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Introduction

Since the energy crisis of the early 1970s, energy demand models have received great
interest because of their relevance in predicting, quantifying and planning electricity
generation needs and designing related policy interventions (Swan and Ugursal 2009).
In recent years, however, traditional methods to model energy demand are being chal-
lenged by several emerging issues: (i) the profound change in nature, timing, ownership
and dispatchability of electricity supply requires higher spatial and temporal resolution
of energy demand (Camargo and Stoeglehner 2018), (ii) electrification is branching the
interactions of a traditionally vertical system across different scales and sectors (e.g., heat-
ing and mobility) (?Brundlinger2018) and (iii) new policy interventions and grid
management paradigms (e.g., multi-modal demand response programs and local energy
systems) are unveiling the limitations of purely techno-economic modeling approaches
(Pfenninger et al. 2014).

The common thread running through these changes is the new consumer-centric
energy system paradigm, ‘... where citizens take ownership of the energy transition, bene-
fit from new technologies to reduce their bills, participate actively in the market, and where
vulnerable consumers are protected” (European Commission 2015)[p.2]. Indeed, energy
consumers can become prosumers by choosing to install photovoltaics on their roofs, act
as a coupling node between the electricity and transport sectors by plugging-in their elec-
tric vehicles, or participate actively in the management of the electricity grid by enrolling
in Demand Side Management (DSM) programs.

Nevertheless, current energy system models take a centralized perspective, neglecting
social stakeholders and their decision-making (Fattahi et al. 2020). Indeed, the idea of
modeling the consumer as a sink (Hilpert et al. 2018) prevails, and thus the use of empir-
ical or synthetic load profiles to be fed into other models, e.g., to optimize the design
of distributed energy systems (Dorer et al. 2016) or evaluate the performance of new
management strategies (Mammoli et al. 2019).

To stimulate a socio-technical modeling perspective, this paper first presents and
motivates four core design principles (i.e., granularity, scalability, modularity and trans-
parency), then a domestic energy demand co-simulation design is presented and the
fulfillment of the four design principles evaluated and discussed. The proposed solu-
tion employs mosaik! (Steinbrink 2017), an open source co-simulation framework, to
integrate and orchestrate an occupancy-based energy demand model, developed using
the Python library demod (Barsanti and Constantin 2021b), with an heat pump model
(Kasturi and Schwarz 2021) (see Fig. 1).

It is worth emphasising that the selected case study (i.e., heat pump integration) aims
to exemplify the assessment of mosaik’s functionalities and challenges in generating,
integrating and managing a multitude of demod-based model instances with other inde-
pendent models in large simulation scenarios. The insights from this research and the
fully documented and open access models can be used by other researchers with the
aim of coupling energy demand with complementary behavioural models (e.g. investment
in low carbon technologies, participation in DSM programs) to better account for the

human component in current policy assessment tools.

Uhttps://mosaik.offis.de
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Fig. 1 Overview of the co-simulation design and potential extensions

Design principles

Before presenting and motivating the choice of the four design principles, it is impor-
tant to emphasize two points: first, the four reported design principles do not represent
an exhaustive list of criteria for the development of “good” models, and the authors refer
the readers to other studies for a more detailed discussion about the models’ ability to
explain past observation (Grandjean et al. 2012; Salisu and Ayinde 2016), ability to predict
future observations (Grandjean et al. 2012; Lopion et al. 2018), uncertainty quantification
(Pfenninger et al. 2014; Sovacool et al. 2018), flexibility (Lopion et al. 2018), capturing
the human dimension (Pfenninger et al. 2014; Sovacool et al. 2018; McKenna et al. 2017),
observability and adjustability (Richter et al. 2006), and licensing and programming /
modeling language (Lopion et al. 2018; Morrison 2018); second, there are models that,
despite not having a scalable, modular or transparent framework, allow to provide sci-
entifically relevant results. In summary, these principles should be intended as the basis
for the development of an effective model backbone, which can give centrality to the
consumer and facilitates the subsequent improvement and integration of more advanced
features and methods for the study of socio-technical energy system. In the authors’ opin-
ion, the design of socio-technical energy demand models should be based on the core
principles presented in Table 1.

