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Abstract
Aerosols play a significant role in the atmosphere through affecting the radiative budget, cloud

condensation nuclei activity, and visibility. They also cause adverse health effects leading to

premature deaths. A major fraction of aerosols is organic matter (OM), which has a complex

composition, is produced by various sources, and undergoes chemical transformation in the

atmosphere, making its full characterization difficult. Biomass burning has become a major

source of OM with an increasing effect due to more frequent large wildfires around the world

resulting partly from climate change.

In this thesis, Fourier transform infrared spectroscopy (FTIR) has been employed in six dif-

ferent projects as the main tool to characterize OM from various sources especially biomass

burning in order to understand its formation and evolution in the atmosphere. This technique

has been used to analyze the functional group (FG) composition of OM, specific spectral

profiles from different sources, and biomass burning marker signatures in a nondestructive

and cost-efficient manner. FTIR has also been combined with other analytical techniques.

First, we used the spectral profiles in the aliphatic CH region of mid-infrared spectra to extract

information about the molecular structure of atmospheric organic aerosols in terms of their

mean carbon number and molecular weight. We found that urban, rural, and biomass burning

aerosols have distinct mean molecular weights and carbon numbers. FTIR and aerosol mass

spectrometry (AMS) were used in the second project to characterize burning aerosols in an

environmental simulation chamber. We showed the agreement of these two instruments

in terms of the OM mass concentration and elemental ratios (H:C, and O:C). We found that

AMS spectra contained functional group information that agreed with that of FTIR even for

moderately aged aerosols. In the third project, we used univariate and multivariate statistics

to combine FTIR and AMS measurements to better understand and interpret the complex

AMS mass spectra in terms of the FG composition and to estimate the high-time-resolution

FG composition of combustion aerosols during the course of aging. In another environmental

chamber study (fourth project), we developed a procedure to estimate the often-neglected

evolution of primary biomass burning aerosols during daytime and nighttime chemical agings.

We found that at least 15 % of the primary aerosol mass undergoes chemical transformation at

relatively short time scales in the order of a day in the atmosphere. Organic biomass burning

markers were among the fastest decaying species, making the identification of aged biomass

burning aerosols in the atmosphere challenging. In the fifth project, we used the biomass

burning marker signatures in the FTIR spectra for the first time to identify and quantify at-

mospheric samples affected by wood smoke. The FTIR-based identification method agreed
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Abstract

well with those using ion chromatography and satellite observations. This method, which

is one of the few scalable to large air pollution monitoring networks, was applied to around

20,000 filters collected across the US in 2015 to estimate the impact of biomass burning. In the

sixth project, we used FTIR to characterize OM emitted from different cookstoves and fuels.

We found similarities between the spectra of unburned fuels and OM emissions, and mea-

sured high abundances of aromatics and polycyclic aromatic hydrocarbons in the particulate

emissions.

Key words: aerosol mass spectrometry, organic aerosol, biomass burning, cookstove, Fourier

transform infrared spectroscopy, functional group, environmental simulation chamber.

iv



Résumé
Les aérosols jouent un rôle important dans l’atmosphère en affectant le bilan radiatif, l’activité

des noyaux de condensation des nuages, et la visibilité. Ils provoquent également des effets

néfastes sur la santé qui causent décès prématurés. Une fraction majeure des aérosols est

la matière organique (MO), qui a une composition complexe. MO est produite par diverses

sources et subit une transformation chimique dans l’atmosphère. La combustion de la bio-

masse est devenue une source majeure de MO avec un effet croissant en raison des incendies

de forêt plus fréquents dans le monde résultant du changement climatique.

