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ABSTRACT 

 Microbubbles excited by acoustic fields inside water oscillate, and generate acoustic radiation forces and 

drag-induced acoustic streaming. These forces can be harnessed in various biomedical applications such as 

targeted drug delivery and on-chip biomanipulation. The conventional approach for using microbubbles as 

actuators is to trap them inside microfabricated cavities. Anisotropic forces are applied by constraining the 

interfaces where the air interacts with water. The existing analytical models derived for spherical bubbles are 

incapable of predicting the dynamics of bubbles in such configurations. Here, a new model for bubbles 

entrapped inside arbitrarily shaped cavities with multiple circular openings is developed. The semi-analytical 

model captures a more realistic geometry through a solution to an optimization problem. We challenge the 

assumption that bubbles should be excited at their first resonance frequency to optimize their performance. 

The natural frequencies and the correlated normal vibration modes are calculated, which are subsequently used 

to compute the acoustic streaming patterns and the associated thrust by a finite element simulation. An 

experimental platform was built to measure the deflection of beams loaded by microfabricated bubble 

actuators, and visualize the generated streaming patterns. The results highlight the contribution of the 

computational model as a design tool for engineering applications. 

I. INTRODUCTION 

Microbubbles trapped inside microcavities engraved on the walls of microfluidic devices have been used 

as wireless actuators for on-chip manipulation of particles, cells, and entire organisms1,2. Likewise, 
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microbubbles encapsulated within untethered structures serve as propellers for mobile micromachines3–5. In 

an acoustic field, entrapped microbubbles oscillate and generate two different types of forces: drag-induced 

microstreaming (i.e., confined mean flow6,7) and radiation forces8. It has been widely accepted that 

microbubbles deliver the best performance when the acoustic field is tuned to the resonance frequency of the 

microbubble3,4,9–12. As a manifestation of this assumption, experimental studies reported the frequency at which 

the velocity of the surrounding fluid or bubble-propelled machine peaked as the resonance frequency of the 

microbubble. However, the reported results may be misleading because the properties of the driving acoustic 

signal (e.g., the pressure generated by the transducer) have been ignored or not fully characterized. 

Furthermore, directly measuring the displacement at the surface of the microbubble at different excitation 

frequencies is very challenging, particularly when the bubble is not stationary, because the bubble deformation 

occurs in 3D and the vibration amplitude is up to a few microns5,11,13,14. Optimizing the performance of 

microbubble actuators is essential for the development of next-generation biomedical devices and untethered 

microrobots15,16. 

A complete understanding of microbubble dynamics involves the calculation of vibration modes, 

corresponding natural frequencies, and generated thrust due to acoustic streaming (AS). Theoretical work has 

been focused on basic configurations—free bubbles with a spherical geometry8,17,18. The formulation involves 

an analytical approximation for the natural frequencies and associated vibration modes. Notable examples are 

models of gas bubbles in inviscid fluids17,19,20, viscous fluids21,22, yield-stress fluids23, viscoelastic fluids24, 

liquid confined in elastic solids25, bubbles encapsulated by a viscoelastic shell26 and lipid coated bubbles27. In 

addition, Maksimova studied the effects of boundaries on the bubble’s oscillations28.  The case of entrapped 

bubbles with a single opening or multiple openings attracted less attention. The early work by Miller and 

Nyborg provides an approximation for the first resonance frequency of a cylindrical gas-filled pore on an 

infinite surface29. The governing equation was derived by assuming a parabolic vibration mode. Gelderblom 

et al., extended the model presented in29 to include axisymmetric vibration modes by solving fluid-gas coupled 

problems30. The gas was modeled as an ideal gas while the fluid was modeled using potential flow in the 

lossless case and unsteady stokes flow in the lossy case. Gritsenko et al. studied the natural frequencies and 

general vibration modes (i.e., axisymmetric and non-axisymmetric) of baffled cylindrical gas-filled pores 
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assuming the gas-fluid interface was clamped31. Notably, the coupled gas and fluid fields were modeled 

differently, using velocity potentials, following the work by Chindam et al.,32. Schnitzer et al., systematically 

studied bubbles trapped in microgrooves, considering their resonance frequencies and acoustic interactions33. 

The gas and fluid fields were modeled using acoustic equations, namely, Helmholtz equations because the 

primary objective was to study acoustic phenomena. Spelman et al., studied entrapped spherical bubbles with 

multiple openings10. Their formulation was based on the analysis of fluid immersed spherical gas bubbles with 

constraints34. Harazi et al.35 developed a simplified analytical model of mesoscale cubic bubbles and 

experimentally validated model predictions. Boughzala et al.36 extended the model to the general case of 

polyhedral bubbles. In both studies, the researchers studied the first resonance frequency and showed that 

the system can be approximated with the Minnaert model37. 

Radiation forces and AS generated by vibrating bubbles are nonlinear phenomena that can seldom be 

formulated and solved analytically. Therefore, they have been calculated numerically by employing various 

methods including finite element method (FEM), boundary element method (BEM), and computational fluid 

dynamics (CFD). The research in this domain has been focused on the primary forces acting on particles and 

bubbles in acoustic fields, and not on the secondary forces generated by the excited structures. These secondary 

effects give rise to additional radiation forces and AS, which are proven to be effective in micromanipulation. 

Although knowing the streaming patterns and thrust generated by the secondary fields is important, to our 

knowledge, they have not been correlated to the vibration modes of entrapped microbubbles. Volk and Kähler11 

investigated the influence of bubble size on streaming patterns, yet, the results were not correlated to the 

vibration modes. The primary forces which are due to the primary fields can be computed for various 

geometries using different methods. Dolev et al., computed the acoustic field using BEM and then employed 

Gor’kov’s theory to estimate the acoustic radiation forces acting on an acoustically levitated rigid sphere38. 