In terms of granularity, the increasingly fluctuating and distributed nature of electric-
ity generation, together with new management paradigms (e.g., DSM) requires that the
level of detail goes down to individual consumers and devices (Grandjean et al. 2012)
and time-steps of the order of minutes (Ayala-Gilardén et al. 2018). These considerations
refer to energy demand models, while technology diffusion (Moglia et al. 2018) or DSM
participation (Krebs 2017) models may require different spatio-temporal resolutions.

This heterogeneity of detail, however, is not a limitation if model outputs can be inte-
grated at different scales in order to bridge the information gap between dynamics that
occur locally and/or in the short term but may impact on medium/large and/or long-term
scales, such as DSM programs (Yamaguchi et al. 2020). However, increasing granular-
ity of models can significantly affect the computation time. Thus, the trade-off between
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Table 1 Design principles

Granularity It consists of both the quality of being granular, i.e, in the modeling field as the ability of
“resolving details in time and space” (Pfenninger et al. 2014), but also the state of being com-
posed of many individual parts or elements. In other words, to obtain results relevant to the
purpose of the analysis, the model must ensure that the output meets the required granu-
larity of detail (Lopion et al. 2018), and must be “technically explicit i.e. the different specificities
of the simulated elements (equipments, buildings, etc.) must specifically impact the load curve
calculations and results” (Grandjean et al. 2012)[p.6541].

Scalability It explicits and extends the term “aggregative”, proposed by Grandjean et al. (2012) to
describe model's ability to generate results at different levels (household, city, region,
etc), emphasising on two implicit aspects: computational cost and data availability for
parametrization. Indeed, as discussed in the field of computer science, a scalable model
must have “the ability to handle increased workload by repeatedly applying a cost-effective strat-
egy for extending a system'’s capacity” (Weinstock and Goodenough 2006)[p.1]. In addition,
to ensure consistency across levels, the model must use observable values, e.g., consumer
socio-demographics and appliance penetration rates, allowing the model to be sensitive to
micro-level factors that are available at macro-level (Xu et al. 2020).

Modularity It goes beyond the modeling domain and as described in Baldwin et al. (2014)[p.1383], con-
sists of the decomposition of a framework (e.g., a model) into modules characterized by “the
interdependence of decisions within modules; the independence of decisions between modules;
and the hierarchical dependence of modules on components embodying standards and design
rules”. In this case, “module” is intended according to the definition of McClelland et al. (1987)
adopted by Baldwin and Clark (2000)[p.63]: “[..] @ unit whose structural elements are powerfully
connected among themselves and relatively weakly connected to elements in other units”.

Transparency It requires that the documentation and communication of a model provide all the necessary
information to allow the recipients to understand, reproduce and possibly validate its results
(Morrison 2018; Grunwald et al. 2016; Huebner et al. 2021). As the concept of transparency
relates to the requirements of the recipients, it is important to note that here the authors are
referring to an expert-to-expert exchange.

granularity at different scales and the need for computation time is crucial for planning a
simulation and guaranteeing model scalability.

Since running scalable models for an increasingly complex and interconnected system
is computationally and design challenging, a modular design seems to be the most appro-
priate (Pfenninger et al. 2014). This approach allows decoupling of processes that happen
at different scales more easily by specifying multiple instances of modules and letting
them interact (Bompard et al. 2014). Moreover, modularity provides the ability to incor-
porate the adoption of new devices in a detailed manner (e.g., heat pumps or electric
vehicles) and facilitate model use and modification (Stavrakas and Flamos 2020). Thus,
scalable models allow the parameterisation of models to be adapted and modularity allows
modules to be replaced according to the requirements of a simulation (Steinbrink et al.
2018).

