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This thesis is dedicated to those who think nuclear 
power is part of the solution and the future. 

 

 

Interviews and speeches of Richard Feynman have inspired me, motivated me to change my ca-
reer, and to start an interesting journey that allowed me to achieve this thesis. The following is a 
quote from a BBC TV interview (1981): 

“One way that's kind of a fun analogy to try to get some idea of what we're doing here to try to 
understand nature is to imagine that the gods are playing some great game like chess. Let's say a 
chess game. And you don't know the rules of the game, but you're allowed to look at the board from 
time to time, in a little corner, perhaps. And from these observations, you try to figure out what the 
rules are of the game, what [are] the rules of the pieces moving. 

You might discover after a bit, for example, that when there's only one bishop around on the board, 
that the bishop maintains its color. Later on, you might discover the law for the bishop is that it 
moves on a diagonal, which would explain the law that you understood before, that it maintains its 
color. And that would be analogous we discover one law and later find a deeper understanding of 
it. 

Ah, then things can happen--everything's going good, you've got all the laws, it looks very good--
and then all of a sudden some strange phenomenon occurs in some corner, so you begin to investi-
gate that, to look for it. It's castling--something you didn't expect. 

We're always, by the way, in a fundamental physics, always trying to investigate those things in 
which we don't understand the conclusions. We're not trying to all the time check our conclusions; 
after we've checked them enough, they're okay. The thing that doesn't fit is the thing that's most 
interesting--the part that doesn't go according to what you'd expect. 

Also, we can have revolutions in physics. After you've noticed that the bishops maintain their color 
and that they go along on the diagonals and so on, for such a long time, and everybody knows that 
that's true; then you suddenly discover one day in some chess game that the bishop doesn't maintain 
its color, it changes its color. Only later do you discover the new possibility that the bishop is cap-
tured and that a pawn went all the way down to the queen's end to produce a new bishop. That 
could happen, but you didn't know it. 

And so it's very analogous to the way our laws are. They sometimes look positive, they keep on 
working, and all of a sudden, some little gimmick shows that they're wrong--and then we have to 
investigate the conditions under which this bishop changed color... happened... and so on... And 
gradually we learn the new rule that explains it more deeply. 

Unlike the chess game, though... In the case of the chess game, the rules become more complicated 
as you go along, but in the physics when you discover new things, it becomes more simple. It appears 
on the whole to be more complicated because we learn about a greater experience; that is, we learn 
about more particles and new things, and so the laws look complicated again. But if you realize that 
all of the time, what's kind of wonderful is that as we expand our experience into wilder and wilder 
regions of experience, every once in a while, we have these integration in which everything is pulled 
together in a unification, which it turns out to be simpler than it looked before.” 

― Richard Feynman 
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Abstract 
Characteristics of the spent nuclear fuel (SNF) are typically calculated, requiring validation a 

priori. The validation process relies on the difference between calculations and measurements, 
namely the bias. Usually, predicting the bias based on benchmarks is essential, which motivated 
the present research, focusing on SNF decay heat and Cs-137, U-235, and Pu-239 concentrations. 

The validation benchmarks are from open-literature, i.e., SNF design and irradiation specifica-
tions, as well as the measurements of their characteristics. For the decay heat, they correspond 
to 262 measurements, conducted at the Clab and the GE-Morris facilities. For the radionuclide 
concentrations, they are 285 post-irradiation-examination samples, obtained from the SFCOMPO 
database. The calculations rely on the SCALE code system, namely the Polaris code and the 
SCALE-based nuclear data. 

Uncertainties of nuclear data and SNF design and operational history are propagated to the 
calculated quantities, for two purposes: (1) to assess if the biases are statistically significant, given 
the calculated uncertainties, and (2) to obtain correlation matrices between the benchmarks. 
Statistical analyses, resampling and z-tests, are applied on the validation and uncertainty anal-
yses data. They indicate that the biases in several of the analyzed characteristics are significant 
with respect to uncertainties in the calculated values. For the decay heat case, the biases are 
considered not significant considering both the calculated and experimental uncertainties. It is 
also shown that it is crucial to include the correlations between the benchmarks into the hypoth-
esis testing. 

Then, a novel approach is followed, by applying machine learning (ML) methods to predict the 
bias of calculated SNF characteristics. The predictive performance is analyzed by comparing the 
ML-based bias predictions and the validation-based biases. The analyzed ML models predict the 
bias using highly similar benchmarks or neighbors of the benchmarks, namely Random Forests 
(RF) and Weighted k-Nearest Neighbors (KKNN). Also, the linear model is analyzed. 

This research shows that the bias of the decay heat and Pu-239 concentration can be predicted 
with a reasonable accuracy, relying on specific features of validation benchmarks, or their corre-
lations. The predicted biases bear statistically significant similarities to the observed ones from 
the validation procedure, using both the RF and the KKNN models. The variances in the original 
validation data are significantly reduced. The models predict the bias using the spectral index for 
the decay heat and the hydrogen-to-fissile atom ratio for the Pu-239 concentration. Also, the 
correlation matrices show that they are informative in predicting the bias of both characteristics. 
In the case of the U-235 and Cs-137 concentrations, biases could not be satisfactorily predicted. 
Additionally, the linear models have shown unsatisfactory performance. 



VIII 
 

KEYWORDS: 

SNF, validation, bias, predictive models, neighborhood schemes, correlation matrix, SCALE, Pola-
ris 

 



IX 
 

ZUSAMMENFASSUNG 
Die Eigenschaften abgebrannter Brennelemente (BE) werden in der Regel berechnet und müs-

sen a priori validiert werden. Der Validierungsprozess stützt sich auf die Differenz zwischen Be-
rechnungen und Messungen, d.h. den Bias. Üblicherweise ist es unerlässlich, den Bias anhand 
von Benchmarks vorherzusagen. Dies ist der Hintergrund dieser Forschungsarbeit, deren Fokus 
auf der Nachzerfallswärme abgebrannter BE und der Konzentrationen von Cs-137, U-235 und Pu-
239 liegt. 

Die Validierungs-Benchmarks stammen aus der freien Literatur, d.h. aus BE-Auslegungs- und 
Bestrahlungs-Spezifikationen sowie aus Messungen von BE-Eigenschaften. Im Fall der Nachzer-
fallswärme beruhen sie auf 262 Messungen, die im Clab-Zwischenlager (SKB, Schweden) bzw. in 
der Morris-Anlage von General Electric (USA) durchgeführt wurden. Für die Radionuklidkonzen-
trationen basieren sie auf 285 Proben aus Nachbestrahlungsuntersuchungen, die aus der 
SFCOMPO-Datenbank stammen. Die Berechnungen stützen sich auf das SCALE-Codesystem, d.h. 
im Besonderen auf den Polaris-Code und entsprechende SCALE-basierte nukleare Daten. 

Unsicherheiten bei den nuklearen Daten und bei der Auslegung und betrieblichen Herkunft 
der abgebrannten BE werden aus zwei Gründen in die Berechnungsergebnisse propagiert: (1) zur 
Prüfung, ob die Bias hinsichtlich der errechneten Unsicherheiten statistisch bedeutend sind, und 
(2) um Korrelationsmatrizen zwischen den Benchmarks zu erhalten. Statistische Analysen, 
Resampling und z-Tests, werden auf die Daten der Validierungs- und Unsicherheitsanalysen an-
gewandt. Sie deuten darauf hin, dass die Bias bei mehreren der analysierten Eigenschaften in 
Bezug auf die Unsicherheiten bei den errechneten Werten bedeutend sind. Im Fall der Nachzer-
fallswärme werden die Bias jedoch durch die zusätzliche Berücksichtigung der experimentellen 
Unsicherheit als nicht signifikant eingeschätzt. Es hat sich auch gezeigt, dass es unerlässlich ist, 
die Korrelationen zwischen den Benchmarks in die Hypothesenprüfung einzubeziehen. 

Anschliessend wird ein neuer Ansatz für die Vorhersage des Bias der Eigenschaften abge-
brannter BE angewendet, der auf Machine-Learning-Methoden (ML) beruht. Die Vorhersagelei-
stung wird durch einen Vergleich der ML-basierten Bias-Vorhersagen mit den validierungsbasier-
ten Bias analysiert. Die analysierten ML-Modelle sagen mithilfe von sehr ähnlichen Benchmarks 
oder benachbarten Benchmarks, d.h. Random Forests (RF) und Weighted k-Nearest Neighbors 
(KKNN), den Bias vorher. Zusätzlich wird das lineare Modell untersucht. 

Diese Forschungsarbeit zeigt, dass der Bias der Nachzerfallswärmeleistung und der Pu-239-
Konzentration anhand spezifischer Merkmale der Validierungs-Benchmarks oder ihrer Korrela-
tionen verhältnismässig zuverlässig vorhergesagt werden kann. Die vorhergesagten Bias weisen 
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mithilfe der RF- und KKNN-Modelle statistisch bedeutende Ähnlichkeiten zu denen auf, die im 
Rahmen des Validierungsverfahrens beobachtet wurden. Die Abweichungen in den ursprüngli-
chen Validierungsdaten werden erheblich reduziert. Die Modelle sagen den Bias mithilfe des 
Spektralindexes für die Nachzerfallswärme und mithilfe des Atomzahlverhältnisses zwischen 
Wasserstoff und spaltbaren Isotopen für die Pu-239-Konzentration vorher. Die Korrelations-
matrizen erweisen sich bezüglich der Vorhersage des Bias beider Eigenschaften als informativ. 
Im Fall der Konzentrationen von U-235 und Cs-137 konnten die Bias nicht zufriedenstellend vor-
hergesagt werden. Die linearen Modelle zeigten ebenso eine unbefriedigende Leistung. 

SCHLÜSSELWÖRTER: 

Abgebrannte Brennelemente, Validierung, Bias, Vorhersagemodelle, Nachbarschaftsbasierte 
Methoden, Korrelationsmatrix, SCALE, Polaris 

 

 

 



XI 
 

Contents 
 

1.1 Worldwide status of spent nuclear fuel .............................................................................. 1 

1.2 Status of radioactive waste in Switzerland .......................................................................... 2 

1.3 International projects addressing SNF characterization ...................................................... 3 

1.4 Motivation of the current research project ......................................................................... 4 

1.5 Relevant SNF characteristics ................................................................................................ 5 

1.6 Needs of validation .............................................................................................................. 6 

1.7 Needs of explaining and predicting the bias ....................................................................... 8 

1.8 Predictive modelling paradigm ............................................................................................ 9 

1.9 The research questions and hypotheses ...........................................................................10 

1.10 Potential applications ........................................................................................................11 

1.11 Structure of the Thesis .......................................................................................................12 

2.1 Decay heat benchmarks.....................................................................................................13 

2.1.1. Measurements at the GE-Morris facility ............................................................................14 

2.1.2. Measurements at the Clab facility .....................................................................................14 

2.1.3. Fuel assembly designs and irradiation data ......................................................................15 

2.1.4. Decay heat experimental uncertainties .............................................................................16 

2.2 Post-irradiation-examination benchmarks ........................................................................18 



XII 
 

2.2.1. Characteristics of the PIE Benchmarks .............................................................................. 18 

2.2.2. Burnup values for the PIE samples .................................................................................... 20 

2.2.3. Measurements of the radionuclide concentrations .......................................................... 20 

2.2.4. Excluded SFCOMPO benchmarks ...................................................................................... 22 

3.1. Validation tools ................................................................................................................. 25 

3.1.1. Polaris code ....................................................................................................................... 25 

3.1.2. ORIGEN code ..................................................................................................................... 26 

3.2. Uncertainty propagation ................................................................................................... 26 

3.3. Machine learning .............................................................................................................. 26 

3.4. Computational requirements ........................................................................................... 27 

4.1. Implementation of Polaris on the decay heat benchmarks .............................................. 29 

4.2. Implementation of Polaris on the PIE benchmarks .......................................................... 30 

4.3. Implementation of Sampler for uncertainty analyses ...................................................... 33 

4.4. Validation and uncertainty measures ............................................................................... 35 

5.1 Non-parametric tests ........................................................................................................ 37 

5.2 Parametric z-test ............................................................................................................... 38 

6.1 Description of the chapter ................................................................................................ 41 

6.2 Application of predictive modelling of the bias ................................................................ 41 

6.3 Prediction vs. inference .................................................................................................... 42 

6.4 Predictive performance evaluation .................................................................................. 45 

6.5 Model validation ............................................................................................................... 45 

6.6 The law of parsimony: one-standard-error rule ............................................................... 46 

6.7 Machine learning models .................................................................................................. 47 

6.8 Resampling methods ........................................................................................................ 52 

6.9 Model selection ................................................................................................................ 53 

6.10 Predicting the bias from validation benchmarks .............................................................. 57 

6.10.1. Predicting the bias based on integral parameters of the benchmarks .......................... 57 

6.10.2. Predicting the bias based on the correlation between benchmarks .............................. 58 

6.11 Detection and removal of outliers .................................................................................... 61 

 



XIII 
 

6.12 Final models of the bias predictive procedures .................................................................65 

6.13 Features extraction ............................................................................................................66 

7.1 SNF decay heat ..................................................................................................................69 

7.2 U-235 concentration ..........................................................................................................73 

7.3 Pu-239 concentration ........................................................................................................74 

7.4 Cs-137 concentration .........................................................................................................75 

7.5 Comparison with literature ................................................................................................82 

8.1 Calculated uncertainties and fractional variances .............................................................83 

8.2 Uncertainties from nuclear data and fractional variances of XS, FY and DD .....................87 

8.3 Relevant design and operational parameters ...................................................................90 

8.4 Assumptions of burnup uncertainties ...............................................................................93 

8.5 Correlations between benchmarks ....................................................................................94 

9.4.1. Decay heat correlations .....................................................................................................95 

9.4.2. Correlations of the Cs-137, U-235, and Pu-239 concentrations.........................................95 

9.1 Significance of the bias based on simultaneous testing ................................................. 102 

10.1 Significance testing of the bias using calculated uncertainties ...................................... 107 

10.2 Significance testing of the bias using calculated and experimental uncertainties ......... 110 

10.3 Correlations between the decay heat measurements ................................................... 111 

10.4 Weights of the decay heat benchmarks ......................................................................... 112 

11.1 Features extraction ......................................................................................................... 113 

11.1.1. Design matrix based on correlations between the benchmarks .................................. 113 

11.1.2. Design matrix based on integral features of the benchmarks ..................................... 113 

11.2 Predictions of the ML models ......................................................................................... 116 

11.2.1. Linear models based on integral parameters of the benchmarks ................................ 116 

11.2.2. Linear models based on correlations between the benchmarks .................................. 117 

11.2.3. Predictive performance of the decay heat bias ............................................................ 120 

11.2.4. Predictive performance of the U-235 concentration bias ............................................ 124 

11.2.5. Predictive performance of the Pu-239 concentration bias ........................................... 126 

11.2.6. Predictive performance of the Cs-137 concentration bias ........................................... 128 



XIV 
 

11.2.7. Predictive performance along with outliers detection and removal ............................ 130 

11.2.8. Final models .................................................................................................................. 133 

12.1 Applicability domain ....................................................................................................... 140 

12.2 Potential applications ..................................................................................................... 140 

12.3 Future work ..................................................................................................................... 141 

Appendix I.  Modelling the Rebuilt SFAs of Clab Benchmarks ..................................................153 

Appendix II.  Specifications of the PIE Benchmarks and Modelling Assumptions ..................... 157 

II.1 PWR cases ....................................................................................................................... 158 

II.1.1 Calvert Cliffs-1 (CC-1) ....................................................................................... 158 

II.1.2 Genkai-1 (GK-1) ............................................................................................... 160 

II.1.3 Mihama-3 (M-3) .............................................................................................. 162 

II.1.4 Neckarwestheim-2 (N-2) ................................................................................. 164 

II.1.5 Obrigheim-1 (OG-1) ......................................................................................... 166 

II.1.6 Ohi-1 and Ohi-2 (O1 and O2) ........................................................................... 169 

II.1.7 Takahama-3 (T3) .............................................................................................. 171 

II.1.8 Three Mile Island-1 (TMI-1) ............................................................................. 173 

II.1.9 Trino Vercellese-1 (TV1) .................................................................................. 175 

II.1.10 Turkey Point-3 (TP-3) ....................................................................................... 179 

II.1.11 Yankee-1 (Y-1) .................................................................................................. 181 

II.2 BWR cases ....................................................................................................................... 186 

II.2.1 Cooper-1 (C-1) ................................................................................................. 186 

II.2.2 Dodewaard-1 (D-1) .......................................................................................... 188 

II.2.3 Fukushima Daini-1 (FD1) ................................................................................. 191 

II.2.4 Fukushima Daini-2 (FD2) ................................................................................. 194 

II.2.5 Garigliano-1 (G1) ............................................................................................. 199 

II.2.6 Gundremmingen-1 (GN1) ................................................................................ 202 

II.2.7 Japan Power Demonstrations Reactor-1 (JPDR-1) .......................................... 205 

Appendix III. Polaris Input Files ................................................................................................... 209 

IV.1. Polaris input for PIE sample DM3, SFA Y012, reactor Dodewaard-1 ................................ 211 

IV.2. Polaris input for PIE sample GG, SFA BT03, reactor Calvert Cliffs-1 ................................. 215 

Appendix IV.  Permutation Tests on the Decay Heat Data ........................................................ 219 

Appendix V.  ORIGEN Calculations of the Decay Heat............................................................... 223 



XV 
 

List of Figures 
Figure 1. Tons of HM contained in SNF in year 2020 (top), and the prospected amount in year 2050 
(bottom) (figure from Reference [4]). ........................................................................................................... 2 

Figure 2. Selected Polaris models of BWR SFAs (top 3 rows) and PWR SFAs (bottom row). The BWR models 
are asymmetric, while the majority of the PWRs have quarter symmetry. The models are (from left to 
right, top to bottom): GE7, GE8, GE9, SVEA-64, SVEA-100, W14x14, W15x15, and W17x17. Fuel rods are 
shown in different colors to reflect differences in densities, enrichments, and gadolinium content. ....... 16 

Figure 3. Uncertainties in the decay heat measurements [12,27]. Uncertainties are reported at upper and 
lower values, marked at the ends of each line along with values of both the measured decay heat and the 
corresponding uncertainty. Uncertainties are interpreted as 2σ, and intermediate values are linearly 
interpolated between the listed upper and lower values. .......................................................................... 17 

Figure 4. Characteristics of the considered PIE samples. Left: the axial height of the sample (z) with respect 
to the active length of the fuel rod (H) vs. the coolant density. Right: the sample enrichment vs. the sample 
given burnup. Additionally, BWR MOX samples are marked with “X”. ...................................................... 19 

Figure 5. Correction factors applied on the burnup of the PIE samples. The dashed blue lines are the 2.5% 
and 97.5% percentiles (i.e., an interval that contains 95% of the observations). ...................................... 20 

Figure 6. Experimental uncertainties (2σ) for the PIE samples, based on SFCOMPO [11]. ........................ 22 

Figure 7. Measured U-235, Pu-239, and Cs-137 concentrations vs. the sample given burnup. The plotted 
bars are experimental uncertainties (2σ). ................................................................................................... 22 

Figure 8: A subjective view of the placement of various ML model types between interpretability and 
predictive performance. .............................................................................................................................. 44 

Figure 9: Trade-off between the bias and variance of a machine learning model. Simpler models have 
higher bias, which indicates under-fitting. Complex models have higher variance, which indicates over-
fitting. Both are model defects increasing the total error of the model. ................................................... 44 

Figure 10: Application of the OSE rule. The optimal model contains 12 variables. A simpler model is chosen 
following the OSE rule, containing lower number of variables (4 variables). ............................................. 47 

Figure 11: Linear model in CSA using the correlation between benchmarks (figure from Reference [83]). A 
target application is fully correlated with benchmarks at unit correlation. ............................................... 49 

Figure 12: KKNN model using Gaussian weights. The red points are used for predictions at 𝑥𝑥0, and the 
yellow area is the scale of the weights assigned to these points (figure from Reference [82]). The blue line 
is the underlying model generating the data, and the green line is the KKNN model prediction. ............. 50 

Figure 13: A tree build on a 2D predictor space (left). Making predictions of the response using the tree 
proceeds by averaging the response of the observations located in the same terminal node (R1, R2, ... 
,R5). The terminal nodes are intervals on the predictor space (right) (figure from Reference [75]). ........ 51 

Figure 14: Illustration of common sampling techniques on a dataset of size 10. The splits of the holdout, 
bootstrapping and the 5-fold cross-validation are random. ....................................................................... 55 

Figure 15: Illustration of a nested cross-validation. A 5-fold cross-validation (inner loop) is nested within a 
LOOCV (outer loop). The inner loop performs model selection and training, and the outer loop is for 
performance assessment of the model selection and training procedure. Testing results are not random, 
being LOOCV, and the selection and training results depend on the random splitting of the data. .......... 56 



XVI 
 

Figure 16. Flowchart of performance assessment of features and model selection procedure applied for 
learning from integral benchmark parameters. The size of the design matrix is 𝑁𝑁 × P, where 𝑁𝑁 is the 
number of benchmarks and 𝑃𝑃 is the number of predictors (i.e., features). Also, 𝐵𝐵 is the bias, 𝑥𝑥 and 𝑋𝑋 are 
subset and all benchmark features, ℎ and 𝐻𝐻 are subset and all model hyperparameters, and 𝑗𝑗 is a single 
benchmark. The algorithm starts at the design matrix (in orange color) and output the paired 
prediction/observation data (in green color). .............................................................................................58 

Figure 17. Decomposition of the correlation matrix of size 𝑁𝑁 × 𝑁𝑁 into 𝑁𝑁 individual correlation vectors (for 
training and testing), along with submatrices of size 𝑁𝑁 − 1 ×  𝑁𝑁 − 1 for validation. The correlation and 
bias data are combined to result in the design matrices. ...........................................................................59 

Figure 18. Similar to Figure 17, implementing matrix decomposition for validation, training, and testing. 
Unlike the approach described in Figure 17, the validation relies on data resampling (e.g., using LOOCV) 
on the correlation vector – along with the bias vector, optimizing model parameters for their performance 
on the validation section of the correlation vector. ....................................................................................60 

Figure 19. Flowchart of the performance assessment of the model selection procedure applied for learning 
from the correlation between the benchmarks. 𝑁𝑁 is the number of benchmarks, 𝐵𝐵 and 𝜌𝜌 are their biases 
and correlations, 𝑀𝑀 and 𝑆𝑆 are the correlation matrix (all data) and a subset correlation matrix, ℎ and 𝐻𝐻 
are subset and the entire model's hyperparameters, 𝐽𝐽 is a correlation vector, and 𝑗𝑗 is a single benchmark. 
The algorithm starts at the correlation matrix and the bias vector (in orange color) and output the paired 
prediction/observation data (in green color). .............................................................................................61 

Figure 20. Flowchart of outliers detection and removal based on the design matrix of the integral 
benchmark parameters. The algorithm starts at the design matrix having 𝑁𝑁 × 𝑃𝑃 size (in orange color) and 
output the reduced design matrix having the 𝑁𝑁 − 𝑜𝑜 × P size (in green color). .........................................63 

Figure 21. Flowchart of outliers detection and removal based on the design matrix of the correlation 
between benchmarks. The algorithm starts at the correlation matrix having 𝑁𝑁 × 𝑁𝑁 size and the bias vector 
having 𝑁𝑁 length (in orange color) and output the reduced correlation matrix having the 𝑁𝑁 − 𝑜𝑜 × 𝑁𝑁 − 𝑜𝑜 
size and the reduced bias vector having 𝑁𝑁 − 𝑜𝑜 size (in green color). .........................................................64 

Figure 22. 𝑆𝑆𝑆𝑆 vs. enrichment, water density, burnup, and 𝐻𝐻/𝑋𝑋, based on the Clab decay heat benchmarks. 
The axes are centered and normalized, having average of zero and unit variance. ...................................67 

Figure 23. 𝐻𝐻/𝑋𝑋 vs. enrichment, sample height, burnup, and 𝑆𝑆𝑆𝑆. The plots are based on the PIE benchmarks. 
The axes are centered and normalized, having average of zero and unit variance. ...................................68 

Figure 24. 𝐶𝐶/𝐸𝐸 of the decay heat, calculated for the 262 benchmarks of Clab (top three plots) and GE-
Morris (bottom two plots). The BWRs are shown in black color, and the PWRs are in red. The uncertainty 
bars are experimental uncertainties (2σ). ...................................................................................................71 

Figure 25. Same as Figure 24, but for 𝐵𝐵 instead of 𝐶𝐶/𝐸𝐸 values. .................................................................72 

Figure 26. Measured U-235 concentration vs. burnup (left) and the obtained 𝐶𝐶/𝐸𝐸 vs. the measured U-235 
concentration (right). ..................................................................................................................................73 

Figure 27. Measured Pu-239 concentration vs. burnup (left) and the obtained 𝐶𝐶/𝐸𝐸 vs. the measured U-
235 concentration (right). ...........................................................................................................................74 

Figure 28. 𝐶𝐶/𝐸𝐸 of the U-235 concentrations. The BWRs are shown in black color (top two plots), and the 
PWRs are in red color (bottom two plots). The uncertainty bars are experimental uncertainties (2σ), 
reported for some of the analyzed benchmarks [11]. ................................................................................76 

Figure 29. Same as Figure 28, but for 𝐵𝐵 instead of 𝐶𝐶/𝐸𝐸 values. .................................................................77 



XVII 
 

Figure 30. 𝐶𝐶/𝐸𝐸 of the Pu-239 concentrations. The BWRs are shown in black color (top two plots), and the 
PWRs are in red color (bottom two plots). The uncertainty bars are experimental uncertainties (2σ), 
reported for some of the analyzed benchmarks [11]. ................................................................................ 78 

Figure 31. Same as Figure 30, but for 𝐵𝐵 instead of 𝐶𝐶/𝐸𝐸 values. ................................................................. 79 

Figure 32. 𝐶𝐶/𝐸𝐸 of the Cs-137 concentrations. Missing 𝐵𝐵 values are benchmarks lacking experimental 
measurements (63 PIE samples out of the total 285). The BWRs are shown in black color (top two plots), 
and the PWRs are in red color (bottom two plots). The uncertainty bars are experimental uncertainties 
(2σ), reported for some of the analyzed benchmarks [11]. ........................................................................ 80 

Figure 33. Same as Figure 32, but for 𝐵𝐵 instead of 𝐶𝐶/𝐸𝐸 values. ................................................................. 81 

Figure 34. 𝐶𝐶/𝐸𝐸 and 𝐵𝐵 values of Polaris and ORIGEN obtained in this work, along with results from 
[13,27,28,90]. The bars are 1𝜎𝜎. The listed ND libraries are the primary source of ND. ............................. 82 

Figure 35. Calculated uncertainties of the decay heat (left), and the FVs of DO origins (right). ................ 85 

Figure 36. Same as Figure 35 for the U-235 concentration. ....................................................................... 85 

Figure 37. Same as Figure 35 for the Pu-239 concentration. Samples of Yankee-1 (PWR) and MOX samples 
(BWR) are marked with extra “X” symbol. .................................................................................................. 86 

Figure 38. Same as Figure 35 for the Cs-137 concentration. ...................................................................... 86 

Figure 39. Contribution of uncertainties from ND to decay heat, U-235, Pu-239, and Cs-137 total calculated 
uncertainties (shaded grey area), and individual contributions of XS, FY, and DD to uncertainties from ND. 
The SFAs are ordered by burnup (top to bottom). The minimum and maximum cooling times are 2 and 50 
years. ........................................................................................................................................................... 88 

Figure 40. Same as Figure 39 for selected decay heat relevant nuclides. .................................................. 89 

Figure 41. Perturbed concentrations of U-235 and Pu-239 vs. the burnup perturbation factor – both axes 
are centered and normalized. Left plot is benchmark A1-I2 (BWR), and the right plot is benchmark G10_4 
(PWR). .......................................................................................................................................................... 90 

Figure 42. Correlations of the calculated characteristics with the DO parameters. The boxes show the 
median and the first and third quartiles (Q1 and Q3). The whiskers are at Q1 – 1.5xIQR and Q3 + 1.5xIQR 
(IQR is the interquartile range). .................................................................................................................. 92 

Figure 43. Relative uncertainty for cases implementing different assumptions on the power and burnup 
uncertainties (relative to the reference case of SFA 6432 of Ringhals-1). The minimum and maximum 
cooling times are 2 and 100 years. .............................................................................................................. 94 

Figure 44. Correlations between the calculated decay heat values of the Clab and GE-Morris benchmarks 
(top row), and only the Clab benchmarks (bottom row). The matrices are ordered according to the burnup 
(top to bottom and left to right). The left column shows correlations due to perturbing the DO parameters, 
and the right column shows correlations due to perturbing the ND. ......................................................... 97 

Figure 45. Correlations between the calculated concentrations of Cs-137, U-235, and Pu-239. The matrices 
and columns are ordered similar to Figure 44. ........................................................................................... 98 

Figure 46. Bootstrap distributions of the average biases (the red lines are 95% normal CI). The distributions 
are centered near the observed average biases and testing their significance proceeds by observing 
whether or not a zero average bias falls within the chosen CI. ................................................................ 101 



XVIII 
 

Figure 47. Decay heat biases calculated using Polaris and ORIGEN (P and O) – shown only for the Clab 
benchmarks. The BWRs are shown in black color, and the PWRs are in red. The uncertainty bars are 
experimental uncertainties (2σ). .............................................................................................................. 103 

Figure 48. Calculated decay heat values (DH) using Polaris vs. ORIGEN (left), and vs. the measured values 
(right). The data belong to both the Clab and GE-Morris benchmarks. Linear regression results in the 
presented RMSE values. The blue lines have a slope of unity. ................................................................ 103 

Figure 49. Permutations distributions of the average biases of Clab benchmarks (first row), and the 
bootstrap distributions (second row). The corresponding distributions of the GE-Morris benchmarks are 
in the third and fourth rows. BWRs are left and PWRs are right. Red lines mark the actually observed 
average biases in the permutation plots, and zero biases in the bootstrap plots. .................................. 106 

Figure 50. Z-scores for the decay heat, Cs-137, U-235, and Pu-239 concentrations, obtained using 
calculated uncertainties. The header of each plot provides the combined z-score (𝑧𝑧) (considering 
correlations between calculations) and the 95% CI on the z-score distribution. .................................... 109 

Figure 51. Same as Figure 50 for the decay heat benchmarks, considering both the calculated and the 
experimental uncertainties. ..................................................................................................................... 110 

Figure 52. Combined z-score (𝑧𝑧), obtained using both the calculated and the experimental uncertainties, 
vs. the experimental correlation. The insignificant bias is within the shaded area. ................................ 111 

Figure 53. Observed bias (validation-based) vs. the LM predicted bias (ML-based) of decay heat of the Clab 
benchmarks. The left plot is based on integral parameters of the benchmarks, using the calculated decay 
heat value (𝐶𝐶), and the right plot is based on the correlation between the benchmarks, implementing an 
0.95 correlation cut-off. The redline is a 45° line, indicating equality between the predicted and the 
observed bias. ........................................................................................................................................... 119 

Figure 54. Same as Figure 53 for the Pu-239 concentration, based on the interaction between the spectral 
index and the Pu-239 calculated concentration (𝑆𝑆𝑆𝑆 𝑥𝑥 𝐶𝐶), and an 0.65 correlation cut-off. .................... 119 

Figure 55. Observed bias (validation-based) vs. the RF model predicted bias (ML-based) for the decay heat 
– Clab benchmarks. The left plot is based on integral parameters of the benchmarks, using the spectral 
index (𝑆𝑆𝑆𝑆), and the right plot is based on the correlation between the benchmarks. The redline is a 45° 
line, indicating equality between the predicted and the observed bias. The blueline is the linear regression 
line of the observed bias on the predicted one. ...................................................................................... 122 

Figure 56. Same as Figure 55 for the KKNN model. .................................................................................. 122 

Figure 57. Observed bias (validation-based) vs. the RF model predicted bias (ML-based) for all the decay 
heat benchmarks (Clab data are highlighted in red color). The left plot is based on integral parameters of 
the benchmarks, using the interaction between the spectral index and the cooling time (𝑆𝑆𝑆𝑆 𝑥𝑥 Decay), and 
the right plot is based on the correlation between the benchmarks. ..................................................... 123 

Figure 58. Same as Figure 57 for the KKNN model. .................................................................................. 123 

Figure 59. Observed bias (validation-based) vs. the RF model predicted bias (ML-based) for the U-235 
benchmarks. The left plot is based on integral parameters of the benchmarks, using the calculational-
based uncertainty (σ), and the right plot is based on the correlation between the benchmarks. .......... 125 

Figure 60. Same as Figure 59 for the KKNN model. .................................................................................. 125 



XIX 
 

Figure 61. Observed bias (validation-based) vs. the RF model predicted bias (ML-based) for the Pu-239 
benchmarks. The left plot is based on integral parameters of the benchmarks, using the hydrogen-to-
fissile atom ratio (𝐻𝐻/𝑋𝑋), and the right plot is based on the correlation between the benchmarks. ....... 127 

Figure 62. Same as Figure 61 for the KKNN model. .................................................................................. 127 

Figure 63. Observed bias (validation-based) vs. the RF model predicted bias (ML-based) for the U-235 
benchmarks. The left plot is based on integral parameters of the benchmarks, using a single features, the 
interaction between burnup and the calculated Cs-137 concentration (𝐵𝐵𝐵𝐵 𝑥𝑥 𝐶𝐶), and the right plot is based 
on the correlation between the benchmarks. .......................................................................................... 129 

Figure 64. Same as Figure 63 for the KKNN model. .................................................................................. 129 

Figure 65. Observed bias (validation-based) vs. the RF model predicted bias (ML-based) for the Clab 
benchmarks. The left plot is based on integral parameters of the benchmarks, using the spectral index 
(𝑆𝑆𝑆𝑆), and the right plot is based on the correlation between the benchmarks. ....................................... 132 

Figure 66. Same as Figure 65 for the Pu-239 concentration bias. The left plot is based on the hydrogen-to-
fissile atom ratio (𝐻𝐻/𝑋𝑋), and the right plot is based on the correlation between the benchmarks. ....... 132 

Figure 67. Decay heat biases, both validation-based and ML-based. The ML model is the RF model, and 
the data are the validation-based bias and the calculated correlations between the benchmarks. ....... 134 

Figure 68. Same as Figure 67 for the Pu-239 concentration. .................................................................... 135 

Figure 69: Polaris south-east (S-E) models of the Calvert Cliffs-1 assemblies: D101, D047, and BT03 (left to 
right). Rods having different enrichments are shown in different colors. The analyzed rods are shown in 
black color. ................................................................................................................................................ 158 

Figure 70: Polaris model of the Genkai-1 assembly JPNNG1SFA1 showing the location of the rods 
containing the analyzed PIE samples: rod JPNNG1PWR-1 and JPNNG1PWR-2 (in black color). The rods 
contain samples H01 and H05, respectively. ............................................................................................ 160 

Figure 71: Polaris S-E models of the Mihama-3 assemblies SFA1, SFA2 and SFA3. The assemblies are similar 
to each other in their pin-layout and slightly differ in their enrichments. The S-E map show the actual 
position of the analyzed rods or their reflection in the S-E quarter. The analyzed rods are shown in black 
color. .......................................................................................................................................................... 162 

Figure 72: Polaris model of the Neckarwestheim-2 assembly 419. The analyzed rods are shown in purple 
color. .......................................................................................................................................................... 164 

Figure 73: Polaris S-E models of the Obrigheim-1 assemblies: BE210 (left), BE124 (middle), and BE168, 
BE170, BE171, BE 172, and BE176 (right). The latter assemblies had all of their rods dissolved and analyzed. 
The analyzed rods in BE210 and BE124 are shown in black color. ........................................................... 167 

Figure 74: Polaris S-E models of the Ohi-1 and Ohi-2 assemblies (left to right). The Ohi-2 assembly shows 
the actual position of the analyzed rods or their reflection into the S-E quarter. The analyzed rods are 
shown in black color, and the gadolinia-bearing rods are shown in purple color. ................................... 169 

Figure 75: Axial locations of the analyzed PIE samples of T3 reactor. ...................................................... 171 

Figure 76: Polaris S-E model of the Takahama-3 assemblies G23 and G24. The S-E map shows the actual 
positions of the analyzed rods (or their reflection in the S-E quarter). The analyzed rods are shown in black 
color, and the gadolinia-bearing rods are shown in purple color. ............................................................ 171 

Figure 77: Polaris S-E models of the Three Mile Island-1 assemblies: NJ05YU and NJ070G (left to right). 
Rods having different enrichments are shown in different colors. Four discrete absorber rods are shown 



XX 
 

inserted in their guide tubes. The analyzed rods are shown in black color (2 in NJ05YU and 3 in NJ070G).
 .................................................................................................................................................................. 173 

Figure 78: Polaris models of the Trino Vercellese-1 assemblies: A32 and A49 (top row, left to right), and 
A69 and A104 (bottom row, left to right). The analyzed rods are shown in black color. The peripheral rods 
(in red color) are rods that belong to the control rod follower part, which are fuel rods of 2.72 wt% U-235 
enrichment. .............................................................................................................................................. 176 

Figure 79: Polaris S-E models of the Turkey Point-3 assemblies: D01 and D04 and B17 SFA (left to right). 
The shown rods (in black color) reflect the symmetric reflection of the rods’ actual positions into the S-E 
quarter. ..................................................................................................................................................... 179 

Figure 80: Layouts of the analyzed assemblies of Yankee-1 reactor: E5, E6, F4 and F5 with respect to each 
other and the control rods, based on SFCOMPO [11]. The implemented dimensions and span of the control 
rod wings are based on the original reference [121]. .............................................................................. 182 

Figure 81: Polaris models of the Yankee-1 assemblies: E5 and F4 (top row) and E6 and F5 (bottom row). 
The rods in black color are the rods from which RCA samples are analyzed in this study. The peripheral 
location of the CR follower is shown in different color. ........................................................................... 183 

Figure 82: Polaris model of the Cooper-1 assembly CZ346. The rods containing the analyzed samples are 
shown in black color (rod B3 and C3). ...................................................................................................... 187 

Figure 83: Polaris models of the Dodewaard-1 assemblies: Y014, Y012 and Y013 (left to right). The Y014 
and Y012 SFAs have MOX-based fuel, and the Y013 has UO2 fuel. Two PIE samples are analyzed from each 
rod of the MOX based SFAs (4 MOX PIE samples) and only one samples is analyzed from the rod of the 
UO2 based SFA. ........................................................................................................................................ 188 

Figure 84: Polaris model of the Fukushima Daini-1 9x9-9 assembly design (ZN2 and ZN3 assemblies). The 
rods positions A9, C2 and C3 are shown in black color. ........................................................................... 191 

Figure 85: Axial locations of the PIE samples of the SFAs: ZN2 (top row) and ZN3 (bottom row). .......... 192 

Figure 86: Polaris models of the Fukushima Daini-2 assemblies. The top row contains the D1 and D2 
assemblies. The middle row contains the D3 and D8 assemblies (left to right). The bottom row contains 
fuel designs of the DN23 assembly. Assembly DN23 had most of its samples based on the middle design 
(left), and samples 89-1, 99-1 and 99-10 are based on the top and bottom designs (right). The rods hosting 
the analyzed samples are shown in black color. ...................................................................................... 195 

Figure 87: Axial positions of the PIE samples of the rods 98 and 99 of the DN23 assembly. Different colors 
indicate differences in enrichment or gadolinia content in the rods. ...................................................... 196 

Figure 88: Axial positions of the PIE samples from the D1, D2, D3, and D8 assemblies. The third letter in 
the sample ID is a number indicating the assembly of origin; 1, 2, 3, and 5 for D1, D2, D3 and D8, 
respectively. Different colors indicate differences in enrichment or gadolinia content in the rods. ...... 196 

Figure 89: Polaris models of the Garigliano-1 assemblies: A-106 (left) and SA-13 (middle). The rods hosting 
the analyzed samples are shown in black color. The elevation of the samples from the SA-13 assembly are 
shown in the right plot. ............................................................................................................................ 200 

Figure 90: Polaris models of the Gundremmingen-1 assemblies B23 and C16 (left to right). The rods 
containing the analyzed samples are shown in black color. .................................................................... 203 

Figure 91: Layout of the Japan Power Demonstration Reactor-1 core showing the three analyzed 
assemblies based on [133]. ...................................................................................................................... 205 



XXI 
 

Figure 92: Polaris models of the Japan Power Demonstrations Reactor-1 assemblies: A20 (left) and both 
A14 and A18 (right). The rods hosting the analyzed samples are shown in black color. The water gaps are 
either non-boiling moderator (heavy blue) or a mixture of the moderator and the poison curtain (light 
blue)........................................................................................................................................................... 206 

Figure 93. Polaris models of two SFAs: a BWR (left) and a PWR (right). Within each model, the fuel rods 
are shown in different colors to reflect differences in their densities, enrichments, and gadolinium 
percentage. The rod containing the analyzed sample is colored in black. ............................................... 210 

Figure 94. Permutation distributions of the average biases (the red lines are the observed values). ..... 221



 
 

 



XXIII 
 

List of Tables  

Table 1: Radioactive waste in Switzerland in m3 (top) and Bq (bottom) for the year 2075 [3,8]. ............... 3 

Table 2. Summary of the decay heat experimental benchmarks considered in this study, based on 
[12,13,27,54]. Range of properties, e.g., burnup range, are listed for all benchmarks belonging to 
particular reactors. ...................................................................................................................................... 15 

Table 3. Uncertainties (2σ) in decay heat measurements at the Clab facility based on Reference [12]. ... 17 

Table 4. Uncertainties (2σ) in decay heat measurements at the GE-Morris facility based on Reference [27]. 
The values correspond to both PWRs and BWRs. ....................................................................................... 17 

Table 5. Summary of the analyzed PIE samples from the SFCOMPO database. ......................................... 19 

Table 6. Specifications of the hardware used to perform the depletion and decay, uncertainty propagation, 
and the machine learning calculations. ....................................................................................................... 27 

Table 7. Uncertainties in design and operational parameters of the analyzed benchmarks, based on [56]. 
The reference values in [56] are uncertainties and tolerances, whereas the applied uncertainties in this 
study are standard deviations (1σ). ............................................................................................................ 34 

Table 8. Average 𝐶𝐶/𝐸𝐸 and 𝐵𝐵 for the decay heat benchmarks, along with two standard deviations (2σ). The 
parentheses indicate the number of benchmarks in each category. .......................................................... 69 

Table 9. Average 𝐶𝐶/𝐸𝐸 and 𝐵𝐵 for U-235 concentrations, along with two standard deviations (2𝜎𝜎). The 
parentheses indicate the number of benchmarks in each category. .......................................................... 73 

Table 10. Average 𝐶𝐶/𝐸𝐸 and 𝐵𝐵 for Pu-239 concentrations, along with two standard deviations (2𝜎𝜎). The 
parentheses indicate the number of benchmarks in each category. .......................................................... 74 

Table 11. Average 𝐶𝐶/𝐸𝐸 and 𝐵𝐵 for Cs-137 concentrations, along with two standard deviations (2𝜎𝜎). The 
parentheses indicate the number of benchmarks in each category. .......................................................... 75 

Table 12. Average along with one standard deviation of the calculated uncertainties (%). ...................... 83 

Table 13. Average along with one standard deviation of the FVs of the uncertainties of DO origins. ....... 84 

Table 14. SFAs considered for the analyses of the uncertainty contributions of XS, FY, and DD. .............. 87 

Table 15. p-values of the Shapiro-Wilk normality test conducted on the BWR and PWR bias data. ......... 99 

Table 16. 𝐶𝐶/𝐸𝐸 and 𝐵𝐵 for the decay heat calculations using Polaris and ORIGEN, along with 1𝜎𝜎. ............ 102 

Table 17. p-values of the Shapiro-Wilk normality test conducted on the Polaris and ORIGEN decay heat 
bias data. ................................................................................................................................................... 104 

Table 18. Simultaneous testing p-values of the permutation tests. ......................................................... 104 

Table 19. Simultaneous testing p-values of the bootstrap tests. .............................................................. 105 



XXIV 
 

Table 20. Aggregate z-scores and results of the hypothesis testing conducted on the validation and 
uncertainty analyses data. A rejection of H0 implies that the observed bias is significant, given the 
calculated uncertainties, at an 0.05 significance level. ............................................................................ 108 

Table 21. Decay heat measurements on the same SFA, along with assumed weights (w). .................... 112 

Table 22. Properties of PIE benchmarks at Q1, Q3, and median of the BWR and PWR data. ................. 114 

Table 23. Variables included in design matrices (identified with “✓”), implementing an 0.1 cut-off on 
calculated sensitivity coefficients. ............................................................................................................ 115 

Table 24. Aggregate results of the outliers detection and removal procedure, applied on the decay heat 
benchmarks (left table) and the Pu-239 concentration benchmarks (right table). Both characteristics are 
analyzed using the RF models, applied on both design matrices: 𝑆𝑆𝑆𝑆 for the decay heat, 𝐻𝐻/𝑋𝑋 for Pu-239 
concentration, and the correlation matrices for both. The decay heat data belong to the Clab benchmarks 
solely. ........................................................................................................................................................ 131 

Table 25. Specifications of rebuild SFAs from the benchmarks of Clab, based on [12]. .......................... 154 

Table 26. Characteristics of the PIE samples of the Calvert Cliffs-1 reactor. ........................................... 159 

Table 27. Characteristics of the PIE samples of the Genkai-1 reactor. .................................................... 160 

Table 28. Characteristics of the PIE samples of the Mihama-3 reactor. .................................................. 163 

Table 29. Characteristics of the PIE sample of the Neckarwestheim-2 reactor. ...................................... 164 

Table 30. Characteristics of the PIE samples of the Obrigheim-1 reactor. .............................................. 167 

Table 31. Characteristics of the PIE samples of the Ohi-1 and Ohi-2 reactors. ........................................ 170 

Table 32. Characteristics of the PIE samples of the Takahama-3 reactor. ............................................... 172 

Table 33. Characteristics of the PIE samples of the Three Mile Island-1 reactor. .................................... 174 

Table 34. Characteristics of the PIE samples of the Trino Vercellese-1 reactor. ...................................... 178 

Table 35. Characteristics of the PIE samples of the Turkey Point-3 reactor. ........................................... 180 

Table 36. Characteristics of the PIE samples of the Yankee-1 reactor. .................................................... 184 

Table 37. Characteristics of the PIE samples of the Cooper-1 reactor. .................................................... 187 

Table 38. Characteristics of the PIE samples of the Dodewaard-1 reactor. ............................................. 189 

Table 39. Characteristics of the PIE samples of the Fukushima Daini-1 reactor. ..................................... 192 

Table 40. Characteristics of the PIE samples of the Fukushima Daini-2 reactor. ..................................... 197 

Table 41. Characteristics of the PIE samples of the Garigliano-1 reactor. ............................................... 201 

Table 42. Characteristics of the PIE samples of the Gundremmingen-1 reactor. .................................... 203 

Table 43. Characteristics of the PIE samples of the Japan Power Demonstrations Reactor-1. ............... 207 

 



XXV 
 

List of Abbreviations  

AC Actinides 

ANL Argonne National Laboratory 

ANSI/ANS American National Standards Institute/American Nuclear Society 

AOA Area of Applicability 

ARIANE Actinides Research in a Nuclear Element 

ATM Approved Testing Material 

ATW Alpha Toxic Waste 

BA Operational Waste (Betriebsabfälle) 

BEPU Best Estimate Plus Uncertainties 

BOL Beginning of Life 

BWR Boiling Water Reactor 

BU Burnup 

B&W Babcock & Wilcox Company 

CI Confidence Intervals 

CO Cutoff  

CR Control Rod 

CRP Coordinated Research Project 

CSA Criticality Safety Analysis  

CV Cross-Validation 

DD Decay Data 

DGR Deep Geological Repositories 

DH Decay Heat 

DO Design and Operational 

DRN Dose Rate Relevant Nuclides 

ECDF Empirical Cumulative Distribution Function 

EDEY Doctoral Program in Energy  

EGADSNF Expert Group on Assay Data for Spent Nuclear Fuel 

ENDF/B-VII.1  Evaluated Nuclear Data File (version B-VII.1) 

ENSI Swiss Federal Nuclear Safety Inspectorate 

(Eidgenössisches Nuklearsicherheitsinspektorat) 

EOL End of Life 

EPFL Swiss Federal Institute of Technology Lausanne 

(École polytechnique fédérale de Lausanne) 



XXVI 
 

F/DP Fission and Decay Product 

FV Fractional Variance 

FY Fission yield 

GE General Electric 

GE-Morris  General Electric Morris facilities 

GE7 General Electric 7x7 (fuel design) 

GE8 General Electric 8x8 (fuel design) 

GE9 General Electric 9x9 (fuel design) 

GEVNC General Electric Vallecitos Nuclear Center 

GNU GNU General Public License 

H/X Hydrogen-to-Fissile Atom Ratio 

HEDL Hanford Engineering Development Laboratory  

HLW High Level Waste 

HM Heavy Metal (the mass of metals having atomic number greater than 89) 

HPLC-ICPMS High-Performance Liquid Chromatography coupled to Inductively Coupled 

Plasma/Mass Spectrometry 

IAEA International Atomic Energy Agency 

ID Identification (e.g., in SFA ID and Sample ID) 

ID-ICPMS Isotope Dilution Inductively Coupled Plasma/Mass Spectrometry 

IDMS Isotope Dilution Mass Spectrometry 

IHM (HMi) Initial Heavy Metal (at BOL) 

IQR Interquartile Range 

IRCh Institute for Radiochemistry at Karlsruhe 

ISF Interim Storage Facility 

ISRAM Information System for Radioactive Materials 

ITU Institute of Transuranium Elements 

JAEA Japan Atomic Energy Agency 

JAERI Japan Atomic Energy Research Institute 

JEFF-3.1 Joint Evaluated Fission and Fusion Nuclear Data Library (version 3.1) 

JENDL-3.3  Japanese Evaluated Nuclear Data Library (version 3.3) 

JPDR-1 Japan Power Demonstration Reactor-1 

KEG Nuclear Energy Act (Kernenergiegesetz) 

KKB Kernkraftwerk Beznau 

KKG Kernkraftwerk Gösgen-Däniken 

KKL Kernkraftwerk Leibstadt 



XXVII 
 

KKM Kernkraftwerk Mühleberg  

KKNN Weighted K-Nearest Neighbors 

KNN K-Nearest Neighbors 

KS Kolmogorov-Smirnov 

L/ILW Low- and Intermediate-Level Waste 

LM Linear Models 

LOOCV Leave-One-Out-Cross-Validation 

LRS Laboratory for Reactor Physics and Systems Behaviour 

LWR Light Water Reactor 

M&S Modeling and Simulation 

MAE Mean Average Error 

MCC Material Characterization Center 

MG Multi-Group 

MIR Medicine, Industry, and Research 

MIRAM Model Inventory for Radioactive Materials 

ML Machine Learning 

MOX Mixed Oxides 

MS Mass-Spectrometry 

MSE Mean Square Error 

Nagra National Cooperative for the Disposal of Radioactive Waste 

(Nationale Genossenschaft für die Lagerung radioaktiver Abfälle) 

NBL New Brunswick Laboratory 

ND Nuclear Data 

NEA Nuclear Energy Agency 

NPP Nuclear Power Plants 

NRC Nuclear Regulatory Commission 

O ORIGEN (code) 

OECD Organization for Economic Co-Operation and Development 

OOB Out of Bag 

ORNL Oak Ridge National Laboratory 

OSE One Standard Error 

P Polaris (code) 

PIE Post Irradiation Examination 

PNL Pacific Northwest Laboratory 

PSI Paul Scherrer Institute 



XXVIII 
 

PWR Pressurized Water Reactor 

Q1 and Q3 First and Third Quartiles 

RA Reactor Waste (Reaktoren Abfälle) 

RCA Radiochemical Analysis 

REBUS Reactivity Tests for a Direct Evaluation of the Burnup Credit on Selected Irra-

diated LWR Fuel Bundles 

RF Random Forest 

RFE Recursive Feature Elimination 

RMSE Root Mean Square Error 

RSS Residual Sum of Squares  

S100  SVEA-100 (fuel design) 

S64 SVEA-64 (fuel design) 

SA Decommissioning waste 

SE Standard Error 

S-E South-East (a quarter of the SFA) 

SFA Spent Fuel Assembly 

SFCOMPO Spent Fuel Isotopic Composition 

SFCOMPO TRG SFCOMPO Technical Review Group 

SI Spectral Index 

SKB Svensk Kärnbränslehantering AB 

SNF Spent Nuclear Fuel 

TIMS Thermal Ionization Mass Spectrometry 

TSS Total Sum of Squares 

W14 Westinghouse 14x14 (fuel design) 

W15 Westinghouse 15x15 (fuel design) 

W17 Westinghouse 17x17 (fuel design) 

WA Reprocessing waste 

WAK Karlsruhe Reprocessing Plant 

WPNCS Working Party on Nuclear Criticality Safety 

XS Cross-Section 

Zr Zircaloy 

Zwilag Interim Storage Facility (Zwischenlager) 

σ Standard Deviation 



XXIX 
 

List of Vocabulary 
The vocabulary used in the current work are based on the guide: “Evaluation of measurement 

data — Guide to the expression of uncertainty in measurement” [1]. Definitions in the guide refer 
mostly to measurements, adapted in this work to refer to calculations, explained as following: 

1. Benchmark (or experimental benchmark) 
The word “benchmark” or “experimental benchmark” is used in this work to refer to a 
measurement conducted on spent nuclear fuel for evaluating one or more of its characteristics. 
In addition to the measured values, their uncertainties, benchmarks include information 
necessary for modeling and simulation. The necessary information includes the design of the 
spent nuclear fuel assembly and irradiation and decay history. 

2. Measurand 
The quantity to be measured. The measurand cannot be specified by a value but only by a 
description of a quantity – e.g., U-235 concentration. 

3. Characteristic 
The quantity to be calculated. The characteristic cannot be specified by a value but only by a 
description of a quantity – e.g., U-235 concentration. 

