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Abstract—Over-the-air computation (AirComp) is a disruptive
technique for fast wireless data aggregation in Internet of
Things (IoT) networks via exploiting the waveform superposition
property of multiple-access channels. However, the performance
of AirComp is bottlenecked by the worst channel condition
among all links between the IoT devices and the access point.
In this paper, a reconfigurable intelligent surface (RIS) assisted
AirComp system is proposed to boost the received signal power
and thus mitigate the performance bottleneck by reconfiguring
the propagation channels. With an objective to minimize the
AirComp distortion, we propose a joint design of AirComp
transceivers and RIS phase-shifts, which however turns out to be
a highly intractable non-convex programming problem. To this
end, we develop a novel alternating minimization framework in
conjunction with the successive convex approximation technique,
which is proved to converge monotonically. To reduce the
computational complexity, we transform the subproblem in each
alternation as a smooth convex-concave saddle point problem,
which is then tackled by proposing a Mirror-Prox method that
only involves a sequence of closed-form updates. Simulations
show that the computation time of the proposed algorithm can be
two orders of magnitude smaller than that of the state-of-the-art
algorithms, while achieving a similar distortion performance.

Index Terms—Over-the-air computation, reconfigurable intel-
ligent surface, successive convex approximation, and Mirror-Prox
method.

I. INTRODUCTION

Driven by the increasing advancement of wireless commu-
nication technologies and the decreasing manufacturing costs,
Internet of Things (IoT) is expected to support ubiquitous
connectivity and automatic transmission for billions of devices
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equipped with sensing and communication capabilities [2].
With limited spectrum resources, it is generally challenging to
achieve efficient wireless data aggregation over a large volume
of IoT devices, which is critical for unleashing the potential of
the distributed sensory data. The conventional “transmit-then-
compute” approach requires an access point (AP) to success-
fully receive the data from each IoT device and then compute
a specific function (e.g., arithmetic mean) of the received
data. This is, however, not spectrum-efficient, especially when
the number of IoT devices is large. Fortunately, over-the-air
computation (AirComp), which integrates the communication
and computation processes, has the potential to achieve ultra-
fast wireless data aggregation in IoT networks. This is accom-
plished by enabling the concurrent data transmissions from all
IoT devices over the same radio channel and exploiting the
waveform superposition property of multiple-access channels
(MACs) at the AP [3], [4], yielding a revolutionary paradigm
of “compute when communicate”.

The study of AirComp can be traced back to the seminal
work [5], which showed that a fast function computation
can be achieved by enabling concurrent analog transmissions.
There is a growing body of studies concentrated on the
transceiver design for AirComp to enable efficient wireless
data aggregation [6]–[10]. In particular, the authors in [6],
[7] proposed optimal transmit power control strategies for
AirComp in single-input single-output (SISO) wireless net-
works with energy-constrained IoT devices. The authors in [8]
studied AirComp in multiple-input single-output (MISO) wire-
less networks, where a novel uniform-forcing transmit design
was proposed to compensate the non-uniform channel fading
among IoT devices. By integrating multiple-input multiple-
output (MIMO) with AirComp, the authors in [9] and [10]
investigated the transceiver design for multi-function compu-
tation and multi-modal sensing, respectively. By exploiting the
property of AirComp, an efficient channel state information
(CSI) estimation strategy was proposed in [10]. Meanwhile,
the authors in [11] proposed a blind MIMO AirComp scheme
to reduce the signaling overhead for CSI estimation. The
authors in [12] proposed an automatic repeat request (ARQ)
based communication scheme to reduce the overhead for CSI
estimation and investigated the tradeoff between the compu-
tation rate and the transmission delay. AirComp was further
extended to multi-hop wireless networks in [13], where the
computation rate for multi-hop AirComp was derived. More
recently, the authors in [14] derived a theoretical bound on the
error of AirComp, where the channel correlation was taken
into account. The authors in [15] considered the AirComp
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with correlated signals from different IoT devices, where both
the theoretical optimal policy and low-complexity algorithm
were developed. By calibrating the transmission timing of
each IoT device, the synchronization issue of AirComp can
be addressed. In case of non-strict synchronization, the authors
in [16] proposed an efficient matched filtering and sampling
scheme to facilitate misaligned AirComp. Besides, the authors
in [17]–[19] exploited the advantages of AirComp to develop
a fast model aggregation scheme to accelerate the conver-
gence of federated learning. According to the aforementioned
studies, AirComp requires the magnitudes of the signals to
be aligned at the AP; thus, the performance of AirComp is
bottlenecked by the worst channel between the IoT devices
and the AP.

Reconfigurable intelligent surface (RIS) is an emerging
technology, which has recently been proposed to tackle unfa-
vorable channel conditions by reconfiguring the radio propaga-
tion environment [20]–[30]. An RIS is a man-made flat surface
composed of many passive reflecting elements, each of which
can independently shift the phase of the impinging waves in
a controllable way [20], [21], thereby constructing a favorable
wireless radio propagation environment. The authors in [22]–
[24] demonstrated that RIS has the ability to significantly
enhance the energy efficiency and spectral efficiency of wire-
less networks. Owing to the aforementioned features, RIS has
been integrated with various wireless technologies, e.g., non-
orthogonal multiple access (NOMA) [25], massive IoT device
connectivity [26], massive MIMO [27], millimeter-wave com-
munications [28], unmanned aerial vehicle communications
[29], and wireless power transfer [30], to further enhance
the network performance and promote emerging applications.
Along with this line, to fully exploit the performance gain
brought by RIS, various efficient channel estimation methods
have been proposed for accurate CSI estimation, e.g., on-
off state control [31], message-passing based algorithm [32],
three-phase pilot-based framework [33], and anchor-assisted
scheme [34]. To account for the imperfect CSI estimation,
the authors in [35] and [36] studied the beamforming and
phase-shift matrix design in RIS-assisted wireless networks by
utilizing the worst-case optimization and stochastic optimiza-
tion, respectively. Besides, the authors in [37] investigated the
power minimization problem in MISO wireless networks with
an uncertain cascaded device-RIS-AP channel, where both
the worst-case optimization and stochastic optimization were
considered.

To leverage the advantages of RIS for enhancing the quality
of the worst channel between the IoT devices and the AP and
in turn mitigating the performance bottleneck of AirComp,
the authors in [1], [38] proposed an RIS-assisted AirComp
system. In these two studies, the alternating semi-definite
relaxation (SDR) algorithm and the alternating difference-of-
convex (DC) algorithm were proposed to jointly optimize the
receive beamforming vector at the AP and the phase-shift
matrix at the RIS. However, both algorithms suffer from high
computational complexity as they need to iteratively solve
the semi-definite programming (SDP) problems. Moreover,
the optimization of the phase-shift matrix in [1], [38] in-
volves feasibility detection that cannot be accurately tackled

by the SDR and DC algorithms. Hence, both algorithms
are not guaranteed to achieve monotonic convergence. This
motivates us to develop a computationally efficient algorithm
with convergence guarantee to achieve efficient wireless data
aggregation in RIS-assisted AirComp systems.

A. Contributions

In this paper, we consider an RIS-assisted IoT network,
where a multi-antenna AP aggregates the sensory data from
multiple IoT devices by using AirComp with the assistance of
an RIS. We evaluate the performance of AirComp in terms of
the computation distortion, which is measured by the mean-
squared-error (MSE). The main objective is to develop a low-
complexity algorithm with convergence guarantee to minimize
the MSE of RIS-assisted AirComp systems. To this end, it is
necessary to jointly optimize the transmit scalars at the IoT
devices, the receive beamforming vector and the denoising
factor at the AP, and the phase-shifts at the RIS. The main
contributions of this paper are summarized as follows:
• We formulate an MSE minimization problem for RIS-

assisted AirComp systems, where the transmit scalars at
the IoT devices, the receive beamforming vector and the
denoising factor at the AP, and the phase-shift matrix at
the RIS are jointly optimized. To tackle the scalability and
convergence issues of existing studies, we transform the
original problem into an equivalent min-max optimization
problem. It turns out to be a highly intractable non-convex
optimization problem due to the non-convex objective
function and the coupled optimization variables.