Muller et al., provided FEM-based methodology to calculate both the acoustic radiation force and AS induced 

drag force acting on small particles39. Their methodology was built upon the perturbation solution of the 

thermoacoustic equations. Behdani et al. studied the streaming patterns generated by the oscillation of a 

microbubble in a microfluidic channel by a direct numerical simulation – CFD40. 
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In this paper, we study the acoustic excitation of entrapped gas microbubbles with multiple openings, the 

streaming patterns, and generated thrust. We focus on natural frequencies and not resonance frequencies for 

three reasons. First of all, radiation forces and AS are acoustic phenomena that are driven by the gas-fluid 

interface velocity while the maximum velocities are obtained at the natural frequencies41. Second, the natural 

frequencies and normal modes are independent of the damping in the systems and, thus, can be treated as 

inherent characteristics of the linear system. Lastly, as demonstrated by Gelderblom et al.,30, resonance 

frequencies of a gas pocket can be reliably predicted by the potential flow model (i.e., lossless). Regarding the 

last point, when using modal analysis, the relation between the resonance frequency and natural frequency is 

 21 2r n  = − , (1) 

where ωr is the resonance frequency, ωn is the natural frequency, and ζ is the modal damping. Following 

Eq.(1), ωr ≈ ωn when the damping is low (i.e., almost lossless). To solve the natural frequencies and vibration 

modes for the general case, which involves multiple openings and a finite surface, a semi-analytical method is 

proposed. The method is based on an optimization problem that couples the analytical solutions with a BEM 

simulation. Once the natural frequencies and vibration modes are estimated, the solution is used in a FEM 

simulation to compute the streaming patterns and generated thrust39,42. The numerical results showed that 

different vibration modes generate different streaming patterns and that the thrust is highly dependent on the 

excitation frequency. On one hand, higher frequencies lead to stronger thrust, but on the other hand, higher 

modes generate weaker thrust. 

To verify the assumptions of the model and validate the simulation results, experiments were carried 

out using a platform comprising a water tank, a hydrophone, an imaging system, and a computer-controlled 

ultrasonic transducer. The tank was placed on top of an inverted microscope to which a high-speed camera 

was mounted. We performed experiments on microfabricated polymer devices encapsulating microbubbles 

with two openings. The high-speed camera recorded the streaming patterns and the deflection of the structures. 

The results show that different modes were excited.  

The rest of the paper is organized as follows. In Section II, we derive the governing equations of a 

trapped bubble with multiple openings. In Section III, we introduce the coupled optimization problem. FEM 
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simulations for the computation of the streaming patterns and thrust are described in Section IV. The same 

section contains a sensitivity analysis for the model parameters. In Section V, a microdevice entrapping a 

bubble with two openings is studied. Its governing equations of motion including damping and external forcing 

are provided. The theoretical analysis is verified experimentally, demonstrating the ability to excite different 

modes. Finally, we present the conclusions from the study in Section VI. 

II. NATURAL FREQUENCIES AND VIBRATION MODES – EXTREME CASES 

 

Fig. 1. The geometry of the problem. A gas-filled cavity with two interfaces immersed in a fluid. The solid 

walls entrapping the bubble are denoted with black contour, the solid is colored grey, and the gas-fluid 

interfaces are highlighted with blue lines. The local coordinate systems are sketched in green, and the 

dimensions are given in orange and red. 

A. GOVERNING EQUATIONS OF MOTION 

 The complete problem is complex and includes multiple physical phenomena such as the thermal behavior 

inside the bubble43,44, the interior gas dynamics45, and the contact angle at the edge of the interface11,30,35,36. To 

derive the governing equations for the lossless case of a fluid-immersed entrapped gas bubble with multiple 

openings, we follow the work and assumptions of Gelderblom et al.30. The gas is assumed ideal, and the fluid 

domain is modeled assuming potential flow. To simplify the math, we derive the equations for a cavity with 

two interfaces as shown in Fig. 1. 

The complete list of modeling assumptions is as follows: 

1) The cavity has circular openings. 

2) The interface is pinned to the circular edge of the cavity. 

3) The surrounding fluid is incompressible and inviscid. 
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4) The interface is flat at the equilibrium. 

5) There are no loss mechanisms neither in the gas nor in the fluid.. 

6) The gas flow within the cavity is negligible. 

7) Linear harmonic analysis can be used to analyze the coupled problem. 

8) The process in the gas can be modeled as Polytropic.. 

9) There is no interaction between the interfaces through the liquid. 

10) The acoustic wavelength in the cavity is much larger than the size of the cavity. 

The local deflection of each interface is described by ξi(ri, θi, t), i = 1,2, with a local cylindrical coordinate 

system located on the axis of each cavity’s opening. Employing lossless harmonic analysis, the interfaces can 

be described as: 

 ( ) ( ), , , e , 1j t

i i i i i ir t r j
   = = − . (2) 

Each interface motion is coupled to the velocity field in the liquid through a kinematic condition that yields: 

 iz iu j= , (3) 

here, ˆ ˆ
i ir izu u= +u r z  is the velocity field in the fluid near the opening i.  

The boundary conditions for the fluid domain are as follows:  

On the interface, due to assumption 4, and the kinematic condition: 

 
0

, 0 / .
i

iz i i iz
u j r a 

=
=    (4) 

On the solid surface (zi =0), no penetration and no-slip conditions are denoted as: 

 
0

0, / ,
i

iz i i iz
u r a R

=
=    (5) 

 
0

0, / .
i

ir i i iz
u r a R

=
=    (6) 

We ignore the boundary conditions on the cavity walls. The coupling between the pressures in the liquid and 

the gas occurs via the dynamic boundary conditions at zi=0. 
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0

2

i

iz

g i i

i z

u
p p

z
 

=


= + −


C . (7) 

Here, pg is the pressure in the gas bubble, pi is the pressure in the liquid adjacent to the ith interface, σ is the 

surface tension coefficient, iC is the curvature of the free surfaces ξi, and μ is the fluid’s dynamic viscosity. As 

a result of assumption 3, μ is neglected. Considering small deflections, the curvature for the free surfaces is 

approximated by 

 
2 2

2 2 2

1 1i i i

i

i i i i ir r r r

  


   
 − + +    

C . (8) 

We assume a general polytropic relation between the instantaneous gas volume V and the gas pressure pg. 