Dans cette thèse, la spectroscopie infrarouge à transformée de Fourier (FTIR) a été utilisée dans

six projets différents en tant qu’outil principal pour caractériser la MO à partir de diverses

sources, en particulier la combustion de la biomasse. Cette technique a été utilisée pour

analyser la composition du groupe fonctionnel (GF) de la MO, les profils spectraux spécifiques

de différentes sources et les signatures des marqueurs de combustion de la biomasse de

manière non destructive et rentable. Premièrement, nous avons utilisé les profils spectraux

dans la région aliphatique CH des spectres IR pour extraire des informations sur la structure

moléculaire des aérosols organiques atmosphériques. Nous avons constaté que les aérosols

urbains, ruraux, et de combustion de biomasse ont un poids moléculaire moyen et un nombre

de carbone distincts. La FTIR et la spectrométrie de masse d’aérosols (AMS) ont été utilisés

dans le deuxième projet pour caractériser les aérosols de la combustion dans une chambre de

simulation environnementale. Nous avons montré la concordance de ces deux instruments

et nous avons trouvé que les spectres AMS contenaient des informations de groupe qui

concordaient avec celles du FTIR même pour les aérosols d’âges modérés. Dans le troisième

projet, nous avons utilisé des modèles statistiques pour combiner les mesures FTIR et AMS afin

d’estimer la composition GF à haute résolution temporelle des aérosols pendant vieillissement.

Dans le quatrième projet, nous avons développé une procédure pour estimer l’évolution

souvent négligée des aérosols de combustion de biomasse primaire pendant les vieillissements

chimiques diurnes et nocturnes, en utilisant AMS et FTIR. Nous avons constaté qu’au moins

15 % de la masse d’aérosols primaires subit une transformation chimique même à des échelles

de temps relativement courtes. Les marqueurs de combustion de la biomasse étaient parmi les

espèces à la décomposition la plus rapide. Ce dernier rend difficile l’identification de la bbOA

âgée dans l’atmosphère. Dans le cinquième projet, nous avons utilisé pour la première fois les

signatures des marqueurs de combustion de biomasse dans les spectres FTIR pour identifier

et quantifier des échantillons atmosphériques affectés par la fumée de bois. La méthode

d’identification basée sur le FTIR concordait bien avec celles utilisant la chromatographie
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Résumé

ionique et les observations satellitaires. Cette méthode, qui est évolutives aux grands réseaux

de surveillance, a été appliquée à environ 20 000 filtres collectés aux États-Unis pour estimer

la contribution de bbOA. Dans le sixième projet, nous avons utilisé le FTIR pour caractériser

la MO émise par différents fourneaux (cookstoves) et nous avons constaté des abondances

élevées d’aromatiques et d’hydrocarbures aromatiques polycycliques.

Mots clés : spectrométrie de masse d’aérosols, aérosol organique, combustion de biomasse,

cuisinière, spectroscopie infrarouge à transformée de Fourier, groupe fonctionnel, chambre

de simulation environnementale.
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1 Introduction

1.1 Atmospheric aerosols

Aerosol is a system including solid or liquid or multi-phase particles suspended in a gas, i.e., the

continuum phase (Seinfeld and Pandis, 2016; Hinds, 1999). However, the word aerosol often

only refers to the particles. The atmosphere even in remote areas contains high concentrations

of aerosols (up to 107 cm−3) with the diameter in the range of few nanometers to 100 µm

(Seinfeld and Pandis, 2016). Atmospheric aerosols are believed to cause adverse health effects

for example through causing oxidative stress (Bond et al., 2013; Shiraiwa et al., 2017b), reduce

visibility by light scattering, and affect the climate and Earth’s atmosphere radiative balance

directly through light scattering and absorption and indirectly by affecting cloud formation

(Seinfeld and Pandis, 2016; Hallquist et al., 2009).

Tropospheric aerosols are composed of sulfate, nitrate, ammonium, sodium, chloride, trace

metals, water, crustal elements, and carbonaceous material. Carbonaceous material is com-

posed of graphitic (elemental) carbon (EC) (mainly from combustion) and organic carbon

(OC) (Seinfeld and Pandis, 2016). Particles with diameter smaller and larger than 2.5 µm are

usually referred to as fine and coarse particles, respectively. Fine and coarse particle often

have different formation, and removal mechanisms. Among the species found in atmospheric

aerosols, sulfate, EC, and OC are mainly found in fine particles.

1.1.1 Atmospheric organic aerosols

Organic matter (OM) constitutes 20–90 % of the total fine atmospheric aerosol mass and has

a very complex chemical composition (Kanakidou et al., 2005). Primary organic aerosols

(POAs) are organic aerosols emitted directly either from anthropogenic or biogenic sources.