4. Accuracy  
Closeness of the agreement between the result of a measurement or a calculation and a target 
value. Accuracy is a qualitative concept. 

5. Standard uncertainty (of measurement or calculation) – referred to as "uncertainty" in 
this work 

Parameter, associated with the result of a measurement or a calculation, characterizing the 
dispersion of the measurand or characteristic. The parameter may be, for example, a standard 
deviation (or a given multiple of it), or the half-width of an interval having a stated level of 
confidence. Uncertainties are evaluated by the statistical analysis of series of observations (type 
A evaluation), or by other means (type B evaluation). 

6. Correction factor (e.g., isotopic correction factor) 
Numerical factor by which the uncorrected result of a measurement or calculation is multiplied 
to compensate for a systematic error. Since the systematic error cannot be known perfectly, the 
compensation cannot be complete. 

7. Variance 
A measure of dispersion, which is the sum of the squared deviations of observations from their 
average, divided by one less than the number of observations. The variance defined here is more 
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appropriately designated by the “sample estimate of the population variance”. For n 
observations x1, x2, ..., xn with average 

𝑥̅𝑥  =
1
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The variance is 
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8. Standard deviation 
The positive square root of the variance. 

9. Statistic 
A function of the sample random variables. A statistic, as a function of random variables, is also 
a random variable and as such it assumes different values from sample to sample. The value of 
the statistic obtained by using the observed values in this function may be used in a statistical 
test or as an estimate of a population parameter, such as a mean or a standard deviation. 

10. Estimation 
The operation of assigning, from the observations in a sample, numerical values to the 
parameters of a distribution chosen as the statistical model of the population from which this 
sample is taken. 

11. Estimate 
The value of an estimator obtained as a result of an estimation. 

12. Confidence level 
The value (1 − α ) of the probability associated with a confidence interval or a statistical coverage 
interval, whereas α is a significance level. (1 − α ) is often expressed as a percentage. 

13. Error (of calculation) – referred to as "bias" in this work 
A measurement or a calculation has imperfections that give rise to an error in the measured or 
calculated values. Traditionally, an error is viewed as having two components, namely, a random 
component and a systematic component. It can be represented as the calculation minus a true 
value of the measurand (measurement in this work). The error of the result of a calculation may 
often be considered as arising from a number of random and systematic effects, contributing to 
individual components of the error of the result. 

14. Relative error (of calculation) – referred to as "C/E" in this work 
The relative error can be expressed as the value of a calculation divided by a true value of the 
measurand (measurement in this work). 

15. Systematic error – referred to as "systematic component" and "systematic component 
of the bias" in this work 

The systematic error is defined in the present study as the mean that would result from an infinite 
number of calculations of the same characteristic carried out under repeatability conditions 
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minus a true value of the characteristic. The systematic error is equal to error minus random 
error.  

Like true value, systematic error and its causes cannot be completely known. Also, the systematic 
error, like random error, cannot be eliminated but it too can often be reduced. If a systematic 
error arises from a recognized effect of an influence quantity on a measured or calculated value, 
hereafter termed a systematic effect, the effect can be quantified. If the systematic error is 
significant in size relative to the required accuracy of the measurement or calculation, a 
correction or correction factor can be applied to compensate for the effect. It is assumed that, 
after correction, the expectation or expected value of the error arising from a systematic effect 
is zero. 

16. Random error – referred to as "random component" and "random component of the 
bias" in this work 

Random error is assumed to arise from unpredictable or stochastic variations of the quantity 
being measured or calculated, i.e., it results from random effects. Also, it can be expressed as the 
error minus the systematic error. Because only a finite number of calculations can be made, it is 
only possible to determine an estimate of the random error. 

17. Repeatability and reproducibility (for results of measurements or calculations) – 
referred to as "precision" in this work 

Closeness of the agreement between the results of successive measurements or calculations of 
the same measurand or characteristic carried out under the same conditions (repeatability), or 
under changed conditions (reproducibility). The precision may be expressed quantitatively in 
terms of the dispersion characteristics of the results.
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 Introduction 
The irradiation of nuclear fuel throughout its operational life results in the accumulation of 

short and long-lived radionuclides, in majority contained within fuel rods of the spent nuclear 
fuel (SNF). Besides the radiotoxicity of these radionuclides, they release a substantial amount of 
heat during their radioactive decay. Such radiotoxicity and heat generation impact activities such 
as handling, transporting, packing into specific containers, and ultimately the SNF long-term or 
final disposal. The design, operation, and safety of facilities conducting these activities are 
ultimately affected, e.g., nuclear waste management and disposal solutions such as interim 
storage facilities (ISF) and deep geological repositories (DGRs) [2,3]. As required by regulations, 
safety analyses are intended to demonstrate that the nuclear waste handling and disposal 
facilities comply with requirements aiming at ensuring the safety of humans and the 
environment.  

For the purpose of safety analyses, upstream inputs such as the radionuclide inventory and 
decay heat are typically obtained through calculations based on available data (fuel design, 
irradiation information, and nuclear data). In parallel, the heavy reliance on calculations for 
characterization of SNF is motivated by the impracticality of their measurements, as well as the 
difficulty and cost of characterizing SNF in such a way. As a consequence, and prior of using 
calculated SNF characteristics in subsequent downstream analyses, it is required to establish 
confidence on such calculations and assess how far these characteristics are from true values or 
potential measurements. The latter requirement motivated the presented herein research and 
thesis. 

1.1 Worldwide status of spent nuclear fuel 

As of 2017, the amount of SNF generated from the operation of nuclear power plants (NPPs) 
accumulates to approximately 400 kilotons of heavy metals (HM) [4]. It increases on yearly basis 
by approximately 11 kilotons of HM generated from the operational fleet of the NPPs, being 442 
reactors in 30 countries, as of today. Such SNF is one of the most hazardous radioactive wastes 
being generated from the nuclear power industry, containing most of the radiotoxicity and long-
lived radioactive isotopes. Typically, they are radioactive, and the generated heat requires both 
shielding and cooling. The radioactivity is concentrated such that, the SNF accounts for approxi-
mately 3% of the volume of the generated nuclear waste, while it contains approximately 95% of 
the total radioactivity [5] (depending on the time after discharge). After its end of life (EOL), the 
SNF is categorized as high-level waste (HLW), and it may be reprocessed to recover fissile and 
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fertile materials. As such, radionuclides of the dissolved fuel matrix are separated, and the pro-
cess results in separation of uranium and plutonium, and other higher actinides, used for the 
fabrication of new nuclear fuel elements. The remaining materials are termed “reprocessed 
waste”, also containing both long- and short-lived radionuclides. 

The SNF is stored in central interim storage, or on-site storage at NPP (both wet and dry). 
Figure 1 shows recent stored amounts of SNF by country (in metric tons of HM) and future prog-
nostics in year 2050. Both storage options have limited capacities, and efforts are currently made 
to obtain a long-term solution, such as disposing the SNF in deep geological repositories – sub-
surface storage sites with stable geological characteristics. Also, the DGR solution is considered 
by many countries as one of the safest options for long-term or final disposal. Several countries 
have already moved forward in this direction, analyzing and planning for a long-term disposal in 
DGRs, including Finland, France, Sweden, and Switzerland. 

 

Figure 1. Tons of HM contained in SNF in year 2020 (top), and the prospected amount in year 
2050 (bottom) (figure from Reference [4]).  

1.2 Status of radioactive waste in Switzerland 

The present research is funded by the National Cooperative for the Disposal of Radioactive 
Waste (Nationale Genossenschaft für die Lagerung radioaktiver Abfälle) (Nagra). Nagra has the 
mandate on behalf of the Swiss NPPs, research facilities, hospitals and other sources of 
radioactive waste to prepare and implement solutions for waste management and disposal, 
ensuring the long-term safety of the population and the environment [3]. According to the Swiss 
law, the radioactive waste will be deposited in a DGR [6]. Therefore, Nagra will be conducting 
activities such as planning, designing, construction, and operations of a prospected DGR. 
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The radioactive wastes in Switzerland arise from the operation of four NPPs (Kernkraftwerk 
Beznau (KKB), Kernkraftwerk Gösgen-Däniken (KKG), Kernkraftwerk Leibstadt (KKL), and 
Kernkraftwerk Mühleberg (KKM)), the interim storage facility (Zwischenlager, or Zwilag), and 
from medicine, industry, and research (MIR). Most radioactive waste in Switzerland is handled 
by Zwilag, an interim storage facility containing both SNF (in dry storage) and reprocessed waste 
canisters (reprocessed in La Hague and Sellafield plants). Also, it includes facilities for 
incineration, conditioning, and storage of the low- and intermediate-level waste. The overall 
nuclear waste in Switzerland can be categorized based on its source as [7]: 

1. Operational waste (Betriebsabfälle) (BA) (e.g., ion-exchange resins) 
2. Reactor waste (Reaktoren Abfälle) (RA) (e.g., reactor movable pieces such as control rods) 
3. Spent nuclear fuel (SNF) 
4. Reprocessing waste (WA) 
5. Decommissioning waste (SA) (e.g., activated structural components). 

Another classification, based on volume and radioactivity, is shown in Table 1 [3,8]. 

Table 1: Radioactive waste in Switzerland in m3 (top) and Bq (bottom) for the year 2075 [3,8]. 

Category SNF WA BA RA SA MIR Total 
HLW* 1363 112       1 1476 

ATW**   102     24 211 337 
L/ILW***     8465 473 23024 21005 52967 

Total 1363 214 8465 473 23048 21217 54780 
Category SNF WA BA RA SA MIR Total 

HLW* 1.70E+19 1.90E+18       2.10E+10 1.89E+19 
ATW**   1.90E+16     3.60E+12 3.40E+15 2.24E+16 

L/ILW***     4.30E+14 5.50E+15 6.30E+16 1.00E+16 7.89E+16 
Total 1.70E+19 1.92E+18 4.30E+14 5.50E+15 6.30E+16 1.34E+16 1.90E+19 

* HLW: high-level waste 
** ATW: alpha-toxic waste (conditioned waste containing large amounts of alpha-emitters) 
*** L/ILW: low- and intermediate-level waste 

In Nagra, the radioactive waste data, such as those listed in Table 1, are managed by the ISRAM 
database (Information System for Radioactive Materials) [9]. Another database, the MIRAM 
database (Model Inventory for Radioactive Materials), is also available to manage the total 
inventory of radioactive waste (including waste predictions according to prognoses or scenarios). 
Predicting the potential waste in the DGR is necessary since the NPPs are still in operation and 
the MIR waste is still being produced. The applications of these databases are mainly in safety 
analyses, repository design and cost studies for the DGR [10]. 

1.3 International projects addressing SNF characterization 

As mentioned, the SNF is a significant component of the nuclear waste, and several 
international projects were conducted (and are being initiated) to address related-research 
questions. As early as the nuclear power industry itself, post-irradiation-examinations (PIEs) were 
performed on irradiated fuel samples. Recent needs to aggregate these information from publicly 
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available PIE data resulted in the creation of the Spent Fuel Isotopic Composition (SFCOMPO) 
database under the Nuclear Energy Agency (NEA) of the Organization for Economic Co-operation 
and Development (OCED/NEA) [11]. The database serves the purpose of providing, in a consistent 
manner, necessary modelling information and measured characteristics of PIE samples, allowing 
validation of calculational sequences. Besides the radionuclides, the decay heat generation from 
the SNF is also gaining major attention. As the phase of packing the SNF into disposal canisters is 
approaching, it is currently understood that the heat generation is a potential limiting factor and 
can place constrains on the disposal of such SNF. Projects were initiated earlier in the history of 
the nuclear power industry to measure the decay heat generated from SNF; in open-source data, 
two large measurements campaigns were conducted by the General Electric (GE) and Svensk 
Kärnbränslehantering AB (SKB) [12,13]. 

Recently, the topic has gained more attention with increasing number of spent fuel assemblies 
(SFAs) and decommissioned NPPs, and also as the DGR is foreseen in the near future. The EURAD 
project is an active European research project, including members such as waste management 
and technical support organizations, as well as research units across Europe. The project aims at 
addressing the research and development related to the radioactive waste management, and 
answering common research questions related to the planning, implementation, and safety 
analysis of DGRs [14]. Parts of the present study were conducted under the EURAD work package 
8, related to the SNF characterization. Recently, the work package 8 is extended to include the 
SNF decay heat analyses. This extension is motivated by the increased interest in the SNF decay 
heat generation under long-term storage and disposal. Design and irradiation data of about 50 
new assemblies measured at Clab have been requested from the SKB [15], covering an extended 
burnup range compared to the 2006 measurements campaign [12]. 

Additionally, under the International Atomic Energy Agency (IAEA), a Coordinated Research 
Project (CRP) is initiated [16]. The CRP, entitled “Spent Fuel Research and Assessment” (SFERA) 
[17], focuses on questions related to fuel, fuel cladding, and fuel assembly structures, and 
understanding their behavior and performance under long-term storage. Also, the NEA Working 
Party on Nuclear Criticality Safety (WPNCS) has coordinated several research programs 
addressing topics related to SNF, such as criticality safety and burnup credits [18]. A number of 
WPNCS subgroups are addressing questions and research points similar to parts of the present 
study, such as the SG7 (focusing on validation of burnup calculations), the SFCOMPO Technical 
Review Group [19] (focusing on reviews and updates of the SFCOMPO database), and a new 
subgroup dedicated to the addition of the decay heat benchmarks in SFCOMPO. Finally, a blind 
test benchmark was organized by SKB for the validation, and comparison between participants, 
of the decay heat calculations of 5 new assemblies measured at the Clab facility [20]. 

1.4 Motivation of the current research project 

As mentioned, the characteristics of the SNF (radionuclide inventory and decay heat) are 
typically obtained through modeling and simulation (M&S) of their in-reactor irradiation and the 
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subsequent cooling, resulting in values such as those listed in Table 1. These characteristics are 
eventually being used in downstream analyses and for the assessment of a broad range of topics, 
such as criticality, thermal optimization, SNF integrity, etc. Given their reliance on calculations, 
primary concerns are to improve the accuracy and to establish confidence on these calculated 
characteristics.  

Additionally, from the aspect of regulations, the Swiss Federal Nuclear Safety Inspectorate 
(Eidgenössisches Nuklearsicherheitsinspektorat) (ENSI) [21] is the supervisory and regulatory 
authority with respect to the safety and security of the nuclear installations as per the Nuclear 
Energy Act (Kernenergiegesetz) (KEG – SR 732.1) [22], and the Act on the Federal Nuclear Safety 
Inspectorate (ENSI-Gesetz) (ENSIG – SR 732.2) [23]. ENSI issues guidelines to regulate the 
activities in these installations. Regarding the principles and the safety requirements for the DGR, 
the guideline ENSI-G03 [6] requires quantification of the uncertainties that impact the safety of 
the DGR, and according to Section 7: 

- “The safety case must be documented in a safety report. This report also has to present and 
quantify uncertainties and their relevance for safety. This includes uncertainties relating to 
parameters, scenarios and conceptual models.“ 

- “Analysis of existing uncertainties in data, processes and models and calculation of the 
resulting range of radionuclide release and doses.” 

Certain uncertainties are inevitable, due to unknowns about processes (e.g., chemical 
reactions), and uncertainties in physical quantities (e.g., diffusivities). However, it is beneficial to 
reduce them as far as possible and necessary, and also to estimate (based on conservative 
assumptions) their radiological consequences, as well as to evaluate their influence on the long-
term safety of the DGR. Such relevant regulations necessitated the initiation of several projects, 
including the present one, to quantify uncertainties associated with the characteristics of the 
nuclear waste, and to reduce such uncertainties as far as feasible. 

1.5 Relevant SNF characteristics 

Preliminary safety assessment of the post-closure phase of the DGR showed that a limited 
number of radionuclides (52 radionuclides) are the main contributors to the surface dose rates 
[24,25], named dose-rate-relevant-nuclides (DRN). Uncertainty analyses have shown that the 
dose rate uncertainties from certain radionuclides (e.g., Cl-36 and I-129) are mainly due to 
uncertainties in their inventory. Accurate evaluation of their inventory and associated 
uncertainties will directly impact the analyzed long-term surface dose rates. Therefore, selected 
DRN are the primary focus of the current research.  

As mentioned, the heat generation from SNF is also relevant. Based on the DGR host rock 
properties, an upper limit of decay heat from the SNF canisters is derived. In Switzerland, the 
current maximum limit is 1500 W per canister at emplacement. Such constraint, combined with 
large uncertainties in calculated SNF characteristics, can lead to longer storage times in ISFs prior 
to encapsulation or to partial filling of disposal canisters, options being economically 
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disadvantageous. Therefore, accurate estimation of the SNF decay heat along with quantification 
of uncertainties are necessary, whereas these inevitable uncertainties will lead to an additional 
margin on the maximum heat load constraint. 

1.6 Needs of validation 

The previous safety and design considerations make it necessary to accurately estimate the 
SNF characteristics, and also to comply with relevant regulations [6,26]. A growing trend in the 
nuclear engineering community is called BEPU, or “best estimate plus uncertainties”, which 
encourages using best estimate, or high fidelity, numerical solvers along with quantification of 
uncertainties associated with the calculational sequence (the method and the data). The former 
approach can potentially reduce systematic differences between calculations and 
measurements. The latter approach allows quantification of the remaining systematic part of 
these differences, along with the inevitable random components. Eventually, the calculated 
values better resemble the true ones and conservatism (including safety margins) can be 
potentially reduced. 

In the nuclear engineering community, confidence in the calculations is examined through 
acceptable and routine practice, consisting in comparing the results of calculations with 
experimental measurements [26,27]. Such practice is referred to as validation of the M&S (see 
for example Gauld et al. [27], Ilas et al. [28], and others [29–31]). The validation results can be 
presented as computational biases (𝐵𝐵) – differences between calculations (𝐶𝐶) and 
measurements (𝐸𝐸): 

𝐵𝐵 = 𝐶𝐶 − 𝐸𝐸. (1.1) 

Alternative metrics are bias per ton of initial heavy metal, e.g., W/tHMi, and the ratio between 
calculations and measurements (𝐶𝐶/𝐸𝐸). The bias 𝐵𝐵 is a useful measure, as it indicates how far a 
calculation of a particular SNF characteristic is from its measurement. It is a widely used 
validation metric (see for instance the standard of the American National Standards 
Institute/American Nuclear Society ANSI/ANS-8.24 [32]).  

The bias is not an exact value due to uncertainties in both calculations and measurements, 
estimated as 

𝜎𝜎𝐵𝐵 ≅ �𝜎𝜎𝐶𝐶2 + 𝜎𝜎𝐸𝐸2, (1.2) 

assuming that there is no correlation between calculated and experimental uncertainties. 
Uncertainties of random nature are assumed to exist in both calculations and measurements, 
resulting in bias uncertainties of random nature, i.e., the observed value of the bias contains a 
random component. Random uncertainties in calculations can originate from random 
uncertainties in the data, such as random uncertainties in nuclear cross-sections and fission 
yields. These uncertainties propagate into calculations, leading to a random component of the 
calculated values. Random uncertainties in the measurements can be observed in fluctuations of 
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the measured values, being not attributed to different experimental configurations (i.e., the 
measured value contains an unexplained component). 

However, the bias can also include a systematic difference between calculations and 
measurements. Differences between calculations and measurements having random origin can 
be compared to those having a systematic one, using methods such as statistical analyses. Such 
statistical analyses provide a probabilistic answer to whether the observed difference (the bias) 
includes a random or systematic nature. The discussed differences between both types of 
uncertainties are important, since the bias can be represented as two components: a systematic 
component, and a random component.  

Understanding the origins of differences between calculations and measurements of SNF 
characteristics finally helps to predict the bias in a more reliable way. However, these biases are 
thought to be intrinsically complex such that it is challenging to derive functions mapping 
variables in the calculations and the measurements into their differences. The approximate 
functional form mapping these features into biases is unknown, and the model features that are 
bias-informative are also unknown. In such cases, data-driven methods can be employed in the 
attempt to simplify the problem by approximating the target function 𝑓𝑓, and to select the 
informative model features 𝑋𝑋, such that the bias can be expressed as 

𝐵𝐵 = 𝑓𝑓(𝑋𝑋) + 𝜖𝜖, (1.3) 

whereas 𝑓𝑓(𝑋𝑋) is the systematic part of the bias and 𝜖𝜖 is the random part of the bias. 

Measurements can be systematically different from the true value of the parameter, due to 
inherent defects or limitations of the methods employed during the measurements. For instance, 
inefficient dissolution of metallic elements in a PIE sample can result in measured concentrations 
underestimating the actual values; and un-accounting for escaping gaseous fission products can 
result in the opposite effect. Also, calculations can be systematically biased as they are an 
imperfect representation of nature; only a few physical phenomena are being included in the 
models such as neutron-induced reactions, and other phenomena are potentially excluded from 
the model (such as material diffusion) to ease the calculational requirements. In performing 
calculations, relevant physical phenomena are modelled in a reduced volume of space, and 
regions beyond this volume are assumed to induce negligible effect on the target solution. 
Alternatively, when the physics beyond the interesting model space are important but not 
modelled, boundary conditions are often used to approximate them. Calculations also use data, 
such as fuel design and irradiation information and nuclear data, containing inaccuracies and 
imprecisions to some degree, which eventually propagate through the calculations. 

Large biases mean that more conservative assumptions or safety margins are needed to 
penalize the calculated SNF characteristics. Knowledge of the origin and possible improvement 
of these discrepancies, captured by 𝐵𝐵, can help reducing over-conservatism. Such improvements 
potentially result from using high-quality measurements, high-fidelity calculational sequences, 
detailed modelling, and using accurate and precise data (e.g., improved nuclear data, precise and 
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detailed operational data, etc.). However, the bias is expected to persist to some degree, 
optimistically in a possible representation of two components being a systematic and a random 
one, as presented earlier. 

1.7 Needs of explaining and predicting the bias 

Different approaches are being followed in literature to extract aggregate measures and to 
explain the observed differences between calculations and measurements of characteristics of 
SNF. Using a similar calculational approach and different nuclear data evaluations can explain 
sources of discrepancies related to nuclear data. This approach was followed in a study on 
criticality safety benchmarks, differentiating between various nuclear data libraries: JEFF-3.1, 
ENDF/B-VII and JENDL-3.3 [33]. Another approach relies on modeling the same benchmark with 
different codes and code users. This method was followed in various benchmarks conducted by 
the OECD/NEA on depletion calculations and burnup credit criticality safety [34–36]. Other 
solutions rely on modeling large numbers of benchmarks using the same calculational methods 
and nuclear data, so that systematic deviations can be analyzed. The latter approach was 
followed in various studies conducted in the Oak Ridge National Laboratory on decay heat 
calculations, depletion calculations, and criticality safety analyses [27,37,38]. The present study 
falls into the latter category.  

The measurements on the SNF characteristics are expensive, such that the available 
measurements represent a small fraction of the overall assemblies. The publicly available SNF 
decay heat measurements stand at few hundreds; large scale measurements campaigns such as 
those conducted by the SKB at the Clab facility [12] and the GE at the GE-Morris facility [13] 
resulted in measurements of less than three hundreds SFAs. As of 2017, there are over a million 
of SFAs. The situation of the measured isotopic concentrations is even more challenging; typical 
PIE samples are just about 1 cm length section of a fuel rod. The fuel assembly itself is typically a 
few hundreds of fuel rods, mostly standing at 3-5 meters long [11]. Knowledge about how 
accurate and precise calculational tools and data characterize this large number of SFAs relies on 
knowledge about how accurate and precise they perform on the available limited measurements. 

The M&S tools and data (information about fuel design and irradiation, and nuclear data) are 
validated within ranges of properties of the validation benchmarks (e.g., a range of material 
compositions, burnup, and other quantities). The relevant characteristics of the measurements, 
and therefore the benchmarks, define what is referred to as the area-of-applicability (AOA). 
However, when the M&S tools and data are used for a target application (e.g., realistic 
calculations of SNF), the properties of the application are not necessarily identical to those of the 
benchmarks used for validation. The considered SNF can share some properties with a number 
of measurements, such as their enrichment or burnup. However, they can also differ from any of 
the available measurements. Additionally, it is not always straightforward to know which 
particular SNF properties are critical in defining the AOA and informing about the similarities to 
available benchmarks. Again, predictive modelling can be employed herein to obtain relevant 
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properties of the validation data and to define how distant the practical calculations exist from 
the AOA.  

Different areas of analyses of nuclear fuel and SNF are at different stages of developments in 
this aspect – defining relevant properties and AOA of validation benchmarks and establishment 
of prediction techniques from the validation data. In the case of criticality safety analysis (CSA), 
techniques of predicting the bias in a target application from sets of neutronically similar 
benchmarks are well established [39]. The predicted biases are then used to justify necessary 
margins of subcriticality in the intended applications. Standards, such as the ANSI/ANS-8.24 [32], 
allow bias and bias uncertainty to be predicted from validation benchmarks, e.g., using linear or 
power models. The models rely on independent variables such as the hydrogen-to-fissile atom 
ratio (𝐻𝐻/𝑋𝑋) or similarity index (𝑐𝑐𝑥𝑥). However, there is no consensus on which variables can be 
used for predictions, and such predictions are routinely aggregated over models relying on 
different features, preferably those showing notable trends with the bias [40,41].  

Other areas of safety analyses and characterizations of SNF face similar challenges, where 
relevant properties and AOA of validation data need to be defined, and bias prediction 
techniques need to be furtherly developed. Literature related to bias predictions in SNF 
calculations, other than CSA, are scarce and techniques are not as developed. Examples of bias 
inference of the SNF decay heat from validation benchmarks were previously analyzed in studies 
such as the work of Gauld and Murphy [26] and Hermann et al. [42]. Statistics of the decay heat 
biases, e.g., averages and standard deviations, form a basis for safety factors on calculated decay 
heats in the Regulatory Guide 3.54 of the US Nuclear Regulatory Commission (NRC) [43]. Also, in 
studies by Gauld and Mertyurek [37] and Radulescu et al. [44] on depletion calculations of SNF, 
bias averages and standard deviations of selected isotopes were used as correction factors on 
the isotopic concentrations in downstream criticality calculations – CSA that credits the fuel 
burnup. However, for the present applications, the bias prediction methods are not yet 
developed as in the case of CSA, and statistics are still being used to inform about the bias in 
target calculations. 

1.8 Predictive modelling paradigm 

The goal of predictive modelling is to understand how selected SNF features are mapped into 
the response, the bias in this case. The predictive modelling can rely on given or assumed 
hypotheses about these features and the relation between these features and the bias. 
Additionally, and more importantly, the goal of predictive modelling is to be able to use the data-
driven final models to make predictions on realistic, or target, calculations. As an example, in the 
present study, models that rely on information from similar benchmarks will be used to predict 
the bias of a benchmark of interest. The hypothesis in this case is that similarity allows prediction 
of the bias. The quantity “similarity” is not adequately defined, and a hypothesis is analyzed in 
the present study that the correlation between benchmarks contains information about their 
similarity. Other integral features, such as the H/X, might also inform about the similarities 
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between benchmarks. Finally, some models can show that they have promising predictive 
performance of the bias. They can be used in future to provide a bias estimate of a realistic 
calculation on SNF, given its correlation with a number of validation benchmarks with known 
biases. Alternatively, integral features found to be informative about the bias can be used for 
such predictions relying on similar benchmarks in the features space.  

As mentioned, the predictive modelling is not yet well-developed for the quantities of interest, 
even if a number of recent approaches in literature are exploring such direction. Recently, 
Random Forests (RF) were used by Grechanuk et al. [45] to predict the bias in the neutron 
multiplication factor 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 from its sensitivity to nuclide-wise reactions. Neudecker et al. [46] have 
used RF models to understand the contributions of nuclear data into biases of criticality 
calculations, using also 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 sensitivity to nuclide-wise reactions. Ebiwonjumi et al. [47] have 
used neural networks and gaussian processes, to predict the decay heat measured values. Finally, 
Solans et al. [48] have used neural networks to predict the Monte Carlo-based keff of SFAs packed 
in disposal canisters, given model features such as the isotopic composition of the depleted fuel. 

1.9 The research questions and hypotheses 

The present research aims at validating a calculational sequence based on the SCALE code 
system [49] on a large number of validation benchmarks. Particularly, the calculations rely on the 
Polaris code of the SCALE code system (version 6.2.3) along with SCALE nuclear data primarily 
based on the ENDF/B.VII.1 nuclear data library [49]. The validation data are two categories: SNF 
decay heat, and radionuclide concentrations of PIE samples (namely: Cs-137, U-235, and Pu-239). 
Then, uncertainties and correlations of the calculated values are to be evaluated. The biases, 
their uncertainties, and the calculated correlations are to be used to investigate ML models and 
algorithms enabling predictions of the bias in realistic calculations of SNF characteristics. 

Two main hypotheses are analyzed in the present research. The first one is that the observed 
biases are not significant, given uncertainties. These uncertainties, based on calculations only (or 
along with the measurements), can indicate that the observed bias between calculations and 
measurements is not significant, such that 

𝐶𝐶 − 𝐸𝐸 ~ 𝑁𝑁(0,𝜎𝜎). (1.4) 

The bias is assumed to follow a normal distribution, zero-centered, parameterized by the 
variance of the calculations only (or along with the variance of the measurements). The 
hypothesis is tested using the collected validation and uncertainty analyses data. 

The second hypothesis of the present research is that the bias of SNF characteristics can be 
predicted using ML models and algorithms. The bias is represented as two components: a 
systematic one, targeted to be predicted using the ML models, and a random and unexplained 
component. Validation data (bias and potentially informative SNF features), hypotheses on the 
ML models, and learning, testing, and validation procedures are assembled in ML algorithms such 
that a solution is obtained for Equation 1.3 for the bias (restated herein): 
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𝐶𝐶 − 𝐸𝐸 = 𝑓𝑓(𝑋𝑋) + 𝜖𝜖. (1.5) 

The design matrix 𝑋𝑋 contains informative model features (unknown a priori) and 𝑓𝑓 is a 
function that maps 𝑋𝑋 into the bias (also unknown a priori). The function 𝑓𝑓(𝑋𝑋) is intended to 
capture the systematic part of the bias (the explained bias), and 𝜖𝜖 is intended to capture the 
random part of the bias (the unexplained part of the bias). As in the case of CSA, 𝑋𝑋 can be the 
correlation between benchmarks, and 𝑓𝑓 can be the linear model that regresses the bias of the 
benchmarks onto their correlations. A class of functions, namely neighborhood-schemes, is 
analyzed. The chosen class of functions is related to an assumption that neighboring benchmarks 
are informative in predicting the bias. The ML models are the random forests and the weighted 
k-nearest neighbors. In such model types, predictions are driven from “neighbors” or highly 
similar benchmarks to the target application.  

The scope of the present research is also to analyze different types of SNF features, potentially 
informative into predicting the bias (e.g., features defining the neighborhood or similarity). 
Features such as those driven from sensitivity analysis, integral features such as spectral indices 
and uncertainties, and calculated correlations are to be analyzed. The structure of the 
neighborhood, e.g., the number of neighboring benchmarks and their weights, is also to be driven 
from the validation data. Finally, an estimate of the error 𝜖𝜖, in providing new predictions using 
the ML models and algorithms, should be obtained using techniques such as cross-validations. 

Lastly, the novelty of the present study is in method development of data-driven bias 
prediction techniques, e.g., using large sets of validation data and machine learning (ML) models 
and algorithms, applied on characteristics of SNF such as decay heat and radionuclide 
concentrations. 

1.10 Potential applications 

If successful, the developed data-driven models will explain a fraction of the original bias 
variance, resulting in less variability of the bias. The variance reduction of the bias is not 
guaranteed to be meaningful or significant, using the applied techniques in the present study. 
Alternatively, and given the analyses of a significantly large number of benchmarks, the 
calculated bias can be justified using laws of probability to estimate confidence intervals. 

The applications potentially benefitting from bias prediction techniques are such as packing 
of SFAs in disposal canisters and calculations of temperatures inside storage casks. To adhere to 
safety limits, calculations can be penalized with a bias and a bias uncertainty. Also, criticality 
calculations on SNF which credit the fuel burnup can rely on predictions of biases of isotopic 
concentrations. Also, experimental measurements on SNF are expensive and sparse, and 
development of these techniques will help in maximizing their usage and allowing data-driven 
predictions on applications not fully covered by their AOA. 



Introduction 
 

 
12 

 

1.11 Structure of the Thesis 

The thesis is structured as following: 
- Chapter 2 describes the analyzed decay heat and PIE benchmarks. 
- Chapter 3 introduces the codes and computer hardware used in the present study. 
- Chapter 4 describes the relevant M&S assumptions. 
- Chapter 5 presents the hypotheses tests: the parametric z-test, and the non-parametric 

permutation and bootstrap tests. 
- Chapter 6 describes relevant techniques and models of ML. Selected methods of model 

validation and data resampling are provided. Then, descriptions are provided for the 
procedures followed in the present study for predicting the bias using integral features of 
the benchmarks, and their correlations, and also the applied methods of extracting 
properties of the benchmarks. 

- The results are presented in Chapter 7 to 11: 
 Chapter 7: the validation results. 
 Chapter 8: the uncertainty analyses results. 
 Chapter 9: results of the non-parametric tests applied using the validation data. 
 Chapter 10: results of the z-tests applied using the validation and uncertainty analyses 

data. 
 Chapter 11: results of the ML application on predicting the bias. Firstly, the extracted 

features are presented. Then, the predictions of the ML models are presented, starting 
with the linear models separately, given their limitations. The results of the RF and 
KKNN models are then presented, based on integral features of the benchmarks, e.g., 
𝐻𝐻/𝑋𝑋, and their correlations. Lastly, the predictive performance along with outliers 
removal is presented for the decay heat and Pu-239 concentration biases. 

- Chapter 12 concludes and summarizes the present study, along with potential applications 
of the present study and future work. 
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 Validation Benchmarks 
The present study focuses on two SNF characteristics, namely, the decay heat and 

radionuclide concentrations (Cs-137, U-235 and Pu-239). These characteristics were chosen given 
their importance for the economics and long-term safety of the DGR. The SNF decay heat is an 
important parameter affecting the number of disposal canisters required to encapsulate the SNF 
assemblies for their final disposal. Accurate evaluations of the SNF decay heat would result in 
using less safety margins on the calculated values, reducing the number of required canisters, 
which is economically advantageous. The chosen radionuclides are important for the long-term 
safety of the repository and the calculated dose rates, being part of the DRN list defined by Nagra 
[50], and also other WMO organizations such as SKB and Posiva [51,52]. The DRNs are more than 
the analyzed radionuclides, however, the chosen ones are the most abundantly measured in 
open literature addressing PIE of LWR fuel samples. Relatively large number of benchmarks 
would improve the subsequent data-driven analyses. Particularly, with respect to other fission 
products, Cs-137 has the highest number of measurements in the analyzed PIE data (except for 
Nd-148). Also, U-235 and Pu-239 are particularly important for other SNF applications, such as 
burnup credit implementation in criticality safety analyses [37]. 

Experimental benchmarks, hereinafter benchmarks, of these characteristics are selected from 
open-source literature for generation of the validation database, described in the following 
sections. 

2.1 Decay heat benchmarks 

Decay heat measurements for various light water reactor (LWR) fuel assembly designs, 
enrichments, burnups, and cooling times have been selected for validating the M&S sequences. 
The modeled SFAs are listed in  

Table 2. All assemblies are based on UO2 fuel. The data are 262 measurements on 160 SFAs, 
split into 85 measurements on pressurized water reactors (PWRs) and 177 on boiling water 
reactors (BWRs). Particular SFAs have multiple measurements at various cooling times, assumed 
independent in this work. Such assumption is motivated by the unavailability of experimental 
correlation values between the reported measurements. Therefore, each individual 
measurement is considered a benchmark, including the multiple measurements on the same SFA. 
The influence of the correlation assumptions on the hypothesis testing is also analyzed in this 
study.  
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The data are based on measurements conducted by GE and SKB [12,13], along with details 
about the irradiation history and the design specifications of the SFAs. The measurements 
covered assembly discharge burnups up to 51 and 47 GWd/tHMi for PWRs and BWRs, 
respectively, and cooling times up to 27 years.  

The data are selected from the open-source literature, and other measurement campaigns 
which are limited in size are excluded. Specifically, the measurements on 4 assemblies conducted 
at the EMAD facility by the Hanford Engineering Development Laboratory (HEDL) were excluded 
[53]. They represent less than 2% of the total analyzed data, and it was decided that excluding 
these 4 SFA is a negligible reduction. Also, excluding these data allowed splitting the analyzed 
data based on the laboratory conducting the measurements (i.e., GE and SKB) and the SFA 
reactor of origin (i.e., BWR and PWR). The analyzed categories are: 

1. Clab PWRs 
2. Clab BWRs 
3. GE-Morris PWRs 
4. GE-Morris BWRs 

2.1.1. Measurements at the GE-Morris facility 

Calorimetric measurements were conducted by GE at the Morris facilities (Illinois, USA) on 77 
full-length PWR and BWR SFAs discharged from the following reactors: San Onofre 1, Point Beach 
2, Dresden 2, Cooper, and Monticello [13,54]. The measurements were conducted using a pool-
type calorimeter that evaluates the rate of the water temperature rise in the calorimeter where 
the SFA is located. The decay heat is evaluated using a calibration curve, established between the 
thermal output of an electric heater and the corresponding rise in the water temperature. The 
measurements account for the heat loss through gamma leakage using gamma-ray detectors. 
The GE-Morris benchmarks cover a range of cooling times down to approximately 2 years, 
burnups down to approximately 5 GWd/tHMi, and also SFAs with high decay heat. 

2.1.2. Measurements at the Clab facility 

Calorimetric measurements were conducted between 2003 and 2004 by SKB at the Clab 
facility (Oskarshamn, Sweden) on 83 SFAs, reported in SKB report no. R-05-62 [12]. The 
measurements were conducted also using a pool-type calorimeter. However, the experimental 
uncertainties are lower than that of the GE measurements. The measurements involved SFAs 
spanning higher discharge burnups and are measured at longer cooling times than the GE 
measurements [12]. The SFAs measured in Clab contain 18 “rebuilt” SFAs: some of their fuel rods 
were removed at the EOL or in between cycle downtime. Such cases are still considered in this 
work, and their specifications are provided in Appendix I. 
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2.1.3. Fuel assembly designs and irradiation data 

Table 2 lists the SFAs modeled in the present study, and selected Polaris models are shown in 
Figure 2. The SFAs have various fuel assembly designs, enrichments, discharge burnups and 
cooling times, being useful for assessing the performance of the computational tools over a wide 
range of applications. The SFAs discharged from a reactor belong to a particular design, except 
for the Forsmark and Oskarshamn SFAs. Additionally, major SFA designs include subcategories 
such as the GE 8x8 in Ringhals-1 and W 15x15 in Ringhals-2. The SFA design subcategories reflect 
differences in the assembly enrichment layouts, the number of burnable absorbers, and the 
design specifications. Many of the BWR SFAs contain integral absorbers, gadolinia-bearing fuel 
rods, summing to 157 benchmarks out of the total of 262. 

The PNL-577 Vol. I and II reports [13,54] provided the basis for the data implemented for the 
Cooper SFAs (GE measurements). However, the enrichment layout (and other design data) of the 
Cooper GE 7x7 assembly type was not detailed in the reports and was supplemented from the 
NUREG report CR-6972 [27]. The latter report also provided data for the remaining benchmarks 
of the GE measurements. The SKB report R-05-62 [12] was used for the SFA design and irradiation 
history data of the measurements carried out at the Clab facility. 

Table 2. Summary of the decay heat experimental benchmarks considered in this study, based 
on [12,13,27,54]. Range of properties, e.g., burnup range, are listed for all benchmarks belong-

ing to particular reactors. 

Facility Reactor 
type Reactor I Measured 

value (W) 
Burnup II 

(GWd/tHMi) 
Decay time 

(years) 
No. of 
SFAs 

No. of meas-
urements 

GE-Morris 
(GE) 

PWR SO-1 359 – 934 27 – 32 3 - 8 8 8 
PWR PB-2 724 – 934 32 – 39 4 6 6 
BWR D-2 20 - 30 5 8 1 2 
BWR C 62 – 392 12 – 28 2 – 7 56 81 
BWR M 46 – 155 9 – 21 10 – 11 6 13 

Clab (SKB) 

BWR B-1, 2 83 – 240 20 – 41 11 – 25 7 9 
BWR F-1,2,3 85 – 218 20 – 38 11 – 15 11 12 
BWR O-2,3 56 – 283 15 – 47 12 – 27 14 15 
BWR R-1 88 – 211 21 – 45 13 – 24 17 45 
PWR R-2 357 – 692 34 – 51 16 – 27 18 33 
PWR R-3 210 – 714 20 – 47 13 – 26 16 38 

Total 
PWR    210 - 934 20 – 51 3 – 27 48 85 
BWR    20 - 392 5 – 47 2 – 27 112 177 

I SO, PB, D, C, M, B, F, O, and R are abbreviations for: San Onofre, Point Beach, Dresden, Cooper, 
Monticello, Barsebäck, Forsmark, Oskarshamn, and Ringhals, respectively. 

II Assembly discharge burnup 
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Figure 2. Selected Polaris models of BWR SFAs (top 3 rows) and PWR SFAs (bottom row). The 

BWR models are asymmetric, while the majority of the PWRs have quarter symmetry. The mod-
els are (from left to right, top to bottom): GE7, GE8, GE9, SVEA-64, SVEA-100, W14x14, 

W15x15, and W17x17. Fuel rods are shown in different colors to reflect differences in densities, 
enrichments, and gadolinium content. 

2.1.4. Decay heat experimental uncertainties 

The uncertainties in the measurements reported by SKB are based on [12] (summarized in 
Table 3), and they are based on estimates of Gauld et al. [27] for the GE measurements 
(summarized in Table 4) – both are two standard deviations (2σ). The values in Table 3 and Table 
4 are plotted in Figure 3. The uncertainties are reported at specific upper and lower power, and 
uncertainties at intermediate decay heat values are not reported in the original reports. In the 
present study, uncertainties at intermediate decay heat values are obtained by linear 
interpolations between the values in Table 3 and Table 4. The uncertainties are higher at low 
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decay heat values for both laboratories. As observed, uncertainties of the GE measurements are 
significantly higher than the ones of SKB. 

Table 3. Uncertainties (2σ) in decay heat measurements at the Clab facility based on Reference 
[12]. 

SFA Power (W) Uncertainty (W) Uncertainty (%) 

BWR 
50 4.2 8.4 

350 6.2 1.8 

PWR 
250 9.2 3.7 
900 18.8 2.1 

Table 4. Uncertainties (2σ) in decay heat measurements at the GE-Morris facility based on Ref-
erence [27]. The values correspond to both PWRs and BWRs. 

SFA Power (W) Uncertainty (W) Uncertainty (%) 

GE 
200 16 8 
700 28 4 

 
Figure 3. Uncertainties in the decay heat measurements [12,27]. Uncertainties are reported at 
upper and lower values, marked at the ends of each line along with values of both the meas-
ured decay heat and the corresponding uncertainty. Uncertainties are interpreted as 2σ, and 

intermediate values are linearly interpolated between the listed upper and lower values. 
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2.2 Post-irradiation-examination benchmarks 

The analyzed PIE benchmarks in the present study are obtained from the SFCOMPO database. 
SFCOMPO (version 2.0) is a relational database of experimental assay data of SNF isotopic 
composition [11,55]. The database is maintained and evaluated by OECD/NEA’ SFCOMPO TRG 
[19] of the Working Party on Nuclear Criticality Safety (WPNCS) of the NEA Nuclear Science 
Committee [56]. The database is composed of publicly available (i.e., published) data of PIE 
benchmarks. The data include the radiochemical analyses (RCA) of measured isotopes (e.g., their 
inventory, methods of measurements, and experimental uncertainty). Additionally, other details 
are included to allow validating calculational methods of fuel burnup calculations. The latter 
details are primarily reactor operational data (e.g., dates of active and down cycles), PIE 
irradiation history (e.g., cycle-wise power densities), and assembly design information (e.g., 
enrichment layout and rod dimensions). Additional relevant information is also included, such as 
references to the original experimental lab reports and publications analyzing the PIEs. The 
summary of the analyzed PIEs in the present study is provided in Appendix II. Also, Appendix III 
provides selected Polaris input files of two PIEs having a BWR and a PWR origin. 

2.2.1. Characteristics of the PIE Benchmarks 

The present study focuses on PIE samples irradiated in light water reactors (LWR), considering 
PIEs from 12 PWRs and 7 BWRs (summarized in Table 5). Most PIEs are from assemblies based 
on UO2 fuel (281 PIEs) and 4 PIEs are MOX-type fuel, totaling 285 samples. The PIE data are more 
diverse than the decay heat data, they have different fuel assembly designs, burnups, 
enrichments, operational conditions, and multiple laboratories that conducted the 
measurements. Detailed descriptions of the analyzed PIE samples and their host assemblies are 
provided in Appendix II, along with main modelling assumptions used to generate the Polaris 
models. Such assumptions include methods used to interpolate the moderator temperature in 
PWRs vs. the axial height of the samples. Specific modelling assumptions for particular samples, 
such as cruciform control rods in Trino Vercellese-1 and Yankee-1 PIEs, are discussed within the 
subsections of each reactor data. 

Figure 4 shows selected characteristics of the considered PIE benchmarks. The axial height is 
the ratio of the axial position of the sample to the total active height of the fuel rod. The 
benchmarks are well distributed over the active length of the fuel rods, ranging from axial 
positions of 0.0 to 1.0. The coolant density is the density of the water in the vicinity of the sample, 
excluding water that might exist in, for instance, water gaps. Water density changes significantly 
with the axial height for BWR, considering the increased void fraction with the axial height upon 
the onset of boiling. In PWRs, the change in the coolant density over the axial length is smaller, 
due to the rise in the water temperature without boiling. The enrichment is the ratio of the U-
235 mass the total uranium mass initially present in the sample (unlike the decay heat 
benchmarks which have their assembly average enrichments). Enrichments as low 0.24 and 0.70 
wt% are encountered, whereas the former belongs to MOX samples (4 PIE samples from the 
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Dodewaard-1 reactor). The 0.7 wt% enrichment belongs to fuel samples at top and bottom 
blankets of BWR, having natural uranium loading. The range of enrichments spans up to relatively 
high values of 4.94 wt% U-235 (regarding LWR fuel enrichments). 

Table 5. Summary of the analyzed PIE samples from the SFCOMPO database. 

Reactor name Reactor type No. of samples 
Calvert Cliffs-1 PWR 9 

Genkai-1 PWR 2 
Mihama-3 PWR 9 

Neckarwestheim-2 PWR 1 
Obrigheim-1 PWR 25 

Ohi-1 and Ohi-2 PWR 6 
Takahama-3 PWR 16 

Three Mile Island-1 PWR 13 
Trino Vercellese-1 PWR 31 

Turkey Point-3 PWR 13 
Yankee-1 PWR 21 
Cooper-1 BWR 6 

Dodewaard-1 BWR 5 
Fukushima Daini-1 BWR 13 
Fukushima Daini-2 BWR 44 

Garigliano-1 BWR 26 
Gundremmingen-1 BWR 15 

Japan Power Demon-
stration Reactor-1 BWR 30 

Total 
PWRs 146 
BWRs 139 
 

 
Figure 4. Characteristics of the considered PIE samples. Left: the axial height of the sample (z) 
with respect to the active length of the fuel rod (H) vs. the coolant density. Right: the sample 

enrichment vs. the sample given burnup. Additionally, BWR MOX samples are marked with “X”. 
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2.2.2. Burnup values for the PIE samples 

Few samples are having burnup values higher than 60 GWd/tHMi, which is lower than recently 
discharged fuels. The largest burnup value in the current dataset is 67 GWd/tHMi, belonging to 
samples from the Fukushima Daini-1 reactor. Very low burnup values are also encountered in the 
current dataset. The lowest burnup is 1.4 GWd/tHMi, from the Japan Power Demonstration 
Reactor-1 samples (JPDR-1). All the samples of the JPDR-1 have relatively low burnup values, 
ranging from 1.4 to 9.1 GWd/tHMi, which is a relevant extension in the low burnup region. The 
PWRs cover narrower burnup range compared to the BWRs, ranging from 6.0 up to 54.6 
GWd/tHMi. 

An implemented assumption regarding the sample burnup is that the calculated burnup 
values are adjusted such that the calculated Nd-148 concentration matches the measured value 
(within ±0.05% of the measured value). The adjustments proceed by scaling the power in all 
irradiation cycles by a specific factor. The burnup values shown in Figure 4 are the ones from 
SFCOMPO, not corrected to match the Nd-148 concentration measurements. Typically, they are 
different from the actually implemented burnup values. Figure 5 shows the applied corrections 
on the burnup values. As observed, significant corrections to the given burnup values were 
applied. Only 52% of the samples have their estimated burnup within 1% of the given values. 95% 
of the corrections lie within 0.8 and 1.15, and the minimum and maximum applied correction 
factors are 0.49 and 1.34. 

 
Figure 5. Correction factors applied on the burnup of the PIE samples. The dashed blue lines are 

the 2.5% and 97.5% percentiles (i.e., an interval that contains 95% of the observations). 

2.2.3. Measurements of the radionuclide concentrations 

The measured concentrations of U-235 and Pu-239 are reported for the analyzed 285 samples. 
Cs-137 measurements are reported only for 222 of the analyzed samples. 5 samples have their 
U-235 and Pu-239 measured multiple times, using different methods or at different laboratories. 
Also, 33 samples have their Cs-137 measured multiple times. Duplicate measurements are not 
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considered in the analyses, i.e., only one value out of the multiple measurements is selected for 
further analyses. For instance, for samples that have “cross-check” measurements at different 
laboratories (SCK.CEN and PSI), such as PIE DU1 and DM1 of the Dodewaard-1 reactor, only the 
measurements at SCK.CEN are considered, as other samples from Dodewaard-1 were only 
measured at SCK.CEN.  

The reported measurements are in different units. For instance, U-235 and Pu-239 have their 
measured values (or measurements-driven values) reported in the following units: 

1. mass per initial uranium mass 
2. mass per initial U-238 mass 
3. mass per final uranium mass 
4. mass per final U-238 mass 
5. moles per final uranium moles 

The Cs-137 has other units of measurements (in addition to the above-mentioned units): 
1. activity (Bq) per final uranium mass 
2. activity (Ci) per initial uranium mass 

In the present study, all units are converted into mass per initial heavy metal mass (e.g., 
mg/gHMi), including the MOX samples. The initial HM mass is the initial mass of elements having 
their atomic number Z > 89. The conversion is motivated by the need to have the same unit for 
the bias, and therefore the calculated and the measured values. Mass per initial HM mass is 
chosen since most U-235 and Pu-239 measurements are reported in this unit. The conversion 
factors into the initial HM mass are based on the calculations. 

In addition to the measured concentrations, the majority of the measurements have their 
experimental uncertainties reported: 

1. for U-235: 235 samples out of 285, 
2. for Pu-239: 218 samples out of 285, and  
3. for Cs-137: 146 samples out of 222. 

As noticed, a significant number of samples lack information about uncertainties. Figure 6 
shows histograms of the reported experimental uncertainties, based on the SFCOMPO database 
[11]. Whenever experimental uncertainties are not reported, they are assigned to zero in this 
figure. Additionally, the reported uncertainties are often different in different methods of 
measurements, and also for different laboratories using the same method of measurements. 

Figure 7 shows the measured U-235, Pu-239 and Cs-137 concentrations vs. the given burnup 
values of the PIE samples. The burnup is chosen for the plots since the considered isotopes 
change monotonically in low and medium burnup ranges, albeit non-linear, with the burnup. 
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Figure 6. Experimental uncertainties (2σ) for the PIE samples, based on SFCOMPO [11]. 

  
Figure 7. Measured U-235, Pu-239, and Cs-137 concentrations vs. the sample given burnup. The 

plotted bars are experimental uncertainties (2σ). 

2.2.4. Excluded SFCOMPO benchmarks 

The analyzed PIEs in this work are 285 samples, less than the number of LWR samples in the 
SFCOMPO. Several samples were excluded from the present study, based on analysis of their 



Validation Benchmarks 
 

 
23 

 

provided data in SFCOMPO. Benchmarks that have incomplete description of their lattice design 
and operational data are excluded, such as the benchmarks of Fukushima Daiichi-3, Tsuruga-1 
and Quad Cities-1. Often, benchmarks have incomplete description of their details, and 
assumptions are used to complete the necessary modelling information. However, missing 
information can be essential. Other excluded PIE benchmarks belong to fuel rods that were 
relocated in different positions during irradiation, such as Gösgen-1 and Vandellos-2. Modelling 
the relocated samples requires additional assumptions compared to non-relocated PIEs. Such 
assumptions are significant, potentially resulting in significant differences in calculated 
concentrations. 
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 Modelling and Simulations Codes 
Three types of calculations are performed in the present study: 

1. Validation, i.e., modelling of SNF benchmarks to calculate their measured 
characteristics. 

2. Uncertainty propagation, i.e., propagating uncertainties in the inputs and data of the 
calculational models into uncertainties and correlations of the calculated characteristics. 

3. Machine learning, i.e., applying algorithms on the validation and uncertainty analyses 
data to derive models for predicting the bias of the calculated characteristics. 

The SCALE nuclear modeling and simulation code system [49] (version 6.2.3) is primarily used 
for validation and uncertainty propagation. It is developed by Oak Ridge National Laboratory (US) 
and is chosen for its widely usage for nuclear system design and safety analyses such as criticality 
safety, shielding calculations, and LWR analyses. The current validation and uncertainty 
propagation rely mainly on two SCALE codes: the Polaris module and the Sampler super-
sequence. The Polaris lattice physics code (coupled to ORIGEN depletion and decay code) is used 
for validation. Sampler stochastic sampling super-sequence is used for uncertainties propagation. 
The R language [57], along with the Caret package [58], are primarily used for Machine Learning. 