Expanding the relation for small volume variations yields  

 0

0 0

0

1 1g

V V
p p p

V V




   =  − −   

     
, (9) 

where V0 is the cavity’s volume when the interfaces are flat, κ is the gas polytropic index, and κ=1 is applicable 

for isothermal conditions. The instantaneous gas volume can be found from the shape of the interfaces by the 

following integration: 

 

( )

( )

2
3

0 0

0 03 3

0

3
2

0 0
0

, ,
1 1 ,

, , , .

i

i

a

i i i i i i
i

i i

a

i i i i i i i

r t r drd Ha
V V V

V a a

a
H r t r drd

V

 

 

  


   

 
  = + = +     

 

= =

  

 

 (10) 

Substituting Eqs.(9)-(10) to Eq. (7), the dynamic boundary condition becomes 

 
2 2

0 3 2 2 2

1 1
1 i i i i

i

i i i i i i

H
p p

a r r r r

  
 


    

− = − + +        
 . (11) 

From Eq.(11) and assumptions 1 and 2, it is intuitive to select the vibration modes of a circular membrane as 

basis functions for spanning the vibration modes. 
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According to  assumption 3, the flow is irrotational, and the velocity field can be written in terms of a 

velocity potential. Moreover, due to assumption 9, the velocity fields near each opening are assumed to be 

local, and thereby can be described by local potentials as follows: 

 .
i i

= u  (12) 

The following dimensionless quantities are used from here forth without the hat symbol •̂ . 

 
3 3

ˆ ˆ ˆˆˆ ˆ ˆˆ, , , , , , , .i i i i

i i i i i i i i i

r z Ha a
r z u u t t p p H

a a a a a a

     
   

= = = = = = = =  (13) 

B. POTENTIAL AND KINETIC ENERGIES 

 The system is considered lossless and Lagrange equations can be employed to derive the governing 

equations. 

 0, 1,2,..., k p

l l

d
l

dt q q

  
− = = = −   

L L
L E E  (14) 

where the overdot •  indicates a derivative with respect to time t, q is a set of generalized degrees of freedom 

(DOF), L , k
E  and 

p
E  are the Lagrangian, kinetic energy, and potential energy of the system, respectively. 

The contribution of the irrotational flow near each interface to the kinetic energy is expressed as46: 

 
1

,
ˆ2

i

ki i
A

dA





=
 n

E  (15) 

where n̂  is a unit vector pointing out of the fluid. Far from the interfaces, the velocity reduces to zero. The 

impermeability conditions imply that the total kinetic energy is given by 

 
2

00 0

1
, .

2

i

i

i

k ki ki i i i iz
i

r dr d
t

  
 

=


= = −

  E E E  (16) 

The potential energy of the system is related to the surface tension and the volume of the microbubble. The 

energy increases when the area of the interface grows and the bubble volume decreases. 
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 ( )
0 0

0 .
i

i

A V

p i g
A V

i

dA p p dV= − − E  (17) 

Substituting Eq.(9) and assuming small amplitude variations, the potential energy is approximated as 

 

2 2
2

0

0 0

1 1
.

2 2

i i i

p i i i i j

i i ji i i

p
r drd H H

r r

    



    

 + +       
  E  (18) 

To solve the general problem for which 0 i
R   , we first solve for two extreme cases, free (Ri=0) and baffled 

(Ri=∞). Notice that the free case is not physical.  

1. THE FREE BUBBLE 

To solve the interface displacement fields, we span them using a set of basis functions. As mentioned 

in Section A, these functions are essentially the vibration modes of a circular membrane47. 

 ( ) ( ) ( )
0 1

, , cos sin , 0,1,... 1,2,...i

i i i m mn imnA i imnB i

m n i

r
r t J j q m q m m n   



 

= =

 
 = + = =   

 
  (19) 

Here, Jm is a Bessel function of the first kind of order m, jmn is the nth zero of Jm, and qimnA and qimnB are time-

dependent unknown functions. Because the potential energy depends only on the gas bubble, substituting 

Eq.(19) into Eq.(18) yields  Eq.(A1). In the free bubble case, the only boundary condition to be satisfied is 

given by Eq.(4), and the following potential fields are assumed31 

 ( ) ( ) ( ) ( )
0 1

1
, , , cos sin e mn i

F j zi

i i i i m mn imn i imn i

m n mn i

r
r z t J j a m b m

j
   



 
−

= =

 
 = − +  

 
 , (20) 

where aimn and bimn are time-dependent unknown functions. To compute aimn and bimn, the derivative of Eq.(20) 

with respect to zi is computed. By using the boundary condition and the orthogonality properties of the 

trigonometric and Bessel functions, they are obtained as Eq.(A2). Substituting Eq.(A2) into Eq.(20), and the 

kinetic energy for a free bubble independent of aimn and bimn is obtained as Eq.(A3). 
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2. THE BAFFLED BUBBLE 

 We assume that the interface displacement fields can be spanned by the same basis functions as for the free 

bubble, and the boundary conditions to be satisfied are given by Eqs.(4) and (5). To satisfy them, the following 

potential fields are assumed30 

 ( ) ( ) ( ) ( ) ( )
0

0

, , , cos sin e .i
B kzi

i i i i im m imn i imn i

m i

r
r z t k J k a m b m dk   



 −

=

 
 = −  +  

 
  (21) 

To compute aimn and bimn the derivative of Eq.(21) with respect to zi is computed, then by using the boundary 

conditions and the orthogonality properties of the trigonometric and Bessel functions, they are obtained as 

Eq.(A4). Then, the kinetic energy for a baffled bubble is obtained as Eq.(A5). 