Secondary organic aerosols (SOAs), on the other hand, are produced via oxidation of volatile

organic compounds (VOCs) and condensation of low-volatility oxidation products. POA

species have also been found to be sufficiently volatile that after dilution in the atmosphere

evaporate, react with radicals in the gas phase, and recondense to the particulate phase

1



Introduction

(Robinson et al., 2007; Seinfeld and Pandis, 2016).

VOCs in the troposphere react with oxidants (OH and NO3 radicals, O3, and Cl) or are trans-

formed by photolysis (Ziemann and Atkinson, 2012). Although the exact mechanisms respon-

sible for the formation of low-volatility organics in the atmosphere are not well understood,

generally, these reactions include the formation of alkyl radicals (R ·). Alkyl radicals then

react to form intermediate species like alkoxy (RO ·) and organic peroxy (ROO ·) radicals

and product species such as hydroperoxides (ROOH), carboxylic acids (RC(O)OH), carbonyls

(RC(O)R), alcohols (ROH), organonitrates (RONO2), peroxyacids (RC(O)OOH), and perox-

ynitrates (ROONO2) (Fig. 1.1; Ziemann and Atkinson, 2012). The addition of oxygenated

functional groups leads to the formation of species with a sufficiently low vapor pressure that

can potentially form SOA (Kroll and Seinfeld, 2008).

RO.2

RO.
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Oxidant

Photolysis

ROOH
RC(O)OH
RC(O)OOH

HO2

NO
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RC(O)R’

RONO2

ROONO2
NO2

RR’C(OH)-C-C-C(O)R”
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+ NO2
Isomerization

O2

RO.2

Figure 1.1 – The mechanisms of VOC degradation in the atmosphere, adapted from Ziemann
and Atkinson (2012). Functional groups that are studied in this work are shown in color.

1.1.2 Biomass burning

Biomass burning (BB) is the burning of dead or living vegetation (grassland, forest, agricultural

waste, or as fuel), which can occur naturally or can be man-made in the form of open fires or

residential burning (Yadav and Devi, 2019). BB emissions affect air pollution, visibility and

human health (Ford et al., 2018; IPCC, 2013). BB is an important source of POA, black carbon

(BC), and brown carbon (BrC) in the atmosphere (Puxbaum et al., 2007; Bond et al., 2013;

Andreae and Gelencsér, 2006; Lack et al., 2012). Puxbaum et al. (2007) estimated the contri-

bution of biomass burning POA to total atmospheric OM to be up to 68 % in Europe. BB also

emits VOCs (Karl et al., 2007) that can react with atmospheric oxidants to form lower-volatility

compounds that potentially condense and form SOA. BB is also believed to be responsible for a

large fraction of SOA (up to 70 %), especially in winter when biogenic emissions are absent (Qi

et al., 2019; Lanz et al., 2010; Paglione et al., 2020). Biomass burning organic aerosols (bbOAs)
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have also been found to have a significant potential for the production reactive oxygen species

(ROS), which cause oxidative stress and adverse health effects (Verma et al., 2015).

The frequency of large wildfires have been increasing in recent years partly due to global

warming and this trend is expected to continue in the future (O’Neill et al., 2021; Westerling,

2016; Ford et al., 2018). For example, emissions from wildfires in California are predicted to

increase by up to 100 % by 2100 above the baseline period (1961–1990) (Hurteau et al., 2014).

As a results, BB is expected to become an increasingly important contributor to atmospheric

particulate matter (PM), while emissions from other sources are decreasing (Ford et al., 2018).

In order to fully understand the impacts of BB on climate, air pollution, and human health,

both primary and secondary bbOAs should be characterized and quantified properly. Primary

bbOA has been frequently identified in the atmosphere by using certain organic and inorganic

molecular markers like anhydrosaccharides and potassium (Sullivan et al., 2008; Schneider

et al., 2006; Ramadan et al., 2000). There are, however, known issues about the stability

and specificity these markers. The identification and quantification of secondary bbOA in

the atmosphere is even more challenging due to having a different chemical composition

compared to the primary bbOA and the lack of complete knowledge about its markers (Nozière

et al., 2015).

