUs to ideal voltage generators or first-order
systems, and eliminates assumptions on the topology of the communication network.

The complete dynamics of the DCmG under primary and secondary control are given by
(3.1)–(3.6) along with (3.10)–(3.11). These equations can be compactly rewritten as

Ẋ = AX + B(V ), (3.12)

where X =
[
V > It

> v> I> Ω>
]>
∈ R4N+M ,

A =


−C−1

t YL C−1
t 0 −C−1

t B 0
[α] [β] [γ] 0 [δ][Ist ]−1Lc
−I 0 0 0 −[Ist ]−1Lc

L−1B> 0 0 −L−1R 0
0 Lc[Ist ]−1 0 0 0


︸ ︷︷ ︸

A∈R(4N+M)×(4N+M)

,

and

B(V ) =


−C−1

t (ĪL + [V r−1N ]P ∗L)
0N
Vref
0M
0N


︸ ︷︷ ︸

B(V )∈R(4N+M)

.

Note that V ∈ RN , It ∈ RN , v ∈ RN , I ∈ RM , P ∗L ∈ RN , ĪL ∈ RN , r ∈ RN , α ∈ RN ,
β ∈ RN , γ ∈ RN , δ ∈ RN are vectors of PCC voltages, filter currents, integrator states,
line currents, load powers, load currents, E load exponents, and parameters αi, βi, γi,
δi respectively. The matrices R ∈ RM×M>0 , L ∈ RM×M>0 , YL ∈ RN×N>0 , and Ct ∈ RN×N>0
are diagonal matrices collecting electrical parameters Rl, Ll, YLi, and Cti, respectively.
Lc ∈ RN×N is the Laplacian matrix of the communication network. Notice that the
dynamics of the DCmG controlled only by the primary layer can be recuperated by
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setting Ω = 0N as

Ẋ ′ =


−C−1

t YL C−1
t 0 −C−1

t B

[α] [β] [γ] 0
−I 0 0 0

L−1B> 0 0 −L−1R


︸ ︷︷ ︸

A′∈R(3N+M)×(3N+M)


V ′

It
′

v′

I ′


︸ ︷︷ ︸
Ẋ′

+


−C−1

t (ĪL + [(V ′)r−1N ]P ∗L)
0N
Vref
0M


︸ ︷︷ ︸

B′(V )∈R(3N+M)

,

(3.13)

We highlight that, for the sake of clarity, the superscript ′ is introduced to denote DCmG
states without secondary control.

The overall model of the DCmG (3.12) having been deduced, the next step is to show
that the network is stable, and attains the control objectives (3.8) and (3.9) in the steady
state. To this end, we first start by characterizing the equilibria of (3.12).

3.3.3 Analysis of equilibria

Before analyzing the stability of the closed-loop system (3.12), we study when an
equilibrium exists such that (3.8) and (3.9) are jointly attained. We emphasize that, in a
primary-controlled DCmG given by (3.13), a reference voltage Vref,i is directly enforced
at the ith PCC. Thus, a unique equilibrium point

X̄ ′ =


Vref

BĪ + YLVref + [Vref ]r−1NP ∗L + ĪL
−[γ]−1([α]Vref + [β]Īt)

R−1B>Vref

, (3.14)

always exists and can be found by setting Ẋ ′ = 0 in (3.13) [NST+20]. On the contrary,
once the secondary layer is activated, the voltage references are tweaked by ωi (see (3.3)),
which is governed by equations (3.10) and (3.11). Since the presence of exponential loads
essentially renders the DCmG dynamics nonlinear, it may occur that an equilibrium
point fails to exist (see Section 3.5 for a simulation example). Hence, in this section, we
pursue whether the closed-loop system (3.12) possesses an equilibrium point, and if so,
under what conditions on loads, topology of electrical and communication networks, and
controller gains. We set off by presenting the following lemma.

Lemma 3.3.1. Consider the DCmG dynamics (3.12). The following statements hold:
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1. In steady state, the objectives (3.8) and (3.9) are attained;

2. A steady state solution X̄ = [V̄ >, Ī>t , v̄>, Ī>, Ω̄>]> exists only if there exists a V̄
concurrently satisfying the following equations

LpV̄ + Lt[Ist ]−1([V̄ r−1N ]P ∗L + ĪL + YLV̄ ) = 0, (3.15a)

1>N [Ist ]V̄ = 1>N [Ist ]Vref , (3.15b)

where Lt = [Ist ]− (1>N [Ist ]1N )−1[Ist ]1N1>N [Ist ], and Lp = BR−1B> is the Laplacian
matrix of the electrical network.

Proof. Any steady state solution of (3.12) satisfies

−YLV̄ − ĪL − [V̄ r−1N ]P ∗L + Īt −BĪ = 0 (3.16a)
[α]V̄ + [β]Īt + [γ]v̄ + [δ][Ist ]−1LcΩ̄ = 0 (3.16b)

Vref − V̄ − [Ist ]−1LcΩ̄ = 0 (3.16c)
B>V̄ −RĪ = 0 (3.16d)
Lc[Ist ]−1Īt = 0 (3.16e)

One has from (3.16e) that Īt = ε[Ist ]1N for some ε ∈ R, warranting the attainment of
(3.8). Since 1>NB = 0M , (3.16a) implies that 1>N Īt = 1>N (YLV̄ + ĪL + [V̄ r−1N ]P ∗L), then
ε = (1>N [Ist ]1N )−11>N (YLV̄ + ĪL + [V̄ r−1N ]P ∗L). We can equivalently represent

Īt = (1>N [Ist ]1N )−1[Ist ]1N1>N (YLV̄ + ĪL + [V̄ r−1N ]P ∗L). (3.17)

Using (3.16d),
Ī = R−1B>V̄ . (3.18)

On substituting (3.17) and (3.18) into (3.16a), one obtains (3.15a). Moreover, for
an Ω̄ to exist such that (3.16c) holds, [Ist ](Vref − V̄ ) ∈ H1, which yields (3.15b) and
guarantees (3.9) in steady state. If there exists a V̄ solving (3.15), Īt and Ī exist due
to (3.17) and (3.18), respectively. As (3.15b) holds, from (3.16c), an equilibrium vector
Ω̄ = L†c[Ist ](Vref − V̄ ) + η1N , η ∈ R exists. Finally, on substituting V̄ , Īt, Ī, and Ω̄ into
(3.16b), one has v̄ = [γ]−1

(
([α] + [δ])V̄ − [δ]Vref + [β]Īt

)
. �

Note that equations (3.15a)–(3.15b) represent the DC power-flow equations when DGU
currents are shared proportionally and PCC voltages balanced. These equations are
governed only by the electric network Laplacian Lp, ZIE load parameters, DGU rated
currents Ist , and voltage references Vref . We conclude that the communication network
Laplacian Lc and the controller (3.3) has no bearing on their solvability. In the ensuing
discussion, we analyze the existence of a voltage solution to (3.15) when r = 0N , that is,
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the exponential loads behave as P loads. By setting r = 0N , one can rewrite equation
(3.15) as

L̃V = Ĩ − L̃t[V −1]P ∗L, (3.19)

where L̃ =
[
L̃p

1>N [Ist ]

]
, L̃p = Lp + Lt[Ist ]−1YL, Ĩ =

[
−Lt[Ist ]−1ĪL
1>N [Ist ]Vref

]
, and L̃t =

[
Lt[Ist ]−1

0

]
.

Remark 3.3.2. (Solvability of (3.19)). The existence and uniqueness of solutions of
power-flow equations have been tackled in [SPDB16, BNF19]. As shown in what follows,
the tools therein cannot be directly applied to ascertain the solvability of (3.19) as (3.15b)
restricts the voltage solutions onto a hyperplane.

Before presenting Theorem 3.3.1, the following assumption is needed.

Assumption 3.3.1. The range space of L̃p is H1.

Remark 3.3.3. Note that, by definition, range(L̃p) ⊆ H1. Considering dim(H1) = N − 1
and L̃p ∈ RN×N , one only needs to check dim(ker(L̃p)) = 1 to verify Assumption 3.3.1.
This is a centralized operation, i.e., it requires the knowledge of global variables Lp, Ist ,
and YL about the whole DCmG.

We are now in a position to state the main result.

Theorem 3.3.1. (Existence and uniqueness of a voltage solution). Consider
(3.19) along with the vector V ∗ = L̃†Ĩ. Suppose that [V ∗] is invertible, Assumption 3.3.1
holds, and that the network parameters and loads satisfy

∆ = ||PcriP ∗L||∞ < 1. (3.20)

Define the matrix Pcri = 4[V ∗]−1L̃†L̃t[V ∗]−1 and the percentage deviations δ− ∈ [0, 1
2)

and δ+ ∈ (1
2 , 1] as the unique solutions of ∆ = 4δ±(1− δ±). The following statements

hold:

1) The closed set H(δ−) contains a unique voltage solution V to (3.19), where

H(δ−) := {V ∈ RN |(1− δ−)V ∗ ≤ V ≤ (1 + δ−)V ∗}. (3.21)

Moreover, there exist no solutions of (3.19) in the open set

I := {V ∈ RN |(V > (1− δ+)V ∗ and V /∈ H(δ−)}; (3.22)

2) For P ∗L = 0, V ∗ is the unique solution of (3.19);

3) If (1− δ+)V ∗ < Vref , then, there exist no solutions of (3.19) in the closed set

J := {V ∈ RN |(V ≤ (1− δ+)V ∗}. (3.23)
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Proof. Any voltage solution to (3.19) must verify Ĩ−L̃t[V ]−1P ∗L ∈ range(L̃). We therefore
start by characterizing the column space of L̃ ∈ R(N+1)×N . Let {l1, l2, · · · , lN}, li ∈ RN+1

be its column vectors. Therefore,

range(L̃) =
{

N∑
i=1

aili | ai ∈ R

}
=


[
L̃p
0

]
a︸ ︷︷ ︸

c1

+(
N∑
i=1

Istiai)
[
0N
1

]
︸ ︷︷ ︸
c2

| a ∈ RN , ai ∈ R

.

The vectors c1 and c2 are orthogonal to each other. In view of Assumption 3.3.1, the
vector c1 can be equivalently written as

c1 =
N−1∑
i=1

ãi

[
hi
0

]
︸ ︷︷ ︸
h̃i

, ãi ∈ R,

where {h1 · · ·hN−1}, hi ∈ RN is an orthogonal basis of H1. Hence,

range(L̃) =
{

N∑
i=1

ãih̃i | ãi ∈ R

}
,

where h̃N = c2. Moreover, {h̃1 · · · h̃N} is an orthogonal basis of range(L̃). Using the
deduced basis, one can easily verify that Ĩ ∈ range(L̃) and range(L̃t) ⊂ range(L̃). It,
therefore, holds that Ĩ − L̃t[V ]−1P ∗L ∈ range(L̃) ∀ V ∈ RN . Furthermore, we note
that L̃ is a matrix with full-column rank as dim(range(L̃)) = N . By the fundamental
theorem of linear algebra, [Str93], dim(range(L̃>)) = dim(range(L̃)) = N , and thus
range(L̃>) = RN . Since the linear map L̃(range(L̃>)|range(L̃)) is always invertible
[Str93], and as V ∈ range(L̃>), Ĩ − L̃t[V ]−1P ∗L ∈ range(L̃) ∀ V ∈ RN , one can rewrite
(3.19) as

V = L̃†Ĩ − L̃†L̃t[V −1]P ∗L
= V ∗ − L̃†L̃t[V −1]P ∗L

, (3.24)

where L̃† = (L̃>L̃)−1L̃>. We highlight that L̃>L̃ is always invertible for matrices with
full-column rank [Str93]. On utilizing the change of variables x := [V ∗]−1V − 1N , we
obtain the equivalent representation of (3.24) as

x = f(x) := −[V ∗]−1L̃†L̃t[V ∗]−1[P ∗L]r(x) (3.25a)

= −1
4Pcri[P

∗
L]r(x), (3.25b)

where r(x) =
[

1
1+x1

, · · · , 1
1+xN

]>
. Having transformed (3.24) into (3.25b), we can now

apply the contraction mapping arguments presented in [SPDB16]. Statement 1) is a
direct consequence of the Supplementary Theorem 1 of [SPDB16].
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The proof of Statement 2) follows from (3.24) and the invertibility of L̃(range(L̃>)|range(L̃)).
With the objective of proving Statement 3), we consider a voltage solution V ∈ J .
Given that (1 − δ+)V ∗ < Vref , any voltage solution V ∈ J can be represented as
V = Vref − b, b ∈ RN>0. It is evident that a voltage solution V ∈ J to (3.19) must satisfy
(3.15b). Therefore,

1>N [Ist ](Vref − b) = 1>N [Ist ]Vref =⇒ 1>N [Ist ]b = 0. (3.26)

Since Ist , b,∈ RN>0, (3.26) never holds. This concludes the proof of Statement 3). �

Remark 3.3.4. Under the conditions provided in Theorem 3.3.1, the existence of an
equilibrium point depends upon the critical power matrix Pcri and the power absorption
P ∗L. As pointed out in [SPDB16], one can interpret Pcri as the sensitivity of PCC voltages
to variations in power absorption by P loads. Consequently, the vector PcriP ∗L reflects
the voltage variations in the network, caused by constant power loads. As such, for a
DCmG, (3.20) means that these variations are sufficiently small. Note that Pcri is defined
by the electrical topology of the DCmG network, the Z and I components of loads, and the
voltage V ∗ appearing at PCCs when P ∗L = 0. Clearly, from (3.19), the communication
network topology Gc has no impact on Pcri. We also note that (3.20) is easier to satisfy
for small values of P ∗Li.

Remark 3.3.5. The set H(δ−) in Statement 1, Theorem represents a set where a unique
voltage solution V to (3.19) lies, whereas I is a set around H(δ−) where no solution
exists. We note that the definitions and implications of these two sets resemble those of
the secure solution and solutionless sets in [SPDB16]. Although, in our case, the variables
V ∗ and Pcri defining these sets are different from [SPDB16]. Moreover, we point out
that as ∆ → 0, δ− → 0 and δ+ → 1, implying that H(δ−) converges to {V ∗} and I to
the positive orthant of RN . On the contrary, as ∆→ 1, δ− → 1

2 and δ+ → 1
2 , meaning

that the set H(δ−) expands and the set I shrinks. We finally note that the set J defines
a low-voltage set with no solutions under the condition (1− δ+)V ∗ < Vref .

The previous theorem pertains to the existence of an equilibrium point for the closed-loop
system (3.12), albeit feeding only ZIP loads. A detailed analysis of (3.15) with ri ∈ R
is deferred to future research, as it calls for a study on finding analytic solutions to
polynomials of generic order. For E loads, we will rely on the following assumption.

Assumption 3.3.2. The DCmG under primary and secondary control has an equilibrium
point X̄ = [V̄ >, Ī>t , v̄>, Ī>, Ω̄>]> with positive voltages V̄ ∈ RN>0 satisfying equations
(3.15a)-(3.15b) simultaneously.

3.4 Stability of the DC microgrid network

In this section, we aim to study the stability of the closed-loop system (3.12), necessary
in order for the DCmG to exhibit desired steady-state behavior investigated in Section
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3.3.3. We start by introducing the following Lemma.

Lemma 3.4.1. Consider a symmetric block matrix

Z =
[
A B

B D

]
∈ R2n×2n,

where A,B and D ∈ Rn×n are diagonal matrices. Assume that D is invertible and define
the matrices

Zi =
[
Ai Bi
Bi Di

]
∈ R2×2,

where Ai, Bi, and Di represent the ith diagonal element of matrices A,B and C, respec-
tively. The matrix Z is positive definite if and only if Zi � 0 for all i ∈ {1, . . . , n}. If at
least one Zi is positive semidefinite, then Z is positive semidefinite.

Proof. The matrix Z is positive definite if and only if D � 0, and its Schur’s complement
A−BD−1B � 0. Considering that A,B,C, and D are diagonal matrices, the aforemen-
tioned conditions translate into Di > 0, and Ai −BiD−1

i Bi � 0, ∀i ∈ {1, . . . , n}. Note
that Ai−BiD−1

i Bi is the Schur’s complement of Zi. Therefore, if Zi � 0 ∀ i ∈ {1, . . . , n},
Z � 0. If the ith Zi is positive semidefinite, then

det(Zi) = AiDi −BiBi = 0.

Since Dii 6= 0, Ai − BiD−1
i Bi = 0. This implies that diagonal entry in the ith row of

A−BD−1B is equal to zero, making the Schur’s complement of Z positive semidefinite,
and hence, Z positive semidefinte. �

Theorem 3.4.1. (Stability of the closed-loop DCmG). Consider the closed-loop
system (3.12), along with Assumption 3.3.2. Define the equilibrium power absorption of
the ith exponential load as P̄ ∗Li = P ∗LiV̄

ri
i . For i ∈ V, if the feedback gains k1,i, k2,i, and

k3,i belong to the set

Z[i] =


k1,i < 1,
k2,i < Rti,

0 < k3,i <
1
Lti

(k1,i − 1)(k2,i −Rti)

 , (3.27)

k4,i = k1,i − 1, and the Z and E components of the ZIE load (3.7) with ri < 1 verify

(1− ri)P̄ ∗Li < YLiV̄
2
i , (3.28)

then the following statements hold:

1) The equilibrium point X̄ is locally asymptotically stable, and is globally asymptoti-
cally stable when P̄ ∗L = 0;
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2) In the absence of a communication network, the equilibrium point X̄ ′ of the resulting
closed-loop system (3.13) is locally asymptotically stable.

Proof. Statement 1): To study the behavior of trajectories resulting from (3.12), consider
the following candidate Lyapunov function, attaining a minimum at X̄

V(X̃) = 1
2X̃
>PX̃, (3.29)

where X̃ = X − X̄. The matrix P is defined as

P =
[
P1 0
0 P2

]
=


Ct 0 0 0 0
0 [β][ω]−1 [γ][ω]−1 0 0
0 [γ][ω]−1 [α][γ][ω]−1 0 0
0 0 0 L 0
0 0 0 0 I

 , (3.30)

with P1 ∈ R(3N+M)×(3N+M), P2 ∈ RN×N , and [ω] = [γ] − [α][β] ∈ RN×N . To ensure
(3.29) is a legitimate Lyapunov function, the matrix P must be positive definite. In fact,
as P is a block diagonal matrix with Ct � 0, L � 0, and I � 0, its positive definiteness
hinges on

P̂ =
[
[β][ω]−1 [γ][ω]−1

[γ][ω]−1 [α][γ][ω]−1

]
� 0.

which, as a direct consequence of Lemma 3.4.1, translates into

P̂i =
[
βi
ωi

γi
ωi

γi
ωi

αiγi
ωi

]
� 0, ∀i ∈ V.

Using Sylvester’s criterion [HJ12, Theorem 7.2.5] followed by some basic algebra, one
can deduce that P̂i � 0 if and only if βi, γi, ωi belong to the set

Si = {(βi, γi, ωi) : (βi, ωi > 0, γi < 0) or (βi, ωi < 0, γi > 0)}.

The time derivative of (3.29) along the solutions of (3.12) reads

V̇(X̃) =
(
∂V
∂X̃

)> ˙̃X

= 1
2
(
X>A>PX̃ + X̃>PAX

)
+ B(V )>PX̃

= 1
2
(
X̃>A>PX̃ + X̃>PAX̃

)
+
(
AX̄ + B(V )

)>
PX̃

= X̃>Q(V )X̃,

(3.31)
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where

Q(V ) = −1
2



2(YL + YE(V ))
− I + [γ][ω]−1

− [α][β][ω]−1 0 0 0

− I + [γ][ω]−1

− [α][β][ω]−1 −2[β]2[ω]−1 −2[β][γ][ω]−1 0
[Is

t ]−1 (−I + [γ][ω]−1

−[α][β][ω]−1)Lc

0 −2[β][γ][ω]−1 −2[γ]2[ω]−1 0
[Is

t ]−1 ([α][γ][ω]−1

−[δ][γ][ω]−1)Lc

0 0 0 2R 0

0
Lc

(
−I + [γ][ω]−1

−[α][β][ω]−1) [Is
t ]−1

Lc

(
[α][γ][ω]−1

−[δ][γ][ω]−1) [Is
t ]−1 0 0


,

(3.32)
and YE(V ) is a diagonal matrix, whose ith diagonal element is

YEi(Vi) = P̄ ∗Li(V
ri−1
i − V̄ ri−1

i )
V̄ ri
i (Vi − V̄i)

. (3.33)

Using (3.5) and (3.6), one can simplify Q(V ) as

Q(V ) = −


YL + YE(V ) 0 0 0 0

0 −[β]2[ω]−1 −[β][γ][ω]−1 0 0
0 −[β][γ][ω]−1 −[γ]2[ω]−1 0 0
0 0 0 R 0
0 0 0 0 0

 ,

To claim that V̇(X̃) ≤ 0, and subsequently the stability of the equilibrium point X̄, one
needs

fi(Vi) = YLi + YEi(Vi) ≥ 0, ∀i ∈ V (3.34)

and, from Lemma 3.4.1,

Q̂i =

 −β2
i
ωi

−βiγi
ωi

−βiγi
ωi

−γ2
i
ωi

 � 0, ∀i ∈ V.

Evidently, Q̂i � 0 if and only if ωi belongs to

Ti = {ωi : ωi < 0}.

Assume for the moment that (3.34) holds. For V̇(X̃) ≤ 0 and V(X̃) > 0 to be ver-
ified simultaneously, αi, βi, and γi should be such that (βi, γi, ωi) ∈ Si, and ωi ∈ Ti.
Equivalently, (αi, βi, γi) must belong to

Ui = {(αi, βi, γi) : αi < 0, βi < 0, 0 < γi < αiβi}. (3.35)

Using (3.5), one can rewrite set Ui in terms of k1,i, k2,i, and k3,i as (3.27). Now, as for
(3.34), it is state dependent and should, at least, hold at Vi = V̄i. Note that fi(Vi) has a
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finite limit for Vi → V̄i, which one can show by employing Bernoulli-Hospital theorem as

fi(V̄i) = lim
Vi→V̄i

fi(Vi)

= YLi + lim
Vi→V̄i

P̄ ∗Li(V
ri−1
i − V̄ ri−1

i )
V̄ ri
i (Vi − V̄i)

= YLi −
P̄ ∗Li
V̄ 2
i

(1− ri)

. (3.36)

In view of (3.36), if (3.28) is verified by all the ZIE loads with ri < 1, then the inequality
(3.34) holds in a neighborhood of X = X̄. Note that (3.28) is always satisfied when
ri ≥ 1. We can now state that a compact level setM of V(X̃) can be taken sufficiently
small such that it is contained in the neighborhood within which (3.34) holds. As a result,
if X(0) − X̄ ∈ M, then X − X̄ ∈ M for all t ≥ 0. To show local asymptotic stability,
one can exploit the standard LaSalle’s invariance principle and show that the largest
invariant set M ⊂M contains solely the equilibrium point X̄. A detailed computation
of M is skipped here and presented in Appendix 3.7.

We point out that when P ∗L = 0, one can call into use Theorem 3.3.1 and Lemma 3.3.1
to establish existence and uniqueness of X̄. Moreover, (3.34) holds for all X ∈ R4N×M .
Hence, X̄ is globally asymptotically stable.

Statement 2): This proof relies heavily on the preceding analysis. Consequently, instead
of providing a detailed proof, we sketch the proof of Statement 2). In the absence of a
communication network, the DCmG dynamics given by (3.13) admit a unique equilibrium;
see (3.14). To show the asymptotic stability of X̄ ′, consider the following Lyapunov
function

V(X̃ ′) = 1
2X̃
′TP1X̃

′, (3.37)

where X̃ ′ = X − X̄ ′. One can now trace the same steps as before to reach the conclusion.
�

Remark 3.4.1. (Power consumption of E loads and stability). Based on Theorem
3.4.1, the permissible power drawn by E loads with ri < 1 is restricted by (3.28). To
make plain sense out of (3.28), one can state that, just like P loads [AKM13, WL14],
E loads with ri < 1 exhibit a negative incremental admittance (dI/dV < 0; see (3.7))
having a destabilizing impact. To preserve stability of the network, the DCmG operator
needs to counter this negative damping with the positive damping of Z loads, constraining
the power consumption of E loads with ri < 1. Indeed, for E loads with ri < 1, stability
cannot be guaranteed in the absence of Z loads. Note that no upper limit exists for E
loads with ri > 1 as (3.28) is always fulfilled.