3. THE INTERMEDIATE CASE  

 The intermediate case, where R<∞, is a realistic situation that is more relevant to physical scenarios than 

the free and baffled cases. The potentials should comply with the boundary conditions given by Eqs.(4) and 

(6). However, no analytical potential satisfying these two conditions was found. We assume that the solution 

of the intermediate case lies in between the two extreme ones and introduced the following potential: 

 
( ) ( ) ( ) ( )( ) ( )

e 1 ei i i i i iR RI F B

i i i

     − − − −= + −  (22) 

where βi are unknown coefficients, which are found by solving an optimization problem as described in Section 

III. 

C. DISCRETE LINEAR EQUATIONS OF MOTION 

 The problem is studied in the framework of linear harmonic analysis. It follows that every arbitrary time-

dependent function can be described as F(t) = Fejωt. Notice that the frequency ω is normalized according to 

Eq.(13). Now, to discretize the continuous equations, the coefficient qimnA and qimnB are used as discrete DOF, 

indicating the participation factor of each basis function. Because the energies hold terms up to the second-

order, utilizing the Lagrange equations yields discrete linear equations of motion. Similarly, we can directly 

derive the mass, M, and stiffness, K, matrices, and write the equations of motion as follows: 

 + =Mq Kq 0  (23) 
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The DOF in q can be re-arranged. Here, we use a finite set of cosine DOF (i.e., qimnA), and order them as 

follows: 

 




101 102 10 111 112 11 1 1 1 2 1

201 202 20 211 212 21 2 1 2 2 2 ,

0,1,2,..., , 1,2,...,

A A NA A A NA M A M A MNA

T

A A NA A A NA M A M A MNA

q q q q q q q q q

q q q q q q q q q

m M n N

=

= =

q

 (24) 

We chose to use only the cosine DOF due to the problem’s axisymmetric nature which yields doublet 

modes48,49 (i.e., for each natural frequency where m>0 there is a cosine mode and a similar mode shifted in 

space by π/2, the sine mode). With this information, the stiffness and mass matrices can be computed (see 

Appendix B). It is visible from the topology of the matrices that the coupling between the openings is indeed 

only through the gas. Notably, only the axisymmetric functions of each opening (m=0) contribute to the 

coupling. 

 The potential given in Eq.(22) influences only the mass matrix (see Appendix B). Once the elements of β 

are calculated, as described in the following section, the stiffness and mass matrix can be computed. The 

generalized eigenproblem is then solved to compute the natural frequencies and the normal modes41. 

III. NATURAL FREQUENCIES AND VIBRATION MODES – INTERMEDIATE CASE 

 For the general case where the bubble lies on a finite plane, an additional parameter per each interface is 

required. To estimate these parameters, we devised an optimization problem that minimizes the error between 

the analytically and numerically obtained solutions as a function of β. From the analytical solution, we can 

obtain the natural frequencies, normal vibration modes, and potential fields. Moreover, because a potential 

flow is assumed, the analytical pressure field can be computed as follows: 

 
An

i ip j= − . (25) 

 We assume a lossless harmonic problem; therefore, the pressure field can be computed numerically using 

a BEM simulation. The input to the simulation is the interface velocity, which is dictated by the analytically 

computed vibration modes and natural frequencies, and the output is the pressure field 
BEM

ip . The intermediate 

case can be resolved by minimizing the error between the two fields: 
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( ) ( )( )

( )( )

2
An BEM

2
BEM

i i

i
i

p p

p

−
 =




x x

x
. (26) 

 We compute the natural frequencies and matching normal modes for the free, baffled, and intermediate 

cases for several geometries. We begin by analyzing a bubble with a single opening and demonstrate the impact 

of the geometry and optimization procedure on the simulation results. The values for the model parameters are 

chosen as follows: 

 

1 3 1

water water

0

0.072Nm , 1.4, 998.24kgm , 1481.4ms ,

101325Pa, 150μm, 20μm, 1.1.
c

p h a R

  − − −= = = =

= = = =
 (27) 

  

Fig. 2. The first nine analytically computed normal vibration modes of the baffled bubble. Modes 1, 4, and 9 

are axisymmetric, while the rest are not. For each non-axisymmetric mode, there should be a similar mode 

shifted in space by π/2 having the same natural frequency. 

 We reduced the computation time while maintaining a sufficient level of accuracy by truncating the basis 

function series and selecting M=4 and N=3, following a convergence analysis. The truncated series provided 

accurate predictions of all the modes up to the third axisymmetric mode. The mode shapes of the baffled case 

are shown in Fig. 2 which are almost identical to the mode shapes of the free case. 
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 We are interested in finding the solution for the intermediate case when R is finite. To this end, the 

optimization problem that was described in Section III is solved using MATLAB’s built-in functions from the 

Optimization and Global Optimization Toolboxes. The acoustic field is simulated using OpenBEM50 according 

to the selected mode(s), where the input to each simulation is the interface velocity obtained from the modal 

analysis. By minimizing the error, the optimal value for β is calculated. In general, the obtained results show 

that the optimization scheme leads to an accurate estimation of the pressure fields by the analytical model. The 

natural frequencies for the three different cases are given in Table 1. The natural frequencies were computed 

using two optimization schemes. In the first, each mode was estimated separately (i.e., each mode yielded a 

different value for β). In the second scheme, all the considered modes were computed together (i.e., yielding 

a single value for β). The results highlight the importance of considering the geometry near the opening of the  

Table 1 Computed natural frequencies for a bubble with a single opening 

Mode 1 3 4 8 9 

Baffled (kHz) 53.65 162.86 175.26 349.95 360.36 

Free (kHz) 71.51 175.87 198.31 369.04 385.44 

R = 1.1 

Single mode (kHz) 57.33 163.85 178.57 351.65 363.48 

All modes (kHz) 57.01 166.01 178.54 354.06 363.51 

R.E. (%) 0.56     1.32     0.02     0.69     0.01 

R = 2 

Single mode (kHz) 55.56 162.86 176.67 350.02 361.58 

All modes (kHz) 55.10 164.27 176.64 351.76 361.68 

R.E. (%)   0.83     0.87     0.02     0.50     0.03 

R = 3 

Single mode (kHz) 54.90 162.86 176.14 349.95 361.11 

All modes (kHz) 54.58 163.78 176.14 351.12 361.20 

R.E. (%)   0.58     0.56     0.00     0.33     0.02 

 

microbubble. Although the mode shapes are practically identical, the relative error between the computed 

natural frequencies for the extreme cases can be higher than 33% for the first mode. The relative error reduces 

below 10% for higher modes, nevertheless, the difference remains more than 10 kHz. Notably, the intermediate 

solution lies in between the two extreme cases, and as R increases, the solution approaches the baffled solution 

as expected. The latter can be rationalized as follows; larger R increases the flow resistance, thus increasing 

the inertia, which results in lower natural frequencies. We can conclude that the optimization scheme (single 

mode versus all modes) has a negligible effect on the results, as the maximum obtained relative error is 1.32%. 