Cross-section libraries are available in SCALE in a 252- and 56-group structure for use if 
calculations with Polaris. The 252-group library is for general-purpose reactor physics and 
criticality safety applications and the 56-group library is intended for light water reactor analysis 
[49]. In the present study, Polaris and Sampler are implemented using the SCALE “56g” multi-
group (MG) library. Choosing the 56g MG library is mainly motivated by its reduced 
computational requirements compared to the more refined 252g library, and its suitability for 
the intended application, i.e., depletion, and decay calculations. 

3.1. Validation tools 

3.1.1. Polaris code 

Polaris is a 2D lattice physics module used for the analysis of LWR fuel assemblies, based on 
the Embedded Self-Shielding Method for evaluating the self-shielded multigroup cross-sections 
and a Method of Characteristics transport solver [59,60]. The Polaris module performs the lattice 
calculations, coupled with ORIGEN for depletion and decay calculations, leading to time-
dependent isotopic concentrations, and subsequently decay heat. The decay and fission yield 
data are based on the ENDF/B-VII.1 nuclear data library, while the MG cross-section libraries are 
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based primarily on ENDF/B-VII.1 along with supplementary data from the JEFF-3.0/A nuclear data 
library, as recommended for general-purpose reactor physics and LWR analysis [49]. 

3.1.2. ORIGEN code 

The decay heat benchmarks are re-calculated using different codes than Polaris. The purpose 
of the multiple calculations will be explained in Section 5 (Hypothesis testing on the bias). The 
second calculational sequence (ORIGEN hereinafter) consists of three steps: generation of lattice-
specific irradiation-dependent cross-section data using TRITON [49,61], followed by multiple 
cross-section data interpolations using the ARP interpolator utility and the actual SFA design and 
irradiation data, followed by depletion and decay calculations using ORIGEN [49,62]. Similar to 
Polaris, TRITON also uses the SCALE 56g library. The approach has been selected to have 
differences from the Polaris calculations – differences in the methods and data, such that 
systematic differences of different calculations from the measurements could be identified.  

3.2. Uncertainty propagation 

The uncertainty propagation is performed using the SCALE Sampler super-sequence. Sampler 
performs stochastic uncertainty propagations, by generating and running hundreds of input files 
of sub-sequences (Polaris) and analyzing the outputs [63]. The inputs are generated by random 
sampling from nuclear data covariances (available in SCALE) and joint probability distributions of 
uncertain design and operational variables of the SFA. The outputs are statistical analyses of 
distributions of Polaris calculated values, which include estimations of the uncertainties and 
correlations between the calculated values. The nuclear data covariances are primarily based on 
the ENDF/B-VII.1 nuclear data library. ENDF/B-VII.1 covariance data along with other 
supplementary data are sources for the cross-section, spectra and nubar covariances. Fission 
yield variances (combining independent and cumulative yields) are sources for the fission yields 
covariances. Decay variances along with imposed sum of unity for branching ratios are sources 
for decay data covariances.  

3.3. Machine learning 

The application of the machine learning models and algorithms is performed using the R 
language and environment. R is an open-source language and environment for statistical 
computing, developed at Bell Laboratories [57], available under the terms of the Free Software 
Foundation’s GNU General Public License in source code form. R is chosen since it is a widely 
used tool in statistical analysis related research, and also due to its inclusion of a wide range of 
statistical models, tests, and algorithms, data analysis and manipulation capabilities, together 
with generation of publication-quality plots. R also serves as a programming language, which 
allowed developing algorithms tailored to the hypotheses of the current research. R packages 
are extensions of R itself, allowing lengthy operations to be integrated in functions. In the current 
research, the Caret package [58], which stands for “Classification And REgression Training” is 

http://www.gnu.org/
http://www.gnu.org/
https://www.r-project.org/COPYING
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mainly used for developing the investigated ML models, i.e., data splitting, pre-processing, 
feature selection, model training and testing, tuning using resampling, and variable importance 
estimation, as well as other functionality. 

3.4. Computational requirements 

All calculations were performed on the workstations listed in Table 6. The depletion and decay 
calculations of the PIE benchmarks spanned 9.5 hours (on average). The corresponding 
calculations of the decay heat benchmarks spanned 1.6 hours (on average). The PIE benchmarks 
required approximately 1.8 million core-hour for completions, whereas the decay heat 
benchmarks required approximately 0.3 million core-hour. The length of an individual calculation 
depends mainly on the number of materials being depleted, the presence of gadolinia (which 
requires ring-wise material specifications), and the number of irradiation steps. 

An additional 0.35 million core-hour were required to run the machine learning models for all 
the data (excluding testing times). The runtime of the individual ML models significantly depends 
on the type of the model being regressed, the initial number of variables in the model, and the 
size of the grid being searched for the optimal model parameters. The KKNN-type models are 
computationally intensive, which required between 32-48 runtime hours on a 128-thread 
workstation. RF models required less time, between 6-9 runtime hours on the same 
workstations. 

Table 6. Specifications of the hardware used to perform the depletion and decay, uncer-
tainty propagation, and the machine learning calculations. 

Host Workstation-H Workstation-I Workstation-J Workstation-K 

Architecture x86_64 x86_64 x86_64 x86_64 

CPU name 
AMD Ryzen 

Threadripper 
2990WX 

AMD Ryzen 
Threadripper 

2990WX 

AMD Ryzen 
Threadripper 

3990X 

AMD Ryzen 
Threadripper 

3990X 

CPU clock speed 3.0 GHz 3.0 GHz 2.9 GHz 2.9 GHz 

CPU cores / threads 32/64 32/64 64/128 64/128 

RAM 128 GB 128 GB 256 GB 256 GB 

Operating System Ubuntu 18.04 
LTS (64-bit) 

Ubuntu 20.04 
LTS (64-bit) 

Ubuntu 20.04 
LTS (64-bit) 

Ubuntu 20.04 
LTS (64-bit) 
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 Validation and Uncertainty Propa-
gation Schemes 

The implementation of Polaris and Sampler on the present study is described in this chapter. 
As mentioned, the current data are two categories, SNF decay heat and isotopic concentrations 
(Cs-137, U-235, and Pu-239). Firstly, sections 4.1 and 4.2 provide the implementation of Polaris 
for the validation of the two categories of SNF characteristics, respectively. However, the 
descriptions of the PIE benchmarks include reactor and sample specific modelling assumptions, 
thoroughly described in Appendix II. Afterwards, Section 4.3 provides the implementation of 
Sampler for the uncertainty propagations. 

4.1. Implementation of Polaris on the decay heat benchmarks 

The input data for the selected benchmarks, e.g., SFA design and irradiation information, are 
described in Section 2. These data are converted into individual Polaris inputs for each 
benchmark. For each model, the following assumptions are applied: 

1. The 2D model represents the assembly as a whole (the active section of the assembly) – 
i.e., average enrichment (per rod), burnup, and operational history are axially average 
values. 

2. The water density values of the Clab benchmarks are similar to the values reported in 
literature [27,28]. Seven SFAs are not reported in the mentioned references, being rebuilt. 
Four assemblies belong to the Barsebäck-1 reactor, and three belong to the Oskarshamn-2 
reactor. The description of the Barsebäck-1 assemblies provided in Reference [12] do not 
include the moderator density or void fraction. The water density was assumed to be the 
average water density for other SFAs irradiated in the same reactor. The description of the 
Oskarshamn-2 assemblies provided in Reference [12] include nodal values of the void 
fraction. Void fractions were averaged into assembly average values and interpolated into 
densities using the water and steam densities at the given reactor pressure.  

3. The water density value for all the GE benchmarks is 0.4343 g/cm3, similar to the value 
provided in [27] (Table 4.10). 

4. The irradiation histories are average cycle powers and operational variables (i.e., cycle-wise 
averages are implemented). 
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5. The 2D axially symmetric models include reflective boundary conditions (radially) and 
exclude the neighboring assemblies. 

These approximations (implementing 2D models and approximating the radially 
neighboring assemblies with boundary conditions) stem from the properties of the used 
version of the Polaris code (being a 2D code). The approximation of implementing cycle-
wise irradiation data stem from the resolution of the available irradiation data. Particular 
SFAs have their irradiation data in a high resolution (including cycle variations), which 
necessitated using their cycle-wise averages such that they are consistently modelled with 
the other SFAs. 

6. Modeling control rods was excluded due to absence of their design data. 

7. Impurities in the fuel and structural material were implemented whenever data were 
available – e.g., for the Cooper benchmarks. 

8. The activation of the cladding and structural materials (e.g., spacers) was considered. 
Spacers were included in the models as an additional thickness of the cladding 
(implementing the specific material for the spacers). The total mass of the spacers was 
assumed to be uniformly distributed over the active length of the SFA, conserving the 
moderator-to-fuel ratio in the model – the 2D model represent the whole SFA. 

9. The default predictor-corrector method is implemented. 

10. SFA quarter symmetry was considered only for symmetric PWR cases. 

11. 18 SFAs from Clab were “rebuilt” (following the wording in Reference [12]), i.e., fuel rods 
were removed at the end of life (EOL) or during cycle downtimes. The actual rebuild of the 
SFAs proceeds by removing fuel rods at the end of life or during cycle downtimes and 
replacing them with other non-active rods. The rebuilt SFAs were modelled similarly to the 
typical SFAs – i.e., in a single depletion and decay simulation without rearrangement of the 
lattice layout. The decay heats of the rebuilt SFAs were calculated by considering decay 
heat from the non-replaced rods, i.e., the decay heat per SFA excludes the rebuilt rods. The 
assumption of modelling the rebuilt SFAs in this method is that the decay heat per the non-
replaced rods is not significantly different between two models where the rebuilt rod is a 
fuel or a Zr-homogenous rod. As an example, the difference in the decay heat per SFA of 
one of the rebuilt SFA, no. 5829 of the Ringhals reactor, is <0.2% of the calculated value, 
which is considered not significant. Further description of the modelling of the rebuilt SFAs 
is provided in Appendix I. 

4.2. Implementation of Polaris on the PIE benchmarks 

The PIE data are more heterogeneous than the decay heat data, including various fuel designs 
and irradiation conditions, necessitating specific modelling assumptions. Detailed descriptions of 
the PIEs and modelling assumptions are provided in Appendix II. Herein this section, only generic 
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descriptions of the implementation of Polaris and generic modelling assumptions are provided. 
Also, the descriptions are provided whenever they are different from the Polaris implementation 
for the decay heat benchmarks. The following assumptions are applicable to the PIE samples: 

1. The Polaris models represent a 2D horizontal slice of the lattice at the location of the PIE 
sample. The lattice design and the irradiation history are assumed or interpolated at the 
location of the sample. A few measurements are reported for the whole assemblies or 
fuel rods (5 SFAs of the Obrigheim-1 reactor and 5 full-length fuel rods of Turkey Point-3 
reactor). The latter models implement the assembly average enrichment and operational 
history. 

2. The irradiation histories are implemented as provided in SFCOMPO or in the original 
references of the PIE samples. Whenever average cycle powers and operational variables 
are provided, the irradiation histories are discretized to approximately the resolution of a 
maximum of 2 GWd/tHMi. 

3. Modeling the control rods were implemented whenever the PIE samples are reported to 
have active control rod movements neighboring their host assemblies. 33 Samples were 
modeled along with active control rod movements, representing 11% of the PIE data. 

4. Assemblies having their fuel rods relocated during their irradiation are excluded from the 
PIE data. These include benchmarks of Gösgen-1 and Vandellos-2. 

5. The BWRs are modelled as a whole (no symmetries are applicable to BWR models in the 
current version of Polaris). Only the south-east quarter is modelled in PWRs when the 
assemblies have quarter symmetries. PWRs lacking symmetry, either due to the layout of 
the guide types or the presence of a cruciform-like control rod, are modelled as a whole. 

6. Fuel temperatures are not provided for all of the analyzed PIEs. In case the fuel 
temperature is not provided, it is assumed to be 900 K.  

Reference [64] presents a sensitivity study conducted on fuel samples from Trino 
Vercellese reactor, showing that the concentrations of the currently analyzed isotopes 
have low sensitivity to the fuel temperature. For a perturbation of 10% of the fuel 
temperature (in Kelvin), the changes in the concentrations of Cs-137, U-235, and Pu-239 
are: 0.0%, <0.3% and 1.0%, respectively. A similar observation is also noted in other 
literature studies such as Reference [65], indicating that the fuel temperature has little 
significance on the analyzed isotopes. Uncertainties in the concentrations of the analyzed 
isotopes are within 0.3% due to uncertainties in fuel temperatures.  

Additionally, sensitivity analysis to the fuel temperature was performed on selected pin-
cells (Table 22). The fuel temperatures were perturbed by ±1% in these pin-cell models, 
and the maximum change in the analyzed characteristics are (in the analyzed six pin-cells): 

- Decay heat: 0.02% 
- Cs-137: <0.01% 
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- U-235: 0.09% 
- Pu-239: 0.13% 

Such sensitivity and uncertainty values  would justify approximating the fuel temperature 
(herein this study) in the prescribed manner to allow inclusion of a larger number of 
samples. In total, fuel temperatures in 16 PIE samples of PWR origin were set equal to 900 
K, and 113 for the BWRs (total PWR and BWR samples are 146 and 139, respectively). 
Indeed, most of the BWR PIEs lack their fuel temperature information. 

Information about whether the fuel temperature is given or assumed is also recorded for 
each sample as a dummy variable in the ML models. Binary values are used; recording 
one for “given” fuel temperatures and zero for “assumed” fuel temperatures. 

7. Gadolinium rods, UO2-Gd2O3, are modelled as rings to capture the ring-wise, gradual 
depletion of the gadolinia with irradiation. Each rod is discretized into 10 rings and 8 radial 
sectors. 

8. Side water gaps and water channels in BWRs contain water (i.e., moderating water). 
Moderating water has the same temperature of the cooling water at the non-boiling 
section of the assembly and has the saturation temperature for the remaining upper 
section of the assembly in which the cooling water is in a boiling state. 

9. Guide and instrument tubes in PWRs are filled with the same cooling water in-between 
the fuel rods. 

10. The only part of the fuel assembly modelled with air is the gap between the fuel and the 
cladding. 

11. For PWRs, whenever the moderator temperature is not provided in SFCOMPO or the 
references of the PIE samples, it is assumed to have a cosine shape along the active length 
of the SFA. The assumption is based on a simplification of the power profile in the active 
fuel section to follow a sinusoidal shape function, based on Reference [66]. The power 
density in the fuel would peak in the center of the axial length, and the moderator 
temperature peaks at the end of the active length. The following equation is used to 
obtain the moderator temperature as a function of the axial length from the bottom of 
the active fuel: 

𝑇𝑇𝑧𝑧 = 𝑇𝑇𝑖𝑖𝑖𝑖 +
𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖

2
�1 − 𝑐𝑐𝑐𝑐𝑐𝑐

𝜋𝜋𝜋𝜋
𝐻𝐻
� . (4.1) 

Using the water inlet and outlet temperatures (𝑇𝑇𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜), water temperatures (𝑇𝑇𝑧𝑧) 
are obtained at the axial locations (𝑧𝑧) of the sample. 

12. For BWRs: whenever the temperature of the cooling water is not provided in SFCOMPO 
or the references of the PIE, it is set to the boiling temperature at the given reactor 
pressure. The density of the cooling water is the sum of two components: the water and 
steam at the location of the PIE sample. 
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13. A boron letdown curve is assumed for PIE samples having only their cycle average boron 
values. The boron concentration is assumed to decrease linearly achieving the given cycle-
wise average values. 

4.3. Implementation of Sampler for uncertainty analyses 

Calculated uncertainties are obtained through stochastic propagation of the calculational 
model input uncertainties: SFA design and operational variables (DO) and nuclear data (ND). The 
latter are uncertainties in the fission yields (FY), cross-sections (XS) (also fission spectra, neutron 
yield (nu-bar), and scattering distributions), and decay data (DD). They arise from uncertainties 
in experimental nuclear data measurements, as well as uncertainties in the evaluation process 
itself, combining differential experimental information with nuclear physics theory to generate 
evaluated nuclear data like the ENDF/B-VII.1 library. These uncertainties are available in the 
SCALE code system (version 6.2.3), based primarily on ENDF/B-VII.1 nuclear data [49].  

The DO uncertainties are not available for the majority of the analyzed benchmarks, neither 
the decay heat benchmarks nor the PIE samples. The DO uncertainties are implemented in the 
present study based on recommended literature values, which are reported in the “Evaluation 
Guide for the Evaluated Spent Nuclear Fuel Assay Database (SFCOMPO)” [56].  

The DO variables are assumed to be normally distributed, and the implemented standard 
deviations (σ) of their distributions are listed in Table 7. The total mass of the SFA is assumed to 
be precise, i.e., the SFA heavy mass has zero variance, and a full correlation between the total 
cross-sectional area of all fuel rods and the fuel density is implemented. Fuel densities are not 
correlated to irradiation parameters in the present study (e.g., fuel temperatures and burnups). 
Fuel enrichments of all rods are assumed to be fully correlated. Fuel temperatures, water 
densities and temperatures, void fractions and the boron content in the water are the same 
throughout the lattice. In different cycles, these properties are assumed to be fully correlated. 
No information is available regarding the burnup uncertainties in the analyzed SFAs. The cycle-
wise powers of the SFAs are assumed to be normally distributed with a standard deviation of 
1.67%. The SFA cycle-wise average powers are assumed to be fully correlated between cycles. 
Finally, burnup uncertainties are assumed to originate from uncertainties in the cycle-wise 
average powers. 

Additional correlations were established between water density and temperature for the 
PWRs, and between SFA power and fuel temperature in both PWRs and BWRs. The water 
temperatures in the PWRs, for example, are sampled from their distribution with a correlation of 
-1 with the perturbed water density. Similarly, the fuel temperatures are sampled from their 
distribution with a correlation of +1 with the perturbed SFA power. 

Upper and lower limits were imposed on the distributions of the parameters, limiting 
unphysical values, such as an upper water density value in the BWR models corresponding to the 
non-boiling water density. 
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Table 7. Uncertainties in design and operational parameters of the analyzed benchmarks, based 
on [56]. The reference values in [56] are uncertainties and tolerances, whereas the applied un-

certainties in this study are standard deviations (1σ). 

Parameter I Uncertainty/Tolerance [56] 1𝜎𝜎 (this work) 
Cladding/tube thickness ±40 – 50 µm 16.7 µm * 
Cladding/tube diameter ±200 µm (PWR) / ±300 µm (BWR) 67 µm / 100 µm * 

Fuel pellet density < 2% the theoretical density 0.67% * 
Fuel pellet diameter ±20 µm II 

Enrichment (U-235 wt%) ±0.05% 0.0167% * 
SFA powers - 1.67% 

Water temp. (PWR only) ±2 °C 2 K 
Water density (PWR only) ±0.005 g/cm3 0.005 g/cm3 
Void fraction (BWR only) ±6% 6% 

Fuel temp. ±50 °C 50 K 
Boron content (PWR only) ±10 ppm 10 ppm 

I The parameters in reference [56] not included in this list are assumed to be precise. 
II Full correlation with fuel density. 
* The reported uncertainties in reference [56] are tolerances, and it is assumed in the present study that 

a two-sided tolerance interval contains 99.7% of the observations, i.e., the tolerance interval corre-
sponds to ±3𝜎𝜎 of a normal distribution. 

The burnup can be a significant variable impacting the resulting uncertainties of DO origin, 
and the accuracy of the burnup estimation depends on various factors, such as the reactor and 
core management codes [56]. Also, it can depend on the location in the core, i.e., whether the 
assembly is located at the periphery of the core or at its center. For this reason, cases are 
analyzed in addition to those listed in Table 7. For these cases, the assumptions of the burnup 
and power uncertainties are assessed for their relevance to the resulting uncertainties. The 
following cases are analyzed: 

1- Case 1: the SDs of all variables are increased by 50%. 
2- Case 2: all variables are uniformly distributed. The variance of each distribution for each 

variable is set equal to the variance of the normal distribution of the variable in the ref-
erence case. For example, the burnup value is uniformly distributed between 0.971 and 
1.029 of its nominal value, instead of normal distribution with a σ of 1.67%. 

3- Case 3: the burnup uncertainty is considered, and all other variables are assumed precise. 
4- Cases 4 and 5: the uncertainty in the cycle-wise powers depends on the burnup, i.e., in-

stead of a fixed σ of 1.67% in the nominal case, the variance of the cycle-wise power 
depends on the current burnup value. Assemblies are relocated to different regions of 
the core in different irradiation cycles and, as noted in reference [56], uncertainties in 
powers and burnups could be larger in peripheral locations of the core. In-out, out-in, and 
in-out-in (along with other patterns [67]) are fuel-loading strategies that allocate the as-
semblies in the core based on their reactivities and burnup; this can result in assemblies 
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having uncertainties in their powers, depending on their current location in the core and 
their current burnup value. 
Two cases are considered: the first case has zero variance in the SFA power at BOL (be-
ginning of life), and the variance in the cycle-wise powers increases linearly with burnup 
up to discharge. The second case has a maximum variance in the SFA power at BOL, and 
the variance in the cycle-wise powers decreases linearly with burnup down to zero vari-
ance at discharge. In both cases, the SFA discharge burnup has the same σ of 1.67%. For 
example, for the first case of zero variance in the power at BOL, the σ of the cycle-wise 
powers are 0.2% and 3.2% for the first and the last irradiation cycles, respectively. 

5- Case 6: the cycle-wise powers are sampled from their distributions independently from 
each other, i.e., correlations are not enforced. The discharge burnup does not necessarily 
have the nominal σ of 1.67%.  

4.4. Validation and uncertainty measures 

Common measures are being used in validating M&S tools and data in literature [27,28,68], 
such as the bias between the calculated and the measured values (𝐵𝐵 = 𝐶𝐶 − 𝐸𝐸), the normalized 

bias (𝐵𝐵𝑛𝑛 = 𝐶𝐶 − 𝐸𝐸
𝑀𝑀𝐻𝐻𝐻𝐻
� ), and their ratio (𝐶𝐶 𝐸𝐸� ). The present study focusses on using the bias (𝐵𝐵) 

and the ratio (𝐶𝐶 𝐸𝐸� ) in representing the validation results. 

Uncertainties of the calculated isotopic concentrations are direct outputs of Sampler, along 
with perturbation-wise calculated isotopic concentrations. Uncertainties of ND origin and those 
of SFA DO origin are propagated in separate runs. Calculated uncertainties from both separate 
calculations are combined together to obtain total calculated uncertainties, summed in 
quadrature. The uncertainties from ND origin are assumed to be uncorrelated with the ones from 
DO origin, and the total uncertainty for nuclide 𝑗𝑗 is calculated as: 

𝜎𝜎𝐶𝐶,𝑗𝑗
2 ≅ 𝜎𝜎𝑁𝑁𝑁𝑁,𝑗𝑗

2 + 𝜎𝜎𝐷𝐷𝐷𝐷,𝑗𝑗
2 . (4.2) 

The total calculated and experimentally measured values are assumed to be uncorrelated with 
each other. Uncertainty of the bias 𝐵𝐵 of benchmark 𝑖𝑖 is calculated from calculated and 
measurement uncertainties as: 

𝜎𝜎𝐵𝐵,𝑖𝑖
2 = 𝜎𝜎𝐶𝐶,𝐸𝐸,𝑖𝑖

2 ≅ 𝜎𝜎𝐶𝐶,𝑖𝑖
2 + 𝜎𝜎𝐸𝐸,𝑖𝑖

2 . (4.3) 

Uncertainties in the DO variables and their correlations are discussed in Section 4.3. The 
uncertainties of ND origin (XS, FY and DD) are propagated together in the same runs.  

The perturbation-wise calculated values allow obtaining correlations between them, and 
between the calculated values and the perturbed DO variables. The correlations between the 
calculated values of the benchmarks result from using the same perturbed ND or perturbation 
factors for the DO variables in numerous runs. The Pearson correlation between the calculated 
values of benchmarks 𝑖𝑖 and 𝑗𝑗 is calculated as: 



Validation and Uncertainty Propagation Schemes 
 

 
36 

 

𝜌𝜌𝑖𝑖𝑖𝑖 =
1

𝑁𝑁 − 1
�

�𝐶𝐶𝑖𝑖𝑘𝑘 − 𝐶̅𝐶𝑖𝑖��𝐶𝐶𝑗𝑗𝑘𝑘 − 𝐶̅𝐶𝑗𝑗�
𝜎𝜎𝑖𝑖 𝜎𝜎𝑗𝑗

𝑁𝑁

𝑘𝑘=1

, (4.4) 

where 𝐶𝐶𝑖𝑖𝑘𝑘 and 𝐶𝐶𝑖𝑖𝑘𝑘 are the calculated values in benchmarks 𝑖𝑖 and 𝑗𝑗 in the kth perturbation. The 
𝐶̅𝐶𝑖𝑖 and 𝐶̅𝐶𝑗𝑗 are the average values of the calculated quantities in benchmarks 𝑖𝑖 and 𝑗𝑗. 

Polaris models are run N times using various perturbed inputs, e.g., perturbed ND and DO 
variables, where N is 400 for the decay heat benchmarks and 335 for the PIE samples. The latter 
values are selected considering computational requirements and also to ensure that the results 
are sufficiently precise, i.e., they have low standard errors (SE). The SE of σ and correlation 
coefficients are calculated as [69]: 

𝑆𝑆𝑆𝑆(𝜎𝜎𝑖𝑖) =
𝜎𝜎𝑖𝑖
√2𝑁𝑁

, 𝑆𝑆𝑆𝑆(𝜌𝜌𝑖𝑖𝑖𝑖) =
1 − 𝜌𝜌𝑖𝑖𝑖𝑖2

√𝑁𝑁 − 1
. (4.5) 

The SE of σ and correlation coefficients depend on their values. E.g., the calculations with 
assembly F32 lead to a value of 2𝜎𝜎 of 49.0 W for its total decay heat due to uncertainties in ND. 
The SE value of the latter uncertainty will be 1.7 W (3.5% of the calculated uncertainty value). 
The total decay heat of the same assembly shows correlations of 0.67 and 0.98 with the total 
decay heats of assemblies 5A3 and 0E2, respectively. The latter correlations will have SE values 
of 2.7% and 0.2%, respectively. 
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 Hypothesis Testing on the Bias 
Hypothesis testing can be used to analyze whether the observed mean bias between the 

calculations and the measurements is significant or not. In particular, the following null and 
alternative hypothesis can be tested: 

𝐻𝐻0: 𝐶𝐶 − 𝐸𝐸 = 0, (5.1) 

𝐻𝐻𝑎𝑎: 𝐶𝐶 − 𝐸𝐸 ≠ 0. (5.2) 

In other words, the alternative hypothesis is that the calculations and measurements are 
significantly different: 𝐻𝐻𝑎𝑎: 𝐶𝐶 ≠ 𝐸𝐸. Different statistical tests can be used, broadly categorized into 
parametric and nonparametric tests. In the present study, statistical tests are conducted at a 
threshold p-value of 0.05. 

5.1 Non-parametric tests 

Nonparametric tests can assess the significance of differences between the calculations and 
measurements without assumptions on their distributions, e.g., they do not rely on normality 
assumptions of the data [70]. Once the distributions of the biases under the null hypothesis are 
obtained, statistical tests are conducted (e.g., at a significance level of 0.05). Under the 
assumption that the null is true, the null distribution of the chosen test statistic is generated, and 
the observed bias is compared to the null distribution to evaluate the probability of observing 
equal or more extreme values [70]. The null hypothesis in this case implies that the differences 
between the calculations and the measurements are random differences, i.e., due to chance, and 
the alternative hypothesis implies systematic, or statistically significant differences. 

Permutations and bootstrapping are randomization tests [69], used to generate the null 
distributions of the biases. In permutations, under the null hypothesis, the calculations and the 
measurements are equal, and calculated values are reassigned as measured values in numerous 
permutations (inter-shuffled in all possible rearrangements). Permutation is possible assuming 
“paired data” — i.e., the calculations and the corresponding measurements are conducted on 
the same unit, individual benchmarks. Sampling in permutation tests is performed without 
replacement. Random sampling is implemented using Monte Carlo, considering the extensive 
number of all possible permutations of the present data, increasing the computational 
requirements to calculate the exact permutation distribution. The average difference between 
the permuted calculations and measurements is calculated in each permutation – namely the 
permutation bias. The permutation distributions are used to calculate p-values of the actually 
observed mean bias, and therefore its significance, by calculating the biases that are equal or 
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more extreme than the observed mean bias. The null hypothesis is rejected, and the alternative 
is accepted if less than 5% of the observations are equal or more extreme than the observed 
mean bias in a two-sided test setting. 

Alternatively, in bootstrapping, the distributions of the mean biases are approximated by 
simulating from the present datasets. Unlike the permutations, bootstrap sampling is with 
replacement, i.e., numerous sampled datasets of biases are obtained by random sampling from 
the original dataset (both of equal sizes) with replacements. Once obtained, inference about the 
observed biases is performed from the bootstrap distributions. The bootstrap distributions are 
centered around the observed mean bias, and the alternative is tested by constructing 95% 
normal bootstrap confidence intervals on the bootstrap distribution of the bias. The null 
hypothesis is rejected, and the alternative is accepted if the 95% bootstrap confidence interval 
does not contain a mean bias of zero. 

5.2 Parametric z-test 

The parametric tests rely on assumptions regarding the underlying distribution from which 
the data are drawn. The bias is assumed to follow a normal distribution that is parameterized by 
the variance of the calculations only (or along with the variance of the measurements):  

𝐶𝐶 − 𝐸𝐸 ~ 𝑁𝑁(0,𝜎𝜎). (5.3) 

The z-test is an example of a parametric test. It is used to test the hypothesis regarding the 
significance of the observed bias, given uncertainty. In the present study, two cases of 
uncertainties are considered: (1) uncertainties in the calculated values, and (2) combined 
uncertainties from both the calculated and the measured values. The former case is the default 
for all of the analyzed characteristics, and the latter case will be additionally analyzed for the 
decay heat data. 

The calculated and measured values are converted into z-scores [69,71]. The z-score of 
benchmark 𝑚𝑚 is calculated as: 

𝑧𝑧𝑚𝑚 =
𝐶𝐶𝑚𝑚 − 𝐸𝐸𝑚𝑚

𝜎𝜎
. (5.4) 

For multiple benchmarks, the z-scores are correlated to some extent, due to correlations 
between the calculations and between the measurements, resulting in correlations between the 
biases. The correlations between these scores affects the applied hypothesis testing, and they 
are combined into a single figure using a combined weighted z-transform [72,73]. The following 
transformation is implemented to obtain the combined z-score: 

𝑧𝑧̅ =
∑ 𝑤𝑤𝑚𝑚𝑧𝑧𝑚𝑚𝑀𝑀
𝑚𝑚=1

�∑ 𝑤𝑤𝑚𝑚2𝑀𝑀
𝑚𝑚=1 + 2∑ 𝑤𝑤𝑚𝑚𝑤𝑤𝑛𝑛𝜌𝜌𝑚𝑚𝑚𝑚

𝑀𝑀
𝑚𝑚<𝑛𝑛

, (5.5) 

where 𝑤𝑤𝑚𝑚 is a weight for 𝑧𝑧𝑚𝑚, and 𝜌𝜌𝑚𝑚𝑚𝑚 is the correlation between 𝑧𝑧𝑚𝑚 and 𝑧𝑧𝑛𝑛. The 𝑚𝑚 and 𝑛𝑛 are 
different benchmarks, and the summation in Equation 5.5 is over every multiple combination of 
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benchmarks in the analyzed data. Equal weights are assigned to the benchmarks, and other 
weights are investigated in Chapter 10. The correlations between the z-scores could be obtained 
from the covariances between the biases and the standard deviations of the combined 
measurements and calculations (σ) as following: 

𝜌𝜌𝑚𝑚𝑚𝑚 =
𝑐𝑐𝑐𝑐𝑐𝑐(𝐵𝐵𝑚𝑚,𝐵𝐵𝑛𝑛)

𝜎𝜎𝑚𝑚𝜎𝜎𝑛𝑛
=
𝑐𝑐𝑐𝑐𝑐𝑐(𝐸𝐸𝑚𝑚,𝐸𝐸𝑛𝑛) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶𝑚𝑚,𝐶𝐶𝑛𝑛)

𝜎𝜎𝑚𝑚𝜎𝜎𝑛𝑛
. (5.6) 

The measurements and calculations are assumed independent from each other. The 
covariance between the biases is pinned down to the sum of two covariance terms: the 
covariance between the calculations and the covariance between the measurements. The latter 
is not available for the analyzed measurements, and only the covariance between the 
calculations will be evaluated given the applied perturbations. Equation 5.6 will be approximated 
based on the calculations solely, such that: 

𝜌𝜌𝑚𝑚𝑚𝑚 ≅
𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶𝑚𝑚,𝐶𝐶𝑛𝑛)
𝜎𝜎𝑐𝑐𝑚𝑚𝜎𝜎𝑐𝑐𝑚𝑚

. (5.7) 

The covariance between the biases is assumed to result only from the covariance between 
the calculations. Incorporation of experimental uncertainties and different levels of correlations 
between the measurements allows to analyze their effect on the hypothesis testing, investigated 
in Chapter 10. 
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 Machine Learning Schemes 
Machine learning and statistical inference are branches of science addressing predictions and 

inference using data. They both intersect with the data science field; however, data science is 
usually used to describe many other paradigms such as artificial intelligence and big data. Within 
the data-driven methods, a different emphasis is placed upon inference and prediction, whereas 
machine learning emphasizes more on predictions [74]. A way to interpret the difference is that 
inference focuses on using data and on finding out how the output is generated as a function of 
such data. Whereas for prediction, the interest is on using the existing data to derive models that 
accurately estimate the output for a new observation. 

6.1 Description of the chapter 

This chapter is structured as following: Section 6.2 provides a general description of the aims 
of applying ML on the current data. Section 6.3 introduces the distinctions between two cultures 
in ML: placing emphasis on predictive performance and placing emphasis on interpretability. 
Section 6.4 to 6.6 provide descriptions of statistics used to assess the predictive performance of 
models and choosing such models in a conservative manner. Section 6.7 describes the ML models 
applied in the present study, while Section 6.8 emphases on data resampling techniques. 
Sections 6.9 to 6.12 present the ML algorithms applied on two types of benchmark features: 
integral features and correlation matrices, along with outliers removal approach. Finally, section 
6.13 presents the applied approach for extracting features from the benchmarks. 

6.2 Application of predictive modelling of the bias  

The generic problem in ML is that, for an observable variable 𝑌𝑌, we assume that it depends on 
several variables 𝑋𝑋 = (𝑋𝑋1,𝑋𝑋2, . . . ,𝑋𝑋3). The dependency of 𝑌𝑌 on 𝑋𝑋 is then written as 

𝑌𝑌 = 𝑓𝑓(𝑋𝑋) + 𝜖𝜖, (6.1) 

where, 𝑓𝑓 is an arbitrary function of 𝑋𝑋; 𝑋𝑋 are independent variables and 𝜖𝜖 is a random error 
term, independent of 𝑋𝑋 and has a mean zero. 𝑌𝑌 consists of two components: a systematic 
component 𝑓𝑓(𝑋𝑋) and a random component 𝜖𝜖.  

Predictive modelling involves solving Equation 6.1, given sets of data and possibly a hypothesis 
about the underlying model that generated these data. The exact function 𝑓𝑓 that maps input 
variables 𝑋𝑋 into the response 𝑌𝑌 is unknown. Additionally, there is an infinite number of possible 
forms of such function. Placing a hypothesis on this function can narrow down the search space. 
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The exact parameterization of the chosen function, e.g., the slopes in linear regression, are driven 
from the data using appropriate optimization algorithms. 

The variables 𝑋𝑋 are also unknown. Features extraction is employed, enhanced by prior field-
knowledge, to extract potentially informative variables (or features) from the data. Features 
selection follows to narrow down the features space. I.e., features extraction refers to the 
process of obtaining many features of the data, such as burnup, obtained through sensitivity 
analysis in the present study. Whereas features selection refers to the process of selecting a few 
informative features from several extracted features, such as the spectral index in decay heat 
models, selected through recursive features elimination in the present study. 

Lastly, a residual error remains, unexplained by the driven model. The error term measures 
the unexplained or the unpredictable part of 𝑌𝑌 by the model, which is also an expected error of 
using the model to derive new predictions. 

In the present study, the dependent variable is the bias between calculations and 
measurements of SNF characteristics, i.e., the aim is to solve the following equation 

𝐶𝐶 − 𝐸𝐸 = 𝑓𝑓(𝑋𝑋) + 𝜖𝜖. (6.2) 

The paired 𝑋𝑋 and 𝐶𝐶 − 𝐸𝐸 are obtained from the validation and uncertainty analyses data. 
Solving Equation 6.2 will result in the part of the bias that could be explained using variables of 
the benchmarks, namely 𝑓𝑓(𝑋𝑋), along with the random component of the bias, the unexplained 
bias 𝜖𝜖. All parts are unknown a priori. 

The application of ML in the present study aims at pinning down variables of the calculations 
(set of 𝑋𝑋s) that can be informative about the difference between these calculations and 
measurements – e.g., burnup, spectral index, and other variables. Additionally, ML functions 
(possible 𝑓𝑓s) that rely on “neighborhood” or “similarity” between benchmarks are analyzed for 
their predictive performance of the bias. 

6.3 Prediction vs. inference 

Different approaches exist in ML: either emphasizing prediction or inference. In the prediction 
case, given that the error term averages to zero, 𝑌𝑌 is being predicted as (based on [75]): 

𝑌𝑌� = 𝑓𝑓(𝑋𝑋), (6.3) 

where 𝑌𝑌�  is the prediction of 𝑌𝑌, and 𝑓𝑓 is an approximate form, an estimate of 𝑓𝑓 which is the 
unknown function mapping 𝑋𝑋 into 𝑌𝑌. The motivation is to obtain an 𝑓𝑓 that provides accurate and 
precise predictions of 𝑌𝑌. There are no bounds on the complexity of 𝑓𝑓, and even black-box type 
functions (such as deep neural networks [76]) can be used to obtain the predictions.  

Equation 6.3 approximates Equation 6.1, and the prediction error of using Equation 6.3 is two 
parts: a reducible error and an irreducible error. The reducible error results from using 𝑓𝑓 which 
approximates 𝑓𝑓. It can be minimized using techniques to derive functions 𝑓𝑓 approximating well 
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the unknown target function 𝑓𝑓. The irreducible error results from that 𝑌𝑌 depends also on 𝜖𝜖, which 
is random and unexplained by 𝑋𝑋. Unmeasured variables, hidden variables, not contained in 𝑋𝑋 or 
errors of random nature (e.g., from physical measurements) can result in 𝜖𝜖. The irreducible error 
represents an upper bound on the prediction’s accuracy, which is unknown. However, the 
unexplained part of the response 𝑌𝑌 should always be calculated for the used set of explanatory 
variables 𝑋𝑋 and the approximate function 𝑓𝑓 used in making predictions. In the present study, the 
prediction error is specific to the calculational tools and the validation data (e.g., to Polaris and 
the SCALE nuclear data, and the validation benchmarks). Also, the error is specific to the applied 
ML models and algorithms – e.g., the procedure of selecting the informative model features. 

The total prediction error can be written as: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵2 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉. (6.4) 

The bias results from the reducible error, and the variance results from the irreducible error. 
The total error is quantifiable, however, the breakdown into its two components is usually 
unknown. 

The other approach in ML is to understand which 𝑋𝑋𝑋𝑋 affect 𝑌𝑌, and how 𝑋𝑋𝑋𝑋 affect 𝑌𝑌. In this 
case, inference is the main objective; data are used to obtain a small subset of 𝑋𝑋 used in the 
explanation of the target response 𝑌𝑌. Smaller subsets of features are preferred in this case, 
providing more “explainable” association between the 𝑋𝑋𝑋𝑋 and 𝑌𝑌. Interpretable (usually simple) 
functions 𝑓𝑓 help in understanding the relationship between 𝑋𝑋 and 𝑌𝑌. Less features and simpler 
models are preferred even if they might result in less accurate predictions. On the contrary, the 
ML models of black-box nature are not preferred for being more difficult to interpret or explain. 

The described options place the ML model between models that are highly interpretable, and 
those that are highly predictive. For example, the choice of the models from the types of available 
ML models, as shown in Figure 8, favors either higher interpretability or higher predictive 
performance. Models that have both characteristics are the ultimate quest in the ML paradigm. 
Historically, readily interpretable models such as the linear model existed first, and the need for 
higher predictive performance motivated the introduction of more complex and highly predictive 
models such as neural networks. However, models can be complex enough such that any 
meaningful interpretation are not foreseen, and such models are termed “black-box” models. 
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Figure 8: A subjective view of the placement of various ML model types between 

interpretability and predictive performance. 

Figure 8 represents a subjective view of the tradeoff between model interpretability and 
model accuracy and complexity. Other representations can be found in literature, such as in 
Reference [75]. Additionally, within each model type, the complexity is also different based on 
the number of variables. Models relying on a large number of variables are seen as more 
complex, and less interpretable, than those containing fewer number of variables. The interplay 
between model complexity and accuracy is affected by the tradeoff between error components, 
namely the bias and the variance components. The former is usually high for relatively simpler 
models, indicating that the models have low flexibility to fit the data, i.e., they suffer from under-
fitting. For relatively complex models, flexibility is higher, and their associated variance is higher 
as well. Models with higher variance indicate that they fit to some degrees to the random part 
of the error (the noise), i.e., they suffer from over-fitting. The trade-off between both the bias 
and the variance, as shown in Figure 9, results in optimally performing models, usually obtained 
using optimization algorithms. 

 
Figure 9: Trade-off between the bias and variance of a machine learning model. Simpler 

models have higher bias, which indicates under-fitting. Complex models have higher variance, 
which indicates over-fitting. Both are model defects increasing the total error of the model. 
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6.4 Predictive performance evaluation 

The following measures are commonly used in literature to evaluate the predictive 
performance of a particular ML model, such as mean-square-error (MSE) and mean-average-
error (MAE): 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

, (6.5) 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�|𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

, (6.6) 

where 𝑖𝑖 denotes the ith observation, and 𝑛𝑛 is the total number of observations.  

The closer the model predictions to the original observations, the lower the error measures 
MSE and MAE. MAE has the same unit as 𝑦𝑦. The square root of MSE, the root-mean-square-error 
(RMSE), also has the same unit as 𝑦𝑦. The main difference between them is that the MAE considers 
all observations to have similar weights, and their individual error contributes equally to the total 
error. On the contrary, the RMSE, considering squaring the errors before their addition, will place 
more weights to observations having large errors. In the latter case, outliers could significantly 
penalize the models. If the data are justifiably containing outliers, choosing MAE will reduce their 
influence on the overall procedure of model selection. 

6.5 Model validation 

Model validation refers to techniques of assessing the predictive performance of the models, 
and how well the model predicted values simulate the original observations. In addition to the 
error indices discussed in Section 6.4, other measures are employed in the present study to 
thoroughly analyze the predictive performance of the chosen models. 

Scatter plots of the model predictions vs. true observations (or vice versa) provide qualitative 
means of assessing the model predictive performance and helps to identify possible erroneous 
computations [77]. They are the first mean of conducting a qualitative and comparative data 
description and analysis. Then, summary univariate measures are employed, such as aggregate 
statistical measures. Models could be validated by quantitatively measuring the association 
between the predicted and the observed bias, based on literature recommendations [77]. 
Several indices are employed for such purpose: 

1. Two-sample Kolmogorov-Smirnov (KS) test [78], 
2. Index of agreement (𝑑𝑑), 
3. The slope and the intercept of an ordinary least-squares regression between the predicted 

and the observed bias, 
4. Systematic and unsystematic components of the RMSE (RMSEs and RMSEu), where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠2 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑢𝑢2. 
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In the non-parametric two-sample Kolmogorov-Smirnov (KS) test [78], the association 
between the predicted and the observed biases is quantified through statistical testing, e.g., 
testing whether they originate from the same distribution. It does not rely on assumptions 
regarding the underlying distributions generating both samples and it tests their similarities by 
comparing their empirical cumulative distribution functions (ECDFs). Specifically, the KS test 
compares the maximum distance between the ECDFs of the two samples, to a distribution of 
distances between ECDFs generated under the null hypothesis that these samples originate from 
the same distribution. An a priori significance level needs to be defined. There is no objective 
reason for a choice of a significance level, and the results of the present study will be presented 
often at a significance level of 0.05.  

The index of agreement (𝑑𝑑 or IOA) is also used to measure how well the model predictions 
follow the original observations, or the accuracy the predicted bias has estimated the observed 
one. It was originally proposed by Willmott [77], and is recommended over common correlation 
based metrics. It varies between 0 and 1, whereas 0 indicates complete lack of agreement and 1 
indicates perfect agreement. The index of agreement is calculated as 

𝑑𝑑 = 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (|𝑦𝑦𝑖𝑖| + |𝑦𝑦�𝑖𝑖|)2𝑛𝑛
𝑖𝑖=1

. (6.7) 

Following this third measure [77,79], the observed bias is regressed onto the predicted one, 
since this form of regression will be more beneficial in future applications of the models. The 
developed ML models would allow obtaining an estimate of the bias (a prediction), and it is 
beneficial to use a bias prediction to obtain other estimates of the observed bias along with a 
chosen prediction interval. This measure also allows a qualitative assessment of the model. 

Finally, model predictions are not error-free, and the RMSE provides a measure of the errors 
produced from the models. Its systematic and random components are beneficial in the 
assessment of the final models, and whether they suffer from large systematic errors. 

6.6 The law of parsimony: one-standard-error rule 

Test here. 

Models are compared to each other to optimize the described performance measures. For 
instance, models and features space could be searched for models that minimize the MAE (e.g., 
finding the minimum in Figure 9). The one-standard-error (OSE) rule can be additionally used in 
the model selection process, allowing to deliberately obtain simpler models. The OSE is an 
application of the Law of Parsimony, also known as the Occam’s Razor. The chosen models will 
be more interpretable, with less predictive performance – hence more conservative. The 
application of the OSE rule in ML is well described in literature [75,80–82].  

The MAE of different models is calculated along with the standard errors (SE). The chosen 
model is not the model with the minimum MAE, rather, it is a model that has its validation error 
within an error margin (e.g., 1 SE) of the model with the minimum MAE, located to the left side 
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in Figure 9. The error margin of the validation error of the best performing model is used to 
allocate an interval containing the errors of other models that are more or less equally good to 
the best performing model. Selecting models following this rule favors simpler and more 
interpretable models. Also, following this rule will be at the expense of some loss of the predictive 
performance (e.g., higher MAE). The loss in the predictive performance is still acceptable, given 
the gained interpretability. 

In the present study, the application of the OSE rule is in selecting between models that differ 
in the number of their features, as presented in Figure 10. First, the optimum subset of features 
is chosen based on the model performance on validation sections of the data, based on the 
minimum MAE. Then, a model is chosen such that it has fewer features, and its predictive 
performance is within 1 SE of the optimum model having the minimum MAE. 

 
Figure 10: Application of the OSE rule. The optimal model contains 12 variables. A simpler 

model is chosen following the OSE rule, containing lower number of variables (4 variables). 

6.7 Machine learning models 

Two broad classifications can be assigned to learning from data: supervised and unsupervised 
learning (SL and USL). In SL each data point has: 

1. a label: 𝑦𝑦𝑖𝑖 ∈ 𝑌𝑌. 
2. a vector of features of length 𝑚𝑚: 𝑥𝑥𝑖𝑖 = (𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑚𝑚) ∈ 𝑋𝑋 = (𝑋𝑋1,𝑋𝑋2, . . . ,𝑋𝑋𝑚𝑚). 

Both 𝑋𝑋 and 𝑌𝑌 can be continuous or discrete. The aim in SL is to estimate 𝑌𝑌 using one or more 
of the 𝑋𝑋s. ML models are fit to the data, such that the response is predicted accurately 
(emphasizing prediction). Also, fitting the data allows understanding which features contain 
information about 𝑌𝑌 and the characteristics of the relationship between 𝑋𝑋 and 𝑌𝑌 (emphasizing 
inference). 

In USL, the data points do not have a label, only a vector of features. Model fitting is not 
possible since no response is available to supervise the learning process. The aim in USL is to use 
the data to derive information about relationships between the variables and structures of the 
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data [75]. In the present study, the learning is supervised, proceeding from observations 
consisting of features of the benchmarks and the target response, the bias. 

In the following sections, ML models applied in the present study are described. The 
considered models are linear, weighted k-nearest neighbors, and random forests [75,82], which 
are widely used in literature. These are relatively simple ML models, having the advantage that 
the final models are more interpretable than other “black-box” type of models. Simple and 
interpretable models can be more useful in critical applications related to SNF characterization 
than complex models – even that the latter can have better predictive performance. 

6.2.1. Linear models 

The linear model (LM) is historically one of first and mostly used models. It is analyzed in the 
present study given its application in the validation of CSA [41]. Also, the LM is the first term 
approximation of a function 𝑓𝑓 in its neighborhood, which may work reasonably well in 
approximating a complex target function. The LM implies an assumption that the response is 
linearly dependent on the features, which can be written as 

𝑌𝑌 =  𝛽𝛽0 + �𝛽𝛽𝑗𝑗𝑋𝑋
𝑝𝑝

𝑗𝑗=1

. (6.8) 

The term 𝛽𝛽0 is an intercept, and 𝛽𝛽1,𝛽𝛽2, . . . ,𝛽𝛽𝑝𝑝 are coefficients associated with each predictor. 
The value 𝑝𝑝 is the number of predictors or features of the data. Introducing a constant predictor 
of value 1 allows writing the above expressions as an inner product (a vector form):  

𝑌𝑌 =  �𝛽𝛽𝑗𝑗𝑋𝑋
𝑝𝑝

𝑗𝑗=0

= 𝑋𝑋𝑇𝑇𝛽𝛽. (6.9) 

The LM is fitted to the data to obtain the coefficients 𝛽𝛽, commonly using least-squares 
regression, i.e., minimizing the residual sum of squares (RSS). 

The LM is applied separately on learning from features of the benchmarks and on learning 
from their correlation. In the former, a linear relation is assumed between the bias of the 
benchmarks and one or more of the features of the benchmarks. The regression follows Equation 
6.8, whereas 𝑌𝑌 is the bias of the benchmarks, 𝑋𝑋 is one or more features of the benchmarks. In 
the second learning setting, a linear relation is assumed between the bias of the benchmarks and 
their correlation. A major difference between this learning setting and the former, is that the 
final models based on correlations between the benchmarks will always be used for predictions 
at 𝜌𝜌 = 1. The LM regression onto the correlation between benchmarks is shown in Figure 11, for 
the application on CSA. The 𝐶𝐶/𝐸𝐸 of the benchmarks is regressed on the correlation; however, 
predictions are only meaningful at unit correlation. Similar to the application of bias prediction 
techniques in CSA based on the correlation between benchmarks, the unit correlation marks the 
target benchmark, or a neutronically identical benchmark, given the applied perturbations. 
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Figure 11: Linear model in CSA using the correlation between benchmarks (figure from 

Reference [83]). A target application is fully correlated with benchmarks at unit correlation. 

The assumption of linearity can be a large simplification. Introducing flexibility in the LM can 
be achieved assuming that the model is valid in the range of highly similar benchmark. By 
introducing cutoffs on the correlations with the target benchmark, only those highly correlated, 
or highly similar, benchmarks to the target benchmark will contribute to the predictions from the 
LM. The model based on the correlation between benchmarks, applying correlation cutoffs, can 
be expressed as 

𝐵𝐵(𝜌𝜌=1) = 𝑌𝑌�(𝜌𝜌=1) = 𝛽𝛽0 + 𝐼𝐼𝜌𝜌 > 𝑐𝑐𝑐𝑐(𝜌𝜌)𝛽̂𝛽𝜌𝜌, (6.10) 

where 𝐼𝐼 is an indicator function, equal to 1 above a correlation cutoff (co), and zero otherwise: 

𝐼𝐼𝜌𝜌 > 𝑐𝑐𝑐𝑐 = �1   𝑖𝑖𝑖𝑖 𝜌𝜌 >  𝑐𝑐𝑐𝑐
0   𝑖𝑖𝑖𝑖 𝜌𝜌 <  𝑐𝑐𝑐𝑐. (6.11) 

6.2.2. The weighted k-nearest neighbors (KKNN) 

The nearest-neighbor method (KNN) is common in ML, which is a non-parametric method. 
Unlike the LM, no assumptions are made in the KNN method about the underlying function 
generating the data. Predictions are made using observations close in their input space to the 
target data point. The response of the data points in the neighborhood of the target data point 
are averaged such that 

𝑌𝑌�(𝑥𝑥) =
1
𝐾𝐾
� 𝑦𝑦𝑘𝑘

𝐾𝐾

𝑘𝑘=1
. (6.12) 

The prediction is at 𝑥𝑥, and 𝐾𝐾 is a number of data points closest to 𝑥𝑥. Closeness could be 
measured using distances from the neighboring benchmarks to 𝑥𝑥, such as the Euclidean distance 
(squared difference) and the Manhattan distance (absolute difference). Equation 6.12 equally 
weights the data points in the neighborhood of 𝑥𝑥, i.e., localized method. The weighted k-nearest 
neighbors method (KKNN) is also a weighted neighborhood scheme similar to the KNN method. 
However, the neighboring observations are weighted, usually using their closeness to 𝑥𝑥. The 
predictions using the KKNN model can be obtained as following 
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𝑌𝑌�(𝑥𝑥) = � 𝑤𝑤𝑘𝑘𝑦𝑦𝑘𝑘
𝐾𝐾

𝑘𝑘=1
. (6.13) 

Differences between the KNN and the KKNN are considered minor, and only the KKNN results 
will be analyzed in the present study. The localization in the KKNN model is achieved by using 
kernels, and the weights can resemble a Gaussian kernel. The weights increase the importance 
of an observation on the prediction of the target observation the smaller the distance between 
them. Gaussian weights are the focus of the present study, calculated as 

𝑤𝑤𝑘𝑘 = 𝐶𝐶𝑒𝑒−
(𝑥𝑥𝑘𝑘−𝑥𝑥)2

2𝜎𝜎 . (6.14) 

The weights are required to be normalized, i.e., ∑ 𝑤𝑤𝑘𝑘 = 1𝐾𝐾
𝑘𝑘=1 . Also, the weight of a benchmark 

depends on its Euclidean distance to the target benchmark, and the variance of the Gaussian 
density function. The model is explained in Figure 12. 

