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Featured Application: The outcomes of this work can be applied to forecast C5 content in debu-
tanizer columns based on data obtained by a few pressure and temperature sensors. In addition,
the proposed visualization can be used as a model global explanation, highlighting opportuni-
ties regarding feature selection, the most important features guiding the forecasts, and threshold
values within which the forecasting model can operate.

Abstract: Refineries execute a series of interlinked processes, where the product of one unit serves as
the input to another process. Potential failures within these processes affect the quality of the end
products, operational efficiency, and revenue of the entire refinery. In this context, implementation of a
real-time cognitive module, referring to predictive machine learning models, enables the provision of
equipment state monitoring services and the generation of decision-making for equipment operations.
In this paper, we propose two machine learning models: (1) to forecast the amount of pentane (C5)
content in the final product mixture; (2) to identify if C5 content exceeds the specification thresholds
for the final product quality. We validate our approach using a use case from a real-world refinery. In
addition, we develop a visualization to assess which features are considered most important during
feature selection, and later by the machine learning models. Finally, we provide insights on the
sensor values in the dataset, which help to identify the operational conditions for using such machine
learning models.

Keywords: artificial intelligence; explainable artificial intelligence; Industry 4.0; smart manufacturing;
crude oil distillation; debutanization; LPG purification

1. Introduction

Petroleum refineries receive crude oil of different provenances with their specific
characteristics. The inlet crude oil feedstock is transformed into final products through
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multiple processes. Each process provides products whose qualities are prescribed by
different standards, such as the Liquefied Petroleum Gas (LPG), a mixture of hydrocarbon
gases used in heating appliances and vehicles. The final mixture product usually contains
48% propane, 50% butane, and up to 2% pentane (hereafter, also referred to as C5) which
is developed based on local regulations and composition requirements, the intended use,
and even seasonal limitations (e.g., a higher proportion of propane is used in winter due to
its evaporation point).

To achieve the desired quality, the LPG obtained from crude oil distillation must
undergo several processes to remove impurities. One of these purification processes is
debutanization, which removes C5. To ensure the final mixture meets the specification
standards, samples are taken in various stages of the refinement and purification process
and undergo lab analysis. Results are passed on to production engineers so that they can
adjust process settings if required. However, lab analysis may take up to several hours to be
completed and is not conducted every day, causing the identification of an already existing
off-specs situation to be delayed. This, in turn, makes recovery harder, since the sooner an
off-spec situation is identified and resolved, the better it is for the recovery efforts in terms
of both time and cost. Hence, there is a need for early (or ideally real-time) identification of
situations where C5 content exceeds specifications. This brings a strong motivation to create
a model-based approach for a cognition module supporting the operation which alerts of
an C5 off-spec situation, and enables real-time decision-makings based on such alerts.

Currently, several approaches to estimate debutanization process outcomes exist.
Among them, Aspen HYSYS (https://www.aspentech.com/en/products/engineering/
aspen-hysys (accessed on 23 October 2021)) uses mathematical models to simulate a
debutanizer unit and predict process outputs. Such simulation models frequently use
elaborate math and complicated equations to achieve enough generalization to be applied
across different units. Data-driven models overcome limitations regarding equation solving
complexity by using past data to learn and produce possible solutions. Although the ability
to reuse them across units strongly depends on the model design, once trained, such models
can provide forecasts with almost no latency. If forecasts are good enough, the models
can acquire frequently insights regarding C5 content in the LPG, for providing ground for
earlier off-spec product identification and timely decision-making.

Real-time prediction of C5 content during the debutanization processes provide
new insights that guide decision-makings for process monitoring and control. To create
machine learning models capable of such forecasts, we use historical sensor data regarding
operational temperature and pressure, as well as laboratory results obtained from the
samples analysis. Such data and analysis results enable the support of machine-learning
model training and evaluation by identifying correlations between sensed conditions and
measured outcomes for two purposes: (i) with real-time sensor data, such models can
provide real-time C5 content estimates; (ii) with new real-time sensor data and lab analysis
data update, the machine-learning model performance is expected to be promoted in time,
if retrained with the new data available.

In this paper, we develop machine learning models for a real-world use case, based
on sensor data provided by a Tüpras (https://www.tupras.com.tr (accessed on 23 October
2021)) refinery. By examining the actual process in the use case, we found that different
debutanizer columns have different features because of their different designs. Moreover,
only a few sensors are in the debutanizer column. Most sensor data corresponded to the
pipping system that connected the debutanizer column with the condensation unit and
the units that follow. We used several debutanizer unit diagrams to understand where the
sensors are located, and which sensors are close to the distillation column exit. Temperature
and pressure conditions are identified by the ones near the column exit, and hence the
first ones placed in the pipes close to the related exit but before the condensation unit. We
assume such data provides good insight on how operating conditions relate to extracted
samples and measured composition. Furthermore, we observed that there are some cases
where both temperature and pressure sensors exist for any given point in the debutanizer
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column, but at least one of them exists. Considering these limitations, machine learning
models are developed to predict C5 content based on the inputs of two sensors (one
pressure sensor and one temperature sensor). Finally, we develop two machine learning
models that provide predictions based on the data from these two sensors for independent
estimate: (i) one that predicts the expected amount of C5 in the LPG; and (ii) one that
forecasts whether C5 content is off spec (higher than 2%).

The contribution of this paper is the use of operational temperature and pressure
sensor data to develop:

1. a machine-learning model to predict C5 content in LPG stream;
2. a machine-learning model to predict if C5 content exceeds specification levels

Machine-learning models built using data from a few sensors can be more easily
applied to a broad range of debutanizer columns since they impose fewer restrictions
on the number of input data sources required to provide forecasts. Thus, we consider
that a major strength of our approach is the fact that it relies only on data of two sensors,
one measuring pressure and the second one measuring temperature in the debutanizer
column-both placed at separate locations within the column.

Along with the development of the aforementioned models, we also provide a proto-
type dashboard, which provides global explanations to understand which features were
considered most relevant during the feature selection, and which features were considered
relevant by the forecasting model. In addition, we provide insights on the sensor value
distribution in the training set, to understand the model operational limitations.

To evaluate our models, we have used three metrics: two for measuring regression
features and one for measuring the classification features. We assess the regression model
performance with the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE).
The MAE is not sensitive to outliers and can thus provide a reasonable estimate of the
model performance for normal C5 levels. The RMSE penalizes large errors and thus better
indicates if out-of-spec measurements were predicted adequately. The classification model
performance is measured with the Area Under the Receiver Operating Characteristic Curve
(AUC ROC [1]). AUC ROC is invariant to a priori class probabilities, referring to a relevant
property when measuring model discrimination power in an imbalanced dataset. After
evaluating the models, results show that our approach is applied to effectively provide
real-time C5 content predictions in the LPG debutanization process of our given use case.

The rest of this paper is structured as follows: Section 2 presents related work.
Section 3 describes a Tüpras refinery use case, and Section 4 introduces the features created
for the C5 content forecasting model, as well as the way to develop and evaluate these
models. Section 5 presents the experiments we performed and the obtained results. Finally,
Section 6 offers our conclusions and provides an outline for future work.

2. Related work
2.1. Distillation Process-Related Models

Debutanizer columns are an important part of several processing units in oil refineries.
Therefore, the objective of the online composition of debutanizer outlet streams is to
maximize the production of LPG while meeting the corresponding quality standards.
Currently, the quality of the debutanizer output is measured via laboratory analysis. Hence,
changes in the quality are identified only upon the analysis of the sample, which may take
several hours. Therefore, to maintain the quality of the product within the predefined
specifications, it is of imperative importance to predict the top and bottom outputs of the
debutanization process precisely [2].