In practice, the uncertainty in the values of the parameters is expected to lead to larger errors. 
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 Following a similar procedure, the natural frequencies and vibration modes of an entrapped bubble with 

two openings were computed. The first nine vibration modes for the baffled case with the following parameters 

α1 = 1, α2 = 0.6 (see Eq.(27) and Fig. 1, the opening radii are 20 µm and 12 µm) are shown in Fig. 3. As for a  

Table 2 Computed natural frequencies for a bubble with two openings 

Mode 1 2 3 5 6 

Baffled (kHz) 51.95 79.78 100.39 167.31 175.04 

Free (kHz) 69.42 96.97 113.34 188.91 198.35 

R1 = 1.1 
Single mode (kHz) 66.30 73.89 102.13 175.46 178.44 

R2 = 1.1 

R1 = 1.1 
Single mode (kHz) 64.18 73.90 102.09 179.61 178.39 

R2 = 2 

R1 = 1.1 
Single mode (kHz) 63.60 73.90 102.04 179.71 178.33 

R2 = 3 

 

Fig. 3. The first nine analytically computed normal vibration modes assuming both interfaces are baffled, 

where the encapsulating structure is not shown for simplicity. The top opening is larger, and modes 1, 2, and 

6 are axisymmetric, while the rest are not. For each non-axisymmetric there should be a similar mode shifted 

in space by π/2 having the same natural frequency. For modes 3 and higher, the deflection of one opening is 

negligible, and all the energy is concentrated in a single one. 

bubble with a single opening, the mode shapes dependency on R is negligible and they resemble, however, the 

natural frequencies vary considerably as shown in Table 2. For the selected parameters, both interfaces are 

deformed only in the first two modes, and at higher modes, only one is deformed. This characteristic can be 
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used for frequency-selective actuation, where oscillations can be generated on both sides or at a single side. 

Each opening deformation shape can be correlated to the single opening bubble, and it is evident that the order 

for each opening is maintained (i.e., top opening modes 1, 3, 4, 6, 7, and 8 correlate to modes 1-6 in Fig. 2, 

and bottom opening modes 2, 5 and 9 correlate to modes 1-3 in Fig. 2). 

 When realizing this method, it is important to acknowledge the errors that may occur due to the 

discrepancies between the free and baffled bubble solutions, and related truncation errors. As mentioned in the 

introduction, commonly the first natural frequency is selected as the operational frequency. To compute it, the 

method assumes that in both extreme cases the mode shape is the same. However, this is not true for all 

geometries as can be seen in Fig. 4, which shows, for a single opening bubble, the two first natural frequencies 

of the extreme cases as a function of the bubble’s radius. Beyond a≈48.5 μm for the baffled bubble and a≈56  

 

Fig. 4. The first two natural frequencies and matching vibrations modes shapes as a function of the bubble 

radius for the baffled (dashed lines) and free (continuous lines) cases. The two possible vibration mode shapes 

for both cases exchange their order for different values of the bubble radius. 

μm for the free bubble, the mode shapes are different. Truncation of the basis function series may lead to 

similar results; therefore, it is important to perform a proper convergence analysis. Similar errors may also 

occur for higher natural frequencies. This observation was previously reported and justified by Gelderblom et 

al., 30. 
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IV. ACOUSTIC STREAMING AND THRUST 

 We employed linear harmonic analysis to derive the modal characteristics of the system. The generated 

thrust and AS are nonlinear phenomena; therefore, cannot be directly computed with a linear model. For the 

latter, thermoviscous losses and higher-order terms should be considered. The losses give rise to the AS 

phenomenon by attenuating acoustic waves resulting in a transfer of pseudo-momentum from the wave to the 

fluid39. For the microbubbles, the dominating attenuation occurs at the boundaries due to the existence of a 

viscous boundary layer. By considering higher order terms, the thrust and AS can be approximated by time-

averaging the stress acting on the bubble and the velocity field accordingly.  The equations governing the 

thermoacoustic fields are well established, and the fields are usually written as perturbation series51: 

 

0 1 2

0 1 2

1 2

,

,

,

T T T T

p p p p

= + +

= + +

= +v v v

 (28) 

where T, p, and v denotes the temperature, pressure, and velocity fields, respectively. The subscript 0 represents 

the ambient conditions, where it is assumed that there is no mean flow. The subscript 1 and 2 represent the 

linear harmonic fields and the second-order nonlinear fields, respectively. 

 Due to the geometric complexity, a numerical approach is adopted here according to the work by Muller et 

al.,39. First, the harmonic acoustic thermoviscous problem is solved in COMSOL Multiphysics 5.5. Then, the 

obtained solution (i.e., p1 and v1) is used to solve the second-order and time-averaged equations. The solution 

contains the time-averaged pressure field 2p  and velocity field 2v , which are used to compute the 

streaming patterns and estimate the total force applied by the bubble (i.e., thrust) 42: 

 2 1 1water da 

 = −  F v v n , (29) 

the angled brackets represent the time-average operator, ∂Ω is a static surface surrounding the bubble, σ2 is the 

second-order stress field, and n is a surface vector into the fluid.  