The bias prediction based on the correlation between benchmarks proceeds by averaging the 
bias of the benchmarks with highest correlations (highest similarity) to the target benchmark. 
Averaging in KKNN is obtained using Gaussian weights, that depend on the value of correlation 
between each benchmark and the target benchmark. The predicted bias at unit correlation is 
obtained as following 

𝐵𝐵(𝜌𝜌=1) = � 𝑤𝑤𝑘𝑘𝐵𝐵𝑘𝑘
𝐾𝐾

𝑘𝑘=1
. (6.15) 

 
Figure 12: KKNN model using Gaussian weights. The red points are used for predictions at 𝑥𝑥0, 

and the yellow area is the scale of the weights assigned to these points (figure from Reference 
[82]). The blue line is the underlying model generating the data, and the green line is the KKNN 

model prediction. 

6.2.3. Decision tree and random forest 

To obtain a tree, the input space is recursively partitioned (or split) in a top-down approach. 
Starting from the initial data, a predictor and a cutpoint are selected such that the RSS is 
minimized. The cutpoint splits the input space into two regions. The predicted value of the 
response in each region of the predictor space is the average response value in each region. The 
process is repeated, selecting a predictor and a cutpoint minimizing the RSS. However, not all the 
space is split, rather, one of the previously created regions from the upstream splitting. The 
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process is repeated until a criterion is met, e.g., attaining a maximum number of splits or a 
maximum tree depth. An example of a tree on a 2-dimensional predictor space is presented in 
Figure 13. 

 
Figure 13: A tree build on a 2D predictor space (left). Making predictions of the response 

using the tree proceeds by averaging the response of the observations located in the same 
terminal node (R1, R2, ... ,R5). The terminal nodes are intervals on the predictor space (right) 

(figure from Reference [75]). 

Predicting the response of an observation proceeds by averaging the response values of the 
observations located in the same terminal node, i.e., performing localized regression in each leaf. 
A leaf (or a terminal node) is an interval on one or several model features, e.g., a burnup interval, 
where the target bias is approximated to have a constant value. Predicting the response of 𝑥𝑥 
located in a terminal node 𝑅𝑅, which contains 𝐾𝐾 observations, proceeds as following 

𝑌𝑌�(𝑥𝑥) =
1
𝐾𝐾
� 𝑦𝑦𝑘𝑘

𝐾𝐾

𝑘𝑘=1
. 𝐼𝐼𝑋𝑋∈𝑅𝑅(𝑋𝑋). (6.16) 

Equation 6.16 shows that the prediction of a target observation depends on the observations 
located in its neighborhood, i.e., a localized method. 𝑋𝑋 are features that are informative, i.e., they 
define the neighborhood of the observation. However, the structure of the neighborhood in trees 
(and later on random forest) differs from its structure on other neighborhood-based schemes 
such as KNN and KKNN. Trees are some of the most interpretable ML models, however they 
suffer from low predictive performance and high variance of their predictions [75].  

The random forest (RF) is also a weighted neighborhood scheme [84], i.e., a localized 
regression model. The RF is built using multiple trees, i.e., it is an ensemble model which 
outperform single trees at the expense of some loss of interpretability. Averaging observations 
reduces the variance, and in RF, these observations are averaged from different trees. Multiple 
training datasets are usually bootstrapped from the original dataset, creating S bootstrap 
samples. The predictions are averaged from the predictions of S trees regressed on the bootstrap 
samples such that 

𝑌𝑌�(𝑥𝑥) =
1
𝑆𝑆
� 𝑦𝑦𝑠𝑠(𝑥𝑥)

𝑆𝑆

𝑠𝑠=1
, (6.17) 
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where 𝑦𝑦𝑠𝑠 are predictions of individual trees, obtained using Equation 6.16. Bootstrapping the 
dataset results in approximately two-thirds of the original data in the bootstrap training data. 
The remining one-third of the original data, referred to as the out-of-bag (OOB), is not used in 
training and can be readily used for testing the regressed tree. Usually, the test error of the tree 
is evaluated on the OOB observations, without the need to have separate test data. The RF 
improves the method further, by decorrelating the bootstrapped training data. In each split, a 
random sample of a subset of all predictors is considered, rather than considering all the 
predictors in each split. Typically, the number of the predictors is set to the square root of the 
number of all predictors. In each split, different random set of predictors are considered for a 
potential split, being a small fraction of the original number of predictors. Averaging the 
predictions from various trees could also use weights for each tree, whereas these weights are 
based on the OOB test errors. Trees that perform well in the OOB sample have higher weights in 
the final predictions of the RF. 

In the learning setting based on the correlation between the benchmarks, the leaf containing 
the unit correlation is always used for prediction of the bias of the target benchmark (the target 
benchmark is always located at unit correlation). The predicted bias is therefore the average bias 
of highly similar benchmarks located within a correlation interval based on the target benchmark. 
The predicted bias of the target benchmark is then the weighted average of the biases predicted 
from numerous trees, from leaves of these trees containing the unit correlation (the leaves do 
not necessarily have the same interval width). The bias is predicted as following from N trees, 
based on the correlation between the benchmarks 

𝐵𝐵(𝜌𝜌=1) =
1
𝑁𝑁
� 𝑤𝑤𝑛𝑛𝐵𝐵𝑛𝑛

𝑁𝑁

𝑛𝑛=1
. 𝐼𝐼𝜌𝜌∈[𝑐𝑐𝑐𝑐,1](𝜌𝜌). (6.18) 

6.8 Resampling methods 

The data are used to obtain the parameters of the models (e.g., the slopes in the linear 
regression models) and to identify informative features. Both are not known a priori. The former 
process is referred to as training the model, and the latter is referred to as features selections. 
Both are parts of the overall ML process. However, once a learning process is followed on a model 
or several models, it is required to test the process and evaluate the predictive performance on 
data that have not been used in training or feature selection. The latter is indeed a must to avoid 
having overly optimistic test error of the developed ML models. 

Testing the ML process can be performed by splitting the original data, keeping aside a test 
section, used later on to assess the predictive performance of the developed ML process. This is 
not an ideal procedure since it reduces the size of the data available for training and validation 
of the model. Additionally, data are usually expensive and limited, such that making efficient use 
of them is required. In this section, common methods of splitting the data for training, validation, 
and testing are discussed. The original dataset is usually split, or resampled, to yield two sections: 
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1. A training and a validation section: the application of this section is to select between 
models, or features, and to train models (i.e., to tune their parameters). 

2. A test section: the application of this section is to test the models and features selection 
procedure applied on the training and validation section. 

Several methods of resampling could be employed to split, or resample, the data. Some of the 
common methods are shown in Figure 14, and described in the following [81]: 

1. Repeated Holdout validation: the data are randomly split into a training and a validation 
section, and a test section. The holdout validation is repeated k times, using different 
random seeds, and the performance on the test sections is averaged over the different splits. 

2. Bootstrapping: a training and validation section of the data, usually having the same size as 
the original dataset, is sampled with replacement. Approximately two-thirds of the original 
observations will be sampled in the training and validation sections. The remaining one-third 
of the data is used as a test section. 

3. k-fold cross-validation: the data are split into k folds, e.g., into 10 folds resulting in 10-fold 
cross-validation. Recursively, for each fold in the data, the fold is set aside for testing and the 
remaining folds are used for training and validation. A special case of k-fold cross-validation 
is the leave-one-out-cross-validations (LOOCV). In LOOCV, 𝑘𝑘 is equal to the number of data 
points 𝑛𝑛. Recursively, each data point is set aside for testing, and training and validation is 
performed on 𝑛𝑛 − 1 data points. A model that is trained on the training and validation 
section of the data is used to predict the set aside test observation. The process is repeated 
for every data point. 

The LOOCV procedure is computationally expensive compared to other methods [81], being 
encouraged for small data sizes. Models are selected and fit n times, which can be 
computationally expensive specially if the data size is large and the fitting and model selection 
process is slow (e.g., large number of predictors or wide grid search space). However, the 
procedure has low bias since the training is conducted on 𝑛𝑛 − 1 data points (which is almost the 
same size of the original data). The procedure is also not affected by randomness in splitting or 
sampling the data, such as in k-fold cross validation and bootstrapping. The test result is the same 
if the process is repeated, allowing the results to be exactly reproduced. Also, the test error is 
approximately unbiased, however, it has high variance since it is driven from single observations.  

6.9 Model selection 

In the previous section, splitting the dataset into a training and validation section and a test 
section was introduced. The former split serves two purposes: selecting between models and 
training a selected model. For example, Equation 6.15 is used to make predictions using KKNN 
method on the test section of the data. The number of the nearest neighbors to be used in 
making these predictions is not known a priori. Also, the neighborhood is not defined, e.g., which 
features define the Euclidean distance between the observations. One of the widely used 
approaches is to further split the training and validation section into two sections: a training 
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section and a validation section. Such splitting follows any of the splitting and resampling 
techniques described in Section 6.8. Following this procedure, the data is recursively split into 
three sections (as shown in Figure 15): 

1.  a training section, 
2. a validation section, and 
3. a test section. 

A common approach in ML is to search for the model optimal parameters, e.g., the optimal 
number of nearest neighbors, based on the performance of models using these parameters on 
separate sections of the data – the validation sections. For a grid of k-values, models with 
different k nearest neighbors are fitted to the training data. The performance of each model is 
evaluated by calculating their prediction error on the validation section of the data. The model 
having the lowest validation error is then selected. The model is re-trained on the combined 
training and validation sections. The fitted model is used to predict the test data. 

Additionally, features are also being selected on the training and validation data concurrently 
with the model selection. Various features selection techniques are available, including 
techniques that are well suited to LM such as shrinkage methods (e.g., Ridge Regression and the 
Lasso) and dimensionality reduction methods (e.g., Principal Component Analysis). Other 
methods can work with all types of models, such as resampling methods (e.g., cross-validation 
and bootstrapping). Such procedures are commonly referred to as Subset Selection [75]. Models 
of different sizes, different numbers of features, are trained on the training data. The 
performance of models having different sizes is evaluated on the validation data, and the optimal 
model size is chosen to minimize the validation error. 

The nested cross-validation (two nested LOOCV) is the main splitting procedure being 
followed in the present study. The selection of the procedure is motivated by the relatively small 
size of the current data, the availability of computational power, and to exclude randomness 
resulting from the randomness of splitting or resampling the data. An outer LOOCV loop is used 
to split the original data into a training and validation section, and a test section. An inner LOOCV 
loop is used to split the training and validation section into a training section and a validation 
section. 
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I) Repeated Holdout 

 

II) Bootstrapping 

 

III) k-fold cross-validation (e.g., 5-fold cross-validation) 

 

IV) Leave-One-Out-Cross-Validation (LOOCV) 

 

Figure 14: Illustration of common sampling techniques on a dataset of size 10. The splits of the 
holdout, bootstrapping and the 5-fold cross-validation are random. 
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Figure 15: Illustration of a nested cross-validation. A 5-fold cross-validation (inner loop) is 
nested within a LOOCV (outer loop). The inner loop performs model selection and training, and 

the outer loop is for performance assessment of the model selection and training procedure. 
Testing results are not random, being LOOCV, and the selection and training results depend on 

the random splitting of the data. 
  



Machine Learning Schemes 
 

 
57 

 

6.10 Predicting the bias from validation benchmarks 

In the present study, two learning procedures of the bias are developed based on two types 
of data. The first procedure relies on a design matrix composed of integral parameters or features 
of the benchmarks. Integral parameters are properties of the benchmarks, based on the 
calculations solely. The second relies on a design matrix based on correlations between the 
calculated values. The following subsection discusses the two learning procedures developed for 
these two types of data. 

6.10.1. Predicting the bias based on integral parameters of the benchmarks 

Two nested cross-validations (nested CV) are used for both features and model selection as 
well as for the assessment of the model performance. The nested CV is described in the literature 
[36, 37], and discussed in sections 6.8 and 6.9. The flowchart of the applied learning procedure 
is shown in Figure 16, showing the inner and outer LOOCV loops. The outer loop is used to 
evaluate the performance of the models (i.e., estimating the test error). The two inner loops are 
used for features and model selection (i.e., selecting informative features and model sizes, and 
tuning the model hyperparameters).  

Recursive feature elimination (RFE) [85], is used for feature selection. The method is wrapper-
based, belonging to the Best-Subset selection approach discussed in Section 6.9. In RFE, many 
models with different subsets of all the features, or model sizes, are iteratively trained on 
sections of the data (i.e., training sections). Specifically, a model is built using all predictors, and 
an importance score is calculated for each predictor. The least important predictor is removed, 
and a model is built using the remaining predictors. An importance score is then recalculated for 
the remaining predictors, and the least important predictor is removed, once again. The chosen 
number of predictors is the model size achieving the lowest validation error. 

Model selection applies the OSE rule, i.e., choosing a smaller model size containing fewer 
number of predictors that has its validation error within an error margin (e.g., 1 SE) of the best 
performing model size. As mentioned, the chosen model will be simpler and easier to interpret 
at the expense of an acceptable loss of its predictive performance. In addition to a better 
interpretability, it would fit less to the noise in the data. The bias is affected by experimental 
uncertainties (and its random component), and the bias in the present data can contain large 
random uncertainties, i.e., large noise. The learning algorithm is designed to reduce the impact 
of this noise on the final models. The optimum model hyperparameters (tuning of the model 
parameters) are also chosen using LOOCV and based on the model performance on validation 
sections of the data. The hyperparameter search is re-conducted for the final selected model 
once the number of features is chosen based on the preceding RFE steps. 
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Figure 16. Flowchart of performance assessment of features and model selection procedure 
applied for learning from integral benchmark parameters. The size of the design matrix is 

𝑁𝑁 × P, where 𝑁𝑁 is the number of benchmarks and 𝑃𝑃 is the number of predictors (i.e., features). 
Also, 𝐵𝐵 is the bias, 𝑥𝑥 and 𝑋𝑋 are subset and all benchmark features, ℎ and 𝐻𝐻 are subset and all 

model hyperparameters, and 𝑗𝑗 is a single benchmark. The algorithm starts at the design matrix 
(in orange color) and output the paired prediction/observation data (in green color). 

6.10.2. Predicting the bias based on the correlation between benchmarks 

Predicting the bias from the correlation between benchmarks is conceptually different from 
the procedure based on features of the benchmarks. This has motivated splitting the bias 
learning process into two distinguished procedures, relying on two distinguished design matrices. 
The procedure starts with a correlation matrix of size 𝑁𝑁 × 𝑁𝑁 (where 𝑁𝑁 is the number of 
benchmarks), and a bias vector of length 𝑁𝑁. The procedure is designed to mimic the bias 
prediction of a target application. As the calculation of a SNF characteristic in a target application 
is conducted, its correlation vector with validation benchmarks is also calculated, whereby the 
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bias in these validation benchmarks is known a priori. A correlation vector between the target 
application and the validation benchmarks along with the bias vector of the validation 
benchmarks are used to estimate the bias in the target application. The learning procedure is 
designed similarly. Therefore, the correlation matrix is decomposed into 𝑁𝑁 correlation vectors 
and, along with the bias vector, they generate N separate design matrices for each benchmark, 
as shown in Figure 17 and Figure 18. Each design matrix contains a correlation and a bias vector 
as the independent and the dependent variables, respectively. 

Model testing follows a LOOCV approach. However, model validation, selection of optimal 
model parameters such as the optimal number of k nearest neighbors, follows two different 
approaches. In the first approach (Figure 17), model validation is applied on the submatrix. 
Optimal parameters are selected based on the models’ performance on predicting the bias of the 
benchmarks located at the diagonal of the submatrix, also using the correlation data of the 
submatrix. In the second approach (Figure 18), model validation is applied on the training and 
validation section of the correlation vector of the test benchmark. Optimal model parameters 
are selected based on the models’ performance on predicting the bias of the benchmarks located 
on the same correlation vector of the test benchmark. The latter method is the default in the 
present work. 

 

Figure 17. Decomposition of the correlation matrix of size 𝑁𝑁 × 𝑁𝑁 into 𝑁𝑁 individual 
correlation vectors (for training and testing), along with submatrices of size 𝑁𝑁 − 1 ×  𝑁𝑁 − 1 for 

validation. The correlation and bias data are combined to result in the design matrices. 
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Figure 18. Similar to Figure 17, implementing matrix decomposition for validation, training, 
and testing. Unlike the approach described in Figure 17, the validation relies on data resampling 

(e.g., using LOOCV) on the correlation vector – along with the bias vector, optimizing model 
parameters for their performance on the validation section of the correlation vector.  

No feature search is conducted as there is only one predictor, i.e., the correlation between 
benchmarks. Once the correlation matrix is decomposed into 𝑁𝑁 design matrices, the LOOCV 
procedure is applied on each design matrix for model selection (tuning the model 
hyperparameters). The test error of the chosen model is evaluated on a single hold-out sample, 
the target benchmark, which is the benchmark at unit correlation (the diagonal element in the 
correlation matrix). The scheme of the procedure is shown in Figure 19. 
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Figure 19. Flowchart of the performance assessment of the model selection procedure 

applied for learning from the correlation between the benchmarks. 𝑁𝑁 is the number of 
benchmarks, 𝐵𝐵 and 𝜌𝜌 are their biases and correlations, 𝑀𝑀 and 𝑆𝑆 are the correlation matrix (all 

data) and a subset correlation matrix, ℎ and 𝐻𝐻 are subset and the entire model's 
hyperparameters, 𝐽𝐽 is a correlation vector, and 𝑗𝑗 is a single benchmark. The algorithm starts at 

the correlation matrix and the bias vector (in orange color) and output the paired 
prediction/observation data (in green color). 

6.11 Detection and removal of outliers 

Outliers are referred to as abnormalities, deviants, or anomalies in the data mining and 
statistics literature [86]. They are data points that differ significantly from other observations, 
which can occur due to random uncertainties or erroneous data – either erroneous calculations 
or measurements in the present validation data. Several methods can be employed to detect 
potential outliers in the data, including descriptive statistics (such as boxplots), measures of 
influence (such as Cook's distance), and hypothesis testing (such as Chi-square test and z-test). 
Data points are outliers with respect to the data and the model employed, i.e., other models and 
data could result in different conclusions about the abnormality of a datapoint. Also, outliers 
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detected using statistical methods should by followed by specific analyses of the observation, for 
justifying its exclusion from the data. 

The application of the outliers detection and removal in the present study proceeds as 
following; as models are being trained and validated using the inner-most loop of the algorithms 
described in Section 6.10, the selected model is regressed onto the training and validation section 
of the data. Outliers are detected with respect to the regressed model, choosing the z-test in the 
present study. Since the process is repeated through a LOOCV procedure for N benchmarks, the 
outliers detection process is repeated N times excluding a test benchmark in each iteration. For 
each iteration, the p-value of the observations in the training and validation section of the data 
are recorded, and at the end of the LOOCV procedure, these p-values are aggregated to result in 
a single value for each benchmark being tested as an outlier at a chosen significance level.  

The scope of the present study is mostly in data analyses, rather than analyzing particular 
measurements for their extremity or abnormality. Also, the benchmarks detected as outliers 
following the preceding discussion will be outliers with respect to given statistical models and 
data, e.g., the RF model and the correlation between Clab benchmarks. For such reasons, outliers 
detection and removal from the current data will be selectively conservative, i.e., resulting in 
removal of a small number of benchmarks. The following criteria will be applied: 

1. outliers should have a z-value >3 (corresponding to a probability of 0.0027), 
2. aggregation of the p-values from different data (different training and validation data) 

assumes that these data are un-correlated, requiring that the median p-value to be 
significant at threshold 𝛼𝛼 2� , i.e., the aggregate significance level is 0.00135. 

The preceding criteria should lead to a significantly small number of benchmarks being 
excluded as outliers. The procedures, applied on both design matrices, are shown in Figure 20 
and Figure 21. The procedures are similar to those being used to test the model performance, 
except that the inner-most loops are being used to detect outliers and finally aggregate this 
information. The procedures result in design matrices having equal or less dimensions than the 
original ones, which are then used for the predictive performance assessment following the 
algorithms described in Section 6.10. 
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Figure 20. Flowchart of outliers detection and removal based on the design matrix of the 
integral benchmark parameters. The algorithm starts at the design matrix having 𝑁𝑁 × 𝑃𝑃 size (in 
orange color) and output the reduced design matrix having the 𝑁𝑁 − 𝑜𝑜 × P size (in green color). 
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Figure 21. Flowchart of outliers detection and removal based on the design matrix of the 
correlation between benchmarks. The algorithm starts at the correlation matrix having 𝑁𝑁 × 𝑁𝑁 
size and the bias vector having 𝑁𝑁 length (in orange color) and output the reduced correlation 
matrix having the 𝑁𝑁 − 𝑜𝑜 × 𝑁𝑁 − 𝑜𝑜 size and the reduced bias vector having 𝑁𝑁 − 𝑜𝑜 size (in green 

color). 
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6.12 Final models of the bias predictive procedures 

Final models are models fitted to the whole data, readily used for prediction of the bias in 
target applications. The final models based on the first learning procedure are obtained by 
repeating the steps for features and model selection on the full data, i.e., excluding the iterative 
data splitting into a test section and a training and validation section (the outer LOOCV loop in 
Figure 16). Once obtained, the final models can be used for bias predictions on realistic 
calculations. The final models consist of selected features of the benchmarks and learned 
functional forms that can map these features into the target bias. For the RF and the KKNN 
models, the final models will also use the entire validation data to obtain the bias prediction, e.g., 
biases and features of a few neighboring benchmarks will be applied to predict the bias in the 
target benchmark. For both the RF and the KKNN models, the entire validation benchmarks are 
also part of the final model. 

Alternatively, learning from the correlations between the benchmarks does not necessarily 
result in final models that can be readily used for bias predictions of a target application. A target 
application will probably have a correlation vector with the validation benchmarks that is 
different from any of the present correlation vectors. Therefore, final models await the 
correlation vector of the target application with the present benchmarks. Indeed, the latter 
argument is the motivation and rationale for splitting the learning process so that it is based on 
two types of matrices: integral parameters of the benchmarks and correlations between the 
benchmarks. 

The quality of the final models, how well the predicted bias simulates the originally observed 
one, will be also assessed using the R2. The R2 statistic is a measure of the quality of the fit. The 
ML model will explain, or reduce, part of the original variance of the bias using the driven 
systematic part 𝑓𝑓(𝑥𝑥). The unexplained part of the variance will be contained in the error term 𝜖𝜖. 
The R2 is the proportion of the variance explained by the model – i.e., explained or reduced by 
𝑓𝑓(𝑥𝑥). It takes values between 0 and 1, where a perfect model results in R2 value equal to 1, and 
a model that does not explain any of the variance of the original data results in R2 value equal to 
0. The R2 is calculated as 

𝑅𝑅2 = 1 − 𝐹𝐹𝐹𝐹𝐹𝐹, (6.19) 
where FVU is the fraction of the variance unexplained by the model, calculated as 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑇𝑇𝑇𝑇� = ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2

∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2� , (6.20) 

where RSS and TSS stand for residual sum of squares and total sum of squares, respectively. The 
former residual originates from the remaining error after the application of the ML model, and 
the latter residual originates from the initial error in the data. 
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6.13 Features extraction 

In the present section, possible ML features are discussed. The ML algorithms usually start 
with a relatively large number of features that can be informative. Informative features contain 
information that allow predicting the bias, given the ML model and the validation data. The data 
are used to allocate those features that are actually informative through a features selection 
process.  

The features may belong to both the calculations and the measurements. In the present study, 
only features of the calculations are considered, i.e., it is aimed to explain the bias using only 
calculational-based features. The rationale is to obtain ML models that allow predicting the bias, 
without reference measurements. These models are developed from validation benchmarks, and 
their target applications are realistic SNF calculations without reference measurements. This is a 
necessary approximation, since learning the bias using potential features of both calculations and 
measurements can result in models that do not have an application on calculations, lacking 
reference measurements. Even if the latter approach might incorporate more informative 
features in the learning process, the resulting models are certainly less useful given the foreseen 
application of the ML models. As an example, calculated uncertainties are considered a possible 
model feature, but experimental uncertainties are excluded since, even if they are potentially 
informative for the bias prediction, they will not be available for a target application.  

The analyzed features include ones commonly used in validation of CSA. In CSA, a trending 
analysis of the bias using the similarity index (𝑐𝑐𝑥𝑥) is used [41]. The similarity index is the Pearson 
correlation coefficient between the calculated values, obtained when parameters and data are 
perturbed. Benchmark parameters (e.g., burnup) and data (e.g., nuclear data) are uncertain and, 
when they are perturbed, the calculated values respond with some degree of similarity, 
measured using the Pearson correlation coefficient. Trending analysis assumes that uncertainties 
in parameters and data result in differences between calculations and measurements. 
Additionally, benchmarks share, to some degree, similar parameters and data-induced 
uncertainties, measured through their similarity index. Differences between calculations and 
measurements can be regressed on the similarity index to predict the bias. The regression models 
could be linear, implementing cutoffs on similarities. As a result, benchmarks showing weak 
similarities with the application are excluded from the regression models [87]. 

In the present study, predicting the bias using the correlation between benchmarks is being 
analyzed. The correlations are calculated, and experimental correlations are excluded given their 
unavailability. Also, these correlations would not be available for a target application. As 
described in Chapter 6, the structure of the learning algorithm based on the correlation between 
benchmarks is distinguishable from learning from other integral parameters, and therefore it is 
treated in a separate learning setting. 

Other integral features can be informative, namely:  
1. calculated value of the SNF characteristic 
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2. hydrogen-to-fissile atom ratio (𝐻𝐻/𝑋𝑋) 
3. reactor type (PWR vs. BWR) 
4. spectral index (𝑆𝑆𝑆𝑆) 
5. calculated uncertainty of both ND and DO origins 

 Only three of these features appear in literature. The calculated value (no. 1) is being used in 
reference [46], addressing ML for the validation of nuclear data. The 𝐻𝐻/𝑋𝑋 (no. 2) is commonly 
used in validation of CSA [32], along with the previously discussed similarity index. As in 
Reference [26], the validation driven safety factors on calculated decay heat values are classified 
per reactor type (no. 3). Including these three features assumes that they are informative in the 
current application, and whether they are informative features (or noninformative) is to be based 
on the data. 

The SI, which provides information about the neutron flux spectra, is calculated as the ratio 
between the fast and the total flux, with an 0.625 eV as the lower energy bound of the fast flux. 
The 𝐻𝐻/𝑋𝑋 also provides information about the enrichment, water density, and burnup. These 
variables, SI and 𝐻𝐻/𝑋𝑋, are labelled “integral parameters” in the current study, implying their 
correlation with several SNF properties. Two different sections of the validation data are selected 
to demonstrate potential correlations between the 𝑆𝑆𝑆𝑆 and 𝐻𝐻/𝑋𝑋, and several SNF properties. The 
Clab section of the decay heat data is used for the 𝑆𝑆𝑆𝑆, and the PIE data are used for the 𝐻𝐻/𝑋𝑋.  

Figure 22 shows plots of the SI versus enrichment, water density, burnup, and 𝐻𝐻/𝑋𝑋 for the 
Clab decay heat benchmarks (both BWRs and PWRs), indicating potential correlations between 
these variables. Higher enrichment is associated with higher SI and lower 𝐻𝐻/𝑋𝑋 values. Higher 
water density, PWRs in this case, are relatively under-moderated with respect to BWRs, showing 
lower 𝐻𝐻/𝑋𝑋 values. Lower 𝐻𝐻/𝑋𝑋 values in the PWRs result in harder neutron flux spectra, and 
higher SI values. Higher burnup values are also associated with higher SI and lower 𝐻𝐻/𝑋𝑋 values, 
however to a weaker extent. The correlation of SI with burnup results from changes in the flux 
spectra as burnup progress (typically the flux becomes harder at higher burnup values).  

 
Figure 22. 𝑆𝑆𝑆𝑆 vs. enrichment, water density, burnup, and 𝐻𝐻/𝑋𝑋, based on the Clab decay heat 

benchmarks. The axes are centered and normalized, having average of zero and unit variance. 

Figure 23 shows corresponding plots for the 𝐻𝐻/𝑋𝑋 versus enrichment, sample height, burnup 
and 𝑆𝑆𝑆𝑆 for the PIE benchmarks (both BWRs and PWRs). Lower 𝐻𝐻/𝑋𝑋 values are generally observed 
in samples that have higher initial enrichments and are located at elevated positions in their host 
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assemblies. The correlation of 𝐻𝐻/𝑋𝑋 with burnup results from gradual depletion of the fissile 
material with burnup, resulting in an increasing trend for 𝐻𝐻/𝑋𝑋 with burnup. Both 𝑆𝑆𝑆𝑆 and 𝐻𝐻/𝑋𝑋 
tend to show negative trend with each other, as shown in both Figure 22 and Figure 23. Higher 
𝐻𝐻/𝑋𝑋, moderator-to-fuel atom ratio, tends to soften and increase the moderation of the flux. 

 

Figure 23. 𝐻𝐻/𝑋𝑋 vs. enrichment, sample height, burnup, and 𝑆𝑆𝑆𝑆. The plots are based on the PIE 
benchmarks. The axes are centered and normalized, having average of zero and unit variance. 

These variables change during irradiation, and a single value for each benchmark was obtained 
implementing cycle-wise burnup weighting, applied as following: 

𝑆𝑆𝑆𝑆 =
∑ (𝐵𝐵𝐵𝐵𝑖𝑖 × 𝑆𝑆𝑆𝑆𝑖𝑖)𝑛𝑛
1
∑ (𝐵𝐵𝐵𝐵𝑖𝑖)𝑛𝑛
1

, (6.21) 

𝐻𝐻/𝑋𝑋 =
∑ (𝐵𝐵𝐵𝐵𝑖𝑖 × 𝐻𝐻/𝑋𝑋𝑖𝑖)𝑛𝑛
1
∑ (𝐵𝐵𝐵𝐵𝑖𝑖)𝑛𝑛
1

. (6.22) 

For n irradiation steps, the SI and 𝐻𝐻/𝑋𝑋 of each step (𝑆𝑆𝑆𝑆𝑖𝑖 and 𝐻𝐻/𝑋𝑋𝑖𝑖) are weighted using the step-
wise burnup change (𝐵𝐵𝐵𝐵𝑖𝑖), resulting in a burnup weighted average value for each benchmark. 

Additional features can be included in the learning process, based on sensitivity analysis. 
Sensitivity analysis in features engineering is mostly applied in features selection to identify 
highly influential features toward the response [88,89]. In predicting the bias of CSA calculations, 
sensitivity coefficients are used as features in the learning process [45]. In this study, it is assumed 
that sensitivity analysis can identify influential or informative features. A sensitivity coefficient of 
the bias to model input 𝑥𝑥 is obtained as 

𝑆𝑆𝐵𝐵,𝑥𝑥 =
𝜕𝜕𝜕𝜕

𝐵𝐵�
𝜕𝜕𝜕𝜕 𝑥𝑥�

. (6.23) 

Ideally, the aim is to identify influential parameters through sensitivity analysis on the bias. 
However, Equation 7.3 requires evaluating sensitivities on the measurements too, which is not 
feasible. It is assumed that influential variables on the calculations can be as well influential on 
the difference between calculations and measurements. The calculated values are used instead 
of the bias in Equation 7.3. 
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 Validation Results 
The validation results are ratios between the calculated values (𝐶𝐶) and the measurements (𝐸𝐸), 

abbreviated hereafter as 𝐶𝐶/𝐸𝐸, and also biases (𝐵𝐵 = 𝐶𝐶 − 𝐸𝐸), discussed in the following sections. 
The biases and 𝐶𝐶/𝐸𝐸 values presented in this chapter are based on Polaris code, described in 
Section 3.1.1. 

7.1 SNF decay heat 

The decay heat values have been calculated for the 262 benchmarks of Clab and GE-Morris; 
the obtained 𝐶𝐶/𝐸𝐸𝐸𝐸 and 𝐵𝐵s are shown in Figure 24 and Figure 25, respectively. Averages of 𝐶𝐶/𝐸𝐸𝐸𝐸 
and 𝐵𝐵𝐵𝐵 along with two standard deviation (2σ) are listed in Table 8, categorized by the reactor of 
origin and the measurement laboratory. The reported standard deviations are calculated from 
the variance of the data, without considering the variance of each individual observation (i.e., 
without considering uncertainty in calculations and measurements). 

Based on the measurement laboratory and the reactor of origin, averages of the obtained 
𝐶𝐶/𝐸𝐸𝐸𝐸 are within 1.5% from unity, however, the variances are large. The standard deviations are 
within 5% in the Clab benchmarks, and up to 23% in the GE-Morris benchmarks. The GE-Morris 
benchmarks have relatively larger experimental uncertainties compared to the ones from Clab. 
Also, a large number of 𝐶𝐶/𝐸𝐸𝐸𝐸 of the GE-Morris benchmarks are outside the experimental 
uncertainty bands.  

Table 8. Average 𝐶𝐶/𝐸𝐸 and 𝐵𝐵 for the decay heat benchmarks, along with two standard 
deviations (2σ). The parentheses indicate the number of benchmarks in each category. 

Dataset (number) 𝐶𝐶/𝐸𝐸����� 𝐵𝐵�  (W) 
Clab: BWR (81) 1.010 ±0.051 1.3 ±7.3 
Clab: PWR (71) 1.015 ±0.023 6.5 ±10.3 

GE-Morris: BWR (96) 1.000 ±0.229 -4.2 ±34.2 
GE-Morris: PWR (14) 0.994 ±0.017 -4.3 ±11.4 

BWRs (177) 1.005 ±0.172 -1.7 ±26.2 
PWRs (85) 1.012 ±0.027 4.7 ±13.2 
Clab (152) 1.012 ±0.041 3.7 ±10.3 

GE-Morris (110) 0.999 ±0.214 -4.2 ±32.2 

Also, the variance of the 𝐶𝐶/𝐸𝐸𝐸𝐸 of the PWRs tend to be lower than that of the BWRs, and large 
variance of the 𝐵𝐵𝐵𝐵 in the PWRs does not necessarily correspond to large variance of the 𝐶𝐶/𝐸𝐸𝐸𝐸. 
BWRs have more complex designs than PWRs, also their operational parameters are more 
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intricate. As shown in Table 7, uncertainties in certain DO parameters of the BWRs are larger than 
those of the PWRs, such as external cladding radius and moderator density. Such differences 
could eventually lead to larger differences between calculations and measurements in the BWRs. 
Also, the measured decay heat values of the PWR assemblies are typically larger than the BWRs, 
for closely similar cooling times. For example, the average measured decay heat value in the Clab 
PWRs is 428 W, whereas it is 153 W for the BWRs. As shown in Table 3 and Table 4, uncertainties 
in the measured decay heat values tend to be lower in relative units (percentage) at higher 
measured decay heat values – typically PWRs in this case. Whereas the higher measured decay 
heat values tend to have larger uncertainties in absolute units (W). Such uncertainties could 
result in lower variances for PWR assemblies, presented in relative units, compared to larger 
variances when presented in absolute units. Also, as shown in Table 12, uncertainties in the 
calculated decay heat values tend to be similar between the PWRs and BWRs, presented in 
relative units (percentage). However, noting also that PWRs tend to have relatively larger 
calculated decay heat values than BWRs for closely similar cooling times, the uncertainties in the 
calculated decay heat value of PWRs tend to be larger, presented in absolute units (W). 



Validation Results 
 

 
71 

 

 

 
Figure 24. 𝐶𝐶/𝐸𝐸 of the decay heat, calculated for the 262 benchmarks of Clab (top three plots) 
and GE-Morris (bottom two plots). The BWRs are shown in black color, and the PWRs are in 

red. The uncertainty bars are experimental uncertainties (2σ). 
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Figure 25. Same as Figure 24, but for 𝐵𝐵 instead of 𝐶𝐶/𝐸𝐸 values. 
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7.2 U-235 concentration 

The U-235 concentrations have been calculated for the 285 benchmarks selected from 
SFCOMPO; the obtained 𝐶𝐶/𝐸𝐸𝐸𝐸 and 𝐵𝐵s are shown in Figure 28 and Figure 29, respectively. 
Averages of the 𝐶𝐶/𝐸𝐸 and 𝐵𝐵 along with two standard deviations are listed in Table 9. 

The calculated values are overestimated (with respect to the measured values) in both BWRs 
and PWRs, by 1.7% and 2.5%, respectively. In general, the variability is high in both 𝐶𝐶/𝐸𝐸 and 𝐵𝐵. 
Also, the BWRs tend to have larger variability in the 𝐶𝐶/𝐸𝐸 and 𝐵𝐵, measured by the standard 
deviation, compared to the PWRs. For clarity, the range of the 𝐶𝐶/𝐸𝐸 and 𝐵𝐵 (Figure 28 and Figure 
29) for the BWRs are 100% and 50% wider than the ones for the PWRs. The latter figures show 
uncertainty bars corresponding to reported experimental uncertainties (2𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.), and a 
significant number of the benchmarks have their 𝐶𝐶/𝐸𝐸 and 𝐵𝐵 located outside the experimental 
uncertainties. 

Table 9. Average 𝐶𝐶/𝐸𝐸 and 𝐵𝐵 for U-235 concentrations, along with two standard deviations 
(2𝜎𝜎). The parentheses indicate the number of benchmarks in each category. 

Dataset 𝐶𝐶/𝐸𝐸����� 𝐵𝐵�  (mg/gHMi) x 103 
BWR (139) 1.017 ±0.176 110 ±1423 
PWR (146) 1.025 ±0.085 245 ±848 
Total (285) 1.021 ±0.138 179 ±1170 

The present data span wide range of properties, significantly impacting the measured 
concentration of U-235. 95% of the burnup values in the present data are within 3.5 and 58.1 
GWd/tHMi, and 95% of the measured U-235 concentrations are within 1.3 and 25.2 mg/gHMi, 
both being relatively wide ranges. Burnup, as will be discussed in the Chapter 8, is a relevant 
parameter affecting the calculated U-235 concentration. Also, as shown in Figure 26, the 
measured U-235 concentration shows a decreasing trend with burnup, as expected. The U-235 
concentration reaches quite low values for several high burnup samples. The large standard 
deviations of the 𝐶𝐶/𝐸𝐸 in Table 8 are primarily attributed to samples having high burnup and 
significantly low measured values of U-235 concentration, as shown in Figure 26. 

 
Figure 26. Measured U-235 concentration vs. burnup (left) and the obtained 𝐶𝐶/𝐸𝐸 vs. the meas-

ured U-235 concentration (right).  
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7.3 Pu-239 concentration 

The Pu-239 concentrations have been calculated for the 285 benchmarks selected from 
SFCOMPO; the obtained 𝐶𝐶/𝐸𝐸𝐸𝐸 and 𝐵𝐵s are shown in Figure 30 and Figure 31, respectively. 
Averages of 𝐶𝐶/𝐸𝐸 and 𝐵𝐵 along with two standard deviations are listed in Table 10. 

Similar to the U-235 results, the calculated values are overestimated (with respect to the 
measured values) in both BWRs and PWRs. The overestimations are 1.3% and 3.9%, respectively. 
In general, the variability is high in both 𝐶𝐶/𝐸𝐸 and 𝐵𝐵. Also, similar to the U-235 case, the BWRs 
tend to have larger variability in the 𝐶𝐶/𝐸𝐸 and 𝐵𝐵, measured by the standard deviation, compared 
to the PWRs. For clarity, the range of the 𝐶𝐶/𝐸𝐸 and 𝐵𝐵 (Figure 30 and Figure 31) of the BWRs are 
100% and 50% wider than the ones for the PWRs. Also, a significant number of benchmarks have 
their 𝐶𝐶/𝐸𝐸 and 𝐵𝐵 located outside the experimental uncertainties (2𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.). 

Table 10. Average 𝐶𝐶/𝐸𝐸 and 𝐵𝐵 for Pu-239 concentrations, along with two standard deviations 
(2𝜎𝜎). The parentheses indicate the number of benchmarks in each category. 

Dataset 𝐶𝐶/𝐸𝐸����� 𝐵𝐵�  (mg/gHMi) x 103 
UO2 BWR (135) 1.011 ±0.164 -9 ±740 
MOX BWR (4) 1.087 ±0.126 709 ±1089 

PWR (146) 1.039 ±0.129 208 ±644 
Total (285) 1.026 ±0.149 112 ±741 

The Pu-239 concentration is affected by several parameters, including the burnup. The range 
of the measured Pu-239 concentrations is not as wide as the U-235 case, 95% of the measured 
Pu-239 concentrations are within 1.7 and 7.5 mg/gHMi. As shown in Figure 27, the measured Pu-
239 concentration increases significantly with burnup in the low burnup range and plateaus at 
higher burnups, as expected. At medium and high burnup ranges, the Pu-239 concentration is 
nearly balanced between its production from U-238 and removal from absorption – both capture 
and fission. The large standard deviations of the 𝐶𝐶/𝐸𝐸 in Table 10 are being attributed to samples 
at different burnup ranges. Significantly large 𝐶𝐶/𝐸𝐸 and 𝐵𝐵 values (compared to the rest of the 
data) are attributed to the 4 MOX samples of the Downward-1 reactor. Their measured Pu-239 
concentrations are also relatively high compared to the UO2-based samples. 

 
Figure 27. Measured Pu-239 concentration vs. burnup (left) and the obtained 𝐶𝐶/𝐸𝐸 vs. the meas-

ured U-235 concentration (right). 
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7.4 Cs-137 concentration 

The Cs-137 concentrations have been calculated for only 222 benchmarks of SFCOMPO (out 
of the selected 285 ones); the obtained 𝐶𝐶/𝐸𝐸𝐸𝐸 and 𝐵𝐵s are shown Figure 32 and Figure 33, 
respectively. Averages of 𝐶𝐶/𝐸𝐸𝐸𝐸 and 𝐵𝐵𝐵𝐵 along with two standard deviations are listed in Table 11. 

The calculated values are slightly underestimated (with respect to the measured values) in 
both BWRs and PWRs. In general, the variability is high in both 𝐶𝐶/𝐸𝐸 and 𝐵𝐵. Also, similar to the U-
235 and Pu-239 cases, the BWRs tend to have larger variability in the 𝐶𝐶/𝐸𝐸 and 𝐵𝐵, measured by 
the standard deviation, compared to the PWRs. Also, a significant number of the benchmarks 
have their 𝐶𝐶/𝐸𝐸 and 𝐵𝐵 located outside the experimental uncertainties (2𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.). 

Table 11. Average 𝐶𝐶/𝐸𝐸 and 𝐵𝐵 for Cs-137 concentrations, along with two standard deviations 
(2𝜎𝜎). The parentheses indicate the number of benchmarks in each category. 

Dataset 𝐶𝐶/𝐸𝐸����� 𝐵𝐵�  (mg/gHMi) x 103 
BWR (105) 0.996 ±0.160 -10 ±180 
PWR (117) 0.993 ±0.078 -6 ±69 
Total (222) 0.995 ±0.124 -8 ±133 
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Figure 28. 𝐶𝐶/𝐸𝐸 of the U-235 concentrations. The BWRs are shown in black color (top two plots), 
and the PWRs are in red color (bottom two plots). The uncertainty bars are experimental uncer-

tainties (2σ), reported for some of the analyzed benchmarks [11].  
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Figure 29. Same as Figure 28, but for 𝐵𝐵 instead of 𝐶𝐶/𝐸𝐸 values. 
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Figure 30. 𝐶𝐶/𝐸𝐸 of the Pu-239 concentrations. The BWRs are shown in black color (top two 

plots), and the PWRs are in red color (bottom two plots). The uncertainty bars are experimental 
uncertainties (2σ), reported for some of the analyzed benchmarks [11]. 
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Figure 31. Same as Figure 30, but for 𝐵𝐵 instead of 𝐶𝐶/𝐸𝐸 values. 
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Figure 32. 𝐶𝐶/𝐸𝐸 of the Cs-137 concentrations. Missing 𝐵𝐵 values are benchmarks lacking experi-

mental measurements (63 PIE samples out of the total 285). The BWRs are shown in black color 
(top two plots), and the PWRs are in red color (bottom two plots). The uncertainty bars are ex-

perimental uncertainties (2σ), reported for some of the analyzed benchmarks [11]. 



Validation Results 
 

 
81 

 

 
Figure 33. Same as Figure 32, but for 𝐵𝐵 instead of 𝐶𝐶/𝐸𝐸 values.  
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7.5 Comparison with literature 

In this section, a comparison with literature is presented for the decay heat benchmarks. The 
decay heat benchmarks are selected, given that several literature studies consistently present 
bias and 𝐶𝐶/𝐸𝐸 values for large numbers of decay heat benchmarks, analyzed in this work. As will 
be explained in Chapter 9, the decay heats are also calculated using ORIGEN (SCALE 6.2.3), in 
addition to Polaris. The 𝐵𝐵 and 𝐶𝐶/𝐸𝐸 values of the decay heat are shown in Figure 34, categorized 
by the measurement laboratory and the reactor type. Figure 34 shows the present results along 
with the results of Gauld et al. [27], Yamamoto and Iwahashi [90], Ilas et al. [28], and Wiles et al. 
[13]. The results presented are not necessarily based on the same number of benchmarks as for 
the present work. For example, the analyzed benchmarks in [28] exclude the GE benchmarks, 
and the benchmarks in [13] do not include any Clab benchmarks. The 𝐵𝐵 and 𝐶𝐶/𝐸𝐸 values from 
Polaris and ORIGEN are comparable to the ones from the references. The 𝐵𝐵𝐵𝐵 are having less 
variance in the Clab benchmarks, particularly for the BWRs. For the Clab benchmarks, the 𝐵𝐵𝐵𝐵 and 
𝐶𝐶/𝐸𝐸𝐸𝐸 tend to be higher on average in the PWRs compared to the BWRs, i.e., the calculations in 
the PWRs overestimate the decay heat values (with respect to the measured values), compared 
also to the BWRs. For both the Clab and GE-Morris benchmarks, the 𝐶𝐶/𝐸𝐸𝐸𝐸 of the PWRs tend to 
have less variance compared to the BWRs. 

 
Figure 34. 𝐶𝐶/𝐸𝐸 and 𝐵𝐵 values of Polaris and ORIGEN obtained in this work, along with results 

from [13,27,28,90]. The bars are 1𝜎𝜎. The listed ND libraries are the primary source of ND.
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 Uncertainty Analyses 
Uncertainties of ND and DO origins were individually propagated in the calculational models 

for all benchmarks, using 400 perturbations for the decay heat benchmarks and 335 for the PIE 
samples (individually for ND and DO perturbations). Then, ND and DO uncertainties were 
combined together (through summation of quadrature) to obtain the total calculated 
uncertainties. The uncertainty propagation method and the propagated uncertainties were 
discussed in sections 4.3 and 4.4. The uncertainties presented in this chapter are based on both 
Polaris and Sampler codes, described in Section 3.1.1. 

The fractional variance (FV) is used to quantify the contributions of ND and DO uncertainties 
in the total calculated uncertainties, and also the contributions of uncertainties in XS, FY, and DD 
to the uncertainties of ND origin. The XS contributions to uncertainties of ND origin are calculated 
as 

𝐹𝐹𝐹𝐹𝑋𝑋𝑋𝑋 =
𝜎𝜎𝑋𝑋𝑋𝑋2

𝜎𝜎𝑁𝑁𝑁𝑁2
=

𝜎𝜎𝑋𝑋𝑋𝑋2

𝜎𝜎𝑋𝑋𝑋𝑋2 +𝜎𝜎𝐹𝐹𝐹𝐹2 +𝜎𝜎𝐷𝐷𝐷𝐷2
. (9.1) 

The ND contributions to the total calculated uncertainties are evaluated as 

𝐹𝐹𝐹𝐹𝑁𝑁𝑁𝑁 =
𝜎𝜎𝑁𝑁𝑁𝑁2

𝜎𝜎𝐶𝐶2
=

𝜎𝜎𝑁𝑁𝑁𝑁2

𝜎𝜎𝑁𝑁𝑁𝑁2 +𝜎𝜎𝐷𝐷𝐷𝐷2
. (9.2) 

8.1 Calculated uncertainties and fractional variances 

The calculated uncertainties are summarized in Table 12, represented as one standard 
deviation (%) of the calculated values. No significant differences are noted between the PWRs 
and the BWRs. The uncertainties of the decay heat and Cs-137 concentration are approximately 
2.3% and 1.7-1.8%, respectively. Both uncertainties have low variances around their averages. In 
contrast, uncertainties in the U-235 and Pu-239 concentrations are largely varying around their 
averages, particularly for the former isotope. The uncertainties of the U-235 concentration are 
2.5-3.0% whereas they are 2.4-2.6% for the Pu-239 concentration. 

Table 12. Average along with one standard deviation of the calculated uncertainties (%). 

Parameter PWR BWR 
Decay Heat 2.3 ±0.2 2.3 ±0.2 

U-235 2.5 ±1.0 3.0 ±2.5 
Pu-239 2.6 ±0.6 2.4 ±0.7 
Cs-137 1.8 ±0.1 1.7 ±0.1 
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The calculated uncertainties have two origins: ND (e.g., XS, FY, and DD) and DO parameters. 
The contributions of uncertainties of DO origins into the calculated uncertainties are listed in 
Table 13, measured as fractional variances. Similar to the total uncertainties, differences 
between the PWRs and the BWRs are not significant. The uncertainties of DO origins contribute 
largely to the calculated uncertainties. They contribute more than 80% to the total variances of 
the calculated decay heat values, U-235, and Cs-137, particularly for the latter isotope where the 
FV is 97-98%. The Pu-239 FVs show large variances around their average, however, the FVs are 
considerably large, being between 55% and 59% of the total variances. 

Table 13. Average along with one standard deviation of the FVs of the uncertainties of DO ori-
gins. 

Parameter PWR BWR 
Decay Heat 0.84 ±0.05 0.85 ±0.04 

U-235 0.87 ±0.07 0.89 ±0.08 
Pu-239 0.59 ±0.16 0.55 ±0.19 
Cs-137 0.98 ±0.01 0.97 ±0.01 

The observed variations in the calculated uncertainties and the FVs, listed in Table 12 and 
Table 13, can indicate their dependency on benchmarks features. As will be discussed in Section 
8.3, the perturbed SNF characteristics correlate differently with various benchmark features. The 
burnup will show high correlations with all of the analyzed SNF characteristics. Therefore, the 
calculated uncertainties and the FVs listed in Table 12 and Table 13 are plotted against the 
burnup, see Figure 35 to Figure 38. On average, the calculated uncertainties and the FVs of DO 
uncertainties of the decay heat and U-235 concentration show noticeable trend with the burnup: 
the higher the SFA burnup, the higher the calculated uncertainties. The uncertainties (1𝜎𝜎) for the 
decay heat are less than 3% of the calculated values (at maximum). Whereas uncertainties for U-
235 concentration reach higher values, approximately 6% for the PWRs and 12% for the BWRs 
(at maximum). Trends can also be observed in the FVs of DO origins into the calculated 
uncertainties. On average, for both the decay heat and the U-235 concentration, the FVs of DO 
origins decreases at higher burnups, i.e., uncertainties of ND origin increasingly contribute at 
higher burnup. 

The calculated uncertainties and the FVs of DO origins of the Pu-239 and Cs-137 
concentrations do not behave similarly, i.e., they do not exhibit noticeable trends with the 
burnup as for the decay heat and the U-235 concentration. As will be discussed in Section 8.3, 
the Pu-239 concentration is affected by other parameters than the burnup, e.g., parameters 
inducing large spectral changes such as the moderator density. Additionally, several benchmarks 
cluster together, such for the Yankee-1 reactor. Calculated uncertainties for the Cs-137 
concentration and the FVs of DO origins also do not show noticeable trends with the burnup. 
However, these uncertainties and FVs are constrained within small interval, being 1.67-1.75% for 
the former, and 0.97 to 1.00 for the latter. The Cs-137 concentration is therefore mostly affected 
by uncertainties of DO origin, and the most influencing parameter is the burnup, as expected. 
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The burnup uncertainties are implemented as percentages of the burnup, and as listed in Table 
7, burnup uncertainty is 1.67%, close to the calculated uncertainties of the Cs-137 concentration. 

 
Figure 35. Calculated uncertainties of the decay heat (left), and the FVs of DO origins (right). 

 
Figure 36. Same as Figure 35 for the U-235 concentration. 
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Figure 37. Same as Figure 35 for the Pu-239 concentration. Samples of Yankee-1 (PWR) and MOX 

samples (BWR) are marked with extra “X” symbol. 

 

Figure 38. Same as Figure 35 for the Cs-137 concentration. 
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8.2 Uncertainties from nuclear data and fractional variances of XS, FY and DD 

In the previous section, calculated uncertainties were decomposed into their two 
components, ND and DO origins. In this section, uncertainties from ND are further decomposed 
into their components. However, unlike the previous section in which all the benchmarks are 
analyzed, only 4 SFAs are analyzed in the following. They were selected to show differences in 
their burnup values and enrichments, coming from both BWRs and PWRs, see Table 14. 

Table 14. SFAs considered for the analyses of the uncertainty contributions of XS, FY, and DD. 

Reactor 
of origin SFA ID SFA Design U-235 

wt% 
Burnup 

(GWd/tHMi) 
PWR F32 15x15 3.20 51.0 
PWR 0E2 17x17 3.10 41.6 
BWR 6432 GE 8x8 2.89 36.9 
BWR 11495 SVEA-64 2.91 32.4 

Uncertainties in XS, FY, and DD are propagated individually in the calculational models. Their 
FVs are shown in Figure 39, between 2 and 50 years after discharge. The uncertainties due to ND 
are smaller than the ones due to DO for the decay heat, U-235, and Cs-137 concentrations. The 
Pu-239 concentration show varying level of contributions of both ND and DO uncertainties, 
whereas the contributions of the former are higher at higher burnup. XS dominates the ND 
uncertainties for the decay heat, U-235, and Pu-239 concentration. The uncertainties in the Cs-
137 concentration are mostly originating from the DD (74-76%) and FY (23-25%). 