To realize this objective, Ref. [3] identifies three major approaches to develop the
required models: (i) first-principle (a.k.a. fundamental) models, which consider mass,
energy, and momentum principles and equations to provide a forecast; (ii) machine learning
models, which are created by training an algorithm on input-output data of the process;
and (iii) hybrid models, which combine both the fundamental and the empirical models.
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First-principle models involve sets of non-linear differential equations (usually in
the order of 102 or 103 non-linear differential equations) and a comparable number of
algebraic equations [4,5]. The equations usually take into account the global balance
of matter, partial balances of matter, pressure, temperature, flow, reflux policies, and
the relationship between component concentrations at different levels of the distillation
column [3,6]. Although additional information regarding the structure of the distillation
column can further enhance such models (e.g., the number of trays in a column or the
column hydraulics [7]) with the increasing computational complexity of such models.

To alleviate the computational needs, simplified distillation column models have been
proposed [8,9], at the expense of an increased error whose applicability often restricted to a
single column [10]. These models are usually implemented in Advanced Process Control
systems (APC), such as a Multivariable Model Predictive Control (MPC), for managing
relevant process variables and their dynamics. The equations mentioned above govern the
control logic between variables. Algorithms that perform matrix computations are used to
solve such system dynamic models with multiple variables simultaneously. In addition to
their computational complexity, the usefulness of such models is constrained to the model
assumptions, e.g., sensor colocation points [11].

Data-driven models provide an alternative modeling approach for developing the
forecast models [12]. In particular, machine learning models are developed based on the
prior knowledge of the physical processes for creating good features of model outputs. The
models are trained with the collected data from the actual operations of the unit: (1) The
raw data are transformed into a dataset for developing models which perform features that
reflect different dynamic features for the raw data variables; (2) Through the developed
models, observed outputs are generated through the feature vectors. Through such model
features, the machine learning models can accurately learn non-linear features from the
data, even when some noises exist in the data [13].

Hybrid models arise from the combination of the first-principle and data-driven
models [14]. Such models are used to retain the theoretical knowledge of the process, which
is mirrored in equations. In contrast, the data-driven models can augment such knowledge
using data, and can be used to model parts of the process that are hard to formulate and
would otherwise require overly complex first-principle models [3,15]. Hybrid models have
been implemented widely in various chemical processes such as batch distillation [16],
reactive distillation [17], and polymerization process [18,19]. However, only a handful of
models have been implemented in continuous distillation columns.

In the literature, there are some attempts to model continuous distillation processes in
refineries. Such attempts not only include debutanizer columns [11,20], but also various
other units such as Crude Distillation Units (CDU) [21,22] and Fluid Catalytic Crackers
(FCC) [23,24]. Among the models developed for debutanizer columns, we find the artificial
neural networks (ANN) [22,25,26], partial least square regression [27,28], support vector
regression (SVR) [22,27], principal component regression [29], supervised latent factor
analysis [30,31], probabilistic regression [32], and state-dependent autoregressive model
with exogenous variables [33].

To evaluate C5 and C4 product concentrations in the debutanizer column, Ref. [3]
created a dynamic neural model that acts as a soft sensor based on the data provided.
In a similar manner, Ref. [34] developed an ANN model to predict LPG composition
at the top and bottom of a distillation column, comparing its performance to a partial
least squares model. A comparison between different models was also performed by [26],
which developed multiple linear regression, principal components regression, and neural
networks models for a debutanizer column. They concluded that the performance of such
models was superior to least square regression models and support vector regression
models reported in the literature. Finally, Ref. [35] aimed to identify the governing
equations regarding a distillation column using a white-box machine-learning approach.

Cyber-physical systems describe systems that integrate the physical processes into
the digital world, where monitoring and analytics can be performed [36,37]. A standard
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abstraction model considers three significant layers: physical, cybernetic, and an interface
between both [38]. The concept of cyber-physical systems has been successfully imple-
mented in petrochemical plants [39].

This paper highlights the importance of artificial intelligence applications compared to
traditional analytic methods based on mathematical models. It proposes a cyber-physical
integration using machine-learning models to provide real-time LPG C5 content estimates
based on streamed sensor data. In our use case, sensor data regarding pressure and
temperature was available only from a few sensors at the top of the debutanizer column;
hence, such models could not be replicated. Nevertheless, we have acknowledged the
algorithms described in the related work and implemented models based on them and our
set of features.

2.2. Explainable Artificial Intelligence

The machine learning models are growing in complexity and sophistication providing
accurate forecasts based on historic data. At the same time, there is an increasing need to
understand the logic behind such models, to comply with regulatory requirements, and
provide ground for responsible decision-making [40,41]. Insights on the process followed
by such models when applying operations on the input to provide a forecast enable a
decision about whether such forecasts can be trusted or not [42,43]. To respond to such
challenges, research on techniques, approaches and visualizations is done in a sub-field of
artificial intelligence, known as Explainable Artificial Intelligence (XAI).

Multiple taxonomies were proposed to categorize the different XAI approaches. Arri-
eta et al. distinguish between transparent models and post-hoc explainability techniques,
dividing the last category into model-agnostic and model-specific approaches [44]. Trans-
parent models are also known as inherently interpretable or white-box models, while the
models that do not fall into this category, are considered opaque or black-box models [45].
A more elaborate taxonomy was proposed by Das et al. [46], who considered dividing
XAI techniques based on three criteria: scope (considering global or local explanations),
methodology (if the technique focuses on the input data or model parameters), and usage
(if is model-agnostic or model-specific). Regarding the scope, local explanations provide
insights regarding a particular forecast, while global explanations attempt to describe the
overall model behavior [47].

When providing global explanations for models trained on tabular data, a frequent
model-specific approach is to consider the feature weight in the model to determine the
feature relevance ranking. Model-agnostic alternatives have been devised by several
authors using surrogate models [48–50]. Although much research has been done on
explaining model behavior, less research was invested towards crafting comprehensive
explanations with insights regarding the data and the model creation process. Part of
this void was addressed by MELODY (MachinE-Learning MODel SummarY) [51], and
SUBPLEX [52], which connect local explanations to data analytics either summarizing
insights regarding the whole dataset or a relevant subpopulation. INFUSE [53], on the
other side, focused on providing explanations regarding the feature selection process, and
the influence of different feature selection strategies on it. Although INFUSE takes into
account a process of cross-validation, it does not bind it to the resulting model and any
model related explanations.

Visual interpretations are considered particularly effective to explain the model fore-
casting rationale [54]. Although much work was invested towards developing XAI tech-
niques, some researchers consider not enough research was invested on making such ex-
planations end-user-centered [55,56]. Visual explanations comprehend insights regarding
the dataset and feature contributions at a local and global level. Scatterplots are frequently
used to visualize data distribution, using some dimensionality reduction technique to
map the high-dimensional dataset into two dimensions [57,58]. Color-coded instances are
frequently used in classification tasks, and interactive interfaces provided, to enable the
user focus on specific instances and conduct further research [47]. To represent feature
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contributions, horizontal bar plots [52,59,60], breakdown plots [61,62], heatmaps [63,64],
Partial Dependence Plots [65], or Accumulated Local Effects Plots [66] are used.

In this research, we complemented our model development with a dashboard that
provides insights into the most informative features within the dataset, when considering
feature selection, while also informing their relevance from the model point of view. In
addition, we inform the value ranges of each sensor’s readings found in the dataset. Such
values must be taken into account, since the model is able to issue good predictions within
the observed ranges, and not outside them.