Finally, as interdisciplinarity is now essential to overcome the traditionally technology-
oriented modeling approaches and adequately capture the complexity arising from the
multiplicity of actors and their interactions (McKenna et al. 2017), a modular design is not
sufficient. Indeed, given the increasing complexity of developing, provisioning, running,
and analyzing energy system models, (Morrison 2018), transparency facilitates the inte-
gration of new theories and factors (e.g., human behavior and indirect costs) into existing
ones. Moreover, transparent models contribute towards enhancing research quality by
promoting a deeper consideration of the choices made throughout the research process,
as these will have to be described and justified (Sovacool et al. 2018; Huebner et al. 2021).

State of the art
At the local/regional scale the attempt to simulate many aspects of the energy sys-
tem simultaneously is recent but nevertheless relevant (Allegrini et al. 2015). One of
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the possible approaches is to develop broader tools, such as ‘CitySim’ (Robinson et al.
2009) or ‘IDEAS’ (Baetens et al. 2012), which allows the integration of multiple techni-
cal components (e.g., building thermal behavior, and heating and electrical systems) with
(sub-)hourly temporal resolution. However, this integrative approach may not be practi-
cal when more detailed modelling is required, as the complexity of the tool may become
unmanageable (Allegrini et al. 2015).

Alternatively, a co-simulation approach can be implemented, allowing independently
developed models to exchange data bidirectionally and to be executed automatically sep-
arately or in conjunction. However, aspects such as lack of transparency and accessibility
(e.g., MESCOS’ (Molitor et al. 2014) and NEDS project (Blaufuf3 et al. 2019)) or limited
scalability (e.g., ‘'HEUS’ (Bollinger and Evins 2015)), hinder any attempt to improve and
extend such models to better address the human dimension.

To motivate the co-simulation design proposed in this study, an overview of the state of
the art of its three components (i.e., co-simulation framework, domestic energy demand
model and heat pump model) is presented in the following sections.

Co-simulation frameworks

Co-simulation frameworks provide functionality to combine heterogeneous simulation
components from different domains in an integrated simulation. Due to the increasing
complexity in the power system, co-simulation is often used for interdisciplinary studies
and a number of frameworks exists, which are compared in Vogt et al. (2018).

In this work, mosaik (Steinbrink 2017) is used, which is focusing on usability and flexi-
bility for interdisciplinary simulation. Most of mosaik’s use cases are related to the smart
grid, but its flexibility allows to integrate also models from other domains. Transparency
is emphasized by mosaik with the open-source available Python code (mosaik 2021a) and
a detailed documentation (mosaik 2021b).

Domestic energy demand models

The growing need for spatial and temporal detail, their inherent modularity and the abil-
ity to integrate socio-technical factors, make bottom-up models preferable to top-down
models for studying domestic energy demand dynamics within the smart energy system
paradigm (Mammoli et al. 2019). As pointed out by Grandjean et al. 2012, bottom-up
models can be disentangled into three categories: statistical random models, probabilistic
empirical models and Time-of-Use (TOU) models.

Statistical random models and probabilistic empirical models (Mammoli et al. 2019;
Yilmaz et al. 2017) use probability distributions to simulate appliance usage. In this case,
therefore, household occupancy/activity behavior is not simulated, limiting the possi-
bility to integrate these models within broader modeling ecosystems (e.g., mobility or
commercial building energy demand) in a coherent way.

TOU models differ from statistical random models and probabilistic empirical mod-
els because they explicitly consider human behavior to reconstruct the load curves of a
given household. As discussed by Yamaguchi et al. 2019, TOU statistics can be used to (i)
derive directly domestic appliance usage statistics (Fischer et al. 2015), (ii) simulate occu-
pancy profiles (McKenna and Thomson 2016), or (iii) simulate household daily activities
(Bottaccioli et al. 2019; Ziegler et al. 2020; Miiller et al. 2020).
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As in the case of the statistical random models and probabilistic empirical models, the
first category of TOU-based models does not allow the simulation of building occupancy
or activity profiles. In contrast, CREST (McKenna and Thomson 2016), an occupancy-
based model made available open source, allows to generate occupancy profiles with 10-
min resolution from which the probability of an activity occurrence is then estimated, and
thus also the corresponding appliance usage profile with 1-min time resolution.