Uncertainties in the calculated U-235 and Pu-239 concentrations are dominated by 
uncertainties in neutron cross-sections. U-235 is mostly being removed through absorption 
reactions, both radiative capture and fission reactions. Pu-239 is mostly being produced through 
radiative capture in U-238, followed promptly by beta decay. Also, Pu-239 is mostly being 
removed through absorption reactions like the U-235. The mentioned reactions are neutron XS 
reactions, and uncertainties in the final concentrations of both U-235 and Pu-239 are dominated 
(>99%) by those uncertainties – measured using the FV. Cs-137 is a fission and decay product 
being affected by uncertainties in the FY and DD.  

The decay heat has a different characteristic than the mentioned nuclides, as it results from 
the contribution of several decay heat producing nuclides. Decomposition of the uncertainties 
from ND into their components in a list of decay heat relevant nuclides is analyzed, focusing on 
the 14 most decay heat producing nuclides between 5 and 100 years after discharge. At these 
cooling times, the selected nuclides contribute more than 95% to both the calculated decay heat 
values and decay heat uncertainties in the analyzed SFAs. The FVs of the XY, FY, and DD in the 
uncertainties from ND are shown in Figure 40. Differences between the production routes of 
decay heat relevant nuclides result in different contributions of XS, FY and DD to uncertainties 
due to ND. For the actinides (AC), ND variances are largely due to XS (0.97-0.99) and, to a minor 
extent, to DD (0.01-0.03). For the fission and decay products (F/DPs), they show large 
contributions from FY and DD uncertainties. Isotopes such as Cs-134 and Eu-154 show 
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pronounced contributions from XS uncertainties compared to the other F/DPs, and almost no 
dependence on FY and DD uncertainties. The production of the latter nuclides results mainly from 
neutron capture in Cs-133 and Eu-153 [91]. In general, the F/DP are shorter lived compared to 
the AC. Their concentrations to the calculated decay heat values decrease at longer the cooling 
times, and also their contributions to the calculated decay heat uncertainties. 

 
Figure 39. Contribution of uncertainties from ND to decay heat, U-235, Pu-239, and Cs-137 total 

calculated uncertainties (shaded grey area), and individual contributions of XS, FY, and DD to 
uncertainties from ND. The SFAs are ordered by burnup (top to bottom). The minimum and 

maximum cooling times are 2 and 50 years.
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Figure 40. Same as Figure 39 for selected decay heat relevant nuclides. 
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8.3 Relevant design and operational parameters 

In the previous section, the relevant ND uncertainties were presented, and in this section the 
relevant DO parameters are presented. The previous analyses of ND uncertainties using the FV is 
computationally intensive, it requires perturbing each component individually. For such a reason, 
the previous analyses were conducted on selected benchmarks. Instead of the FV, the relevant 
DO parameters are analyzed through their correlations with the calculated characteristics.  

In each benchmark, DO parameters in the Polaris model are perturbed altogether using 
Sampler as described in Section 4.3. Then, the correlation is calculated between each perturbed 
DO parameter and the perturbed calculated value, resulting in the correlation coefficient for each 
DO parameter, also in each benchmark. As shown in Figure 41, perturbating the burnup results 
in perturbations in the calculated U-235 and Pu-239 concentrations. The benchmarks in Figure 
41 are A1-I2, assembly B23 of the Gundremmingen-1 reactor (BWR), and G10_4, assembly D01 
of the Turkey Point-3 reactor (PWR). Changes in the burnup in a perturbed Polaris model are also 
accompanied by changes in other DO parameters, such as water density. The altogether 
perturbation of the DO parameters causes significant scatter of the calculated concentrations, 
being affected by multiple DO parameters. Also, benchmarks have different characteristics, e.g.,  
BWRs vs. PWRs and also burnup values. These differences change the levels of correlations 
between the calculated concentrations and the perturbed DO parameters, resulting in a 
distribution of the correlation values for the same DO parameter in different benchmarks. 

 

Figure 41. Perturbed concentrations of U-235 and Pu-239 vs. the burnup perturbation factor – 
both axes are centered and normalized. Left plot is benchmark A1-I2 (BWR), and the right plot 

is benchmark G10_4 (PWR). 

Following this approach allowed conducting the analyses without repeating the calculations, 
perturbing individual components. However, the interpretability of the results is limited 
compared to evaluating the FVs. The calculated characteristics are sensitive to several DO 
parameters, being perturbed all together at once and independently from each other. 
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Figure 42 shows plots of the Pearson correlation between the calculated characteristics and 
the DO parameters. Other DO parameters, not presented in the figure and mentioned in Section 
4.3, correlate with the plotted DO parameters, and are excluded (such as the coolant 
temperature, which correlates with the coolant density in the PWRs). One can observe that the 
burnup is a highly relevant or influential parameter, being correlated with all of the analyzed 
characteristics. For the decay heat and Cs-137 concentration, they largely and positively correlate 
with the burnup and the variations of the resulting correlation coefficients are constrained in 
narrow ranges. For the U-235 and Pu-239 concentrations, the resulting correlations with the 
burnup span wider ranges, whereas they are mostly negative for U-235 concentration and 
positive for Pu-239 concentration. The decay heat and Cs-137 concentration tend to show 
significantly lower correlations with the other DO parameters. Whereas, for the U-235 and Pu-
239 concentrations, various levels of correlations are observed with the other DO parameters. 
The initial enrichment is a relevant DO parameter for the calculated final U-235 concentration, 
showing largely positive correlations. Parameters inducing neutron spectral changes such as the 
coolant density and the cladding outer radius (i.e., inner radius and thickness) affect the Pu-239 
concentration as well. The effects on the correlation of both the coolant density and the cladding 
radius tend (on average) to be on the opposite side of the correlation plots. The coolant density 
has a larger impact on both the U-235 and Pu-239 concentrations in the BWRs compared to the 
PWRs. The implemented uncertainties in the coolant density in the BWRs are significantly larger 
than the PWRs (see Section 4.3). In the PWRs, the uncertainty in the water density is usually less 
than 1%, whereas it is 6% for the void fraction in the BWRs. 
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Figure 42. Correlations of the calculated characteristics with the DO parameters. The boxes 

show the median and the first and third quartiles (Q1 and Q3). The whiskers are at Q1 – 
1.5xIQR and Q3 + 1.5xIQR (IQR is the interquartile range). 
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8.4 Assumptions of burnup uncertainties 

The burnup has shown large correlations with all of the analyzed characteristics. In this 
section, the assumptions on the burnup uncertainties are analyzed on a selected benchmark 
from the decay heat data (SFA 6432 of Ringhals-1). The results are presented for cooling times 
between 2 and 100 years after discharge. Several cases implementing different assumptions on 
the burnup uncertainties are described in Section 4.3, and in the following, the resulting standard 
deviations are compared to the ones from the reference assumptions (listed in Table 7). The 
number of perturbations implemented in the models discussed in this section is 400. Such 
number of perturbation results in a standard error of 5% for the presented standard deviations. 

Case 1 represents a 50% increase in the SD of all variables (including the burnup), resulting in 
an increase in the SD of all characteristics by approximately 50%, i.e., the final variances increased 
by almost the same percentage as the initial variances. The other cases (cases 2 to 6) are shown 
in Figure 43. Case 2, considering a uniform distribution instead of the reference normal one, 
shows approximately the same SD for all the calculated characteristics, i.e., both have the same 
variance.  

The cases 3 and 4 have the same burnup uncertainties, originating largely from uncertainties 
in the power in later cycles (case 3), and in earlier cycles (case 4). Case 3 shows increased 
uncertainties in the decay heat for short-term decay, and vice versa for case 4. In both cases, for 
longer decay time, uncertainties of the calculated characteristics approach the reference case. 

In case 5, where cycle-wise average powers are sampled independently of each other, one can 
observe that the variance of the final burnup is also lower than the reference case, where 
correlations between cycle-wise powers ensured the final burnup variance. The decay heat 
uncertainties are significantly lower than the reference case for short cooling times, where the 
contribution of decay and decay heat uncertainties largely come from F/DP. At longer cooling 
times, the contributions of AC to decay heat and decay heat uncertainty increase, being sensitive 
to other perturbed parameters, in addition to the burnup. Pu-239 uncertainties are nearly 
unaffected. U-235 and Cs-137 uncertainties, which correlate significantly with burnup, are 
significantly reduced, particularly for the latter isotope. 

Considering only uncertainties in the power and the fuel temperature (case 6) results in a 
gradual decrease in the decay heat uncertainty the longer the decay time. The decrease in 
uncertainty mainly results from the decrease in uncertainties of the AC, being sensitive to other 
variables that induce spectral changes (excluded in this case). The uncertainty of Pu-239 
concentration is significantly reduced in this case, and the uncertainties for the U-235 and Cs-137 
concentrations (which correlate significantly with burnup) are not strongly reduced. U-235 
uncertainties are 0.75 of the reference values, and Cs-137 uncertainties are approximately similar 
to the reference case. 

The power uncertainty is a significant contributor to the resulting uncertainties in the analyzed 
characteristics. Assumptions on these power uncertainties are relevant, however, to different 
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extents. The assumption on the form of the distributions (normal vs. uniform), while maintaining 
the same variance, has shown to be insignificant on the resulting uncertainties. Different 
allocations of the power variances along the irradiation history, while maintaining the same 
variance in the burnup, also have shown insignificance effect on the uncertainties. The 
assumption that cycle powers do not correlate leads to reduced overall burnup uncertainties. As 
a conclusion, the most relevant assumption on the power is the variance of the burnup. Accurate 
power history and reduction of uncertainties in the SFA burnup would result in a significant 
reduction in the calculated-related uncertainties of the decay heat, U-235, and Cs-137 
concentrations. The Pu-239 concentration is mostly affected by parameters inducing spectral 
changes, and burnup uncertainties contribute less significantly to its uncertainty compared to 
the other isotopes. 

 
(1) Uncertainties have a uniform distribution with a variance equal to the reference case. 
(2) Power uncertainties are allocated in later irradiation cycles (solid line), or earlier cycles (dashed line). 
(3) Uncorrelated cycle powers. 
(4) DO uncertainties originate from power and fuel temperature only. 

Figure 43. Relative uncertainty for cases implementing different assumptions on the power and 
burnup uncertainties (relative to the reference case of SFA 6432 of Ringhals-1). The minimum 

and maximum cooling times are 2 and 100 years. 

8.5 Correlations between benchmarks 

In this section, the correlations between benchmarks are introduced, based on perturbations 
in the ND and the DO parameters. Also, these correlation matrices later on form the design 
matrices used to predict the bias of the benchmarks (see Chapter 11). As discussed in Section 
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8.3, the burnup is a relevant DO parameter that correlates significantly with all of the calculated 
characteristics, and the discussed correlation matrices are ordered according to the burnup (in a 
descending order from top to bottom and left to right). For example, the top-left corner of the 
correlation matrix will show the correlation between high burnup benchmarks, and the bottom-
left corner will show the correlation between high and low burnup benchmarks. 

9.4.1. Decay heat correlations  

The correlations between the calculated decay heat values in both the Clab and GE-Morris 
benchmarks are shown in Figure 44. All correlations between the decay heat values are positive. 
Various levels of correlations are observed, which are significantly high due to perturbations in 
the DO parameters (the lowest value is 0.96). The corresponding correlations due to 
perturbations in the ND are lower, down to 0.24. These correlation matrices are obtained 
between the calculated decay heat values at the times of measurements, spanning wide ranges 
(the GE-Morris benchmarks are measured between 2 and 11 years after discharge, whereas Clab 
benchmarks are measured between 11 and 27 years after discharge). As discussed in Section 8.2, 
the decay heat results from the contribution of various nuclides. At short cooling times, various 
short-lived F/DPs are decaying at different rates, contributing more to the decay heat than the 
actinides. At longer cooling times, the contribution increases from the longer-lived actinides. The 
contributions to the calculated decay heat values from the analyzed decay heat relevant nuclides 
change in the range of the analyzed cooling times [92]. The Clab benchmarks are also plotted 
separately in Figure 44, showing decreased correlations between benchmarks having differences 
in their burnup (based on the ND perturbations) and still significantly high correlations based on 
perturbations of the DO parameters. The lowest correlations in the Clab benchmarks are 0.96 
and 0.45, for both correlation matrices based on the DO and ND perturbations, respectively. Also, 
the benchmarks are highly correlated (with respect to the calculated decay heat) due to 
combined perturbations in both the ND and DO parameters. Differences between these SFAs, 
such as their burnup and cooling times, can change the correlations, as they differently impact 
nuclide-wise contributions to the decay heat. 

9.4.2. Correlations of the Cs-137, U-235, and Pu-239 concentrations 

The correlation matrices of the calculated isotopic concentrations show variable levels of 
correlations between the benchmarks, as shown in Figure 45. The followings are the minimum 
correlations in each correlation matrix (DO and ND matrices, respectively): 

1. U-235: (0.01, 0.43), 
2. P-239: (-0.97, 0.59), 
3. Cs-137: (-0.04, 0.01). 

Correlations in U-235 and Pu-239 concentrations resulting from perturbing the DO parameters 
are significantly lower than the ones from ND. The U-235 matrices show that benchmarks having 
similarity in their burnups correlates largely with each other, due to perturbations in both the DO 
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parameters and the ND. The Pu-239 matrix based on perturbations in the ND shows similarity to 
the U-235 matrices, however, the DO-based matrix shows variable levels of correlations. In 
perturbing the DO parameters, several parameters correlate with the Pu-239 concentration, as 
explained in Section 8.3. The Pu-239 correlation matrix based on the DO perturbations is ordered 
by burnup; other parameters highly correlated with the Pu-239, such as water density and 
cladding radius, can also change the observed levels of correlations in benchmarks having 
similarities in their burnups. Very low correlations are observed between the concentrations of 
Pu-239 in the MOX-based samples and the rest of UO2-based samples, due to perturbations in 
either ND or DO parameters. The Cs-137 matrix based on the ND perturbations shows similarity 
in the burnup trend to the U-235 matrices. However, the matrix based on the DO perturbations 
shows excessively high and skewed distribution of the correlation values. The minimum observed 
correlation in the latter matrix is around zero, however, approximately 95% of the observed 
correlations are above 0.97. The Cs-137 matrix based on ND perturbations show similar 
skewness, however to a lesser extent, and approximately 95% of the observed correlations are 
above 0.72. Also, very low correlations are observed between the concentrations of Cs-137 in 
the MOX-based samples and the rest of UO2-based samples, due to perturbations in either ND 
or DO parameters.  
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Figure 44. Correlations between the calculated decay heat values of the Clab and GE-Morris 
benchmarks (top row), and only the Clab benchmarks (bottom row). The matrices are ordered 
according to the burnup (top to bottom and left to right). The left column shows correlations 

due to perturbing the DO parameters, and the right column shows correlations due to perturb-
ing the ND.   
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Figure 45. Correlations between the calculated concentrations of Cs-137, U-235, and Pu-239. 
The matrices and columns are ordered similar to Figure 44.  
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 Significance of the Bias Based on 
the Validation Data 

The significance of the average bias is analyzed using non-parametric tests, as described in 
Section 5.1. The null hypothesis implies that differences between calculations and measurements 
are random differences, i.e., due to chance, whereas the alternative hypothesis implies 
systematic differences. The statistical analyses in this chapter use the validation results of the 
Polaris code, except for Section 9.1, which are based on both Polaris and ORIGEN codes. 

The benchmarks have properties potentially leading to differences between the biases. It is 
assumed in this study that differences in between PWRs and BWRs can lead to differences in the 
bias. The BWRs are typically more challenging in their modelling, given their geometrical 
complexity and neutronic heterogeneity. Also, some of their DO parameters can be more 
uncertain than the PWRs [56], such as the coolant density, eventually leading to higher 
uncertainties in the biases. A generic observation from sections 7.1 to 7.4: the bias variance of 
the BWRs is larger than that of the PWRs. The data are then split based on the reactor type. The 
Shapiro-Wilk normality test was conducted on the bias of each category, and the p-values show 
that the biases are not normal at a significance level of 0.05, as listed in Table 15. Nonparametric 
tests are applicable in this case [70]. 

Table 15. p-values of the Shapiro-Wilk normality test conducted on the BWR and PWR bias 
data. 

Characteristic BWR PWR 
Decay Heat 0 0.014 

Cs-137 0 0.016 
U-235 0 0 
Pu-239 0 0.001 

The null distributions generated using bootstrapping on the bias data are shown in Figure 46, 
showing also the 95% normal confidence intervals (CI). The null hypothesis is rejected when the 
defined CI do not contain a zero bias. For all of the observed biases of the PWR sections, the p-
values are approximately zero. Therefore, the null hypothesis is rejected, and the alternative is 
accepted that the PWR calculations are systematically or significantly different from the 
measurements. These observed average biases are extreme with respect to these null 
distributions (i.e., they are statistically significant). Alternatively, the observed average biases of 
all the BWR sections have p-values greater than the significance threshold. Therefore, the tests 



Significance of the Bias Based on the Validation Data 
 

 
100 

 

failed to reject the null hypothesis. The calculations on the BWRs are not systematically or 
significantly different from the measurements and the observed biases are likely to be due to 
chance or result from randomness in the data. The BWR data show that it is likely to have a 
random component, large enough, to prevent an identification of systematic difference (if 
existing). Permutation tests were also conducted, and the results are provided in Appendix IV. 
The conclusions are similar to those of the bootstrap tests, however, at slightly different p-values. 
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Figure 46. Bootstrap distributions of the average biases (the red lines are 95% normal CI). The 
distributions are centered near the observed average biases and testing their significance pro-

ceeds by observing whether or not a zero average bias falls within the chosen CI. 
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9.1 Significance of the bias based on simultaneous testing 

The significance of the conducted non-parametric tests can be increased through setting a 
lower value for the significance threshold, such that the null is rejected, and the alternative is 
accepted at more extreme observations. However, the choice of the significance threshold is 
arbitrary.  

A different approach is analyzed, requiring more evidence from the data against the null-
hypothesis, through multiple hypotheses testing. The significance of the biases obtained using 
two codes is simultaneously analyzed. The simultaneous hypothesis testing is applied on the 
decay heat data only. The first calculations are based on the Polaris code (as previously analyzed), 
and the second calculations are based on the ORIGEN code (SCALE 6.2.3), described in Appendix 
V. The results are shown in Figure 47. The calculations of Polaris and ORIGEN show some degree 
of similarity, i.e., possible trends in their calculations. Also, Figure 48 shows that the Polaris and 
ORIGEN calculations are more similar to each other than the similarity between the Polaris 
calculations and the measured values. The RMSE between the Polaris and ORIGEN values is 3 W, 
compared to 12 W between the Polaris calculations and the measured values. The averages of 
the 𝐵𝐵𝐵𝐵 and 𝐶𝐶/𝐸𝐸𝐸𝐸 of the calculations of both Polaris and ORIGEN are listed in Table 16. 

The ORIGEN code is different from Polaris, such that they are independent to some extent. 
However, the differences are in the calculational method and the modelling assumptions. The 
two calculational sequences still have large similarities, e.g., both use the same SCALE ND 
libraries, and the same evaluations of the irradiation data and the measurements. Inclusion of an 
additional code relying on different ND, and access to irradiation data and measurements 
evaluated independently can allow further improvements to the method by reducing the 
dependencies between the results. 

The alternative hypothesis that the calculations are systematically or significantly different 
from the measurements is accepted only when the two calculations show such evidence. The 
null hypothesis in this case implies that the differences between the measurements and the 
calculations are random differences (simultaneously in the calculations of the two codes). Again, 
the tests are conducted at a significance level of 0.05.  

Table 16. 𝐶𝐶/𝐸𝐸 and 𝐵𝐵 for the decay heat calculations using Polaris and ORIGEN, along with 1𝜎𝜎. 

Dataset Code 𝐶𝐶/𝐸𝐸����� 𝐵𝐵�  (W) 

Clab: BWR (81) 
Polaris 1.010 ±0.026 1.3 ±3.6 

ORIGEN 1.003 ±0.025 -0.1 ±3.4 

Clab: PWR (71) 
Polaris 1.015 ±0.012 6.5 ±5.2 

ORIGEN 1.019 ±0.012 8.5 ±5.8 

GE-Morris: BWR (96) 
Polaris 1.000 ±0.114 -4.2 ±17.1 

ORIGEN 1.009 ±0.115 -1.9 ±17.2 

GE-Morris: PWR (14) 
Polaris 0.994 ±0.009 -4.3 ±5.7 

ORIGEN 1.007 ±0.009 4.0 ±6.2 
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Figure 47. Decay heat biases calculated using Polaris and ORIGEN (P and O) – shown only for 

the Clab benchmarks. The BWRs are shown in black color, and the PWRs are in red. The uncer-
tainty bars are experimental uncertainties (2σ). 

 
Figure 48. Calculated decay heat values (DH) using Polaris vs. ORIGEN (left), and vs. the meas-

ured values (right). The data belong to both the Clab and GE-Morris benchmarks. Linear regres-
sion results in the presented RMSE values. The blue lines have a slope of unity. 
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The p-values of the Shapiro-Wilk normality test are listed in Table 17. Similarly, the biases in 
each category are not consistently normal using both codes at a significance level of 0.05.  

Table 17. p-values of the Shapiro-Wilk normality test conducted on the Polaris and ORIGEN de-
cay heat bias data. 

Lab. Reactor Polaris ORIGEN Normality test 

Clab PWR 0.01 0.01 Reject H0 
BWR 0.97 0.63 Fail to reject H0 

GE 
PWR 0.21 0.75 Fail to reject H0 
BWR 0.11 0.09 Fail to reject H0 

The analyzed data are interpreted as paired data—i.e., the two calculations and the 
corresponding measurements are conducted on the same units. This interpretation allows to 
conduct the permutations in the two datasets simultaneously. For example, in a random 
permutation, sampled calculations of the two codes are simultaneously assigned the 
corresponding measured values. Both distributions are centered near zero, and the alternative 
is tested by counting the observations that are at least more extreme than the observed average 
biases for both codes (i.e., two-sided test setting). The null hypothesis is rejected, and the 
alternative is accepted if less than 5% of the observations on the joint distribution are more 
extreme than the observed biases. Alternatively, in bootstrap testing, the null hypothesis is 
rejected, and the alternative is accepted if the two codes show that their 95% bootstrap CI do 
not contain an average bias of zero at the same time. The applied technique belongs to 
simultaneous testing techniques [70]. 

The permutation distributions of the average biases are shown in Figure 49 (first and third 
rows), plotted as joint distributions. The red lines mark the observed average biases by both 
codes on each validation category. The overall (i.e., the simultaneous testing) p-values for the 
PWR benchmarks of both Clab and GE-Morris are less than the set threshold, meaning that the 
null hypothesis is rejected, and the alternative is accepted that the two codes (simultaneously) 
are systematically or significantly different from the measurements. In contrast, the BWR 
sections of the data yield p-values > 0.05, meaning that the test failed to reject the null hypothesis 
and there is no evidence from the BWR data that the two calculations are simultaneously 
different from the measurements. The p-values of the permutation tests are listed in Table 18.  

Table 18. Simultaneous testing p-values of the permutation tests. 

Lab. SFA type Polaris ORIGEN Combined test Simultaneous 
test result of H0 

Clab 
BWR 0.002 0.872 0.872 Fail to reject H0 
PWR 0 0 0 Reject H0 

GE-Morris 
BWR 0.020 0.295 0.295 Fail to reject H0 
PWR 0.014 0.037 0.049 Reject H0 

The bootstrap distributions of the average biases are also shown in Figure 49 (second and 
fourth rows). The shaded regions are 95% normal CI. Similar to the permutations, the null 
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hypothesis is rejected for the PWRs, and it is failed to reject it for the BWRs. The conclusions 
drawn from the bootstrap tests are similar to those from the permutation tests, however with 
differences in the p-values (listed in Table 19). 

Table 19. Simultaneous testing p-values of the bootstrap tests. 

Lab. SFA type Polaris ORIGEN Combined test Simultaneous 
test result of H0 

Clab 
BWR 0.001 0.874 0.872 Fail to reject H0 
PWR 0 0 0 Reject H0 

GE-Morris 
BWR 0.018 0.290 0.302 Fail to reject H0 
PWR 0.001 0.018 0.018 Reject H0 

The average biases for the two codes in the Clab and GE-Morris PWRs are systematically 
different from zero, and less likely to be due to random effects. In contrast, the BWRs show that 
the average biases can be due to random effects. Such observation of the distinction of the PWRs 
from the BWRs can originate from using experimental measurements having low uncertainties 
in the PWRs (which typically have larger values of the measured decay heat and lower relative 
uncertainties). Also, the calculated biases of the PWR categories can have a large systematic 
component with respect to the random component such that this systematic difference can be 
identified. The BWR sections of the data are likely to have a random component, large enough, 
to prevent identification of systematic difference (if any) at the chosen significance level. 

Testing the Polaris data alone would have resulted in rejection of the null hypothesis for all 
validation categories, i.e., Polaris data show that the calculated values are systematically 
different from the measurements. However, simultaneous testing based on both Polaris and 
ORIGEN requires more evidence from the data to reject the null hypothesis, and only the PWRs 
show such evidence. 
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Figure 49. Permutations distributions of the average biases of Clab benchmarks (first row), and 

the bootstrap distributions (second row). The corresponding distributions of the GE-Morris 
benchmarks are in the third and fourth rows. BWRs are left and PWRs are right. Red lines mark 
the actually observed average biases in the permutation plots, and zero biases in the bootstrap 

plots. 
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 Significance of the Bias Based on 
the Validation and Uncertainty Data 

Comparing the observed bias to uncertainty allows testing a hypothesis that the bias is 
insignificant (given the uncertainty). Standardizing the bias can be based on the calculated 
uncertainties only, or combined uncertainties of the calculations and the measurements. The 
former is straightforward since they are obtained for all benchmarks in this study. The analysis 
based on the latter uncertainties will be feasible only for the decay heat benchmarks since 
experimental uncertainties are not available for all of the PIE benchmarks. The statistical analyses 
in this chapter use the validation and uncertainty analyses results of the Polaris code, described 
in Section 3.1.1. 

The bias of a benchmark is standardized into a z-score using Equation 5.4, and since these z-
scores are correlated to some extent, they are aggregated using Equation 5.5. The higher the 
correlation between two benchmarks the lesser the information their multiple testing has. In the 
following, two types of correlation will be analyzed, based on calculations only, and based on 
combined calculations and measurements. The former is obtained in the present study between 
all benchmarks. The latter is not available for the analyzed measurements, and the analyses will 
be based on assumptions, also for the decay heat benchmarks only. 

10.1 Significance testing of the bias using calculated uncertainties 

The bias is standardized with the calculated uncertainty only, i.e., the combined z-scores are 
based on calculated uncertainties and calculational-based correlations. Distributions of the z-
scores are shown in Figure 50. The z-scores of the decay heat benchmarks present extreme 
values, noted by an interval containing 95% of the observed z-scores. The majority of the biases 
of the BWRs are between -6.3 and 6.4 standard deviations of the calculations. These biases are 
relatively extreme with respect to calculated uncertainties. Using the combined z-score, the 
BWRs have a combined z-score greater than the significance threshold of 1.96, and the null 
hypothesis is rejected, and the alternative is accepted: observed biases are significant, given the 
calculated uncertainties. For the PWRs, the combined z-score is less than the significance 
threshold and the test failed to reject the null hypothesis: the calculated uncertainties can show 
that the observed biases are insignificant. 

For the U-235 concentration, it is concluded that the observed biases are not significant, given 
the calculated uncertainties – the tests failed to reject the null hypothesis for both PWRs and 
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BWRs. In contrast, for the Pu-239 concentration, both the PWRs and BWRs and at least for the 
Cs-137 BWRs, the null hypothesis is rejected in favor of the alternative, given the extremity of 
the combined z-scores. The biases are significant, given the calculated uncertainties. This 
indicates that calculated uncertainties alone might not be enough to show that the observed 
biases are not significant. A summary of the above results is provided in Table 20. 

Table 20. Aggregate z-scores and results of the hypothesis testing conducted on the validation 
and uncertainty analyses data. A rejection of H0 implies that the observed bias is significant, 

given the calculated uncertainties, at an 0.05 significance level. 

Characteristic Reactor of origin 𝑧𝑧̅ Test result on H0 

Decay Heat 
BWR 2.14 Reject H0 
PWR 0.64 Fail to reject H0 

Cs-137 
BWR 3.05 Reject H0 
PWR 1.76 Fail to reject H0 

U-235 
BWR 1.80 Fail to reject H0 
PWR 1.31 Fail to reject H0 

Pu-239 
BWR 3.46 Reject H0 
PWR 2.42 Reject H0 
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Figure 50. Z-scores for the decay heat, Cs-137, U-235, and Pu-239 concentrations, obtained 

using calculated uncertainties. The header of each plot provides the combined z-score (𝑧𝑧̅) 
(considering correlations between calculations) and the 95% CI on the z-score distribution. 
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10.2 Significance testing of the bias using calculated and experimental uncertain-
ties 

The so far discussion includes only calculated uncertainties into the hypothesis testing, which 
is a conservative approach since a small uncertainty in Equation 5.4 leads to a higher z-score and 
therefore potentially rejecting the null hypothesis. In this section, both the calculated and the 
experimental uncertainties are considered in the hypothesis testing. 

A large number of PIE benchmarks do not have experimental uncertainties. Also, large 
inconsistencies are observed in the reported experimental uncertainty values. Several 
measurements of U-235 and Pu-239 concentrations have uncertainties as low as 0.1% and 0.2%, 
respectively. Other PIE samples measured using similar experimental methods have 
experimental uncertainties as large as 4.2% and 5.8%, respectively. Therefore, the analyses in 
this section exclude the PIE benchmarks and focus only on the decay heat ones. The z-scores 
were recalculated for the decay heat benchmarks, and their distributions are shown in Figure 51. 
The combined z-scores are calculated assuming that the correlations between the biases 
originate only from correlations between the calculations, i.e., measurements are assumed 
uncorrelated. The latter assumption will lead to lower correlations between the biases and 
conservative combined z-scores. 

 
Figure 51. Same as Figure 50 for the decay heat benchmarks, considering both the calculated 

and the experimental uncertainties.  

The distributions of the z-scores based on both the calculated and experimental uncertainties 
have less variance than those based on the calculated uncertainties only. Extreme z-scores for 
the BWRs are also observed (beyond -2.8 and 2.8 standard deviations), however, to a lower 
extent compared to the case of the calculated uncertainties only. The combined z-score for the 
BWRs is within the significance threshold. The combined z-score for the PWRs is not significantly 
different from the previous case, implying that the uncertainties in the PWRs are dominated by 
calculated uncertainties. In conclusions, using both the calculated and experimental 
uncertainties in the hypothesis testing leads to failure to reject the null hypothesis regarding the 
significance of the bias. 
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10.3 Correlations between the decay heat measurements 

Calculating a combined z-score using the transformation presented in Equation 5.5 requires 
calculating and accounting for the correlations between the biases. The denominator includes a 
summation of the off-diagonal elements of the correlation matrix between the benchmarks. So 
far, the discussion considers that the correlation matrix between the benchmarks to originate 
only from calculated correlations. This is a conservative case that would lead to lower 
correlations between the biases, and therefore potentially larger combined z-score. 

The other source of a correlation between the benchmarks is the correlation between the 
measurements, unfortunately not available for the current data (both the PIE and the decay heat 
data). In this section, assumptions on experimental correlations are analyzed, focusing again on 
the decay heat benchmarks. Two categories of measurements are available: the Clab and GE-
Morris measurements. Within each category, all measurements are conducted using the same 
calorimeter. The measurements conducted in each laboratory are assumed to correlate with 
each other with a correlation of 𝜌𝜌𝐸𝐸. Measurements at different laboratories are assumed 
independent from each other. For simplicity, the same value of correlation will be assumed 
between all the Clab benchmarks, and also between all the GE-Morris benchmarks. A grid of 𝜌𝜌𝐸𝐸 
is analyzed (between -1 and 1), and the combined z-score is plotted vs. the assumed experimental 
correlation in Figure 52. 

  
Figure 52. Combined z-score (𝑧𝑧̅), obtained using both the calculated and the experimental 

uncertainties, vs. the experimental correlation. The insignificant bias is within the shaded area. 

Compared to the reference cases, the correlations between the measurements reduced the 
combined z-scores, in both the BWRs and PWRs. The reference cases have combined z-scores of 
1.62 and 0.64, for both the BWRs and PWRs, respectively. Assumed correlations between the 
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BWR measurements resulted in a z-score that is higher than the significance threshold at 
correlations less than approximately -0.5. For the PWRs, the correlations between the 
measurements do not alter the results of the hypothesis testing. Negative values of the 
correlation, anticorrelation, are not apparently physical, however they are shown for 
completeness.  

10.4 Weights of the decay heat benchmarks 

The PIE benchmarks are unique samples, i.e., there is a single measurement per benchmark. 
However, the decay heat benchmarks contain some SFAs that were measured multiple times at 
different cooling times. Table 21 lists the number of measurements on the SFAs of the decay heat 
data. The majority of the SFAs were measured once only (111 SFAs) and decreasing numbers of 
SFAs are having multiple measurements. The SFA CZ205 of the GE-Morris data is the one having 
the greatest number of measurements (14 measurements at different cooling times). 

Table 21. Decay heat measurements on the same SFA, along with assumed weights (w). 

No. of meas. No. of SFA w 
1 111 1     
2 25 1/2 
3 10 1/3 
4 7 1/4 
5 1 1/5 
6 1 1/6 
8 1 1/8 

10 1 1/10 
14 1 1/14 

The so far presented analyses assume that each measurement is a benchmark, assigning a 
weight of unity to each benchmark. Different benchmark weights are analyzed in this section, 
assuming that the weight of each SFA is the same, distributing the weight of each SFA on the 
multiple measurements conducted on it. Such assumption does not increase the weight of the 
SFAs having multiple measurements on conducting the hypothesis testing. These SFAs will also 
have equal weights to the SFAs only measured once. As an example, SFA 6432 of the Ringhals-1 
reactor has 10 repeated measurements, which will have a weight of 0.1 for each of these 
measurements, and a unity weight for the whole SFA. The weights for the SFAs having multiple 
measurements are listed in Table 21. The hypothesis testing is then reconducted under the 
current assumptions and the obtained combined z-scores of the BWRs and PWRs are: 

1- 1.47 (BWRs) 
2- 0.56 (PWRs) 

Compared to the above figures, the z-scores calculated using unit weights for the benchmarks 
were 1.62 and 0.64 for both the BWRs and PWRs, respectively. The tests failed also to reject the 
null hypothesis; however, the obtained z-scores are less conservative than considering each 
measurement as an individual benchmark. 
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 Predicting the Bias of SNF Charac-
teristics 

In this chapter, the results of the bias predictive modelling are discussed. Firstly, the extracted 
features from the decay heat and PIE benchmarks are discussed (Section 11.1). Then, the 
application of the ML models and algorithms on the validation data is provided (Section 11.2). 
The presented ML results in this chapter are based on Polaris code, described in Section 3.1.1. 

11.1 Features extraction 

The features of the benchmarks are based on their correlations. Other features, namely 
integral features such as those extracted using sensitivity analyses, are also discussed in this 
chapter. 

11.1.1. Design matrix based on correlations between the benchmarks 

Description of the method used to calculate the correlation matrices are provided in Chapter 
4. The obtained correlation matrices are presented in Chapter 8, based on perturbations of both 
the ND and DO parameters. As mentioned, the correlations considered are calculational-based, 
and experimental correlations are excluded. 

11.1.2. Design matrix based on integral features of the benchmarks 

Sensitivities were used to identify features potentially informative in the bias predictive 
models, e.g., their burnup. Literature surveys were used to identify features used in other 
neutronic calculations, such as the validation of CSA. Lastly, features were included based on 
assumptions that they can be informative in the bias predictive models. It is important to stress 
here that these approaches allow obtaining features potentially informative in the bias predictive 
models. However, whether they are informative or not is explicitly based on the data and a 
conservative features selection algorithm.  

Pin-cell models based on selected DO parameters were used for the sensitivity analyses. The 
pin-cell models use DO parameters at the first and third quantiles (Q1 and Q3) and the median 
values of the BWR and PWR sections of the PIE data, listed in Table 22. Six pin-cell models were 
used, 3 based on the data of the PWRs and 3 based on the BWRs. For example, the DO parameters 
under the right-most column in Table 22 were used to make the 6th pin-cell model (Model 6), 
whereas these DO parameters belong to the third quantile of the PWR section of the PIE data. 
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The purpose of using several pin-cell models is to allow exclusion of DO parameters from the 
subsequent ML studies, if the calculated characteristics show low sensitivity to the parameter in 
all of these models which are based on different DO parameters. 

The pin-cell models were used to calculate perturbed characteristics, given a perturbation of 
±0.1% (individually to each parameter). The isotopic concentrations were extracted at discharge, 
whereas the decay heat was extracted at the median cooling time in the decay heat data (15 
years after discharge).  

From the six pin-cell models, the highest sensitivity coefficient is used to identify whether the 
characteristic is sensitive to the perturbed parameter or not. The following variables were con-
sidered: burnup, fuel temperature, fuel radius, fuel density, coolant temperature, coolant den-
sity, enrichment, gadolinia content, boron, cladding outer radius, lattice pitch, and the cooling 
time. The calculated characteristics showed different sensitivities toward these parameters and 
implementing cut-offs allowed reduction of their number.  

Table 23 lists parameters exceeding a cut-off value of 0.1 on the sensitivity coefficient, consid-
ered in the present study. As an example, the design matrix for the bias of Cs-137 concentration 
will include only the sample burnup and gadolinia fraction from the parameters analyzed in the 
sensitivity study. Also, the benchmark burnup will be included in all of the ML models. 

Table 22. Properties of PIE benchmarks at Q1, Q3, and median of the BWR and PWR data. 

Parameters 
BWR PWR 

Model 1 
Q1 

Model 2 
Median 

Model 3 
Q3 

Model 4 
Q1 

Model 5 
Median 

Model 6 
Q3 

Design 

U-235 wt% 2.41 2.6 3.4 2.83 3.13 3.4 
Gadolinia wt%* 0 0 0 0 0 0 

Fuel density (g/cm3) 10.23 10.40 10.41 10.05 10.20 10.41 
Fuel radius (cm) 0.5179 0.5955 0.6250 0.4025 0.4450 0.4645 

Cladding radius (cm) 0.615 0.678 0.706 0.475 0.489 0.537 
Lattice pitch (cm) 1.630 1.730 1.930 1.260 1.303 1.430 

Irradiation 

BU (GWd/tHMi)** 8.1 17.8 34.3 17.8 25.5 30.6 
No. of cycles 4 5 5 4 5 5 

Coolant temp. (K) 554 559 559 549 564 582 
Coolant dens. (g/cm3) 0.6254 0.4572 0.3560 0.7697 0.7442 0.7059 

Fuel temp. (K) 900 900 900 859 897 922 
Average boron (ppm) 0 0 0 450 489 660 

CR usage (BU %) 0 0 0 0 0 0 
* Gadolinia wt% is the weight percent of Gd2O3 in the PIE sample. 
** estimated value of the burnup after burnup correction. 
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Table 23. Variables included in design matrices (identified with “✓”), implementing an 0.1 
cut-off on calculated sensitivity coefficients. 

Parameter U-235 Pu-239 Cs-137 Decay heat 
Burnup ✓ ✓ ✓ ✓ 

Fuel temperature – ✓ – – 
Fuel radius ✓ ✓ – ✓ 

Fuel density ✓ ✓ – ✓ 
Coolant temperature ✓ ✓ – – 

Coolant density ✓ ✓ – ✓ 
Enrichment ✓ ✓ – ✓ 
Gadolinia ✓ ✓ ✓ ✓ 

Boron – – – – 
Cladding radius ✓ ✓ – ✓ 

Lattice pitch ✓ ✓ – ✓ 
Cooling time – – – ✓ 

Additional features were included, namely: calculated values (e.g., calculated U-235 
concentration), SI, 𝐻𝐻/𝑋𝑋, reactor type (PWR vs. BWR), calculated uncertainties of both ND and DO 
origins, and interaction terms. Only three of these features were found in literature (described 
in Chapter 6), and the others are based on assumptions. The mentioned parameters (including 
those in Table 23) were extracted for all benchmarks. Some variables change during irradiation, 
and cycle-wise burnup weighting is implemented to aggregate these cycle-wise values into an 
integral value of the benchmark.  

As mentioned previously, the bias depends on measurements containing noise due to 
uncertainties of random nature. The scale of this noise can have a detrimental impact on the 
learning performance from the current data. Also, the number of the available benchmarks in 
the present study is limited, i.e., the data size is relatively small. Consequently, to minimize 
overfitting to the design matrix, several steps are followed to reduce its size, such as excluding 
some of the least sensitive variables and averaging parameters that vary during irradiation.  

Additional measures were implemented, such as removing highly correlated variables (those 
having mutual correlation between their vectors > 0.90), given their detrimental impact on the 
learning process. Also, these variables were excluded using an unsupervised approach, i.e., the 
correlations between the features and the bias are not considered, and the mutual correlations 
between these features were used. For example, in the decay heat design matrix, the lattice pitch 
is highly correlated with the cladding radius (both pointing to the assembly design, e.g., GE8), 
and only one variable was used. Also, the reactor type, water temperature, water density, and 
the IHM have high mutual correlations. Only one of these variables should be kept in the design 
matrix containing information about the other variables. In the present study, the IHM is used. 
The reactor of origin is a simple binary variable, and the water density and temperature are 
almost invariant in either one of the two reactor types. The water density is almost invariant in 
the PWRs, and the water temperature is invariant in the BWRs. 
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Additional features are included in the design matrices of the PIE benchmarks. Information 
about whether the fuel temperature is given or assumed is also recorded for each sample as a 
dummy variable. The variable record how reliable the implemented fuel temperatures is, using 
binary values: zero for assumed fuel temperatures and one for given fuel temperatures. Also, 
several PIE samples experience control rod (CR) usage during their irradiations. A variable 
containing information about the usage of the CR is included in the design matrices. The variable 
records the fraction of the burnup during which the assembly containing the sample was 
controlled. A variable including information about the axial position of the sample is also 
included. The latter variable stems from an assumption that the PIE irradiation histories in middle 
regions of the assembly are more accurate than that at the axial peripheries, which might as well 
affect the bias. The latter variables are included assuming that they contain information about 
the bias, and again, whether or not they are informative into the bias predictions is based on the 
data and a conservative features selection algorithm. 

11.2 Predictions of the ML models 

Firstly, the predictive performance of the linear model (LM) is shown only for the bias of the 
decay heat and Pu-239 concentration – given its limited applicability on the other SNF 
characteristics. Discussing the LM firstly intends to highlight its limitations on the current 
applications. Then, for each of the validated SNF characteristics, the bias predictions are 
discussed based on using both the Random Forests (RF) and weighted k-nearest-neighbors 
(KKNN) models (using both design matrices). The results of latter models are discussed 
separately, given that, as they are promising and provide bias predictions (ML-based bias) that 
have similarity to the initially observed ones (validation-based or already known bias). Then, the 
predictive performance is discussed along with outliers detection and removal from the data. 

11.2.1. Linear models based on integral parameters of the benchmarks 

The LM was applied following the algorithm described in Chapter 6. The algorithm is designed 
to select a model with a lower number of features and a validation error being within the error 
margin of the validation error of the best performing model (following the OSE rule). For all of 
the analyzed characteristics, the selected models contain only a single feature (one predictor). 
The outer testing loop is based on a LOOCV procedure, therefore for each characteristic there is 
a number of fitted and tested models equal to the original number of the benchmarks. Indeed, 
in all these models, and for all of the analyzed characteristics, the algorithm tends to select only 
models based on a single feature. Plots of the observed biases and the LM-predicted biases for 
the test sections of the data obtained using LMs containing only a single feature are shown in 
Figure 53 and Figure 54 (left plots). Figure 53 shows these predictions for the decay heat, based 
on the Clab data. The predictions are based on the calculated decay heat values (C). Figure 54 
shows these predictions for the Pu-239 concentration, based on an interaction term between the 
spectral index and the Pu-239 calculated concentration (SI x C). 
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Based on the validation measures described in Chapter 6, the predicted bias is not similar to 
the observed one and based on the KS-test statistic, the null hypothesis is rejected (the predicted 
bias originates from the same distribution as the observed one), and the alternative is accepted. 
The latter result is obtained for all of the analyzed characteristics – Figure 53 and Figure 54 show 
only the decay heat and the Pu-239 concentration, and the other characteristics also provide 
non-satisfactory bias predictions. Also, in all models, the variance of the predicted bias is not 
significantly lower than that of the original one, showing the limited usefulness of the models. 
The limited capacity of the LM is noted comparing the training-based predictions to the original 
biases, i.e., including the test benchmark in the LMs trying to predict it. In the latter case, the 
models were still not able to provide useful bias predictions, highlighting their low flexibility and 
high model bias. 

Analyses of the statistical significance of the slopes of the LMs, the median p-values of all the 
regression lines used to generate the predictions, are listed in the subtitles of Figure 53 and 
Figure 54. At a threshold p-value of 0.05, the LMs of the decay heat and Pu-239 concentration 
are statistically significant. Indeed, none of the LMs had a p-value more than the significance 
threshold. The statistical significance of the slopes of the LMs alone can not indicate the 
usefulness of the resulting models and their predictive performance. The models were 
statistically significant, however, they provided bias predictions constrained in narrow ranges, 
showing low association and non-acceptable low similarity to the observed ones. 

11.2.2. Linear models based on correlations between the benchmarks 

The decay heat and the Pu-239 concentration biases are regressed onto the correlation 
between benchmarks (i.e., the second design matrix), following a grid of correlation cut-offs. For 
each cut-off value, the bias of each target benchmark is predicted based on its correlations with 
every other benchmark exceeding the cut-off, excluding the target benchmark from the training 
process. The correlation grid for the decay heat spans between 0.90 and 0.99. The correlation 
grid for the Pu-239 concentration spans up to 0.71. These values are selected such that there are 
enough observations for all benchmarks to make predictions using the LM. Correlations cut-offs 
above these values were excluded given that not all benchmarks will be included in the regression 
models. Figure 53 and Figure 54 (right plots) show the observed bias vs. the predicted one for 
the test sections of the data. The predictions are at the target benchmark having unit correlation 
– recursively for each benchmark. None of the analyzed models have shown satisfactory 
predictions (along the cut-off grid), and the figures show these predictions at selected cut-off 
values. 

The KS-test statistics are below the 0.05 significance threshold. The latter result is observed 
at all correlation cut-off values for the analyzed characteristics. Again, the null hypothesis is 
rejected, and the alternative is accepted. None of the predicted samples are concluded to be 
similar to the observed ones. Also, looking at the p-values of the regression lines of the LMs that 
generated the bias predictions in Figure 53 and Figure 54, one can see that the LMs are also 
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statistically significant, based on the correlation between benchmarks. However, none of these 
models have generated satisfactory bias predictions. The variances are not significantly reduced, 
or explained, and the predicted bias does not have similarity in its distribution to the original one. 
Again, the LM exhibit low flexibility and provide unsatisfactory bias predictions constrained in a 
narrow range, showing low association with the observed biases. 

These results show that the LM is not adequate for bias predictions of the mentioned 
characteristics, either using integral features of the benchmarks or their correlations. Also, the 
results show that using the statistical significance of the LM regression lines is not an adequate 
approach of validating models predicting the bias. These models provided bias predictions that 
failed other statistical tests aimed at assessing the predictive performance of the models. The 
results highlight the limitations of the LM, particularly looking at the training-based predictions, 
and their low flexibility and underfitting (i.e., unacceptable large bias). The limitations of the LM 
can also originate from their incapacity of approximating the underlying relation that maps the 
bias. 
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Figure 53. Observed bias (validation-based) vs. the LM predicted bias (ML-based) of decay 

heat of the Clab benchmarks. The left plot is based on integral parameters of the benchmarks, 
using the calculated decay heat value (𝐶𝐶), and the right plot is based on the correlation 

between the benchmarks, implementing an 0.95 correlation cut-off. The redline is a 45° line, 
indicating equality between the predicted and the observed bias. 

  
Figure 54. Same as Figure 53 for the Pu-239 concentration, based on the interaction 

between the spectral index and the Pu-239 calculated concentration (𝑆𝑆𝑆𝑆 𝑥𝑥 𝐶𝐶), and an 0.65 
correlation cut-off. 
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11.2.3. Predictive performance of the decay heat bias 

The decay heat benchmarks are two broad categories of measurements: measurements 
performed at the Clab facility, and measurements performed at the GE-Morris facility. As 
described in Chapter 2, the former measurements have significantly lower uncertainties 
compared to the latter measurements. Also, as discussed in the Chapter 7, the validation-based 
biases of the former data show significantly less scatter (less variance around the average) 
compared to the latter. In this section, decay heat bias predictions are presented for two types 
of decay heat data differing in their experimental uncertainty. The first is based on the Clab data 
only. The second is based on all the decay heat data, including the GE-Morris data which have 
larger experimental uncertainty. The rationale is that the decay heat benchmarks based only on 
the Clab data can be selected solely for validating calculational sequence, given their low 
measurements uncertainty for example. Also, they can be used solely, aside from the older GE-
Morris measurement, for bias predictions based on the same rationale. 

The RF and the KKNN models are applied on the design matrices of the Clab data. Both the 
integral parameters of the benchmarks (the first design matrix) and their correlations (the second 
design matrix) are used following the algorithm described in Chapter 6. As shown in Figure 55 
and Figure 56 (left plots) for the first design matrix, both the RF and the KKNN models select the 
spectral index (SI) as the informative model feature. A single integral feature, the SI, is 
consistently being selected by both models of all Clab benchmarks, allowing satisfactory bias 
predictions. The predictions show 0.46 and 0.47 reductions of the original variances (explained 
variances), based on the RF and the KKNN models, respectively. Both reductions in the variances 
are promising in the current application, and also the test error of both models is approximately 
3.8 W. The validation results of the Clab benchmarks (Table 8), show an average bias of 3.7 W 
along with 1σ of 5.1 W. The ML models provide bias predictions that has a systematic component 
depending solely on the SI of the benchmarks, along with an estimated test error of 
approximately 3.8 W. 

The resulting bias predictions show also acceptable IOA values, and KS-test results. The p-
values of the KS-test for both models are above the threshold, and it is failed to reject the null 
hypothesis – the null hypothesis is that the observed bias and the predicted one originate from 
the same distribution. Such results show that both models are promising in their bias predictions, 
providing biases that bear statistically significant similarity to the observed ones, the validation 
based ones, along with acceptable reduction, or explanation, of the variance of the data. 

The predictions based on the correlation matrices are shown in the right plots of Figure 55 
and Figure 56. The variance of the original bias is reduced, or explained, by 0.44 and 0.40 using 
the RF and the KKNN models, respectively. Both models result in KS-test p-values that fail to 
reject the null hypothesis. Again, both models are promising in their bias predictions based on 
learning the bias using the correlation between the benchmarks, providing biases that bear 
statistically significant similarity to the observed ones, along with acceptable reduction in the 
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variance of the data. The reductions, or the explanation, of the variances are less than those 
based on the SI, however, they are still acceptable in the current application. The test error of 
both models is approximately 4.0 W, meaning that the RF and the KKNN models using the 
correlations between the benchmarks provide bias predictions that systematically depend on 
these correlations, along with an estimated test-error of 4.0 W of using these models to predict 
the bias. One can observe, with both the RF and KKNN models, also based on the two design 
matrices, that certain benchmarks tend to be significantly mis-predicted in all cases. Treatment 
of outlier observations, like these ones, is presented in Section 11.2.7. 

The bias prediction process is repeated on all the decay heat data, using both the RF and the 
KKNN models applied on both design matrices. The results of the analyses are shown in Figure 
57 and Figure 58, highlighting the Clab benchmarks in red color. Unlike the models based on the 
Clab benchmarks solely (which selected the SI as the informative model features), the models 
based on all the decay heat data selected the interaction term between the SI and the cooling 
time (SI x Decay) as the informative model feature. The additional information about the cooling 
time of the benchmark indeed provides more differentiation between the Clab benchmarks, and 
the rest of the data. The range of cooling times of the Clab measurements is 11 to 27 years after 
discharge, whereas it is 2 to 11 years after discharge for the GE-Morris measurements. For all 
models, and learning cases, the KS-test p-values result in failure to reject the null hypothesis. 
However, other statistics indicate that the reduction in the variances are small, not potentially 
promising in the current application (the test errors of the models are between 10 and 12 W).  

The preceding discussion highlights differences between the two datasets, having differences 
in their experimental uncertainties. Learning based on the Clab benchmarks solely, which have 
low experimental uncertainties, provides promising models in terms of the similarities between 
predictions and observations, reduced variances, and lower test errors. Learning based on all the 
decay heat benchmarks includes measurements that have significantly high experimental 
uncertainty, resulting in larger random component of the bias. The latter learning setting has 
shown less promising predictive performance, with small reductions in variances and higher test 
errors. 
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Figure 55. Observed bias (validation-based) vs. the RF model predicted bias (ML-based) for 
the decay heat – Clab benchmarks. The left plot is based on integral parameters of the 
benchmarks, using the spectral index (𝑆𝑆𝑆𝑆), and the right plot is based on the correlation 

between the benchmarks. The redline is a 45° line, indicating equality between the predicted 
and the observed bias. The blueline is the linear regression line of the observed bias on the 

predicted one.  

 
Figure 56. Same as Figure 55 for the KKNN model. 
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Figure 57. Observed bias (validation-based) vs. the RF model predicted bias (ML-based) for 

all the decay heat benchmarks (Clab data are highlighted in red color). The left plot is based on 
integral parameters of the benchmarks, using the interaction between the spectral index and 

the cooling time (𝑆𝑆𝑆𝑆 𝑥𝑥 Decay), and the right plot is based on the correlation between the 
benchmarks. 