• We propose a successive convex approximation (SCA)
based alternating minimization (AlterMin) framework to
alternately optimize the receive beamforming vector and
the phase-shift vector. For each optimization problem
in the alternating procedure, we iteratively construct a
convex surrogate for the non-convex objective function
by utilizing the SCA technique. We prove that the pro-
posed framework is guaranteed to converge, which is a
key difference from the existing studies on RIS-assisted
AirComp. Besides, the number of iterations required to
converge for AlterMin is small according to the simu-
lations, which in turn reduces the computation cost. As
the subproblem in each SCA iteration is a non-smooth
convex problem, the conventional algorithms suffer from
high computational complexity.

• As the objective function involves the pointwise maxi-
mum of affine functions, we equivalently transform the
resulting non-smooth convex problem into a smooth
convex-concave saddle point problem by using the
primal-dual transformation. Subsequently, we adopt the
Mirror-Prox method to solve the aforementioned saddle
point problem and derive a closed-form expression for
each update. As a result, the proposed Mirror-Prox based
AlterMin SCA algorithm enjoys a very low computational
complexity.

We conduct extensive simulations to demonstrate the mono-
tonic convergence and the superior performance of the pro-
posed algorithm for RIS-assisted AirComp systems. Results
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Fig. 1: Illustration of an RIS-assisted IoT network, where an AP aggregates
the data from multiple IoT devices using AirComp.
will show that the computational time of the proposed algo-
rithm can be two orders of magnitude smaller than that of the
alternating SDR and alternating DC algorithms [1], [38], while
achieving a similar data aggregation distortion performance in
terms of MSE as these state-of-the-art algorithms. Moreover,
the performance gain of the proposed algorithm in terms of the
computation time increases when the dimensions of the system
parameters (e.g., number of IoT devices, AP’s antennas, and
RIS’s reflecting elements) become larger.

B. Organization and Notations

The reminder of this paper is organized as follows. Section
II describes the system model and the problem formulation.
Section III presents an AlterMin SCA framework for solving
the formulated problem. Section IV provides the Mirror-Prox
method to solve the subproblems in each SCA iteration. The
performance of the proposed algorithm is illustrated in Section
V. Finally, we conclude this paper in Section VI.

Notations: Matrices, vectors, and scalars are denoted by
boldface upper-case, boldface lower-case, and lower-case let-
ters, respectively. (·)H, (·)T, and (·)† stand for Hermitian
transpose, transpose, and conjugate operators, respectively.
‖·‖1, ‖·‖, and ‖·‖∞ denote the `1, `2, and `∞ norm operators,
respectively. The operator | · | denotes the absolute value of a
scalar number. <[·] and =[·] represent the real and imaginary
parts of a complex matrix, vector, or scalar, respectively. E [·]
denotes the expectation of a random variable.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present the system model of an RIS-
assisted AirComp system and formulate an AirComp distortion
minimization problem that requires the joint optimization of
the transmit scalars at the IoT devices, the receive beam-
forming vector and the denoising factor at the AP, and the
phase-shift matrix at the RIS. Subsequently, we discuss the
limitations of the existing methods, which motivate us to
reformulate an equivalent min-max optimization problem.

A. System Model

We consider the uplink transmission of an RIS-assisted
single-cell IoT network consisting of K single-antenna IoT

devices, an AP with M antennas, and an RIS equipped
with N passive reflecting elements, as shown in Fig. 1. We
denote K = {1, 2, . . . ,K} as the index set of IoT devices.
We consider the scenario that the AP, as a fusion center, is
interested in receiving an aggregation (e.g., geometric mean,
arithmetic mean) of the sensory data (e.g., temperature, hu-
midity) from all IoT devices, rather than the individual data
from each IoT device [9]. This process is generally referred to
as wireless data aggregation in IoT networks. By integrating
the computation and communication processes via exploiting
the waveform superposition property of MACs, AirComp is
adopted in this paper to achieve ultra-fast data aggregation by
enabling concurrent transmissions from multiple IoT devices.
We denote zk ∈ C as the representative information-bearing
data at IoT device k. Before transmission, IoT device k
normalizes data zk as information symbol sk ∈ C. Without
loss of generality, we assume that {sk}Kk=1 have zero mean and
unit power, and are independent of each other, i.e., E[sk] = 0,
E[sks

∗
k] = 1, and E[sks

∗
i ] = 0, ∀ k 6= i [6], [7]. The target

function that the AP aims to recover is the summation of the
data from all IoT devices, i.e.,

g =
∑
k∈K

sk. (1)

Based on the principle of AirComp, we assume that all IoT
devices are synchronized and transmitted concurrently to the
AP [9]. With universal frequency reuse, the signal received at
the AP from all IoT devices is given by

y =
∑
k∈K

(hd,k +GΘhr,k)wksk + n, (2)

where wk ∈ C denotes the transmit scalar of IoT device k,
Θ = diag

{
ejθ1 , ejθ2 , . . . , ejθN

}
denotes the diagonal phase-

shift matrix of RIS with 0 ≤ θi < 2π, ∀ i, hd,k ∈ CM×1,G ∈
CM×N , and hr,k ∈ CN×1 denote the channel coefficients of
the links from device k to the AP, from the RIS to the AP, and
from device k to the RIS, respectively, and n ∼ CN (0, σ2IM )
is the additive white Gaussian noise (AWGN) with zero mean
and variance σ2. Each device has a maximum transmit power,
denoted as P . Hence, we have |wk|2 ≤ P,∀ k ∈ K. As various
effective channel estimation methods have been proposed for
RIS-assisted wireless networks [31]–[34], we assume that
perfect CSI is available in our work, as in [22]–[30], [38].
Note that we only need the CSI of the direct link and the
cascaded device-RIS-AP link, rather than that of the separated
device-RIS and RIS-AP links. Besides, we consider block-
fading channels, where the channel gain of each link remains
invariant within one time slot but varies independently across
different time slots. The estimated function at the AP is given
by [17]

ĝ =
1
√
η
mHy

=
1
√
η
mH

∑
k∈K

(hd,k +GΘhr,k)wksk +
1
√
η
mHn, (3)

where m ∈ CM and η denote the receive beamforming vector
and the denoising factor at the AP, respectively.
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We adopt MSE to measure the distortion between the
estimated function (i.e., ĝ) and the target function (i.e., g),
which quantifies the performance of AirComp, given by

MSE(ĝ, g) = E
(
|ĝ − g|2

)
=
∑
k∈K

∣∣∣∣ 1
√
η
mH(hd,k +GΘhr,k)wk − 1

∣∣∣∣2+
σ2‖m‖2

η
. (4)

Motivated by [8]–[10], [17], [38], [39], we adopt the following
uniform-forcing design1 to determine the transmit scalars of
IoT devices

w?k =
√
η

(mH(hd,k +GΘhr,k))†

|mH(hd,k +GΘhr,k)|2
, ∀ k ∈ K. (5)

Due to the maximum transmit power constraint of IoT devices,
i.e., |wk|2 ≤ P , η can be set as

η = P min
k∈K
|mH(hd,k +GΘhr,k)|2. (6)

Therefore, the MSE at the AP can be further written as

MSE(m,Θ) =
‖m‖2σ2

P mink∈K |mH(hd,k +GΘhr,k)|2
. (7)

The MSE given in (7) is determined by the transmit signal-
to-noise ratio (SNR) P

σ2 , the receive beamforming vector m at
the AP, and the composite channel coefficients hd,k+GΘhr,k,
∀ k.