3. Problem Statement
3.1. Tüpras Refinery

The use case corresponds to a Tüpras refinery located in Izmit, which began oil
production in 1961 and currently has a design capacity to process 11.3 million tons of crude
oil per year. The crude oil is supplied from four countries: Iran, Iraq, Russia, and Saudi
Arabia. Each of these crude oil feedstocks have different characteristics such as density,
sulfur content, and impurities. The refinery complies with Euro 5 standards [67] and
produces mostly diesel, gasoline, and LPG. The entire refining unit consists of atmospheric
and vacuum distillation units, hydrocrackers, fluid catalytic crackers, continuous catalyst
regeneration reformers, diesel and kerosene desulphurization units, merox, asphalt units,
and sulfur recovery units. In Figure 1, we provide a diagram showing the relation between
processing units of this refinery, highlighting the LPG and gas flows. In this research, we
focus on the LPG debutanizer units, which is implemented for the atmospheric distillation
process. Although feedstock changes regularly, experts pointed out that they do not display
much difference in light hydrocarbons content regardless of the crude oil provenance. The
atmospheric distillation process ameliorates this difference before the LPG enters the
debutanizer unit. Given that the concentration of pentanes does not depend on the crude
oil provenance, we consider it as a specific function of the debutanization process which is
a distillation process with two control variables: pressure and temperature.

Figure 1. High-level schematic diagram of some of units found in crude oil refineries. In this research
we focus on one of the LPG debutanizer units.

3.2. Debutanization Process

The debutanization process is a fractional distillation process that aims to recover the
light gases (C1− C4) and the Liquefied Petroleum Gas (LPG) from the overhead distillate
coming from the distillation unit [26]. This distillation process aims to separate liquid
components by heating a liquid to vapor, condensing the vapor back to liquid to purify
or separate it. To that end, three components are required: (1) a distillation column (used
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to separate a liquid mixture into its fractions based on the differences in volatilities); (2)
a reboiler (used to provide the necessary vaporization of the distillation process); (3) a
condenser (used to cool and condense the overhead vapor).

The CH4 (methane) component exists in the feedstock with the other alkane com-
pounds, with the C4H10 (butane) fraction only gaining its freedom when the vaporized
gas condenses inside the array of valve trays that line the interior of the debutanizer
column. Based on thermal unit conversion technology, the butane is efficiently siphoned
from the raw feed. To achieve this, the boiling point of butane is used as a reference
point to determine temperature and pressure conditions. Pure butane condenses in the
debutanizer column when the architecture of the column locks in the mandated variables,
so few impurities can form. Similarly, propane, ethane, and methane are liberated and
refined as valuable fuel sources in the other alkane processing columns.

Pressure is frequently considered the most relevant distillation control variable since
it affects column temperatures, product relative volatilities, condensation (and therefore
the distillate composition), and cooling and energy requirements [68]. Pressure controls are
usually integrated into the condensation system, and therefore both need to be considered
simultaneously. The satisfactory operation of the distillation column requires steady
pressure, and pressure changes must be introduced slowly and steadily. In a mass balance
control, higher distillation column pressures reduce the relative volatility between the
components, increasing the molar flow rates, the condensation rate, and therefore the
amount of reflux [69]. Conversely, low pressures can prevent condensation and thus
prevent a successful distillation. In atmospheric distillation columns, the condensation rate
can be controlled through the temperature too [70].

The control of condensate temperature enables additional control over vapor and
liquid product split. Changes in the temperature usually correlate with changes in the
product composition [71]. In particular, differential temperature control considers that
given temperature measurements at two different points of the distillation column, the
temperature difference between both remains constant regardless of the pressure changes.
Variations in the temperature difference thus signal changes in the composition profile
of the product [72]. It must be noted that vapor enters the distillation condensers at a
saturation temperature.

Given the importance of the pressure and temperature variables in the distillation
process, it is critical to determine the best placement of the sensors to enable adequate and
timely insights into the process. The distillation column pressure is usually measured in
vapor spaces at the reflux accumulator and the top of the column. The column temperature
is usually measured nearby the condenser to avoid a dynamic lag associated with the
reflux drum. The temperature sensor placement follows two criteria: the linearity of
the response (where the steady-state responses to a positive and negative change in the
corrective action are most similar), and the maximum sensitivity to product composition.
In addition, experts consider that the best temperature control points are where the most
extensive and symmetrical temperature variations are observed [70].

Please note that it is widely considered that reflux needs to be controlled to achieve
on-spec production, Ref. [70] points out that such reasoning originates from a distillation
column design practice, where reflux is increased until the product achieves a particular
specification given several stages for which the distillation column is designed. However,
the same author clarifies that the primary consideration for introducing reflux into a tray
tower is to achieve good hydraulics and thus avoid premature flooding and entrainment.
Although the absence of a reflux drum makes the condensation rate a slave of the top
product rate, the reflux control provides additional means to increase the purity of the
overhead product keeping out the heavier fraction from the stream of vapor that leaves the
top of the tower.

Modeling a distillation column is a complex process as it involves various non-
linearities and includes multiple variables with interactions between them [73]. In the
Tüpras refinery, there is an abundance of sensors to monitor the entire debutanization
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processes. Data from these sensors include measurements of input and output flows,
temperatures, and pressures across the whole refinery. These are used in feedback loops to
maintain the process stable and control the system dynamics close to the set-point values
that the process engineers have selected for seamless plant operation. Although rich sensor
data exists, we only obtained the data from the temperature and the pressure sensors on
the top of the debutanizer columns. Although a limited number of sensors was provided,
our proposed approach presents excellent results as shown in Section 5.

3.3. Relevant Physical and Chemical Principles and Laws

In our use case, we have sensor data for the temperature and pressure measurement.
To formalize meaningful features enabling the models to predict C5 content, we have
considered the following laws and equations from physics:

• Raoult’s law states that the total pressure of a component equals the vapor pressure
of its pure components multiplied by their mole fraction (see Equation (1));

• Antoine’s equations provide a relationship between the vapor pressure of a pure
component and three empirically measured constants at a given temperature (see
Equation (2));

• Combined Gas Law states that the ratio of the product of pressure and volume and
the absolute temperature of a gas equal a constant (see Equation (3));

• Clausius-Clapeyron relation describes pressure at a given temperature T2 if the
enthalpy of vaporization and vapor pressure are known at some other temperature T1
(see Equation (4))

P = P1 · x1 + . . . + Pn · xn (1)

Equation (1): Raoult’s law. P refers to pressure, x refers to mole fraction, and the n
indicates different mixture components.

log10P =
A˘B

C + T
(2)

Equation (2): Antoine’s equation. P refers to pressure, T refers to temperature. A, B, C
are empirical, component specific constants.

k =
P ·V

T
(3)

Equation (3): Combined Gas Law equation. P refers to pressure, V refers to volume,
and T refers to temperature. k is a constant.

ln
(

P1

P2

)
= − L

R
·
(

1
T2
− 1

T1

)
(4)

Equation (4): Clausius-Clapeyron relation. P refers to pressure, T refers to temperature,
L is the specific latent heat of the substance, and R is the specific gas constant.

For the case study, we obtained data from sensors P1 and T2 of the debutanizer unit
(in the Figure 1); while we missed sensor readings from T1 and P2.

Not having both temperature and pressure at a given point of the debutanizer column
prevents us from using the Ideal Gas Law equation to compute the gas molar weight (see
Equation (5)) of the mixture. The gas molar weight could provide further insights on the
mixture composition using the gas molar weight equation (see Equation (6)). The gas
molar weight equation expresses that the gas molar weight equals to the sum of the molar
weights of the pure components multiplied by their mole fraction.