More recently, however, greater interest has been given to models that explicitly simu-
late consumer activities (Bottaccioli et al. 2019; Ziegler et al. 2020; Miiller et al. 2020). In
this way, it is possible to simulate the behaviour of individuals (usually with a time reso-
lution of 10-min) and consistently simulate the use of household appliances, heating and
electric vehicles. However, these models are often developed within research projects and
not made available open source.

Heat pump modeling

In the future, heat pumps might get a highly increasing impact on the energy demand
at residential level and can play a significant role in providing flexibility. For the detailed
modeling of generic thermal systems commercial software exists, which might signifi-
cantly increase the complexity and runtime of simulation and are problematic to achieve
the goal of transparency and reproducibility. In contrary, the ThermoPower library, an
open source software for Modelica simulation environment, is available (Casella and
Leva 2003). Another modeling framework is the Thermal Engineering Systems in Python
(TESPy), which is also open source (Witte and Tuschy 2020), and provides a framework
for modeling thermal systems. It was used as base to integrate a heat pump model into

the co-simulation because of the direct Python-based integration into mosaik.

Simulation design

This section provides an overview of the co-simulation framework and the models
employed in the proposed design. It is worth noting that, since the main contribution of
this work is the design of the co-simulation according to the four aforementioned design
principles, the technical details are briefly described and readers are referred to the mod-
els’ and scenarios dedicated documentation for further details (Kasturi and Schwarz 2021;
Barsanti and Constantin 2021a; Barsanti et al. 2021).

For the integration of the models the co-simulation framework mosaik is used
(Steinbrink 2017). It provides a component-API, which has to be implemented by each
model to connect it to mosaik. Based on the connected models, the scenario-API allows
to initialize the models and to define their connections within a simulation. With this
scenario definition, mosaik executes the simulation and handles the scheduling and data
exchange between the models even with different time granularity (Barsanti et al. 2021).

Domestic energy demand model

As modular, scalable and open access tools for microsimulating domestic energy
demand lack in the literature, a new dedicated Python library, named demod
(Barsanti and Constantin 2021b; 2021a), was developed. Based on the works by
Yamaguchi et al. (2020); Fischer et al. (2015); McKenna and Thomson (2016), demod
makes available a set of modules to assemble UK- and German-based domestic energy
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demand models in a customizable, fully documented and open source way. In Fig. 2, an
outline of the employed modules and their interconnections is given.

Occupancy Simulator: Occupancy profiles are generated with temporal resolution of
10-min through demod module “Transit occupancy simulator: This module uses German
TOU statistics (Statistisches Bundesamt 2013) to parametrize first-order Markov-chain.
Inspired by (Yamaguchi et al. 2020), each resident occupancy status is defined by activity
status (i.e., ‘active’ or ‘asleep’) and three location (i.e., ‘home;, ‘away for work’ and ‘away for
other’).

Electricity Demand: Electricity demand is simulated through appliance and lighting
modules? (see yellow blocks in Fig. 2). These modules take as input household occu-
pancy profiles and technical characteristics and statistical data for different appliances
to simulate the daily load profile at 1-min time resolution. At the beginning of a run,
this module populates each household with a set of appliances considering socio-
demographic dependent distributions (Dena 2020). To maintain compatibility with the
occupancy simulator, the appliance usage module computes appliance turn-on events
depending on the type of appliance (i.e., fixed or stochastic duration and level usage or
activity dependent), as in McKenna and Thomson (2016). Moreover, a number of light-
ing bulbs is initialized based on normal distribution from Frondel et al. (2019). Their
operation is simulated as switch on/off events and it considers irradiation and effective
occupancy as inputs, which takes into account occupants sharing lights within the same
room, as in McKenna and Thomson (2016).