Remark 3.4.2. (Compatibility with primary control and stability under a
communication collapse). Equations (3.1) and (3.4) represent the DCmG under
primary control when the secondary layer is inactive. As shown in Theorem 3.4.1, (3.27)
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Figure 3.2: A representative diagram of the DCmG with the communication network
appearing in dashed blue.

and (3.28) also make possible the design of stabilizing primary controllers, allowing us
to reach the following conclusions: (i) the proposed secondary controllers are design-
wise fully compatible with the primary layer, and require only an additional control
gain k4,i = k1,i − 1, k1,i ∈ Z[i] be set once activated; (ii) if the DCmG undergoes a
communication collapse, the primary controllers maintain voltage stability without any
human intervention, forcing each PCC to track Vref,i in steady state.

Remark 3.4.3. (Plug-and-play operations). To synthesize the proposed secondary
regulators, one can use the feedback gains (3.27), dependent on the DGU filter parameters
Rti and Lti but not on Cti — assumed to be lumped with line capacitances. Capable of
taking into account the worst-case parameter variations around a nominal value, these
explicit inequalities (3.27) cause the entire control design to be robust to uncertainties in
filter parameters. Moreover, the secondary controllers, notwithstanding their distributed
structure, can be designed in a completely decentralized fashion, enabling plug-and-play
operations. For example, when a new DGU is plugged-in, its controller can be designed
without the knowledge of any other parameter of the mG, and no other controller in the
mG needs to be updated such that voltage stability is preserved. As a last comment, we
note that if a power line with non-negligible capacitance is added or removed, no DGU
controller needs to be updated as controller gains are independent of Cti and, hence, the
capacitance of lines.

3.5 Simulation results

We assess the performance of the proposed consensus-based controller via realistic
computer simulations using the Specialized Power Systems Toolbox of Simulink [HQ19].
The considered DCmG has 6 DGUs arranged in the topology given in Figure 3.2,
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where electrical lines depicted in solid black arrows are assigned arbitrary directions1,
and bidirectional communication channels are shown in blue dashed lines. We further
assume that power lines are equipped with switches so as to enable or interrupt power
transfer. The DGUs consist of bidirectional Buck converters fed by source voltages
of Vs,i = 80V,∀i ∈ N as well as RLC filters and loads with non-identical parameter
values. Bidirectional Buck converters are implemented as non-ideal insulated gate bipolar
transistor (IGBT) switches which operate at 15 kHz and have snubber circuits as a
safeguard against large transients that can damage electrical equipments. The parameters
of filters and lines are adopted from [TRFT18], whereas those of the loads are selected
so as to satisfy (3.28). Voltage reference values Vref,i are chosen to be between 45V and
50V, and the primary controller gains k1,i, k2,i, and k3,i are selected from the set Z[i] in
(3.27).

The simulations are divided into two parts. We first present a simulation scenario showing
that the above DCmG with ZIP loads and proposed controller structure converges to the
unique solution in H(δ−) ∪ I; see (3.20), (3.21). We then change some ZIP loads to ZIE
loads to show that stability and secondary control objectives are still achieved despite the
results of Theorem 3.3.1 being no longer applicable. In the second part of simulations,
we show that an equilibrium fails to exist when some parameters of the DCmG equipped
with ZIP loads are modified such that conditions for Theorem 3.3.1 are not satisfied.

3.5.1 Convergence to an equilibrium

In this scenario, we show that the proposed controller achieves current sharing and
voltage balancing while allowing plugging-in and unplugging of DGUs.

Initialization of the DCmG: First, the DCmG is initialized with all power lines and
communication channels disconnected, i.e., there is no power transfer between the DGUs
and the consensus-based controller is not activated. As such, the primary controllers of
DGUs first regulate voltages at their PCCs to corresponding reference voltages Vref,i, as
seen in Figure 3.3a from 0s to 1.5s. At this stage, DGUs 1-5 supply ZIP loads, whereas
DGU 6 has a ZIE load with exponent r6 = 0.65.

Connection of DGUs: At t = 1.5s, the switches on the power lines l1, l2, l4, l5,
and l6 are closed, connecting the DGUs 1-5 to form a DCmG. Simultaneously, the
consensus-based controller is activated with zero initial conditions for these DGUs.
We would like to emphasize that, in this phase of the simulations, DGU 6 is still
disconnected from the rest of the DCmG. Theorems 3.3.1 and 3.4.1 can be applied
for this DCmG to conclude that there exists a unique voltage solution to (3.19) in
H(δ−) = {V ∈ R5|(1 − δ−)V ∗ ≤ V ≤ (1 + δ−)V ∗}, where δ− = 3.94 × 10−4 and
V ∗ = [47.15, 47.17, 47.18, 47.21, 47.26]>. Moreover, this point is the unique solution in

1We recall that arrows define a reference frame for positive currents.
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Figure 3.3: PCC voltages, weighted filter currents in per unit, and weighted voltage sum
under secondary control with ZIP loads. In (a), the black dashed lines represent the
highest and lowest voltage values in H(δ−), the set in which the unique equilibrium in
H(δ−) ∪ I lies.

H(δ−) ∪ I = {V ∈ R5|V ≥ (1 − δ+)V ∗} with δ+ = 0.9996, and is stable. Figure 3.3a
shows that the PCC voltages indeed converge to this equilibrium point. Moreover,
Figures 3.3b and 3.3c respectively present that current sharing is achieved and voltages
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Figure 3.4: PCC voltages, weighted filter currents in per unit, and weighted voltage sum
under secondary control with ZIE loads.

Vi are successfully regulated to the references Vref,i − ωi.

Change of ZIP loads: At t = 6s, We modify the ZIP loads in DGUs 1 and 4 to
increase their constant-impedance and constant-power loads, while ensuring that they
still satisfy the conditions in Theorems 3.3.1 and 3.4.1. Consequently, it is guaranteed
that a unique and stable voltage solution in H(δ−) exists with δ− = 5.32 × 10−4 and
V ∗ = [47.13, 47.16, 47.17, 47.20, 47.28]>. Furthermore, this is the unique solution in
H(δ−) ∪ I with δ+ = 0.9995. It can be seen in Figure 3.3 that voltages converge to
this new equilibrium point with modified ZIP loads, as well as that current sharing and
voltage regulation are achieved.
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Figure 3.5: PCC voltages with ZIP loads, when (3.20) is not satisfied.

Plug-in of DGU 6: At t = 10s, the physical lines l3 and l7 are attached so that DGU
6 is connected to the rest of the DCmG. At the same time, we activate the secondary
controller of DGU 6, and update those of DGUs 3 and 5 to account for the communication
from DGU 6. Simultaneously, the constant-power loads of DGUs 2, 3, and 5 are changed
to exponential loads with exponents r2 = 0.6, r3 = 0.55, and r5 = 0.4. Due to the
existence of ZIE loads in the DCmG, Theorem 3.3.1 cannot be applied for this new
DCmG; however, Theorem 3.4.1 can be applied to show that, if an equilibrium satisfying
(3.28) exists, it is stable. Indeed, we see in Figures 3.4a and 3.4b that PCC voltages
converge towards an equilibrium point in positive orthant of RN , which results in current
sharing.

Change of ZIE loads: At t = 17s, exponents of the ZIE loads attached to DGUs 3 and
6 are changed to values greater than one, i.e., r3 = 1.45 and r6 = 1.35. This change of
loads, in turn, change the dynamics of the DCmG, thus leading to a change of operation
point. As can be seen in Figure 3.4, the primary and secondary control objectives are
satisfied under this load change.

Unplugging of DGU 5: At t = 22s, in order to show that the proposed controller
works under unplugging of DGUs from the DCmG, the DGU 5 is isolated by opening
the switches of lines l6 and l7. In doing so, its consensus-based controller is disabled, and
those of its former neighbors, DGUs 4 and 6, are modified. Figure 3.4 shows that DGUs
1, 2, 3, 4, and 6 achieve current sharing and voltage balancing, whereas DGU 5 supplies
its own load after unplugging from the DCmG.

3.5.2 Nonexistence of equilibria
Take into consideration the DCmG in Figure 3.2, where all DGUs have ZIP loads. In this
scenario, we modify only the line resistances in the DCmG to show that a solution to
(3.19) may fail to exist if necessary conditions are not satisfied. In particular, we increase
the line resistances such that the condition in (3.20) is no longer satisfied. Consequently,
Theorem 3.3.1 can not be applied, meaning that the current sharing may not be achieved.
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To present this phenomenon through simulation, we initialize the DCmG with all the
physical lines and communication channels disconnected, as in the first scenario above.
Then, all electrical lines and communication channels are attached to connect all 6
DGUs together at t = 1.5s, also activating the secondary controllers. As can be seen
in Figure 3.5, an equilibrium point does not exist. This results in a voltage collapse in
a short period of time, i.e., one of the PCC voltages fall down to 0 V , which indicates
an unsafe operating point where many electrical devices would either shut down or get
damaged.

3.6 Conclusions

In this chapter, a novel secondary consensus-based control layer for current sharing and
voltage balancing in DCmG was presented. We considered a DCmG composed of realistic
DGUs, RLC lines, and ZIE loads. A rigorous steady-state analysis was conducted, and
appropriate conditions ensuring the attainment of both objectives were derived. In
addition, we provided a voltage stability analysis showing that the controllers can be
synthesized in a decentralized fashion.

In the next part of the thesis, we turn to a relevant problem in LIMASs regulated
via distributed control structures: detecting cyber attacks directed towards the cyber
coupling graph.
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3.7 Supplementary material: computation of the set M

On invoking LaSalle’s invariance principle, one has that, if X̃(0) ∈ M, then the state
X̃(t) asymptotically converges to the largest invariant set in

E = { X̃ ∈M : V̇(X̃) = 0 } . (3.38)

Now by (3.31), V̇(X̃) = 0 if and only if X̃ ∈ ker(Q). By direct computation, the set E
can equivalently be represented in terms of the state X̃ as

E =


X̃ ∈M | X̃ =


p

[γ]q
−[β]q
0M
s

 , q, s ∈ RN


, (3.39)

where p ∈ RN when YL + YE(V ) = 0, otherwise p = 0N . For evaluating the largest
invariant set in E, we pick the general case, that is, p ∈ RN . In order to conclude the
proof, we need to show that the largest invariant set M ⊆ E ⊆ M is uniquely the
equilibrium point X̄. To find the largest invariant set, we aim to deduce conditions on
X̃ ∈ E such that ˙̃X ∈ E. Using (3.39) and (3.12) we obtain

˙̃X = Ẋ = AX̄ +A


p

[γ]q
−[β]q
0M
s

+ B(V ) =


−C−1

t (YL + YE(V ))p+ C−1
t [γ]q

[α]p+ [δ][Ist ]−1Lcs
−p− [Ist ]−1Lcs

L−1B>p

Lc[Ist ]−1[γ]q

 .

Therefore, ˙̃X ∈ E, if and only if L−1B>p = 0M and the following equations hold:

[α]p+ [δ][Ist ]−1Lcs = [γ]q̃, (3.40a)
−p− [Ist ]−1Lcs = −[β]q̃, (3.40b)

where q̃ ∈ RN . Left multiplying (3.40b) with [α], and then adding it with (3.40a) yields

[α][β]q = [γ]q. (3.41)

This necessitates
αiβi = γi, ∀i ∈ V. (3.42)

Also, as the feedback gains k1,i, k2,i, and k3,i belong to the set Z[i] in (3.27), then
αi < 0, βi < 0, and 0 < γi < αiβi. Thus, we conclude that (3.40a) and (3.40b) can
be simultaneously satisfied only if q̃ = 0N . As for L−1B>p = 0M , one obtains that
p ∈ ker(B>). Since the graph Gp is connected, ker(B>) = H1

⊥ [Bul17]. Therefore, for ˙̃X
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to remain in E, X̃ must stay in set S ⊂ E, where

S =


X̃ ∈M | X̃ =


κ1N
0N
0N
0M
s

 , s ∈ RN


. (3.43)

Furthermore, it must hold M ⊆ S. Then, in order to characterize M , we assume X̃ ∈ S
and impose ˙̃X ∈ S. This translates into the following

˙̃X = Ẋ = AX̄ +A


κ1N
0N
0N
0M
s

+ B(V ) =


−κC−1

t (YL + YE(V ))1N
κ[α]1N + [δ][Ist ]−1Lcs
−κ1N − [Ist ]−1Lcs

0M
0N

 .

Notice that, for ˙̃X ∈ S, it must hold that [Ist ]−1Lcs = −κ1N . Since κ1N ∈ ker([Ist ]−1Lc),
it turns out that both κ = 0 and s = 0N . This implies that the largest invariant set
M ⊆ E is M = {X̃ ∈M | X̃ = 04N+M}.
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4 Distributed cyber-attack detec-
tion

4.1 Introduction

As discussed in Chapter 2, LIMASs contain both physical and cyber interconnections
between subsystems. The presence of cyber coupling, usually realized through communi-
cation networks, is motivated by the goal of implementing distributed control structures,
as LIMASs can grow significantly in size and complexity. Specific examples of such
LIMASs are DCmGs controlled by using distributed architectures that achieve certain
mG-wide objectives (see Chapter 3). The existence of a communication network between
subsystems of a LIMAS makes it a CPS, which are known to be susceptible to cyber
attacks. Therefore, in this chapter, we tackle the problem of distributed cyber-attack
detection in LIMASs.

The design and analysis of monitoring schemes to detect cyber attacks for CPSs have
attracted great interest in the literature, as demonstrated by the special issue [CSS17],
as well as the surveys [SAJ15, UGC+16] and references cited therein. Specifically, we
require that each subsystem is equipped with its own local diagnoser, and that the
information needed for the design and operation of the monitor is limited to a subset
of the LIMAS. In the literature, few works propose distributed methods, of which
[NI14, DPA+18, AKP18, PDB15b, BRBP20, HRSJ21] are examples, but often requiring
additional assumptions. For instance, [PDB15b, BRBP20] suppose secure communication
between different monitoring units. In [AKP18] the differences between centralized and
decentralized architectures in cyber-attack detection are analyzed in the context of
stochastic interconnected systems. Finally, [NI14, DPA+18, HRSJ21] present distributed
detection methods in which locally available information is exploited to estimate the
global state of the system. These approaches share similarities with methods proposed for
secure distributed state estimation, such as [MS16], where the global state of a LIMAS
is reconstructed from partial measurements in the presence of cyber attacks. Note that,
in this chapter, we use the term “distributed” differently. Indeed, our aim is to avoid
using or estimating global variables of the LIMAS.
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4.1.1 Contributions

In this chapter, we propose a novel distributed monitoring architecture devoted to
the timely detection of attacks on the information network connecting subsystems of
the LIMAS. Our method relies on two modules, employing a bank of UIOs and a
distributed Luenberger observer, as will be further illustrated in Section 4.3. These two
modules exploit different sets of relations and model knowledge to perform detection,
thus compensating each other’s vulnerabilities, and reducing the set of attacks that are
not detected. In particular, while the Luenberger observer of the local state exploits
analytical relations from the physical interconnection between subsystems to perform
detection, the UIOs estimating the neighbors’ states exploit knowledge of the model of
the neighbors themselves. This difference proves critical in the analysis of the properties
of each module, as it determines both the classes of attacks that are guaranteed to
be detected and, more importantly, the classes of attacks that cannot be detected by
each module independently. Indeed, the simultaneous use of both modules reduces the
classes of attacks that are stealthy to the detection architecture, i.e., attacks that are
guaranteed not to be detected. Finally, we verify the efficacy of our method through
realistic computer simulations of a DCmG.

The main contributions of this chapter compared to the existing literature are:

1. to design a local monitoring unit Di for the i-th subsystem, to detect attacks on
the communication network;

2. to propose a distributed and scalable design technique in which the synthesis of Di
requires at most information from neighbors of subsystem i;

3. to provide theoretical results on detectability and stealthiness properties of the
proposed attack detection scheme, given bounds on unknown noises influencing
both subsystem dynamics and measurements;

4. to introduce a state augmentation technique to improve the detection capabilities
of the UIO-based module;

5. to validate the monitoring scheme through analysis and simulations using a realistic
model of a DCmG.

In Section 4.2 we provide the problem formulation. In Section 4.3, we illustrate the attack
detection architecture, in which Di utilizes two parallel modules. In Sections 4.4 and 4.5
we analyze the properties of the modules individually, in terms of detectable and stealthy
attacks. In Section 4.6 we evaluate the detectability properties of Di as a whole, thus
showing the benefits of combining the two modules. In Section 4.7, extensive results from
numerical simulations using realistic dynamics of a DCmG are given, and the effectiveness
of the strategy demonstrated.
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4.2 Problem formulation

4.2.1 LIMAS model

As in Chapter 2, we model a LIMAS as a network of N subsystems Si, each coupled with
a set of neighbors Ni ⊆ V , {1, . . . , N}, Ni , |Ni|. The dynamics of each subsystem is
written as

Si :
{
ẋ[i] = Aiix[i] +Biu[i] +Mid[i] + ξ[i] + w[i]

y[i] = Cix[i] + ρ[i]
, (4.1)

where x[i] ∈ Rni , u[i] ∈ Rmi , d[i] ∈ Rgi , y[i] ∈ Rpi are respectively the subsystem state,
control and exogenous input, and output; ξ[i] ∈ Rni represents the physical interconnection
between subsystems, defined as ξ[i] ,

∑
j∈Ni Aijx[j], while w[i] ∈ Rni and ρ[i] ∈ Rpi model

process and measurement noises. In this chapter, we assume that all pairs (Ci, Aii) are
observable. Note that (4.1) can be seen as a continuous-time generalization of the LIMAS
model in (2.1), where the subsystems are allowed to have non-homogeneous dynamics
and exogeneous inputs as well as process and measurement noises are considered.

Assumption 4.2.1. Process and measurement noises w[i](t) and ρ[i](t) are unknown but
bounded, i.e.

|w[i](t)| ≤ w̄[i], |ρ[i](t)| ≤ ρ̄[i], (4.2)

for all t ≥ 0, where w̄[i], ρ̄[i] > 0,∀i ∈ V, are known.

Similarly to the previous chapters, we consider the control input u[i] to be the result
of a distributed control architecture, utilizing a communication network based on a
cyber coupling graph. Therefore, the control input u[i] depends directly on communicated
variables yc[j,i] that Si receives from its neighbors. Here yc[j,i] is used to differentiate the
output y[j] locally available to Sj from the information that Si receives. Throughout this
chapter, we assume that the communication network shares the same topology as the
physical coupling graph. We also consider that it is ideal, i.e. that it is not affected by
non-idealities such as delays and packet drops, among others.

4.2.2 Model of cyber attack

The necessity of integrating a communication network in the control architecture of a
LIMAS may expose the system to cyber-security threats [MKB+12]. The information
received by Si from Sj is written as

yc[j,i](t) , y[j](t) + βj,i(t− T j,ia )φj,i(t), ∀t ≥ 0 (4.3)

where βj,i(t) is an activation function, φj,i(t) is an attack function, as defined by the
attacker to achieve some unknown objective, and T j,ia > 0 is the unknown initial time of
attack. The activation function can be any function of time satisfying βj,i(t) = 0, ∀t < 0
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and βj,i(t) 6= 0, ∀t ≥ 0. Readers are referred to [BGFTP17] for possible choices of this
function. Note that, in nominal conditions (i.e. for t < T i,ja ), the information received by
Si from Sj is the exact measurement vector, i.e. yc[j,i](t) = y[j](t).

Assumption 4.2.2. Each edge (i, j),∀i, j ∈ V is affected by at most one attack, and
T j,ia > 0,∀i, j ∈ V.

Remark 4.2.1. Assumption 4.2.2 is not very restrictive, as it does not exclude the
occurrence of complex attacks targeting multiple lines simultaneously.

Through appropriate definition of φj,i(t) in (4.3), it is possible to model different types
of attacks [TPSJ12], such as: false data injection attacks, where φj,i : R → Rni is
any attacker-defined function of time; covert attacks, where an attack of the form
φj,i(t) , −y[j](t) + ya[j](t) replaces the transmitted information with the output ya[j](t)
of a simulated system with the same dynamics as Sj ; replay attacks, where transmitted
information y[j](t) is stored and then replayed periodically by the attacker, hiding any
changes in operating condition of Si, and where φj,i(t) , −y[j](t) + y[j](t − nT ), with
n ∈ N modeling the periodicity of the attack.

Remark 4.2.2. In the context of this chapter, we only consider attacks on the variables
which are communicated between subsystems. Thus, both the local measurement y[i]
and the control input u[i] are considered to be secure. This is motivated by the DCmG
application, where controllers are colocated with the sensors and actuators interfacing the
system.

4.2.3 Attack detection

We now formulate the problem of attack detection. We define the activation time of the
first attack on the incoming communication channels of a subsystem:

Ť ia , min
j∈Ni

T j,ia .

Problem 1 (Attack Detection). Design, for each subsystem, an attack detector Di to
verify the null hypothesis

H0
i (t) : {yc[j,i](t) = y[j](t),∀j ∈ Ni} (4.4)

at time t, i.e., the received communication is not under attack.
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Figure 4.1: Diagram representation of the DCmG. On the left, the graph representing
the DCmG; the physical interconnections are shown as the blue power lines, and the
communication topology appears as the red arrows. Cyber attacks are directed at the
communication lines. On the right, the circuit diagram of a DGU, together with the
information structure of the detector Di.

4.2.4 Islanded DCmGs

Model

As in the previous chapter, we represent an islanded DCmG as a network of N intercon-
nected DGUs, each composed of a Buck converter, interfacing a variable DCmG source
with the rest of the network through an RLC filter (see Figure 4.1). We assume that
loads are connected to the DGU terminals1, and DGUs are coupled through resistive
lines. The interconnected dynamics of DGU i can be written as in (4.1), with state
x[i] , [Vi, Iti, νi]> (where νi is an integrator state internal to the controller, used for
reference voltage tracking), exogenous input d[i] , ILi, and input u[i] = [Vti,∆Vi]>,
where ∆Vi is the result of a secondary control layer (e.g. a consensus protocol) used for
current sharing across the network, and Vti is the switching terminal voltage of the Buck
converter. The specific definitions of the matrices in (4.1) can be found in Section 4.9.1,
and the interested reader is referred to [TRFT18] for further details.

Remark 4.2.3. In the literature, the design of controllers for DCmGs with DC-DC
converters often relies on the so-called state-space averaging method, to disregard the
switching behavior of the terminal input [MC76]. It is therefore possible to define an
average control input V avg

ti , δiVsi, where δi ∈ [0, 1] is the duty cycle of the Buck converter
and Vsi ∈ R is the voltage of its power source.

1If load buses appear elsewhere, they can be mapped to the output terminals of DGUs using Kron
reduction [TRFT18].
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Assumption 4.2.3. For every DGU i ∈ V, Ci = I and the measurement is affected by
an unknown noise ρ[i].

Assumption 4.2.3 is not restrictive as Vi and Iti can be measured within the DGU, and
νi is an internal state of the controller.

Controller architecture

The control strategies proposed for islanded DCmGs are often designed in the context
of hierarchical architectures (see Chapter 3, the review [MSFT+17], and the references
cited therein), where primary controllers within the DGUs guarantee global stability
[TRFT18, ZD15, NST+20], while secondary and tertiary controllers achieve different
operational objectives, such as current and power sharing, mG synchronization, and
overall energy management [TMGFT18, ZD15, DPWD18, CBCZ16, NTFT20]. In this
chapter, we consider that each DGU is controlled by primary and secondary controllers
defined as in [NST+20] and [TMGFT18], respectively. Our choice is motivated by the
fact that these controllers can be designed in a scalable fashion while providing stability
of the whole DCmG. We note that this particular choice of controllers is very similar to
the one in Chapter 3, and without loss of generality. Indeed, the results of this chapter
hold for any distributed control scheme.

Specifically, the schemes presented in [NST+20, TMGFT18] define control laws to re-
spectively compute the average terminal voltage V avg

ti (and thus δi) to obtain global
voltage stability, and the secondary control input ∆Vi, to achieve current sharing, by
employing a consensus protocol reliant on neighbors’ communicated outputs (4.3). To
achieve coordination across the whole DCmG, reliable communication between DGUs is
necessary. Thus, cyber attacks can easily alter the operating point of the DCmG as a
whole.

Note that, here, we consider the case of islanded DCmGs. In the case of grid connection,
DCmGs provide ancillary services to the main grid, typically through the use of an energy
management system (EMS). In recent years, distributed optimization methods have been
presented for distributed EMSs [WCWK16], which may be tackled with the distributed
detection scheme here proposed.