P ·V = n · R · T (5)

Equation (5): Ideal Gas Law. P stands for pressure, V stands for volume, n represents
the amount of substance, R is the ideal gas constant, and T corresponds to the temperature.
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M = M1 · x1 + . . . + Mn · xn (6)

Equation (6): Molar weight equation. M stands for molar weight, x represents mole
fractions, while the subindexes indicate different mixture components.

LPG specifications require LPG to have a mixture of propane and butane, with no
more than 2% of the volume of five carbon components (C5) and no more than 5% of
the volume of two and five carbon components (C2 and C5). Though many possible
components have two and five carbons, we decided to approximate them as a single
pure component. Considering the laws, equations, and restrictions described above, we
can derive a set of equations, which provide meaningful cues on the expected mixture
composition, and thus drive better forecasts. e.g., from Equation (1) and approximating the
LPG composition to the four elements described above, we obtain that C5 proportion can
be expressed as Equation (7). Although pressure is known from the sensor readings (P1),
we do not know the exact proportion of propane and butane. We also miss sensor data
regarding the temperature at the same point where the pressure is sensed (T1). Considering
that the relationship between temperature and pressure is linear, and given a snapshot of
sensor data, we approximate T1 based on P1 and T2. Such an approximation allows us to
compute saturation pressures for pure LPG components based on Antoine’s equations (see
Equation (2)). Considering various scenarios of possible LPG composition, we compute
features (see Section 4.3) signaling expected pressure for given conditions and how it
compares to the pressure sensed in the debutanizer unit. When considering the constants
for Antoine’s equations, we approximated two carbon hydrocarbon elements with methyl-
disulfide (C2H6S2), and five carbon hydrocarbon elements with pentane (C5H12)). When
doing so, we considered the vaporization temperature and sulfur content (sulfur is removed
in later stages).

xC5 =
P− (PB · xB + PP · xP + PC2 · (1− xB − xP))

PC5 − PC2
(7)

Equation (7): Estimated C5 content. We obtain P from sensor data, Pi can be computed
based on a given temperature, xB and xP can be approximated to LPG specification, or
other useful values.

4. Methodology
4.1. Data Preparation

To realize the proposed machine learning models, we used data provided by Tüpras.
The data included temperature and pressure sensor data, and 263 laboratory measurements
(167 measurements from the debutanizer Unit A, and 96 from the debutanizer Unit B), all
sampled simultaneously at irregular day intervals. We consider that the irregular sampled
data should not affect the machine-learning model training since temperature and pressure
sensor inputs are used to estimate LPG C5 content. As described in Section 3, experts
informed us that light components, such as C5, do not vary much between feedstocks. The
debutanizer follows a previous distillation phase, where LPG is separated from the rest of
crude oil derivatives. Therefore, the debutanizer’s operational pressure and temperature
are used to influence the observed LPG C5 concentration.

We found that sensor data were available at different frequencies when creating the
dataset for training machine-learning models. Although some sensors provided readings
every five seconds, others provided data at a minute level. We thus resampled all sensor
data at a minute level and set all values to second zero. When resampling, we considered
the last sensor reading. We chose to impute values using forward filling for missing values,
considering that missing sensor readings are most likely to have a value similar to the last
one observed. Since we had no information regarding set-point configurations on past
operations, we ran a change level detection algorithm on sensor reading time series. The
algorithm computed the mean of the past sensor readings and compared the value to the
new sensor reading. If the new reading was above a certain threshold, we considered a
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new set-point was set. We empirically tried different threshold values and obtained the
best results, corroborated with plots manual inspection, by setting it to 4%. In Figure 2A,
we provide an example of three time series of sensor data, enclosing some level changes
within dashed squares. In Figure 2B, we show two plots that illustrate how the change
level detector works. The plot at the top shows average signal values, while the plot at the
bottom shows the residual, computed as the difference between the new sensor reading
and the average signal value.

Figure 2. (A) shows a plot with three sample sensors timeseries. The dashed squares enclose some
of the change levels observed in those time series. (B) shows two plots, related to the change level
detector: on the top we observe the signal, and on the bottom the residual. If the residual exceeds
certain threshold, a new interval is created.

Experts instructed us that the timestamps from laboratory samples did not match
sensor data timestamps. To match them, timestamps from laboratory samples had to be
transposed four to five hours earlier. Since accurate data regarding time transposition was
missing, we decided to consider sensor values measured in 15 minutes slots for a time
range of an hour and a half (see Figure 3). Since operational conditions change when a
new set-point is given, we computed the median sensor value since the last change level
detected and the upper bound time considered to match the laboratory reading.

Figure 3. Timestamp conciliation between sensor and laboratory sample timestamps, based on
insights provided by experts. Since a time range is provided, we decided to sample sensor values
in the given interval every 15 minutes, adding a 15 minutes tolerance at the interval edges. Times
provided in this example do not correspond to real timestamps in data.

4.2. Data Analysis

To perform our research, we focused on the data provided from the two LPG debu-
tanizer units. We obtained a total of 263 laboratory analysis results: 167 for Unit A and 96
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for Unit B. Sensor reading values were attached to them through the procedure described
in the previous subsection. We observed that only Unit A had pentane concentrations that
exceeded the allowed out-of-specification threshold, reaching a total of 14 off-specification
events. We provide the summarized statistics of the sensor readings and target values in
Table 1.

Table 1. Description statistics for sensor and laboratory analysis data obtained for debutanizer Unit A and Unit B.

Unit A Unit B

Mean Stdev min 25% 50% 75% Max Mean Stdev min 25% 50% 75% Max

P1 (kg/cm2) 7.42 0.29 6.54 7.28 7.43 7.60 8.32 4.98 3.84 0.00 0.00 7.61 8.02 8.78

T2 (°C) 62.66 19.82 0.00 66.17 67.41 69.13 89.70 35.99 30.84 0.00 0.00 58.20 61.38 80.36

C5 (%) 0.63 1.15 0.00 0.02 0.17 0.70 6.52 0.04 0.11 0.00 0.00 0.00 0.03 0.74

4.3. Feature Creation

When creating features for our models, Raoult’s law and the gas molar weight equation in
Section 3.3 assume that all the components and proportions of a given gas are known to com-
pute the final pressure and molar weight. Although specifications indicate that no more than 2%
of the LPG volume is compound by C5 hydrocarbons and that the sum of C2+C5 hydrocarbons
must not exceed 5% of the LPG volume, a wide range of possible mixture proportions is ob-
served in reality. In some scenarios, the C5 proportion exceeds the specifications, which is detri-
mental to propane and butane content. The same is observed for C2 content. In our model, we
decided to consider five hypothetical LPG compositions as described in Table 2. Our hypothesis
is that such simplifications could be useful towards understanding the real LPG composition
given temperature and pressure sensor readings. To compute specific pressures given Antoine’s
equations, and given the wide variety of C2 and C5 components, we approximated them with a
single type of chemical compound: methyl-disulfide (C2H6S2), and pentane (C5H12). The con-
stants for Antoine’s equations were obtained from the National Institute of Standards and Tech-
nology (https://webbook.nist.gov/ (accessed on 23 October 2021)), and the University of Mary-
land (https://user.eng.umd.edu/~nsw/chbe250/antoine.dat (accessed on 23 October 2021)),
which cite the following scientific literature sources: [74–81].

Table 2. Description of sample mixtures considered to compute expected pressure for certain
temperature, given the mixture composition and constants from Antoine’s equations.