Thermal Demand: The simulation of thermal demand requires multiple modules? (see
light red blocks in Fig. 2). The modules are available in demod and they are based
on CREST (McKenna and Thomson 2016) and its UK-based parameters. The authors
decided to retain these parameters since the purpose of this article is primarily method-
ological and does not focus on the accuracy and validation of the results. The building
thermal behaviour module consists of a simplified lumped-capacitance models to sim-
ulate heating system behavior. It uses the equivalent electric circuit with four resistances
(i.e., air ventilation, outdoor air/walls, walls/indoor air and indoor air/emitters) and three

thtps://demodreadthedocs.io/en/doc— dach/overview/electricdemand_overview.html
3https://demod.readthedocs.io/en/doc- dach/overview/thermaldemand_overview.html
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capacitances (i.e., walls, indoor air and emitters) for estimating space heating demand
and temperature profiles. The thermostat settings module simulates the behavior of
residents in managing a programmable thermostat. In this work the comfort tempera-
ture is assigned stochastically for each household and kept constant throughout the day,
although several modules exist in demod for stochastic simulation of switch on periods
and indoor temperature set point based on occupancy profiles and consumer prefer-
ences. The thermal demand for domestic hot water is estimated in the same way as
household appliances: first the number of water fixtures in the house is initialized; then
based on the probability of associated activities the number of times each water fixture
is used, the temperature of the hot water and the withdrawn volume are determined
stochastically.

Heating system model

The heating system model consists of three individual components, which are connected
via mosaik: a heat pump, a hot water tank and a controller that manages the integrated
operation of the former two. The heat pump model is based on the TESPy library (Witte
and Tuschy 2020) and contains parametrization taken from manufacturer’s data sheets
of two common heat pumps. The model provides two different modes. The “detailed
mode” uses a map of operating points indicating the electrical demand of the compressor
under different design conditions, to identify at each timestep the closest design point.
Alternatively, the “fast mode” performs the calculations for a range of possible inputs
beforehand, stores the results and uses them during the simulation. Thereby, the preci-
sion of the results decreases, but the simulation time can be reduced significantly. Second,
a hot water tank, developed in Gerster et al. (2016), is used as buffer between the heat
pump and the emitters. During the initialization, the size of the tank, the initial temper-
ature profiles, and inlet and outlet water flows can be specified. During the simulation,
temperatures and water flow rates are updated, considering stratification effects and heat
losses. Finally, the controller model aims at matching heat supply and demand. On one
hand, it estimates the heat that the hot water tank can supply. On the other hand, the
controller computes the heat required from the heat pump, to maintain the hot water
tank at its temperature set point, ensuring that the temperature operating limits are not
exceeded.

Evaluation and discussion
In this section results for granularity and scalability are evaluated and discussed, while
the design decisions to achieve modularity and transparency are reviewed.

Granularity

To achieve model granularity, an occupancy-based energy demand model has been devel-
oped. The use of the German TOU data (Statistisches Bundesamt 2013) allows to simulate
occupancy profiles with a resolution of 10-min for individual households (see top of
Fig. 3). Behavior simulation of individual households is known as microsimulation and
it enables consistent and integrated simulation of different forms of energy demand as
shown in this work. However, this approach takes the whole household as simulation
unit, not allowing to track individual residents, the activities they conduct and, thus, their
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behavioural heterogeneity. Therefore, this limits the evaluation of policies that target indi-
viduals (e.g., specific lifestyle interventions or response to DSM incentives), which play a
key role in determining energy demand and its flexibility.

Based on the simulated occupancy profiles, the operation of individual household
devices and thus the electrical and thermal demand were estimated with a time res-
olution of 1-min (see bottom part of Fig. 3). Making the model technically explicit
allows to assess the impact of individual device on the load curve and its potential for
flexibility, which depends on their specific characteristics and operating conditions. Fur-
thermore, being able to model the behaviour of the household and the operation of
individual devices in a combined way opens up new scenarios for modeling household
flexibility, combining purely technical characteristics with changing activity and service

expectation.

Scalability

To evaluate the scalability of the proposed design, the execution time was estimated for
varying number of instances and simulated time. This evaluation was done with a tempo-
ral resolution of 1-min for (i) only demod, (ii) demod integrated in mosaik, and (iii) with
additional heating system models in “fast mode”

There is just a small overhead of demod executed inside of mosaik compared to starting
demod stand-alone (see left side of Fig. 4). The addition of the heating system model
significantly increases the execution time. But it can be seen, that the execution time with
an enlarged number of instances increases linearly for all types of models. Especially for
smaller numbers of instances, the rise of execution time is less steep, which might be a
results of demod vectorizing of computations.