Next, we provide a description of the proposed two-module detection scheme.

4.3 Attack detector Di – Detection architecture

As previously mentioned, the proposed detection architecture, illustrated in Figure 4.1,
relies on two modules simultaneously estimating the state of the local subsystem (through
a Luenberger observer) and the states of the neighboring subsystems (with a bank of Ni
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Table 4.1: Information required for design of Di and attack detection

UIO(j, i),∀j ∈ Ni Luenberger observer

Offline
Information Matrices Ajj ,Ej ,Cj ,

bounds w̄[j] and ρ̄[j]

Model of Si, matrix Cj ,
and bounds w̄[i] and ρ̄[k],
for all k ∈ {i} ∪ Ni

Online
Information

Communicated mea-
surements yc[j,i](t)

Local measurements and
inputs, and communicated
measurements yc[j,i](t)

UIOs). The bank of UIOs compute an estimate x̂[j,i](t) of a suitably defined augmented
state x[j] for each neighbor of Si, whilst the Luenberger observer generates an estimate
x̂[i](t) of the state x[i](t) of Si. The augmented state x[j] and communicated output
measurement yc[j,i] required for the design of the UIO-based modules in Di are introduced
in Section 4.4. The output estimates are compared respectively to yc[j,i] and y[i], and
the resulting residual is then used to detect the presence of an attack, by evaluating the
following inequalities: ∣∣∣yc[j,i](t)−Cjx̂[j,i](t)

∣∣∣︸ ︷︷ ︸
|r[j,i](t)|

≤ r̄[j,i](t), ∀j ∈ Ni (4.5a)

∣∣∣y[i](t)− Cix̂[i](t)
∣∣∣︸ ︷︷ ︸

|r[i](t)|

≤ r̄[i](t) (4.5b)

where matrix Cj is defined in (4.11) and the thresholds r̄[j,i](t) and r̄[i](t) are defined
appropriately to prevent false alarms, based on knowledge of the noise bounds in (4.2).
This design choice, albeit guaranteeing that the process will not be interrupted without
a certified threat, also implies that the thresholds are possibly conservative. If at any
time t > Ť ia either of the inequalities in (4.5) is violated, an attack is detected by Di.
Moreover, if (4.5a) is violated, the attacked communication line is also isolated. The
operation of the detection logic is summarized in Algorithm 1, while in Table 4.1 we
highlight the information required by Di at design time (offline), and during normal
operations (online).

As shown in Table 4.1, the two modules exploit different model knowledge to detect
the presence of cyber attacks. Specifically, each UIO exploits knowledge of augmented
dynamics of Sj (i.e. matrices Ajj ,Ej ,Cj) to estimate the state of each of its neighbors
Sj , j ∈ Ni from yc[j,i]. This allows for detection of false data injection attacks, while being
vulnerable to replay and covert attacks. On the other hand, the Luenberger-observer-
based detection module uses knowledge of dynamics of Si (4.1) to exploit the physical
interconnections between subsystems, thus detecting attacks with analytical relations to
the local dynamics.
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Algorithm 1 Attack detection and isolation at time t
1: while Si online ∀i ∈ V do
2: Update estimates x̂[j,i](t), ∀j ∈ Ni and x̂[i](t);
3: Update bounds r̄[j,i](t),∀j ∈ Ni and r̄[i](t);
4: Compute residuals r[j,i](t),∀j ∈ Ni and r[i](t);
5: Evaluate (4.5a) and (4.5b)
6: if (4.5a) and (4.5b) hold then
7: No attack is detected at time t
8: else
9: if |r[j,i](t)| > r̄[j,i](t) for any j ∈ Ni then

10: Attack detected on link (j, i)
11: else
12: Attack detected, no link is isolated
13: end if
14: end if
15: end while

The detector Di, by combining the two modules in the same architecture and having
them run simultaneously as illustrated in Algorithm 1, is capable of detecting attacks
that would be stealthy to either of the modules independently as will be analytically
presented in Section 4.6.

We now focus on the appropriate design of the two observer-based modules, the definition
of thresholds r̄[j,i](t) and r̄[i](t), and analyze their individual properties.

Remark 4.3.1. As can be seen from Algorithm 1 and Table 4.1, the design and operation
of Di rely at most on information from the set of neighbors Ni and are, therefore,
distributed as well as scalable with the number of subsystems in the network.

4.4 Bank of unknown-input observers

4.4.1 Design of the detection module

We first focus on the design and properties of OUIOj,i , the UIO-based detection modules
estimating the states of neighboring subsystems. UIOs are a class of observers designed
to algebraically decouple the residual error from a vector of unknown inputs [CPZ96].
This proves fundamental for Di to estimate the state x[j], j ∈ Ni, as Si does not have
access to the inputs affecting the dynamics of its neighbors. To design the UIOs we
rewrite the dynamics of Sj in (4.1) as

ẋ[j] = Ajjx[j] + Ēj d̄[j] + w[j],

y[j] = Cjx[j] + ρ[j],
(4.6)
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where Ēj d̄j = ξ[j] +Bju[j] +Mjd[j] represents the effect of the unknown inputs on x[j].
The matrix Ēj ∈ Rnj×qj , qj ≤ nj links the unknown inputs to the dynamics of Sj , its
columns constituting a basis for the range of matrix Ej ,

[
Ajk1 , . . . , AjkNj , Bj ,Mj

]
,

where {k1, . . . , kNj} = Nj are the indices of the neighbors of Sj . This definition ensures
that Ēj is full column rank, as required by [CPZ96]. The term d̄[j](t) , Êj d̂[j] captures
the combined effect of unknown inputs collected in d̂[j], which is defined as

d̂[j] ,
[
x>[k1], . . . , x

>
[kNj ], u

>
[j], d

>
[j]

]>
, (4.7)

i.e., the vector containing all inputs to Sj unknown to Di. Matrix Êj is derived, following
the choice of Ēj , such that ĒjÊj = Ej . We omit its derivation since it is not relevant to
the design of the UIOs. Indeed, for designing the UIO, determining a suitable matrix Ēj
is sufficient.

The full-order UIO state and state estimate of Sj can be defined as follows [CPZ96]:

ż[j,i](t) = Fjz[j,i](t) + K̂jy
c
[j,i](t),

x̂[j,i](t) = z[j,i](t) +Hjy
c
[j,i](t),

ŷ[j,i](t) = Cj x̂[j,i](t),

(4.8)

whose matrices are defined as in [CPZ96] and are such that

(HjCj − I)Ēj = 0, (4.9a)
Sj = I−HjCj , (4.9b)

Fj = SjAjj − K̃jCj , (4.9c)
K̄j = FjHj , (4.9d)

K̂j = K̃j + K̄j . (4.9e)

The definition of Sj through design of Hj (4.9a)-(4.9b) decouples the residual error
r[j,i](t) , yc[j,i](t)− ŷ[j,i](t) from the unknown input vector d̄[j], while matrix K̃j is such
that Fj in (4.9c) is Hurwitz stable. The following necessary and sufficient conditions are
given in [CPZ96] to verify the possibility of designing the UIO (4.8):

rank(CjĒj) = rank(Ēj); (C1)
the pair (Cj , SjAjj) is detectable. (C2)

These two conditions need to be satisfied for a generic system of the form (4.6) in order
to employ the proposed detection methodology. The following guarantees that these
conditions are met in the special case of mGs:

Remark 4.4.1. Given Assumption 4.2.3, Cj = I, and thus conditions (C1) and (C2)
are satisfied.
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This remark points out that, for DCmGs, a UIO can always be designed. However, notice
that, in the case of DCmGs, rank(Ēj) = rank(Cj) = nj . In the next lemma, we show
that this condition prevents the use of the designed UIO for detecting attacks.

Lemma 4.4.1. Consider a subsystem with dynamics in (4.6) such that (C1) and (C2)
hold, and a UIO with dynamics as in (4.8). If rank(Cj) = rank(Ēj) = qj the residual
r[j,i] = yc[j,i] − ŷ[j,i] is independent of the attack function φ[j,i] 6= 0 at all times.

Proof. The proof is provided in Section 4.9.2 �

Given the results stated in Lemma 4.4.1, in order to design an attack detection architecture,
it is necessary either to reduce the number of unknown inputs (which may not be feasible),
or increase the output information transmitted. To address the latter, additional sensors
providing independent measurements could be added, although this may not be possible
depending on the application. Indeed, in the case of DCmGs, all states are already
measured and transmitted. Rather, here we augment the transmitted information such
that the original output y[j] can be reconstructed – as it is necessary for control purposes
– and it represents the output of a dynamical system known to OUIOi,j .

Let us hence introduce the augmented state variable x[j] =
[
xart[j] , e

art
[j]

]
with xart[j] some

artificial state the dynamics of which is known to OUIOi,j , ∀i ∈ Nj and simulated by Sj ,
and eart[j] , x[j] − xart[j] . By construction,

x[j] =
[

I I
]
x[j],

y[j] =
[
Cj Cj

]
x[j] + ρ[j],

(4.10)

allowing for reconstruction of y[j]. Let us define the dynamics of x[j], and hence xart[j] , as

ẋ[j] =
[

Aartjj 0
Ajj −Aartjj Ajj

]
x[j] +

[
Ej,1 0
0 Ej,2

] [
d[j,1]

d[j,2]

]
+
[

0
I

]
w[j]

= Ajjx[j] + Ejd[j] + w̃[j],

y[j] =
[

I 0
Cj Cj

]
x[j] +

[
0
I

]
ρ[j] = Cjx[j] + ρ[j] =

[
xart[j]
y[j]

]
.

(4.11)

where Aartjj ∈ Rnj×nj is any Hurwitz stable matrix. Nonzero matrices Ej,1 and Ej,2 are
constructed such that [Ej,1,Ej,2] = Ēj , up to column permutations, and unknown input
vectors d[j,1] and d[j,2] satisfy [Ej,1,Ej,2] [d>[j,1],d

>
[j,2]]> = Ēj d̄j . Additionally, the following

hold by construction: rank(Ej,1) < nj , rank(Ej,2) < qj , and range(Ej,1) ⊂ range(Ēj),
range(Ej,2) ⊂ range(Ēj). Finally note that, as xart[j] is simulated by Sj , it is fully available
and therefore appears in y[j]. We then redefine the communicated measurement in (4.3)
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as
yc[j,i](t) , y[j](t) + βj,i(t− T j,ia )φj,i(t) (4.12)

with φj,i(t) , [ϕ>j,i(t), φ>j,i(t)]> ∈ Rnj+pj , where ϕj,i(t) is the attack influencing the
communicated artificial state. We note that the transmitted information, as seen in
(4.12), is redefined to include both the output measurements, and the artificial state.
In the following, we show how through state and output augmentation (4.11) necessary
condition in Lemma 4.4.1 is satisfied.

Lemma 4.4.2. If (C1) and (C2) hold for (Ajj , Cj , Ēj), then they are also satisfied for
(Ajj ,Cj ,Ej). If, additionally, rank(Cj) = rank(Ēj), then rank(Cj) > rank(Ej).

Proof. Condition (C1) holds given definitions of Cj and Ej :

CjEj =
[

Ej,1 0
CjEj,1 CjEj,2

]
, (4.13)

the rank of which, being block lower triangular, is such that

rank(CjEj) ≥ rank(Ej,1) + rank(CjEj,2) = rank(Ej,1) + rank(Ej,2) = rank(Ej). (4.14)

Hence, noting that rank(CjEj) ≤ min(rank(Cj), rank(Ej)), it follows that rank(CjEj) =
rank(Ej), thus satisfying (C1).

To show that (C2) is satisfied for the augmented system matrices, first note that a block-
diagonal matrix Sj composed of blocks Sj,1 and Sj,2 can be found such that SjEj = 0.
This is due to existence of solutions to Sj,1Ej,1 = 0 and Sj,2Ej,2 = 0, from rank(Ej,1) < nj ,

rank(Ej,2) < qj ≤ nj by construction. Therefore SjAjj =
[
Sj,1A

art
jj 0

? Sj,2Ajj

]
, where ?

represents the additional term. Hence, the pair (Cj ,SjAjj) is detectable:

rank
([

sI− SjAjj

Cj

])
= rank



sI− Sj,1Aartjj 0

? sI− Sj,2Ajj
I 0
Cj Cj




= nj + rank
([

sI− Sj,2Ajj
Cj

])
,

which, given detectability of the pair (Cj , SjAjj) by hypothesis, is equal to 2nj , ∀s ∈ C+,
with Sj,2 = Sj .
The second part of the proposition holds, as rank(Cj) = nj + rank(Cj) > rank(Ej,1) +
rank(Ej,2), given rank(Ej,1) + rank(Ej,2) = rank(Ēj) by construction and rank(Cj) =
rank(Ēj) by hypothesis. �

Remark 4.4.2. In the case of DCmGs, as can be seen from the definition of the system
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matrices in Section 4.9.1, rank(Ēj) = rank(Cj) = nj. As such it is not possible to design
a UIO capable of detecting attacks and it is necessary to introduce the augmented state
described above. Moreover, a good choice for the artificial state would be xart[j] , x

avg
[j] (i.e.

the state x[i] in (4.1) obtained by setting u[i] = uavg[i] , [V avg
ti ,∆Vi]).

In the remainder of this chapter, we will consider that the observers in OUIOi,j are
defined as in (4.8)-(4.9), with system matrices taken from augmented dynamics in (4.11).
Furthermore, to stress the use of the augmented measurements yc[j,i], bold symbols z[j,i],
x̂[j,i] and ŷ[j,i] will be used to denote the observer’s state, the augmented state, and
output estimates, respectively.

Lemma 4.4.3. If matrix A ∈ Rn×n is Hurwitz stable, there exists a positive scalar λ > 0,
and a matrix Λ ≥ I such that ∣∣∣eAt∣∣∣ ≤ e−λtΛ (4.15)

holds for all t ≥ 0.

Proof. The proof can be found in Section 4.9.3. �

Given the appropriate design of filter matrices (4.9), the estimation error ε[j,i] , x[j]−x̂[j,i]
is stable, and it is therefore possible to design a time-varying threshold r̄[j,i] capable of
bounding the UIO’s residual error defined as output estimation error r[j,i] , yc[j,i]− ŷ[j,i]:

r̄[j,i](t) ,Cje
−σjtΣj

[
ε̄[j,i](0) + |Hj | ρ̄[j]

]
+ |Zj | ρ̄[j]

+ Cj

∫ t

0
e−σj(t−τ)Σj

[
|Sj | ¯̃w[j] +

∣∣∣K̂j

∣∣∣ ρ̄[j]
]
dτ,

(4.16)

where Zj , (I − CjHj) and Cj ≥ 0 is supposed without loss of generality. As Fj is
Hurwitz stable, a scalar σj > 0 and a matrix Σj ≥ I can be found as in Lemma 4.4.3 for
|eFjt|. The following proposition guarantees that r̄[j,i] in (4.16) is indeed an upper bound
to the corresponding residual.

Proposition 4.4.1. In the absence of an attack, given Fj Hurwitz stable by design and
Assumption 4.2.1, r̄[j,i](t) in (4.16) is such that the inequality

|r[j,i](t)| ≤ r̄[j,i](t) (4.17)

holds for all t < T j,ia , ∀j ∈ Ni.

Proof. Given the definition of the UIO matrices, it is possible to derive the dynamics of
the estimation error ε[j,i](t) as

ε̇[j,i](t) = ẋ[j](t)− ˙̂x[j,i](t) = Fjε[j,i](t) + Sjw̃[j](t)−Hjρ̇[j](t)− K̃jρ[j](t), (4.18)
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the solution of which, exploiting integration by parts, is

ε[j,i](t) =eFjt
[
ε[j,i](0) +Hjρ[j](0)

]
−Hjρ[j](t)

+
∫ t

0
eFj(t−τ)

[
Sjw̃[j](τ)− K̂jρ[j](τ)

]
dτ.

(4.19)

Given that r[j,i](t) = Cjε[j,i](t) + ρ[j](t) in nominal conditions, the solution of residual
r[j,i](t) is

r[j,i](t) =Cje
Fjt
[
ε[j,i](0) +Hjρ[j](0)

]
+ Zjρ[j](t)

+ Cj

∫ t

0
eFj(t−τ)

[
Sjw̃[j](τ)− K̂jρ[j](τ)

]
dτ.

(4.20)

By use of triangle inequality, bounds in Assumption 4.2.1, and Lemma 4.4.3, it is possible
to bound the estimation error with

ε̄[j,i](t) ,e−σjtΣj

[
ε̄[j,i](0) + |Hj | ρ̄[j]

]
+ |Hj | ρ̄[j]

+
∫ t

0
e−σj(t−τ)Σj

[
|Sj | ¯̃w[j] +

∣∣∣K̂j

∣∣∣ ρ̄[j]
]
dτ,

(4.21)

which will converge to a constant for t → ∞, as Fj is Hurtwitz stable. Similarly, the
threshold r̄[j,i](t) in (4.16) is such that inequality (4.17) is guaranteed to hold when the
communication link between DGUs j and i is not under attack, i.e. t < T j,ia , thus proving
the proposition. �

Whenever inequality (4.5a) is violated, the monitoring module Di detects the presence of
an attack on the communication link between Sj and Si, thus isolating it. In order to
perform detection using the UIO-based layer, Di requires information offline to design
the bank of UIOs, and information online to perform the updates to the estimate and to
compute the residual. These requirements are found in Table 4.1.

4.4.2 Detectability properties of OUIOj,i

We define a detectable attack as an attack function that is guaranteed to trigger the
monitor Di by some finite time Td ≥ Ť ia. In this and the following subsections, we will
analyze the properties of the UIO-based detection module of Di while under attack,
i.e., for t ≥ Ť ia. Note that, given that each UIO evaluates the security of a single
communication line, we consider a single attack starting at T j,ia . Hence, let us define
Ta , T j,ia for clarity of exposition.

Once an attack is active on a communication link, i.e. for t ≥ Ta, the residual error of
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OUIOj,i can be expressed as

r[j,i](t) = rh[j,i](t) + ra[j,i](t) (4.22)

where rh[j,i](t) is the same as the residual in nominal conditions defined in (4.20), and
ra[j,i](t) , Cjε

a
[j,i](t) + φj,i(t), with

εa[j,i](t) , −Hjφj,i(t) + eFj(t−Ta)Hjφj,i(Ta)−
∫ t

Ta
eFj(t−τ)K̂jφj,i(τ)dτ. (4.23)

The class of attacks that are guaranteed to be detected can therefore be expressed in the
following proposition:

Proposition 4.4.2. If attack function φj,i(t) is such that, at any time t ≥ Ta,∣∣∣ra[j,i](t)∣∣∣ > 2r̄[j,i](t) (4.24)

holds for any component, then detector Di operating in accordance with Algorithm 1 will
detect the attack, thanks to the UIO observer OUIOj,i .

Proof. By using the triangle inequality, Proposition 4.4.1, and exploiting the decomposi-
tion in (4.22), one has

|r[j,i](t)| ≥
∣∣∣ra[j,i](t)∣∣∣− ∣∣∣rh[j,i](t)∣∣∣ ≥ ∣∣∣ra[j,i](t)∣∣∣− r̄[j,i](t) (4.25)

where we used the fact that
∣∣∣rh[j,i](t)∣∣∣ in (4.20) is upper bounded by r̄[j,i](t). For guaran-

teeing detection through violation of (4.5a), it is sufficient that the attack φj,i(t) is such
that ∣∣∣ra[j,i](t)∣∣∣− r̄[j,i](t) > r̄[j,i](t) (4.26)

is satisfied for some time t > Ta. As (4.24) is a sufficient condition for (4.26), this
concludes the proof. �

4.4.3 Classes of attacks stealthy to OUIOj,i

Having evaluated the class of attacks which are guaranteed to be detected by OUIOi in Di,
we now analyze the UIO-based module’s weakness, i.e. those attacks which are stealthy
to it.

Definition 4.4.1 (Stealthy Attacks). An attack is stealthy to Di if it is guaranteed not
to be detected at any time t ≥ Ta.

It is worth recalling that, as described in Remark 4.2.2, the attack only influences the
output communicated between controllers, while not attacking any subsystem’s dynamics
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directly. Hence, the stealthiness properties differ with respect to those available in
literature [TPSJ12, PDB13]. Again we exploit the decomposition of r[j,i](t) into healthy
and attacked components to analyze stealthiness. In order to give a complete overview
of the stealthy attacks for this module, we will separately treat three classes of attacks
defined in [TPSJ12]: false data injection attack; replay attack; covert attack.

False Data Injection Attacks: This class of attacks does not require any disclosure
capabilities (i.e. the malicious agent does not need to eavesdrop the information sent
through the communication link). By injecting an attack of this type, it is possible for
the attacker to alter the equilibrium of the network as a whole. The influence of this
type of attack on the residual r[j,i](t) can be characterized as in (4.22).

Proposition 4.4.3. If attacks φj,i(t) are such that, for all t ≥ Ta,∣∣∣ra[j,i](t)∣∣∣ = 0, (4.27)

then they will be stealthy to the UIO-based module in Di.

Proof. Given that
∣∣∣rh[j,i](t)∣∣∣ is bounded by r̄[j,i](t) by construction, and exploiting the

triangle inequality, it holds that:∣∣∣r[j,i](t)
∣∣∣ =

∣∣∣rh[j,i](t) + ra[j,i](t)
∣∣∣ ≤ r̄[j,i](t) +

∣∣∣ra[j,i](t)∣∣∣ . (4.28)

Given that, for the attack to be undetected, inequality (4.5a) must always hold, it is
sufficient that φj,i(t) is designed to satisfy

∣∣∣ra[j,i](t)∣∣∣ = 0,∀t ≥ Ta for it to be stealthy. �

Remark 4.4.3. Recalling that ra[j,i] = Cjε
a
[j,i] + φj,i, it is sufficient for attacks to be such

that

φj,i(Ta) = 0, φj,i(t) ∈ ker
([

K̂j

Zj

])
, t > Ta (4.29)

for condition (4.27) to be satisfied for all t ≥ Ta.

Replay Attacks: With an attacker capable of violating the integrity of the communi-
cation network (and thus of eavesdropping on the transmitted measurements) from some
time t = T0, a replay attack requires no knowledge of the system’s model. Instead, it
modifies the transmitted information by replaying stored old data, substituting it for the
current data2. In particular, the attacker stores the output y[j](t) from time Ta − T to
Ta, where T is the replay buffer size. Then, at any time t ≥ Ta the attack is defined as

φj,i(t) = −y[j](t) + y[j](t− nT ),

2A preliminary analysis of the stealthiness of replay attacks in OUIOj,i was presented in [GTB+18].
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where the positive integer n is chosen such that t−nT ∈ [Ta−T, Ta). Hence communicated
information (4.12) will be

yc[j,i](t) = y[j](t− nT ).

It has been shown that replay attacks may be undetectable to attack monitoring schemes
[MWS15], as the replayed data has both the same statistical properties of the non-attacked
data, and it evolves following correct dynamics.

Note that, although a replay attack does not require any knowledge of the subsystem
dynamics, it is possible for the attacker to disguise any changes to the operating conditions
of a unit from its neighbors, thus altering the equilibrium of the LIMAS, or hiding faults.

Specifically, in our scenario, the following condition can be given:

Lemma 4.4.4. If a replay attack is such that

Σj

∣∣∣εr[j,i](Ta) +Hjρ[j](Ta−T )
∣∣∣ ≤ ε̄[j,i](Ta)− |Hj | ρ̄[j], (4.30)

then detection test (4.5a) will hold for all t ∈ [Ta, Ta + T ), where

εr[j,i](t) , x[j](t− T )− x̂[j,i](t).

Proof. Given Ta and T , for time t ∈ [Ta, Ta + T ), the UIO estimation error residual takes
the form

r[j,i](t) = yc[j,i](t)− ŷ[j,i](t) = Cjε
r
[j,i](t) + ρ[j](t− T ).

The dynamics of state estimation error εr[j,i](t) under replay attack can be derived from
equations (4.11) and (4.8):

ε̇r[j,i](t) = Fjε
r
[j,i](t) + Sjw̃[j](t− T )− K̃jρ[j](t− T )−Hjρ̇[j](t− T ) (4.31)

the solution of which is

εr[j,i](t) =eFj(t−Ta)
(
εr[j,i](Ta) +Hjρ[j](Ta − T )

)
−Hjρ[j](t− T ) +

∫ t

Ta
eFj(t−τ)

[
Sjw̃[j](τ − T )− K̂jρ[j](τ − T )

]
dτ.