Remark 1. According to (7), the MSE of AirComp is
bottlenecked by the worst channel between the IoT devices
and the AP. Without RIS, i.e., Θ = 0, the channel quality
is only determined by the direct link. In this case, we can
only adjust the transmit power of IoT devices to tackle the
detrimental effects of severe channel fading and path loss.
With the assistance of RIS, the composite channel condition
of each link (e.g., hd,k +GΘhr,k) can be adaptively adjusted
by reconfiguring the phase-shift matrix Θ, which is able
to enhance the channel quality of the link with the worse
channel condition. As a result, the ability of RIS to reconfigure
the propagation environment can be exploited to effectively
mitigate the performance bottleneck of AirComp.

Our goal is to jointly optimize the phase-shift matrix Θ and
the receive beamforming vector m to minimize MSE(m,Θ)
in (7). It is formulated as the following problem

min
m,Θ

‖m‖2σ2

P mink∈K |mH(hd,k +GΘhr,k)|2

s.t. 0 ≤ θi < 2π,∀ i.
(8)

Problem (8) can be equivalently expressed as

min
m,Θ

max
k∈K

‖m‖2σ2

P |mH(hd,k +GΘhr,k)|2

s.t. 0 ≤ θi < 2π,∀ i.
(9)

Since Θ is a diagonal matrix and hr,k is a vector, we
rewrite hd,k +GΘhr,k as hd,k +Gdiag(hr,k)v, where v =

1It is clear that MSE(ĝ, g) ≥ σ2‖m‖2
η

. Given m and Θ, the equal-
ity is achieved when {wk}Kk=1 are set according to (5), which enforces∑
k∈K

∣∣∣ 1√
η
mH(hd,k +GΘhr,k)wk − 1

∣∣∣2 to be zero.

[v1, v2, . . . , vN ] with vi = ejθi , ∀ i. As σ2

P is a constant,
Problem (9) is further equivalent to the following problem in
the sense of having the same optimal solution

min
m,v

max
k

‖m‖2

|mH(hd,k +Gdiag(hr,k)v)|2

s.t. |vi| = 1,∀ i.
(10)

B. Limitations of State-of-the-Art Methods

Most of the existing studies [1], [25], [38] on the joint
design in RIS-assisted wireless networks adopted the alter-
nating SDR and alternating DC algorithms. According to [1],
Problem (10) can be equivalently transformed to Problem (11)
as follows

min
m,v
‖m‖2

s.t. |mH(Gdiag(hr,k)v + hd,k|2 ≥ 1,∀ k,
|vi| = 1, ∀ i.

(11)

Problem (11) can be tackled by alternately solving the follow-
ing two subproblems

min
m
‖m‖2

s.t. |mHhek|2 ≥ 1,∀ k,
(12)

and

find v

s.t. |aH
kv + ck|2 ≥ 1,∀ k,
|vi|2 = 1,∀ i,

(13)

where hek = Gdiag(hr,k)v+hd,k, aH
k = mHGdiag(hr,k), and

ck = mHhd,k. The two non-convex quadratically constrained
quadratic programming (QCQP) problems, i.e., (12) and (13),
were then converted into two SDP problems with rank-one
constraint by using the matrix lifting approach. An intuitive
solution is to apply the SDR technique to convexify the prob-
lems by directly dropping the rank-one constraint, yielding
the alternating SDR algorithm [38]. As an alternative, based
on the fact that the rank-one constraint of a positive definite
matrix is equivalent to the zero-difference between the spectral
norm and trace norm, a DC technique was proposed to tackle
the rank-one constraint, yielding the alternating DC algorithm
[1]. The existing studies that adopted the aforementioned
frameworks suffer from two limitations, i.e., non-guaranteed
convergence and high computation complexity. Specifically,
the optimization of phase-shift vector v involves a feasibility
detection problem, i.e., (13). According to the analysis in [40],
both the alternating SDR and alternating DC algorithms are not
guaranteed to converge. Besides, AirComp is expected to sup-
port wireless data aggregation in high-density IoT networks,
where the number of IoT devices would be large. However,
the aforementioned state-of-the-art methods, i.e., alternating
DC and alternating SDR algorithms, are not scalable because
of their high computational complexity. Especially for the
alternating DC algorithm, a series of SDP problems generated
by the SCA technique need to be solved by the standard
interior-point method [41] at each alternating iteration. The
computation time consumption would be an unaffordable
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burden when the aforementioned algorithms are applied to
solve large-scale optimization problems. The limitations of
the existing studies motivate us to develop a low-complexity
algorithm with a theoretical convergence guarantee for RIS-
assisted AirComp systems.

C. Problem Transformation

To mitigate the aforementioned limitations, in this subsec-
tion, we reformulate Problem (10) as a min-max optimization
problem, which is presented in the following proposition.

Proposition 1. Problem (10) is equivalent to the following
min-max QCQP problem in the sense of optimal solution:

min
m,v

max
k

{
− |mH(hd,k +Gdiag(hr,k)v)|2

}
s.t. |vi| = 1,∀ i,
‖m‖2 = 1.

(14)

Proof. Please refer to Appendix A.

As can be observed from (14), both optimization variables
m and v are involved in the objective function. This transfor-
mation enables us to eliminate the feasibility detection prob-
lem as in [1], and allows us to exploit the monotonicity of the
objective function during alternating minimization. Problem
(14) is still a challenging non-convex optimization problem.
Specifically, solving Problem (14) faces the following three
challenges. First, the optimization variables v and m are
coupled in the objective function. Second, the unit-modulus
constraint on vi, ∀ i and the unit receive power constraint
on m are non-convex. Third, the pointwise maximum of
quadratic terms, i.e., the objective function, is non-convex
and non-smooth. To tackle these issues, we shall propose an
alternating minimization method in conjunction with SCA to
solve Problem (14) in the following section.

III. PROPOSED ALTERMIN SCA FRAMEWORK

In this section, we propose an alternating minimization
method to alternately optimize the receive beamforming vector
m and the phase-shift vector v, resulting in two non-convex
subproblems with respect to m and v, respectively. We then
construct convex approximations for the two yielded subprob-
lems by using SCA.

A. Phase-Shift Vector Optimization

When the receive beamforming vector m is fixed, Problem
(14) is reduced to the following subproblem that requires the
optimization of phase-shift vector v

min
v

max
k

{
−|mH(hd,k +Gdiag(hr,k)v)|2

}
s.t. |vi| = 1,∀ i = 1, . . . , N.

(15)

By denoting ck = mHhd,k and aH
k = mHGdiag(hr,k),

Problem (15) can be rewritten as

min
v

max
k

{
−|ck + aH

kv|2
}

s.t. |vi| = 1,∀ i.
(16)

For simplicity of algorithm design, we further convert Problem
(16) from the complex domain to the real domain. By denoting
ṽ = [<{v}T,={v}T]T ∈ R2N , we obtain the following
problem

min
ṽ

max
k

{
ṽTÃkṽ − 2ṽTbk − |ck|2

}
s.t. ṽ2

i + ṽ2
i+N = 1,∀ i,

(17)

where bk = [<{ckak}T,={ckak}T]T and

Ãk =

[
<
{
−akaH

k

}
−=

{
−akaH

k

}
=
{
−akaH

k

}
<
{
−akaH

k

} ] .
Problem (17) aims to minimize the pointwise maximum of
concave quadratic terms. Solving Problem (17) is challeng-
ing due to the non-convex constraints and the non-convex
objective function. In the following, we tackle the non-convex
constraint by utilizing the convex relaxation technique. Specif-
ically, we relax the unit modulus constraint to ṽ ∈ V , where
V = {ṽ | ṽ2

i + ṽ2
i+N ≤ 1,∀ i = 1, . . . , N}, yielding the

following relaxed problem

min
ṽ

max
k

{
ṽTÃkṽ − 2ṽTbk − |ck|2

}
s.t. ṽ ∈ V.