LPG Sample Mixture C2H6S2 C3H8 C4H10 C5H12

1 0.000 0.485 0.505 0.010

2 0.000 0.480 0.500 0.020

3 0.030 0.465 0.485 0.020

4 0.000 0.465 0.485 0.050

5 0.000 0.455 0.475 0.070

https://webbook.nist.gov/
https://user.eng.umd.edu/~nsw/chbe250/antoine.dat
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Figure 4. Schematic diagram of an LPG debutanizer column. In the diagram we reference two
locations on which the sensors are placed. In this research, we developed models that take into
account only sensors P1 and T2.

For each of these scenarios, we estimated the T1 values using the Clausius-Clapeyron
relation based on the enthalpy of vaporization we computed for a snapshot of data provided
in debutanizer unit diagrams (see Figure 4). By analyzing temperature and pressure for
three segments of measurements, we identified that high or low C5 content is likely
associated with certain pressure thresholds. We thus created dummy variables considering
those thresholds.

In Table 3 we describe some of the features we developed for our machine learning
models. We grouped then in Feature Groups, based on their common characteristics. Al-
though features from Features Group 1 correspond to raw sensor readings, the rest of the
features was developed based on physical principles and equations presented in Section 3.3.
Features corresponding to Features Group 2 indicate the expected vapor pressure at P2 for
the sensed temperature at T2, considering the mixtures from Table 2. Features Group 3
groups three categorical features defined in relation to P1, where thresholds were defined
based on average P1 pressure values and standard deviations of each group and their
relation to measured LPG C5 content. The features in Features Group 4 are analogous to
the features from the Features Group 2, computing the expected T1 temperature based on
pressure P1, for LPG mixtures specified in Table 2. These features are used to compute
the Features Group 5 when contrasted with sensed pressure at P1. The Features Group 6
computes the ratio between the estimated T1 temperature, and the pressure at P1. Finally,
Features Group 7 indicates whether the ratio between the estimated temperature T1 and
pressure P1 is greater than the value measured from the diagrams obtained under normal
operating conditions.
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Table 3. Some of the features we created for the machine learning models. spr abbreviates saturation pressure ratio, while spt
abbreviates saturation pressure total.

Features Group (FG) FG ID Feature Description Type

Sensor reading values 1
P1 Pressure measurement from

sensor P1 Real number

T2 Temperature measurement
from sensor T2 Real number

Expected mixture vapor saturation
pressure for temperature T2 2

spt002 Mixture #1 Real number

spt0 Mixture #2 Real number

spt1 Mixture #3 Real number

spt2 Mixture #4 Real number

spt3 Mixture #5 Real number

spt4 Mixture #6 Real number

Pressure P1 in range 3

p < 7.06 Pressure below 7.06 kg/cm2 Boolean

p < 7.14 Pressure below 7.14 kg/cm2 Boolean

p > 7.63 Pressure above 7.63 kg/cm2 Boolean

Expected T1 temperature for mixture 4

T1-spt1 Mixture #3 Real number

T1-spt2 Mixture #4 Real number

T1-spt3 Mixture #5 Real number

T1-spt4 Mixture #6 Real number

Relative pressure, comparing pressure
P1 and expected mixture pressure for

temperature T2.
5

spr002 spt002/P1 Real number

spr0 spt1/P1 Real number

spr1 spt2/P1 Real number

spr2 spt3/P1 Real number

spr3 spt4/P1 Real number

spr4 spt5/P1 Real number

Ratio between estimated T1 temperature for
mixture, and the P1 pressure. 6

T1/P1-spt1-T2 Mixture #3 Real number

T1/P1-spt2-T2 Mixture #4 Real number

T1/P1-spt3-T2 Mixture #5 Real number

T1/P1-spt4-T2 Mixture #6 Real number

Categorical feature indicating whether the relationship between
estimated T1 temperature and P1 pressure is above or below the
value measured from normal operating conditions, from values

obtained in diagrams provided.

7

T1/P1-spt1.vref Mixture #3 Boolean

T1/P1-spt2.vref Mixture #4 Boolean

T1/P1-spt3.vref Mixture #5 Boolean

T1/P1-spt4.vref Mixture #6 Boolean

We created a total of 198 features. To avoid overfitting the machine learning models,
we selected only K features, obtaining K from

√
N, where N is the number of instances in

the training subset, as suggested by [82]. Feature selection was performed by computing
their mutual information [83], and selecting the top K most informative ones. We describe
the correlation between the selected features and target C5 content values we aim to forecast
in Figures 5–7.
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Figure 5. Feature correlation for ten selected features in each case, when forecasting the amount
of C5 present in distilled LPG at the end of the distillation process in the debutanizer columns, for
Unit A. On (A) we present feature correlations for Experiment 1, while on (B) we present feature
correlations for Experiment 2.

Figure 6. Feature correlation for ten selected features in each case, when forecasting the amount of C5
present in distilled LPG at the end of the distillation process in the debutanizer columns, for Unit B.
On (A) we present feature correlations for Experiment 1, while on (B) we present feature correlations
for Experiment 2.

Figure 7. Feature correlation for ten selected features in each case, when forecasting if the amount of
C5 present in distilled LPG at the end of the distillation process in the debutanizer columns remains
within the required specification thresholds, for Unit A. On (A) we present feature correlations for
Experiment 1, while on (B) we present feature correlations when considering Experiment 2.

Figure 5. Feature correlation for ten selected features in each case, when forecasting the amount
of C5 present in distilled LPG at the end of the distillation process in the debutanizer columns, for
Unit A. On (A) we present feature correlations for Experiment 1, while on (B) we present feature
correlations for Experiment 2.

Appl. Sci. 2021, 1, 0 14 of 26

Figure 5. Feature correlation for ten selected features in each case, when forecasting the amount
of C5 present in distilled LPG at the end of the distillation process in the debutanizer columns, for
Unit A. On (A) we present feature correlations for Experiment 1, while on (B) we present feature
correlations for Experiment 2.

Figure 6. Feature correlation for ten selected features in each case, when forecasting the amount of C5
present in distilled LPG at the end of the distillation process in the debutanizer columns, for Unit B.
On (A) we present feature correlations for Experiment 1, while on (B) we present feature correlations
for Experiment 2.

Figure 7. Feature correlation for ten selected features in each case, when forecasting if the amount of
C5 present in distilled LPG at the end of the distillation process in the debutanizer columns remains
within the required specification thresholds, for Unit A. On (A) we present feature correlations for
Experiment 1, while on (B) we present feature correlations when considering Experiment 2.

Figure 6. Feature correlation for ten selected features in each case, when forecasting the amount of C5
present in distilled LPG at the end of the distillation process in the debutanizer columns, for Unit B.
On (A) we present feature correlations for Experiment 1, while on (B) we present feature correlations
for Experiment 2.

Appl. Sci. 2021, 1, 0 14 of 26

Figure 5. Feature correlation for ten selected features in each case, when forecasting the amount
of C5 present in distilled LPG at the end of the distillation process in the debutanizer columns, for
Unit A. On (A) we present feature correlations for Experiment 1, while on (B) we present feature
correlations for Experiment 2.

Figure 6. Feature correlation for ten selected features in each case, when forecasting the amount of C5
present in distilled LPG at the end of the distillation process in the debutanizer columns, for Unit B.
On (A) we present feature correlations for Experiment 1, while on (B) we present feature correlations
for Experiment 2.