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
5
8
7
6



17 

 

A. SENSITIVITY ANALYSIS 

 To perform sensitivity analysis we analyze the axisymmetric vibration modes of a bubble with a single 

opening. The first three axisymmetric modes for R = 1.1 are shown in Fig. 2. The procedure involves the 

analytical computation of the optimal solution for each mode separately. Next, the velocity distribution and 

the natural frequency for each mode were used as inputs to COMSOL to solve the thermosviscous problem 

and compute the second-order time-averaged fields. The velocity fields along with the streamlines are shown 

in Fig. 5. The streamlines for the various cases resemble, however, as higher vibration modes are considered 

the main vortex ring (highlighted in red in Fig. 5) changes and approaches the bubble’s surface. Additional 

vortexes, which are also highlighted in red, are formed and the microjets emanating from the bubble’s center 

become narrower (i.e., the radial distance to the vortex ring becomes smaller). Furthermore, higher velocities 

are obtained for higher vibration modes. 

 The generated thrust, which is defined as the net force in the z-direction, was computed numerically 

according to Eq.(29). The thrust increases with the frequency, and the natural frequencies decrease with 

increasing values of R and a. Therefore, to study the contribution of the mode shape alone (i.e., canceling the  

 

Fig. 5. The acoustic streaming patterns that are generated by the first three axisymmetric modes. The color 

map indicates the magnitude of the particle velocity 2v  m s-1, arrows indicate the direction, streamlines are 

shown in gray and some vortexes are highlighted in red. Panels (a), (b), and (c) correlate to modes 1, 4, and 9. 

The maximum displacement of the interface was set to 1 μm. 
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contribution of the frequency) to the thrust generation, we computed the stress for a maximum displacement 

of 1 μm (Fig. 6(a)) and maximum velocity of 0.1 m/s Fig. 6(b)). In the latter case, since the velocity is set, the 

excitation frequency cancels out. The computed thrust concerning R and a for the first three axisymmetric 

modes is shown in Fig. 6. For the fixed displacement case, higher modes generate more thrust and R has a 

negligible effect. Surprisingly, larger bubbles (i.e., larger a) generate less thrust in this scenario. In the second 

scenario, where constant velocity was used, lower modes and larger bubbles generate more thrust, as expected, 

while the influence of R remains negligible. The comparison between the two scenarios highlights the 

importance of the frequency and velocity as argued in the introduction (i.e., natural versus resonance 

frequencies). The thrust is highly dependent on the frequency, therefore lower modes and larger bubbles which 

have lower natural frequencies generate less thrust for the same displacement amplitude. 

 

Fig. 6. The numerically computed thrust that is generated by a bubble with a single opening. The results are 

shown for the first three axisymmetric modes for various values of R, wherein (a) a maximum amplitude of 1 

μm was used, and in (b) a maximum velocity of 0.1 m s-1 was used. 

V. ENCAPSULATED MICROBUBBLE WITH TWO OPENINGS 

 In this section, we derive the governing equations of motion of an encapsulated bubble with two circular 

openings, as shown in Fig. 7. The capsule holding the bubble was 50 µm long, had an inner radius of 20 µm, 

an outer radius of 25 µm, and had two openings on both sides, with radii of 12 µm and 7 µm. We chose the 

dimensions such that the bubble can be treated as baffled, and that the first two natural frequencies are within 
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the frequency band of the water immersion transducer (see Fig. S4(b) in the Supplementary Material). 

Moreover, to stabilize the bubble we use saline water (25% salinity)52,53. The following parameters were used 

for the analysis. 

 

1 3 1

water water

4 3

0 0

1 2 1 2

0.079 N m , 1.4, 1147.8kg m , 1776.1ms ,

101325Pa, 6.2832 10 μm , 12μm,
1, 7 /12, .

c

p V a

R R

  

 

− − −= = = =

= =  =
= = = →

 (30) 

 According to the chosen parameters, we computed the natural frequencies and vibration modes. The first 

two natural frequencies are 97.36 kHz and 153.46 kHz, and the matching vibration modes resemble the ones 

in Fig. 3. At these frequencies, the acoustic wavelength is much longer than the openings’ diameter, even if 

one considers much higher frequencies (e.g., at 1 MHz, λ≈1.5 mm). As a result, we can treat the pressure wave  

 

Fig. 7. Illustration of the capsule holding the bubble with a section cut for visualization. 

 

impinging the bubble as uniform (see Supplementary Material) and we can easily project it on the basis 

functions and mode shapes through an inner product. To better approximate the system, losses which were 

overlooked thus far should be added to the model via modal damping. Estimating the modal damping 

coefficients is a challenging task because there are many loss mechanisms, such as acoustic radiation to 

infinity, losses in the gas and fluid, and heat conduction8,43,54,55. In general, the loss mechanisms are not linear 

as the bubble’s dynamics56,57. However, considering the results obtained by Gelderblom et al.,30 and the 
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parameters that are given in Eq.(30) we assume uniform modal damping of 20%. Now, the governing equations 

in modal coordinates41 η are given by 

 
Tη+Γη+Λη=Φ Q . (31) 

Here I is the identity matrix, Γ is the modal damping matrix, Λ is the modal stiffness matrix, Φ is the modal 

matrix whose columns are the normal modes and Q is the uniform pressure projection on the basis functions. 

Γ is a diagonal matrix whose main entries are 2ζiωi, and Λ is a diagonal matrix whose main entries are ωi
2 

where ζi and ωi are the modal damping and natural frequency correlated to the ith mode. For an impinging 

pressure wave with an amplitude of 0.5 kPa, the modal mobility plot for the first nine modes is shown in Fig. 

8. A maximum displacement amplitude of around 1.4 μm is obtained at the center of the bigger opening. Only 

the axisymmetric modes (see modes 1, 2, and 6 in Fig. 3) are excited, and the first mode obtains the largest 

mobility at the associated natural frequency. The following axisymmetric modes also obtain large mobility 

values near their associated natural frequencies.  

 

Fig. 8. Modal mobility plot, showing the first nine modes’ response to a uniform pressure excitation, and 
dashed lines highlight the matching natural frequencies. 