(18)

On the other hand, the SCA technique is applied to tackle
the non-convexity of the objective function maxk

{
ṽTÃkṽ−

2ṽTbk − |ck|2
}

. In particular, due to the concavity of

{ṽTÃkṽ−2ṽTbk−|ck|2}, we construct its linear upper bound
based on the first-order Taylor approximation as

ṽTÃkṽ − 2ṽTbk − |ck|2 ≤
(
p

(n)
k

)T
ṽ + q

(n)
k ,

where p
(n)
k = 2(Ãkṽ

(n) − bk), q
(n)
k = −(ṽ(n))TÃkṽ

(n) −
|ck|2, and ṽ(n) is the solution obtained at the n-th iteration.
As a result, we have

max
k

{
ṽTÃkṽ − 2ṽTbk − |ck|2

}
≤ max

k

{(
p

(n)
k

)T
ṽ + q

(n)
k

}
.

(19)
Therefore, at the (n + 1)-th iteration, we can replace the
non-convex objective function in Problem (18) by its convex

surrogate maxk

{(
p

(n)
k

)T
ṽ + q

(n)
k

}
. Specifically, at the

(n+ 1)-th iteration, Problem (18) is approximated by the
following subproblem

min
ṽ

max
k

(
p

(n)
k

)T
ṽ + q

(n)
k

s.t. ṽ ∈ V.
(20)

To efficiently solve Problem (18), we resort to iteratively solve
its non-smooth convex approximation problem (20).

B. Receive Beamforming Vector Optimization

When the phase-shift vector v is fixed, (14) can be formu-
lated as an optimization problem with respect to the receive
beamforming vector m as follows

min
m

max
k

{
−|mH(hd,k +Gdiag(hr,k)v)|2

}
s.t. ‖m‖2 = 1.

(21)
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By denoting hk = hd,k +Gdiag(hr,k)v, (21) can be repre-
sented as

min
m

max
k

{
−|mHhk|2

}
s.t. ‖m‖2 = 1.

(22)

The constraint in (22) is non-convex. According to [42],
Problem (22) is equivalent to the following problem

min
m

max
k

{
−|mHhk|2

}
s.t. ‖m‖2 ≤ 1.

(23)

This is because that the constraint should be met with equality
at the optimal point for Problem (23). Otherwise, m could be
scaled up to reduce the objective value, thereby contradicting
the optimality. By defining m̃ = [<{m}T,={m}T]T ∈ R2M ,
we convert Problem (23) from the complex domain to the real
domain to facilitate the algorithm design

min
m̃

max
k

m̃TH̃km̃

s.t. m̃ ∈M,
(24)

where M = {m̃ | ‖m̃‖2 ≤ 1} and

H̃k =

[
<
{
−hkhH

k

}
−=

{
−hkhH

k

}
=
{
−hkhH

k

}
<
{
−hkhH

k

} ] .
To tackle the non-convexity of the objective function of
Problem (24), we shall apply SCA to construct its local convex
approximation. Due to the similar structure of Problem (18)
and Problem (24), the derivation here is similar to that pre-
sented in Section III-A. For completeness, we sketch the main
procedures for solving Problem (24). Starting from an initial
point m̃(0) ∈ M, SCA is applied to generate a sequence of
solutions {m̃(n)} as follows. With the approximated solution
m̃(n) obtained at the n-th iteration, the concave quadratic
function m̃TH̃km̃ can be upper bounded by its linear ma-
jorization. Specifically, we have the following inequality

m̃TH̃km̃ ≤ (2H̃km̃
(n))Tm̃− (m̃(n))TH̃km̃

(n).

By denoting p̄
(n)
k = 2H̃km̃

(n) and q̄
(n)
k =

−(m̃(n))TH̃km̃
(n), we have

max
k

{
m̃TH̃km̃

}
≤ max

k

{
p̄

(n)T
k m̃+ q̄

(n)
k

}
. (25)

Then, m̃(n+1) can be obtained by solving the following non-
smooth convex approximation problem

min
m̃

max
k

p̄
(n)T
k m̃+q̄

(n)
k

s.t. m̃ ∈M.
(26)

C. Convergence Analysis

We recall that Problem (14) is decomposed into two Prob-
lems (18) and (24) with respect ṽ and m̃, respectively, which
are then alternately solved by using SCA. Finally, we project
ṽ to V1 = {ṽ | ṽ2

i + ṽ2
i+N = 1,∀ i}, so as to compensate

the relaxation on ṽ. The overall AlterMin SCA algorithm
for solving Problem (14) is summarized in Algorithm 1. The
convergence of Algorithm 1 is presented in the following
proposition.

Algorithm 1: AlterMin SCA for Problem (14)

Input: Initial point ṽ(0)
(0) , m̃(0)

(0) and threshold ε;
1 Set: l = 0;
2 repeat
3 Set: n = 0;
4 repeat
5 Update ṽ(n+1)

(l) by solving Problem (20);
6 n← n+ 1;
7 until the decrease of objective value of

ṽTÃkṽ − 2ṽTbk − |ck|2 less than ε;
8 Set: ṽ(0)

(l+1) = ṽ
(n)
(l) ;

9 Set: n = 0;
10 repeat
11 Update m̃(n+1)

(l) by solving Problem (26);
12 n← n+ 1;
13 until the decrease of objective value of m̃TH̃km̃

less than ε;
14 Set: m̃(0)

(l+1) = m̃
(n)
(l) ;

15 l← l + 1;
16 until the decrease of objective value{

− |mH(hd,k +Gdiag(hr,k)v)|2
}

less than ε;
17 Project ṽ to set V1.

Proposition 2. The convergence property of Algorithm 1
consists of two parts:
i) In the inner loop (Steps 4-7 and Steps 10-13), i.e., SCA
iteration, the objective values of Problems (18) and (24)
achieved by sequences {ṽ(n)

(l) }
∞
n=0 and {m̃(n)

(l) }
∞
n=0 establish

non-increasing convergent sequences;
ii) In the outer loop (Steps 2-16), i.e., alternating minimization
iteration, the objective value of Problem (14) achieved by the
sequence {ṽ(0)

(l) , m̃
(0)
(l) }
∞
l=0 establish a non-increasing conver-

gent sequence.

Proof. Please refer to Appendix B.

D. Algorithm Discussion

To efficiently solve Problem (14), we still need to design
an efficient algorithm to solve Problem (20) and Problem
(26). However, the objective function maxk{(p(n)

k )Tṽ+q
(n)
k }

of Problem (20) is convex but non-smooth. Intuitively, the
subgradient algorithm as a first-order method can be applied.
However, it requires O

(
1
ε2

)
iterations to attain an ε-optimal

solution [43]. The Nesterov’s smoothing technique in conjunc-
tion with the majorization-minimization (MM) method [44],
[45] can be adopted to solve Problem (20). It attains an ε-
optimal solution within O

(
1
ε2

)
iterations when a quadratic

function is constructed in the majorization step [46]. In ad-
dition, by introducing an auxiliary variable r, Problem (20)
can be equivalently formulated as the following convex QCQP
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problem

min
ṽ,r

r

s.t.
(
p

(n)
k

)T
ṽ + q

(n)
k − r ≤ 0,∀ k,

ṽ ∈ V, r ∈ R.

(27)

Problem (27) can be solved by using the interior-point
method [41], which attains an ε-optimal solution with only
O
(√

N +K log 2(N+K)
ε

)
iterations. However, the time com-

plexity of each iteration is O
(
(N +K)N2 +N3

)
[41]. As

Problem (20) and Problem (26) have a similar form, the
above analysis also applies to Problem (26). Hence, all of the
aforementioned algorithms cannot efficiently solve our prob-
lem when the number of optimization variables is large. This
motivates us to exploit the underlying structure of Problems
(20) and (26) to develop a highly efficient algorithm with a
fast convergence rate and low iteration cost in the following
section.