(4.32)

Estimation error bound ε̄[j,i](t) defined in (4.21) for time t > Ta can be rewritten as

ε̄[j,i](t) = e−σj(t−Ta)
[
ε̄[j,i](Ta)− |Hj | ρ̄[j]

]
+ |Hj | ρ̄[j]

+
∫ t

Ta
e−σj(t−τ)Σj

[
|Sj | ¯̃w[j] +

∣∣∣K̂j

∣∣∣ ρ̄[j]
]
dτ.

(4.33)

In order to guarantee that |r[j,i](t)| ≤ r̄[j,i](t), ∀t ∈ [Ta, Ta + T ), implying stealthiness, it
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is sufficient that |εr[j,i](t)| ≤ ε̄[j,i](t). By comparison, all terms in (4.32) except

eFj(t−Ta)
(
εr[j,i](Ta) +Hjρ[j](Ta − T )

)
are guaranteed to be bounded by their corresponding terms in (4.33), given the definition
of the noise bounds in (4.2). Thus, as the following inequality holds:∣∣∣eFj(t−Ta)

(
εr[j,i](Ta) +Hjρ[j](Ta − T )

)∣∣∣ ≤ e−σj(t−Ta)Σj

∣∣∣εr[j,i](Ta) +Hjρ[j](Ta − T )
∣∣∣ ,

it is sufficient for condition (4.30) to hold for stealthiness to be achieved, which proves
the Lemma holds for t ∈ (Ta, Ta + T ).

To prove sufficiency of (4.30) for |εr[j,i](Ta)| ≤ ε̄[j,i](Ta), we use the property of Σj ≥ I
and the inverse triangle inequality:

Σj |εr[j,i](Ta)+Hjρ[j](Ta−T )| ≥ |εr[j,i](Ta)+Hjρ[j](Ta−T )| ≥
∣∣∣εr[j,i](Ta)∣∣∣−|Hj |ρ̄[j]. (4.34)

Hence, if (4.30) is satisfied, the following holds:∣∣∣εr[j,i](Ta)∣∣∣− |Hj |ρ̄[j] ≤ ε̄[j,i](Ta)− |Hj | ρ̄[j], (4.35)

and therefore detection will not occur at time t = Ta.

Note finally that, given definition of ε̄[j,i](t) in (4.21), the right hand side of (4.30) is
guaranteed to be greater than zero. Hence, (4.30) is well defined. This completes the
proof. �

In the next result, we generalize Lemma 4.4.4 to find a condition on εr[j,i](Ta + kT ), for
any k ∈ N such that (4.5a) will hold for all t ∈ [Ta + kT, Ta + (k + 1)T ).

Proposition 4.4.4. If a replay attack is such that

Σj

∣∣∣εr[j,i](Ta) +Mj,i

∣∣∣ ≤ ε̄[j,i](Ta)−∆ε̄[j,i](Ta)− (Σj + I)|Hj |ρ̄[j] (4.36)

holds with Mj,i, ∆ε̄[j,i](Ta) ≥ 0 appropriately defined vectors, then detection test (4.5a)
will hold for all t ≥ Ta.

Proof. The proof can be found in Section 4.9.4. �

Remark 4.4.4. Conditions in Lemma 4.4.4 and Proposition 4.4.4 depend on quantities
unknown to the attacker, so it is not guaranteed that the attack will be able to satisfy
them. However, as long as the attacker chooses Ta and T appropriately (i.e. such that
y[j](Ta) ≈ y[j](Ta − T )), it is likely (although not guaranteed) that (4.5a) will hold for all
t ≥ Ta.
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We note that a preliminary study of replay attacks on the UIO-based module has been
presented and a novel watermarking scheme has been developed for their detection
in [GTB+18]. This scheme consists of adding a small noise signal (called a watermark,
named after a similar technique in the multimedia industry) on the communicated outputs
yc[j,i], so as to increase the magnitude of the term εr[j,i](Ta) on the left-hand side of (4.36).
This increase, in turn, causes the residuals to exceed the corresponding thresholds and
enables detection. The contents of this paper are rather an extension to the detection
scheme developed here, and are omitted in this thesis for clarity of exposition.

Covert Attacks: To perform a covert attack, the malicious agent must not only be
able to disrupt the communication network, and be able to eavesdrop the information
being transmitted, but must also have knowledge of the dynamics of Sj . It is, therefore,
capable of simulating the behavior of the subsystem and feeding this information to the
control and monitoring architecture of Si. Specifically, a covert attack can be modeled
as follows:

φj,i(t) = −y[j](t) + ya[j](t), (4.37)

where ya[j](t) is the output of a simulated system with the following dynamics and initial
condition:

ẋa[j](t) = Ajjxa[j](t) + Ejda[j](t),

ya[j](t) = Cjxa[j],

xa[j](Ta) = C†jy[j](Ta),

(4.38)

where da[j](t) is freely chosen by the attacker to substitute d[i] in (4.11). Under this
scenario, yc[j,i](t) = ya[j](t).

Remark 4.4.5. Note that, differently to the covert attack described in [TPSJ12, Smi15],
we do not consider the case in which the attacker may alter the control input signals of
Sj, but only the information transmitted to Si, consistently with Remark 4.2.2. While
this limits the scope of the attacker, through modification of the unknown input vector
da[j](t) 6= d[j](t), it is possible for it to change the operating condition of Sj as seen by Si,
thus modifying the behavior of the LIMAS as a whole.

Remark 4.4.6. For rank(Cj) < 2nj, it might not be possible to find a C†j such that
C†jCj = I. This means that the attacker might not be able to choose an initial condition
xa[j](Ta) that is sufficiently close to x[j](Ta). Given observability of (Cj ,Ajj), the effect
of this error will be observable from ya[j](t), t > Ta, and it may thus be possible for Di
to detect the attack. Here, we consider the worst-case scenario in which a C†j verifying
C†jCj = I exists. Then, the attacker’s initial state xa[j](Ta) is within a small neighborhood
of the real state x[j](Ta), i.e., ∆xa[j](Ta) , x[j](Ta)− xa[j](Ta) = C†jρ[j](Ta).

Proposition 4.4.5. If an attack as in (4.37) is carried out, in which xa[j](t) is the state
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of LTI system (4.38), and if ρ[j] is such that

CjΣj |(C†j −Hj)ρ[j](Ta)| ≤ |Zj |ρ̄[j], (4.39)

inequality (4.5a) will hold for all t ≥ Ta, and the attack will be stealthy.

Proof. Start by noticing that for time t = Ta, the residual is

r[j,i](Ta) = Cjxa[j](Ta)− ŷ[j,i](Ta) = y[j](Ta)− ŷ[j,i](Ta), (4.40)

and therefore condition (4.5a) will hold, given Proposition 4.4.1. For t ≥ Ta, define
εa[j,i](t) , xa[j](t) − x̂[j,i](t) and note that εa[j,i](Ta) = ε[j,i](Ta) + ∆xa[j](Ta) = ε[j,i](Ta) +
C†jρ[j](Ta). The dynamics of this error term can therefore be written as

ε̇a[j,i](t) = Fjε
a
[j,i](t) + SjEjda[j](t) = Fjε

a
[j,i](t),

as SjEj = 0 by design (4.9a). Hence,

r[j,i](t) = Cje
Fj(t−Ta)εa[j,i](Ta) =Cje

Fj(t−Ta)
(
ε[j,i](Ta) + C†jρ[j](Ta)

)
=Cje

Fjt
[
ε[j,i](0) +Hjρ[j](0)

]
+ Cje

Fj(t−Ta)
(
C†j −Hj

)
ρ[j](Ta)

+ Cj

∫ Ta

0
eFj(t−τ)

[
Sjw̃[j](τ)− K̂jρ[j](τ)

]
dτ.

(4.41)

Comparing (4.41) to the definition of the residual in healthy conditions (4.20), we
see that the only term not guaranteed to be bounded by the corresponding terms
in (4.16) is Cje

Fj(t−Ta)
(
C†j −Hj

)
ρ[j](Ta). Hence, to guarantee that (4.5a) holds, we

must demonstrate that∣∣∣Cje
Fj(t−Ta)

(
C†j −Hj

)
ρ[j](Ta)

∣∣∣ ≤ |Zj | ρ̄[j]

+ Cj

∫ t

Ta
e−σj(t−τ)Σj

[
|Sj | ¯̃w[j] +

∣∣∣K̂j

∣∣∣ ρ̄[j]
]
.

(4.42)

Recalling that |eFjt| ≤ Σje
σjt, it is sufficient for condition (4.39) to hold for (4.42) to be

satisfied, and therefore detection condition (4.5a) will hold for all t ≥ Ta. �

In this section, we have presented OUIOj,i , as well as its detectability properties. It is
worth noting that this detection module does not rely on the physical interconnections
between subsystems, but only on the communicated values received from its neighbors
Sj .
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4.5 Distributed estimation of local states

4.5.1 Design of the detection module

The second module of the attack detection monitor Di is based on a distributed Luenberger
observer OLueni . The following assumption is made in this section, motivated by the
application to mGs (see Section 4.2.4):

Assumption 4.5.1. Matrix Ci is invertible for all Si.

We will give some indications as how this assumption could be removed in Remark 4.5.2.
Note that, from Assumption 4.5.1, it follows that Cj is also non-singular. The dynamics
of OLueni can then be formulated as

˙̂x[i] = Aiix̂[i] + ξ̂[i] +Biu[i] +Mid[i] − Li
(
y[i] − ŷ[i]

)
,

ŷ[i] = Cix̂[i],
(4.43)

where Li is designed such that ALi = (Aii + LiCi) is Hurwitz stable, guaranteeing
estimation error stability. The effect of the physical interconnection with neighbors in
Ni is approximated as

ξ̂[i] ,
∑
j∈Ni

Aij x̂[j,i] =
∑
j∈Ni

AijΓC−1
j yc[j,i],

where ΓC−1
j yc[j,i] is used as an estimate of x[j], with Γ ,

[
I I

]
, recalling (4.10).

To verify whether hypothesis H0
i (t) in Problem 1 is valid or not, Di computes the residual

error
r[i](t) , y[i](t)− ŷ[i](t), (4.44)

and compares it with an appropriately defined time-varying threshold r̄[i](t) given by

r̄[i](t) , Cie−λitΛiε̄[i](0) + Ci

∫ t

0
e−λi(t−τ)Λiη̄[i]dτ + ρ̄[i], (4.45)

where λi > 0 and Λi ≥ I are such that |eALit| ≤ e−λitΛi holds, thanks to Lemma 4.4.3;
ε̄[i](0) is an appropriately defined bound on the initial value of the estimation error
ε[i](t) , x[i](t)− x̂[i](t); and η̄[i] , w̄[i] + |Li|ρ̄[i] + ∑

j∈Ni |Aij |ΓC−1
j ρ̄[j]. The following

proposition holds:

Proposition 4.5.1. Given Assumption 4.2.1 and that ALi is Hurwitz stable by design,
the inequality

|r[i](t)| ≤ r̄[i](t) (4.46)

is guaranteed to be satisfied for all t < Ť ia, for residual r[i] in (4.44) and threshold r̄[i]
computed by Di as in (4.45).
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Proof. The residual error can be rewritten as r[i] = Ciε[i] + ρ[i]. The dynamics of ε[i](t)
can be derived from (4.1) and (4.43):

ε̇[i](t) = ALiε[i](t) + η[i](t) (4.47)

where η[i] = −∑j∈Ni AijΓC−1
j ρ[j] + w[i] − Liρ[i]. The following explicit solution can be

found:
ε[i](t) = eALitε[i](0) +

∫ t

0
eALi(t−τ)η[i](τ)dτ. (4.48)

Since ALi is Hurwitz stable by design of Li for all i ∈ V, estimation error ε[i](t) is BIBO
stable, and, given Assumption 4.2.1, it can be bounded by a time-varying quantity ε̄[i](t).
Using the triangle inequality and bounds defined in (4.2) as well as Lemma 4.4.3, a
bound on the estimation error can be computed:

ε̄[i](t) , e−λitΛiε̄[i](0) +
∫ t

0
e−λi(t−τ)Λiη̄[i]dτ, (4.49)

where λi > 0 and Λi are found following Lemma 4.4.3, and ε̄[i](0) is appropriately defined.
The threshold in (4.45) on the residual can similarly be computed by using the triangle
inequality. �

The information required by Di to compute the estimate x̂[i](t) and threshold r̄[i](t) is
provided in Table 4.1.

4.5.2 Detectability properties of OLueni

In this subsection, we will analyze the properties of the Luenberger-observer-based
detection module of Di while under attack, i.e. for t ≥ Ť ia. Once an attack is active on a
communication link, it will affect both the computation of the networked control u[i](t)
and of the variable ξ̂[i](t) in (4.43), which will become

ξ̂[i](t) =
∑
j∈Ni

AijΓC−1
j

(
Cjx[j](t) + ρ[j](t)

)
+

∑
j∈N̂i(t)

AijΓC−1
j φj,i(t) , ∀t ≥ Ť ia, (4.50)

where N̂i(t) ,
{
j ∈ Ni : t ≥ T j,ia

}
⊆ Ni is the set of neighbors whose transmissions to Si

have been attacked at time t. As the attack is additive with respect to the dynamics
(4.43), it is possible to write the residual as

r[i](t) = rh[i](t) + ra[i](t), (4.51)

where
rh[i](t) , CieALitε[i](0) + Ci

∫ t

0
eALi(t−τ)η[i](τ)dτ + ρ[i](t) (4.52)
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is the healthy part of the residual, and is independent of Ť ia. Hence
∣∣∣rh[i](t)∣∣∣ ≤ r̄[i](t) will

hold for all t ≥ 0. Moreover,

ra[i](t) , Ci
∫ t

Ť ia

eALi(t−τ) ∑
j∈N̂i(t)

AijΓC−1
j φj,i(τ)dτ, (4.53)

for all t ≥ Ť ia, is the part of the residual affected by the attack.

Proposition 4.5.2. If attack function φj,i(t) ∈ Rnj+pj is such that at any time t > Ť ia∣∣∣ra[i](t)∣∣∣ > 2r̄[i](t) (4.54)

holds for any of its components, then detector Di operating in accordance with Algorithm 1
will detect the attack at some finite time Td > Ť ia thanks to OLueni .

Proof. The proof follows that of Proposition 4.4.2. �

Having evaluated the class of attacks which are guaranteed to be detected by OLueni in
Di, we now analyze the Luenberger-observer-based module’s weakness, i.e. the class of
attacks which are stealthy to it.

We again exploit the decomposition of the residual r[i](t) into healthy and attacked
components to analyze stealthiness.

Proposition 4.5.3. If attacks φj,i(t) are such that for all t ≥ Ť ia∣∣∣ra[i](t)∣∣∣ = 0, (4.55)

holds, then they will be stealthy to the Luenberger-observer-based module in Di.

Proof. The proof follows that of Proposition 4.4.3. �

Remark 4.5.1. For Proposition 4.5.3 to hold for all t ≥ Ť ia, it is sufficient that
Φ[i](t) , col(φj,i(t)), ∀j ∈ N̂i(t) satisfy

Φ[i](t) ∈ ker(Aij(t)), (4.56)

Aij(t) ,
[
Aij1ΓC−1

j1
, . . . , Aij

N̂i(t)
ΓC−1

j
N̂i(t)

]
,

where Aij(t) collects physical coupling matrices of the neighbors whose communication has
been attacked, and as such may be time-varying, with N̂i(t) , |N̂i(t)|. This is revealing,
as it shows the dependency of the detectability of OLueni on the physical interconnections
of Si and its neighbors. Specifically, (4.56) implies that to design an attack stealthy to
OLueni an attacker could either leverage knowledge of the structure of the interconnection
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between subystems, and therefore of a subset of the state x[j] that does not influence (4.1),
or compensate its effect on the residual through multiple channels, depending on whether
matrices Aij , j ∈ Ni are singular.

Remark 4.5.2. As previously mentioned, the analysis in this section was performed
considering an invertible Cj. In the case when it is singular, it is possible to exploit the
estimation of the neighbors’ states x̂[j,i] , Γx̂[j,i]. Propositions 4.5.1-4.5.3 can then be
shown to hold by making appropriate changes to r̄[i], ε[i], and ra[i] in (4.45), (4.47), and
(4.53), respectively. Specifically, while recalling that the estimation error of OUIOj,i can be
decomposed in its healthy and attacked components, we change C−1

j ρ̄[j] in definition of η̄[i]
to ε̄[j,i], C−1

j ρ[j] in η[i] to εh[j,i], and C−1
j φj,i to εa[j,i]. Hence, proofs of Propositions 4.5.1-

4.5.3 follow.
A significant difference implied by this alteration of OLuenj,i is that the two modules in
Di are directly coupled, and that attack vector φ[j,i] no longer directly affects (4.53), but
rather affects it through εa[j,i].
In such a scenario, the Luenberger-observer-based detector will require from the UIO-based
module, at all times t ≥ 0, the state estimate x̂[j,i](t) and the bound on its estimation
error ε̄[j,i](t). Thus, for Proposition 4.5.3 to hold it is sufficient for the attack vector
to satisfy a condition similar to that in (4.29) with Zj replaced by Hj. Furthermore,
an attack would satisfy (4.55) also if it were such that εa[j,i](t) lie within ker(Aij) with
C−1
jk

= I for all t ≥ Ta. Both these conditions rely on knowledge of parameters of OUIO[j,i] .

4.6 Detectability analysis of Di
We will show that the combined use of the two modules in Di has advantages in terms of
detectability. In fact, it is sufficient for either conditions in Proposition 4.4.2 or 4.5.2
to be satisfied for an attack to be guaranteed to be detected. In this section, we will
therefore focus on two specific cases:

1. the class of bias injection attacks stealthy to Di;

2. the detectability of a replay or covert attack.

For the first of the two cases, it is clear to see that for invertible Cj , to be stealthy to Di,
it is sufficient that

Φ[i](t) ∈ ker
([

Zj(t)
K̂j(t)

])
∩ ker (Aij(t)) , (4.57)

while also satisfying φj,i(T a[j,i]) = 0, where K̂j , diag(K̂j1 , . . . , K̂j
N̂i(t)

) and Zj ,

diag
(
Zj1 , . . . , Zj

N̂i(t)

)
. In fact, if (4.57) holds, then conditions for both Propositions 4.4.3

and 4.5.3 will hold. This, in turn, implies that neither of the modules of Di will detect
the attack, which will therefore be stealthy.

93



Chapter 4. Distributed cyber-attack detection

Table 4.2: Values for interpretation of replay and covert attacks

Replay Attacks Covert Attacks
xa[j](Ta) x[j](Ta − T ) C†jy[j](Ta)
da[j](t) d[j](t− nT ) da[j](t)
w̃a

[j](t) w̃[j](t− nT ) 0
ρa[j](t) ρ[j](t− nT ) 0

Remark 4.6.1. For the case of singular Cj, we refer to Remark 4.5.2 for derivation of
equivalent conditions.

In the second case, while replay and covert attacks are stealthy to the UIO-based module
of Di, they may be detected by the Luenberger-based one. In order to simplify the
analysis of this scenario, let us note that both replay and covert attacks can be interpreted
as the following attack function:

φj,i(t) = −y[j](t) + ya[j](t), (4.58)

where ya[j](t) is the output of the following LTI system:

ẋa[j](t) = Ajjxa[j](t) + Ejda[j](t) + w̃a
[j](t)

ya[j](t) = Cjxa[j](t) + ρa[j](t),
(4.59)

and the values of da[j](t), w̃a
[j](t),ρa[j](t), and initial condition xa[j](Ta) can be defined as

in Table 4.2. Note, furthermore, that, for replay attacks, xa[j](t) is periodic, and may
be discontinuous in time for t ∈ T , {t∈ R|t = Ta + nT, ∀n ∈ N0}, as xa[j](Ta + nT ) =
xa[j](Ta), ∀n ∈ N0. In this case we abuse notation by using (4.59), as it holds for
t ≥ Ta, t /∈ T .

For both covert and replay attacks it is possible to rewrite da[j](t) , d[j](t) + ∆d[j](t),
ρa[j](t) , ρ[j](t) + ∆ρ[j](t), and w̃a

[j](t) , w̃[j](t) + ∆w̃[j](t) as a nominal term, and a
deviation term specific to the attack, derived from definitions in Table 4.2. Note that
bounds ¯̃w[j] and ρ̄[j] are always satisfied.

Note that it is possible to redefine the state of (4.59) as xa[j,i](t) , x[j](t) + ∆x[j,i](t),
where ∆x[j,i](t) includes the effect of the attack on the state. The solution of (4.59) can
therefore be computed for both covert and replay attacks as

xa[j,i](t) = x[j](t)+eAjj(t−Ta−nT )∆x[j,i](Ta + nT )

+
∫ t

Ta+nT
eAjj(t−τ)

[
Ej∆d[j](τ) + ∆w̃[j](τ)

]
dτ,

(4.60)
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where, in the case of covert attacks, nT , 0. We stress that the terms on the right-hand
side except x[j](t) represent ∆x[j,i](t). From this, a (possibly discontinuous for replay
attacks) solution of ∆x[j,i](t) can be derived. The following holds for nonsingular Cj :

Theorem 4.6.1. If a replay or covert attack as in (4.58), with dynamics as in (4.59),
and stealthy to the UIO-based detector in Di, is such that∣∣∣∣∣∣∣Ci

∫ t

Ta
eALi(t−τ)

∑
j∈N̂i

AijΓ∆x[j,i](τ)

 dτ
∣∣∣∣∣∣∣ > 2r̄[i](t) (4.61)

is satisfied for some t ≥ Ta, then the attack will be detected by the Luenberger-observer-
based detector in Di.

Proof. In order to prove that detection occurs, we must verify that either (4.5a) or (4.5b)
must be violated, for some t ≥ Ta. As it is assumed that attack function φj,i(t) is defined
as in (4.58), and is stealthy to OUIOj,i in Di, (4.5b) must not hold.

First, exploiting the formulation of the attack dynamics in (4.59), and the definition
of ∆x[j,i](t), one can see that yc[j,i](t) = Cjx[j](t) + ρa[j](t) + Cj∆x[j,i](t) and to detect
the attack, |r[i](t)| > r̄[i](t) must be satisfied. Noting that, as seen from Table 4.2,
|ρa[j](t)| ≤ ρ̄[j] is always satisfied, it is possible to divide the residual in healthy and
attacked parts, as in Section 4.5, with

ra[j](t) = −Ci
∫ t

Ta
eALi(t−τ)

∑
j∈Ni

AijΓ∆x[j,i](τ)

 dτ.
The rest of the proof follows that of Proposition 4.5.1, through the use of the triangle
inequality. �

Remark 4.6.2. In the case of singular Cj matrix, sufficient condition (4.61) changes to∣∣∣∣∣∣∣Ci
∫ t

Ta
eALi(t−τ)

∑
j∈N̂i

AijΓεa[j,i](τ)

 dτ
∣∣∣∣∣∣∣ > 2r̄[i](t),

where εa[j,i] is as in (4.23) with φ[j,i](t) = Cj∆x[j,i](t), i.e. the effect on OLueni of the
deviation provoked by ∆x[j,i] on the UIO state estimate.

Note that Theorem 4.6.1 provides bounds for how much an attacker implementing a
covert or a replay attack may alter the behavior of the LIMAS, by establishing the
maximum deviation of xa[j,i] from xj before OLueni is guaranteed to detect it. For replay
attacks, this implies that if the operating condition of Sj changes significantly over time,
then it will be detected by OLueni . On the other hand, for covert attacks, if the attacker’s
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input da[j](t) deviates significantly from the true d[j](t), it will be detected, limiting the
malicious agent’s impact on the LIMAS overall.

4.7 Simulation results

4.7.1 Simulation setup

The proposed scheme is verified through realistic simulations in Simulink, using the
Specialized Power Systems Toolbox [HQ19]. The considered mG topology is that in
Figure 4.1, having source voltages Vsi = 60 V, ∀i ∈ V, and employing bidirectional Buck
converters realized as non-ideal IGBT switches, operating at 10 kHz, with snubbers to
suppress large transients and protect the equipment. Although power lines are considered
to be purely resistive in the development of the results, RL power lines are employed for
the physical connection of DGUs in the simulations.