A. EXPERIMENTAL ESTIMATION OF THE NATURAL FREQUENCIES 

 The microstructures entrapping microbubbles with two openings were 3D printed using a two-photon 

polymerization technique (Nanoscribe Photonic Professional GT+, 3D laser writer), from a 

photopolymerizable polymer, IP-Dip, directly on a quartz glass substrate58. We closed a microfabricated 

Poly(dimethylsiloxane) (PDMS) microfluidic device around the structures to facilitate particle image 

velocimetry. Tracer particles (Polysciences - 1µm polystyrene microspheres) were injected into the 

microchannel to visualize the AS patterns, which were recorded by a high-speed camera (Phantom EVO640L). 
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A surfactant (TWEEN 20) was added to the saline water to avoid the tracer particles agglomeration. We 

fabricated only the capsule holding the bubble, as shown in Fig. 7. The microstructures were placed in a water 

tank atop an inverted microscope (Nikon Eclipse Ti-2-U). To excite the bubbles, a water immersion transducer 

(Ultran group, GPS100-D19) was used. The normalized spectrum of the transducer (see Fig. S4 in the 

Supplementary Material) was measured with a hydrophone (RP acoustics e.K. PVDF type s).  

 

Fig. 9. The acoustic streaming patterns that were generated by an entrapped bubble with two openings at the 

same pressure amplitude of 0.25 kPa, and two frequencies. (a) At 71.2 kHz the dominant AS is near the large 

opening on the left, and (b) at 124.1 kHz the dominant AS is near the small opening on the right. Scale bars, 

20 μm. Multimedia view 

 To estimate the natural frequencies, we did a frequency sweep and observed that AS was generated in a 

wide range of frequency bands. Yet, at certain bands, the AS was more dominant around one opening or the 

other. While frequencies close to 71.2 kHz, which corresponds to the first natural frequency of the bubble, 

generated a significantly stronger flow outside the larger opening, at frequencies close to 124.1 kHz, which 

corresponds to the second natural frequency of the bubble, the dominant AS was recorded around the smaller 

opening (Fig. 9 and video S9). The pressure amplitude was approximately 0.25 kPa at both frequencies. The 

discrepancy between the theoretical (97.36 kHz and 153.46 kHz) and empirical values of the natural 

frequencies may be due to various reasons, such as 3D printing inaccuracies, and errors in the fluid and gas 

parameters and the human factor. Experimental characterization of the optimal frequency via observation is 

not very accurate, especially considering the non-uniform spectrum of the transducer. Nevertheless, we were 

able to obtain the desired behavior where we can selectively excite each mode. 

B. QUALITATIVE ESTIMATION OF THE THRUST  

 After a successful estimation of the natural frequencies, we wanted to qualitatively estimate the generated 

thrust. Using Eq.(31), we computed both interface velocity distribution in response to a uniform pressure field 
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of 0.5 kPa at different frequencies. Then, using COMSOL we computed the second-order stress and the total 

thrust with Eq.(29). The obtained results are shown in Fig. 10. It is noticeable that the force decreases and 

reaches its minimal value close to the first natural frequency. Then, as the frequency is increased it changes its 

sign and obtains its maximal value close to the second natural frequency. As the frequency is further increased, 

the thrust reduces and changes its sign again, and obtains a local minimum close to the sixth natural frequency. 

As the frequency is further increased, the thrust decays to zero. In general, the calculated force magnitude is 

in the same order as observed in previous works59,60. 

 

Fig. 10. Numerically computed thrust versus the excitation frequency for a pressure wave of 0.5 kPa. The 

dashed lines highlight the first, second, and sixth natural frequencies. 

 

Fig. 11. (a) Illustration of the capsule holding the device attached to an upright cantilever beam with a section 

cut for visualization. (b) Bright-field microscopy images of the same device when it is not actuated (top 

images) and when it is actuated at two different frequencies, scale bar 20 μm. 

 Direct measurement of the thrust requires a force sensor with piconewton resolution. Moreover, the 

microstructures should be attached to the sensor, which is a challenging task. To circumvent the latter, we 3D 

printed flexible cantilever beams (56 µm long with a cross-section of 1.25 µm by 3.75 µm) from a 

biocompatible soft polymer, trimethylolpropane ethoxylate triacrylate (TPETA)61. The bubble actuator was 

attached to the end of the cantilever, as shown in Fig. 11(a). We focused on the first two natural frequencies 
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to reduce the complexity due to the rich spectrum of the transducer (Fig. S4). Following a similar procedure 

as in Section A, the first two natural frequencies were estimated as 72.4 kHz and 127.3 kHz. Then, the bubble 

was excited at different input voltage amplitudes, while the deformation at the tip was tracked, and the pressure 

was measured using a hydrophone. Snapshots from the motion of the device are shown in Fig. 11(b) and Fig. 

S8 along with the measured pressure. The position was extracted using subpixel resolution image processing 

algorithm62. Plotting the displacement versus the measured pressure revealed that the beam deflection was 

frequency and amplitude-dependent, Fig. 12. Even though the deflections were large and extend beyond the 

linear beam theory (i.e., the displacement is proportional to the force), we were able to obtain a good fit for a 

quadratic dependency of the deflection versus the pressure, according to theory63. The fitted models are 

x=0.8183p2 (R2=0.9779) at 72.4 kHz and x=-0.1073p2 (R2=0.9965) at 127.3 kHz. Following the theoretical 

results in Fig. 10, larger deflections were obtained close to the first rather than the second natural frequency. 

The experimentally measured displacement ratio is around 13% while the theoretical maximal force ratio that 

is proportional to the displacement is around 19%. 

 

Fig. 12. The measured deflection at the beam’s end at two frequencies versus the applied pressure amplitude, 
and the fitted curves. 