1.2 Measurement techniques for organic matter

Unlike other species in atmospheric aerosols, organics contain thousands of distinct com-

pounds. This sheer complexity along with the low concentrations of individual compounds

and challenges regarding the sampling makes the full characterization of organic aerosols

and processes involving them difficult (Hallquist et al., 2009). In order to tackle this prob-

lem, analytical techniques from other disciplines have been modified and new instruments

have been developed in the last 30–40 years (Nozière et al., 2015). Analytical techniques

used for characterization of atmospheric OM include optical (e.g., Fourier transform infrared

spectroscopy, FTIR, and UV-visible; Maria et al.,2002) and magnetic spectroscopy (e.g., 1H

nuclear magnetic resonance; Paglione et al., 2014), mass spectrometric techniques with soft

(e.g., electrospray; Lopez-Hilfiker et al., 2019) or hard (e.g., electron impact; DeCarlo et al.,

2006) ionization. These techniques can be combined with separation techniques such as gas

chromatography (e.g., thermal desorption aerosol gas chromatograph; Williams et al., 2014) or

liquid chromatography (including ion exchange and size exclusion chromatography) to form

multidimensional techniques that provide a better characterization of OM. Tandem mass spec-

trometry (MSn) is another multidimensional technique to obtain structural information about

OM (Nizkorodov et al., 2011). Multidimensional instruments are more suitable for laboratory

due to their complexity (Nozière et al., 2015), whereas some one dimensional techniques

have been used in online, filed-deployable instruments (e.g., DeCarlo et al., 2006). There is

also a class of instruments such as thermal-optical reflectance or transmittance (TOR and

TOT, respectively), and water-soluble organic carbon (WSOC) analyzers, which quantify OC or
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WSOC in the particle phase without further characterization of their constituents (Hallquist

et al., 2009).

1.2.1 Comparison of analytical techniques

Analytical methods are usually classified based on the fraction of OM mass they can analyze,

their capability to determine the molecular structure of OM, and the size or time resolution

they offer (Hallquist et al., 2009; Nozière et al., 2015). FTIR, for example, is capable of analyzing

most (around 80 %) of OM mass (Russell et al., 2009a; Boris et al., 2019). The chemical selec-

tivity of FTIR, on the other hand, especially in the condensed phase is considered to be only

on the order of function group (FG) determination (Hallquist et al., 2009). The size and time

resolution of FTIR depends mostly on the collection technique but it is often performed offline

on filter samples (e.g., Maria et al., 2002; Reggente et al., 2016; Faber et al., 2017; Boris et al.,

2019; Debus et al., 2019). NMR is also performed offline and provides information about the

FG structure of OM (Decesari et al., 2007), but it is limited to water-soluble fraction (Nozière

et al., 2015). The selectivity of NMR analysis is relatively higher than FTIR even in complex

atmospheric mixtures (Nozière et al., 2015). Instruments based on mass spectrometric tech-

niques with hard ionization such techniques as aerosol mass spectrometry (AMS) and aerosol

chemical speciation monitor (ACSM) offer limited chemical specificity in terms of mass frag-

ments that are common to a broad class of compounds (e.g., oxygenated organics) and are

rarely specific to certain molecules. These techniques can analyze most of the non-refractory

OM mass with a time resolution on the order of seconds and provide aerosol size information

(in case of AMS) (Canagaratna et al., 2007; Ng et al., 2011b). Instruments with soft ionization

techniques such as chemical and electrospray ionization reach a higher identification power

due to a lower extent of fragmentation of organic molecules but suffer from low sensitivity, are

more efficient for ionization of certain compounds, and have variable ionization efficiency

based on the sample composition (Nozière et al., 2015; Iyer et al., 2016; Hermans et al., 2017).

Thus, these instruments are not suitable for a quantitative and reproducible characterization

of total OM mass. Moreover, even soft ionization techniques cannot reach an almost full

characterization of OM unless coupled with separation techniques (Nozière et al., 2015). Tech-

niques like gas chromatography-mass spectrometry (GC-MS) provide molecular speciation

only for a small percentage of OM mass (on the order of 10 %) (Hallquist et al., 2009).