The parameters of the electrical components and primary controllers are taken from
[TMGFT16]. Voltages are measured in [V ] and currents are measured in [A], whereas the
unit of the integrator state is [V ·s]. The effect of model mismatch is modeled as bounded
process noise w[i], ∀i ∈ V . The process and measurement noises satisfy Assumption 4.2.1,
with w̄i = [0.05, 0.05, 0.01]> and ρ̄i = [0.01, 0.01, 0]> , ∀i ∈ V.

The Luenberger observer gains Li are calculated to assign the eigenvalues of ALi to
{−50,−100,−500} for each DGU i. The UIO matrices Sj = I − HjCj are selected
to ensure SjEj = 0. Matrices K̃j are calculated to assign the eigenvalues of Fj to
{−1,−1.5,−2,−2.5,−3,−3.5}. All other UIO matrices are computed as in (4.9). Two
attack scenarios will be discussed in the following subsections. In the first, attacks
on yc[2,4] and yc[3,4] will be designed to be stealthy to the Luenberger-observer-based
module as per condition in Proposition 4.5.3. In the second scenario, a covert attack
will be implemented on yc[2,4]. These two scenarios have been specifically designed to
demonstrate the interplay between the two modules of Di.

For both scenarios, the simulation proceeds as follows. At time t = 0 s, all DGUs are
started disconnected from each other, i.e., DGUs are running separately; therefore, power
lines and communication links in Figure 4.1 are not in place. Consequently, at this phase
of simulations, the secondary controllers of DGUs are not active and primary controllers
track a constant voltage reference of Vref = 48 V . At time t = 2 s, the DGUs are
connected to each other through both RL power lines and communication links, and
secondary controllers are activated. At this phase of the simulations, the communications
are healthy, i.e., no attacks are active, and therefore, the secondary controllers will achieve
current sharing and voltage balancing. Finally, at t = 8 s, the attack is launched on the
corresponding communication channels.
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Figure 4.2: Residual and detection thresholds for OLuen4 under Scenario I. The false
data injection attacks φbi

2,4 and φbi
3,4 are not detected by OLuen4 , as Proposition 4.5.3 is

satisfied.

4.7.2 Scenario I – False data injection stealthy to OLueni

In the first scenario, constant bias injection attacks are directed to communications
yc[2,4](t) and yc[3,4](t), where the elements of the attack vector φbi

2,4 are selected randomly
from a uniform distribution in the interval [−0.02, 0.02]. The fourth element of the
attack vector φbi

3,4 is selected as φbi
3,44

= −R34
R24

φbi
2,44

making them stealthy to OLueni , as
per condition (4.55). Remaining elements of the attack vector φbi

3,4 are again drawn from
a uniform distribution in the interval specified above. Specifically, the constant attack
vectors are:

φbi
2,4 = [−0.0139, 0.0149,−0.0031,−0.0014,−0.0095,−0.0011]> ,

φbi
3,4 = [0.0037, 0.0185, 0.0174, 0.0021, 0.0178, 0.0180]> .

Figures 4.2, 4.3a, and 4.3b display the residuals and corresponding thresholds for the
Luenberger-observer-based module for DGU 4, and UIO-based modules for communication
yc[j,4](t), j ∈ {2, 3}, respectively. Moreover, in these figures, the vertical dashed lines in
black indicate the time of the start of the attacks, i.e., T 2,4

a = T 3,4
a = 8s, whereas those

in green indicate the time of detection for the corresponding module.

One can see that, through the proper selection of the attack vectors φbi
2,4 and φbi

3,4, the
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(a) Residuals and thresholds – OUIO
2,4

(b) Residuals and thresholds – OUIO
3,4

Figure 4.3: Residual and detection thresholds of the UIO modules in D4 under Scenario
I. The false data injection attacks φbi

2,4 and φbi
3,4 are detected by the UIO modules OUIO2,4

and OUIO3,4 .
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attacker is able to achieve stealthiness condition (4.55) for OLueni . Hence, the residual of
this module is unaffected by the attack, preventing detection, as shown in Figure 4.2.
Nevertheless, the residuals of OUIOj,i monitoring the two communication links are affected
by the attack, leading to the violation of (4.17) for (j, i) = (2, 4) and (j, i) = (3, 4), in turn,
triggering detection in both modules. The attacks are detected at times T 2,4

d = 8.270s
and T 3,4

d = 8.015s, shortly after activation.

4.7.3 Scenario II – Covert attack

In the second scenario, a covert attack φc
2,4 is launched on the communication yc[2,4](t),

with dynamics (4.38). The inputs da[2] are such that the state dynamics of the attacked
system act as if DGU 2 were disconnected from the rest of the mG, i.e. dynamics of x[2]
not influenced by its neighboring states nor by secondary control input. Furthermore,
the attacker also specifies a difference in load current IaL2 in da[2], selected such that
∆IL2 = 2A, to alter the operation point of xa[2] compared to x[2].

Figures 4.4a-4.4b show the residuals and corresponding thresholds for the second attack
scenario, for the Luenberger-observer-based module for DGU 4 and UIO-based module for
communication yc[2,4](t), respectively. Since this covert attack complies with the dynamics
in (4.38), it is stealthy to the UIO-based detection module as proven in Proposition 4.4.5.
Indeed, one can see from Figure 4.4b that the residual of the UIO-based module is
unchanged by the onset of the attack and this module fails to detect the attack. On the
other hand, residual of the Luenberger-observer-based module reflects the effect of the
attack, and the covert attack is quickly detected at time T 4

d = 8.001s.

4.8 Conclusions

In this chapter, we have presented a novel distributed attack detection technique for
LIMASs inspired by and applied to islanded DCmGs. We have discussed the architecture
and the properties of a two-module local detection unit Di, composed of a Luenberger-like
observer and a bank of suitably designed UIOs estimating local and neighboring states,
respectively. Details on the information necessary for the design of each module are given
explicitly, requiring knowledge of dynamics of the local subsystem and of its neighbors.
Thorough analysis has been provided as well as extensive simulation results on a realistic
model of a DCmG showing the methodology’s effectiveness.

The proposed methodology provides a safety component to the application of consensus-
based networked controllers developed in Chapters 2 and 3. The results presented so far,
both for control and cyber-attack detection, require model knowledge. In the next part
of the thesis, we turn our attention to data-driven control and estimation, and change
the setting from LIMASs, as the results presented in Chapters 5 and 6 are for general
LTI systems. Nevertheless, the results in Chapter 6 have the potential of being used for
distributed cyber-attack detection.
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(a) Residuals and thresholds – OLuen
4

(b) Residuals and thresholds – OUIO
2,4

Figure 4.4: Residual and detection thresholds of the different modules in D4 under
Scenario II. The covert attack φc

2,4 is stealthy to the UIO modules, but is detected by
OLuen4 .
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4.9 Supplementary material
4.9.1 DGU matrices

Matrices Aii, Bi, Mi, Aij , Ki, and Ci are defined as in [TRFT18]:

Aii =


−
∑
j∈Ni

1
RijCti

1
Cti

0
− 1
Lti

−Rti
Lti

0
−1 0 0

 , Bi =

 0 0
1
Lti

0
0 1

 , Ki =
[
ki,1 ki,2 ki,3

]
,

Mi =

 −
1
Cti

0
0 0
0 1

 , Aij =


1

RijCti
0 0

0 0 0
0 0 0

 ,
where Rti, Lti, Cti, Rij are electrical parameters of the DGU as seen in Figure 4.1. For
the design of the UIOs, the DGU dynamics are rearranged as in (4.11), with Ēj = I and
Êj defined accordingly.

4.9.2 Proof of Lemma 4.4.1

We provide a sketch of the proof. To simplify notation, without risk of ambiguity, we
remove all subscripts from variables in (4.6) and (4.9), and replace Ē with E:

ẋ(t) = Ax(t) + Ed(t) + w(t)
yc(t) = Cx(t) + ρ(t) + β(t− Ta)φ(t)

Exploiting [CT98, Lemma 1], condition (C1) implies that there are nonsingular matrices
P and Q such that

P−1E =
[
E1
0

]
Q−1CP =

[
C1 0

]
, (4.62)

where E1 and C1 have the same dimension and are both invertible. It is possible to
construct a UIO for the transformed dynamics for state x̄ = P−1x and output ȳc = Q−1yc,
noting that conditions (C1) and (C2) hold for the transformed dynamics, and defining
Ā , P−1AP , Ē , P−1E, and C̄ , Q−1CP , with Ā a 2-by-2 block matrix with entries
Ālk, l, k ∈ {1, 2}. From (4.9) one derives the following3:

H̄ =
[
C−1

1
0

]
, S̄ =

[
0 0
0 In−q

]
,

¯̃
K =

 ¯̃
K1
¯̃
K2


F̄ =

 − ¯̃
K1C1 0

Ā21 −
¯̃
K2C1 Ā22

 , ¯̂
K =

[
0

Ā21C
−1
1

]

3A bar ·̄ has been added to the matrices to highlight their dependence on the transformed system.
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where F̄ is Hurwitz stable by design. Note that the pair (F̄ , C̄) is not observable and
thus the state z̄ can be written as z̄ =

[
z̄>1 , z̄

>
2

]>
, where z̄1 and z̄2 are respectively the

observable and unobservable portions of the state. Furthermore, given the structure of
transformed matrices above, it is evident that ȳc does not influence the observable part
of the state, z̄1, and ˆ̄y = C1z̄1 + ȳc. Therefore, the residual defined as r = Q

(
ȳc − ˆ̄y

)
=

QC1z̄1 is independent of ȳc(t) and φ(t),∀t ≥ Ta.

4.9.3 Proof of Lemma 4.4.3

For any matrix A, it is possible to find its Jordan normal form J = P−1AP . This implies
that the equivalence eAt = PeJtP−1 holds. Note that eJt also has the same block-diagonal
structure of J , where each block eJkt ∈ Rnk×nk is upper-triangular. Following this, we
define a block-diagonal matrix P such that each block Pk ∈ Rnk×nk is upper-triangular
with all entries 1, and thus has the same non-zero structure as eJkt. We exploit the
property that for any matrix M with element mij at i-th row and j-th column, it holds
that max |mij | ≤ ‖M‖ to show that

∣∣∣PeJtP−1
∣∣∣ ≤ |P | ∣∣∣eJt∣∣∣ |P−1| ≤ |P |

∥∥∥eJt∥∥∥P|P−1| is
satisfied elementwise. Hence, noting that if A is Hurwitz stable then J is also Hurwitz
stable, it is possible to find scalars λ> 0 and µ ≥ 1 such that ‖eJt‖ ≤ µe−λt, and to define
Λ , µ|P |P|P−1|. Finally, note that matrix Λ is such that Λ ≥ I holds, as the following
relationships can be derived: |P |P|P−1| = |P |(I+Ξ)|P−1| = |P ||P−1|+|P |Ξ|P−1| ≥ I+0,
given that P = I + Ξ with Ξ ≥ 0, and that |P ||P−1| ≥ |PP−1| = I, |P |Ξ|P−1| ≥ 0.

4.9.4 Proof of Proposition 4.4.4

Following the Proof of Lemma 4.4.4, if

Σj

∣∣∣εr[j,i](Ta + kT ) +Hjρ[j](Ta + (k − 1)T )
∣∣∣ ≤ ε̄[j,i](Ta + kT )− |Hj |ρ̄[j], (4.63)

then the replay attack will not be detected for t ∈ [Ta + kT, Ta + (k + 1)T ). We
therefore must characterize the solution of estimation error ε[j,i](Ta + kT ) as k → ∞.
To do so, we note that the solution to the state estimate under replay attack for time
t ∈ T , {t|t = Ta + kT,∀k ∈ N} is

x̂[j,i](Ta + kT ) = eFjkTz[j,i](Ta) +Hjyc[j,i](Ta + kT )

+
∫ Ta+kT

Ta
eFj(Ta+kT−τ)K̂jyc[j,i](τ)dτ

= eFjkTz[j,i](Ta) +Hjy[j](Ta − T )+

+
k−1∑
s=0

esTFj
∫ Ta

Ta−T
eFj(Ta−τ)K̂jy[j](τ)dτ.

(4.64)
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Given that Fj is Hurwitz by design, the series ∑k−1
s=0 e

sTFj
∫ Ta
Ta−T e

Fj(Ta−τ)K̂jy[j](τ)dτ
converges. Hence εr[j,i](Ta + kT ) can be expressed as

εr[j,i](Ta + kT ) = εr[j,i](Ta) + (I− eFjkT )z[j,i](Ta)−
k−1∑
s=0

esTFj
∫ Ta

Ta−T
eFj(Ta−τ)K̂jy[j](τ)dτ

= εr[j,i](Ta) + ∆ε[j,i](k).

Given the convergence of the series, it is possible to bound the estimation error under
attack by ∣∣∣εr[j,i](Ta + kT )

∣∣∣ ≤ ∣∣∣εr[j,i](Ta) +Mj,i

∣∣∣ (4.65)

where Mj,i ≥ 0 is such that ∣∣∣∆ε[j,i](k)
∣∣∣ ≤Mj,i , ∀k ∈ N0.

Hence, Mj,i can be defined as Mj,i , supk∈N0

∣∣∣∆ε[j,i](k)
∣∣∣. Given the monotonicity of the

LHS of the previous, Mj,i is an upper bound on
∣∣∣∆ε[j,i](k)

∣∣∣ for all k ∈ N, implying

|εr[j,i](Ta + kT )+Hjρ[j](Ta + (k − 1)T )|

≤
∣∣∣εr[j,i](Ta) +Mj,i +Hjρ[j](Ta + (k − 1)T )

∣∣∣
≤
∣∣∣εr[j,i](Ta) +Mj,i

∣∣∣+ |Hj |ρ̄[j].

(4.66)

Finally, to complete the proof, note that ε̄[j,i](t) is monotonic. We define a variable

∆ε̄[j,i](Ta) , max
(

0, lim
t→∞

ε̄[j,i](Ta)− ε̄[j,i](t)
)
,

which is 0 if ε̄[j,i](t) monotonically increasing, and greater than 0 otherwise. This
definition allows us to state that ε̄[j,i](Ta + kT ) ≥ ε̄[j,i](Ta)−∆ε̄[j,i](Ta), ∀k ∈ N0.

Due to (4.66), (4.63) holds if

Σj

∣∣∣εr[j,i](Ta) +Mj,i

∣∣∣+ Σj |Hj |ρ̄[j] ≤ ε̄[j,i](Ta)−∆ε̄[j,i](Ta)− |Hj |ρ̄[j],

which is equivalent to (4.36). Consequently, |εr[j,i](t)| ≤ ε̄[j,i](t) will hold for all t ≥ Ta.
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5 Data-driven worst-case tracking
control

5.1 Introduction

In this chapter, we turn our attention to the problem of designing robust optimal
controllers for LTI systems using a finite amount of data. Recently, there has been a
renewed interest in system analysis and control design methods relying on finite-length
data sequences [DPT20, vWETC20, MPRT19, Tu19, BBP21]. Several works propose to
use raw measurements for representing discrete-time systems and solving system analysis
and control design problems [MMG20, KBA20, RBKA19, DPT20, vWETC20, vWM20,
TvWC20, BKSA20, BDPT20a, vWCM20, DPT21, CLD19b, BKMA20, CLD21]. As
mentioned in [DPT20], the main feature of these approaches is to bypass explicit system
identification that is usually required in standard control design. Moreover, data-based
system representations can be easier to update when new data are available, hence
facilitating the deployment of adaptive control systems [ADL20, LSKJ21].

All above works assume the availability of historical data, i.e., finite-length trajectories
produced by the open-loop system and measured offline. The works [DPT20, vWETC20,
vWM20, TvWC20, BKSA20, BDPT20a, vWCM20, DPT21] consider system representa-
tions based on input-state historical data. In certain applications, the system state is
not accessible and only input-output data can be collected. In this scenario, Willems’
FL states that the whole set of input-output trajectories generated by a discrete-time
linear system can be represented by finitely many historical data coming from sufficiently
excited dynamics [WRMDM05]. In view of this result, [MR08] proposes to predict the
system output from a given time t onwards by using a set of collected historical data
and a finite amount of recent past data, i.e., an input-output trajectory measured right
before time t. This approach is also used in the data-enabled predictive control (DeePC)
scheme described in [CLD19b]. While originally developed for noiseless data, DeePC
has been recently extended to noisy trajectories in [BKMA20, CLD21]. In [BKMA20],
slack variables are introduced in the data-dependent system representation to account
for noisy measurements. The modified control scheme is shown to be recursively feasible
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and practically exponentially stable; however, the tracking performance is not analyzed.
The authors of [CLD21] propose a distributionally robust variant of DeePC based on
semi-infinite optimization. They then formulate a finite and convex program, whose
optimal value is an upper bound to that of the original optimization problem. The
work [KD20] considers using noiseless historical data and noisy recent output data to min-
imize the energy of the control input while robustly satisfying input/output constraints.
The authors propose to separate the problems of estimation of the initial condition and
control design, and show that the solution to the formulated problem is computed by
consecutively solving two optimization problems.

5.1.1 Contributions

In this chapter, we provide a data-driven control design method for worst-case optimal
reference tracking with explicit performance guarantees. In particular, we consider LTI
systems for which no model knowledge is available.

We assume the historical data are noiseless while recent data are corrupted by noise
terms satisfying a quadratic constraint similar to the one in [vWCM20]. This assumption
corresponds to scenarios where historical data are generated through sophisticated offline
experiments. For instance, very accurate (and, thus, expensive) sensors can be utilized
to collect historical data; however, it might not be desirable to deploy these sensors in
real-world use for the purpose of cutting costs. Moreover, offline experiments might
exploit sensor fusion methods along with additional sensors (i.e. a motion capture system
for a quadcopter) that are not available in online operations. Finally, historical data
can be further denoised [YS20], which would be computationally restrictive for recent
data. Nevertheless, in reality, noise cannot be completely eliminated. The technical
consideration of noise in historical data is deferred to future work; however, Section 5.6.1
provides a numerical study thereof.

In safety-critical applications, such as power networks and industrial control systems,
it is sometimes required to adopt a bounded-error perspective by enforcing robustness
against all possible noise realizations and providing worst-case performance guarantees.
This is the setting considered here and, for this purpose, we utilize the data-driven
prediction method in [MR08]. We first characterize noises that are consistent with
the input-output data, and then reformulate the tracking cost. This enables us to
apply the S-lemma [PT07] to transform the worst-case robust control problem to an
equivalent minimization problem with a linear cost and LMI constraints, i.e., an SDP.
Moreover, we propose a method for reducing the size of LMI constraints, and also show
that our formulation can easily incorporate input-output constraints as well as actuator
disturbances. In contrast to [KD20], we consider to minimize quadratic cost on both
inputs and outputs, while the method in [KD20] only deals with the minimization of the
input energy.
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The main features of our method are the following: (1) we consider the minimization of the
worst-case tracking performance; (2) the proposed design procedure is non-conservative,
meaning that we obtain the optimal tracking controllers without any approximations; (3)
the complexity of the controller design procedure does not increase with the number of
historical data instances.

This chapter is organized as follows. In Section 5.2, we provide preliminaries on data-
driven prediction, which will also be used in Chapter 6. The problem formulation is
given in Section 5.3. The data-based robust optimal tracking control problem is solved
in Section 5.4. Extensions for considering input-output constraints as well as actuator
disturbances are discussed in Section 5.5. Simulations are provided in Section 5.6, before
giving the concluding remarks in Section 5.7.

5.2 Preliminaries on data-driven prediction

We consider a reachable and observable discrete-time LTI system G with state-space
representation

xk+1 = Axk +Buk,

yk = Cxk +Duk,
(5.1)

where xk ∈ Rn, uk ∈ Rm, yk ∈ Rp are the system state, input, and output, respectively.
In this chapter, we assume that the system matrices (A,B,C,D) are unknown, the states
xk are not measurable, and only a finite set of input-output samples of G is available. In
this section, we summarize how to form a data-based representation of G that allows for
predicting the output given any input [WRMDM05, MR08].

We start by introducing the following definitions. The lag l(G) is the smallest integer l
such that the l-step observability matrix [C>, A>C>, . . . , (Al−1)>C>]> has full column
rank. Moreover, l(G) ≤ n since G is observable. A sequence {uk, yk}l+T−1

k=l is a trajectory
of G if and only if there exists a state sequence {xk}l+Tk=l such that (5.1) holds for
k = l, . . . , l+T −1. A sequence {vk}l+T−1

k=l is persistently exciting of order L if the Hankel
matrix HL(v) is of full row rank.

In the following, we introduce the input-output data-based representation of linear
systems in [WRMDM05] and the prediction method in [MR08]. Suppose a trajectory
{ūk, ȳk}th+Td−1

k=th of G is collected, where th � 0. The trajectory is called historical, since
it can be regarded as collected long before the start (indicated by time 0) of any control
or prediction tasks. The FL proposed by Willems et al. [WRMDM05] shows how to use
the historical trajectory to characterize all possible system trajectories of length Tf .

Lemma 5.2.1 (Fundamental Lemma [WRMDM05]). Suppose that {ūk, ȳk}th+Td−1
k=th is

a trajectory of G and that the input ū is persistently exciting of order Tf + n. Then,
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Figure 5.1: Chronological order of data used in data-driven prediction

{uk, yk}
Tf−1
k=0 is a trajectory of G if and only if there exists g ∈ RTd−Tf+1 such that[

HTf (ū)
HTf (ȳ)

]
g =

[
u

y

]
. (5.2)

For a given time t ≥ 0, consider the problem of using (5.2) for computing predic-
tions y = col({yk}

Tf−1
k=0 ) of the system output over a future horizon given the inputs

u = col({uk}
Tf−1
k=0 ). There are infinitely many output trajectories y that satisfy (5.2),

corresponding to different initial states x0. The authors of [MR08] propose to implic-
itly fix the initial state by using recent input-output samples1 uini = col({uk}−1

k=−Tini
),

yini = col({yk}−1
k=−Tini

), which are available at time 0 (see Fig. 5.1). More precisely, let

U =
[
Up
Uf

]
, HTini+Tf (ū) , Y =

[
Yp
Yf

]
, HTini+Tf (ȳ) ,

where Up and Yp consist of the first Tini block rows of U and Y , respectively, while Uf
and Yf consist of the last Tf block rows of U and Y , respectively. The following lemma
summarizes the prediction algorithm.

Lemma 5.2.2 ([MR08]). Suppose that ū is persistently exciting of order Tini + Tf + n,
and Tini ≥ l(G). Then, for a given recent system trajectory (uini, yini) and input sequence
u,

1. there exists at least one vector g verifying Up
Yp
Uf

 g =

 uini
yini
u

 , (5.3)

1We call {uini, yini} recent data.
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2. the corresponding output trajectory y is unique and given by

y = Yfg, (5.4)

for any g satisfying (5.3).

Note that, collectively, (5.3) and (5.4) are equivalent to (5.2), which can be rewritten as
Up
Yp
Uf
Yf

 g =


uini
yini
u

y

 .

Throughout the chapter, we assume that ū and Tini verify the conditions in Lemma 5.2.2,
which implies that the matrices U , Up, and Uf have full row rank.

5.3 Problem formulation

In view of the prediction algorithm described in Lemma 5.2.2, consider the following
data-driven linear-quadratic tracking problem

min
u,y,g

Tf−1∑
k=0

(
‖yk − rk‖2Q + ‖uk‖2R

)
s.t. (5.3), (5.4), (5.5)

where {rk}
Tf−1
k=0 is the tracking reference and Q � 0, R � 0 are weight matrices. In this

chapter, we assume that the recent outputs yini are noisy, verifying

yini = y̌ini + w,

where y̌ini represents the noiseless output and w denotes the measurement noise. Besides,
as in [DPT20, BKSA20, vWCM20], we assume that w satisfies the following quadratic
constraint [

1
w

]> [Φ11 Φ12
Φ>12 Φ22

]
︸ ︷︷ ︸

Φ

[
1
w

]
≥ 0, (5.6)

where Φ22 = Φ>22 ≺ 0.

Remark 5.3.1. The negative definiteness of Φ22 ensures that ‖w‖2 is bounded. In the
special case that Φ12 = 0 and Φ22 = −I, (5.6) reduces to

w>w =
∑
k

w>k wk ≤ Φ11,
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which, as highlighted in [vWCM20], has the interpretation of bounded noise energy.

We are interested in designing a control input u that minimizes the worst-case quadratic
tracking error among all feasible noise trajectories, which are defined as follows.

Definition 5.3.1. For recent data (uini, yini), a noise trajectory w is called feasible if it
verifies (5.6) and (uini, yini − w) is a trajectory of G.