VI. CONCLUSIONS 

 We introduced an improved model to describe the dynamics of an arbitrarily shaped microbubble with 

multiple circular openings. The model can simulate more accurate geometries compared to the existing models 

by solving an optimization problem that couples acoustics and dynamics. Once the modal parameters are 

known, the system’s response to external pressure can be computed. Then, the resulting AS and thrust can be 

computed numerically by a FEM simulation. The ability to estimate the natural frequencies and vibration 

modes was experimentally validated for a bubble with two openings, by visualizing the streaming patterns and 

qualitatively estimating the thrust. 
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 The dynamical model comprises function series, which should be truncated for computational efficiency; 

however, a careful convergence analysis is required. Erroneous results may be obtained if too many elements 

are truncated. An additional source of errors arises if in the two extreme cases (i.e., baffled and free) the order 

of the vibration modes is different, as discussed in Section III. Using this model, the importance of the baffle 

region, R, was exemplified for several cases. The baffle region has a considerable influence on the natural 

frequencies, as shown in Table 1 and Table 2. Because microbubble-based devices are actuated with ultrasound 

transducers that usually have a narrow band, matching the natural frequencies of the device and the transducer 

is instrumental for higher efficiency. 

 The conventional wisdom suggests exciting the microbubbles at their resonance frequencies to achieve 

good performances. Nevertheless, optimal performances are obtained when bubbles are excited at the natural 

frequencies, at which the interface velocity, and not displacement, is maximal. This correlates well with the 

fundamentals of acoustics, where the field is driven by velocity rather than displacement. An additional 

advantage of natural frequencies is that they are inherent characteristics of the system and are independent of 

dissipation. The natural frequencies and vibration modes depend on multiple parameters. Here, we only 

focused on geometry. We studied the vibration modes of bubbles with one and two openings, the generated 

streaming patterns and the thrust. It was found that lower natural frequencies were manifested by larger and 

more baffled bubbles (i.e., larger values of R and a). As a result, the generated thrust was also lower as thrust 

is highly dependent on the excitation frequency. On the other hand, it was also found that lower modes and 

larger bubbles are more efficient than higher modes. Therefore, selecting the optimal bubble size is not 

straightforward. An important yet often overlooked aspect of actuation is the excitation mechanism. It is 

unclear how the bubbles are excited, whether their structure is vibrated or the interface is excited by a pressure 

wave or both. Here, we briefly discussed the case where the interface is excited by a pressure wave and showed 

that if a uniform pressure is assumed only axisymmetric modes can be excited. Moreover, the latter also 

suggests that it should be easier and more efficient to excite mode shapes that resemble the first vibration mode 

of a membrane. 

 The loss mechanisms in general, and the modal damping in the suggested model have a crucial influence 

on the computed interface velocity that drives the acoustic phenomena. Estimating the modal damping is 
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challenging as in other physical systems, and estimating it better can lead to an improved predictive model 

with which the thrust and streaming patterns are computed. In Section IV, we showed only streaming patterns 

that are generated by a bubble with a single opening oscillating in one of the axisymmetric modes. This 

methodology can be simply extended for 3D configurations and general bubble oscillations. 

 In a rationally designed bubble with two openings, the first two vibration modes resemble with an important 

difference that the openings oscillate in phase or anti-phase. Also, the deflection of each interface resembles 

the first mode of a bubble with a single opening, thus exciting both modes is feasible. Because each mode has 

a distinct frequency, they are frequency-selective, and the streaming and thrust can be controlled by the 

excitation frequency. The complexity of the problem highlights the contribution of the suggested simplified 

model as a design tool for the development of advanced acoustic micromachines and manipulators.  

 

 SUPPLEMENTARY MATERIAL 

See supplementary material for the video S9 showing the recorder streaming patterns generated by the bubble 

with two openings at different frequencies. Note 1 discusses the experimental setup that was used to measure 

the bubbles’ interface deflection, and Note 2 provides additional information regarding the experimentally 

estimated deflection of the beam. Fig. S1 illustrates the experimental setup that was used to measure the 

bubbles’ interface deflection. Fig. S2 illustrates the technique of measuring multiple locations on a 

microbubble using the laser Doppler vibrometer. Fig. S3 illustrates the laser beam position relative to a 

microbubble. Fig. S4 (a) shows the measured velocities at different locations in the water tank. Fig. S4 (b) 

shows the normalized measured pressure generated by the ultrasonic immersion transduces versus the 

frequency. Fig. S5 (a)-(c) shows the measured frequency response curves at different locations for three 

bubbles. Fig. S6 comprises 33 images which were used to estimate the laser beam location. Fig. S7 is a snapshot 

of video S7 that shows the frequency response of a bubble interface as measured at 33 locations. Fig. S8 shows 

the snapshots of the deflected beam that were processed to estimate its position. 
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The data that support the findings of this study are available from the corresponding author upon reasonable 

request. 
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APPENDIX A 

 The detailed equations of the potential and kinetic energies, and the relation between aimn, bimn, and qimnA 

and qimnB for the free and baffled bubbles are given below.  

 For the free bubble, the potential energy is 
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the relations between aimn, bimn and qimnA and qimnB is 

 , ,imn imnA imn imnBa q b q= =  (A2) 

and the kinetic energy is 
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For the baffled bubble, the relations between aimn, bimn and qimnA and qimnB is 
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and the kinetic energy is 

 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
5
8
7
6



28 

 

 

( ) ( ) ( )

( ) ( ) ( )

( )
( )( )

00 0 0

1 1

1

2

1 1

2

1 1 0 0 0

2

1 1

2

2 2 20

,
2

.

B

k i nA i qA nq

i n q

imnA imqA imnB imqB mnq

i

n

i q n n q

i

m m m mq mn mq

m

mn m

m n q

mnq

q

J j J j j j

J j

q q f

j J j j

J k

k j k j

q q q q f

f dk









 

=
−

=

  

= =



−

− −
=

=  

−

+

=
−

+







E

 (A5) 

APPENDIX B 

 According to the DOF order defined in Eq.(24), the elements of the mass and stiffness matrices can be 

computed. The stiffness matrix is the same for both cases and is given by 
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The mass matrices for the free and baffled cases differ. For the free bubble, the mass matrix is 
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For the baffled bubble, the mass matrix is 
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The stiffness matrix of the intermediate case remains unchanged while the mass matrix is computed as follows.  
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