In summary, a perfect analytical method for the characterization of OM might not exist but a

combination of different methods usually offers the desired results. This combination can

also help us better interpret measurements of each instrument when they are used alone

(e.g., functional group mass fragment relationships, Faber et al., 2017). The combination of

techniques can also provide information that is not accessible using each technique alone

(e.g., high-time-resolution functional group composition; Yazdani et al., 2021b). Moreover,

the full characterization of OM (i.e., identification of all individual species) might not be

necessary for the majority of purposes. For example, elemental ratios (H:C, O:C, N:C, and S:C)

are commonly used to characterize OM and provide information that allows us to understand
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aerosol sources, processes, impacts, and fates (Canagaratna et al., 2015). However, identifi-

cation and quantification of certain molecules or class of molecules might be necessary for

the source apportionment of aerosols (e.g., anhydrosaccharides for biomass burning) or to

better understand their health impacts (e.g., mutagenic and carcinogenic polycyclic aromatic

hydrocarbons, PAHs, from solid fuel emissions) (Shen et al., 2017b; Sullivan et al., 2008).

1.2.2 FTIR spectroscopy

Most molecules (organic or inorganic) with covalent bonds absorb some wavelengths of

electromagnetic wave. The absorption of mid-infrared radiation in the 2.5–25 µm (4000–

400 cm−1) range, which is a quantized process, corresponds to stretching (symmetric and

asymmetric) and bending (scissoring, rocking, wagging, and twisting) vibrational motions of

most covalent bonds. With the absorption of electromagnetic wave with the frequency that

matches that of the vibrational motion of the bond, the amplitude of the vibration motion

increases. However, only bonds with varying dipole moment with time are able to absorb the

corresponding infrared radiation (Pavia et al., 2008). Figure 1.2 shows the typical absorption

frequencies of different bonds. The 1300–900 cm−1 region, also known as fingerprint region, is

usually more complex and has patterns specific to certain molecules (Nozière et al., 2015). The

absorption profile of the same bond can also vary to some extent based on the inter- and intra-

molecular interactions and the phase state of the compound (Pavia et al., 2008; McHale, 2017).

The two aforementioned aspects of FTIR spectroscopy have not received much attention in

the study of atmospheric aerosols. In the infrared spectra, fundamental absorptions (with

the frequency ν̃) are produced by excitation of the bond to the excited state with the lowest

energy. There are also other absorptions such as overtones (excitation to a higher-energy

excited state instead of the lowest one; nν̃), combination bands (excitation of a combination of

vibrational motions; ν̃1+ν̃2), difference bands (resulting from the difference of two interacting

bands; ν̃1 − ν̃2), and Fermi resonance (coupling of a fundamental vibration with an overtone

or combination band with similar energies) (Pavia et al., 2008). The mentioned bands (except

fundamental absorptions) are often weak but can still be informative. For example, Fermi

resonance of aliphatic CH is used to identify aldehydes.

Generally, the infrared spectrophotometers used for obtaining the absorption spectra are

either based on dispersive (emerged in 1940s) or Fourier transform (FT). FTIR instruments,

which became commercially available in 1969, offer a greater speed and sensitivity. Thus, they

are more commonly used in today’s research (Griffiths and Haseth, 2007).

Since 1950s, infrared spectroscopy has been used to analyze single aerosols or the ensemble of

aerosols collected on different substrates (directly or after extraction). Mader et al. (1952) used

infrared spectroscopy for the first time to analyze atmospheric aerosols and those generated

from gasoline in a plastic chamber exposed to sunlight and identified significant amounts of

oxygenated functional groups. In this work, which was published before the advent of FTIR

instruments, ether-soluble aerosols were extracted from high-volume filters.
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Figure 1.2 – Absorption wavelengths of different covalent bonds in the infrared spectrum,
adapted from Pavia et al. (2008) and modified. Functional groups are highlighted with the
color scheme used in this study.