Next, we provide a robust formulation of the tracking problem (5.5) based on the linear
quadratic tracking error

LQTE(u, y, w) ,
Tf−1∑
k=0

(
‖yk − rk‖2Q + ‖uk‖2R

)
.

Problem P1: Find the input sequence u solving

min
u,y,g

max
w

LQTE(u, y, w) (5.7a)

subject to


Up
Yp
Uf
Yf

 g =


uini
yini
u

y

−


0
w

0
0

 , (5.7b)

w is a feasible noise trajectory. (5.7c)

The constraint (5.7c) means that the min-max optimization problem is not straightforward
to solve. However, as we show in the next section, this issue can be circumvented by
using a suitable parameterization of feasible noise trajectories.

5.4 Robust controller design

Problem P1 can be reformulated as follows

min
u,γ,g,y

γ

s.t.,LQTE(u, y, w) ≤ γ, ∀w satisfying (5.7c).
(5.8)

For notational simplicity, we have omitted the dependence of the problem on r. In the
sequel, we will derive a convex reformulation of (5.8). We first show in Section 5.4.1
that any noise trajectory w fulfilling (5.7c) can be expressed as an affine function of a
vector gw satisfying a quadratic constraint. In Section 5.4.2, we show that the output y
is completely determined by the input u and the vector gw, which allows one to express
the tracking error constraint as a quadratic constraint on gw. In light of these results, in
Section 5.4.3, we prove that (5.8) is equivalent to an SDP. Finally, in Section 5.4.4, we
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show how to reduce the size of the LMI constraints and, consequently, the computational
burden.

5.4.1 Feasible noise parameterization

Since ū is persistently exciting of order Tini + Tf + n, it is also persistently exciting of
order Tini + n. In view of Lemma 5.2.1, (uini, yini − w) is a trajectory of G if and only if
there exists gini ∈ RTd−Tini−Tf+1 such that[

uini
yini − w

]
=
[
Up
Yp

]
gini. (5.9)

Consider the solution g∗ini = U>p

(
UpU

>
p

)−1
uini to the first equation in (5.9), i.e., Upg∗ini =

uini. Any other solution gini verifying Upgini = uini can be written as gini = g∗ini +Mgw
for some gw ∈ RTd−(m+1)Tini−Tf+1, where M = N (Up). Furthermore, from the second
block row of (5.9), any w that makes (uini, yini − w) a trajectory of G can be written as

w = −YpMgw + (−Ypg∗ini + yini)︸ ︷︷ ︸
w0

(5.10)

for some gw.

In view of the above derivations, the feasible noise trajectories can be explicitly parame-
terized as follows.

Lemma 5.4.1. The noise trajectory w is feasible if and only if there exists gw satisfy-
ing (5.10) and [

1
gw

]> [[Aw]11 [Aw]12
[Aw]>12 [Aw]22

]
︸ ︷︷ ︸

Aw

[
1
gw

]
≥ 0, (5.11)

where

[Aw]11 = Φ11 + w>0 Φ>12 + Φ12w0 + w>0 Φ22w0,

[Aw]12 = −Φ12YpM − w>0 Φ22YpM,

[Aw]22 = M>Y >p Φ22YpM.

(5.12)

Proof. In addition to making (uini, yini − w) a trajectory of G, a feasible w should also
satisfy the constraint (5.6). Substituting (5.10) into (5.6), we write the constraint on gw
as [

1
w

]>
Φ
[

1
w

]
=Φ11 + (−YpMgw + w0)>Φ>12 + Φ12(−YpMgw + w0)

+ (−YpMgw + w0)>Φ22(−YpMgw + w0)
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=
[

1
gw

]>
Aw

[
1
gw

]
,

with Aw defined in (5.11), (5.12). �

Remark 5.4.1. We note that, from (5.10), for a given vector g∗ini, there might be
multiple gw parameterizing the same noise trajectory w. In Section 5.4.4, we show that
this redundancy increases the computational complexity of the proposed method, and
provide a method to overcome this problem.

5.4.2 Reformulation of the tracking error constraint

In this section, we show that, for a feasible noise trajectory w, the tracking error constraint
LQTE(u, y, w) ≤ γ can be reformulated as a quadratic constraint on the parameter vector
gw. We achieve this goal by first writing the output y as an affine function of u and gw,
and then substituting the expression of y into the tracking error constraint.

To express y in terms of u and gw, we compute g from the first three block rows of (5.7b),
and substitute it into the last block row of (5.7b). First of all, we show how to construct
a solution g from UpYp

Uf

 g =

 uini
yini − w

u

 . (5.13)

Since (uini, yini−w) is a feasible system trajectory, in view of Lemma 5.2.2, for any given
input u, there exists a (possibly nonunique) vector g verifying (5.13). Any solution g
to (5.13) can be decomposed as g , gini + gu, where gini verifies (5.9) and gu solves

UpYp
Uf

 gu =

 0
0

u− Ufgini

 . (5.14)

Therefore, if we can find a solution gu to (5.14), we can obtain a solution g to (5.13).

Before showing how to construct gu in Lemma 5.4.2, the following results are needed.
In view of Theorem 2 of [MDMVV89], the matrix [U>p , Y >p , U>f ]> does not always have
full row rank, even though [U>p , U>f ]> does. Therefore, there exists a row permutation
matrix PY transforming Yp as PY Yp = [Y >p1 , Y >p2 ]> such that Λ , [U>p , Y >p1 , U>f ]> has full
row rank and

rank (Λ) = rank


UpYp
Uf


 .
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Lemma 5.4.2. A solution to (5.14) is given by

gu = Λ>(ΛΛ>)−1

 0
0

u− Ufgini

 . (5.15)

Proof. Left multiply both sides of (5.14) with
[

I 0 0
0 PY 0
0 0 I

]
to obtain


Up
Yp1
Yp2
Uf

 gu =


0
0
0

u− Ufgini

 . (5.16)

By definition, the rows of Yp2 can be written as linear combinations of the rows of
[U>p , Y >p1 , U>f ]>. Therefore there exists an ordered sequence of elementary row operations
{Ek}ek=1 captured by the matrix E , EeEe−1 . . . E1 such that

E


Up
Yp1
Yp2
Uf

 =


Up
Yp1
0
Uf

 . (5.17)

We next show by contradiction that the rows of Yp2 can also be written as linear
combinations of the rows of [U>p , Y >p1 ]>. For this purpose, suppose that this is not the
case. Then, necessarily, the matrix E also operates on the rows of Uf . Consequently, left
multiplying E to both sides of (5.16), we obtain

Up
Yp1
0
Uf

 gu =


0
0

linear combination of rows of u− Ufgini
u− Ufgini

 . (5.18)

Since [0>,0>]> is a feasible system trajectory for any LTI system, in view of Lemma 5.2.2,
there always exists a gu solving (5.14). Therefore, (5.14) and further (5.16), (5.18) should
always be solvable for any u − Ufgini. However, it is clear from the third block row
of (5.18) that, (5.18) is not always solvable for any u−Ufgini. This makes a contradiction.
Therefore, the rows of Yp2 can be written as linear combinations of the rows of [U>p , Y >p1 ]>.
As a result, the matrix E can be constructed such that

E


0
0
0

u− Ufgini

 =


0
0
0

u− Ufgini

 , (5.19)
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that is, the matrix E only applies elementary row operations on the first three block
rows of [0>,0>,0>, (u− Ufgini)>]>.

The vector gu in (5.15) satisfiesUpYp1
Uf

 gu =

 0
0

u− Ufgini

 .
Then, we have 

Up
Yp1
0
Uf

 gu =


0
0
0

u− Ufgini

 . (5.20)

Left multiplying both sides of (5.20) by E−1, in view of (5.17) and (5.19), one obtains
Up
Yp1
Yp2
Uf

 gu =


0
0
0

u− Ufgini

 .

Furthermore, from the definition of PY , we have

UpYp
Uf

 =

I 0 0
0 P−1

Y 0
0 0 I



Up[
Yp1
Yp2

]
Uf

 .

Therefore, we conclude the proof by showing that

UpYp
Uf

 gu =

I 0 0
0 P−1

Y 0
0 0 I




0[
0
0

]
u− Ufgini

 =


0[
0
0

]
u− Ufgini

 .

�

A solution g = gini + gu to (5.13) can be obtained from a gini verifying (5.9) and the gu
in Lemma 5.4.2. We next show that y can be expressed as an affine function of u and
gw, and further reformulate the tracking error constraint in terms of u and gw.

Lemma 5.4.3. Given a feasible noise trajectory w and a control sequence u, the unique
output y satisfying (5.7b) is given by

y = Buu+Bwgw + y0, (5.21)
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where gw parameterizes w through (5.10), y0 = Binig
∗
ini, Bw = BiniM ,

Bini = Yf

I + Λ>(ΛΛ>)−1

 0
0
−Uf


 , and Bu = YfΛ>(ΛΛ>)−1

0
0
I

 .
Moreover, the tracking error constraint LQTE(u, y, w) ≤ γ can be equivalently expressed
as [

1
gw

]> [[Qg]11 [Qg]12
[Qg]>12 [Qg]22

]
︸ ︷︷ ︸

Qg(u,γ)

[
1
gw

]
≥ 0, (5.22)

where
R̄ = I⊗R, Q̄ = I⊗Q,
[Qg]11 = γ − u>R̄u− (Buu+ y0 − r)>Q̄(Buu+ y0 − r),
[Qg]12 = −(Buu+ y0 − r)>Q̄Bw, [Qg]22 = −B>w Q̄Bw.

Proof. As g = gini +gu solves (5.13), by substituting it into the fourth block row of (5.7b),
one obtains

y = Yfgini + Yfgu

= Yfgini + YfΛ>(ΛΛ>)−1


0
0
I

u+

 0
0
−Uf

 gini


= Binigini +Buu = Bini(g∗ini +Mgw) +Buu,

which proves (5.21). We then have the following equivalent conditions

LQTE(u, y, w) ≤ γ ⇔ γ − u>R̄u− (y − r)>Q̄(y − r) ≥ 0,
⇔ γ − u>R̄u− (y0 +Bwgw +Buu− r)>Q̄(y0 +Bwgw +Buu− r) ≥ 0,
⇔ (5.22).

�

5.4.3 Main result

The following theorem leverages the results obtained in Lemmas 5.4.1 and 5.4.3 to show
that (5.8) and, hence, P1, are equivalent to an SDP.

Theorem 5.4.1. The robust tracking control problem P1 is equivalent to solving

min
u,γ,α≥0

γ (5.23a)
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s.t.,


(R̄+B>u Q̄Bu)−1 [

u 0
][

u>

0

]
Qag(u, γ)− αAw

 � 0, (5.23b)

where
Qag(u, γ) = Qg(u, γ) +

[
u>(R+B>u Q̄Bu)u 0

0 0

]
, (5.24)

Aw is defined in Lemma 5.4.1, and Q̄, R̄, Qg, and Bu are defined in Lemma 5.4.3.

Proof. Based on Lemma 5.4.1 and Lemma 5.4.3, the minimization problem (5.8) is
equivalent to

min
u,γ

γ

s.t., (5.22) holds ∀gw satisfying (5.11).

In view of the S-lemma [PT07], the constraint of this minimization problem holds if and
only if there exist u and α ≥ 0 such that

Qg(u, γ)− αAw � 0.

Using Schur complement [BEGFB94], the above matrix inequality can be transformed
into the LMI in (5.23b). Note that the quadratic term u>(R + B>u Q̄Bu)u in the right
hand side of (5.24) cancels out with the quadratic term of u in Qg(u, γ), therefore making
Qag(u, γ) a linear function of u and γ. Minimizing the performance index γ further gives
the solution of (5.8) and hence P1. �

5.4.4 Implementation aspects: Dimension reduction for computational
efficiency

Recall from the analysis in Section 5.4.1 that the sequence w makes (uini, yini − w) a
trajectory of G if and only if there exists gw, such that

w = −YpN (Up)gw + w0. (5.25)

However, if gw is mapped into w through (5.25), any gw + v, where v ∈ ker(YpN (Up)), is
also mapped into the same w. This is especially true when the length Td of historical data
is large, i.e., Td � mTini and Td � pTini, which makes ker(Up) ∩ ker(Yp) and, therefore,
ker(YpN (Up)) nonempty. As a result, any parameterization of a subspace through gw
is redundant. Redundancy affects also the constraint (5.23b). Indeed, if the length of
the vector gw is unnecessarily large, so are the sizes of the matrices Aw and Qg(u, γ)
in (5.11), (5.22), as well as the LMI constraint in (5.23b), making the optimization
problem (5.23) inefficient.
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More formally, denote W as the set of noise trajectories w that make (uini, yini − w) a
trajectory of G. We have, from (5.25), W = range(YpN (Up)) ⊕ w0, where the vector
space range(YpN (Up)) is represented as

{YpN (Up)gw|gw ∈ RTd−(m+1)Tini−Tf+1}. (5.26)

The cause of redundancy is that the dimension of the free vector gw in (5.26) can be
much larger than the dimension of range(YpN (Up)). In the following theorem, we address
this issue to present a non-redundant representation of W.

Theorem 5.4.2. The vector w belongs to W if and only if there exists gw ∈ Rn̄w such
that

w = −YpN (Up)R(N (Up)>Y >p )gw + w0, (5.27)

where n̄w = rank(YpN (Up)). Moreover, the above mapping from Rn̄w to W is bijective.

Proof. Note that two vector spaces are isomorphic if and only if they have the same
dimension. As such, to eliminate the redundant representation problem, we introduce
an isomorphism from Rn̄w to range(YpN (Up)) and represent range(YpN (Up)) in terms of
this isomorphism. Notice that

range(YpN (Up)) = {YpN (Up)g|g ∈ RTd−Tini+1−Tinim}
(a)= {YpN (Up)(g1 + g2)|g1 ∈ ker(YpN (Up)), g2 ∈ range(N (Up)>Y >p )}
= {YpN (Up)g2|g2 ∈ range(N (Up)>Y >p )}
= {YpN (Up)R(N (Up)>Y >p )gw|gw ∈ Rn̄w}

where (a) follows from the fact that

ker(YpN (Up)) ⊥ range(N (Up)>Y >p ).

Therefore, an isomorphism from Rn̄w to range(YpN (Up)) is given by the matrix
YpN (Up)R(N (Up)>Y >p ). Furthermore, since W is range(YpN (Up)) shifted by w0, the
mapping from Rn̄w to W given by (5.27) is bijective. �

In view of the above theorem, the representation of W through (5.27) using gw ∈ Rn̄w

is non-redundant. To apply the above result in the implementation of (5.23), we only
need to replace the matrix M = N (Up) in the derivations of Section 5.4.1–5.4.3 with
M = N (Up)R(N (Up)>Y >p ).

Remark 5.4.2. Since

n̄w = rank
([
Up
Yp

])
− Tinim

(a)= n,

where (a) follows from Theorem 2 of [MDMVV89], the length of the vector gw in (5.27)
is equal to n. This guarantees that the size of the matrix in the LMI in (5.23b) scales
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with n+ Tfm. On the contrary, the length of the vector gw in (5.10) scales with Td. As
Td is usually significantly larger than n, the non-redundant parameterization shown in
this section can reduce the size of the LMI constraint (5.23b) considerably.

5.5 Generalizations

In this section, we provide several extensions to the robust control design method
described in the previous section. First, in Section 5.5.1, we show how to add input
and output constraints to the controller. In Section 5.5.2, we show how to take into
account actuator disturbances, before presenting the overall LMI optimization problem
incorporating both extensions in Section 5.5.3.

5.5.1 Input and output constraints

In this section, we show how to add quadratic input and output constraints to problem
P1. Since constraints on the input can be directly incorporated into (5.23), hereafter we
focus on constraints on the output y only and in the form

θ(y) =
[
1
y

]> [Θ11 Θ12
Θ>12 Θ22

]
︸ ︷︷ ︸

Θ

[
1
y

]
≥ 0. (5.28)

When Θ22 = Θ>22 ≺ 0 and Θ12 = 0, the above constraint imposes an upper bound on
‖y‖2.

Since the output is related to the input u and the noise trajectory w via (5.21), the
output constraint (5.28) can be written as

Θ11 + Θ12 (y0 +Buu+Bwgw) + (y0 +Buu+Bwgw)>Θ>12

+ (y0 +Buu+Bwgw)>Θ22 (y0 +Buu+Bwgw)

=
[

1
gw

]> [[Θg]11 [Θg]12
[Θg]>12 [Θg]22

]
︸ ︷︷ ︸

Θg

[
1
gw

]
≥ 0,

where

[Θg]22 = B>wΘ22Bw,

[Θg]11 = Θ11 + Θ12 (y0 +Buu) + (y0 +Buu)>Θ>12

+ (y0 +Buu)>Θ22 (y0 +Buu) ,
[Θg]12 = Θ12Bw + (y0 +Buu)>Θ22Bw.
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In principle, we want the constraint (5.28) to hold for all feasible noise trajectories.
Similarly to the proof of Theorem 5.4.1, this requirement is equivalent to the existence
of αy ≥ 0 such that Θg − αyAw � 0, which can be reformulated as an LMI constraint
and added to the optimization problem (5.23).

5.5.2 Actuator disturbances

In this section, we show how to consider actuator disturbances. Suppose the actuation
input ǔini to the system G to generate the recent data is also noisy, i.e.,

ǔini = uini − dini,

where uini is nominal control input and −dini is the actuator disturbance2. Moreover, we
also consider a disturbance −d acting on the computed control input u, i.e., ǔ = u− d.
Therefore, the data-dependent relation (5.7b) becomes


Up
Yp
Uf
Yf

 g =


uini
yini
u

y

−

dini
w

d

0

 . (5.29)

We assume that the actuator disturbance d̄ , [d>ini, d
>]> satisfies the quadratic constraint

[
1
d̄

]> [Φd,11 Φd,12
Φ>d,12 Φd,22

]
︸ ︷︷ ︸

Φd

[
1
d̄

]
≥ 0, (5.30)

where Φd,22 ≺ 0.

Our goal is to solve a min-max robust control problem similar to P1. Due to the
existence of actuator disturbances, we replace ‖u‖2R with the true system input ‖ǔ‖2R in the
cost (5.7a), replace (5.7b) with (5.29), and optimize over all feasible noise and disturbance
trajectories [d>ini, w

>, d>]>. We first characterize feasible trajectories [d>ini, w
>]> such

that (uini − dini, yini −w) is a trajectory of G. Similarly to the argument in Section 5.4.1,
[d>ini, w

>]> satisfies the above requirement if and only if there exists gini such that[
dini
w

]
= −

[
Up
Yp

]
gini +

[
uini
yini

]
. (5.31)

Therefore, the set of noise and disturbance trajectories [d>ini, w
>]> that make (uini −

2Note that the sign of the disturbance term is chosen for the clarity of the following derivations, and
is without loss of generality.
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dini, yini − w) a trajectory of G is

W̃ = range
([
Up
Yp

])
+
[
uini
yini

]
.

Let n̄d = rank
([

Up
Yp

])
= n̄w + mTini. Similarly to the analysis in Section 5.4.4,

[d>ini, w
>]> ∈ W̃ if and only if there exists gw ∈ Rn̄d such that

[
dini
w

]
= −

[
Up
Yp

]
R

[Up
Yp

]> gw +
[
uini
yini

]
. (5.32)

Moreover, the above mapping from Rn̄d to W̃ is bijective. Therefore, from (5.32), one
gets 

[
dini
w

]
d

 =

−
[
Up
Yp

]
R

[Up
Yp

]> 0

0 I


[
gw
d

]
︸ ︷︷ ︸
ḡ

+


[
uini
yini

]
0

 , (5.33)

i.e., the vector ḡ ∈ Rn̄d+mTf parameterizes all feasible noise and disturbance trajectories.
By following the arguments used in the proof of Lemma 5.4.1, the quadratic constraints
on w and d̄ can be transformed into quadratic constraints on ḡ as[

1
w

]>
Φ
[

1
w

]
≥ 0 ⇐⇒

[
1
ḡ

]>
Φ̄w

[
1
ḡ

]
≥ 0, (5.34)

[
1
d̄

]>
Φd

[
1
d̄

]
≥ 0 ⇐⇒

[
1
ḡ

]>
Φ̄d

[
1
ḡ

]
≥ 0, (5.35)

where the matrices Φ̄w and Φ̄d directly follow from (5.6), (5.30), and (5.33), and their
expressions are omitted for brevity.

Since every [d>ini, w
>]> ∈ W̃ can be written as (5.32), by substituting this representation

into (5.31), we obtain that for a given [d>ini, w
>]>, the solution gini to (5.31) is given by

gini = Mdgw, where Md = R
([

Up
Yp

]>)
. We can follow the procedure in Section 5.4.2

to derive the solution g = gini + gu to the first three equations in (5.29), where gu =
Λ>(ΛΛ>)−1

[
0 0 (ǔ− Ufgini)>

]>
verifies (5.14) with the noisy control input ǔ instead

of u. Then, since y = Yfg, the following holds with the matrices Bini and Bu defined in
Lemma 5.4.3:

y = Binigini +Buǔ = BiniMdgw −Bud+Buu =
[
BiniMd −Bu

]
︸ ︷︷ ︸

B̄g

ḡ +Buu.
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5.5 Generalizations

Since ǔ = u− Ξḡ, where Ξ = [0, I], the performance constraint can be rewritten as

γ −
Tf−1∑
k=0

(
‖yk − rt+k‖2Q + ‖ǔk‖2R

)
=γ − ǔ>R̄ǔ− (y − r)>Q̄(y − r)

=γ − (u− Ξḡ)> R̄ (u− Ξḡ)
− (B̄g ḡ +Buu− r)>Q̄(B̄g ḡ +Buu− r)

=
[
1
ḡ

]> [[Q̄g]11 [Q̄g]12
[Q̄g]>12 [Q̄g]22

]
︸ ︷︷ ︸

Q̄g(u,γ)

[
1
ḡ

]
≥ 0,

where

[Q̄g]11 = γ − u>R̄u− (Buu− r)> Q̄ (Buu− r) ,
[Q̄g]12 = u>R̄Ξ− (Buu− r)> Q̄B̄g,
[Q̄g]22 = −Ξ>R̄Ξ− B̄>g Q̄B̄g.

As such, the overall data-driven robust control objective is to find u and γ such that[
1
ḡ

]>
Q̄g(u, γ)

[
1
ḡ

]
≥ 0

holds for all feasible noise and disturbance trajectories parameterized by ḡ satisfying
quadratic constraints (5.34), (5.35). Using the S-lemma for multiple quadratic inequali-
ties [PT07], this is true if there exist u, αw ≥ 0, and αd ≥ 0 such that

Q̄g(u, γ)− αwΦ̄w − αdΦ̄d � 0. (5.36)

We can further convert the above inequality into an LMI through the Schur complement.
Therefore, the problem P1 with input disturbances is solved if the following optimization
problem is solved

min
u,γ,αw≥0,αd≥0

γ s.t., (5.36).

5.5.3 Co-existence of constraints and actuator disturbances

In this section, we use the results in Sections 5.5.1 and 5.5.2 for dealing simultaneously
with the quadratic input/output constraints and actuator disturbances. The overall
robust control problem is given by

min
u

max
w,dini,d

Tf−1∑
k=0

(
‖yk − rk‖2Q + ‖uk − dk‖2R

)
(5.37a)
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subject to


Up
Yp
Uf
Yf

 g =


uini
yini
u

y

−

dini
w

d

0

 , (5.37b)

[
1

u− d

]> [Ψ11 Ψ12
Ψ>12 Ψ22

]
︸ ︷︷ ︸

Ψ

[
1

u− d

]
≥ 0, (5.37c)

output constraint (5.28). (5.37d)

The following theorem provides an LMI-based representation of (5.37)3.

Theorem 5.5.1. Define α , [αw, αd, αu,w, αu,d, αy,w, αy,d]>. The optimization prob-
lem (5.37) is solved when the following minimization problem is solved:

min
u,γ,α≥0

γ s.t., (5.36), (5.41), (5.44), (5.38)

where constraints (5.41) and (5.44) are given in the proof.

Proof. Similarly to the proof of Theorem 5.4.1, we aim to minimize γ, subject to the
tracking error constraint and the constraint that the input/output constraints hold for all
feasible noise and disturbance trajectories. The tracking error constraint can be shown
to be given as (5.36). In the following, we show how to characterize the constraint that
the input/output constraints hold for all feasible noise and disturbance trajectories.