IV. MIRROR-PROX FOR NON-SMOOTH CONVEX
PROBLEMS

In this section, we aim to develop a low-complexity algo-
rithm to solve the non-smooth convex problems (20) and (26).
We equivalently convert Problems (20) and (26) to the smooth
convex-concave saddle point problems by using the primal-
dual transformation, and then propose to use the Mirror-Prox
method [47] to solve the resulting problems.

A. Mirror-Prox Method for Non-smooth Convex Problem (20)

1) Smooth Saddle Point Problem Formulation: The objec-
tive function of Problem (20) is pointwise maximum of affine
functions. We equivalently convert non-smooth problem (20)
to a smooth convex-concave saddle point problem in Lemma
1.

Lemma 1. (Primal-Dual Transformation) The non-smooth
convex problem (20) is equivalent to the following smooth
convex-concave saddle point problem

min
ṽ

max
y

(
P(n)ṽ + q(n)

)T
y

s.t. ṽ ∈ V, y ∈ Y,
(28)

where P(n) =
[
p

(n)
1 ,p

(n)
2 , . . . ,p

(n)
K

]T
, q(n) =[

q
(n)
1 , q

(n)
2 , . . . , q

(n)
K

]T
, and y is the Lagrangian dual

variable with set Y = {y|y ≥ 0,1Ty = 1,y ∈ RK} being
the feasible domain.

Proof. Please refer to Appendix C.

Different from the Nesterov’s smoothing technique dis-
cussed in Section III-D, which relies on the smoothness param-
eter to balance the tradeoff between approximation accuracy
and computation efficiency, our proposed method is parameter-
free and the resulting smooth saddle point problem (28) is
equivalent to the non-smooth problem (20) rather than an ap-
proximation. By denoting ψ(n)(ṽ,y) :=

(
P(n)ṽ + q(n)

)T
y,

solving non-smooth convex problem (28) is equivalent to
finding a saddle point for the smooth convex-concave function
ψ(n)(ṽ,y) under V × Y .

2) First-Order Optimality Condition: By denoting (ṽ∗,y∗)
as the saddle point of ψ(n)(ṽ,y), we have

ψ(n) (ṽ∗,y) ≤ ψ(n) (ṽ∗,y∗) ≤ ψ(n) (ṽ,y∗) ,∀(ṽ,y) ∈ V×Y.
(29)

The first-order optimality condition [48] of a saddle point for
ψ(n)(ṽ,y) is given by{

∇ṽψ
(n) (ṽ∗,y∗) (ṽ − ṽ∗) ≥0,

−∇yψ
(n) (ṽ∗,y∗) (y − y∗) ≥0,

∀ (ṽ,y) ∈ V × Y.

(30)
By denoting z =

[
ṽT,yT

]T
and

F(z) :=

[
∇ṽψ

(n)(ṽ,y)
−∇yψ

(n)(ṽ,y)

]
=

[
(P(n))Ty

−
(
P(n)ṽ + q(n)

)] ,
the first-order optimality condition (30) can be rewritten in a
more compact form as follows

F (z∗)
T

(z − z∗) ≥ 0,∀ z ∈ V × Y. (31)

Lemma 2. The operator F(z) is monotone and L-Lipschitz
continuous on space V × Y , where V is endowed with `2
norm, Y is endowed with `1 norm, and the Lipschitz parameter
L = maxk{‖p(n)

k ‖}.

Proof. Please refer to Appendix D.

Given the above, Problem (28) is equivalent to the following
variational inequality problem with monotone and L-Lipschitz
continuous operator:

find z∗

s.t. F (z∗)
T

(z − z∗) ≥ 0,∀ z ∈ V × Y,
z∗ ∈ V × Y.

(32)

Remark 2. F(z) can be regarded as a gradient-type
vector field on space V × Y . The variational inequality
F (z∗)

T
(z − z∗) ≥ 0 is similar to the first-order optimality

condition for convex constrained problems, where F resembles
the gradient or subgradient. Hence, an intuitive solution is to
employ the generalized projected gradient method [49] to solve
Problem (32). However, the classical gradient-type algorithm
cannot monitor the local geometry in the non-Euclidean space
[50], thereby, weakening the algorithm performance. This
motivates the Mirror-Prox method, which we shall present as
follows.

3) Mirror-Prox Method: The Mirror-Prox method was
firstly proposed in [47] for solving the Lipschitz continuous
variational inequality problem with convergence rate O

(
1
t

)
.

The effectiveness of the Mirror-Prox method was demonstrated
in [51] by developing a fast algorithm for multicast beam-
forming and antenna selection in massive MIMO wireless net-
works. Specifically, at each iteration, the Mirror-Prox method
updates z through the following two steps

z′t+1 = arg min
z∈V×Y

{D (z, zt) + 〈γF (zt) , z〉} , (33a)

zt+1 = arg min
z∈V×Y

{
D (z, zt) +

〈
γF
(
z′t+1

)
, z
〉}
, (33b)
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Fig. 2: Illustration of the two steps of the Mirror-Prox method in the t-th
iteration.

where D (z, zt) denotes the Bregman distance and γ is a
parameter that is determined by the Lipschitz parameter of
F(z). According to the analysis in [43], [47], we set γ =

1/
(

2 maxk{‖p(n)
k ‖}

)
to achieve the desired convergence rate.

Besides, the use of Bregman distance D (z, zt) is to monitor
the local geometry for improving the algorithm performance
[50]. Specifically, Bregman distance D (z, zt) is induced by
a mirror mapping function Φ(z) : R2N × RK → R for set
V × Y :

D (z, zt) := Φ(z)− Φ(zt)− 〈∇Φ(zt), z − zt〉 . (34)

We select the mapping function according to the structure of
V × Y to attain the goal of capturing the local geometry. We
choose Φ(z) : R2N × RK → R as

Φ(z) :=
1

2
‖ṽ‖2 +

K∑
k=1

yk log yk,

where the first item and the second item are the mirror map-
ping functions for the Euclidean space (i.e., V) and the simplex
space (i.e., Y), respectively. By substituting the expression of
Φ(z) into (34), we have

D (z, zt) =
1

2
‖ṽ − ṽt‖2 +

K∑
k=1

yk log
yk

ykt
−

K∑
k=1

(yk − ykt ),

(35)

where the first item is the Euclidean distance induced by the
first item of Φ(z) , and other two items are the Bregman
distance in the simplex space induced by the second item of
Φ(z).

Remark 3. The update of the Mirror-Prox method has an
additional Step (33b) compared to the mirror descent method
that only requires Step (33a). The computation of z′t+1 in (33a)
is used to find a better direction F

(
z′t+1

)
than the mirror

descent method which is further used to update zt+1, i.e.,
(33b). This process is illustrated in Fig. 2. The Mirror-Prox
method improves the convergence rate from O

(
1√
t

)
achieved

by mirror descent to O
(

1
t

)
by using a more accurate update.

We will show that the updates of (33a) and (33b) are of low
complexity.

4) Implementation Details: At each iteration of the Mirror-
Prox method, we need to efficiently solve Problems (33a) and
(33b). Specifically, by introducing a variable w, the update
of z′t+1 in (33a) can be decomposed into the following three
steps [43]

∇Φ(w) = ∇Φ(zt)− γF (zt) , (36a)

w = ∇Φ−1(∇Φ(zt)− γF (zt)), (36b)
z′t+1 = arg min

z∈V×Y
{D(z,w)} . (36c)

It is clear that (36a) is easy to compute. Furthermore, w in
(36b) can be obtained in a closed form, since ∇Φ(·) and
∇Φ−1(·) can analytically be expressed as

∇Φ(z) =


ṽ

1 + log y1

...
1 + log yK

 ,∇Φ−1(ξ) =


ζ

exp(ν1 − 1)
exp(ν2 − 1)

...
exp(νK − 1)

 ,
where ξ = [ζT,νT]T. Subsequently, we show that the solution
of Problem (36c) also admits a closed form, which involves a
projection problem on V × Y . According to (35), we rewrite
Problem (36c) as

arg min
z∈V×Y

{D(z,w)} = arg min
z∈V×Y

{1

2
‖ṽ − u‖2 +

K∑
k=1

yk log
yk

ek

−
K∑
k=1

(yk − ek)
}
, (37)

where w = [uT, eT]T. Problem (37) can be decomposed
into two independent subproblems with respect to ṽ and y,
respectively, given by

ṽ′t+1 = arg min
ṽ∈V

{
1

2
‖ṽ − u‖2

}
, (38a)

y′t+1 = arg min
y∈Y

{
K∑
k=1

yk log
yk

ek
−

K∑
k=1

(
yk − ek

)}
. (38b)

Problem (38a) can be considered as a projection problem in
the Euclidean space [48]. Therefore, (ṽ′t+1)i, ∀ i, admit the
following expression

(ṽ′t+1)i =

{ ui

(u2
i +u2

N+i)
1
2
, u2

i + u2
N+i ≥ 1,

ui, otherwise.
(39)

Lemma 3. Problem (38b) is a projection problem in the
simplex space. The optimal solution is given by

y∗ =
e

‖e‖1
. (40)

Proof. Please refer to Appendix E.