Figure 7. Feature correlation for ten selected features in each case, when forecasting if the amount of
C5 present in distilled LPG at the end of the distillation process in the debutanizer columns remains
within the required specification thresholds, for Unit A. On (A) we present feature correlations for
Experiment 1, while on (B) we present feature correlations when considering Experiment 2.

Figure 7. Feature correlation for ten selected features in each case, when forecasting if the amount of
C5 present in distilled LPG at the end of the distillation process in the debutanizer columns remains
within the required specification thresholds, for Unit A. On (A) we present feature correlations for
Experiment 1, while on (B) we present feature correlations when considering Experiment 2.



Appl. Sci. 2021, 11, 11790 15 of 26

4.4. Machine-Learning Model Development
4.4.1. Regression Machine Learning Models

Forecasting LPG C5 content solely from temperature and pressure data is a challenging
task. In Figure 8, C5 content could reach very disparate values: from values close to zero
to a range of valid values when considering the LPG specifications, and some peaks
corresponding to samples with C5 concentrations well above the specification ranges. In
our research, we developed and compared six models. These models include two baseline
models and four models that aim to provide enhanced forecasts, and which we describe
below:

• Baseline 1 (C5 median): our prediction is the median of C5 values observed in the
data set for model training;

• Baseline 2 (LiR): linear regression to predict C5 content based on raw temperature
and pressure sensor measurements (P1 and T2 from Figure 1, described in Feature
Group ID #1 at Table 3);

• Model 1 (LiR): linear regression considering raw sensor measurements of P1 and T2
sensors at fifteen-minute intervals (see Figure 1, and all features described in Table 3),
for the time range as presented in Figure 3;

• Model 2 (SVR): Support Vector Regressor [84], which takes into account most relevant
features assessed over all created features;

• Model 3 (MLPR): Multi-layer Perceptron regressor [85], which takes into account
most relevant features assessed over all created features;

• Model 4 (VR): composite model introduced in Figure 9, and described in detail later
in this section. The model takes into account most relevant features assessed over all
created features.
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Figure 9. To estimate C5 content, we created a voting regressor that considers only sensor data as
input. Regressors (A) and (B) correspond to CatBoost models with different optimization objectives:
(A) optimizes against RMSE, penalizing large errors, while (B) optimizes against MAE to achieve
best median performance. Outputs from models (A), and (B) are weighted by the voting regressor
(C), to create the final forecast.

We expect that most of the time, C5 content levels remain within a threshold. Thus,
predicting the median of C5 content observed in the past (Baseline 1) provides a realistic
estimate that is not sensitive to outliers. Furthermore, we expect good machine learning
models to surpass such a baseline, showing they learned patterns that allow more precise
forecasts. Although the Baseline 2 (LiR) is a linear regression model that forecasts C5 content
based only on raw temperature and pressure readings obtained from two sensors, Model 1
(LiR) provides insights on how the forecasting quality is improved by introducing a more
extensive set of features (all features presented in Table 3), considering Roult’s law and
Antoine’s equations, given the assumptions and simplifications described in Section 4.3.
Model 2 (SVR) and Model 3 (MLPR) were built based on the SVR and MLPR algorithms,
which were frequently reported in the related work. We instantiated the Model 2 (SVR)
model with a radial basis function kernel, using an epsilon value of 0.1 and non-scaled L2
regularization. We did not impose constraints on the number of iterations required by the
solver. Model 3 (MLPR) was instantiated with a single hidden layer of a hundred neurons,
using a ReLU activation [86] and the Adam solver [87]. The learning rate was set to a fixed
constant (0.001), and we trained it for 300 iterations. A validation set was created randomly
sampling 0.1 of the training set.

We designed Model 4 (VR) (see Figure 9) as a voting regressor (VR) [88] that takes the
input from four estimators to decide on the final forecast. Two estimators are CatBoost [89]
models ((A) and (B)), each of them optimized with a different metrics function. (A) is
optimized for the Root Mean Square Error (RMSE) metric, which tends to give more
weight to points further away from the mean, and thus focuses on better adjusting off-
specification values. On the other side, (B) is optimized for the Mean Absolute Error (MAE),
which is not sensitive to outliers and ends up providing better estimates on the usual
C5 levels. For both models, we use the expectile loss [90], which places unequal weights
on disturbances. The expectile level (α) represents the center of mass of a probability
distribution. The probabilities to the right are measured with α, while the probabilities to
the left are measured with 1 − α [91]. Providing an asymmetric penalization of errors for
the scored instances emphasizes instances whose output was not properly learned and
yielded a greater forecast error. Both estimators are fed to the voting regressor, which issues
a final forecast.

It is important to highlight that though C5 content data are available from laboratory
analysis, we avoid using features based on past C5 measurements to ensure that the final
model can load the sensor data and provide real-time C5 content estimates.
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4.4.2. Classification Machine Learning Models

Forecasting if C5 content is off specification is a challenging task given the strongly
imbalanced data. Only 14 out of 167 measurements in Unit A corresponded to such events
in our particular use case, while no such events were registered in Unit B. In our research,
we compared six models; two baseline models and four models that aim to provide better
predictions:

• Baseline 1 (zero forecast): we predict no off-spec occurrence takes place;
• Baseline 2 (LgR): logistic regression to predict C5 content based on raw temperature

and pressure sensor measurements (P1 and T2 from Figure 1, described in Feature
Group ID #1 at Table 3);

• Model 1 (LgR): logistic regression considering raw sensor measurements of P1 and T2
sensors at fifteen-minute intervals (see Figure 1), and all features described in Table 3,
for the time range as presented in Figure 3;

• Model 2 (SVC): Support Vector Classifier [84], which takes into account most relevant
features assessed over all created features;

• Model 3 (MLPC): Multi-layer Perceptron Classifier [85], which takes into account
most relevant features assessed over all created features;

• Model 4 (CatBoost): a CatBoost classifier with a Focal loss [92], which provides
an asymmetric penalization to training instances, focusing more on those that are
misclassified. The model takes into account most relevant features assessed over all
created features.

We expect that most of the time, C5 content levels remain within the required specifi-
cations. Thus, predicting that no off-spec event takes place (Baseline 1) provides a realistic
estimate that is accurate in all cases, except for a handful of cases where such an anomaly
takes place. We expect the machine learning models to surpass such a baseline, showing
they can accurately predict off-spec events, without introducing many false positives and
negatives. The Baseline 2 (LgR) and Model 1 (LgR) were initialized with the same parameters,
using a limited-memory Broyden–Fletcher–Goldfarb–Shannon solver algorithm [93–96],
along with a L2 regularization. In both cases, a class balancing strategy was used to
weights classes inversely proportional to class frequencies. Model 2 (SVC) was initialized
with a radial basis function kernel and epsilon value of 0.1 and L2 regularization. We did
not constrain the number of solver iterations. We initialized the Model 3 (MLPC) with a
single hidden layer of a hundred neurons, with a ReLU activation and Adam solver. We
used a constant learning rate (0.001) and trained the model over 300 iterations, with a
validation set obtained by random sampling 0.1 of the training set. Finally, the CatBoost
model was initialized with a Focal loss, growing asymmetric trees, a depth of six nodes,
and a maximum number of 64 leaves. We trained the model over a thousand iterations,
with a learning rate of 0.0299 evaluating against the AUC ROC metric. In all cases, we
standardized features by removing the mean and scaling them to unit variance.

When building the classification models, we avoided using features based on past C5
measurements to ensure the models consume only data that can be provided in real time,
and thus issue real-time forecasts.