Infrared spectra of a single micrometer-sized ammonium sulfate levitated particle was first

obtained by Arnold and Pluchino (1982) and Arnold et al. (1984) with a sensitivity in the

picogram range. The spectra of single micrometer-sized particles deposited on a substrate

(e.g., KBr or ZnSe) have also been obtained using IR microscopy (Allen and Palen, 1989). In this

method the extent to which the IR beam can be focused is limited and contaminants on the

substrate may cause interference in the spectra (Allen and Palen, 1989). IR microscopy have

also been used for the ordinary analysis (not single particle) of atmospheric or smog chamber

samples collected directly on KBr or ZnSe impaction disks with detection limits in the low

nanogram to high picogram range (Kellner and Malissa, 1989; Allen and Palen, 1989; Palen

et al., 1992, 1993). These analyses, however, were limited to determining the mole fraction of

functional groups (organonitrate, aldehyde, alcohol, acid, ketone, and aliphatic CH) and were

unable to estimate the total mass loading due to an aperture smaller than a typical impactor

deposit (Palen et al., 1992).

Allen et al. (1994) analyzed organic and inorganic functional groups in size-segregated ambient

aerosols collected on ZnSe impaction surfaces of a Hering low pressure impactor (LPI) directly

with transmission mode FTIR. The absorbances corresponding to organic and inorganic

functional groups (e.g., sulfate, nitrate, and ammonium) were then integrated and related

to the loadings of functional groups using the Beer-Lambert law and calibration constants

(absorption coefficients) derived from laboratory standards. The variability of the absorption

coefficients (determining the absorbance area per mole of the functional group) of the same

functional group from compound to compound has been mentioned to cause uncertainties

for the quantitative FTIR analysis, regardless of the method (Allen and Palen, 1989; Reggente

et al., 2019a; Takahama et al., 2013).

Attenuated total reflectance (ATR) spectroscopy is another method of infrared spectroscopy

used for the analysis of thin layers of aerosols with high sensitivity and the potential of imple-

mentation for the real-time analysis. Johnson et al. (1982) used ATR for the characterization
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of ambient aerosols. Arangio et al. (2019) coupled electrospray with ATR and achieved a low

detection limit (lower than 100 ng) and a linear response of absorbance versus deposited mass

for low film thicknesses of dissolved organic and inorganic materials. This method is suitable

for FTIR analysis on extracted organics from infrared-opaque filters (e.g., quartz fiber filters).

FTIR has also been used to detect and quantify organic and inorganic species collected on

filters. The direct FTIR analysis on filters is nondestructive and does not need prior sample

preparation. However, it has certain disadvantages due to absorption and scattering of the

filter substrate in the mid-infrared range and sampling artifacts (Subramanian et al., 2004).

Quartz fiber filters are often considered unsuitable for FTIR analysis in transmission mode,

due to their strong absorption and scattering in the mid-infrared range (Allen and Palen, 1989).

Nonetheless, quartz filters have been quantitatively analyzed directly for organics using the

ATR configuration (e.g., Pereira et al., 2019) and for elemental carbon using diffuse reflection

(DF) FTIR (Parks et al., 2021). FTIR analysis on polytetrafluoroethylene (PTFE) filters often

poses certain challenges as C – F stretching and bending bands of the filter substrate often

dominate the 1150–1250 cm−1 range and around 640 cm−1, respectively. In addition, there is

an increasing baseline with wavenumber do to filter membrane light scattering (Mcclenny

et al., 1985). As a result, baseline correction and blank subtraction are often required to

render the spectra suitable for quantitative analysis. Mcclenny et al. (1985) and Pollard and

Jaklevic (1988) used FTIR to quantify the concentrations of ammonium, sulfate, and nitrate

in the atmospheric aerosols collected on PTFE filters and showed good agreement with X-

ray fluorescence (XRF) measurements. Maria et al. (2002) quantified OC collected on PTFE

filters directly for the first time using FTIR absorbances of aliphatic CH and carbonyl groups.

Maria et al. (2003) expanded the set of quantified functional groups from the previous work

and found good agreement with collocated thermal-optical measurements. Russell et al.

(2009b) used an algorithm to perform baseline correction and peak fitting with a revised an

automated version of the approaches of Maria et al. (2002, 2003) and Maria and Russell (2005).