The above derivation for Problem (33a) can be directly
applied to Problem (33b). The details of the proposed Mirror-
Prox algorithm for solving Problem (32) is summarized in
Algorithm 2.

B. Mirror-Prox Method for Non-smooth Convex Problem (26)
The method proposed for solving Problem (20) can be

readily applied to solve Problem (26). We next sketch the pro-
cess of transforming Problem (26) to its equivalent variational
inequality problem. According to Lemma 1, Problem (26) is
equivalent to the following problem

min
m̃

max
y

(
P̄(n)m̃+ q̄(n)

)T
y

s.t. m̃ ∈M, y ∈ Y,
(41)
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Algorithm 2: Mirror-Prox method for Problem (20)

Input: Initial point z0 =
[
ṽT0 ,y

T
0

]T
, threshold ε, and

stepsize γ = 1

2 maxk{‖p(n)
k ‖}

;

1 for t = 1, 2, . . . , do

2 F(zt) =
[(

(P(n))Tyt
)T
,−
(
P(n)ṽt + q(n)

)T]T;
3 ∇Φ(w) = ∇Φ(zt)− γF (zt);
4 w = ∇Φ−1(∇Φ(zt)− γF (zt));
5 z′t+1 = arg min

z∈V×Y
{D(z,w)};

6 ∇Φ(w) = ∇Φ(zt)− γF
(
z′t+1

)
;

7 w = ∇Φ−1(∇Φ(zt)− γF
(
z′t+1

)
);

8 zt+1 = arg min
z∈V×Y

{D(z,w)};

9 If D(zt, zt+1) less than ε, set z∗ = 1
T

∑T
t=1 zt,

break; else go to Step 1;
10 end

where P̄(n) =
[
p̄

(n)
1 , . . . , p̄

(n)
K

]T
, q̄(n) =

[
q̄

(n)
1 , . . . , q̄

(n)
K

]T
.

By further denoting z̄ =
[
m̃T,yT

]T
, ϕ(n)(m̃,y) =(

P̄(n)m̃+ q̄(n)
)T
y, and

F̄(z̄) :=

[
∇m̃ϕ

(n)(m̃,y)
−∇yϕ

(n)(m̃,y)

]
=

[
(P̄(n))Ty

−
(
P̄(n)m̃+ q̄(n)

)] .
We denote the Lipschitz parameter of operator F̄(z̄) as L̄. Ac-
cording to Lemma 2, we have L̄ = maxk{‖p̄(n)

k ‖}. Problem
(41) can be further transformed to the following variational
inequality problem

find z̄∗

s.t. F̄ (z̄∗)
T

(z̄ − z̄∗) ≥ 0,∀ z̄ ∈M×Y,
z̄∗ ∈M×Y.

(42)

Algorithm 2 can be applied to solve Problem (42) by replacing
z, p

(n)
k , and F(zt) by z̄, p̄

(n)
k , and F̄(z̄t), respectively.

C. Computational Complexity

At each iteration of Algorithm 2, the computation complex-
ity is dominated by Step 2. In Step 2, we take a matrix-vector
multiplication to update operator F(·). For the optimization
of phase-shift vector ṽ ∈ R2N , the computation cost of
operator F(·) in Step 2 is O(NK). Besides, according to
[43], Algorithm 2 can obtain an ε-optimal solution within
O
(
L log(N)

ε

)
iterations. As a result, the computation com-

plexity of Algorithm 2 is O
(
NKL log(N)

ε

)
. In a similar

manner, we can conclude that the computation complexity is
O
(
MKL̄ log(M)

ε

)
for updating m̃. The specific time savings

in our problem achieved by the proposed algorithm will be
further demonstrated in the following section via simulations.

V. SIMULATION RESULTS

In this section, we present sample simulation results to
illustrate the performance of the proposed algorithm for min-
imizing the MSE of the RIS-assisted AirComp systems.

A. Simulation Settings

We consider a three-dimensional (3D) coordinate system.
The AP and the RIS are, respectively, located at (0, 0, 20)
meters and (100, 0, 20) meters, while the IoT devices
are uniformly located within a circular region centered at
(100, 20, 0) meters with radius 20 meters. The antennas
at the AP and the passive reflecting elements at the RIS
are arranged as a uniform linear array and a uniform pla-
nar array, respectively. In the simulations, we consider both
large-scale fading and small-scale fading for all the chan-
nels. The distance-dependent large-scale fading is modeled as
T0(d/d0)−α, where T0 is the path loss at the reference distance
d0 = 1 meter, d denotes the distance between the transmitter
and the receiver, and α is the path loss exponent. We consider
Rayleigh fading for the direct channel. Besides, we consider
Rician fading for the reflecting links with Rician factor β. For
the RIS-AP link (i.e., G), we have

G =
√
T0(dRA/d0)−αRA

(√
β

1 + β
GLoS +

√
1

1 + β
GNLoS

)
,

where GLoS and GNLoS denote the line-of-sight (LoS) and
the non-line-of-sight (NLoS) components, respectively, dRA is
the distance between the RIS and the AP, and αRA is the path
loss exponent. The channel coefficient of the link between IoT
device k and the RIS, i.e., hr,k ∀ k, is generated in a similar
manner as G. We set the path loss exponents of the device-
AP links, the device-RIS links, and the RIS-AP link as 3.8,
2.5, and 2.2, respectively. Unless specified otherwise, we set
β = 3, T0 = −30 dB, P = 30 dBm, σ2 = −90 dBm, and
ε = 10−5.

B. Performance Evaluation
We investigate the convergence performance of the proposed

Mirror-Prox based AlterMin SCA algorithm in Fig. 3. It
can be observed that the MSE of our proposed algorithm
monotonically decreases over the iterations and converges in
a few iterations. In addition, the achieved MSE values of the
proposed algorithms before and after the projection of the
phase-shift vector at the RIS are almost the same. This is
because, in the simulations, the obtained phase-shift vector
always meets the constraints |vi| = 1,∀ i before projection.

We compare the proposed algorithm with the following four
baseline methods.
• Alternating SDR: This method leverages the SDR tech-

nique [22], [38] to optimize m and v alternately. The
Gaussian randomization technique is applied when the
solution returned by the relaxed SDP problem does not
meet the rank-one constraint. The number of randomiza-
tion is set to be 50.

• Alternating DC: This method was proposed in [1], which
reformulates the rank-one constrained SDP problem as
a DC programming problem, followed by using SCA
to obtain the rank-one solution via successively solving
the convex approximation of the DC problem. Our com-
parison with this algorithm is only conducted when the
number of IoT devices is small, i.e., low-density scenario,
due to its high computational complexity.
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Fig. 3: Convergence behavior of the proposed algorithm when N = 50,
M = 10, and K = 200.

• Random phase shift: With this method, the phase-
shift matrix Θ is randomly chosen and kept fixed when
optimizing the receive beamforming vector m via our
proposed algorithm.