5. Experiments and Results

To evaluate the models presented in Section 4.4, we ran a repeated ten-fold cross-
validation [97], executing 50 cross-validation runs. We conducted four experiments: two for
regression models and two for classification models. Either for regression and classification,
the experiments consisted of training the model only with historical data of the debutanizer
unit we aim to predict for (Experiment 1), and to enrich the model validation with the data
available from another debutanizer unit (Experiment 2). We present the corresponding
cross-validation setting in Figure 10. We ensure results from both experiments are compa-
rable by preserving the same cross-validation test sets among both experiments. We also
assessed if the differences in results obtained for the different models were statistically
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significant. To that end, we executed the Wilcoxon signed-rank test [98] and tested for
significance at a 95% level.
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Figure 10. We pose two experiments: Experiment 1 trains models only with data of the debutanizer
unit we aim to predict for (A), while Experiment 2 enriches the training set with data from other
debutanizer unit (B).

5.1. Regression Models

When implementing the experiments for the regression models presented in
Section 4.4.1, we measured MAE and RMSE metrics. We present the results in Tables 4 and 5.
From Experiment 1, we observed the best overall performance was achieved with Model 4
(VR), which demonstrates the best performance for all the scenarios except for one (RMSE
for Unit B), where it achieved the second-best prediction. This performance was nearly
matched by Baseline 1 (C5 median), which achieved the best performance in three cases: Unit
B, and MAE for Unit A. We consider the Model 2 (SVR) was the third-best model among
the evaluated ones, achieving the second-best prediction in all cases, except for MAE at
Unit A, where it matched the best performance displayed by Model 4 (VR) and Baseline
1 (C5 median). Moreover, we found the Model 1 (LiR) demonstrated a significantly worse
performance, which we attribute to the feature selection. We ground this conclusion on the
fact that a better result was obtained by Baseline (LiR), and while some improvement was
observed when augmenting the data in Experiment 2, it did not match the performance
of the rest of the models. The best overall performance for Experiment 2 was achieved by
Model 4 (VR), which achieved the best performance at Unit A, and second-best for Unit B.
We consider the overall second-best performance was achieved by Baseline 1 (C5 median),
which had the best performance in Unit B, and second-best considering MAE at Unit A.

Figure 10. We pose two experiments: Experiment 1 trains models only with data of the debutanizer
unit we aim to predict for (A), while Experiment 2 enriches the training set with data from other
debutanizer unit (B).

5.1. Regression Models

When implementing the experiments for the regression models presented in
Section 4.4.1, we measured MAE and RMSE metrics. We present the results in Tables 4 and 5.
From Experiment 1, we observed the best overall performance was achieved with Model 4
(VR), which demonstrates the best performance for all the scenarios except for one (RMSE
for Unit B), where it achieved the second-best prediction. This performance was nearly
matched by Baseline 1 (C5 median), which achieved the best performance in three cases: Unit
B, and MAE for Unit A. We consider the Model 2 (SVR) was the third-best model among
the evaluated ones, achieving the second-best prediction in all cases, except for MAE at
Unit A, where it matched the best performance displayed by Model 4 (VR) and Baseline
1 (C5 median). Moreover, we found the Model 1 (LiR) demonstrated a significantly worse
performance, which we attribute to the feature selection. We ground this conclusion on the
fact that a better result was obtained by Baseline (LiR), and while some improvement was
observed when augmenting the data in Experiment 2, it did not match the performance
of the rest of the models. The best overall performance for Experiment 2 was achieved by
Model 4 (VR), which achieved the best performance at Unit A, and second-best for Unit B.
We consider the overall second-best performance was achieved by Baseline 1 (C5 median),
which had the best performance in Unit B, and second-best considering MAE at Unit A.
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Table 4. Experiment 1 results. Mean RMSE and MAE values we obtained for different models with
a ten-fold cross-validation, repeated 50 times. Best results are bolded, second-best are reported in
italics. The results within the same column, which have no statistically significant difference between
them when tested with a Wilcoxon paired rank test at a 95% confidence level, are marked with *
and **.

Model
Unit A Unit B

RMSEmean MAEmean RMSEmean MAEmean

Baseline 1 (C5 median) ** 1.1179 * 0.6028 0.1174 * 0.0853

Baseline 2 (LR) ** 1.1794 0.7601 1.4150 0.7248

Model 1 (LR) 1632.9693 560.4650 96826.5563 46730.6566

Model 2 (SVR) * 1.0754 * 0.6087 * 0.1240 0.0991

Model 3 (MLPR) * 1.0728 0.7122 0.2115 0.1424

Model 4 1.0352 * 0.6127 * 0.1201 * 0.0871

Table 5. Experiment 2 results. Mean RMSE and MAE values we obtained for different models with
a ten-fold cross-validation, repeated 50 times. Best results are bolded, second-best are reported in
italics. The results within the same column, which have no statistically significant difference between
them when tested with a Wilcoxon paired rank test at a 95% confidence level, are marked with * and
**. The arrows indicate whether the mean result improved (↑), or degraded (↓) when compared to
Experiment 1.

Model
Unit A Unit B

RMSEmean MAEmean RMSEmean MAEmean

Baseline 1 (C5 median) 1.1760↓ 0.6141↓ 0.1152↑ 0.0818↑

Baseline 2 (LR) 1.0603↑ 0.7009↑ ** 0.2126↑ 0.1978↑

Model 1 (LR) 1198266158.9503↓ 411001902.3054↓ ** 0.2753↑ 0.1900↑

Model 2 (SVR) 1.1098↓ 0.6193↓ * 0.1287↓ 0.1021↓

Model 3 (MLPR) 1.0771↓ 0.7234↓ 0.2044↑ 0.1581↓

Model 4 0.9655↑ 0.5743↑ * 0.1270↓ 0.0852↑

When comparing results from both experiments, we observed Model 4 (VR) displayed
the best performance, surpassing the Baseline 1 (C5 median). Model 4 (VR) is used to
predict the C5 peaks providing good forecasts for low C5 levels, which reflects on the
close results when compared to Baseline 1 (C5 median). Although the SVR algorithm is
frequently reported in the literature, it achieved the third-best performance in Experiment
1 and degraded in Experiment 2. Using data from both units to train the models improved
the performance of Baseline 2 (LiR) and Model 4 (VR) in all cases. It also improved the
performance of Model 1 (LiR) for Unit B, and degraded the performance of Model 3 (MLPR)
in all cases, except when measuring RMSE for Unit B.

Finally, we assessed which features were considered most informative by the feature
selection criteria for both experiments. We found that from Experiment 1, the most relevant
features were the pressure sensor readings, features from Feature Group 6 (ratio between
expected T1 temperature and P1 pressure, for the given LPG mixtures—see Table 3), and
categorical features indicating whether the pressure sensor readings are below 7.14 kg/cm2,
or above 7.63 kg/cm2. However, the set of relevant features in Experiment 2 changed.
Among the most important ones, we found those from Feature Group 2 (expected mixture
saturation vapor pressure for considering temperature T2—see Table 3), and those from
Feature Group 6. Pressure measures were still considered relevant in Experiment 2, but their
importance faded in the presence of the ones mentioned above.
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5.2. Classification Models

When implementing the experiments for the classification models presented in
Section 4.4.2, we measured the AUC ROC metric. From Table 6, we found that the best
classification performance was obtained by Model 4 (CatBoost) in both experiments, with an
AUC ROC of at least 0.7359, and surpassing the second-best model by 0.065 points in the
worst case. However, best results were achieved in Experiment 2.