The measurement of the execution time for different simulation times shows that it
is increasing linearly as well (see right side of Fig. 4). For a detailed simulation with a
temporal resolution of 1-min, the simulation of a year with 32 household including the

heating system model takes about 24 h.
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Modularity

To ensure that the principle of modularity is satisfied, individual models were imple-
mented in Python. These models are structured also internally in a modular way?, but
here the focus is on the integration of these models in the proposed co-simulation design
to exchange data bidirectionally.

For the presented simulation a directly integrated approach would probably have some
advantages, because the overhead of the framework in between the models and the redun-
dancy of a controller in demod and the heat pump model would be omitted. However, the
advantage of co-simulation is that other already available models can be directly added
to the simulation and additional models can be connected with reasonable effort. This
flexibility can be used to integrate models from different domains to get a more holistic
view on the energy system. Nevertheless, this interdisciplinarity and increasing number
of models also introduces new complexity, which is addressed by new approaches for
planning of co-simulation in this interdisciplinary context (Schwarz et al. 2019).

Transparency
In order to guarantee complete transparency, all the models employed in this work are
documented in detail and made available open-source, as shown in Table 2.

Conclusion
In this study, first four design principles (i.e., granularity, scalability, modularity and
transparency) were introduced with the aim of contributing to domestic energy demand
simulation within socio-technical energy systems. Then in the light of these principles,
the state of the art was reviewed, motivating the decision to (i) develop demod, a Python
library for TOU-based domestic energy demand models, (ii) to build a heat pump model
using the Python library TESPy and (iii) to integrate and orchestrate the former through
the co-simulation framework mosaik.

As previously shown, microsimulation of household behaviour allows to generate
high-resolution profiles of household occupancy, appliance usage and integrated thermal-
electric demand. Moreover, given the low computational load of the models, the outputs

4https://demod.readthedocs.io/en/doc-dach/api/index.html
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Table 2 Transparency of integrated simulation

Name Documentation Code Licence

mosaik Read the Docs (mosaik GitLab (mosaik 2021a) LGPL 2.1
2021b)

demod Read the Docs (Barsanti GitHub (Barsanti and GPL3
and Constantin 2021a) Constantin 2021b)

mosaik-heatpump GitLab (Kasturi and GitLab  (Kasturi and LGPL 2.1
Schwarz 2021) Schwarz 2021)

case study Zenodo (Barsanti et al. Zenodo (Barsanti et al. GPL3
2021) 2021)

can be aggregated at different scales to bridge the information gap between what occurs
locally and the larger scale implications. Finally, in order to foster knowledge transferabil-
ity and interdisciplinary collaboration, the proposed design is made fully transparent and
accessible through the publication of model codes and their detailed documentation.

At the same time, the evaluation of the four design principles showed challenges
and limitations. First, simulating consumer behaviour using the entire household as a
simulation unit limits the evaluation of policies that target individuals (e.g., lifestyle inter-
ventions) and their heterogeneity. Second, while the co-simulation design provides a high
flexibility in replacing individual modules to achieve greater detail, this must be done
considering the right trade-off with the computational load. In addition, while the case
study (i.e., heat pump integration) allows to investigate some co-simulation challenges,
still some relevant aspects are missing. For instance, an increasing number of different
models and dynamics occurring on different time frames (e.g., short-term, such as energy
demand, and long-term, such as the investment in low-carbon technologies) make it dif-
ficult to manage and track the complex and dense network of interactions when planning
a simulation.

To conclude, the insights collected in this work will guide the extension of the pro-
posed co-simulation design. Additional models of networks (e.g., eletric grid and mobility
infrastructure), devices (e.g., electric vehicles and batteries), agents (e.g., industries and
governance authorities) and platforms (e.g., spot market) may be integrated into the simu-
lation ecosystem with the overarching target of developing a tool for investigating energy
transition pathways and assess policy interventions.
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