In light of ǔ = u− Ξḡ, one sees that the input constraint in (5.37c) is equivalent to

ψ̄(ḡ) =
[
1
ḡ

]> [[Ψ̄]11 [Ψ̄]12
[Ψ̄]>12 [Ψ̄]22

]
︸ ︷︷ ︸

Ψ̄

[
1
ḡ

]
≥ 0, (5.39)

where

[Ψ̄]11 = Ψ11 + u>Ψ22u+ Ψ12u+ u>Ψ>12,

[Ψ̄]12 = −Ψ12Ξ− u>Ψ22Ξ, [Ψ̄]22 = Ξ>Ψ22Ξ.
(5.40)

We need to ensure that (5.39) holds for all ḡ satisfying the quadratic constraints (5.34),
(5.35). In view of the S-lemma, this is possible if there exist u, αu,w ≥ 0, and αu,d ≥ 0

3Even though the matrix inequalities in the theorem and proof are not LMIs, they can be transformed
to LMIs using Schur complement in a similar way to the proof of Theorem 5.4.1. To save space, the
resulting LMIs are not displayed. Furthermore, we refer to these matrix inequalities as LMIs without
ambiguity.
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such that

Ψ̄− αu,wΦ̄w − αu,dΦ̄d � 0, (5.41)

which can be converted to an LMI. Similarly, considering y = B̄g ḡ + Buu, the output
constraint in (5.28) is equivalent to

θ̄(ḡ) =
[
1
ḡ

]> [[Θ̄]11 [Θ̄]12
[Θ̄]>12 [Θ̄]22

]
︸ ︷︷ ︸

Θ̄

[
1
ḡ

]
≥ 0, (5.42)

where
[Θ̄]11 = Θ11 + u>B>u Θ22Buu+ Θ12Buu+ u>B>u Θ>12,

[Θ̄]12 = Ψ12B̄g + u>B>u Θ22B̄g, [Θ̄]22 = B̄>g Θ22B̄g.
(5.43)

Following the same procedure as for input constraint, it can be shown that (5.42) is
satisfied if there exist u, αy,w ≥ 0, and αy,d ≥ 0 such that the following is satisfied:

Θ̄− αy,wΦ̄w − αy,dΦ̄d � 0, (5.44)

which can be converted to an LMI. Combining the above results, we get (5.38). �

Remark 5.5.1. The extensions presented in this section involve the use of the S-lemma
with multiple quadratic constraints [PT07] and Schur complement with semidefinite
matrices [BEGFB94], which are only sufficient. Therefore, the control design procedure
in (5.38) is conservative, i.e., it may have no solution even though a control input u
solving the min-max control problem (5.37) exists.

Remark 5.5.2. The proposed control design can be easily applied in a receding horizon
fashion, in order to implement a data-driven predictive controller. In doing so, at each
time instance, one needs to update the output reference r as well as recent input and
output data uini and yini with the online data, solve (5.38), and apply only the first control
input from the computed optimal control sequence u. Moreover, it can be shown that
the resulting controller is equivalent to a robust model predictive controller (MPC) with
bounded uncertainty on the initial state. As such, the stability of the resulting closed-loop
system can be studied using the existing results on robust MPC. Such a discussion is
omitted so as to emphasize the robust data-driven nature of the proposed controller, which
is the main contribution.

5.6 Simulation results

We illustrate the performance of the proposed controller through numerical simulations,
where we consider an unstable LTI system (5.1) with randomly selected system matrices
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A =


0.6799 −0.0331 −0.8332 0.4924
0.9748 1.0060 0.3666 0.5863
0.7311 0.3693 −1.0711 0.1603
−0.7442 0.0330 0.0667 0.1961

 , B =


−0.7841 −0.1798 −0.0757
0.5204 −0.5806 −0.6510
0.1974 0.2140 −0.4851
−0.9378 0.7881 −0.1826

 ,

C =
[
0.4458 0.4911 0.7394 −0.1359
0.0733 −0.1468 −0.6357 0.7353

]
, D = 0.

By choosing a random initial condition, historical input-output data of length Td = 110
are collected with inputs generated from a uniform distribution in the interval [−1, 1]. We
assume that the exact order n = 4 of the system is unknown and only the upper bound
n̄ = 6 is available. Consequently, recent input-output data of length Tini = n̄ = 6 ≥ l(G)
are collected with inputs from the uniform distribution in [−1, 1]. Moreover, recent
data is corrupted by input disturbances and output noises as in Section 5.5.3, where
the trajectories w and d̄ are selected to satisfy quadratic constraints (5.6) and (5.30),
respectively, with

Φ11 = Tinipε, Φ12 = 0, Φ22 = −I,
Φd,11 = (Tini + Tf )mε, Φd,12 = 0, Φd,22 = −I,

(5.45)

and ε = 0.001. We are interested in solving the min-max problem (5.37). We select
Tf = 20, r = 0, Q = I, and R = I to robustly regulate the output of the system to zero
within a horizon of length 20. Moreover, we seek to do so while ensuring that ǔ and y
satisfy quadratic constraints (5.37c), (5.28) with

Ψ11 = Tf εu, Ψ12 = 0, Ψ22 = −I,
Θ11 = Tf εy, Θ12 = 0, Θ22 = −I,

and εu = εy = 0.5.

As shown in Theorem 5.5.1, it is possible to convert this robust control input design
problem into the minimization problem (5.38). This problem is then solved using
Yalmip [Löf04] on Matlab with MOSEK [MOS20] specified as the solver, which returns
the optimal control sequence u. This control sequence is tested with multiple compatible
realizations of noise trajectories. In particular, we randomly select 100 vectors ḡ that
satisfy the quadratic constraints (5.34) and (5.35), which, in view of (5.33), parameterize
100 feasible sequences of w and d̄. As shown in Figure 5.2, output trajectories are quickly
brought around zero for all noise and disturbance realizations. Moreover, Figure 5.3
displays the robustness of the closed-loop system. Specifically, the first plot in Figure 5.3
shows that γ ≤ γ∗ for all selected noise and disturbance realizations, where each blue
circle corresponds to a specific realization and γ∗ is the optimal value of (5.38). Moreover,
the second and third plots show that the input and output constraints are satisfied for
all selected noise and disturbance trajectories, i.e., ψ(ǔ) ≥ 0 and θ(y) ≥ 0, respectively.
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Figure 5.2: Output responses with the designed robust control under different feasible
noise and disturbance trajectories.

When parameterizing the noise trajectories as in (5.33), the parameterization methods
proposed in Sections 5.4.4 and 5.5.2 allow for a significant reduction in the sizes of the
LMI conditions (5.36), (5.41), and (5.44). In particular, the size of each LMI condition
is reduced from 291 to 143.

It is seen from Figure 5.3 that the obtained γ values are not as high as the optimal value
γ∗. Moreover, the input and output constraints are not active in any of the different
simulation scenarios, i.e., ψ(ǔ) 6= 0 and θ(y) 6= 0. These limitations are due to the fact
that the version of S-lemma for multiple quadratic inequalities and the semidefinite version
of Schur complement used in Section 5.5.3 are conservative. In order to demonstrate that
they are the only sources of conservativity, we run another simulation with the same LTI
system, in which we do not consider actuator disturbances and input/output constraints.

Specifically, the same historical data as in the previous simulation are used to construct
the Hankel matrices Up, Uf , Yp, and Yf . Moreover, the same input sequence uini is used
to generate the recent trajectory. Differently to the previous case, only the recent output
trajectory yini is affected by measurement noise w. This noise is chosen to satisfy (5.6)
with the matrix Φ defined by (5.45). The Tf , r, Q, and R of the previous example are
chosen to ensure robust regulation of system output to zero. By utilizing the results of
Section 5.4, we solve the problem (5.23) with the matrix M defined in (5.27). Similarly
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Figure 5.3: Robustness against different noise and disturbance trajectories. Top: Tracking
errors γ = y>Qy + ǔ>Rǔ (blue circles), and the optimal value γ∗ (red line) computed
from (5.38). Middle: Values of the input constraint ψ(ǔ) computed as in (5.37c). Bottom:
Values of the output constraint θ(y) computed as in (5.28).

to the previous simulation, the calculated control input u is used to control the system
with 100 different realizations of the vector gw parameterizing different feasible noise
trajectories w. The results of this simulation are presented in Figure 5.4, where one sees
that the tracking costs γ in blue circles are smaller than the robust optimal tracking
cost γ∗ computed from (5.23) for all feasible noise trajectories. It can also be seen from
this figure that some γ values get quite close to γ∗, hence supporting the claim that
Theorem 5.4.1 in Section 5.4 is not conservative.

5.6.1 Noise in historical data

In this section, we investigate the effect of noisy historical data on our control method.
In particular, we consider the previous simulation, where we solve the SDP (5.23) to
produce the results in Figure 5.4. Differently from that setting, historical data are now
corrupted by noise, i.e., noisy outputs

ȳk = ¯̌yk + w̄k
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Figure 5.4: Tracking errors γ = y>Qy + u>Ru (blue circles), and the optimal value γ∗
(red line) computed from (5.23).

are collected from the system, where the noise trajectory w̄ , col({w̄k}th+Td−1
k=th ) satisfies

the quadratic constraint (5.6) with

Φ11 = Tdpε̄, Φ12 = 0, Φ22 = −I.

We consider 5 different values of ε̄, logarithmically spaced between 10−7 and 10−3, to
represent various noise levels. For each value, we conduct 10 offline experiments with
random initial conditions and noise realizations to collect separate batches of historical
data. Furthermore, for every one of these, (5.23) is solved to compute the optimal control
sequence u and tracking cost γ∗. Similarly to the previous simulation setting, each u
is tested in 50 test simulations with random realizations of the noise w on recent data.
Figure 5.5 displays, for each value of ε̄, the proportion of test simulations where the
tracking cost γ exceeds the optimal value γ∗. It can be seen in this figure that, due to
the existence of noise in historical data, γ < γ∗ does not always hold and is more likely
to be violated as ε̄ increases. Nevertheless, Figure 5.5 shows that our control method is
reasonably robust against sufficiently small noise in the historical data.

5.7 Conclusions

Willems’ FL shows that finite-length persistently exciting data can characterize the
behaviors of linear systems, which enables data-driven simulation and control. In this
chapter, we build on this data-dependent representation to consider the case that the
recent output data are noisy and solve worst-case robust optimal tracking control problems
in a data-driven fashion. The key ingredient of our approach is a suitable parameterization
of the feasible noise trajectories and the performance specification, which allows one to
express them as quadratic constraints. Then, by applying the S-lemma, we show that the
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Figure 5.5: Proportion of simulations where γ < γ∗ is violated.

worst-case robust control problem is equivalent to an SDP. Moreover, by carefully selecting
the noise parameterization, we can show that the dimension of the LMI optimization
problem does not scale with the length of historical data. Our method can also easily
incorporate input and output constraints, as well as actuator disturbances.

The methods proposed in this chapter can be used for a variety of control applications
for generic LTI systems. In the next chapter, we provide a generic data-driven framework
for state estimation in the presence of unknown inputs to the system.
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6 Data-driven unknown-input ob-
servers and state estimation

6.1 Introduction

The problem of estimating the states of an LTI system when some inputs cannot be
measured has been studied within the control community for almost half a century [MH73],
and has been motivated by applications in control, robust estimation, and fault diagnosis.
Among approaches available in the literature, some use a priori information about the
unknown inputs d, whereas some others assume no such prior and develop unknown-
input decoupling observers, i.e., state estimators whose estimation error is independent
of d and asymptotically converges to zero [DZX94]. In this chapter, we focus on the
latter class. Such observers, introduced as UIOs in Chapter 4, have been developed
for continuous-time [DZX94] and discrete-time systems [Val99]. UIOs are often used
for fault detection [CPZ96, GLC15] and, more recently, for cyber-attack detection (see
Chapter 4). They are an attractive tool in remote and distributed settings, where state
estimators are not collocated with the system, and therefore, do not have access to all
its inputs.

The work [Val99] provides necessary and sufficient UIO existence conditions based on
system matrices, which represent suitable observability and decoupling properties of the
system. It also gives a model-based UIO design procedure under these conditions. Though
for the discrete-time setting, these conditions and design procedure are very similar to
those given in Section 4.4 for continuous-time setting. Nevertheless, the literature lacks
end-to-end methodologies using data instead of a system model. In particular, no existing
work provides a data-driven formulation of UIO existence conditions and design. An
approach to achieve this goal is to follow a two-step procedure by first identifying the
system from the collected data and then designing a UIO for the reconstructed model.

Among the techniques for identifying systems with fully- or partially-unknown inputs, sub-
space identification can be used when d is a zero-mean stationary white noise [VODM12].
Similarly, errors-in-variables (EIV) methods can be applied when the unknown inputs
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can be modeled by additive stationary noise perturbing known input variables [Söd07].
In order to remove the above assumptions on the unknown inputs, the authors in [LE17]
have proposed a novel system identification method called the indirect framework. The
goal is achieved by introducing system-level assumptions ensuring that some inputs can
be directly measured, and certain parts of the system dynamics are known. The element-
level system identification method proposed in [WH94] does away with assumptions
on the system or the unknown inputs, but restricts the focus on mechanical systems.
Similarly, [YV16] proposes a blind subspace identification scheme under the assumption
of persistently exciting unknown inputs.

We highlight that, except [LE17], none of the above methods guarantees the exact
identification of the system with finite data, even without noise in the measured variables.
Moreover, conditions for the existence of a UIO are rank-based (see [Val99] and condi-
tions (C1)-(C2) in Section 4.4), and therefore extremely sensitive to errors in the identified
system matrices. Identification errors may also result in poor estimation performance
of UIOs as input-decoupling conditions are inherently sensitive to uncertainties in the
system matrices. In addition, [LE17] does not identify the input channels corresponding
to the unknown inputs, hampering the application of existing model-based UIO design
methods.

6.1.1 Contributions

An alternative to the two-step approach would be to check the existence of a UIO and
design the observer directly from data, without building a model of the system. In this
chapter, we propose a method with these features by exploiting the behavioral methods
summarized in Section 5.2. In particular, we exploit the results in [DPT20, MR08] to
give necessary and sufficient conditions for the existence of a UIO and develop a design
procedure.

Throughout this chapter, we consider the case of noiseless data, as the considered problem
has not been previously solved even with this assumption. Unlike two-step approaches
that rely on subspace identification, EIV methods, or the indirect framework, we do not
assume any knowledge of the system dynamics or the process generating d. Moreover, we
give guarantees on the convergence of estimates to the real state. We emphasize that our
results can be directly extended to standard state estimation with no unknown inputs.
In a simulation example, we use the proposed UIO for distributed state estimation in
DCmGs, and show how it can be embedded into the cyber-attack detection scheme in
Chapter 4.

This chapter is organized as follows. Section 6.2 formally presents the problem, while the
UIO design is discussed in Section 6.3. The application example is given in Section 6.4,
before concluding the chapter in Section 6.5.
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6.2 Problem formulation

6.2 Problem formulation

Consider a system G with the state-space representation

xt+1 = Axt +But + Edt,

yt = Cxt,
(6.1)

where xt ∈ Rn are the states, ut ∈ Rm are the (known) inputs, yt ∈ Rp are the outputs,
and dt ∈ Rmd are the unknown inputs (e.g. disturbances) of the system, and hence
unmeasured. We assume that the system is in minimal form, i.e., (A, [B E]) is reachable
and (A,C) is observable.

We next provide a formal definition of a UIO in the discrete-time setting.

Definition 6.2.1 (UIO [Val99]). An LTI system of the form

zt+1 = AUIOzt +BUIOvt,

x̂t = zt +DUIOvt,
(6.2)

with inputs v , [u> y>]> and outputs x̂ is a UIO for the system in (6.1) if x̂t − xt → 0
as t→∞ for any initial states x0 and z0, input u, and unknown input d.

Remark 6.2.1. When md = 0, the formulation in (6.1) and (6.2), as well as the following
analysis, capture standard state-estimation problems where all inputs are known.

If the matrices A, C, and E of the system (6.1) satisfy certain unknown-input observability
conditions, a UIO exists and can be designed through a straightforward procedure [Val99].
We emphasize that these conditions and design procedure, similar to their continuous-time
counterparts in Section 4.4, are model-based. They are not relevant to the following
developments and, therefore, are omitted.

Remark 6.2.2. As shown in [Val99], if a UIO can be designed, the state-estimation
error et , xt − x̂t follows the autonomous dynamics et+1 = AUIOet. By setting the
initial condition of the UIO as z0 = x0 −DUIOy0, one gets x̂0 = x0 and, consequently,
x̂t = xt ∀t. Therefore, for any input-output-state trajectory (u, y, x) of G, ([u> y>]>, x)
is an input-output trajectory of the UIO (6.2).

In the sequel, we assume that x0 is not available and, thus, z0 cannot be chosen as above.
Regardless, the observation in Remark 6.2.2 is key in our approach as it enables us to
collect data from the UIO without even constructing it.

In this chapter, we build on the same background on data-driven control and prediction
as in Chapter 5; therefore, all definitions in Section 5.2 apply. Next, we provide the
details of the data-driven setting specific to this chapter.
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We assume that an offline experiment has been conducted with the system G before
the start of any estimation task, and the corresponding historical input-output-state
trajectories ū , col({ūi}th+Td−1

i=th ), ȳ , col({ȳi}th+Td−1
i=th ), x̄ , col({x̄i}th+Td−1

i=th ) have been
collected, where th � 0. These data define the following matrices:

U , HL(ū), Y , HL(ȳ), X , HL(x̄), (6.3)

for some L ≤ Td. Similarly, define the Hankel matrix corresponding to v̄ , col({v̄i}th+Td−1
i=th )

= col({[ū>i ȳ>i ]>}th+Td−1
i=th ) as V , HL(v̄). Although d is not measured, we introduce the

notations d̄ , col({d̄i}th+Td−1
i=th ) for historical unknown input data, and D , HL(d̄) for

the corresponding Hankel matrix.

When a UIO (6.2) exists, Lemma 5.2.2 can be applied to predict its outputs, which is
equivalent to computing state estimations. This methodology requires, at each time step
t, to specify recent data vt,ini , col({vi}t−1

i=t−Tini
), x̂t,ini , col({x̂i}t−1

i=t−Tini
) consisting of

Tini samples. This data uniquely determines the the state zt−1 of the UIO if Tini ≥ lUIO,
where lUIO is the observability index of the UIO. Lemma 5.2.2 can be used to compute
UIO output predictions for a future horizon of Tf samples based on the recent data and
future UIO inputs vt,f , col({vi}

t+Tf−1
i=t ). For this purpose, Hankel matrices are split

into past and future blocks denoted by subscripts p and f , respectively:

U =
[
Up
Uf

]
, Y =

[
Yp
Yf

]
, X =

[
Xp

Xf

]
, V =

[
Vp
Vf

]
, (6.4)

where the upper block matrices consist of Tini block rows, and the lower block matrices
consist of Tf block rows. In this chapter, we iteratively apply the abovementioned lemma
with one-step-ahead predictions (see Section 6.3); therefore, we take Tf = 1. We also
take Tini = 1, since the output matrix of the UIO (6.2) is the identity, which implies
lUIO = 1.

In what follows, it is assumed that inputs and outputs of the system G are accessible.
The states are considered to be measured in the offline experiment to collect the historical
data, but not accessible in real-time operation.

Remark 6.2.3. Our assumption on the availability of the states is often fulfilled in a
remote estimation scenario, where the observer is not collocated with the system. As
such, it might be impossible, unsafe, or unfeasible for the system to transmit the state
measurements to the observer in real time over a communication network. Instead,
the historical state data can be collected offline and transferred once and for all to the
observer by using a different physical medium. Moreover, historical states can be measured
once in dedicated lab experiments using sensors that can be costly to install in real-time
applications. As cost reduction is a key driver in industry [MvD21], it might be desirable
to estimate states in online operations instead of adding sensors, especially if several
copies of the same system are created. Finally note that infinitely many state-space
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realizations of G exist [VODM12]. In order to estimate the states of G uniquely in the
absence of model knowledge, it is required to fix their basis, which is implied by the
availability of historical state measurements.

Definition 6.2.2. A trajectory ({vi}N−1
i=0 , {xi}

N−1
i=0 ) is compatible with the historical data

(v̄, x̄) if 
vi
xi
vi+1
xi+1

 ∈ range



Vp
Xp

Vf
Xf


 , ∀i ∈ {0, 1, . . . , N − 2}. (6.5)

Moreover, the set of all trajectories compatible with (v̄, x̄) is defined as

Tc(v̄, x̄) , {({vi}N−1
i=0 , {xi}

N−1
i=0 )| (6.5) holds}. (6.6)

We further introduce the set of all trajectories ({vi}N−1
i=0 , {xi}

N−1
i=0 ) that can be generated

by G:

TG , {({[u>i y>i ]>}N−1
i=0 , {xi}

N−1
i=0 )| ∃{di}N−1

i=0 verifying (6.1), ∀i ∈ {0, 1, . . . , N − 2}}.
(6.7)

Definition 6.2.2 and equation (6.7) are used for checking whether the historical data are
representative of all input-output trajectories of G. Note that this is achieved when all
trajectories of G are compatible with the historical data, i.e., TG = Tc(v̄, x̄). Indeed, if
historical trajectories are very short or poorly chosen, the range of [V >p X>p V >f X>f ]>
might be very small and incompatible trajectories of G might exist.

In this chapter, we assume all data to be noiseless in order to provide the theory for
data-driven UIO1. As discussed in Remark 6.2.3, in certain applications, historical data
can be generated in dedicated experiments. In such cases, historical data can be assumed
noiseless when sophisticated and accurate sensors are used. The presence of measurement
noise in recent data is discussed later in Remark 6.3.3.

6.3 Data-driven UIO

In this section, we present the proposed data-driven UIO formulation. Our method
is enabled by the observation in Remark 6.2.2 that the input-output-state trajectories
of G also represent input-output trajectories of the UIO. Therefore, if a UIO exists,
historical data collected from G can be used to provide a data-driven representation of
the trajectories of the UIO, when TG = Tc(v̄, x̄) [DPT20].

1Noiseless historical data, which corresponds to perfect model knowledge, and noiseless recent (online)
data are standard assumptions in the setting in which Luenberger observer and UIOs were originally
developed.
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The presentation of our results is structured in three steps. In Lemma 6.3.1, we give a
sufficient condition for having TG = Tc(v̄, x̄). In Lemma 6.3.2, we present necessary and
sufficient conditions for the existence of a system of the form (6.2) that generates all
trajectories in Tc(v̄, x̄). Finally, Theorem 6.3.1 characterizes the existence of a UIO and
provides a data-driven UIO estimation scheme. The following assumption is required in
the sequel.

Assumption 6.3.1. The historical data {[ū>i d̄>i ]>}th+Td−1
i=th are persistently exciting of

order n+ 2.

Lemma 6.3.1. If Assumption 6.3.1 holds, Tc(v̄, x̄) = TG.

Proof. Since vt = [u>t y>t ]>, there exists a row permutation matrix PR such that

PR


vt
xt
vt+1
xt+1

 =

u[t:t+1]
y[t:t+1]
x[t:t+1]

 ,

for any vector [v>t x>t v>t+1 x
>
t+1]> corresponding to a trajectory of G. From (6.1), the

variables on the right-hand side of the above equation verifyu[t:t+1]
y[t:t+1]
x[t:t+1]

 =

 I 0 0
Tuy,2 Tdy,2 Oy,2
Tux,2 Tdx,2 Ox,2


︸ ︷︷ ︸

,Θ

u[t:t+1]
d[t:t+1]
xt

 ,
(6.8)

where

Tuy,2 =
[

0 0
CB 0

]
, Tdy,2 =

[
0 0
CE 0

]
, Oy,2 =

[
C

CA

]
,

Tux,2 =
[

0 0
B 0

]
, Tdx,2 =

[
0 0
E 0

]
, Ox,2 =

[
I
A

]
.