 
Figure 58. Same as Figure 57 for the KKNN model. 
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11.2.4. Predictive performance of the U-235 concentration bias 

The bias prediction process is applied on the U-235 concentration benchmarks, using both the 
RF and the KKNN models with both design matrices, and the results of the analyses are shown in 
Figure 59 and Figure 60. The models based on the integral parameters of the benchmarks 
selected the calculated uncertainties (σ) as the informative model feature, for both the RF and 
the KKNN models. The predictions based on the former models show low p-values of the applied 
KS-tests, and the null hypothesis is rejected, and the alternative hypothesis is accepted. Applying 
the RF and the KKNN models on the U-235 correlation matrix shows acceptable p-value of the 
KS-test for the predictions of the former, and rejectable one for the latter. However, for both 
models applied on both design matrices, the explained variances are small and not potentially 
promising in the current application. The test errors of the models are between 0.55 and 0.61 
mg/gHMi, which are not promising in the current application also.  
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Figure 59. Observed bias (validation-based) vs. the RF model predicted bias (ML-based) for 

the U-235 benchmarks. The left plot is based on integral parameters of the benchmarks, using 
the calculational-based uncertainty (σ), and the right plot is based on the correlation between 

the benchmarks. 

 
Figure 60. Same as Figure 59 for the KKNN model. 
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11.2.5. Predictive performance of the Pu-239 concentration bias 

The bias prediction process is applied on the Pu-239 concentration benchmarks, using both 
the RF and the KKNN models along with both design matrices, and the results of the analyses are 
shown in Figure 61 and Figure 62. The models based on the integral parameters of the 
benchmarks selected the hydrogen-to-fissile atom ratio (H/X) as the informative model feature, 
for both the RF and the KKNN models. The predictions based on the former KKNN model show 
low p-values of the applied KS-test, and the null hypothesis is rejected, and the alternative 
hypothesis is accepted. The predictions based on the RF models show acceptable p-value of the 
KS-test, and it is failed to reject the null hypothesis. However, learning the bias using the H/X and 
either the RF or the KKNN models result in small reduction of the original variance of the bias. 

On learning the bias based on the correlation between the benchmarks, the prediction results 
of both the RF and the KKNN models lead to p-values of the KS-test that are above the threshold, 
and it is failed to reject the null hypothesis. For both models applied on the correlation matrix, 
the explained variances are potentially promising in the current application. The fractions of the 
explained variances are 0.47 and 0.41 for both the RF and KKNN models, respectively. The test 
errors of the models are between 0.28 mg/gHMi, on learning the bias from the correlation 
between benchmarks, and between 0.34 and 0.36 mg/gHMi on learning from the H/X feature.  
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Figure 61. Observed bias (validation-based) vs. the RF model predicted bias (ML-based) for 

the Pu-239 benchmarks. The left plot is based on integral parameters of the benchmarks, using 
the hydrogen-to-fissile atom ratio (𝐻𝐻/𝑋𝑋), and the right plot is based on the correlation between 

the benchmarks. 

 
Figure 62. Same as Figure 61 for the KKNN model. 
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11.2.6. Predictive performance of the Cs-137 concentration bias 

The bias prediction process is applied on the Cs-137 concentration benchmarks, using both 
the RF and the KKNN models with both design matrices, and the results of the analyses are shown 
in Figure 63 and Figure 64. The models based on the integral parameters of the benchmarks 
selected the interaction between the burnup and the calculated concentration of the Cs-137 (BU 
x C) as the informative model feature, for both the RF and the KKNN models. The predictions 
based on both models show low p-values of the applied KS-test; the null hypothesis is rejected, 
and the alternative hypothesis is accepted. Learning the bias using the BU x C and either the RF 
or the KKNN model results in significantly small reductions of the original variance of the bias. 
The models are not promising to provide useful bias predictions, given integral parameters of the 
benchmarks. On learning the bias based on the correlation between the benchmarks, the results 
of both the RF and the KKNN models show that the explained variances are negligible. All of the 
analyzed models learning the bias of the Cs-137 concentration show non-satisfactory reductions 
of the original variances, being only within 0.03. 
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Figure 63. Observed bias (validation-based) vs. the RF model predicted bias (ML-based) for the U-

235 benchmarks. The left plot is based on integral parameters of the benchmarks, using a single 
features, the interaction between burnup and the calculated Cs-137 concentration (𝐵𝐵𝐵𝐵 𝑥𝑥 𝐶𝐶), and 

the right plot is based on the correlation between the benchmarks. 

 

Figure 64. Same as Figure 63 for the KKNN model. 
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11.2.7. Predictive performance along with outliers detection and removal 

Sections 11.2.3 and 11.2.5 have shown promising ML models predicting the bias of the decay 
heat and Pu-239 concentration, based on 𝑆𝑆𝑆𝑆 for the former and 𝐻𝐻/𝑋𝑋 for the latter, and the 
correlation between benchmarks for both. The RF model is promising in both applications. In this 
section, further optimization is applied, based on the RF model. The outliers detection and 
removal procedures, described in Section 6.11, are applied on both design matrices of the decay 
heat (Clab benchmarks solely) and the Pu-239 concentration. The results are summarized in Table 
24, indicating the benchmarks detected as outliers in the inner-most loops of the algorithms, 
their count, and the results of the aggregate z-tests. 

For the decay heat benchmarks, 2 and 3 outliers are detected based on application of the RF 
model on the 𝑆𝑆𝑆𝑆 and the correlation matrices, respectively. The detected outliers show 
similarities of 2 benchmarks between both models. For the Pu-239 benchmarks, 8 and 6 outliers 
are detected based on application of the RF model on the 𝐻𝐻/𝑋𝑋 and the correlation matrix, 
respectively. The detected outliers show similarities of 6 benchmarks between both models. The 
design matrices of each data are reduced, excluding the detected outliers (at 0.00135 significance 
level), and the bias predictive performance is recalculated. The predictions of the RF models 
learning the bias using these reduced matrices are shown in Figure 65 and Figure 66. The 
measures in these figures include the reduction, or explanation, of the variances using the RF 
models applied on the reduced design matrices with respect to the original data without removal 
of outliers. The latter measure is the explained variance (EV), calculated as 

𝐸𝐸𝐸𝐸 = 1 −
𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓2

𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 (13.1) 

The decay heat models show reductions in the original variances of approximately 0.5, 
resulting from removal of 2 and 3 outliers (based on both the 𝑆𝑆𝑆𝑆 and correlation matrix), 
approximately 2% the size of the initial data. Initially, without outliers removal, the reduced 
variances are 0.46 and 0.44 (as shown in Figure 55) and removing only few outliers results in an 
improvement of both values. The results of the Pu-239 concentration bias show significantly 
larger improvements, reaching reductions in the original variances of 0.48 and 0.63, as shown in 
Figure 66. Compared to the initial reductions in variances of 0.13 and 0.47, shown in Figure 61, 
the outliers removal resulted in significant improvements in the predictive performance of the 
RF models, learning the bias using the 𝐻𝐻/𝑋𝑋 and the correlation between the benchmarks, 
particularly for the former. These improvements result from removing observations detected as 
outliers with a significance level of only 0.00135, corresponding to 2 to 3% of the original size of 
the Pu-239 validation data. Again, the outliers detection and removal procedures are selectively 
conservative, resulting in removal of small fractions of the original data. However, significant 
improvements are obtained. 
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Table 24. Aggregate results of the outliers detection and removal procedure, applied on the 
decay heat benchmarks (left table) and the Pu-239 concentration benchmarks (right table). 

Both characteristics are analyzed using the RF models, applied on both design matrices: 𝑆𝑆𝑆𝑆 for 
the decay heat, 𝐻𝐻/𝑋𝑋 for Pu-239 concentration, and the correlation matrices for both. The 

decay heat data belong to the Clab benchmarks solely.  

Decay heat  Pu-239 concentration 

Features 𝑆𝑆𝑆𝑆 Correlations  Features 𝐻𝐻/𝑋𝑋 Correlations 
SFA Count Outlier Count Outlier  Benchmark Count Outlier Count Outlier 
C12 47 - 46 -  TMI-1 - S2 - - 3 - 

C20-1 104 ✓ 104 ✓  D-1 - DU1 - - 2 - 
C20-2 1 - - -  D-1 - DM1 - - 18 - 

I20 - - 3 -  D-1 - DM2 - - 17 - 
I24 - - 2 -  D-1 - DM3 39 - 106 - 

5F2-1 - - 84 ✓  D-1 - DM4 243 ✓ 198 ✓ 
5F2-2 116 ✓ 128 ✓  FD2 - 99_8 - - 3 - 
5F2-3 36 - 36 -  FD2 - 99_9 - - 6 - 
10288 - - 1 -  FD2 - TU104 85 - 44 - 
3838 - - 3 -  FD2 - TU105 285 ✓ 143 ✓ 

KU0278 - - 16 -  FD2 - TU106 285 ✓ 242 ✓ 
KU0282 - - 2 -  FD2 - TU201 197 ✓ 119 - 

Total 2 3  FD2 - TU202 89 - 66 - 

      FD2 - TU203 285 ✓ 227 ✓ 
      FD2 - TU204 194 ✓ 158 ✓ 
      FD2 - TU308 97 - 96 - 

      FD2 - TU309 187 ✓ 187 ✓ 
      FD2 - TU311 - - 1 - 

      FD2 - TU501 - - 41 - 

      FD2 - TU502 - - 69 - 

      FD2 - TU503 - - 3 - 

      FD2 - TU510 - - 4 - 

      Y-1 - G-107 - - 1 - 

      Y-1 - G-108 115 - 16 - 

      Y-1 - G-109 168 ✓ 23 - 

      M-3 - G07 - - 1 - 

      T3 - SF95_5 - - 1 - 
      T3 - SF96_1 - - 1 - 
      T3 - SF96_5 - - 81 - 

      T3 - SF97_1 - - 31 - 

      OG1 - G14-P3 - - 18 - 

      OG1 - G14-P4 - - 3 - 

      Total  8 6 
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Figure 65. Observed bias (validation-based) vs. the RF model predicted bias (ML-based) for the 

Clab benchmarks. The left plot is based on integral parameters of the benchmarks, using the 
spectral index (𝑆𝑆𝑆𝑆), and the right plot is based on the correlation between the benchmarks.  

 

Figure 66. Same as Figure 65 for the Pu-239 concentration bias. The left plot is based on the hy-
drogen-to-fissile atom ratio (𝐻𝐻/𝑋𝑋), and the right plot is based on the correlation between the 

benchmarks. 
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11.2.8. Final models 

The present research analyzed a hypothesis that the bias of SNF characteristics can be 
predicted using ML models and algorithms, along with validation data. The research starts with 
a validation process to obtain the bias for validation benchmarks, followed by collecting features 
of these benchmarks such as their correlations. Then, hypotheses on the ML models, such as 
using neighborhood schemes (e.g., RF models), and learning, testing, and validation procedures 
are assembled to obtain a solution for Equation 1.5 (𝐶𝐶 − 𝐸𝐸 = 𝑓𝑓(𝑋𝑋) + 𝜖𝜖). The bias is represented 
as two components: 𝑓𝑓(𝑋𝑋), intended to capture the systematic part of the bias using the ML 
model (the explained bias), and 𝜖𝜖, intended to capture the random part of the bias (the 
unexplained part of the bias). Both components of the bias were unknown a priori. 

Certain ML models and data have shown promising bias predictive performance, e.g., the RF 
models have shown promising bias predictive performance, applied on the decay heat and Pu-
239 concentration biases, and design matrices based on the correlation between benchmarks. 
Alternative interpretation of the results is discussed in this section.  

The validation bias of the decay heat (i.e., 𝐶𝐶 − 𝐸𝐸 in Equation 1.5) and the ML precited bias 
(i.e., 𝑓𝑓(𝑋𝑋) in the same equation) are shown in Figure 67. The ML model is the RF model, predicting 
the bias using the calculated correlation between the benchmarks along with the validation bias. 
Outliers removal is applied (3 benchmarks, listed in Table 24). The systematic part of the bias 
𝑓𝑓(𝑋𝑋) reduces the original variance in the validation bias by 49%. Using the validation procedure, 
Polaris overestimates the measured decay heat by 3.7 ±5.1 W – as shown in Table 8. Then, the 
RF model application on the decay heat correlation data results in bias predictions (represented 
as 𝑓𝑓(𝑋𝑋) ±3.7 W), indicating the following: 

1. The predicted bias is not necessarily an overestimation. Unlike the validation-based average 
bias, 𝑓𝑓(𝑋𝑋) is negative for several benchmarks. 

2. The average fluctuation of the error around the 𝑓𝑓(𝑋𝑋) for the ML-predicted bias is lower than 
its fluctuation around the average bias for the validation data, measured using the standard 
deviation. The standard deviation (1𝜎𝜎) of the error from the ML model is 3.7 W compared to 
5.1 W from the validation procedure, corresponding to a variance reduction of 0.49. 

Similar analysis is provided for the Pu-239 concentration, based also on the RF model, as 
shown in Figure 68. The data are based on the calculated correlation between the benchmarks 
and the validation bias along with outliers removal (6 PIE samples, listed in Table 24). The 
systematic part of the bias 𝑓𝑓(𝑋𝑋) reduces the original variance in the validation bias by 63%. Using 
the validation procedure, Polaris overestimates the measured Pu-239 concentration by 11 ±0.37 
mg/gHMi – as shown in Table 10. Then, the RF model application on the correlation data of the 
Pu-239 concentration results in bias predictions (represented as 𝑓𝑓(𝑋𝑋) ±0.23 mg/gHMi), 
indicating the following: 

1. Similar to the decay heat case, the predicted bias is not necessarily an overestimation. Unlike 
the validation-based average bias, 𝑓𝑓(𝑋𝑋) is negative for several benchmarks. 
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2. Also, the average fluctuation of the error around the 𝑓𝑓(𝑋𝑋) for the ML-predicted bias is lower 
than its fluctuation around the average bias for the validation data. The standard deviation 
(1𝜎𝜎) of the error from the ML model is 0.23 mg/gHMi compared to 0.37 mg/gHMi from the 
validation procedure, corresponding to a variance reduction of 0.63. 

 
Figure 67. Decay heat biases, both validation-based and ML-based. The ML model is the RF 

model, and the data are the validation-based bias and the calculated correlations between the 
benchmarks. 
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Figure 68. Same as Figure 67 for the Pu-239 concentration.
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 Conclusions 
The presented research started with a well-defined target: analyzing methods that can allow 

predicting the difference between calculations of characteristics of spent nuclear fuels (SNF) and 
their measurements, namely the bias (𝐶𝐶 − 𝐸𝐸). The research focused on SNF decay heat and con-
centrations of the following radionuclides: Cs-137, U-235, and Pu-239, being important for the 
economics and long-term safety of the DGR. The SNF decay heat is an important parameter for 
the number of disposal canisters required to encapsulate the SNF assemblies for their final dis-
posal, affecting the economics of the DGR. The chosen radionuclides are important for the long-
term safety of the repository and the calculated dose rates. Also, they are the most abundantly 
measured isotopes in open literature addressing PIE of LWR fuel samples, allowing to obtain rel-
atively large datasets to be used in the subsequent data-driven analyses. 

Data-driven methods were analyzed, machine learning (ML) models and algorithms, relying 
on validation benchmarks. The research proceeded in three phases: (1) collecting data, i.e., decay 
heat and post-irradiation-examination (PIE) benchmarks, along with performing calculations of 
the measured characteristics, (2) propagating uncertainties in nuclear data (ND) and SNF design 
and operation (DO) history to the calculated quantities, (3) analyzing the validation and uncer-
tainty analyses results, using statistical hypothesis testing on the significance of the observed 
biases, and finally (4) applying ML models and algorithms, and analyses of their predictive per-
formance for biases. The last step of this work is a novelty, applying data-driven methods poten-
tially promising in predicting the bias of SNF characteristics. These steps are detailed in the fol-
lowing discussion, starting from chapter 7 up to 11. 

Chapter 7 – Validation Results: Validation benchmarks are collected from open-literature, i.e., 
SNF design and irradiation specifications, as well as the measurements of their characteristics. 
The data are 262 decay heat measurements, conducted by Svensk Kärnbränslehantering AB (SKB) 
and General Electric (GE), at the Clab and the GE-Morris facilities, and 285 PIE samples, obtained 
from the SFCOMPO 2.0 database. Then, these benchmarks were modelled using the Polaris code 
of the SCALE code system (SCALE 6.2.3), and the calculated values were compared to the meas-
ured ones. 

The decay heat bias has large variance in the GE-Morris benchmarks compared to the Clab 
ones, and also for the BWRs compared to PWRs. However, the average bias is small, being within 
±5 W, corresponding to 0.5% and 1.2% for the BWR and PWR sections of the data. . The concen-
tration biases of the analyzed isotopes show large variances in SFAs originating from both reactor 
types. However, the biases are small on average. The U-235 concentration biases are 0.11 and 
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0.25 mg/gHMi in the BWRs and PWRs, respectively (corresponding to 1.017 and 1.025 for the 
𝐶𝐶/𝐸𝐸). The Pu-239 concentration biases are 0.01 and 0.21 mg/gHMi in the BWRs and PWRs, re-
spectively (corresponding to 1.013 and 1.039 for the 𝐶𝐶/𝐸𝐸). The Cs-137 concentration biases are 
within ±0.01 mg/gHMi in both the BWRs and PWRs on average (corresponding to 0.996 for the 
𝐶𝐶/𝐸𝐸). Again, these biases show large variances around their averages. 

Chapter 8 – Uncertainty Analyses: Uncertainties of ND and DO origins were propagated to the 
calculated quantities, relying on SCALE-based ND for the former, and literature values along with 
additional assumptions for the latter [56]. Uncertainties in the calculated decay heat values are 
~2.3% (1𝜎𝜎). Uncertainties in the U-235 and Pu-239 concentrations are between 2.5-3.0% for the 
former and 2.4-2.6% for the latter. The Cs-137 concentration uncertainties are between 1.7-
1.8%.  

The uncertainties showed increasing trend with burnup for both the decay heat and U-235 
concentration, also along with increasing contributions from ND uncertainties. The Pu-239 con-
centration, being significantly affected by several parameters, showed various levels of uncer-
tainties and contributions from ND. For the Cs-137 concentration, the uncertainties are mainly 
due to DO uncertainties. The burnup uncertainties largely contribute to uncertainties of the an-
alyzed characteristics. For the U-235 and Pu-239 concentrations, uncertainties in other parame-
ters also show large effects on the uncertainties, such as enrichment for the former, and coolant 
density for the latter. 

The correlations between the calculated decay heat values are high, being >0.96 due to 
perturbations of DO parameters and >0.24 due to perturbations of ND. The U-235 correlation 
matrices showed that benchmarks having similarities in their burnup values correlate largely with 
each other, due to perturbations in both ND and DO parameters. The Pu-239 correlation matrix 
based on ND shows similarities to the corresponding U-235 matrix, and the one based on DO 
parameters shows different levels of correlations. Both matrices span wider correlation ranges 
than the U-235 matrices. The Cs-137 correlations matrices also show significantly high 
correlations.  

Chapter 9 – Significance of the Bias Based on the Validation Data and Chapter 10 – Significance 
of the Bias Based on the Validation and Uncertainty Data: The significance of the biases was as-
sessed using two techniques: (1) randomization tests on the validation data, and (2) parametric 
z-tests on both the validation and uncertainty analyses data. Firstly, randomization tests were 
applied using both bootstrapping and permutations. The conclusions drawn are: (1) the calcula-
tions for the PWRs tend to be systematically biased for all of the analyzed characteristics, and (2) 
the calculations for the BWRs do not show such conclusion. The results of the bootstrapping and 
permutations tests are similar, however at slightly different p-values. The null hypothesis is 

𝐻𝐻0: 𝐶𝐶𝑃𝑃 = 𝐸𝐸. (14.1) 

Simultaneous hypotheses testing was applied on the decay heat data, using ORIGEN in addi-
tion to Polaris, requiring more evidence against the null hypothesis. The conclusions drawn from 
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the Polaris calculations were confirmed also by the application of ORIGEN: the PWR data tend to 
be systematically biased in the calculations of both codes simultaneously, and the BWR data do 
not show such evidence in both Polaris and ORIGEN calculations. The null hypothesis is 

𝐻𝐻0: 𝐶𝐶𝑃𝑃 𝑜𝑜𝑜𝑜 𝐶𝐶𝑂𝑂 = 𝐸𝐸. (14.2) 

Including uncertainties in the hypothesis testing, regarding the significance of the bias, pro-
vided different conclusions. The bias is assumed to follow a normal distribution with mean zero, 
and variance obtained from uncertainties, meaning that 

𝐶𝐶 − 𝐸𝐸 ~ 𝑁𝑁(0,𝜎𝜎). (14.3) 

The hypothesis testing indicates that the observed bias is not significant for the U-235 con-
centration, given the calculated uncertainties. In contrast, the Pu-239 concentration bias is found 
to be significant. The decay heat and Cs-137 concentration biases can be significant in different 
sections of the data. For the decay heat, the observed biases failed to show significance only 
when both the calculated and the experimental uncertainties are considered. It is also shown 
that it is crucial to include the correlations between the benchmarks into the hypothesis testing, 
consequently accounting for their similarities.  

Chapter 11 – Predicting the Bias of SNF Characteristics: Firstly, features were included in the ML 
models assuming that they are informative for the bias predictions, and this assumption is tested 
based on the data and conservative ML algorithms. The features were included following three 
approaches: (1) collecting features from literature being used in other neutronics applications, 
(2) applying perturbations to DO parameters, and collecting parameters that significantly affect 
the calculated values, and (3) based on specific assumptions. Features of the first type include 
the ones commonly used in validation of criticality safety analysis, such as the hydrogen-to-fissile 
atom ratio (𝐻𝐻/𝑋𝑋) and the similarity index (𝑐𝑐𝑥𝑥) (Pearson correlation coefficient between calcu-
lated values). Features of the second type are such as burnup and enrichment. Features of the 
third type are such as the spectral index (SI) and uncertainties of both ND and DO origins.  

Secondly, a novel approach is followed by applying data-driven methods to predict the bias of 
SNF characteristics using the validation and uncertainty analyses data. The predictive perfor-
mance of the models was analyzed, comparing the original validation-based biases to the ML 
model-based bias predictions. The analyzed models predict the bias using highly similar or neigh-
bors of the target benchmark, i.e., neighborhood-based schemes. The models are the ensemble 
model random forests (RF) and the kernel-based model weighted k-nearest neighbors (KKNN). 

In regard to models, the analyses show that the linear model (LM) does not provide satisfac-
tory bias predictions in any of the analyzed characteristics. The LM-based bias predictions show 
low similarity to the validation-based ones, even if the LM showed statistical significance of their 
slopes. The promising models in terms of their bias predictive performance are the RF and the 
KKNN models, particularly the former, which can predict the bias with a reasonable level of ac-
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curacy. The applications of these models on the decay heat and the Pu-239 concentration re-
sulted in reduction of the variances of the original validation data and provided bias predictions 
having similarity to the original validation-based ones.  

In regard to features, the promising models predict the bias using a few parameters, namely: 
1. The SI for the decay heat bias, 
2. The H/X for the Pu-239 concentration bias, 
3. The 𝑐𝑐𝑥𝑥 for both biases of the decay heat and the Pu-239 concentration. 

In regard to data, bias predictions of the decay heat are analyzed using two types of data that 
differ in their experimental uncertainty. Bias predictions are not promising in the learning setting 
based on data having large experimental uncertainty. Alternatively, promising bias predictions 
were obtained only considering the data having low experimental uncertainty, i.e., the Clab 
benchmarks. 

Outliers were removed from the promising RF models, using SI and 𝑐𝑐𝑥𝑥 for the decay heat and 
𝐻𝐻/𝑋𝑋 and 𝑐𝑐𝑥𝑥 for the Pu-239 concentration. Similar outliers are shared by different models using 
different design matrices; however, they are not identical. The outliers removal allowed further 
reductions of the original variance in the validation-based bias data, attaining reductions of ap-
proximately 0.5 for the decay heat, and between 0.5 and 0.63 for the Pu-239 concentration. 

In contrast, the biases of the U-235 and Cs-137 concentrations could not be satisfactory pre-
dicted, and no significant reduction of the original variances of the validation data was obtained. 

12.1 Applicability domain 

In the present study, the prediction error is specific to the calculational tools and the validation 
data (e.g., to Polaris and the SCALE nuclear data, and the validation benchmarks). Using a differ-
ent lattice code, nuclear data, and validation benchmarks is expected to result in a different bias 
vector, subsequently a different prediction error. Also, the error is specific to the applied ML 
models and algorithms – e.g., the procedures of removing outliers and also selecting the optimal 
model parameters. Implementing other models, e.g., higher predictive models such as neural 
networks, or less conservative outliers criteria, e.g., at 𝑧𝑧 = 2, would therefore result in a different 
prediction error. 

12.2 Potential applications 

The mentioned SNF characteristics are typically obtained using calculations, and the calcula-
tional methods and input data are required to be validated a priori. The present study provides 
a validation of a widely used code, applied on relatively large datasets of decay heat and PIE 
benchmarks. The data can be used to estimate biases of realistic calculations of these SNF char-
acteristics. Also, realistic calculations are routinely conducted on SNF, potentially having different 
similarities to the validation benchmarks. The analyses showed that the bias of a calculational 
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method and data of the SNF decay heat and Pu-239 concentration can be predicted from com-
parison with validation benchmark, using features such as 𝑆𝑆𝑆𝑆, 𝐻𝐻/𝑋𝑋, and 𝑐𝑐𝑥𝑥. The bias prediction 
techniques can be used to obtain data-informed safety margins or correction factors for SNF cal-
culated characteristics. Applications such as subsequent safety analyses on SNF, relying on calcu-
lated inventories or decay heat, can benefit from knowledge about the bias in the upstream cal-
culations.  

12.3 Future work 

The number of the analyzed benchmarks is relatively large; however, it does not cover all 
open-literature benchmarks, and also it does not include other proprietary benchmarks. Increas-
ing the size of the validation data can improve the applied analyses. Also, the analyzed bench-
marks cover only limited ranges of SNF properties, e.g., all the decay heat benchmarks are UO2-
based fuel assemblies. Including MOX-based SNF and higher burnup assemblies can potentially 
improve the analyses and the bias prediction techniques. Further improvements can be achieved 
including data with lower uncertainties, as it was demonstrated in comparing sections of the 
decay heat data largely different in their experimental uncertainties.  

The limitations of the LM should be analyzed in other SNF applications, as well as the applica-
bility of the neighborhood-based models for a wider range of SNF applications. The analyzed ML 
models are a small fraction of the available models, and other models that differ in their assump-
tions can be analyzed for their predictive performance of the bias. Lastly, the applied ML algo-
rithm is selectively conservative, placing preference on simpler models that contain few numbers 
of features. Indeed, the successful models of the decay heat and Pu-239 concentration contain 
only one feature. The latter assumption leads to conservative models, at the expense of some 
loss of the bias predictive performance – still acceptable. ML models that relax the latter assump-
tion are potentially having better predictive performance and can be analyzed in the future. 
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The information about the “rebuild” SFA of the Clab benchmarks used to derive the Polaris 
models are the following: 

1. The lattice/bundle design (or rod layouts) 
2. Specifications of the number of the fuel rods, initially, and after each rebuild 
3. Specifications of the replacing rods 
4. The heavy mass after the rebuild 

In total, 18 SFA have their rods rebuild: 14 from BWRs and 4 from PWRs. The rebuild SFAs are 
specified in Table 25, based on information in reference [12]. The table lists the number of rods 
at each lattice rebuild state (Nrods), and the burnup fraction after each state. 

Table 25. Specifications of rebuild SFAs from the benchmarks of Clab, based on [12]. 

Serial Reactor SFA ID 
No. of Rods 

Initial 
Nrods 

Nrods after 
rebuild-1 

BU% after 
rebuild-1* 

Nrods after 
rebuild-2 

BU% after 
rebuild-2* 

1 Ringhals 1 582 64 63 58%     
2 Ringhals 1 596 64 63 56%     
3 Ringhals 1 710 64 63 55%     
4 Ringhals 1 900 64 63 58%     
5 Ringhals 1 1136 64 63 70% 60 100% 
6 Ringhals 1 5829 63 62 30% 58 100% 
7 Ringhals 1 6478 63 44 100%     
8 Barseback 1 2014 64 63 67%     
9 Barseback 1 2018 64 63 62%     

10 Barseback 1 2048 64 63 52%     
11 Barseback 1 2074 64 63 50%     
12 Oskarshamn 2 3054 63 56 55%     
13 Oskarshamn 2 3058 63 56 62%     
14 Oskarshamn 2 3064 63 56 72%     
15 Ringhals 2 C42 204 203 46%     
16 Ringhals 2 I24 204 202 100%     
17 Ringhals 3 3C4 264 263 100%     
18 Ringhals 3 5F2 264 261 100% 258 100% 

* BU% is the burnup fraction at the rebuild. A 100% means that the rebuild occurs after the EOL. 

All fuel rods were replaced with non-active rods (non-fuel rods), based on specifications of the 
replacing rods or specifications of the number of active rods after each rebuild state. Also, these 
specifications are in accordance with the lattice layout and the heavy mass of the SFA after each 
rebuild. The unknown information for the BWR is the materials of the replacing rod, whether it 
is a solid Zircaloy rod (Zr-rod) or a hollow Zr-rod. 

Most of the BWRs had their rods replaced during irradiation, except for SFA 6478 of 
Oskarshamn, which had its rebuilt after the EOL. The case of the PWRs is different, the number 
of the active rods is not given after the rebuild, rather the no. of the removed rods. The relevant 
information for the PWRs are: 



Modelling the Rebuilt SFAs of Clab Benchmarks 
 

 
155 

 

1. SFA C42: one rod is replaced with a homogenous Zr-rod during irradiation, 
2. SFA I24: two rods have no replacing rods (the rods are rebuilt after EOL), 
3. SFA 3C4: one rod has no replacing rod (the rods are rebuilt after EOL), 
4. SFA 5F2: six rods have no replacing rods (the rods are rebuilt after EOL). 

Modelling the rebuild SFAs includes two types of assumptions, related to performing the 
calculations and related to obtaining the decay heat from the calculations. 

For the modelling related assumptions, the calculations are done in single runs, instead of 
terminating the calculations at a given cycle and reloading the model with the depleted material 
from the previous run along with the replaced rod. Two calculations on the SFA 5829 of Ringhals-
1 were performed to analyze the significance of these assumptions. The SFA 5829 had 1 rod 
replaced earlier during irradiation compared to all of the remaining SFAs. Rod D4 was replaced 
at 30% of the EOL burnup. Two calculations were performed for the decay heat from all rods 
(excluding rod D4): 

1. Rod D4 as a fuel rod 
2. Rod D4 as a solid Zr-rod 

The rods were the same throughout the irradiation. Between these two calculations, the 
obtained difference of the calculated decay heat of the non-rebuild rods is 0.2% of the calculated 
value. The actual difference between the two ways of modelling should be less, being exposed 
to a lower burnup fraction. It is assumed that this difference is an insignificant difference at the 
considered cooling times. Therefore, all the calculations are performed as single runs (without 
interruptions and re-restart) which proceeded with the initial fuel lattice. 

For the decay heat calculations related assumptions, the decay heat (DH) from the rebuild 
SFAs was calculated as: 

𝐷𝐷𝐷𝐷 =
𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟 𝑤𝑤/𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑤𝑤/𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
× 𝐼𝐼𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸𝐸𝐸 (𝐼𝐼. 1) 

Where IHM is the initial heavy metal mass. The code results are decay heat per ton of initial heavy 
metal mass. To calculate the decay heat originating from a particular set of rods, the decay heat 
from these rods is divided by their initial heavy mass (rather than the initial heavy mass of the 
SFA). The ratio is multiplied to the heavy mass after the rebuild. As an example, SFA 582 of Ring-
hals 1: the calculations use the initial lattice map assuming that the resulting decay heat from 
rods will not be significantly different if a particular rod was removed during irradiation from the 
lattice. Then, the decay heat per heavy metal mass from all rods is summed up except for rod D4, 
which was removed between the third and the fourth cycles. The resulting ratio is multiplied by 
the HM after the rebuild, which is 177.4 kgU. 
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Appendix II.  Specifications of the PIE Bench-
marks and Modelling Assumptions 
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Specifications of the modeled PIE benchmarks from the SFCOMPO database are presented in 
this appendix. The benchmarks are categorized by their reactor type, starting with the PWRs 
(section II.1.1 to II.1.11) followed by the BWRs (section II.2.1 to II.2.7). The reactors are listed in 
alphabetical order. 

II.1 PWR cases 
II.1.1 Calvert Cliffs-1 (CC-1) 

Three assemblies had some of their fuel samples analyzed after their discharge, irradiated in 
SFAs: D101, D047, and BT03. The analyses consisted of isotopic measurements performed by the 
Material Characterization Center (MCC) of the Pacific Northwest Laboratory (PNL), as part of the 
Approved Testing Material (ATM) program. The mentioned CC-1 assemblies were part of the 
ATM: ATM-103, ATM-104, and ATM-106 [93–95], respectively. 

The three assemblies are based on the Combustion Engineering 14X14 design, having 176 fuel 
rods for D101 and D047 and similar U-235 enrichment through the lattice. SFA BT03 has a similar 
design, except that it has 4 corner stainless-steel rods and 172 fuel rods, and also has different 
U-235 enrichments throughout the lattice. A specific characteristic of this fuel design is 5 large 
guide tubes that could be used to accommodate a control rod cluster. The lattice layouts of the 
three CC-1 assemblies are shown in Figure 8. The lattice design and rods enrichments are based 
on the values provided in the SFCOMPO [11], along with the original ATM reports [93–95]. The 
assemblies have quarter symmetries, and the figure shows only the south-east (S-E) quarter of 
the assembly. The rods in black are the rods from which the PIE samples are analyzed. 
Considering the quarter symmetry of the assemblies, the figure shows either the actual position 
of the fuel rods or their symmetrically-equivalent (i.e., the mirrored) position in the S-E quarter. 

   
Figure 69: Polaris south-east (S-E) models of the Calvert Cliffs-1 assemblies: D101, D047, and 
BT03 (left to right). Rods having different enrichments are shown in different colors. The ana-

lyzed rods are shown in black color. 

The CC-1 data have several samples, however, not all of them contain measurements of the 
analyzed isotopes in the present study. Only three samples per assembly had measurements of 
their Cs-137, U-235 and Pu-239 concentrations (9 PIE samples in total). Samples from a single rod 
are analyzed in each assembly, which are located at different axial locations. Characteristics of 
the considered samples are listed in Table 26. 
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Measurements were conducted at the PNL, using gamma-spectrometry for Cs-137 and 
isotope dilution inductively coupled plasma/mass spectrometry (ID-ICPMS) for both U-235 and 
Pu-239. The reported measurements are based on the SFCOMPO values [11], at the cooling times 
of 6.5, 5.1 and 6.7 years for SFA D101, D047 and BT03, respectively. 

Table 26. Characteristics of the PIE samples of the Calvert Cliffs-1 reactor. 

SFA ID U-235 
wt% 

Axial loc. 
(cm) * 

BU (given) 
GWd/tHMi ** 

Mod. temp. 
(K) 

Mod. dens. 
(g/cm3) 

Fuel temp. 
(K)  

D101 JJ 2.720 11.72 18.68 557.2 0.7576 818  

D101 BB 2.720 27.13 26.62 557.6 0.7570 887  

D101 P 2.720 164.61 33.17 569.8 0.7305 917  

D047 CC 3.038 27.39 37.12 557.6 0.7569 848  

D047 LL 3.038 12.68 27.35 557.2 0.7575 794  

D047 P 3.038 164.08 44.34 569.9 0.7307 878  

BT03 GG 2.453 22.69 37.27 557.4 0.7572 909  

BT03 MM 2.453 14.05 31.40 557.3 0.7575 823  

BT03 Q 2.453 163.99 46.46 569.9 0.7308 954  

* to bottom end of the active fuel rod 
** Burnup (BU) 

The Irradiation histories are based on the provided data in SFCOMPO [11], along with 
supplementary data from [64], [96] and [97]. The SFAs have been irradiated through cycles 2 to 
4, 2 to 5, and 1 to 4 for D101, D047 and BT03, respectively. 

Table 26 provides the burnup weighted (using cycle-wise burnup) relevant irradiation 
parameters, based on the evaluations provided in [64]. Missing information of the irradiation 
histories are not provided in the original reports, such as the boron let-down curve for the cycle 
1 affecting SFA BT03. The boron let-down curve was calculated assuming the average boron in 
cycle 1 to be similar to its value in cycle 2 (similar to the assumptions in [64]). The samples’ given 
burnup values are based on measurements of the Nd-148, and no burnup correction is 
implemented in the CC-1 samples. 
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II.1.2 Genkai-1 (GK-1) 

A single assembly from the GK-1 reactor had two fuel samples analyzed after discharge, 
namely: sample 87H01 and sample 87H05 (abbreviated herein after as H1 and H5). The assembly 
is a 14x14 PWR design, having 179 fuel rods, 16 guide tubes to accommodate cluster control rods, 
and a near-central instrument tube. The fuel type is UO2, having uniform U-235 enrichment 
throughout the lattice (3.4 wt%). The lattice layout of the GK-1 assembly is shown in Figure 70. 
The lattice design and enrichment are based on the values provided in the SFCOMPO [11]. The 
assembly is not symmetrical due to the position of the central instrument tube, which 
necessitated modelling the assembly as a whole. 

  
Figure 70: Polaris model of the Genkai-1 assembly JPNNG1SFA1 showing the location of the 
rods containing the analyzed PIE samples: rod JPNNG1PWR-1 and JPNNG1PWR-2 (in black 

color). The rods contain samples H01 and H05, respectively. 

Characteristics of the considered PIE samples are listed in Table 27. Measurements were 
conducted at Japan Atomic Energy Research Institute (JAERI) [98] (in Japanese). The method of 
measurements could not be identified from the original reports [98]. Additionally, only sample 
H1 had all the three isotopes measured, whereas the reported measurements are for U-235 and 
Pu-239 in the H05 sample. The reported measurements are based on the SFCOMPO values [11]. 
The cooling times for the PIE samples are not given, however, the SFCOMPO-reported values 
indicate adjustments of the decay to the discharge time. 

Table 27. Characteristics of the PIE samples of the Genkai-1 reactor. 

SFA ID U-235 
wt% 

Axial loc. 
(cm) 

BU (est.) 
GWd/tHMi 

Mod. temp. 
(K) 

Mod. dens. 
(g/cm3) 

Fuel 
temp. (K)  

SFA1 H01 3.415 132 37.5 571.2 0.7303 922  
SFA1 H05 3.415 92 36.9 566.2 0.7402 922  

The Irradiation histories are based on the provided data in SFCOMPO [11], along with 
supplementary data from [99]. The GK-1 SFA has been irradiated for 5 cycles. Table 27 provides 
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the burnup weighted relevant irradiation parameters. The samples’ given burnup values are 
based on the SFCOMPO listed values, which were scaled in the current calculations such that the 
calculated values of Nd-148 matches the measurements (±0.05%). The required correction 
factors are -3.1% and -4.7% for H01 and H05, respectively. 

Missing design and irradiation data from the SFCOMPO and the reference reports necessitated 
implementing several assumptions, which are: 
1. The reactor pressure was set equal to that of Mihama-3 reactor, considering similarity in the 

water inlet and outlet temperatures. Nevertheless, differences in the reactor pressure does 
not significantly affect the calculated water density (in the non-boiling conditions). 

2. The moderator temperatures, which are provided in [99], were used along with the reactor 
pressure to obtain the moderator densities. 

3. The samples’ axial positions were inferred from the moderator temperatures, assuming that 
the water temperature is a cosine function in the axial position of the sample. The mentioned 
assumption is furtherly discussed in Chapter 4 (Validation and Uncertainty Propagation 
Schemes). Equation 4.1 is solved for 𝑧𝑧 (the sample axial position).  

A particular limitation of the samples of GK-1 is that uncertainties of the reported 
measurements are not available. The provided values in the original reports and therefore the 
SFCOMPO reported values do not include this information. 
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II.1.3 Mihama-3 (M-3) 

Three assemblies had some of their fuel samples analyzed after discharged, irradiated in SFAs: 
JPNNM3SFA1, JPNNM3SFA2 and JPNNM3SFA3. The assemblies are abbreviated hereinafter as: 
SA1, SA2 and SA3. Eight PIE samples are analyzed, taken from five different rods. The assemblies 
are based on the Westinghouse 15×15 assembly design, having 204 fuel rods, 20 guide tubes and 
a central instrument tube. The assemblies are loaded with UO2 fuel rods, having an enrichment 
of 3.21 wt% U-235. The south-east (S-E) lattice layout of the three M-3 assemblies is shown in 
Figure 71. The assemblies are similar to each other in their design, and only one plot is shown for 
the three assemblies indicating the analyzed rods in black color or their mirrored position in the 
S-E quarter. The assemblies have quarter symmetry, and there S-E models are implemented in 
Polaris. The lattice design and rods enrichments are based on the values provided in the 
SFCOMPO [11], and the references [100,101]. 

  
Figure 71: Polaris S-E models of the Mihama-3 assemblies SFA1, SFA2 and SFA3. The assemblies 
are similar to each other in their pin-layout and slightly differ in their enrichments. The S-E map 
show the actual position of the analyzed rods or their reflection in the S-E quarter. The analyzed 

rods are shown in black color. 

Characteristics of the analyzed samples are listed in Table 28. The Irradiation histories are 
based on the provided data in SFCOMPO [11], along with supplementary data from [99,101,102]. 
The assemblies (SA1, SA2 and SA3) have been irradiated for 1, 3, and 4 cycles, respectively. The 
assemblies have not been controlled during their irradiation. Table 28 provides the burnup 
weighted relevant irradiation parameters. The fuel temperatures are implemented as the values 
provided in [102], and the moderator temperatures are implemented as the values provided in 
[99]. The samples’ given burnup values are based on the SFCOMPO listed values, which were 
scaled in the current calculations by -4% to -6% such that the calculated values of Nd-148 matches 
the measurements (±0.05%). 
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Table 28. Characteristics of the PIE samples of the Mihama-3 reactor. 

SFA ID U-235 
wt% 

Axial loc. 
(cm) 

BU (est.) 
GWd/tHMi 

Mod. temp. 
(K) 

Mod. dens. 
(g/cm3) 

Fuel 
temp. (K)  

SFA1 B02 3.21 37 36.40 561.2 0.7498 923  

SFA1 B03 3.21 337 30.60 594.6 0.6763 863  

SFA3 C03 3.21 34 23.68 561.1 0.7500 863  

SFA3 C04 3.21 125 25.86 569.5 0.7339 891  

SFA3 C07 3.21 51 27.01 562.0 0.7484 905  

SFA3 C08 3.21 259 27.48 588.3 0.6925 913  

SFA2 G03 3.21 256 30.47 587.9 0.6935 823  

SFA2 G05 3.21 161 21.83 574.5 0.7237 933  

SFA2 G07 3.21 254 20.98 587.7 0.6940 863  

Missing design and irradiation data from the SFCOMPO and the reference reports necessitated 
implementing several assumptions, which are: 
1. The samples’ axial positions are not publicly available [99]. The samples’ axial positions were 

inferred from the moderator temperatures, assuming that the water temperature is a cosine 
function in the axial position of the sample. The mentioned assumption is furtherly discussed 
in Chapter 4, and equation 4.1 is solved for 𝑧𝑧 (the sample axial position).  

2. The moderator temperatures are reported to have different values in the references 
[99,101,102]. Values from the most recent report [99] are implemented, which also assumes 
a cosine shape of the water temperature vs. the axial height. 
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II.1.4 Neckarwestheim-2 (N-2) 

One PIE sample is listed in SFCOMPO to be irradiated in the N-2 reactor (sample M11). The 
sample has been irradiated and analyzed as part of the REBUS International Program (Reactivity 
Tests for a Direct Evaluation of the Burnup Credit on Selected Irradiated LWR Fuel Bundles). The 
sample had been irradiated in an 18x18 fuel assembly at a near-central position, and in the upper 
third part of the fuel rod, which is expected to be exposed to a relatively uniform flux (an 
asymptotic part of the assembly). The sample has U-235 enrichment of 3.8 wt%, and the 
assembly has two types of fuel rods: 276 UO2-based rods with U-235 enrichment of 3.8 wt%, and 
12 UO2-Gd2O3-based rods with U-235 enrichment of 2.6 wt% and gadolinia loading of 7 wt%. The 
assembly contains 24 guide tubes. The lattice layout of the N-2 assembly is shown in Figure 72. 
The assembly is asymmetric due to the positioning of the gadolinia-bearing rods, which 
necessitated modelling the assembly as a whole. The lattice design and rods’ enrichments are 
based on the values provided in the SFCOMPO [11], and reference [103]. The reported values of 
the measurements are based on references [104,105], which are part of the REBUS program. The 
measurements were conducted by the SCK.CEN using thermal ionization mass spectrometry 
(TIMS) for U-235 and Pu-239, and gamma-spectrometry for Cs-137, and the reported values are 
after 7.1-7.3 years of cooling.  

 
Figure 72: Polaris model of the Neckarwestheim-2 assembly 419. The analyzed rods are shown 

in purple color. 

Table 29. Characteristics of the PIE sample of the Neckarwestheim-2 reactor. 

ID U-235 
wt% 

Axial loc. 
(cm) 

BU (est.) 
GWd/tHMi 

Mod. 
temp. (K) 

Mod. dens. 
(g/cm3) 

Fuel 
temp. (K) 

Boron 
(ppm)  

M11 3.80 283 53.3 588.1 0.6922 895 523  
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Characteristics of the M11 sample are listed in Table 29. The M11 sample is one of the most 
well described PIE samples in SFCOMPO and the original reference [103]. Information about 
specific power density, fuel temperature, moderator temperature and density and the boron 
letdown curve are provided for the sample at high resolution of the in-core residence time. Such 
detailed information facilitated modelling the sample with minimal assumptions on it irradiation 
data. Also, the M11 sample has relatively high burnup of 53 GWd/tHMi (as implemented in 
Polaris), which is 0.987 of the given burnup value in SFCOMPO.  
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II.1.5 Obrigheim-1 (OG-1) 

Several samples and assemblies have been analyzed from the OG-1 reactor for their isotopic 
concentrations. In this study, 14 PIE samples from assembly BE124 and 6 samples from assembly 
BE210 are analyzed. SFCOMPO originally contains information about 16 PIE samples from the 
BE124 assembly. However, two samples are excluded, namely E3_P2 and D1_P2 samples. The 
former sample shows large discrepancy in its burnup based on measurements of two burnup 
indicators, Cs-137 and Nd-148. The discrepancy is 16% which is noted also in reference [64]. The 
sample is excluded considering potential erroneous measurements, and potential inaccuracy in 
adjustment of the burnup. Sample D1_P2 does not have the concentration of Nd-148 measured, 
and only Cs-137 measurements are reported. The sample also does not have the concentration 
of U-235 and Pu-239 measured, and it was excluded from the analyses. Assembly BE210 includes 
7 PIE samples. In this study, the analyses include only 6 PIE samples out of the listed 7 samples in 
SFCOMPO. The excluded sample is K14_P1, which also has discrepancies in its burnup based on 
measurements of two burnup indicators, Cs-137 and Nd-148. The noted discrepancy is 11% [64]. 
Potential erroneous measurements could have resulted in the observed discrepancy, leading to 
erroneous burnup adjustments. 

RCA of 5 fuel assemblies, which were fully dissolved during their reprocessing in Karlsruhe 
reprocessing Plant [64,106], were performed by laboratories of the European Institute for 
Transuranium Elements (ITU), Institute for Radiochemistry at Karlsruhe (IRCh), Karlsruhe 
Reprocessing Plant (WAK), and International Atomic Energy Agency (IAEA). These PIE 
measurements are unique, since they correspond to the average concentrations of the isotopes 
in each assembly. The assemblies are: BE168, BE170, BE171, BE172 and BE176. Two individual 
measurements are reported for each assembly, corresponding to two halves of the assembly 
(axially). The current analyses compare the average of the two measurements to the average of 
two calculations on each section of the assembly. 

The S-E lattice layouts of the OG-1 assemblies are shown in Figure 73. The assemblies are 
similar to each other in their design, based on a 14x14 PWR design, having 180 UO2-based fuel 
rods and 16 guide tubes. The analyzed rods are indicated in black color (or their mirrored position 
in the S-E quarter). The assemblies have quarter symmetry, and there S-E models are 
implemented in Polaris. The lattice design and rods enrichments are based on the values 
provided in the SFCOMPO [11] and reference [64]. 
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Figure 73: Polaris S-E models of the Obrigheim-1 assemblies: BE210 (left), BE124 (middle), and 
BE168, BE170, BE171, BE 172, and BE176 (right). The latter assemblies had all of their rods dis-

solved and analyzed. The analyzed rods in BE210 and BE124 are shown in black color. 

Table 30. Characteristics of the PIE samples of the Obrigheim-1 reactor. 

SFA ID U-235 
wt% 

Axial loc. 
(cm) 

BU (est.) 
GWd/tHMi 

Mod. temp. 
(K) 

Mod. dens. 
(g/cm3) 

Fuel 
temp. (K)  

168 SFA 3.13 - * 29.1 571 0.730 875  

170 SFA 3.13 - 26.7 571 0.730 860  

171 SFA 3.13 - 28.4 571 0.730 866  

172 SFA 3.13 - 28.1 571 0.730 865  

176 SFA 3.13 - 28.6 571 0.730 865  

124 D1_P3 3.00 144 33.4 572 0.728 998  

124 E3_P1 3.00 15 20.1 556 0.759 802  

124 E3_P3 3.00 144 35.9 572 0.728 1039  

124 E3_P4 3.00 232 30.6 584 0.702 953  

124 E3_P5 3.00 259 22.7 585 0.699 838  

124 G7_P1 3.00 15 17.0 556 0.759 763  

124 G7_P2 3.00 32 25.6 557 0.757 879  

124 G7_P3 3.00 144 31.3 572 0.728 960  

124 G7_P4 3.00 232 27.6 584 0.702 906  

124 M14_P3 3.00 144 29.2 572 0.728 930  

124 D1_P1 3.00 15 21.1 556 0.759 815  

124 G7_P5 3.00 259 25.7 585 0.699 879  

124 M14_P1 3.00 15 15.5 556 0.759 744  

124 M14_P4 3.00 232 24.8 584 0.702 866  

210 K14-P3 2.83 133 36.4 570 0.730 988  

210 K14-P4 2.83 221 32.7 583 0.704 963  

210 G14-P3 2.83 133 37.4 584 0.702 891  

210 G14-P4 2.83 221 35.5 585 0.699 819  

210 G14-P5-1 2.83 243 29.9 570 0.730 976  

210 G14-P5-2 2.83 255 24.1 583 0.704 927  

* Full length SFAs 

Characteristics of the analyzed samples are listed in Table 30. The measurements had been at 
Ispra and Karlsruhe laboratories, of the European Commission Joint Research Center [107]. The 
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measurements of U-235 and Pu-239 relied on the isotope dilution mass spectrometry (IDMS) 
[106,107]. The measurements of Cs-137 relied on gamma-spectrometry, which are based on the 
values provided in [64]. Measurements of Cs-137 are not reported for all of the analyzed samples, 
10 PIE samples from SFA BE_124 and 5 PIE samples from SFA_210 are reported. The reported 
measurements are at the time of discharge, i.e., they are adjusted for the decay. 

The Irradiation histories are based on the provided data in SFCOMPO [11], along with the data 
provided in [64]. Table 30 provides the burnup weighted relevant irradiation parameters. The 
moderator density and temperature and the fuel temperatures are similar to the values 
implemented in [64]. The samples’ burnup values are based on the SFCOMPO listed values, based 
on Nd-148 measurements. Matching the measured Nd-148 concentrations with the Polaris 
calculated ones necessitated additional correction factors in the current calculations by -1.0 to 
0.7% of the SFCOMPO given burnup values. 
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II.1.6 Ohi-1 and Ohi-2 (O1 and O2) 

Two assemblies, one from O1 and the other from O2, had some of their fuel fuel samples 
analyzed after discharged. The samples are irradiated in SFAs: G13 (reactor O1) and 17G (reactor 
O2). One PIE sample is analyzed from the O1 assembly, and 5 samples are analyzed from the O2 
assembly. The assemblies are based on the Westinghouse 17×17 assembly design, having 264 
fuel rods, 24 guide tubes and a central instrument tube. O1 has a uniform U-235 enrichment of 
3.2 wt%, loaded with UO2-based fuel (the PIE sample is also UO2-based). O2 is loaded with two 
types of UO2-based fuel: UO2 with U-235 enrichment of 3.2 wt%, and UO2-Gd2O3 with U-235 
enrichment of 1.69 wt% and 6 wt% gadolinia loading. Layouts of the S-E quarters of the 
assemblies are shown in Figure 74. The assemblies have quarter symmetry, and there S-E models 
are implemented in Polaris. The lattice design and rods enrichments are based on the values 
provided in the SFCOMPO [11], and the references [108,109]. 

   
Figure 74: Polaris S-E models of the Ohi-1 and Ohi-2 assemblies (left to right). The Ohi-2 assem-
bly shows the actual position of the analyzed rods or their reflection into the S-E quarter. The 

analyzed rods are shown in black color, and the gadolinia-bearing rods are shown in purple 
color. 

Characteristics of the analyzed samples are listed in Table 31. The measurements are 
conducted at the JAERI [108,109]. The measurements of U-235 and Pu-239 relied on the IDMS 
and the measurements of Cs-137 relied on gamma-spectrometry. The measurements of U-235 
and Pu-239 are reported at the discharge date (i.e., adjusted for decay), and those of Cs-137 are 
reported at 5 years after discharge. 