• Without RIS: In the method, the signals are transmitted
only through the direct links, i.e., Θ = 0. We only
optimize the receive beamforming vector m via our
proposed algorithm.

As the alternating SDR and alternating DC algorithms are
not guaranteed to converge, we set their iteration numbers as
the number of iterations required by our proposed algorithm
to converge for a fair comparison. Based on the number of
IoT devices in the network coverage area, we consider the
high-density and low-density scenarios.

1) High-density Scenario: Fig. 4 shows the impact of the
number of antennas at the AP (i.e., M ) on the MSE when
N = 50 and K = 200. As can be observed, for all methods
under consideration, the MSE of the RIS-assisted AirComp
system monotonically decreases as the number of antennas
increases. This is because a greater diversity gain can be
achieved by deploying a larger antenna array. We can also
observe that deploying an RIS significantly reduces the MSE
in the considered AirComp system. It shows that RIS is a
promising technique that can enhance the performance of
AirComp. Besides, we observe that the proposed algorithm
outperforms the benchmark scheme with random phase-shift
at the RIS, which reveals the necessity of optimizing the phase-
shifts vector in RIS-assisted AirComp systems. Moreover, our
proposed algorithm attains a similar performance as the alter-
nating SDR algorithm. On the other hand, as can be observed
in Fig. 5, our proposed algorithm significantly outperforms
the alternating SDR algorithm in terms of the computation
time. Besides, the advantage on the computation time of the
proposed algorithm increases as the number of antennas at
the AP becomes large. The reason is that the alternating SDR
algorithm requires the execution of the second-order interior
point method at each iteration, while the proposed algorithm
as a first-order algorithm has a much lower computation
complexity than the alternating SDR algorithm.

In Fig. 6, we investigate the impact of the number of the
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Fig. 4: MSE versus the number of antennas at AP when K = 200 and
N = 50.
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Fig. 5: Computation time versus the number of antennas at AP when
K = 200 and N = 50.

reflecting elements at the RIS on MSE when the number of
IoT devices K = 200 and the number of antennas at the
AP M = 30. As can be observed from Fig. 6, the proposed
algorithm achieves almost the same MSE performance for
different number of reflecting elements against the benchmark,
which confirms the capability of our proposed algorithm
to achieve high accurate AirComp. In addition, the MSE
decreases significantly as the number of reflecting elements
at the RIS increases. This is due to the fact that the RIS with
more reflecting elements has more freedom for the reflection
coefficient design. The computation time of our proposed al-
gorithm and the alternating SDR algorithm versus the number
of reflecting elements at the RIS is plotted in Fig. 7. As
the number of reflecting elements at the RIS increases, the
computation time of the alternating SDR algorithm increases
significantly. Comparing with the alternating SDR algorithm,
the proposed algorithm only consumes 1% and 26% of the
computation time when N = 100 and N = 30, respectively.

The computation time of the considered algorithms versus
the number of IoT devices is illustratd in Fig. 8. It is obvious
that, compared to the benchmark, our proposed algorithm has
a superior performance in terms of the computation time. In
particular, the reduction ratios are approximately 95% and
93% when K = 300 and K = 100, respectively. It can also
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Fig. 6: MSE versus the number of reflecting elements at RIS when K =
200 and M = 30.
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Fig. 7: Computation time versus the number of reflecting elements at RIS
when K = 200 and M = 30.

be observed that the superiority of the proposed algorithm in
terms of the computation time enlarges as the number of IoT
devices increases. This indicates the potentials of our proposed
algorithm in high-density RIS-assisted AirComp systems.

TABLE I: Computation time (s) versus the number of antennas at AP when
K = 10, N = 40.

Number of antennas at AP 5 10 15 20 25

Proposed Algorithm 0.5366 0.5541 0.5919 0.6635 0.8654
Alternating SDR 5.2860 6.7383 8.4276 9.7122 10.2587
Alternating DC 95.6772 96.5918 98.4988 101.1444 106.1467

2) Low-density Scenario: Due to the high computational
complexity of the alternating DC algorithm, we compare its
performance with the proposed algorithm when K = 10 in
terms of the MSE and the computation time in Fig. 9 and
TABLE I, respectively. It can be observed from Fig. 9 that the
proposed algorithm achieves a lower MSE than the alternating
SDR algorithm and attains a slightly higher MSE than the
alternating DC algorithm. Besides, the MSE performance of
all algorithms decreases as the number of reflecting elements
at the RIS increases from 20 to 40. However, as shown in
TABLE I, our proposed algorithm is remarkably better than the
alternating SDR algorithm and the alternating DC algorithm
in terms of the computation time.
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Fig. 8: Computation time versus the number of IoT devices when M =
30 and N = 50.
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Fig. 9: MSE versus the number of antennas at AP when K = 10.

VI. CONCLUSION

In this paper, we proposed to leverage the advantage of RIS
to mitigate the performance bottleneck of AirComp, thereby,
achieving fast wireless data aggregation in IoT networks. We
formulated an MSE minimization problem that requires the
joint optimization of the transmit scalars at the IoT devices, the
receive beamforming vector and the denoising factor at the AP,
and the phase-shift matrix at the RIS. To solve this problem,
a novel alternating minimization method in conjunction with
the SCA technique was thus developed with convergence
guarantee. To further reduce the computational complexity,
we proposed a Mirror-Prox method that only involves a series
of closed-form updates to solve the convex but non-smooth
subproblem in each SCA iteration. Simulations showed that,
compared to the existing alternating SDR and alternating DC
algorithms, the proposed algorithm can significantly reduce the
computation time while achieving a similar MSE performance.

APPENDIX

A. Proof of Proposition 1

For simplicity of notations, we denote

Fk(m,v) =
‖m‖2

|mH(hd,k +Gdiag(hr,k)v)|2
, ∀ k,



12

such that Problem (10) can be rewritten as

min
m,v

max
k

Fk(m,v)

s.t. |vi| = 1,∀ i.
(43)

We then reformulate the problem into the following equivalent
problem:

min
m,v

max
k

Fk(m,v)

s.t. |vi| = 1,∀ i,
⇐⇒ max

m,v

(
max
k

Fk(m,v)

)−1

s.t. |vi| = 1,∀ i,

⇐⇒
max
m,v

min
k
F−1
k (m,v)

s.t. |vi| = 1,∀ i,

where F−1
k (m,v) = 1

Fk(m,v) . As a result, Problem (10) is
equivalent to

max
m,v

{
min
k

|mH(hd,k +Gdiag(hr,k)v)|2

‖m‖2

}
s.t. |vn| = 1,∀ n = 1, . . . , N.

(44)

Besides, we introduce an auxiliary variable τ = ‖m‖2.
Problem (44) can be rewritten as the following form

max
m,v,τ

{
min
k

|mH(hd,k +Gdiag(hr,k)v)|2

τ

}
s.t. |vn| = 1,∀ n = 1, . . . , N,

‖m‖2 = τ.

(45)

By denoting m̂ = m√
τ

, Problem (45) can be represented as

max
m̂,v

{
min
k
|m̂H(hd,k +Gdiag(hr,k)v)|2

}
s.t. |vn| = 1,∀ n = 1, . . . , N,

‖m̂‖2 = 1.

(46)

We further transform Problem (46) to its equivalent problem
in the min-max form as follows

max
m̂,v

{
min
k
|m̂H(hd,k +Gdiag(hr,k)v)|2

}
s.t. |vn| = 1,∀ n = 1, . . . , N,

‖m̂‖2 = 1.

⇐⇒
min
m̂,v

{
−min

k
|m̂H(hd,k +Gdiag(hr,k)v)|2

}
s.t. |vn| = 1,∀ n = 1, . . . , N,

‖m̂‖2 = 1.