Therefore, for any trajectory ({vi}N−1
i=0 , {xi}

N−1
i=0 , {di}

N−1
i=0 ) of the system G, it holds that,

for all t ∈ {0, . . . , N − 2}, 
vt
xt
vt+1
xt+1

 = P−1
R Θ

u[t:t+1]
d[t:t+1]
xt

 . (6.9)

Moreover, given a sequence of inputs ({ui}N−1
i=0 , {di}

N−1
i=0 ) and an initial state x0, any

sequence ({vi}N−1
i=0 , {xi}

N−1
i=0 ) obtained by iteratively solving for the left-hand side of (6.9)

for t ∈ {0, . . . , N−2} is a trajectory of G. For any set of historical data (v̄, x̄, d̄) generated
by G, it holds that
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
Vp
Xp

Vf
Xf

 = P−1
R Θ

 UD
Xp

 (6.10)

because every column of the left-hand side of the above equation is a trajectory of G.
Therefore, Tc(v̄, x̄) ⊆ TG . We next show that TG ⊆ Tc(v̄, x̄). For this, it is sufficient to
verify that for any trajectory ({vi}N−1

i=0 , {xi}
N−1
i=0 ) of G, every vector [v>t x>t v>t+1 x

>
t+1]> is

in the range of [V >p X>p V >f X>f ]>. Under Assumption 6.3.1, Theorem 1 in [vWDPCT20]
can directly be applied to show that [U> D> X>p ]> has full row rank. As a direct
consequence, given a vector [u>[t:t+1] d

>
[t:t+1] x

>
t ]>, there exists a vector gt+1 such that UD

Xp

 gt+1 =

u[t:t+1]
d[t:t+1]
xt

 .
Then, multiplying (6.10) from the right by gt+1 yields

Vp
Xp

Vf
Xf

 gt+1 =


vt
xt
vt+1
xt+1

 ,

where the vector [v>t x>t v>t+1 x
>
t+1]> satisfies (6.9). Since any trajectory of G consists of

vt, xt, vt+1, xt+1 satisfying (6.9), one gets TG ⊆ Tc(v̄, x̄). �

Remark 6.3.1. Lemma 6.3.1 requires persistency of excitation of the unknown inputs d̄,
which is not verifiable using the available data. This assumption can be satisfied when
the unknown inputs cannot be measured or modified, but change randomly. It is also
satisfied if d̄ = d̄0 + δd̄, where d̄0 is a (not necessarily exciting) deterministic component
and δd̄ is a small random component. For example, in DCmGs, unknown inputs include
the current loads connected to generation units (see Section 6.4). Loads are dictated by
current consumption which can be assumed to have a random component2. Persistency
of excitation can also be satisfied when δd̄ belongs to certain classes of deterministic
signals such as pseudo-random binary sequences (PRBSs), and sums of sinusoids [SS89,
Chapter 5].

In the following, we make use of the vector gt+1 solvingVpXp

Vf

 gt+1 =

 vt
xt
vt+1

 (6.11)

2Loads might include aggregated domestic consumption based on complex daily activity patterns of
many consumers, which can be assumed stochastic. Load currents are also affected by noise terms that
are induced by switches in power-electronics converters used for connecting loads.
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for given Vp, Xp, Vf and a compatible recent trajectory v[t:t+1], xt. All solutions to (6.11)
can be written as

gt+1 = Ξ[v>t x>t v>t+1]> + ν, (6.12)

for a vector ν ∈ ker([V >p X>p V >f ]>) and a properly defined matrix Ξ. There are infinitely
many such matrices and a particular choice is ([V >p X>p V >f ]>)†. We partition this matrix
as Ξ = [ΞVp ΞXp ΞVf ], where ΞVp , ΞXp , and ΞVf have m + p, n, and m + p columns,
respectively.

Lemma 6.3.2. There exists an LTI system of the form (6.2) that can generate every
compatible input-output trajectory ({vi}N−1

i=0 , {xi}
N−1
i=0 ) if and only if

ker


VpXp

Vf


 ⊆ ker(Xf ). (6.13)

Proof. (⇐= ) We show the existence of a system (6.2) with matrices

AUIO = XfΞXp , BUIO = Xf (ΞVp + ΞXpXfΞVf ), DUIO = XfΞVf . (6.14)

Note that every compatible trajectory is a sequence of input-output data vt and xt, and
verifies (6.5). If (6.13) holds, the vector xt+1 is uniquely determined by Xfgt+1 for any
vector gt+1 fulfilling (6.12). Therefore, for any compatible trajectory and t, xt+1 is given
by

xt+1 = XfΞVpvt +XfΞXpxt +XfΞVf vt+1, (6.15)

since ν ∈ ker([V >p X>p V >f ]>) ⊆ ker(Xf ). On defining zt+1 , XfΞVpvt +XfΞXpxt and
replacing the time index t+ 1 with t, equation (6.15) reduces to xt = zt +XfΞVf vt which
is the output equation in (6.2) with DUIO in (6.14). Replacing xt with zt + XfΞVf vt
in the definition of zt+1 yields the state update in (6.2) with AUIO and BUIO matrices
in (6.14). As such, the relation (6.15) between the elements of the tuple (vt, xt, vt+1, xt+1)
is equivalently represented as the relation between the inputs and outputs of the system
in (6.2) with the matrices (AUIO, BUIO, DUIO) in (6.14) and the initial state z0 = x0 −
DUIOv0.

( =⇒ ) Note that the system in (6.2) generates all trajectories compatible with the
historical data; therefore, the columns of [V >p X>p V >f X>f ]> represent input-output
trajectories of this system. Denote its corresponding historical state data by z̄ ,
col({z̄i}th+Td−1

i=th ), which define the matrices Z, Zp, and Zf as in (6.3), (6.4). Since it
holds that Zf = AUIOZp + BUIOVp, Xp = Zp + DUIOVp, and Xf = Zf + DUIOVf , one
gets

Xf =(BUIO −AUIODUIO)Vp +AUIOXp +DUIOVf

=
[
BUIO −AUIODUIO AUIO DUIO

] VpXp

Vf

 .
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This, in turn, implies (6.13), concluding the proof. �

Next, we discuss the existence of a UIO and provide a data-driven unknown-input
state-estimation scheme.

Theorem 6.3.1 (Data-driven UIO). Suppose that Assumption 6.3.1 holds. There exists
a UIO of the form (6.2) with the matrices in (6.14) if and only if (6.13) holds and XfΞXp
is Schur stable. Moreover, for any x̂0 ∈ Rn, the state estimations x̂t+1, t = 0, 1, . . .
computed through the iterative formula

x̂t+1 = XfΞ[u>t y>t x̂>t u>t+1 y
>
t+1]> (6.16)

asymptotically converge to the state xt+1 of G.

Proof. (⇐= ) When Assumption 6.3.1 and condition (6.13) are satisfied, Lemmas 6.3.1
and 6.3.2 guarantee that the system (6.2) with matrices given in (6.14) can generate
any compatible trajectory, hence, any trajectory of G. Next, we focus on the iterative
process (6.16) of computing estimations x̂t from an initial condition x̂0 for any input
u and unknown input d. As described in the proof of Lemma 6.3.2, this process is
equivalent to generating output trajectories of the system in (6.2) with the initial state
z0 = x̂0−DUIO[u>0 y>0 ]> and inputs vt = [u>t y>t ]>. That proof also shows that the actual
state xt of G corresponds to the output of the same system with the same inputs but a
different initial state: z′0 = x0 −DUIO[u>0 y>0 ]>. The state estimation error e = x− x̂ is
the difference between these two outputs of (6.2), which follows the autonomous dynamics
et+1 = AUIOet. If AUIO is Schur stable, this error converges to zero and the LTI system
in (6.2) is a UIO by Definition 6.2.1.

( =⇒ ) From Definition 6.2.1 and Remark 6.2.2, a UIO has Schur stable dynamics. Using
Lemma 6.3.2, existence of a UIO of the form (6.2) implies (6.13). �

Note that all Ξ matrices such that gt+1 in (6.12) verifies (6.11) can be characterized as
Ξ = Ξ0 + ∆, where Ξ0 = ([V >p X>p V >f ]>)† and ∆ is any matrix such that range(∆) ⊆
ker([V >p X>p V >f ]>). Under (6.13), it also holds that range(∆) ⊆ ker(Xf ). This implies
that whether a UIO exists and, if yes, its matrices in (6.14), are independent of the
particular choice of Ξ.

Remark 6.3.2. Unlike the proposed data-driven UIO, existing model-based design proce-
dures provide a degree of freedom in choosing UIO matrices [Val99, CPZ96], which can
be exploited to tune the estimation performance. Therefore, our UIO with matrices (6.14)
corresponds to one specific choice among those that can be achieved using model-based
design methods.

Remark 6.3.3. If recent data {vi}N−1
i=0 = {[u>i y>i ]>}N−1

i=0 are affected by noise, the
recursive algorithm (6.16) results in estimation errors. Note that (6.16) is equivalent to
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computing output trajectories of the UIO (6.2) with matrices in (6.14). Therefore, the
noise in recent data acts as an input disturbance to (6.2), i.e., ṽt = vt + wt is applied as
input instead of vt, where wt is the measurement noise. Standard LTI system theory can
be used to analyze the estimation error, which is the perturbation on the output of (6.2)
caused by wt.

We next provide an application example to demonstrate the use of the proposed method
on DCmGs. We also show that it can be used for distributed cyber-attack detection.

6.4 Distributed state estimation in DCmGs

Recall the distributed cyber-attack detection scheme comprising attack monitors collo-
cated with every DGU in Chapter 4. One of the key ingredients of local monitors are
UIOs, used for estimating the state of neighboring DGUs. Hereafter, we use the proposed
data-driven UIOs to replace the model-based ones and show their effectiveness. This
would eliminate the need for constructing accurate models of DGUs, which can be costly
or require expertise.

Through computer simulations, we briefly demonstrate the potential of the proposed UIO
for cyber-attack detection, without the pretence of providing an end-to-end data-driven
formulation of the whole detection scheme in Chapter 4. Indeed, when compared to the
simulation study in Chapter 4, we consider a simplified setting for clarity of exposition
and without loss of generality. In particular, we do not consider switching behavior of
the Buck converters and, hence, omit the augmented state representation in (4.11). We
focus on the problem of estimating the state of one neighboring DGU only, as the same
design procedure can be easily replicated for all neighbors.

The considered electrical scheme of a DGU is the same as in Figure 4.1, which defines
relevant electrical parameters and variables (we refer the reader to Chapters 3 and 4 for
a comprehensive description of these quantities). When equipped with the primary and
secondary controllers proposed in [NST+20, TMGFT18], the continuous-time dynamics
of a DGU is ẋ = Acx+ Ecd, with x , [Vi Iti vi]>, d = [Inet,i + ILi Vref,i + ∆Vi]>, and

Ac =

 0 1
Cti

0
ki,1−1

Lti

ki,2−Rti

Lti

ki,3
Lti

−1 0 0

 , Ec =

− 1
Cti

0
0 0
0 1

 . (6.17)

Inet,i = ∑
j∈Ni Iij is the net current injected into the mG by DGU i. As in Chapter 4, we

assume all states are measured and transmitted to the neighboring units. The unknown
inputs can be measured; however, they are not sent to the neighboring units for security
and privacy reasons. Indeed, transmitting these variables in real time would make
them vulnerable to cyber attacks, thus compromising the purpose of attack detection.
Moreover, sharing historical data d̄i with neighboring units might cause privacy violations.
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Indeed, the loads ILi often correspond to consumption, which can reveal the occupancy
and daily activities of the consumers [Har92]. Furthermore, the variables Inet,i and ∆Vi
may contain sensitive information regarding the neighbors of DGU i, which might not be
desirable to share.

By using exact discretization, the discrete-time model of a DGU is given by system (6.1)
with3

A = eAcTs , B = 0, E =
(∫ Ts

τ=0
eAτdτ

)
Ec, C = I (6.18)

for a sampling period Ts > 0, which we assume to be 10 ms in our experiments. At each
time step t, the neighboring DGU j receives the following communicated output from
DGU i

yct = yt + φt, (6.19)

where φt is the additive cyber attack vector at time t. Ta denotes the start of the attack;
therefore, φt is zero for all t < Ta, and non-zero for, at least, a time instant t ≥ Ta.

As in Section 4.4, we are interested in building a monitor collocated with the neighbor
j of DGU i, that estimates the states x of DGU i from the communicated outputs yc
by assuming safe operation. i.e., that there are no attacks and, therefore, yct = yt. This
corresponds to the problem of designing a UIO for the system in (6.1) with the matrices
in (6.18).

We collect historical data by initializing the DGU from a random state. These data are
not affected by attacks, as they are collected and sent to the neighboring units offline
(see Remark 6.2.3). As discussed in Remark 6.3.1, it is sufficient that Vref,i and ILi have
stochastic components to verify Assumption 6.3.1. This can indeed be satisfied as Vref,i
is a free reference variable and ILi is the load current, which can be assumed to have a
stochastic element as discussed in Remark 6.3.1.

The historical data verifies the conditions in Theorem 6.3.1 for the existence of a UIO;
therefore, (6.16) can be used to compute state estimates. This is expected, since a
model-based UIO also exists for the same system (see [GTN+18] and Chapter 4). We
initialize the DCmG from a random initial condition, and simulate it for N = 10 time
steps with no attack and d = d0 + δd, where d0 is a nominal vector and δd is a small
random component. As shown in Figure 6.1, the estimates quickly converge to the real
states. In view of Remark 6.3.2, the same UIO estimates can also be obtained by a
model-based design procedure when the DGU matrices in (6.17) are known.

As shown in Lemma 4.4.1, it is possible that a UIO cannot detect any attack. We
next introduce an attack in yct to illustrate that the data-driven UIO designed above
can detect at least one attack and be used in the distributed cyber-attack detection

3Hereafter, we omit the subscript i as it is irrelevant for the UIO design.
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Figure 6.1: States and estimates in safe operation.
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Figure 6.2: Residual signals in presence of attack. The vertical dotted line represents the
start of the attack.

scheme in Chapter 4. Using the same historical data, we run another simulation of length
N = 100 timesteps with random x0 and d. Differently from the first case, a constant
attack φt = [0.1 0.1 0.1]> is added on the communicated output variables in (6.19)
after an attack start time of Ta = 50. In this case, the residual can be computed from
the information available at the DGU j as rt = yct − x̂ = [rt,1 rt,2 rt,3]>. Figure 6.2
demonstrates that the residuals are affected by the attack, showing the potential of the
proposed method in distributed cyber-attack detection.
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6.5 Conclusions

In this chapter, we provided data-driven necessary and sufficient conditions for the
existence of a UIO for an LTI system and proposed a data-driven unknown-input state-
estimation method. We also showed the effectiveness of the algorithm for distributed
state estimation in DCmGs, and its potential for use in distributed cyber-attack detection.
Indeed, the simulation results demonstrate that the proposed method is promising for a
data-driven implementation of the scheme in Chapter 4.
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7 Conclusions and future directions

7.1 Thesis conclusions

In this thesis, we proposed methods for addressing three relevant challenges for modern
control systems: distributed consensus, cyber-attack detection, and data-driven control
and estimation.

Many of today’s control systems are composed of several smaller subsystems, possibly
dispersed over large geographical areas. Cooperative control of these systems often
hinges on the analysis and development of distributed consensus protocols. In turn,
communication networks employed in distributed architectures are prone to cyber attacks,
detection of which is vital for ensuring safe operation. Control of large-scale systems also
raises the challenge of developing model-free solutions. The work presented in this thesis
addresses these three points. Particularly, Part I is devoted to the study and design
of distributed consensus protocols in interconnected MASs. First, an analysis on the
existence of controllers achieving state consensus in general linear interconnected MASs
is carried out. Focusing on a specific type of systems, namely islanded DCmGs, we then
provide a distributed consensus-based scheme to achieve current sharing and voltage
balancing.

Part II focuses on the security issues introduced by cyber coupling in LIMASs and develops
a distributed cyber-attack detection scheme. The proposed method comprises local
detectors associated to individual subsystems, monitoring the incoming communications
from the neighbors. Each of these local units consists of two parallel modules that
complement detection performances of one another by exploiting different pieces of
information about the underlying subsystems. We also conduct extensive analyses
regarding the detectability properties of the proposed scheme against different types of
attacks.

Part III pertains to the development of direct data-driven control and state estimation
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methods for LTI systems. We first develop a worst-case optimal tracking controller based
on SDPs and using finite number of data points. Notably, the computational complexity
of the design procedure is independent of the total number of data points. Extensions to
input disturbances and input-output constraints are also provided. The last contribution
of the thesis concerns state estimation. We give necessary and sufficient conditions,
based on data, for the existence of a UIO for an LTI system. Moreover, we show how
to iteratively compute state estimations of the data-driven UIO, which are proven to
converge to the actual state.

7.2 Future perspectives

In this concluding section, we identify several research directions that might be of interest
for advancing theoretical developments and improving the real-world applicability of the
methods presented in the thesis. Below, we discuss these points separately for each part
of the thesis.

Distributed consensus

The general consensusability results for LIMASs with vector subsystem dynamics rely
on the assumption that the Laplacians of physical and communication graphs commute
(see Section 2.4.2). Given a physical graph, this assumption imposes a restriction on
the communication graph topology, which may not be verified for general LIMASs.
Eliminating this assumption is, therefore, important for improving the applicability of
our results, and will be considered in future works.

Also note that Chapter 2 considers state consensus. Another possible direction for
follow-up research is to study output synchronization for LIMASs, which is a more
general problem. Indeed, it captures a larger class of cooperative control tasks such as
vehicle formations [FM04] and current sharing in DCmGs (see Chapter 3).

Finally, all works presented in the first part of the thesis assume ideal communication
between subsystems of an interconnected MAS. This is, however, not the case in real
communication networks. Future work can focus on studying the impact of network
non-idealities (such as transmission delays, data quantization, and packet drops) on the
stability and performance of the presented methods.

Together, the above improvements would enable the development of a framework for
studying a broad range of relevant cooperation tasks in real-world LIMASs.
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Beyond attack detection

In Chapter 4, we only looked into the detection of cyber attacks, which, by itself, does not
ensure safe operation. For this purpose, it might be desirable to explore the possibility of
tackling follow-up actions for attack mitigation. Specifically, an automatic reconfiguration
strategy can be developed for the purpose of disabling attacked communication channels,
all the while guaranteeing safe and reliable operation of the whole LIMAS. Another
possibility is to enhance the detection scheme to estimate the attack vector, in order to
grant the controllers resilience against attacks. Such extensions would eliminate the need
of human intervention in case of an attack, by automatically guaranteeing the safety of
the closed-loop system.

Moreover, the proposed detection scheme is model-based, which might pose a challenge in
LIMASs with unknown, uncertain, or time-varying dynamics. In this case, model-based
design methods in Sections 4.4 and 4.5 might not be applicable. To address this issue, a
completely data-driven attack-detection scheme can be devised in the future by combining
the results in Chapters 4 and 6. This scheme would have the potential of continuously
adapting to changes in system dynamics by using newly available data.

The research directions highlighted above are critical for creating a truly autonomous
attack-detection and mitigation scheme in LIMASs.

Advanced data-driven methods

At present, data-driven methods proposed in the third part of the thesis assume that
historical data is noiseless. This assumption is not verified for systems equipped with
inaccurate sensors. In order to improve the real-world applicability of the proposed
results, future work may be devoted to robustly taking into account noise terms also in
historical data. In particular, prior knowledge on the distribution of stochastic noise can
be incorporated into the synthesis problem to provide high-probability guarantees [YIS20].
Another possibility is to develop methodologies to denoise the Hankel matrices constructed
using noisy data [YS20].

Moreover, direct data-driven methods have the advantage of being completely model-
free. This brings the possibility of considering systems with time-varying dynamics.
In particular, the proposed methods can be modified to adapt in an online fashion to
changing system behaviors, similarly to some existing works [LSKJ21]. Such a framework
would be crucial for achieving full autonomy and adaptability in the closed-loop system.
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A Notation

A.1 Symbol definitions

R (resp. R>0) The set of real (resp. strictly positive real) numbers
N0 The set of natural numbers
ker(A) Null space (kernel) of matrix A
range(A) Column space (range) of matrix A
K(A) A matrix whose columns form a basis for ker(A)
R(A) A matrix whose columns form a basis for range(A)
A � 0 (resp. A � 0) Matrix A is positive definite (resp. semidefinite)
A ≺ 0 (resp. A � 0) Matrix A is negative definite (resp. semidefinite)
A> (resp. v>) Transpose of matrix A (resp. of vector v)
A† Right pseudo-inverse of matrix A
ρ(A) Spectral radius of the matrix A
‖A‖ 2-norm of matrix A
B1 Unit disk in the complex plane
1n A column vector in Rn whose elemens are equal to 1
0n A column vector in Rn whose elemens are equal to 0
In (resp. I) Identity matrix in Rn×n (resp. of suitable dimension)
0N×n (resp. 0) Zero matrix in RN×n (resp. of suitable dimension)
dae Ceiling function applied on the scalar a
bac Floor function applied on the scalar a
dim(V ) Dimension of the vector space V⋃ Set union⋂ Set intersection
X ⊆ Y Set X is a subset of set Y
⊕ Direct subspace sum
⊗ Kronecker product
HL(v) Hankel matrix of depth L associated to vector v
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Appendix A. Notation

A.2 Sets and operators

When applied to a set, the operator | · | denotes its cardinality. With a slight abuse
of notation, Kronecker product is also defined for subspaces, i.e., for two subspaces
X and Y, X ⊗ Y = {x ⊗ y|x ∈ X, y ∈ Y}. H1 is the (N − 1)-dimensional subspace of
RN comprising vectors with zero average, i.e., H1 = {v ∈ RN |1>Nv = 0}. H1

⊥ is the
1-dimensional subspace orthogonal to H1, composed of N -dimensional vectors of identical
elements, i.e., H1

⊥ ⊥ H1 and H1
⊥ = {a1N |a ∈ R}. Then, it holds that H1 ⊕ H1

⊥ = RN .
The set {−1, 1}m×n with cardinality 2mn consists of all the different m × n matrices
comprising elements −1 and 1. For a matrix A ∈ Rm×n, A(X|Y) denotes the linear map
A : X→ Y where X and Y are subspaces of Rn and Rm, respectively.

A.3 Algebraic graph theory

An undirected weighted graph of N nodes is defined as G = (V,W, E), where V =
{1, 2, . . . , N} is the set of nodes and E ⊆ V × V is the set of edges. If a number
l ∈ {1, ..., |E|} is assigned to each edge, the diagonal weight matrix W is collects the
weights of the corresponding edges on its diagonals. Assigning arbitrary directions to
edges, the only non-zero elements of the incidence matrix B ∈ R|V|×|E| are the following:
Bil = 1 if node i is the source node of edge l, and Bil = −1 if node j is the sink node of
edge l. The set of neighbors of node i is defined as Ni = {j|(i, j) ∈ E}. A path pij is an
ordered sequence of consecutive edges such that every edge in the sequence is in E , the
first edge starts from node i, and the last edge ends in node j. The adjacency matrix of G
is defined as A = [aij ]N×N , where aij = 0 if (i, j) /∈ E or i = j and aij > 0 is the positive
weight of edge (i, j) ∈ E . The degree of a node i is defined as di = ∑

j∈Ni aij along
with the degree matrix D = diag (d1, d2, . . . , dN ). The Laplacian matrix of G is given
by L = D −A = BWBT . An undirected graph is connected if there exists a path from
every node i to every other node. In this case, it holds that ker(BT ) = ker(L) = H1

⊥.

A.4 Matrices, vectors, and polynomials

When applied to matrices and vectors, the operator | · | denotes element-wise absolute
value. For a matrix Q � 0 and a vector x, ‖x‖Q ,

√
x>Qx. When used with vectors

and matrices, inequalities are taken component-wise. A polynomial is called Schur if all
its roots are in B1. Given a vector v ∈ Rn, [v] ∈ Rn×n is a diagonal matrix collecting
the elements of v on the main diagonal. The operator diag(M1, . . . ,MN ) returns a
block-diagonal matrix whose diagonal blocks comprise the matrices Mk, k ∈ {1, . . . , N}.
For vectors x, y ∈ Rn, the term xy represents a vector in Rn whose ith element is xyii .
We define the average of a vector x ∈ Rn as 〈x〉 = 1

n

∑n
i=1 xi = 1

n1>x. The operator
col(vi, . . . , vj) represents the column concatenation of vectors vk, k = {i, i + 1, . . . , j}.
It is also compactly written as col({vk}jk=i). When vk are column vectors, the vector
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A.4 Matrices, vectors, and polynomials

resulting from their column concatenation is denoted as v[i:j], or simply v when the
indices i and j are clear from the context. The Hankel matrix of depth L associated to
v[i:j], j ≥ i+ L− 1, is defined as

HL(v) ,


vi vi+1 · · · vj−L+1
vi+1 vi+2 · · · vj−L+2
...

... . . . ...
vi+L−1 vi+L · · · vj

 . (A.1)
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