Table 6. Out-of-specification detection results for Unit A. Mean ROC AUC values we obtained
for different models with a ten-fold cross-validation, repeated 50 times. Best results are bolded,
second-best are reported in italics. The results within the same column, which have no statistically
significant difference between them when tested with a Wilcoxon paired rank test at a 95% confidence
level, are marked with *. The arrows indicate whether the mean result improved (↑), or degraded (↓)
when compared to Experiment 1. Unit B is not reported, since the dataset did not include out-of-spec
measurements for Unit B.

Model
Experiment 1 Experiment 2

AUC ROCmean AUC ROCmean

Baseline 1 (zero forecast) 0.5000 * 0.5000

Baseline 2 (LR) 0.5656 ↑0.5675

Model 1 (LR) 0.6567 ↓0.6059

Model 2 (SVC) 0.4491 * ↑0.4897

Model 3 (MLPC) 0.6709 ↓0.5381

Model 4 (Catboost) 0.7359 ↑0.7670

The second-best model in Experiment 1 was the Model 2 (MLPC), and the Model 1
(LgR) for Experiment 2. When comparing the model performance across experiments, we
observed an increased performance in Experiment 2 for the Baseline 2 (LR) and Model 2
(SVC) models. On the other hand, a decreased discrimination power was measured for
Model 1 (LgR), and Model 3 (MLPC). Model 2 (SVC) performed worse than a zero forecast
in both experiments, but this difference was not statistically significant in Experiment 2.
We hypothesize that the performance decrease in Experiment 2 for certain models can be
related to the stronger class imbalance (8% event occurrence in Experiment 1 is reduced
to 5% event occurrence in Experiment 2). Such imbalance influences the learning of the
algorithms, and most likely affects the discrimination power of the trained models. We
found the differences between results within the experiments were statistically significant,
except between the Baseline 1 (zero forecast) and Model 2 (SVC) in Experiment 2.

Finally, we analyzed which features were considered most informative under the
mutual information criteria for each experiment. For Experiment 1 the most informative
features were the readings from the pressure sensor, categorical features indicating whether
the sensed pressure is below 7.14 kg/cm2, or below 7.06 kg/cm2, and features from Features
Group 4 (see Table 3). This changed for Experiment 2, where the most important features
were related to readings from the pressure sensor and the Features Group 5.

5.3. Explaining Artificial Intelligence Models

Although model accuracy is of great importance, insights on model rationale are
required to assess the main factors driving the forecast are reasonable, and thus the forecast
can be trusted. Although much research in the literature was devoted to global explanations,
we found few authors taking into account the data or model training process. Furthermore,
we found no authors combined insights regarding feature selection, and how relevant the
selected features are to the model across a repeated cross-validation. We therefore propose
a novel visualization that summarizes the aforementioned insights (see Figure 11).
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Figure 11. The visualization summarizes relevant information regarding the dataset, and forecast-
ing model: (A) describes the cross-validation setting, (B) informs most relevant feature concepts
when considering feature selection and model features relevance, (C) details the weight of partic-
ular features within a feature concept, and (D) provides insights regarding values distribution for
sensor data.

Although much research work in the literature has been devoted to global explana-
tions, and some related work focuses on the characteristics of the dataset, little research
has been done on integrating insights regarding the dataset, the experimental setting,
and the resulting model. We therefore propose a novel visualization which combines
the three aforementioned parts. Figure 11A provides a brief description regarding the
experimental setting. In this particular case, it states that the corresponding plots result
from data obtained when training a forecasting model in a repeated 10-fold cross-validation
setting, repeating the cross-validation 50 times. Figure 11B shows a horizontal stacked bar
plot, where the intensity of feature concepts is presented to the users. We consider feature
concepts as semantic abstractions that group certain features based on feature metadata. In
our particular case, such grouping was performed for features computed with the same
formula, but using sensor data at different points in time (see Figure 3). The shades of
gray within the horizontal stacked bars represent how frequently was each feature of the
feature concepts abstraction chosen when performing feature selection, within the 50 times
10-fold cross-validation. The line chart overlayed to the horizontal stacked bar plot informs
how relevant were those feature concepts to the forecasting machine learning models, on
average. Such overlay provides useful information to the machine-learning engineer, who
can remove features found not informative to the model, to give room to better ones. In
this particular case, we found three such cases (p < 7.06, p > 7.63, and p < 7.14), referring
to features with Boolean values, assessing whether the pressure values obtained from
the sensor were above or below certain threshold value. By clicking a particular feature
concept in the horizontal bar stacked plot, the section highlighted in Figure 11C is updated.
Figure 11C enriches the aforementioned view, detailing each feature’s relevance within the
specific feature concept. Finally, the bullet charts in Figure 11D provide insights into the
values distribution for both sensors (P1 and T2). We explain the bullet chart with greater
detail in Figure 12. The bullet chart has three segments, corresponding to quartiles Q1,
Q2 + Q3, and Q4. A vertical bar in the Q2 + Q3 marks the median value, while a dark
horizontal bar within the bullet chart, shows the mean value observed in the readings.
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Figure 12. The bullet chart summarizes the sensor values distribution: three segments, Q1, Q2 + Q3,
and Q4 mark values related to the quartiles; a dark vertical bar within the Q2 + Q3 segment represents
the median value, while the dark horizontal bar within the bullet chart informs the mean reading
value.

6. Conclusions

In this paper, two machine learning models are developed to forecast the concentration
of pentanes (C5) in the LPG debutanization process. The first one is a regression model
that provides pentane concentration estimates. The second one is a classifier that predicts
whether the pentane concentration levels exceed allowed thresholds. Both models were
designed to provide real-time forecasts based on sensor data. The advantages of the models
are that only two sensors are required (temperature and pressure sensors, located at two
distinct points at the top of the debutanizer column). Both models were compared against
several baseline models, and machine learning models developed based on algorithms
cited in the literature.

Our experiments show that the best results for the pentanes concentration estimation
was obtained with a voting regressor, trained with historical data of the debutanizer
unit. The model surpasses the performance achieved by a baseline predicting the pentane
concentration as a median of past values and a linear regressor predicting the concentration
from raw sensor values. When predicting the off-specification detection, best results
were achieved with a CatBoost classifier trained with a focal loss over the data of both
debutanizer units considered in this research. The model achieved an AUC ROC of 0.7670.
In both cases, the addition of data from another debutanizer unit boosted the learning and
consequent performance of most of the models.

In addition to the aforementioned models, we developed a prototype dashboard
that allows visualization of relevant information regarding feature selection, features
relevance to the model, and sensor reading values within which the model was trained.
Such a dashboard is useful to assess strengths, limitations and improvement opportunities
regarding the developed models.

We envision several directions for future research. First, we would like to extend
these experiments to a broader range of debutanizer units. Secondly, we would like to
compare the current approach to more complex settings, where a broader range of sensors
is available. Finally, we consider that this approach can be applied in other industries using
distillation processes and where soft sensors predicting specific substance concentrations
are helpful.
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The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
APC Advanced Process Control
AUC ROC Area Under the Receiver Operating Characteristic Curve
C1 Molecules with a single carbon atom
C2 Molecules with two carbon atoms
C4 Molecules with four carbon atoms
C5 Pentanes
CDU Crude Distillation Unit
FCC Fluid Catalytic Cracker
FG Features Group
LgR Logistic Regression
LiR Linear Regression
LPG Liquified Petroleum Gas
MAE Mean Absolute Error
MLPC Multi-layer Perceptron Classifier
MLPR Multi-layer Perceptron regressor
MPC Multivariable Model Predictive Control
ReLU Rectified Linear Unit
RMSE Root Mean Squared Error
SVC Support Vector Classifier
SVR Support Vector Regressor
VR Voting Regressor
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