⇐⇒

min
m̂,v

max
k

{
−|m̂H(hd,k +Gdiag(hr,k)v)|2

}
s.t. |vn| = 1,∀ n = 1, . . . , N,

‖m̂‖2 = 1.

To this end, we complete the proof.

B. Proof of Proposition 2

We first prove property (i). Considering the l-th alternating
iteration, for a given m̃(0)

(l) , we denote the objective value of
Problem (18) as fv(l)(ṽ). We consider the SCA iteration that

starts from ṽ
(0)
(l) . By denoting f̂v(l)(ṽ, ṽ

(n)
(l) ) as the objective

value of Problem (20), it satisfies
1) f̂v(l)(ṽ

(n)
(l) , ṽ

(n)
(l) ) = fv(l)(ṽ

(n)
(l) ),

2) fv(l)(ṽ
(n+1)
(l) ) ≤ f̂v(l)(ṽ

(n+1)
(l) , ṽ

(n)
(l) ),

3) f̂v(l)(ṽ
(n+1)
(l) , ṽ

(n)
(l) ) ≤ f̂v(l)(ṽ

(n)
(l) , ṽ

(n)
(l) ).

Inequality 1) holds since f̂v(l)(ṽ, ṽ
(n)
(l) ) is a linear approximation

of fv(l)(ṽ) at point ṽ(n)
(l) . According to (19), f̂v(l)(ṽ, ṽ

(n)
(l) ) is

an upper bound of fv(l)(ṽ). As a result, we can establish

inequality 2). Besides, inequality 3) holds as ṽ
(n+1)
(l) =

arg minṽ∈V f̂
v
(l)(ṽ, ṽ

(n)
(l) ). Hence, we obtain the following

chain inequalities

fv(l)(ṽ
(n+1)
(l) ) ≤ f̂v(l)(ṽ

(n+1)
(l) , ṽ

(n)
(l) ) ≤ f̂v(l)(ṽ

(n)
(l) , ṽ

(n)
(l) ) = fv(l)(ṽ

(n)
(l) ).

Besides, the continuous function fv(l)(ṽ) has a lower bound in
the constrained set. As a result, the non-increasing and lower
bounded sequence {fv(l)(ṽ

(n)
(l) )} converges. Similarly, we can

establish the non-increasing and convergent property for the
objective value sequence achieved by {m̃(n)

(l) }
∞
n=0. To this end,

we have proved property i).
On the other hand, we can prove property ii) by iteratively

utilizing property i).

C. Proof of Lemma 1

We have shown that Problem (20) is equivalent to Problem
(27). We then rewrite Problem (27) in a more compact form
as

min
ṽ,r

r

s.t. P(n)ṽ + q(n) − r1 � 0,

ṽ ∈ V, r ∈ R.

(47)

where 1 = [1, 1, . . . , 1]T ∈ RK . For a given vector y ∈ RK
with non-negative components, which is known as dual vari-
able, the corresponding Lagrangian relaxed problem is given
by

min
ṽ,r

r + yT
(
P(n)ṽ + q(n) − r1

)
s.t. ṽ ∈ V, r ∈ R.

(48)

We reorganize the objective function of Problem (48) as(
1− 1Ty

)
r +

(
P(n)ṽ + q(n)

)T
y.

The dual objective function of Problem (47) is given by the op-
timal value of Problem (48). If 1−1Ty 6= 0, then

(
1− 1Ty

)
r

is not bounded from below, since
(
1− 1Ty

)
r → −∞ if

1Ty > 1 and r → +∞ or if 1Ty < 1 and r → −∞.
Thus, we only need to consider y ∈ RK that satisfy y ≥ 0

and 1Ty = 1. For these y, the dual objective function is given
by minṽ∈V

(
P(n)ṽ + q(n)

)T
y. The dual problem is

max
y

min
ṽ

(
P(n)ṽ + q(n)

)T
y

s.t. ṽ ∈ V, y ∈ Y.
(49)

Because the original problem is convex and set V is closed and
compact, the strong duality condition is satisfied. Hence, its
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dual problem is equivalent to itself. As the objective function(
P(n)ṽ + q(n)

)T
y is linear to ṽ and y, according to [48],

Problem (49) is equivalent to Problem (28), which is a smooth
convex-concave saddle point problem [47].

D. Proof of Lemma 2
F(·) is a linear operator with well-defined monotonicity.

According to [43], the definition of the L-Lipschitz property
of operator F(z) enforces the following constraints

a).
∥∥∇ṽψ

(n)(ṽ,y)−∇ṽψ
(n) (ṽ′,y)

∥∥∗
V ≤ L · ‖ṽ − ṽ

′‖V ,
b).
∥∥∇ṽψ

(n)(ṽ,y)−∇ṽψ
(n) (ṽ,y′)

∥∥∗
V ≤ L · ‖y − y

′‖Y ,
c).
∥∥∇yψ

(n)(ṽ,y)−∇yψ
(n) (ṽ,y′)

∥∥∗
Y ≤ L · ‖y − y

′‖Y ,
d).
∥∥∇yψ

(n)(ṽ,y)−∇yψ
(n) (ṽ′,y)

∥∥∗
Y ≤ L · ‖ṽ − ṽ

′‖V ,

where ‖ · ‖V and ‖ · ‖Y denote the norms embedded in spaces
V and Y respectively, and ‖ · ‖∗V and ‖ · ‖∗Y denote the dual
norms of ‖·‖V and ‖·‖Y , respectively. To show the L-Lipschitz
property of F(·), we need to verify the above inequalities. In
our work, ‖ · ‖V and ‖ · ‖Y are defined as `2 and `1 norms,
respectively. As a result, ‖ · ‖∗V and ‖ · ‖∗Y represent `2 and `∞
norms, respectively. First, inequalities a) and c) hold due to
the fact that

∇ṽψ
(n)(ṽ,y) = ∇ṽ, ψ

(n) (ṽ′,y) = (P(n))Ty,

∇yψ
(n)(ṽ,y) = ∇yψ

(n) (ṽ,y′) = P(n)ṽ + q(n).

Inequality b) holds since∥∥∥∇ṽψ
(n)(ṽ,y)−∇ṽψ

(n) (ṽ,y′)
∥∥∥

= ‖(P(n))Ty − (P(n))Ty′‖ = ‖
K∑
k=1

p
(n)
k (yk − y′k)‖

≤
K∑
k=1

‖p(n)
k ‖ · |yk − y

′
k| ≤

(
max
k
‖p(n)

k ‖
)
·

(
K∑
k=1

|yk − y′k|

)
= L · ‖y − y′‖1.

Finally, inequality d) holds as∥∥∥∇yψ
(n)(ṽ,y)−∇yψ

(n) (ṽ,y′)
∥∥∥
∞

= ‖P(n)ṽ −P(n)ṽ′‖∞

= max
k

{∣∣∣∣(p
(n)
k

)T
(ṽ − ṽ′)

∣∣∣∣}
≤
(a)

(
max
k
‖p(n)

k ‖
)
· ‖ṽ − ṽ′‖ = L · ‖ṽ − ṽ′‖,

where (a) follows by applying the Cauchy-Schwarz inequality.

E. Proof of Lemma 3
We rewrite Problem (38b) as

min
y

{
K∑
k=1

yk log
yk

ek
−

K∑
k=1

(
yk − ek

)}
s.t. 1Ty = 1.

(50)

By introducing a Lagrangian multiplier µ for the equality
constraint, the Lagrangian function of Problem (50) can be
expressed as

L (y, µ) =

K∑
k=1

yk log
yk

ek
−

K∑
k=1

(
yk − ek

)
+ µ · (1Ty − 1).

According to the KKT condition, we have

1 + log(y∗k)− log(ek)− 1 + µ = 0, ∀k. (51)

Note that ek > 0 according to (36b). One thus can claim that
y∗k = ek/exp(µ). Besides, we can conclude that exp(µ) =∑K
k=1 ek as 1Ty∗ = 1. Therefore, we have y∗ = e/ ‖e‖1.
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