The Irradiation histories are based on the provided data in SFCOMPO [11], along with the data 
provided in [108]. O1 has been irradiated for four cycles, and the sample reached relatively high 
burnup (52 WGd/tU), whereas the O2 assembly is irradiated for only two cycles, reaching 
relatively low burnup values. The assemblies have not been in the vicinity of inserted control rods 
during their irradiation. Table 31 provides the burnup weighted relevant irradiation parameters. 
The fuel temperatures are assumed values, which are based on [108] (i.e., 969 K). The boron 
letdown curve is also provided in SFCOMPO. Equation 4.1 is used to obtain the moderator 
temperatures as a function of the axial positions from the bottom of the active fuel. The latter 
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assumption relies also on the SFCOMPO provided reactor inlet and outlet temperatures and the 
gauge pressure. The samples’ burnup values are based on the SFCOMPO listed values, scaled in 
the current calculations by -1.9% to 2.5% such that the calculated values of the Nd-148 
concentrations match the measured ones (within ±0.05%). 

Table 31. Characteristics of the PIE samples of the Ohi-1 and Ohi-2 reactors. 

SFA ID U-235 
wt% 

Axial loc. 
(cm) 

BU (est.) 
GWd/tHMi 

Mod. temp. 
(K) 

Mod. dens. 
(g/cm3) 

Boron 
(ppm)  

O1 - G13 S07 3.20 113 51.8 568.7 0.7356 667  

O2 - 17G S01 1.69 27 22.0 559.3 0.7534 552  

O2 - 17G S03 1.69 74 29.3 563.9 0.7449 552  

O2 - 17G S05 1.69 73 25.7 563.9 0.7449 556  

O2 - 17G S08 3.20 27 29.6 559.3 0.7534 588  

O2 - 17G S10 3.20 74 37.8 563.9 0.7447 588  
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II.1.7 Takahama-3 (T3) 

The two assemblies of the T3 reactor in the SFCOMPO data are analyzed. The assemblies are: 
NT3G23 and NT3G24 (abbreviated hereinafter as G23 and G24). For G23, two fuel rods had some 
of their fuel samples analyzed after their irradiation. Two rods are analyzed in G23, which are 
SF95 and SF96. The former is UO2-based, with U-235 enrichment of 4.1 wt%, and the latter is 
UO2-Gd2O3-based with U-235 enrichment of 2.6 wt% and gadolinia loading of 6 wt%. A single rod 
is analyzed in G24, which is rod SF97. The PIE samples are taken from different axial positions in 
each rod, as shown in Figure 75.  

 
Figure 75: Axial locations of the analyzed PIE samples of T3 reactor. 

The assemblies are based on the PWR 17×17 assembly design, having 264 fuel rods and 25 
guide tubes. 14 of the fuel rods are UO2-Gd2O3-based. The S-E lattice layouts of the 3 assemblies 
are shown in Figure 76. The assemblies are similar to each other in their design, and the three 
analyzed rods are shown in the same plot in black color (or their mirrored position in the S-E 
quarter). The assemblies have quarter symmetry, and S-E models are implemented in Polaris. 
The lattice design and rods enrichments are based on the values provided in the SFCOMPO [11], 
and the references [110,111]. 

  
Figure 76: Polaris S-E model of the Takahama-3 assemblies G23 and G24. The S-E map shows 
the actual positions of the analyzed rods (or their reflection in the S-E quarter). The analyzed 

rods are shown in black color, and the gadolinia-bearing rods are shown in purple color. 
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Characteristics of the analyzed samples are listed in Table 32. The measurements are 
conducted at the JAERI [110,111]. The measurements of U-235 and Pu-239 relied on the IDMS 
and the measurements of Cs-137 relied on gamma-spectrometry. The reported values for the 
measurements are at the discharge date, i.e., corrected for the decay at the time of 
measurements. 

Table 32. Characteristics of the PIE samples of the Takahama-3 reactor. 

SFA ID U-235 
wt% 

Axial loc. 
(cm) 

BU (est.) 
GWd/tHMi 

Mod. temp. 
(K) 

Mod. dens. 
(g/cm3) 

Boron 
(ppm)  

SF95 1 4.11 361 14.1 593.0 0.6819 677  
SF95 2 4.11 345 24.3 592.8 0.6826 677  
SF95 3 4.11 293 35.3 589.4 0.6912 677  
SF95 4 4.11 165 36.6 570.4 0.7330 677  
SF95 5 4.11 25 30.2 554.2 0.7632 677  
SF96 1 2.63 363 8.6 593.1 0.6819 633  
SF96 2 2.63 347 17.3 592.8 0.6825 633  
SF96 3 2.63 295 29.4 589.6 0.6906 633  
SF96 4 2.63 167 30.0 570.8 0.7330 633  
SF96 5 2.63 27 25.2 554.3 0.7600 633  
SF97 1 4.11 364 17.3 593.1 0.6819 655  
SF97 2 4.11 346 30.3 592.8 0.6826 655  
SF97 3 4.11 318 41.7 591.5 0.6859 655  
SF97 4 4.11 197 46.5 575.8 0.7219 655  
SF97 5 4.11 88 46.7 559.1 0.7544 655  

SF97 6 4.11 25 40.2 554.2 0.7632 655  

The irradiation histories are based on the provided data in SFCOMPO [11], along with 
supplementary data from the references [110,111]. G23 has been irradiated for 2 cycles, reaching 
relatively low burnup values, and G24 has been irradiated for three cycles reaching higher burnup 
values up to 47 GWd/tHMi for sample 5 of SF97. Since the samples are distributed axially in their 
host fuel rods, samples with very low burnup values are analyzed, such as samples with identifier 
1 (which are located at the top of the fuel rods). The assemblies have not been controlled during 
their irradiation. Table 32 provides the burnup weighted relevant irradiation parameters. The 
fuel temperatures are assumed, which are similar to the assumptions in [110]. The moderator 
temperatures are also implemented as the values provided in [110]. The latter values are based 
on the interpolation of the moderator temperature based on the axial height of the sample and 
assuming that the temperature rise in the moderator follows a cosine shape function. The 
samples’ given burnup values are based on the SFCOMPO listed values, scaled in the current 
calculations such that the calculated values of Nd-148 concentrations matches the measured 
ones (±0.05%). The UO2-based samples did not require significant corrections in their burnup 
values (-0.2% to -2.0%), whereas the UO2-Gd2O3 -based samples required larger corrections. 
Finally, the boron letdown curve is also provided for the samples in SFCOMPO and in [111].  



Specifications of the PIE Benchmarks and Modelling Assumptions 
 

 
173 

 

II.1.8 Three Mile Island-1 (TMI-1) 

The two assemblies of the TMI-1 reactor listed in SFCOMPO are analyzed. Fuel samples are 
analyzed after their discharge, irradiated in SFAs: NJ05YU and NJ070G. The former SFA initially 
had 11 PIE samples measured by Argonne National Laboratory (ANL) [112]. However, for the 
purpose of independent cross-checking and resolving anomalies in Plutonium measurements, 
recent measurements of 5 PIE samples were conducted by Oak Ridge National Laboratory (ORNL) 
[113]. The considered samples within this study are the 5 PIE that are recently measured by 
ORNL, considering the higher precision of the ORNL-based measurements, and that the older 
measurements by ANL are likely to be biased and to contain anomalies [113]. The considered PIE 
samples of SFA NJ05YU belong to two rods: D5 and H6. The SFA NJ070G had 8 PIE samples 
measured by the General Electric Vallecitos Nuclear Center (GEVNC) [114]. The considered PIE 
samples of the latter SFA belongs to three rods: O1, O12 and O13. 

The two assemblies are based on the Babcock & Wilcox Company (B&W) Mark B8 15×15 
assembly design. The NJ05YU SFA has 208 UO2 fuel rods, a central instrument tube, and 16 guide 
tubes that provide place for discrete absorbers. The NJ070G SFA is similar to the NJ05YU SFA, 
except that is has 4 of its fuel rods being gadolinia-bearing rods (4.19 wt% gadolinia). The lattice 
layouts of the two TMI-1 assemblies are shown in Figure 77. The assemblies were controlled 
during their irradiation, and Figure 77 shows the inserted absorber rods. The lattice design and 
rods enrichments are based on the values provided in the SFCOMPO [11], and reference [113] 
for the NJ05YU SFA, and references [64,115] for the NJ070G SFA. The assemblies have quarter 
symmetries, and the figure shows only the S-E quarter of the assembly. The rods in black are the 
rods from which the PIE samples are taken, and which reflect their actual position or their 
mirrored position in the S-E quarter. 

  
Figure 77: Polaris S-E models of the Three Mile Island-1 assemblies: NJ05YU and NJ070G (left to 
right). Rods having different enrichments are shown in different colors. Four discrete absorber 
rods are shown inserted in their guide tubes. The analyzed rods are shown in black color (2 in 

NJ05YU and 3 in NJ070G). 

5 PIE samples are analyzed from the NJ05YU SFA, and 8 samples are analyzed from the NJ070G 
SFA. Characteristics of the considered samples are listed in Table 33. The measurements are 
conducted by ORNL for the NJ05YU samples, which relied on the ID-ICPMS for the three analyzed 
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isotopes. The measurements conducted at GE for the NJ070G samples relied on the TIMS for the 
three analyzed isotopes. The reported measurements are based on the SFCOMPO values [11], 
which are cross-checked with values reported in [113,115]. The cooling times of the PIE samples 
of the NJ05YU SFA ranged from 17.4 to 18.2 years. The cooling times of the PIE samples of the 
NJ070G SFA reported in Reference [115] are 3.6 years (samples: S1, S3, S4, and S6) and 4.2 years 
(samples: S2, S5, S7, and S8). These values are inconsistent with the reported ones in the 
SFCOMPO database (3.3 years for all samples). In thew present work, the SFCOMPO value is used 
(3.3 years). The calculated concentrations at the different cooling times, the values in Reference 
[115] and the value in SFCOMPO, show that the U-235 and Pu-239 concentration differences are 
not significant (<0.01%), whereas Cs-137 concentrations have <0.6% and <2.1% differences. 
Nevertheless, resolving the discrepancy is not performed in the present work, and the SFCOMPO 
value is used (3.3 years). 

Table 33. Characteristics of the PIE samples of the Three Mile Island-1 reactor. 

SFA ID U-235 
wt% 

Axial loc. 
(cm) 

BU (given) 
GWd/tHMi 

Mod. temp. 
(K) 

Mod. dens. 
(g/cm3) 

Fuel temp. 
(K)  

NJ05 A1 4.013 3421.0 45.9 591.7 0.6832 871  

NJ05 B1 4.013 2670.0 55.0 585.8 0.6979 902  

NJ05 B2 4.013 2820.0 52.4 587.4 0.6942 904  

NJ05 C2D1 4.013 1972.0 53.5 581.1 0.7090 922  

NJ05 C2D2 4.013 2332.0 52.7 584.4 0.7013 925  

NJ07 S1 4.657 393.7 25.8 567.7 0.7371 940  

NJ07 S2 4.657 1971.0 29.9 583.0 0.7046 992  

NJ07 S3 4.657 2781.3 26.7 590.2 0.6873 993  

NJ07 S4 4.657 393.7 23.7 567.2 0.7382 937  

NJ07 S5 4.657 1971.0 26.5 583.0 0.7046 992  

NJ07 S6 4.657 2781.3 24.0 590.2 0.6873 992  

NJ07 S7 4.657 393.7 22.8 567.2 0.7382 937  

NJ07 S8 4.657 1971.0 26.3 583.0 0.7046 992  

The Irradiation histories are based on the provided data in SFCOMPO [11], along with 
supplementary data from [113,115]. The NJ05YU SFA has been irradiated for cycles 9 and 10, 
whereas in cycle 9, it was fully exposed to the discrete absorber rods. The NJ070G SFA was 
irradiated in cycle 10 only, therefore reaching significantly lower burnup values, also the absorber 
rods were fully inserted throughout the cycle. Table 33 provides the burnup weighted relevant 
irradiation parameters, based on [11,113,115]. The samples’ given burnup values are based on 
the SFCOMPO listed values (which are obtained based on the assembly operational data). The 
burnup values were scaled in the current calculations such that the calculated values of Nd-148 
concentrations match the measured ones (±0.05%). The required correction factors were within 
2% of the given burnup values for both SFAs. 
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II.1.9 Trino Vercellese-1 (TV1) 

Four assemblies are analyzed from the TV1 reactor, which had some of their fuel samples 
removed for RCA. The four assemblies are: 509-032, 509-049, 509-104 and 509-069, abbreviated 
hereinafter as: A32, A49, A104 and A69. The first three assemblies have been irradiated for one 
cycle only, whereas the A069 assembly has been irradiated for two cycles (including the same 
first cycle as for the other assemblies). The first cycle is subdivided into three sub-cycles with two 
downtimes: 1A, 1B and 1C, having effective full power days between 7.5 and 9.7 months.  

The lattice design, dimensions, and rods enrichments are based on the values provided in the 
original report describing the design of the TV-1 assemblies [116]. The four assemblies are based 
on UO2 fuel rods, having homogenous U-235 enrichment, and a central instrument tube. The TV-
1 assemblies are modelled as a whole in Polaris, as shown in Figure 78. The design of the TV-1 
assemblies is unique with respect to PWR common designs [107]. The assemblies are based on a 
15x15 Westinghouse assembly design, with a central guide tube. However, 16 fuel rods are 
removed from the assembly, 15 from a corner and 1 from the opposite corner, as shown in Figure 
78. The removed rods provide space for cruciform assemblies to be located between the square 
assemblies. The fuel in the cruciform assemblies have 2.72 wt% U-235 enrichment. 24 cruciform 
assemblies were always positioned in the core [64], and another 28 were designed for control 
purposes with a fuel follower section. 18 of the cruciform control assemblies were fully 
withdrawn from the core acting as shutdown rods, and 10 were actively moving for control 
purposes during operation [64]. The cruciform control rod assemblies were used for shutdown 
and reactivity control instead of the typical cluster-like control rods. These assemblies are 
composed of an upper section of control rods, made of Ag-In-Cd alloy, and a lower section of 32 
fuel rods (control rod followers). The assembly configuration in TV-1 reactor has some similarity 
to the Yankee-1 assembly designs (section II.1.11). Both designs have removed peripheral rods 
from the assemblies. In the TV-1 reactor, the peripheral space accommodates cruciform control 
assembly with a fuel-follower section, and the space in Yankee-1 assemblies accommodates 
cruciform control blades. 

Table 34 lists characteristics of the analyzed samples, which are 31 PIE samples. The sample’s 
identifier starts with the rod number followed by a number, indicating the axial position of the 
sample in its host rod. Numbering starts from 1 to 9, from top to bottom of the fuel rod. The TV-
1 had more samples than those analyzed in this study. Samples taken from rods located at the 
corner or edge of the assembly are excluded from the present study. Irradiation of these samples 
is affected by the enrichment and burnup of the neighboring assemblies, and such information 
are not available for the current TV-1 data. Also, additional approximations on the gap between 
the assemblies were implemented in the current models, also affecting these corner and edge 
samples. Only samples located in near-central positions are included in the current analyses, 
considering them being distant from the neighboring assemblies and the CR or its follower 
section. 
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Two assumptions are implemented in the TV-1 assembly models: 

1. The control rods were modelled with the follower section in-place (i.e., the fuel bearing 
section). A control rod insertion of 30% were located adjacent to assembly A32 and A69 
during the first part of cycle 1, the affected samples at these locations are E11-1 in A032 
and E11-1 and E11-2 in A069. These samples were modelled with the control rod inserted 
during the first part of cycle-1. 

2. The assemblies are encased in a stainless-steel 304 channel having 0.6 mm thickness. The 
material of the casing is homogenized with the peripheral cooling water in-between the 
assemblies using their mass ratios.  

   

   
Figure 78: Polaris models of the Trino Vercellese-1 assemblies: A32 and A49 (top row, left to 
right), and A69 and A104 (bottom row, left to right). The analyzed rods are shown in black 

color. The peripheral rods (in red color) are rods that belong to the control rod follower part, 
which are fuel rods of 2.72 wt% U-235 enrichment. 

The irradiation histories are compiled from the provided data in SFCOMPO [11], along with 
data from other references [64,107,116]. Table 34 provides the burnup weighted relevant 
irradiation parameters. The samples’ axial positions were implemented similar to [64], which are 
based on gamma-activity plots provided in [107]. The inferred samples’ axial positions are used 
in equation 4.1, along with the water inlet and outlet temperatures, to estimate the coolant 



Specifications of the PIE Benchmarks and Modelling Assumptions 
 

 
177 

 

temperatures. The assembly specific power was scaled in each sample irradiation history to 
achieve the given burnup of the sample, i.e., the sample power density is assumed to have the 
same ratio to the assembly power density throughout the irradiation. 

Reference [116] provides different values for the burnup of the considered PIE samples, based 
on measurements of the concentrations of Nd-148, Cs-137, and also the residual heavy elements 
in the samples. The burnup values listed in Table 34, are based on Nd-148 measurements, except 
for four samples that do not have measurements of their Nd-148 concentrations. These samples 
are marked with (*), and their reported burnup values are based on their Cs-137 measurements. 
The implemented burnup values of these samples are the provided values in reference [116], 
without adjustment. The burnup of the other samples, that have measurements of Nd-148 
concentrations, were scaled such that the Polaris calculated values of Nd-148 concentrations 
match the measured ones (±0.05%). The required correction factors are within 4% of the 
provided burnup values. The samples located at lower sections of the fuel rods required more 
corrections to their burnup values than upper samples. 

The measured concentrations of the analyzed isotopes were obtained from the SFCOMPO 
database [11], based on reference [116,117]. Cs-137 measurements relied on gamma-
spectrometry, and U-235 and Pu-239 measurements relied on the IDMS. The reported values of 
the measurements are adjusted to the discharge time of the samples. The RCA of the 31 PIE 
samples were performed at either Ispra or Karlsruhe laboratories, of the European Commission 
Joint Research Center. Eight PIE samples had their samples measured at both laboratories, for 
cross-checking. The isotopic concentrations of the samples that have duplicate measurements 
were obtained by averaging the measured values in both laboratories.  
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Table 34. Characteristics of the PIE samples of the Trino Vercellese-1 reactor. 

SFA ID Axial loc. 
(cm) 

BU (est.) 
GWd/tHMi 

Mod. temp. 
(K) 

Mod. dens. 
(g/cm3) 

Fuel 
temp. (K) 

Boron 
(ppm)  

A032 E11-1 246.7 7.2 563.2 0.7437 740 693  

A032 E11-4 165.6 15.4 553.5 0.7616 859 693  

A032 E11-7 81.4 15.9 537.8 0.7878 867 693  

A032 E11-9 28.8 11.5 531.6 0.7975 803 693  

A032 H9-4 165.6 16.6 553.5 0.7616 876 693  

A032 H9-7 81.4 17.5 537.8 0.7878 890 693  

A032 H9-9 28.8 12.4 531.6 0.7975 815 693  

A049 J8-1 246.7 8.7 563.2 0.7437 762 693  

A049 J8-4 165.6 14.8 553.5 0.7616 851 693  

A049 J8-7 81.4 15.2 537.8 0.7878 857 693  

A049 J8-9 28.8 11.1 531.6 0.7975 797 693  

A049 L5-1 246.7 7.8* 563.2 0.7437 749 693  

A049 L5-4 165.6 14.3 553.5 0.7616 844 693  

A049 L5-9 28.8 10.2 531.6 0.7975 784 693  

A069 E11-1 246.7 12.9 562.7 0.7447 756 660  

A069 E11-2 221.1 20.6 560.9 0.7481 828 660  

A069 E11-4 165.6 23.7 552.9 0.7627 858 660  

A069 E11-5 137.1 24.5 547.5 0.7721 865 660  

A069 E11-7 81.4 24.3 537.1 0.7888 863 660  

A069 E11-8 55.4 23.4 533.4 0.7948 854 660  

A069 E11-9 28.8 19.3 530.9 0.7985 815 660  

A069 E5-4 165.6 23.9 552.9 0.7627 859 660  

A069 E5-7 81.4 24.5 537.1 0.7888 865 660  

A069 E5-9 28.8 19.2 530.9 0.7985 815 660  

A069 J9-4 165.6 24.8* 552.9 0.7627 868 660  

A069 J9-7 81.4 25.3 537.1 0.7888 872 660  

A069 L11-4 165.6 23.9 552.9 0.7627 860 660  

A069 L11-7 81.4 24.4 537.1 0.7888 864 660  

A069 L5-4 165.6 24.3 552.9 0.7627 863 660  

A069 L5-7 81.4 24.3* 537.1 0.7888 863 660  

A104 M11-7 81.4 12.0 537.8 0.7878 811 693  

* The burnup is based on Cs-137 measurements. 
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II.1.10 Turkey Point-3 (TP-3) 

Three assemblies from the TP-3 reactor are available in SFCOMPO, which had some of their 
fuel samples analyzed after their discharge. The samples are irradiated in SFAs: D01, D04 and 
B17. SFA D01 and D04 had 5 of their full length fuel rods dissolved for examination by Battelle 
Columbus Laboratories [118], i.e., they had the average isotopic concentrations being measured. 
The considered full-rods are G9, G10 and H9 for SFA D01 and G9 and G10 for SFA D04. SFA B17 
had 8 PIE samples measured also by Battelle Columbus Laboratories [119], however, these are 
typical short rod-sections PIE samples. The considered PIE samples belong to rods: G7, G9, H6, I9 
and J8 (which are all close to the SFA center). 

The three assemblies are based on the West OFA/LOPAR 15×15 assembly design. The 
assemblies have similar designs: 204 UO2 fuel rods, 20 guide tubes for accommodations of 
cluster-type control rods, and a central instrument tube. Also, the three SFAs have the same U-
235 enrichment for all rods (2.56 wt% U-235). The lattice layouts of the TP-3 SFAs are shown in 
Figure 79. The lattice design and rods enrichments are based on the values provided in the 
SFCOMPO [11]. The assemblies have quarter symmetries, and the figure shows only the S-E 
quarter of the assembly. The rods in black are the rods from which the PIE samples are taken, 
reflecting their mirrored position into the S-E quarter. 

   
Figure 79: Polaris S-E models of the Turkey Point-3 assemblies: D01 and D04 and B17 SFA (left 

to right). The shown rods (in black color) reflect the symmetric reflection of the rods’ actual po-
sitions into the S-E quarter. 

Characteristics of the analyzed samples are listed in Table 35. All measurements are conducted 
at Battelle Columbus Laboratories [118,119], which were compiled in this study from the 
SFCOMPO values [11]. Cs-137 is not measured in any of the considered rods or samples, and only 
U-235 and Pu-239 had their concentrations measured using Mass-Spectrometry (MS). The full-
rods isotopic concentration measurements are conducted 2.5 years after discharge, whereas the 
PIE samples of B17 SFA were measured 4.6 years after discharge. 
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Table 35. Characteristics of the PIE samples of the Turkey Point-3 reactor. 

SFA ID U-235 
wt% 

Axial loc. 
(cm) 

BU (est.) 
GWd/tHMi 

Mod. temp. 
(K) 

Mod. dens. 
(g/cm3) 

Fuel temp. 
(K)  

B17 G7_6 2.556 41 24.6 556.8 0.7566 922  

B17 G7_15 2.556 177 26.5 581.8 0.7059 922  

B17 G7_30 2.556 295 26.2 606.1 0.6379 922  

B17 G7_35 2.556 341 19.2 610.4 0.6222 922  

B17 G9_13 2.556 177 25.9 581.8 0.7059 922  

B17 H6_13 2.556 177 26.6 581.8 0.7059 922  

B17 I9_13 2.556 177 25.6 581.8 0.7059 922  

B17 J8_13 2.556 177 26.6 581.8 0.7059 922  

D01 G10_4 2.556 * 30.5 581.0 0.7075 922  

D01 H9_7 2.556 * 30.7 581.0 0.7075 922  

D01 G9_15 2.556 * 31.6 581.1 0.7072 922  

D04 G10_7 2.556 * 31.3 581.0 0.7075 922  

D04 G9_9 2.556 * 31.3 581.1 0.7072 922  

* Full length fuel rod 

The irradiation histories are based on the provided data in SFCOMPO [11], along with 
supplementary assumptions. The SFA B17 was irradiated for two consecutive cycles, whereas 
D01 and D04 were irradiated for three consecutive cycles. Information about the usage of control 
rods is not available for the analyzed SFAs, and based on assumptions similar to those in [64]. 
Therefore, the Polaris models do not include any usage of the control rod cluster.  

Table 35 provides the burnup weighted relevant irradiation parameters, compiled from the 
SFCOMPO database [11]. For B17, the samples’ given burnup values are based on the SFCOMPO 
listed values, obtained based on the assembly operational data. The given burnup values were 
scaled in the current calculations such that the calculated values of the Nd-148 concentrations 
match the measured ones (±0.05%). The applied correction factors were between -2.1 and -3.8% 
of the given burnup values. For the D01 and D04 SFAs, the given burnup values are already based 
on the measured Nd-148 concentration, and no burnup correction was applied for the 5 rods in 
these SFAs. 

A missing information of the TP-3 reactor data is the cycle-wise cumulative burnup values, or 
cycle-wise assembly power densities. The currently analyzed SFA are modelled assuming a 
constant power for all of the active cycles. The assumption is similar to the assumption in [64], 
relying on that other assemblies in the core have small differences in their power densities in 
different cycles. Also, the guide tube dimensions are taken from [64] for the D01 and D04 SFAs, 
and from [119] for the B17 SFA. The latter reference also provided the rod dimensions of the SFA 
B17. Fuel effective temperatures are assumed values, they are based on values provided in 
literature studies that analyzed the sample samples of the TP-3 reactor. The fuel effective 
temperatures are obtained from references [64,120].  
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II.1.11 Yankee-1 (Y-1) 

Four assemblies are analyzed from the Y-1 reactor, which had some of their fuel samples 
removed for RCA. The design of the Y-1 assemblies is unique with respect to PWR common 
designs [121]. Control blades were used for shutdown and reactivity control instead of the typical 
cluster-like control rods. Also, the control rod blades (or control rod followers) occupy the 
location of peripheral rods of the outer row of the assembly. The layouts of the analyzed 
assemblies are shown in Figure 80. These assemblies have rods and rod-pitch dimensions of a 
typical Westinghouse 15x15 [122]. However, the layout is 18x18 along with removal of particular 
peripheral rods to provide a place for the control blades.  

Selected PIE samples located in these assemblies have been analyzed in this study. Y-1 had 
significant large number of their fuel samples examined by RCA, totaling 78 samples. However, 
due to limited information and modelling complexity, only 22 of them are analyzed in this study. 
The major modelling approximation is the homogenization of the Zircalloy control blade with the 
surrounding water. Such approximation was necessary since the Y-1 assembly design is not a 
typical PWR design that could be implemented in the current version of Polaris. The selection 
criteria for the selected 22 PIE samples are: 

1- Nd-148 concentration is measured in their RCA. 
2- They are located in near-central positions in the assembly, such that they are distant 

from the peripheral regions affected by the control blades followers. The Y-1 fuel 
assembly design is radially divided into nine subassemblies [122], and only samples 
located in the central subassembly C are analyzed (with are the 3x3 central rods). 

3- Several samples were located at the same axial position in the same host rod. These 
samples were combined into a single benchmark, and the measured concentrations 
were assigned the average values of the measurements in all samples. 

The lattice design, dimensions, and rods enrichments are based on the values provided in the 
original report describing the design of the Yankee core and assemblies [121]. The four 
assemblies are based on UO2 fuel rods, all having the same U-235 enrichment of 3.4 wt%. With 
respect to their design, the assemblies have diagonal symmetry; however, they are modelled as 
a whole in Polaris. The Polaris models of the analyzed assemblies are shown in Figure 81.  

The space accommodating the control blades and their follower part is created by removing 
some (almost half) of the fuel rods located in the periphery of the assembly. Two geometrical 
designs result from this modification, such that they fit together in their core position, as shown 
in [121]. The two designs result from removing rods from adjacent edges on the assembly. The 
first design had rods adjacent to each other in their edges removed, such as the design of E5 and 
F4 assemblies (top row in Figure 81) (the two wings of the CR are in the same assembly). The 
other design had rods distant from each other in their edges removed, as the design of E6 and F5 
assemblies (bottom row in Figure 81) (two control rod wings from two control rods have their 
place in the assembly). The control rod follower is made of a Zirconium alloy (Zircaloy-2). In the 
Polaris models, the follower material (e.g., the friction strip) was homogenized with the 
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surrounding water, and a homogenous mixture were used to fill the position of the removed fuel 
rods and their surrounding water, as shown in blue color in Figure 81. Other geometrical 
approximations are applied, including treatment of the fuel assembly spacers (i.e., ferrules) and 
the rubbing straps for CR alignment (i.e., sheath). They were modelled by adding their material 
as extra thickness to the cladding (applied on all rods). These materials add 4% to the total 
volume of the cladding (the ratio of their volume to the cladding volume is 0.40/10.89). 

 
Figure 80: Layouts of the analyzed assemblies of Yankee-1 reactor: E5, E6, F4 and F5 with re-
spect to each other and the control rods, based on SFCOMPO [11]. The implemented dimen-

sions and span of the control rod wings are based on the original reference [121]. 
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Figure 81: Polaris models of the Yankee-1 assemblies: E5 and F4 (top row) and E6 and F5 (bot-

tom row). The rods in black color are the rods from which RCA samples are analyzed in this 
study. The peripheral location of the CR follower is shown in different color. 

The RCA were performed at the Vallecitos Nuclear Center (GE-Hitachi Nuclear Energy). These 
RCA data correspond to the selected 22 PIE samples in this study, which had the concentration 
of the Nd-148 measured. Other measurements were conducted by the New Brunswick 
Laboratory (NBL) (Argonne National Laboratory (ANL)) and Tracerlab, which did not have the 
concentration of the Nd-148 measured. The latter measurements of NBL and Tracerlab are 
excluded from the current analyses. Characteristics of the considered samples are listed in Table 
36. All PIE samples had their measurements conducted at GE Vallecitos Nuclear Center, compiled 
in this study from the SFCOMPO values [11], along with their reported measurements in the 
original reports [123,124]. Cs-137 is measured in 20 of the analyzed PIE samples, relying on 
gamma-spectrometry. The U-235 and Pu-239 measurements relied on the IDMS (for the 22 PIE 
samples). 

Table 36 provides the burnup weighted relevant irradiation parameters. The irradiation 
histories are compiled from the provided data in SFCOMPO [11]. Assemblies E5 and F4 are 
irradiated for a single cycle, F5 is irradiated for two cycles, and E6 is irradiated for three cycles. 
The latter assembly, E6, had being controlled by soluble boron during its last irradiation cycle. 
Information about the average boron content in the cooling water were available at three 
irradiation intervals of the last cycle. Burnup weighting were used to derive the boron values in 
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Table 36. The control rods were not inserted near the analyzed assemblies during their 
irradiation, and the materials of the follower and the friction strips were only considered in the 
periphery of the assembly.  

Table 36. Characteristics of the PIE samples of the Yankee-1 reactor. 

SFA ID Axial loc. 
(cm) 

BU (est.) 
GWd/tHMi 

Mod. temp. 
(K) 

Mod. dens. 
(g/cm3) 

Fuel 
temp. (K) 

Boron 
(ppm)  

E5 G-101 139 12.78 540.9 0.7820 894 0  

E5 G-102 58 12.38 530.9 0.7979 885 0  

E5 G-103 17 8.64 527.0 0.8042 788 0  

F5 G-104 220 9.26 548.6 0.7697 755 0  

F5 G-105 139 22.90 540.9 0.7820 903 0  

F5 G-106 220 9.08 548.6 0.7697 755 0  

E6 G-107* 179.6 27.18 527.9 0.7697 927 92  

E6 G-108* 138.9 28.77 513.7 0.7822 1132 92  

E6 G-109* 57.7 29.94 497.7 0.7968 1112 92  

F4 G-113 220 5.96 548.2 0.7705 755 0  

F4 G-114 98 13.15 535.9 0.7900 890 0  

F4 G-115 58 13.01 530.9 0.7979 885 0  

F4 G-116 139 12.85 540.9 0.7820 894 0  

F4 G-117 98 11.53 535.9 0.7900 890 0  

F5 G-118 180 20.73 548.6 0.7697 755 0  

F5 G-119 98 23.93 536.8 0.7886 843 0  

F5 G-120 58 22.57 530.9 0.7979 887 0  

F5 G-121 17 14.72 526.8 0.8045 791 0  

E6 G-125* 180 26.40 527.9 0.7697 927 92  

E6 G-126* 139 27.65 513.7 0.7822 1132 92  

F5 T-211 139 23.32 540.9 0.7820 903 0  

* measurements are averaged between multiple samples at the same axial location 

Power densities were obtained assuming that the relative value of the sample power to the 
assembly power is constant. The sample power densities are then scaled to obtain the target 
burnup given in the SFCOMPO database for each particular sample [11]. Samples’ burnups were 
scaled in the current calculations such that the calculated values of the Nd-148 concentrations 
match the measurements (±0.05%). The required correction factors were between -6% and +5% 
of the given burnup values, except for sample G-103 which required 15% correction of its burnup 
to match the measured value of the Nd-148 concentration. 

The PIE samples from the Yankee-1 reactor (listed in SFCOMPO) are originally more than those 
listed in Table 36. However, certain samples appear to be extracted from the same location of 
the fuel rods, i.e., the same axial height in the fuel rod. The PIE samples sharing the same 
locations are: 

1. G-107 and G-169 
2. G-108, T-319, N-19 and T212 
3. G-109 and G-172 
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4. G-125 and G-176 
5. G-126, N-26 and T-177 

Duplicate samples are combined into a single PIE benchmark, marked with an asterisk in Table 
36. The assigned measured values in the samples are averages from the multiple measurements. 
The uncertainty of the measurement is the quadrature sum of the uncertainties in the multiple 
measurements. The irradiation parameters in both samples are the same, except for their burnup 
normalized to the measured Nd-148 concentration. Typically, the measured Nd-148 
concentration in multiple samples located at the same position is not identical. Therefore, 
burnup is considered as an average value between both samples, as it is based on normalizing 
the calculated value to the measured one, whereas the latter is the average measured value in 
the analyzed samples.  
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II.2 BWR cases 
II.2.1 Cooper-1 (C-1) 

Assembly CZ346 of the C-1 reactor had two of its rods (ADD2966 and ADD2974) being 
examined after discharge. The rods are abbreviated hereinafter as rod 66 and rod 74, which are 
in B3 and C3 positions in the assembly, respectively. The assembly has been irradiated for 5 
cycles, and 18 PIE samples are analyzed (9 from each rod), which are listed in the SFCOMPO 
database [11]. Only 6 PIE samples are considered in this study, which had the concentrations of 
Cs-137, U-235 and Pu-239 measured. The other 12 PIE samples had their C-14 or I-129 
concentrations measured, which is outside the scope of the present study. The analyses 
consisted of RCA of the fuel samples, performed by the Material Characterization Center (MCC) 
of the Pacific Northwest Laboratory (PNL), as part of the Approved Testing Material (ATM) 
program, the ATM-105 program [125]. 

The assembly is a General Electric GE 7x7 (GE-3B), having a diagonal symmetry and two wide 
and two narrow water gaps. The assembly contains 49 fuel rods and no water rods. The design 
layout of the assembly is shown in Figure 82. The figure is also showing the location of the host 
rods of the PIE samples (in black color). The enrichments of the considered PIE samples are listed 
in Table 37, along with other relevant irradiation parameters. All samples have a U-235 
enrichment of 2.94 wt%. However, the assembly is quite heterogenous, having seven types of 
fuel rods. Four rods are UO2-based, which have U-235 enrichment values of 1.33, 1.69, 1.94 and 
2.93 wt%. Three rods are UO2-Gd2O3-based (integral absorbers). The gadolinia-loaded rods have 
the following enrichments, and gadolinia fractions, respectively: 

1. 1.94%, 4% 
2. 2.93%, 4% 
3. 2.93%, 3% 

The lattice design and enrichments are based on the values provided in SFCOMPO [11], along 
with the original ATM report (ATM-105) [125]. The box geometry and the dimensions of the 
water gaps were set similar to values implemented in reference [68]. The assemblies were 
modelled as a whole (no symmetries are applicable to BWR models in the current version of 
Polaris). Nevertheless, the assemblies show symmetries around their diagonal, two wide gaps to 
the west and north sides, and two narrow water gaps to the east and south sides (based on the 
orientation of the assembly in Figure 82). The wide water gaps can accommodate a cross-type 
control rods (a cruciform CR). However, the considered PIE samples were not reported to be 
exposed to control rods during their irradiation, and the CR modelling is excluded from the 
implemented models. Also, the CR position is always facing the low enriched rods (the rods in 
purple color in Figure 82), which is separated from the analyzed rods by at least one row of fuel 
rods (their effect, if present, is assumed negligible). 
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Figure 82: Polaris model of the Cooper-1 assembly CZ346. The rods containing the analyzed 

samples are shown in black color (rod B3 and C3). 

The RCA of the 6 PIE samples were conducted at the PNL [125]. All the PIE samples had the 
concentrations of the Cs-137, U-235 and Pu-239 measured. The measurements of U-235 and Pu-
239 relied on MS in both laboratories. Gamma spectrometry is used in both laboratories for Cs-
137 measurements. The reported measurements are compiled from the SFCOMPO values [11], 
which are cross-checked with values reported in [125]. The measured values were reported at 
5.2 years for the measurements of the samples of rod 66, and 5.1 years for the measurements of 
the samples of rod 74. 

Table 37. Characteristics of the PIE samples of the Cooper-1 reactor. 

SFA ID U-235 
wt% 

Axial loc. 
(cm) 

BU (given) 
GWd/tHMi 

Cool. temp. 
(K) 

Cool. dens. 
(g/cm3) 

Fuel 
temp. (K)  

CZ346 66-B 2.94 316 18.96 558 0.320 833  
CZ346 66-K 2.94 152 33.07 558 0.509 833  
CZ346 66-T 2.94 96 33.94 558 0.652 833  
CZ346 74-B 2.94 315 17.84 558 0.320 833  
CZ346 74-U 2.94 79 31.04 558 0.320 833  
CZ346 74-J 2.94 255 29.23 558 0.349 833  

The irradiation histories are based on the provided data in SFCOMPO [11]. The fuel 
temperatures are based on the values provided in [68]. The given power density is per assembly. 
The power density in the fuel rod hosting the analyzed sample is assumed to have the same 
relative variations during irradiation as for the whole assembly. The power density in each fuel 
rod is then scaled to achieve the reported burnup of the sample under analyses. Missing 
information in the original reports of the PIE, such as the void fraction, and therefore the 
moderator density, were set equal to values reported and analyzed in reference [68]. Table 37 
provides the burnup weighted relevant irradiation parameters. The samples’ given burnup values 
are based on the SFCOMPO listed values (obtained based on the assembly operational data). No 
measurements of Nd-148 are reported for the analyzed samples, and the implemented burnups 
are the given values.  
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II.2.2 Dodewaard-1 (D-1) 

Five PIE samples located in three assemblies of the D-1 reactor are available in the SFCOMPO. 
The samples were irradiated in SFAs: Y012, Y013 and Y014. The Y012 and Y014 are MOX-based 
assemblies, and the Y013 is a UO2-based assembly. Y012 has been irradiated for four cycles, and 
from which two PIE samples are analyzed: DM2 and DM3 (where D stands for Dodewaard, and 
M stands for MOX). Y013 and Y014 have been irradiated for five cycles. One PIE sample is 
analyzed from the Y013 assembly (DU1, where U stands for UO2). Two PIE samples are analyzed 
from Y014 assembly (DM1 and DM4). In total, 4 PIE samples are MOX-based, and 1 PIE is UO2-
based. The considered MOX samples are taken from the E4 rod of the Y012 SFA and the D5 rod 
of Y014 SFA, with symmetric reflections of each other around the SFA diagonal (the assemblies 
have diagonal symmetry). The UO2 sample of Y013 is taken from rod B2. 

The assemblies are based on the General Electric 6x6 assembly design. The assemblies contain 
35 active fuel rods and a single water rod. The design layouts of the three assemblies are shown 
in Figure 83 at axial locations of selected PIE samples. The layouts are at the axial locations of 
DM1, DM2 and DU1 from assemblies Y014, Y012 and Y013 (following the order shown in the 
figure). The enrichments and the plutonium fractions of the MOX rods are listed in Table 38, 
along with other relevant irradiation parameters. The assemblies are heterogenous in terms of 
U-235 enrichments, having both radial and axial zoning as given in the original ARIANE report 
[126]. The assemblies were modelled without control rod usage. Only DM2 had a relatively short 
exposure to a control rod (5% of the total irradiation), which is deemed to be a relatively short 
time, and also the rod is located in a central position of the lattice being less affected by the CR 
usage. The lattice design and enrichments are based on the values provided in reference [126]. 
The assemblies were modelled as a whole (no symmetries are applicable to BWR models in the 
current version of Polaris). Nevertheless, the assemblies show symmetries around their diagonal; 
two narrow gaps to the east and south sides, and two wide water gaps to the west and north 
sides. The wide gaps are used to accommodate cross-type control rods. However, usage of the 
control rods is not implemented as discussed previously. 

   
Figure 83: Polaris models of the Dodewaard-1 assemblies: Y014, Y012 and Y013 (left to right). 

The Y014 and Y012 SFAs have MOX-based fuel, and the Y013 has UO2 fuel. Two PIE samples are 
analyzed from each rod of the MOX based SFAs (4 MOX PIE samples) and only one samples is 

analyzed from the rod of the UO2 based SFA. 
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Measurements of the 5 PIE samples from D-1 are performed in SCK.CEN [126], and two PIE 
samples from adjacent locations to the original ones are also measured in Paul Scherrer Institute 
(PSI). The PIE samples that had multiple measurements are DM1 and DU1. All PIE samples had 
their Cs-137, U-235 and Pu-239 contents measured. Also, the PSI measurements include these 
three isotopes. The measurements conducted at the SCK.CEN uses TIMS for U-235 and Pu-239, 
and gamma-spectrometry for Cs-137. PSI measurements are based on high-performance liquid 
chromatography coupled to inductively coupled plasma - mass spectrometry (HPLC-ICPMS) for 
all of the three isotopes. The reported measurements are compiled from the SFCOMPO values 
[11], which are cross-checked with values reported in [126]. The measurements at the SCK.CEN 
are considered, and the ones at the PSI are excluded. The SCK.CEN measurements are considered 
since all the samples have been measured in this laboratory, and only two are measured in PSI. 
The time of measurements is not consistent between the samples and also the isotopes, ranging 
from 3.3 to 6.0 years after discharge. 

Table 38. Characteristics of the PIE samples of the Dodewaard-1 reactor. 

SFA ID U-235 
wt% 

MOX 
wt% 

Axial loc. 
(cm) 

BU (est.) 
GWd/tHMi 

Cool. temp. 
(K) 

Cool. dens. 
(g/cm3) 

Fuel 
temp. (K)  

Y013 DU1 4.941 0 111 56.3 566.15 0.3855 1094  
Y014 DM1 0.239 6.431 111 64.9 566.15 0.3857 1116  
Y012 DM2 0.239 6.431 15 40.6 566.15 0.7088 1040  
Y012 DM3 0.239 6.431 113 53.6 566.15 0.3612 1152  

Y014 DM4 0.239 6.431 164 39.6 566.15 0.3083 991  

The irradiation histories are based on the provided data in SFCOMPO [11], along with 
supplementary data from [126]. Contradicting information, such as 2 days discrepancy in the 
length of cycle 2, is resolved by implementing the values provided in the original ARIANE report 
[126]. Table 38 provides the burnup weighted relevant irradiation parameters. The given reactor 
pressure is interpreted as the gauge pressure. At this pressure, and at water saturation, water 
density 0.7283 g/cm3 and steam density is 0.0404 g/cm3. The samples’ given burnup values are 
based on the SFCOMPO listed values (obtained based on the assembly operational data). The 
burnup values were scaled in the current calculations such that the calculated values of the Nd-
148 concentrations match the measured ones (±0.05%). The required correction factors are 
significant, and the given burnup values are corrected by the following percentages to match the 
measured Nd-148 concentrations: 

1. DU1: 1.5% 
2. DM1: 10.2% 
3. DM2: 12.0% 
4. DM3: 9.0% 
5. DM4: 3.0% 

Another assumption of the implemented models of samples DM2 and DM4, is that their axial 
position is approximately in between two lattice layouts. In one layout, fuel rods of type 1, 
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adjacent to the considered rods, have lower U-235 enrichment of 1.8 wt%. In the other layout, 
the adjacent rods have higher U-235 enrichments of 3.2 wt%. The models of DM2 and DM4 
implement an average enrichment value (2.5 wt%) for rods of type-1. Nevertheless, the 
calculated values of the considered isotopes are not significantly affected by the value of U-235 
enrichment in these other rods in the lattice. The implemented approximation was considered 
acceptable, also given limitations of lattice codes of 2D nature. 
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II.2.3 Fukushima Daini-1 (FD1) 

The FD1 data in the SFCOMPO database are 9 PIE samples [11]. The samples belong to two 
assemblies 2F1ZN2 and 2F1ZN3. “2F1” in the beginning of each assembly name stands for 
Fukushima Daini-2, unit 1, which will be dropped hereinafter from the naming of the assemblies. 
The assemblies are based on a 9x9 design loaded with quarter symmetric enrichment layout. The 
assemblies are heterogenous with respect to their radial zoning. They are loaded with six 
different rod types, which differ in their enrichment or gadolinia loading. The assemblies are 
characterized by a large central water-hole of size 3x3, replacing 9 central rods – the assembly 
design is commonly referred to as 9x9-9. The design layouts of the two assemblies are shown in 
Figure 84, showing the locations of the rods hosting the PIE samples (in black color). The 
assemblies were not close to control rods during their irradiation [127]. The lattice design and 
enrichments are based on the values provided in SFCOMPO [11], along with the references [127–
129]. 

The enrichments of the considered PIE samples are listed in Table 39, along with other 
relevant irradiation parameters. The sample ID starts with the rod position: A9 or C2 or C3, 
followed by U or Gd for UO2 or UO2-Gd2O3 fuel, followed by B or M or T for samples located in 
the bottom or middle or top positions of the fuel rod (Figure 85). From ZN2 SFA, 4 samples are 
analyzed from the top and bottom positions of two rods: C2 and C3. From ZN3 SFA, 9 samples 
are analyzed from the three axial positions of the three rods: A9, C2 and C3. The rod C2 is UO2-
Gd2O3 -based, and the other rods are UO2-based. Rod A9 is a peripheral rod located at the corner 
of the assembly, and C2 and C3 are near-central rods. 

 
Figure 84: Polaris model of the Fukushima Daini-1 9x9-9 assembly design (ZN2 and ZN3 assem-

blies). The rods positions A9, C2 and C3 are shown in black color. 
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Figure 85: Axial locations of the PIE samples of the SFAs: ZN2 (top row) and ZN3 (bottom row).  

Table 39. Characteristics of the PIE samples of the Fukushima Daini-1 reactor. 

SFA ID U-235 
wt% 

Gd 
wt% 

BU (est.) 
GWd/tHMi 

Mod. temp. 
(K) 

Mod. dens. 
(g/cm3) 

Fuel 
temp. (K)  

N3 A9-UB 2.10 0.00 60.44 559 0.630 900  

N3 A9-UM 2.10 0.00 63.73 559 0.413 900  

N3 A9-UT 2.10 0.00 55.75 559 0.259 900  

N3 C3-UB 4.90 0.00 67.06 559 0.630 900  

N3 C3-UM 4.90 0.00 67.55 559 0.413 900  

N3 C3-UT 4.90 0.00 58.13 559 0.259 900  

N3 C2-GdB 3.00 5.00 54.65 559 0.630 900  

N3 C2-GdM 3.00 5.00 54.76 559 0.413 900  

N3 C2-GdT 3.00 5.00 46.62 559 0.259 900  

N2 C2-GdB 3.00 5.00 35.61 559 0.606 900  

N2 C2-GdT 3.00 5.00 28.20 559 0.223 900  

N2 C3-UB 4.90 0.00 46.39 559 0.606 900  

N2 C3-UT 4.90 0.00 37.37 559 0.223 900  

The measurements were conducted at facilities of the Japan Atomic Energy Agency (JAEA) 
[128], using IDMS for U-235 and Pu-239 and gamma-spectrometry for Cs-137. U-235 and Pu-239 
were measured in all samples, and Cs-137 were measured in the “T” samples of ZN2 and the “M” 
samples of ZN3 – total 9 Cs-137 measurements. The U-235 and Pu-239 measurements were done 
at different cooling times, between 2.4 and 12.2 years. Cs-137 were measured at cooling times 
between 7.0 and 9.7 years. 

The irradiation histories are based on the provided data in SFCOMPO [11], and reference 
[128]. The void fractions at the samples’ axial locations were interpolated from the nodal values 
provided in [128]. The samples’ given burnup values are based on the values provided in [129]. 
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The burnup values were scaled in the current calculations such that the calculated values of Nd-
148 concentrations match the measured ones (±0.05%). The estimated burnup values are 
between -2.3% and +1.1% from the given ones.  
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II.2.4 Fukushima Daini-2 (FD2) 

Five assemblies of the FD2 reactor are included in the SFCOMPO database [11]. The assemblies 
are 2F2D1, 2F2D2, 2F2D3, 2F2D8 and 2F2DN23, which are UO2-based. “2F2” in the beginning of 
each assembly name stands for Fukushima Daini-2, unit 2, dropped hereinafter from the naming 
of the assemblies. In total, 44 PIE samples are analyzed from the mentioned assemblies, which 
are listed in the SFCOMPO database [11]. The considered PIE samples are listed in Table 40. For 
clarity, the sample ID from the DN23 assembly is specified as the rod number, followed by a 
number identifying the sample in the SFCOMPO database. 

Several samples are analyzed from two rods of the DN23 assembly (rod 98 and 99), located at 
the B2 and C2 positions, as shown in Figure 86. The samples of the DN23 assembly are peculiar 
since they are taken from different axial positions of the same rods (98 is UO2 and 99 is UO2-
Gd2O3) as shown in Figure 87. The other assemblies, D1, D2, D3 and D8 also had their samples 
taken from different axial positions as shown in Figure 88. The rods hosting the PIE samples in 
the latter assemblies are 3 types, with respect to their enrichments and radial locations within 
the assemblies: 

1- F6 (UO2-based rod with two axial U-235 enrichments of 2.9 and 3.9 wt%), 

2- B3 (UO2-Gd2O3-based rod with U-235 enrichment of 3.4 wt%, and 4.5 wt% gadolinia), 

3- A4, H4 and H5 (UO2-based rod with uniform axial U-235 enrichment of 4.5 wt%). These rods 
are identical considering the quarter symmetry of the lattice, with respect to their 
enrichments and dimensions. 

The design layouts of the assemblies are shown in Figure 86, also showing the locations of the 
rods hosting the PIE samples (in black color). The assemblies are based on an 8x8 assembly 
design, having a diagonal symmetry in the DN23 assembly, and a quarter symmetry in the D1, 
D2, D3 and D8 assemblies. The DN23 assembly has two central water rods (based on the 8x8-2 
assembly design). The D1, D2, D3, and D8 assemblies have a large central water channel 
occupying the position of 4 fuel rods (based on the 8x8-4 assembly design). The assemblies are 
heterogenous, with respect to their radial and axial zoning. The PIE samples are taking from 
different axial positions, which coincide in some samples with different axial zoning (different 
fuel lattices). Sample 1 of rod 98 and samples 1, 9, and 10 of rod 99 are peripheral with respect 
to their axial positions. They are located in the axial low-enriched blanket (A fuel zone of natural 
uranium). All the PIE samples are UO2-based (with/without integral absorber based on gadolinia). 
The enrichments of the considered PIE samples are listed in Table 40, along with other relevant 
irradiation parameters. 

The lattice design and enrichments are based on the values provided in SFCOMPO [11], along 
with reference [110] for the DN23 assembly, and reference [128] for the D1, D2, D3 and D8 
assemblies. No information is available about the size of the water gaps, and it is assumed that 
they are equal in the implemented models. The assemblies were not close to control rods during 
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their irradiation [130], and were modelled as a whole (no symmetries are applicable to BWR 
models in the current version of Polaris). 

     

     

     
Figure 86: Polaris models of the Fukushima Daini-2 assemblies. The top row contains the D1 

and D2 assemblies. The middle row contains the D3 and D8 assemblies (left to right). The bot-
tom row contains fuel designs of the DN23 assembly. Assembly DN23 had most of its samples 
based on the middle design (left), and samples 89-1, 99-1 and 99-10 are based on the top and 

bottom designs (right). The rods hosting the analyzed samples are shown in black color. 
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Figure 87: Axial positions of the PIE samples of the rods 98 and 99 of the DN23 assembly. Differ-

ent colors indicate differences in enrichment or gadolinia content in the rods.  

 
Figure 88: Axial positions of the PIE samples from the D1, D2, D3, and D8 assemblies. The third 
letter in the sample ID is a number indicating the assembly of origin; 1, 2, 3, and 5 for D1, D2, 

D3 and D8, respectively. Different colors indicate differences in enrichment or gadolinia content 
in the rods.  
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Table 40. Characteristics of the PIE samples of the Fukushima Daini-2 reactor. 

SFA ID U-235 
wt% 

Gd 
wt% 

Axial loc. 
(cm) 

BU (est.) 
GWd/tHMi 

Cool. temp. 
(K) 

Cool. dens. 
(g/cm3)  

DN23 98_1 0.71 0 4 4.11 551.6 0.7401  

DN23 98_2 3.91 0 17 25.78 553.1 0.7401  

DN23 98_3 3.91 0 42 35.97 556.0 0.7192  

DN23 98_4 3.91 0 69 41.32 559.2 0.6627  

DN23 98_5 3.91 0 121 43.04 559.2 0.5151  

DN23 98_6 3.91 0 205 39.19 559.2 0.3567  

DN23 98_7 3.91 0 276 38.80 559.2 0.2617  

DN23 98_8 3.91 0 340 26.68 559.2 0.2265  

DN23 99_1 0.71 0 13 7.47 552.7 0.7401  

DN23 99_2 3.40 4.5 29 22.68 555.0 0.7304  

DN23 99_3 3.40 4.5 50 32.34 556.9 0.6995  

DN23 99_4 3.40 4.5 69 35.31 559.2 0.6641  

DN23 99_5 3.40 4.5 119 37.37 559.2 0.5452  

DN23 99_6 3.40 4.5 206 32.51 559.2 0.3553  

DN23 99_7 3.40 4.5 274 32.38 559.2 0.2722  

DN23 99_8 3.40 3.0 339 21.89 559.2 0.2357  

DN23 99_9 3.40 3.0 354 16.74 559.2 0.2272  

DN23 99_10 0.71 0 368 7.18 559.2 0.2173  

D1 TU101 4.50 0 338 14.01 559.3 0.2898  

D1 TU102 4.50 0 64 18.20 559.3 0.6486  

D1 TU103 3.40 4.5 334 16.10 559.3 0.2898  

D1 TU104 3.40 4.5 274 10.01 559.3 0.3179  

D1 TU105 3.40 4.5 74 9.41 559.3 0.6203  

D1 TU106 4.50 0 269 12.32 559.3 0.3179  

D2 TU201 4.50 0 318 29.14 559.3 0.2968  

D2 TU202 4.50 0 48 32.92 559.3 0.6910  

D2 TU203 3.40 4.5 318 24.55 559.3 0.2968  

D2 TU204 3.40 4.5 259 23.55 559.3 0.3250  

D2 TU205 3.40 4.5 58 23.50 559.3 0.6698  

D3 TU301 3.40 0 279 34.67 559.3 0.3109  

D3 TU302 3.40 0 42 31.40 559.3 0.7051  

D3 TU304 3.40 0 286 37.86 559.3 0.3109  

D3 TU306 3.40 0 45 32.30 559.3 0.6981  

D3 TU308 3.40 4.5 324 30.23 559.3 0.2968  

D3 TU309 3.40 4.5 278 34.94 559.3 0.3179  

D3 TU311 3.40 4.5 54 33.52 559.3 0.6769  

D8 TU501 3.4 0 320 53.13 559.3 0.2968  

D8 TU502 3.4 0 245 58.87 559.3 0.3320  

D8 TU503 3.4 0 80 55.60 559.3 0.5922  

D8 TU505 3.4 0 223 59.16 559.3 0.3532  

D8 TU506 3.4 0 85 57.63 559.3 0.5782  

D8 TU510 3.4 4.5 295 53.10 559.3 0.3038  

D8 TU511 3.4 4.5 67 48.15 559.3 0.6415  

D8 MS1 3.4 0 222 57.46 559.3 0.3532  
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The measurements were conducted by the JAERI, within a research project titled: “Technical 
Development on Criticality Safety Management of Spent LWR Fuels” [110,111]. The 
concentrations of the Cs-137, U-235, and Pu-239 were measured in the PIE samples of the DN23 
assembly. Only U-235 and Pu-239 were measured in the PIE samples of the D1, D2, D3 and D8 
assemblies. Also, the measurements on the DN23 assembly were adjusted for the decay, and the 
reported values correspond to the time of discharge of the assembly. The measurements on the 
D1, D2, D3, and D8 assemblies are conducted between 2.4 and 6.9 years of decay after discharge. 
Mass-spectrometry is used for the U-235 measurements in the PIE samples of the DN23 
assembly. The IDMS technique is used for the U-235 measurements in the PIE samples of the D1, 
D2, D3, and D8 assemblies. The MS is used for the measurements of Pu-239 in all assemblies. 
Gamma-spectrometry is used for the measurements of Cs-137 (measured only in DN23). The 
reported measurements are compiled from the SFCOMPO values [11], cross-checked with the 
reference values reported in [110,128].  

The irradiation histories are based on the provided data in SFCOMPO [11], cross-checked with 
their values reported in the original references [110,128]. Contradicting information between the 
values in SFCOMPO and the original references are resolved by implementing the values in the 
references. SFCOMPO and the references provide the void fractions for the considered samples, 
which were used to obtain moderator densities at the given reactor pressure (gauge pressure). 
The samples’ given burnup values are based on the SFCOMPO listed values, scaled in the current 
calculations such that the calculated values of the Nd-148 concentration match the measured 
ones (±0.05%). The estimated burnup values are between ±3% from the given ones.  
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II.2.5 Garigliano-1 (G1) 

Two assemblies from the G1 reactor are listed in the SFCOMPO database [11]. The assemblies 
are A-106 and SA-13. Assembly A-106 had 18 PIE samples analyzed from 18 different rods at the 
same axial position as shown in Figure 89. The total active length of the A-106 assembly is 268 
cm, and all the PIE samples of the A-106 assembly are taken from an axial height of 162 cm from 
the bottom of the fuel stack. The PIE samples were chosen at this level since the void fraction at 
this level is representative of the average void fraction of the core. Assembly SA-13 had 8 PIE 
samples analyzed from the same rod (E6), being a near-central rod, at different axial positions as 
shown in Figure 89. The PIE samples of the G1 reactor combine unique characteristics of different 
samples analyzed from different rods at the same axial positions, and different samples from the 
same rod at different axial heights. The considered PIE samples from the G1 reactor are listed in 
Table 41 along with relevant design and irradiation parameters. 

The assemblies are based on a General Electric 8x8 assembly design. The two assemblies are 
UO2-based, homogeneous with respect to modern BWR designs, having only two values of U-235 
enrichments (1.6 and 2.1 wt%). The design layouts of the two assemblies are shown in Figure 89, 
also indicating the locations of the rods hosting the PIE samples (in black color). The assemblies 
have quarter symmetry, including two wide and two narrow water gaps. The wide gaps are in the 
north and south sides, and the narrow gaps are in the east and west sides, resulting in larger 
assembly pitch in the wide-wide side than the narrow-narrow side. 

The lattice design and enrichments are based on the values provided in SFCOMPO [11], along 
with the original references [107,131]. The SA-13 assembly has been irradiated for a single cycle, 
achieving burnup values between 4 and 9 GWd/tHMi (in the analyzed samples). The A-106 
assembly has been irradiated for 5 cycles: 1a, 1b, 1c, 1e, and 1f. The downtimes are short, 1 to 2 
days between the cycles, except for the downtime between cycles 1c and 1e which is 219 days. 
The A-106 assembly was controlled during its irradiation. The control rods were active during 
cycles 1a and 1e. The control rods were used during a fraction of the burnup (with respect to the 
discharge burnup). These burnup fractions are listed in Table 41 (rightmost column). A Duralife 
230L type control rod has been used, based on an active absorber part of 20 B4C-type rods. The 
configuration of the cruciform-type control rod is shown in Figure 89. 

Another particular aspect of the assembly A-106 is that the sheath is not the same material 
throughout its irradiation history [131]. During cycle A1 the assembly has been encased by a 
stainless-steel 304 sheath, replaced from cycle 1B by a Zircaloy-2 sheath. The implemented 
material in the current models is a sheath made of a mixture of SS304 and Zirc-2. The mixing ratio 
of the two materials corresponds to their exposure (the burnup fraction of their residence time 
in the assembly). 



Specifications of the PIE Benchmarks and Modelling Assumptions 
 

 
200 

 

      
Figure 89: Polaris models of the Garigliano-1 assemblies: A-106 (left) and SA-13 (middle). The 

rods hosting the analyzed samples are shown in black color. The elevation of the samples from 
the SA-13 assembly are shown in the right plot. 

The measurements of the 18 PIE samples of the A-106 assembly were conducted at the 
Karlsruhe laboratories of the Joint Research Centre. The measurements of the 8 PIE samples of 
the SA-13 assembly were conducted at the Ispra laboratories of the Joint Research Centre 
[107,131]. Cs-137 measurements at both laboratories relied on gamma-spectrometry, and also 
MS (two measurements are reported using both methods). Measurements of U-235 and Pu-239 
relied on MS methods. The measured values were corrected for the decay, and the reported 
values correspond to the time of discharge of the assemblies. 

The irradiation histories are based on the provided data in SFCOMPO [11], along with 
supplementary data from [107,131]. Table 41 provides the burnup weighted relevant irradiation 
parameters. The samples’ given burnup values are based on the SFCOMPO listed values, which 
are based on isotopic measurements of Nd-148 concentrations. The implemented burnup values 
were scaled such that the Polaris calculated values of the Nd-148 concentration match the 
measured ones (±0.05%). The implemented burnup corrections are not significant. The corrected 
burnup values are listed in Table 41, within 0.7% of the given values (for the A-106 assembly), 
and within 1.6% of the given values (for the SA-13 assembly).  
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Table 41. Characteristics of the PIE samples of the Garigliano-1 reactor. 

SFA ID U-235 
wt% 

BU (est.) 
GWd/tHMi 

Mod. temp. 
(K) 

Mod. dens. 
(g/cm3) 

Fuel 
temp. (K) 

Control 
fraction  

A-106 A1 1.60 10.62 558 0.4572 900 0.39  

A-106 A3 2.10 10.52 558 0.4572 900 0.39  

A-106 A5 2.10 10.57 558 0.4572 900 0.39  

A-106 A9 1.60 14.08 558 0.4572 900 0.39  

A-106 B1 1.60 9.80 558 0.4572 900 0.39  

A-106 B2 2.10 10.24 558 0.4572 900 0.39  

A-106 B8 2.10 12.10 558 0.4572 900 0.39  

A-106 C1 2.10 10.63 558 0.4572 900 0.39  

A-106 C3 2.10 9.11 558 0.4572 900 0.39  

A-106 D2 2.10 9.44 558 0.4572 900 0.39  

A-106 D4 2.10 8.78 558 0.4572 900 0.39  

A-106 E1 2.10 10.79 558 0.4572 900 0.39  

A-106 E5 2.10 8.89 558 0.4572 900 0.39  

A-106 G7 2.10 10.49 558 0.4572 900 0.39  

A-106 H2 2.10 11.89 558 0.4572 900 0.39  

A-106 H8 2.10 12.68 558 0.4572 900 0.39  

A-106 J1 1.60 12.86 558 0.4572 900 0.39  

A-106 J9 1.60 14.56 558 0.4572 900 0.39  

SA-13 1 2.41 5.98 542 0.7375 900 0  

SA-13 3 2.41 8.22 542 0.7378 900 0  

SA-13 5 2.41 8.59 558 0.5679 900 0  

SA-13 7 2.41 8.28 558 0.4815 900 0  

SA-13 10 2.41 8.09 558 0.4099 900 0  

SA-13 11 2.41 4.16 558 0.2583 900 0  

SA-13 13 2.41 5.52 558 0.2417 900 0  

SA-13 16 2.41 6.59 558 0.2278 900 0  
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II.2.6 Gundremmingen-1 (GN1) 

Two assemblies from the GN1 reactor are listed in the SFCOMPO database [11]. The 
assemblies are B23 and C16, which are UO2-based. The B23 has been irradiated for four cycles 
and the C16 has been irradiated for three cycles. 15 PIE samples are analyzed from the two 
assemblies, which are listed in the SFCOMPO database [11]. The considered PIE samples are listed 
in Table 42. For clarity, the sample ID is specified as the rod number, followed by the first two 
letters identifying the sample in the SFCOMPO. For instance, sample I2680 of rod A1 is listed as 
sample A1-I2. The sample identifier starts with either I or K, standing for Ispra and Karlsruhe. 
Laboratories in Ispra and Karlsruhe, of the European Commission Joint Research Center 
laboratories, have conducted the RCA measurements. All samples stand at two axial positions: 
268 and 44 cm from the bottom end of the fuel rods (abbreviate as 2 and 4 in the sample ID). For 
the B23 assembly, the samples are analyzed from the rods: A1, B3, B4, C5, E3 and E5 (one sample 
from each rod). For the C16 assembly, the samples are analyzed from the rods: A1, B3, C5 and 
E5. Most of the rods are in near-central positions, having at least one row of fuel rods separating 
them from the water gaps, except from rod A1 which is a corner rod.  

The assemblies are based on an early 6x6 assembly design, containing 36 fuel rods and no 
water rods. The assemblies have diagonal symmetry and include two wide water gaps and two 
narrow ones. The design layouts of the two assemblies are shown in Figure 90, also showing the 
locations of the rods hosting the PIE samples (in black color). The enrichments of the considered 
PIE samples are listed in Table 42, along with other relevant irradiation parameters. All samples 
have 2.53 wt% U-235 enrichment. The assemblies are homogeneous, with respect to modern 
BWR designs, having only two types of fuel rods (1.87 and 2.53 wt% U-235 enrichments). 

The lattice design and enrichments are based on the values provided in SFCOMPO [11]. The 
box geometry and the dimensions of the water gaps were compiled from figure 16 of reference 
[68]. The mentioned figure indicates that the wide gaps could accommodate a cruciform control 
rod, facing the low enriched fuel rods. Such orientation would position the wide and narrow gaps 
as shown in Figure 90. The position of the control rod is in accordance with figure 3 of reference 
[132]. The assemblies were modelled as a whole (no symmetries are applicable to BWR models 
in the current version of Polaris). Nevertheless, the assemblies show symmetries around their 
diagonal, having two wide water gaps to the east and south sides, and two narrow water gaps to 
the west and north sides. The wide water gaps can accommodate a cross-type control rods (a 
cruciform CR). However, the considered PIE samples were not reported to be exposed to control 
rods during their irradiation. Also, the CR position is always facing the low enriched rods (the rods 
in purple color in Figure 90), which is separated from the analyzed rods by at least one row of 
fuel rods. It is assumed that their effect, if present, would be negligible. 
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Figure 90: Polaris models of the Gundremmingen-1 assemblies B23 and C16 (left to right). The 

rods containing the analyzed samples are shown in black color. 

Measurements of 9 PIE samples were conducted at the Ispra, and 6 PIE samples were 
measured at the Karlsruhe establishments of the Joint Research Centre [132]. All PIE samples had 
the concentrations of the Cs-137, U-235 and Pu-239 measured. Mass spectrometry is used in 
both laboratories for the measurements of U-235 and Pu-239 concentrations. Gamma 
spectrometry is used in both laboratories for the measurements of Cs-137 concentrations. The 
reported measurements are compiled from the SFCOMPO [11], which are cross-checked with 
values in [132]. The reported measurements were corrected for decay, i.e., they correspond to 
the time of discharge of the assemblies. 

Table 42. Characteristics of the PIE samples of the Gundremmingen-1 reactor. 

SFA ID U-235 
wt% 

Axial loc. 
(cm) 

BU (est.) 
GWd/tHMi 

Cool. temp. 
(K) 

Cool. dens. 
(g/cm3) 

Fuel 
temp. (K)  

B23 A1-I2 2.5 268 27.69 559 0.388 923  

B23 A1-I4 2.5 44 25.90 559 0.740 923  

B23 B3-I2 2.5 268 21.69 559 0.388 923  

B23 B3-K2 2.5 269 21.39 559 0.388 923  

B23 B4-I2 2.5 268 22.41 559 0.388 923  

B23 C5-K2 2.5 268 23.12 559 0.388 923  

B23 E3-I2 2.5 268 24.28 559 0.388 923  

B23 E5-I2 2.5 268 25.38 559 0.388 923  

B23 E5-K2 2.5 269 26.05 559 0.388 923  

C16 A1-I2 2.5 268 19.80 559 0.388 923  

C16 A1-I4 2.5 44 20.19 559 0.740 923  

C16 B3-I2 2.5 268 15.22 559 0.388 923  

C16 B3-K2 2.5 269 14.52 559 0.388 923  

C16 C5-K2 2.5 268 15.73 559 0.388 923  

C16 E5-K2 2.5 269 17.68 559 0.388 923  

The irradiation histories are based on the provided data in SFCOMPO [11], along with 
supplementary data from [132]. Table 42 provides the burnup weighted relevant irradiation 
parameters. The implemented moderator densities are similar to the values implemented in 
reference [68]. They correspond to a 50% void fraction for the samples at the 268 cm elevation, 
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and a 0% void fraction for the samples at the 44 cm elevation. The implemented fuel 
temperatures are the values provided in [132]. The samples’ given burnup values are based on 
the SFCOMPO listed values (obtained based on the assembly operational data). The burnup 
values were adjusted in the current calculations such that the calculated values of the Nd-148 
concentration match the measured ones (±0.05%). The corrected burnup values are listed in 
Table 42. The required correction factors are significant, as large as +16% and -18% for the A1-I2 
sample in the B23 assembly and the A1-I2 sample in the C16 assembly, respectively.  
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II.2.7 Japan Power Demonstrations Reactor-1 (JPDR-1) 

Japan Power Demonstration Reactor-1 was an experimental reactor of BWR type in Japan. The 
reactor relied on natural circulation and a core having a uniform U-235 enrichment of 2.6 wt%. A 
unique characteristic of the samples analyzed from the JPDR-1 is their low burnup values. The 
highest burnup value (after implementing a burnup correction) is 9.1 GWd/tHMi. Such values are 
important to extend the burnup validation range of the analyzed PIE data, and also to cover an 
interesting burnup range of low burnup SFA, which could be discharged from the last operational 
cycles of the core. 

The core and the assemblies have two active axial zones, based on UO2 fuel. Each zone has 
approximately 72 cm height, and they are separated by a 2.7 cm active zone of integral absorber 
(UO2-Dy2O3). All samples are located in the UO2 zones, having U-235 enrichment of 2.6 wt%. 
Three assemblies hosted 30 samples were examined after the end-of-life (EOL). The assemblies 
are A14, A18 and A20 are shown in their core positions in Figure 91. The samples of the A14 and 
A18 assemblies (3 samples from each assembly) are from rod C13, and they are designated by 
their elevation with respect to the midplane of the core (as listed in Table 43). The samples of 
the A20 assembly belong to 8 different rods, whereas those taken from rod C3 are also 
designated by their elevation with respect to the midplane of the core. The other samples of the 
A20 assembly are 2 per rod, designated by their rod number, followed by “KA” for samples from 
the upper level of the core, or “KC” for samples from the lower level of the core. 

 
Figure 91: Layout of the Japan Power Demonstration Reactor-1 core showing the three ana-

lyzed assemblies based on [133]. 
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The assemblies are based on a 6x6 design, having 36 fuel rods without water rods. The 
assemblies have diagonal symmetry. Two sides of the water gaps are wide to accommodate cross 
control blades, and two sides are narrow which accommodate a poison curtain (i.e., sheath 
plates). The positions of the analyzed assemblies are shown in Figure 91. The A20 assembly is 
exposed to a control blade from the wide gap sides, and a poison curtain from the narrow gap 
sides. The A14 and A18 assemblies are also exposed to control blades from the wide gap sides, 
however, only one of the narrow sides contain a poison curtain. Such design details necessitated 
implementing the following approximations: 

1. The control rod blades are modelled as described in the original reports [133,134]. They were 
not active in the neighborhood of the analyzed assemblies, and the follower part of the control 
rod blades is used in the Polaris models. The follower section is a cross blade of Zircalloy-4 
material. 

2. The poison curtain is a stationary thin sheet of 304 stainless-steel material, and it could not 
be implemented in the current version of Polaris. The poison curtain material is homogenized 
with the surrounding moderating water to obtain an equivalent homogenous mixture applied 
to the narrow sides of the assemblies. A20 had this mixture in both of the narrow sides, 
whereas A14 and A18 had it only in one of the narrow sides. 

The design layouts of the assemblies are shown in Figure 92, also indicating the locations of 
the rods hosting the PIE samples (in black color). The lattice design and dimensions are based on 
SFCOMPO [11], and references [133,134]. The assemblies were modelled as a whole, 
implementing the wide and narrow gaps, the control rod follower, and the homogenized poison 
curtain and moderator part. 

    
Figure 92: Polaris models of the Japan Power Demonstrations Reactor-1 assemblies: A20 (left) 
and both A14 and A18 (right). The rods hosting the analyzed samples are shown in black color. 
The water gaps are either non-boiling moderator (heavy blue) or a mixture of the moderator 

and the poison curtain (light blue). 

The RCA of the PIE samples of the JPDR-1 reactor were performed at laboratories of JAERI 
[133,135,136]. All PIE samples had the concentrations of Cs-137, U-235 and Pu-239 measured. 
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IDMS was used for the measurements of both U-235 and Pu-239, and the reported values are at 
5.6 years of decay for U-235 and between 0.5 and 1.4 years of decay for Pu-239 [11]. Gamma 
spectrometry was used for the measurements of the Cs-137 concentrations, and the reported 
values are at the discharge time [11]. The measured values were compiled from SFCOMPO [11], 
which are cross-checked with values reported in [133,135,136]. 

Table 43. Characteristics of the PIE samples of the Japan Power Demonstrations Reactor-1. 

SFA ID U-235 
wt% 

Axial loc. 
(cm) 

BU (est.) 
GWd/tHMi 

Cool. temp. 
(K) 

Cool. dens. 
(g/cm3) 

Fuel 
temp. (K)  

A14 +049 2.60 77 4.15 550.2 0.5171 900  

A14 -293 2.60 43 2.81 550.2 0.6254 900  

A14 +538 2.60 126 2.28 550.2 0.4295 900  

A18 +049 2.60 77 2.56 550.2 0.5171 900  

A18 -293 2.60 43 1.42 550.2 0.6254 900  

A18 +538 2.60 126 1.54 550.2 0.4295 900  

A20 A1_KA 2.60 114 8.23 550.2 0.4464 900  

A20 A1_KC 2.60 31 9.10 550.2 0.6755 900  

A20 A3_KA 2.60 114 6.66 550.2 0.4464 900  

A20 A3_KC 2.60 31 7.66 550.2 0.6755 900  

A20 A6_KA 2.60 114 8.10 550.2 0.4464 900  

A20 A6_KC 2.60 43 7.32 550.2 0.6254 900  

A20 B5_KA 2.60 114 5.31 550.2 0.4464 900  

A20 B5_KC 2.60 31 5.54 550.2 0.6755 900  

A20 C3_+171 2.60 89 5.26 550.2 0.4907 900  

A20 C3_+293 2.60 101 5.09 550.2 0.4672 900  

A20 C3_+415 2.60 114 4.33 550.2 0.4464 900  

A20 C3_+538 2.60 126 3.45 550.2 0.4295 900  

A20 C3_+660 2.60 138 2.21 550.2 0.4172 900  

A20 C3_-171 2.60 55 5.66 550.2 0.5850 900  

A20 C3_-293 2.60 43 5.69 550.2 0.6254 900  

A20 C3_-415 2.60 31 5.19 550.2 0.6755 900  

A20 C3_-538 2.60 18 3.84 550.2 0.7301 900  

A20 C3_-660 2.60 6 1.91 550.2 0.7555 900  

A20 C6_KA 2.60 114 5.74 550.2 0.4464 900  

A20 C6_KC 2.60 31 4.92 550.2 0.6755 900  

A20 E2_KA 2.60 114 5.25 550.2 0.4464 900  

A20 E2_KC 2.60 31 5.86 550.2 0.6755 900  

A20 F6_KA 2.60 114 7.10 550.2 0.4464 900  

A20 F6_KC 2.60 31 5.74 550.2 0.6755 900  

The irradiation histories are based on the provided data in SFCOMPO [11]. The reactor was 
operated for experimental purposes, and the irradiation history is quite intermittent. The 
assemblies have been irradiated for 38 cycles over 2153 days, during which they were active for 
577 days. The in-between cycles down times ranged also from very short down times (less than 
a day) up to 441 days. Table 43 provides the burnup weighted relevant irradiation parameters. 
The void fractions at the samples’ axial positions were used along with the water and steam 
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densities at the given reactor pressure to obtain the cycle wise coolant densities. The samples’ 
given burnup values are based on SFCOMPO, adjusted in the current calculations such that the 
calculated values of the Nd-148 concentration match the measured ones (±0.05%). Significant 
corrections for the burnups were implemented, which ranged between -51% to +34% of the given 
burnup values.
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Appendix III.  Polaris Input Files 
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In this section, two Polaris inputs are provided for two PIE samples. The samples are DM3 and 
GG samples, of Dodewaard-1 and Calvert Cliffs-1 reactors, respectively. Figure 93 shows Polaris 
models of the two samples. The BWR model is the full assembly (2D section) and the PWR model 
is the south-east (SE) corner of the assembly. The rods in black color contain the analyzed 
samples. The BWR sample is in its exact position, while the PWR sample is at rod location G6, and 
the shown position is its symmetric position in the modelled SE quarter – the assembly is quarter 
symmetric. 

     

Figure 93. Polaris models of two SFAs: a BWR (left) and a PWR (right). Within each model, the 
fuel rods are shown in different colors to reflect differences in their densities, enrichments, and 

gadolinium percentage. The rod containing the analyzed sample is colored in black. 
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IV.1. Polaris input for PIE sample DM3, SFA Y012, reactor Dodewaard-1 

=polaris_6.3 
 
title "DM3" 
opt DEPL 
opt KEFF      RaySpacing=0.02 
opt CRITSPEC  mode="NONE" 
lib  "broad_n" 
sys  BWR 
 
geom DM3 : ASSM sym=FULL npins=6 ppitch=1.793 
 
hgap   0.476  0.872  0.872  0.476 
     : MOD.1  MOD.1  MOD.1  MOD.1 
 
box   thick=0.17 rad=1.0225 hspan=5.505 Mbox=CAN.1 
 
mat UO2.1 : UO2_1   dens=10.412  temp=933.46 
mat UO2.2 : UO2_2   dens=10.412  temp=933.46 
mat UO2.3 : UO2_3   dens=10.412  temp=933.46 
mat UO2.G : UO2_G   dens=10.412  temp=933.46 
mat UO2.U : UO2_U   dens=10.460  temp=933.46 
mat UO2.M : UO2_M   dens=10.340  temp=933.46 
 
comp UO2_1 : UOX 1.8 
comp UO2_2 : UOX 2.6 
comp UO2_3 : UOX 3.2 
comp UO2_G : WT 
             6_uox=97.3   gd2o3=2.7 
comp 6_uox : UOX 3.2 
comp gd2o3 : FORM Gd=2 O=3 
mesh  UO2.G : nr=8 ns=8 
 
comp UO2_U : WT 
             Fuel_U=99.9999126  Imp_U=0.0000874 
comp Fuel_U : UOX 4.941 
comp Imp_U : FORM B=1 
comp UO2_M : FORM Mix_M=1 O=2 
comp Mix_M : WT Fuel_M=99.9998843 Imp_M=0.0001157 
comp Fuel_M : WT M_U92=93.569   M_M94=6.431 
comp M_U92 : WT U234=0.003 U235=0.239 U236=0.001 U238=99.757 
comp M_M94 : WT Am241= 1.1330 Pu238= 1.3891 Pu239=61.1423  
                     Pu240=23.1151 Pu241= 8.7260 Pu242= 4.4945 
comp Imp_M : FORM B=1 
    
pin 1  : 0.574   0.5855 0.6745 
       : UO2.1   GAP.1  CLAD.1  COOL.1 
pin 2  : 0.574   0.5855 0.6745 
       : UO2.2   GAP.1  CLAD.1  COOL.1 
pin 3  : 0.574   0.5855 0.6745 
       : UO2.3   GAP.1  CLAD.1  COOL.1 
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pin G  : 0.574   0.5855 0.6745 
       : UO2.G   GAP.1  CLAD.1  COOL.1 
pin U  : 0.5176  0.5275 0.6135 
       : UO2.U   GAP.1  CLAD.1  COOL.1 
pin M  : 0.51785 0.5275 0.6135 
       : UO2.M   GAP.1  CLAD.1  COOL.1 
pin W  : 0.5855  0.6745 
       : MOD.1   CLAD.1  COOL.1 
 
mat COOL.1  : H2O     dens=0.7262  temp=566.15 
mat MOD.1   : H2O     dens=0.7262  temp=566.15 
         comp H2O     : FORM    H=2 O=1 
mat  GAP.1  : He      dens=0.001   temp=600 
mat  CLAD.1 : ZIRC2   dens=6.57    temp=566.15 
mat  CAN.1  : ZIRC4   dens=6.57    temp=566.15 
 
pinmap 
1 2 3 3 3 2 
2 U G 3 3 3 
3 G 3 3 G 3 
3 3 3 W M 3 
3 3 G M G 3  
2 3 3 3 3 3 
 
deplete ALL=False UO2.1=True UO2.2=True UO2.3=True UO2.U=True 
UO2.M=True UO2.G=True 
basis   All=no    UO2.M=yes 
shield  ALL=N UO2.1=P UO2.2=P UO2.3=P UO2.U=P UO2.M=P UO2.G=R 
 
read history 
pow 
31.831721 32.518266 33.488147 34.152897 34.185590 33.379172 
34.643287 35.874709 36.027275 35.961889 35.885607 37.280492 
38.947816 39.732439 41.279890 42.413234 42.870931 42.870931 
41.944640 40.004877 37.781779 36.125352 
0 
 
34.763160 37.738189 39.460000 37.781779 37.291389 37.008053 
37.709075 40.523686 41.711054 40.575394 35.368370 
0 
 
40.142470 46.766641 46.432186 44.413050 42.610518 39.300428 
39.155673 41.955924 45.189474 44.305262 38.896533 
0 
 
37.071294 46.494812 48.241876 46.838565 42.692247 47.631957 
45.181156 42.360340 37.883858 35.960876 32.840594 
0 0 0 0 0 0 0 0 0 0 0 0 0 
 
state 
UO2 : 
temp= 
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961.65 990.15 999.15 1025.2 1008.7 1013.2 1047.2 1051.2 
1054.7 1055.2 1057.7 1097.2 1108.2 1124.2 1151.2 1159.2 
1167.2 1162.2 1147.2 1116.2 1090.7 1074.7 
600 
 
1058.2 1146.2 1112.7 1108.2 1106.7 1107.7 1134.2 1190.3 
1187.4 1139.8 1073.7 
600 
 
1164.1 1171.7 1136.2 1115.4 1104.5 1060.0 1087.5 1130.5 
1257.5 1191.2 1149.0 
600 
 
1206.0 1252.1 1273.8 1268.1 1221.8 1273.2 1275.8 1232.0 
1163.2 1126.0 1109.0 
600 600 600 600 600 600 600 600 600 600 600 600 600 
 
Cool.1 : 
dens= 
0.3541 0.3575 0.3596 0.3603 
0.3554 0.3554 0.3575 0.3554  
0.3541 0.3513 0.3479 0.3527  
0.3486 0.3465 0.3486 0.3492 
0.3479 0.3479 0.3444 0.3486 
0.3541 0.3582 
0.74 
 
0.4105 0.3589 0.3492 0.3520 
0.3506 0.3513 0.3541 0.3557 
0.3616 0.3663 0.3649 
0.74 
 
0.4099 0.3176 0.3193 0.3238 
0.3322 0.3407 0.3555 0.3702 
0.3704 0.3653 0.3537 
0.74 
 
0.3808 0.3415 0.3751 0.4083 
0.4320 0.4010 0.3900 0.3887 
0.3852 0.3825 0.3794 
0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 
 
dt 
6.300 12.03 21.54 20.87 7.300 15.67 11.48 7.290 
13.55 14.09 9.900 17.89 17.71 20.90 23.47 22.07 
20.03 20.74 10.60 16.89 6.750 11.04 
77.89 
 
4.200 13.14 13.92 28.73 21.13 26.09 65.34 19.28 
26.91 41.36 24.03 
50 
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7.140 26.96 27.86 33.64 42.12 41.98 31.98 44.88 
17.46 16.80 25.16  
54.02 
 
20.43 34.08 50.92 41.65 36.07 26.70 42.09 20.58 
13.29 13.88 18.25 
200 700 1235 19 3 10 7 42 2 6 171 510 108 
 
end history 
end 
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IV.2. Polaris input for PIE sample GG, SFA BT03, reactor Calvert Cliffs-1 

=polaris_6.3 
 
title "CC-BT03-GG" 
opt DEPL 
opt KEFF      RaySpacing=0.02 
opt CRITSPEC  mode="NONE" 
lib  "broad_n" 
sys  PWR 
 
geom CC-BT03-GG : ASSM sym=SE npins=14 ppitch=1.4732 
 
hgap  0.0776  0.0776  0.0776  0.0776 
     :COOL.1  COOL.1  COOL.1  COOL.1  
 
mat UO2.1 : UO2_11   dens=10.193  temp=938 
mat UO2.4 : UO2_14   dens=10.412  temp=938 
mat UO2.5 : UO2_15   dens=10.412  temp=938 
mat UO2.6 : UO2_16   dens=10.412  temp=938 
mat UO2.8 : UO2_18   dens=10.193  temp=938 
 
pin 1  : 0.48195  0.49276 0.5588 
       : UO2.1    GAP.1   CLAD.1   COOL.1 
pin 4  : 0.48195  0.49276 0.5588 
       : UO2.4    GAP.1   CLAD.1   COOL.1 
pin 5  : 0.48195  0.49276 0.5588 
       : UO2.5    GAP.1   CLAD.1   COOL.1 
pin 6  : 0.48195  0.49276 0.5588 
       : UO2.6    GAP.1   CLAD.1   COOL.1 
pin 8  : 0.48195  0.49276 0.5588 
       : UO2.8    GAP.1   CLAD.1   COOL.1 
 
pin X size=2 : 1.314    1.416 
             : COOL.1   CLAD.1  COOL.1 
 
comp UO2_11 : WT scale=PCT 
Impur= 0.0264 
Metal_1=99.9736 
 
comp UO2_14 : WT scale=PCT 
Impur= 0.0264 
Metal_4=99.9736 
 
comp UO2_15 : WT scale=PCT 
Impur= 0.0264 
Metal_5=99.9736 
 
comp UO2_16 : WT scale=PCT 
Impur= 0.0264 
Metal_6=99.9736 
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comp UO2_18 : WT scale=PCT 
Impur= 0.0264 
Metal_8=99.9736 
 
comp Impur : WT scale=PCT 
C=  7.197 N= 16.667 F=  1.894 Cl= 3.788 
Fe=17.045 Ag= 0.379 Al=43.560 Ni= 9.470 
 
comp Metal_1 : WT scale=PCT 
Metal-O=11.86 
Metal-U1=88.14 
 
comp Metal_4 : WT scale=PCT 
Metal-O=11.86 
Metal-U4=88.14 
 
comp Metal_5 : WT scale=PCT 
Metal-O=11.86 
Metal-U5=88.14 
 
comp Metal_6 : WT scale=PCT 
Metal-O=11.86 
Metal-U6=88.14 
 
comp Metal_8 : WT scale=PCT 
Metal-O=11.86 
Metal-U8=88.14 
 
comp Metal-O : FORM o=1 
 
comp Metal-U1 : WT scale=PCT 
92235=2.453 92234=0.022 
92236=0.011 92238=97.514 
 
comp Metal-U8 : WT scale=PCT 
92235=2.453 92234=0.022 
92236=0.011 92238=97.514 
 
comp Metal-U4 : WT scale=PCT 
92235= 2.33 92234= 0.02 
92236= 0.01 92238=97.64 
 
comp Metal-U5 : WT scale=PCT 
92235= 2.82 92234= 0.02 
92236= 0.01 92238=97.15 
 
comp Metal-U6 : WT scale=PCT 
92235=2.453 92234=0.022 
92236=0.011 92238=97.514 
 
mat  COOL.1 : WATER   dens=0.7572   temp=557.4  
comp WATER  : LW 694 
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mat  GAP.1  : He      dens=0.001  temp=620 
mat  CLAD.1 : ZIRC4   dens=6.56   temp=620 
mat  Stain.1  : Stain   dens=7.76   temp=557.4  
mat  GAP.2    : He      dens=0.001  temp=557.4  
 
comp Stain : WT  
C=  0.04 Cr=18.3 Fe=70.068 Mn= 1.29 
Mo= 0.132 Ni=10.035 Si= 0.135 
 
pin S  : 0.330  0.4725  0.49276  0.5588 
       : GAP.2  Stain.1 GAP.2    CLAD.1   COOL.1 
 
pinmap 
X 1 6 1 1 1 1 
8 1 4 1 1 1 1 
6 4 1 1 1 1 1 
1 1 1 X X 1 1 
1 1 1 X X 1 1 
1 1 1 1 1 1 1 
1 1 1 5 1 1 S 
 
state 
UO2  : temp=940 
COOL : boron=694 
 
deplete ALL=false UO2.1=True UO2.4=True UO2.5=True UO2.6=True 
UO2.8=True 
basis   All=no      UO2.8=yes 
shield  ALL=N       UO2.1=P UO2.4=P UO2.5=P UO2.6=P UO2.8=P 
 
read history 
 
pow 
22.29582 27.98590 27.98590 27.75365 27.52141 27.40528 27.28916 
27.40528 
27.40528 27.28916 27.05691 26.82466 26.59241 26.24404 0.000000 
26.01179 
25.77955 25.54730 24.50218 17.30249 14.28326 
0 0 
15.44450 19.85722 22.06358 21.94745 21.94745 21.94745 21.94745 
21.94745 
21.83133 22.41195 22.52807 22.99257 22.76032 22.99257 21.36683 
21.25071 
0 
14.63163 14.39939 7.780310 16.25737 16.48962 17.65086 16.60574 
16.95412 
16.95412 16.95412 17.18636 0.000000 17.30249 18.69598 
0 
16.02512 16.02512 16.14125 16.37350 7.780310 7.315820 8.128690 
14.39939 
17.30249 17.65086 17.53474 18.11536 17.99923 18.23148 
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0 0 0 0 0 
 
state 
UO2 : 
temp= 
938 938 938 938 938 938 938 938 
938 938 938 938 938 938 938 938 
938 938 938 938 938 
938 938 
938 938 938 938 938 938 938 938 
938 938 938 938 938 938 938 938 
938 
926 926 926 926 926 926 926 926 
926 926 926 926 926 926 
926 
793 793 793 793 793 793 793 793 
793 793 793 793 793 793 
793 793 793 793 793 
 
COOL : 
boron= 
694 672 644 605 567 529 491 454 
416 378 341 303 265 227 192 157 
119 91  71  47  16 
10 10 
697 653 598 566 539 497 444 392 
356 311 236 178 137 100 45  2 
10 
1057 1022 967 914 874 830 755 658 
571  483  378 282 163 39 
10 
1144 1055 995 934 861 763 643 567 
540  468  372 299 178 47 
10 10 10 10 10 
 
dt 
24.20 19.60 39.70 39.60 39.40 39.30 39.10 38.90 
39.00 39.10 39.10 39.40 39.30 39.30 33.00 39.20 
39.20 19.60 20.40 30.80 32.80 
47 120 
7.20 31.00 16.40 11.40 12.60 23.20 22.70 23.00 
8.20 31.00 33.80 16.50 19.10 12.80 35.20 1.90 
71 
10.90 14.10 25.30 12.20 16.30 15.10 38.10 30.90 
31.40 31.50 43.20 25.00 60.00 28.00 
81 
45.00 24.10 22.40 25.20 31.00 44.80 48.10 10.90 
10.60 45.30 28.70 27.90 65.90 36.10 
70 200 600 1500 61 
 
end history 
end 
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Appendix IV.  Permutation Tests on the Decay 
Heat Data 
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This section provides results of the permutation tests conducted on the decay heat bias data, 
for testing the significance of the observed average biases. The null distributions generated using 
permutations of the biases data are shown in Figure 94. The red lines mark the observed average 
biases on each validation category. By counting observations that are equal to, or more extreme 
than, the observed average bias with respect to all permutations, a 𝑝𝑝-value is obtained for each 
observed average bias. The 𝑝𝑝-value for all the PWR sections of the data are near zero, and they 
are greater than the set threshold of 0.05 for all the BWR sections of the data. Again, the null 
hypothesis is rejected, and the alternative is accepted that the calculations of these 
characteristics on the PWR sections of the data are systematically or significantly different from 
the measurements. The observed average biases of these characteristics are statistically 
significantly, i.e., they are extreme of significant with respect to the null distributions. Similar to 
the bootstrap tests, the tests failed also to reject the null hypothesis using the permutation tests 
on all BWR sections of the data. There is no evidence from the data that the calculations on the 
BWR characteristics are significantly different from the measurements, and the observed 
differences between the calculations and measurements are likely to be due to chance or could 
result from randomness in the data. The conclusions drawn from the permutation tests 
conducted on the different sections of the data are similar to those obtained through bootstrap 
tests, however, at slightly different significance levels. 
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Figure 94. Permutation distributions of the average biases (the red lines are the observed val-

ues). 
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Appendix V.  ORIGEN Calculations of the Decay 
Heat 
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Decay heat calculations of the decay heat benchmarks were also performed using ORIGEN 
code of the SCALE code system (version 6.2.3) [49] – in addition to the reference calculations 
performed using Polaris. The approach has been selected considering its lower computational 
requirements and widespread usage. The used nuclear data are the SCALE cross-sections, fission 
yields, and decay data based primarily on the ENDF/B-VII.1 nuclear data [49]. 

The ORIGEN calculations rely on several steps unlike the approach in Polaris. Firstly, TRITON is 
used, which is a generalized-geometry multi-purpose control module with discrete ordinates 
lattice-physics capabilities. The module has been used to perform neutron transport and 
depletion calculations for all assembly designs and subcategories (32 categories). Similar to 
Polaris, the TRITON models are also 2D models of the assemblies along with reflective boundary 
conditions. The outputs of the TRITON models include lattice-specific, enrichment-dependent, 
burnup-dependent, weighted 1-group cross-sections for each individual SFA design and 
subcategory.  

The ARP module interpolates between pre-computed, problem-dependent transition 
matrices that are generated using standalone depletion calculations [49]. The ARP module has 
been used to import the specific TRITON-generated cross-sections and perform interpolation 
between them, based on enrichments, water densities, and burnups of the benchmark to 
generate specific cross-sections for the benchmark under consideration. The interpolated cross-
sections are then used by ORIGEN for the depletion and decay calculations up to the specified 
cooling time. 

The following are major modelling assumptions – whenever they diverge from the former 
approach of Polaris: 

1. Rebuilt SFAs were not considered in TRITON, i.e., the lattice-wise cross-sections of the 
rebuilt SFAs correspond to the design subcategory. ORIGEN performed depletion and decay 
for a ton of the initial heavy mass, and the decay heat of the SFA is calculated by scaling the 
decay heat per ton to the heavy mass of the SFA after the rebuild. 

2. Activation and the source term from the cladding and the spacers were accounted for in 
ORIGEN models, they were added to the models as extra material in addition to the 
material of the fuel matrix.



Curriculum Vitae 

 
225 

 

Curriculum Vitae  
Personal Details 

Nationality: Egyptian 

Address: Stadtbachstrasse 63, 5400 Baden, Switzerland 

e-mail: ahmed.shama@outlook.com 

Tel. /Mob. : +41-561371332 / +41-786621101 

 

Affiliation 

Doctoral Assistant - EPFL (École Polytechnique Fédérale de Lausanne) 

Engineer (part-time) - NAGRA (Nationale Genossenschaft für die Lagerung radioaktiver Abfälle) 

 

Education 

1. Doctoral Studies 

EPFL, Laboratory for Reactor Physics and Systems Behaviour (LRS), Switzerland 

Thesis: Data-Driven Predictive Models: Calculational Bias in Characterization of Spent Nuclear Fuel 

Started: Oct. 2017 - Expected end-date: Nov. 2021 

2. M.Sc. in Nuclear Engineering 

Swiss Federal Institute of Technology Zürich (ETHZ) and EPF Lausanne (EPFL), Switzerland 

Thesis: Study of Microfluidic Mixing and Droplet Generation for 3D Printing of Nuclear Fuels 

Project: Fluid Structure Interaction (FSI) in SFR Fuel Assemblies 

Completed: Sep 2015 – Sep 2017 

3. M.Sc. in Engineering Physics 

Faculty of Engineering, Cairo University, Egypt 

Thesis: Validation and Benchmarking of the Deterministic Diffusion Method for the Neutronic Calcu-
lations of Thermal Research Reactors 

Completed: Sep 2008 – Apr 2012 

 

 

mailto:ahmed.shama@outlook.com


Curriculum Vitae 

 
226 

 

Education (continues) 

4. B.Eng. in Metallurgical and Materials Engineering 

Faculty of Petroleum and Mining Engineering, Suez University, Egypt 

Project: Production of Mg-Base Tertiary Alloys AZ91-E/D 

Completed: Sep 2000 – Aug 2005 

 

Thesis  

M.Sc. Nuclear Engineering: Study of Microfluidic Mixing and Droplet Generation for 3D Printing of Nuclear 
Fuels. https://infoscience.epfl.ch/record/254925?ln=en 

M.Sc. Engineering Physics: Validation and Benchmarking of the Deterministic Diffusion Method for the 
Neutronic Calculations of Thermal Research Reactors. https://DOI: 10.13140/RG.2.2.35261.97760 

 

Publications 

A. Shama, S. Caruso, V. Bykov, A. Noël, G. Anton, A. Bashe, A. Pautz, T. Simeonov. Verification of SCALE 
Modules against CMS5/SNF sequence for Depletion and Decay Calculations of BWR Fuel Assem-
blies. In proceedings of the 19th International Symposium on the Packaging and Transportation of 
Radioactive Materials (PATRAM). Aug. 4-9, 2019, New Orleans, LA, USA. 

A. Shama, S. Caruso, A. Pautz. Quantification of the Computational Biases in Fuel Depletion for the Swiss 
Disposal Concept. International High-Level Radioactive Waste Management 2019 (IHLRWM 2019). 
Knoxville, TN, April 14-18, 2019. 

A. Shama, M. Pouchon, I. Clifford. Simulation of the microfluidic mixing and the droplet generation for 3D 
printing of nuclear fuels. Additive Manufacturing. Vol. 26 (2019) 1-14. https://doi: 
10.1016/j.addma.2018.12.011 

E. Amin, A. Shama, H. Hussein, Benchmarking of the WIMSD/CITATION deterministic code system for the 
neutronic calculations of TRIGA Mark-III research reactors. Annals of Nuclear Energy. Vol. 66 (2014) 
113–123. https://doi:10.1016/j.anucene.2013.12.005  

A. Shama, D. Rochman, S. Pudollek, S. Caruso, A. Pautz. Uncertainty analyses of spent nuclear fuel decay 
heat calculations using SCALE modules. Nuclear Engineering and Technology. Vol. 53, Issue 9 (Sep-
tember 2021), 2816-2829. https://doi.org/10.1016/j.net.2021.03.013 

A. Shama, D. Rochman, S. Caruso, A. Pautz. Validation of Spent Nuclear Fuel Decay Heat Calculations Using 
Polaris, ORIGEN and CASMO5. Annals of Nuclear Energy. Vol. 165 (January 2022), 
https://doi.org/10.1016/j.anucene.2021.108758 

 

 

 

 

https://infoscience.epfl.ch/record/254925?ln=en
https://doi/
http://dx.doi.org/10.13140/RG.2.2.35261.97760


Curriculum Vitae 

 
227 

 

Skills 

Python and R: applications on data analysis and machine learning 

FORTRAN and MATLAB: generic applications 

SALOME and Trelis: Meshing software 

OpenFOAM: Computational fluid dynamics 

WIMSD and CITATION: lattice physics and core behavior codes 

SCALE: Polaris, TRITON, KENO, MAVRIC, ORIGEN: Lattice physics, criticality, shielding and depletion cal-
culations 

Basic Knowledge: CASTEM (FSI), FLUENT (CFD), and NJOY21 and AMPX (cross-section processing) 

 

Work Experiences 

Nov 2017 to now: Doctoral Assistant 
University: EPFL 
Country: Switzerland  

Jun – Sep 2016 + June 2020-Nov 2020 + June 2021 to now: Internship/Engineer 
Company: NAGRA 
Country: Switzerland  
Project: Burnup credit, and activation calculations of cladding and structural materials of SNF 

2012 – 2015: Inspection Engineer  
Company: Det Norske Veritas/Germanischer Lloyd (DNV-GL) 
Country: Oman 
Project: Umm Lulu & Nasr Phase-1 – Construction of Oil/Gas Offshore platforms and installations 
Activity: Materials, pressure vessels, and Static Mechanical Inspection 
American Petroleum Institute: Piping Inspector ID#46799 (expired) 
American Petroleum Institute: Corrosion and Materials Professional ID#52608 (expired) 

2006 – 2012: Quality Control Engineer 
Company: OPCO 
Country: Egypt (2006-2009 full-time, 2009-2012 par-time) 
Several projects 
Activity: Oil/Gas – Material and Static Mechanical Inspection of Pipings / Oil Storage Tanks / Gas 

Pressure Vessels / Pipelines (onshore and offshore) / Offshore installations (Structural Material 
of Offshore Platforms) 

 

 

 


	Acknowledgements
	Abstract
	ZUSAMMENFASSUNG
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Vocabulary
	Chapter 1 Introduction
	1.1 Worldwide status of spent nuclear fuel
	1.2 Status of radioactive waste in Switzerland
	1.3 International projects addressing SNF characterization
	1.4 Motivation of the current research project
	1.5 Relevant SNF characteristics
	1.6 Needs of validation
	1.7 Needs of explaining and predicting the bias
	1.8 Predictive modelling paradigm
	1.9 The research questions and hypotheses
	1.10 Potential applications
	1.11 Structure of the Thesis

	Chapter 2 Validation Benchmarks
	2.1 Decay heat benchmarks
	2.1.1. Measurements at the GE-Morris facility
	2.1.2. Measurements at the Clab facility
	2.1.3. Fuel assembly designs and irradiation data
	2.1.4. Decay heat experimental uncertainties
	2.2 Post-irradiation-examination benchmarks
	2.2.1. Characteristics of the PIE Benchmarks
	2.2.2. Burnup values for the PIE samples
	2.2.3. Measurements of the radionuclide concentrations
	2.2.4. Excluded SFCOMPO benchmarks

	Chapter 3 Modelling and Simulations Codes
	3.1. Validation tools
	3.1.1. Polaris code
	3.1.2. ORIGEN code
	3.2. Uncertainty propagation
	3.3. Machine learning
	3.4. Computational requirements

	Chapter 4 Validation and Uncertainty Propagation Schemes
	4.1. Implementation of Polaris on the decay heat benchmarks
	4.2. Implementation of Polaris on the PIE benchmarks
	4.3. Implementation of Sampler for uncertainty analyses
	4.4. Validation and uncertainty measures

	Chapter 5 Hypothesis Testing on the Bias
	5.1 Non-parametric tests
	5.2 Parametric z-test

	Chapter 6 Machine Learning Schemes
	6.1 Description of the chapter
	6.2 Application of predictive modelling of the bias
	6.3 Prediction vs. inference
	6.4 Predictive performance evaluation
	6.5 Model validation
	6.6 The law of parsimony: one-standard-error rule
	6.7 Machine learning models
	6.8 Resampling methods
	6.9 Model selection
	6.10 Predicting the bias from validation benchmarks
	6.10.1. Predicting the bias based on integral parameters of the benchmarks
	6.10.2. Predicting the bias based on the correlation between benchmarks
	6.11 Detection and removal of outliers
	6.12 Final models of the bias predictive procedures
	6.13 Features extraction

	Chapter 7 Validation Results
	7.1 SNF decay heat
	7.2 U-235 concentration
	7.3 Pu-239 concentration
	7.4 Cs-137 concentration
	7.5 Comparison with literature

	Chapter 8 Uncertainty Analyses
	8.1 Calculated uncertainties and fractional variances
	8.2 Uncertainties from nuclear data and fractional variances of XS, FY and DD
	8.3 Relevant design and operational parameters
	8.4 Assumptions of burnup uncertainties
	8.5 Correlations between benchmarks
	9.4.1. Decay heat correlations
	9.4.2. Correlations of the Cs-137, U-235, and Pu-239 concentrations

	Chapter 9 Significance of the Bias Based on the Validation Data
	9.1 Significance of the bias based on simultaneous testing

	Chapter 10 Significance of the Bias Based on the Validation and Uncertainty Data
	10.1 Significance testing of the bias using calculated uncertainties
	10.2 Significance testing of the bias using calculated and experimental uncertainties
	10.3 Correlations between the decay heat measurements
	10.4 Weights of the decay heat benchmarks

	Chapter 11 Predicting the Bias of SNF Characteristics
	11.1 Features extraction
	11.1.1. Design matrix based on correlations between the benchmarks
	11.1.2. Design matrix based on integral features of the benchmarks
	11.2 Predictions of the ML models
	11.2.1. Linear models based on integral parameters of the benchmarks
	11.2.2. Linear models based on correlations between the benchmarks
	11.2.3. Predictive performance of the decay heat bias
	11.2.4. Predictive performance of the U-235 concentration bias
	11.2.5. Predictive performance of the Pu-239 concentration bias
	11.2.6.  Predictive performance of the Cs-137 concentration bias
	11.2.7. Predictive performance along with outliers detection and removal
	11.2.8. Final models

	Chapter 12 Conclusions
	12.1 Applicability domain
	12.2 Potential applications
	12.3 Future work

	Bibliography
	Appendix I.  Modelling the Rebuilt SFAs of Clab Benchmarks
	Appendix II.  Specifications of the PIE Benchmarks and Modelling Assumptions
	II.1 PWR cases
	II.1.1 Calvert Cliffs-1 (CC-1)
	II.1.2 Genkai-1 (GK-1)
	II.1.3 Mihama-3 (M-3)
	II.1.4 Neckarwestheim-2 (N-2)
	II.1.5 Obrigheim-1 (OG-1)
	II.1.6 Ohi-1 and Ohi-2 (O1 and O2)
	II.1.7 Takahama-3 (T3)
	II.1.8 Three Mile Island-1 (TMI-1)
	II.1.9 Trino Vercellese-1 (TV1)
	II.1.10 Turkey Point-3 (TP-3)
	II.1.11 Yankee-1 (Y-1)

	II.2 BWR cases
	II.2.1 Cooper-1 (C-1)
	II.2.2 Dodewaard-1 (D-1)
	II.2.3 Fukushima Daini-1 (FD1)
	II.2.4 Fukushima Daini-2 (FD2)
	II.2.5 Garigliano-1 (G1)
	II.2.6 Gundremmingen-1 (GN1)
	II.2.7 Japan Power Demonstrations Reactor-1 (JPDR-1)


	Appendix III.  Polaris Input Files
	Appendix IV.  Permutation Tests on the Decay Heat Data
	IV.1. Polaris input for PIE sample DM3, SFA Y012, reactor Dodewaard-1
	IV.2. Polaris input for PIE sample GG, SFA BT03, reactor Calvert Cliffs-1

	Appendix V.  ORIGEN Calculations of the Decay Heat
	Curriculum Vitae