Takahama et al. (2013) described the algorithm for the quantification of carboxylic COOH

and carbonyl CO from PTFE filters. Kuzmiakova et al. (2016) described a new, automated

baseline correction protocol for FTIR analysis on PTFE filters using smoothing splines. The

development of baseline correction, peak fitting, and integration algorithms helped improve

the reproducibility of FTIR analyses for aerosols collected on PTFE filters. The mentioned

algorithms have been applied to the FTIR analysis of aerosols collected on PTFE filter in

several campaigns and smog chamber experiments (Gilardoni et al., 2009; Hawkins et al., 2010;

Chhabra et al., 2011a; Takahama et al., 2011; Liu et al., 2011). The AIRSpec open platform is

the most recent development with this regard that includes several chemometric methods

developed for the FTIR analysis of atmospheric aerosols (Reggente et al., 2019b).

Recently, more advanced statistical approaches have been used to analyze FTIR spectra. For

example, partial least squares regression (PLSR) have been applied to the FTIR analysis of

PM2.5 samples collected on PTFE filters in several works, enabling the quantitative analysis

without baseline correction or peak fitting (e.g., Ruthenburg et al., 2014; Reggente et al., 2016;

Boris et al., 2019; Takahama et al., 2019). Bürki et al. (2020) presented a probabilistic framework
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(Bayesian modeling) that enables the estimation of collocated TOR OC measurements from

FTIR spectra of filter samples, incorporating prior knowledge of model parameters (e.g., the

fraction of carbon associated with each FG) from laboratory standards and atmospherically

relevant molecules. In addition to the functional group quantification, positive matrix fac-

torization (Hawkins and Russell, 2010; Russell et al., 2011; Takahama et al., 2011, PMF;) and

cluster analysis (Corrigan et al., 2013; Bürki et al., 2020) have been frequently used to identify

and quantify the contribution of different sources to atmospheric aerosols collected on PTFE

filters (e.g., biomass burning, biogenic, fossil fuel combustion, and marine). However, the

FTIR signatures of marker molecules for identification of aerosol sources have not received

enough attention in previous studies.

FTIR has also been combined and compared with other analytical techniques in a few studies

(predominantly with AMS) for the chemical characterization of atmospheric and smog cham-

ber (also known as environmental simulation chamber)aerosols showing promising results

(Gilardoni et al., 2009; Russell et al., 2009b; Frossard et al., 2011; Liu et al., 2011; Corrigan et al.,

2013; Frossard et al., 2014; Faber et al., 2017; Russell et al., 2009a).

1.3 Research objectives and dissertation structure

The main objectives of this work are chemical characterization of primary and secondary

organic aerosols from different sources especially biomass burning, understating their evo-

lution during the aging process in the atmosphere, and identification and quantification of

these aerosols in the atmosphere. This thesis is composed of six different projects, which have

been presented in chronological order. In these projects, FTIR spectroscopy is used to analyze

organic aerosols collected on PTFE filters from a variety of sources: atmospheric samples,

and aerosols from combustion sources collected in environmental simulation chambers and

cookstove test facilities. FTIR measurements are compared and (statistically) combined with

various collocated analytical techniques (e.g., AMS, IC, thermal optical OC, GC-MS) to better

characterize the chemical composition of OM and its formation mechanisms. FTIR has been

used extensively in the past to quantify the functional group composition of OM. Although

functional group characterization is still an important part of this work, FTIR has also been

used to extract more detailed structural information about OM and also to detect and quantify

certain marker molecules related to biomass burning. One of the key advantages of FTIR that

is its scalability to large air pollution monitoring networks with hundreds of sites has been

shown in this work.

Chapter 2: Estimating mean molecular weight, carbon number, and OM/OC with mid-

infrared spectroscopy in organic particulate matter samples from a monitoring network

In this chapter, a spectroscopic method is developed that allows us to estimate some mixture-

averaged properties of OM (e.g., mean molecular weight, carbon number, and the OM:OC

ratio) that are relevant for understanding different atmospheric processes and aerosol sources.

The calibration models are built on laboratory standards of atmospherically-relevant organic
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molecules and are applied to filter samples of PM2.5 collected in an existing air pollution

monitoring network. This method identifies distinct mean molecular weight and carbon

number distributions for urban, rural, and smoke-impacted atmospheric samples.

Chapter 3: Characterization of primary and aged wood burning and coal combustion or-

ganic aerosols in an environmental chamber and its implications for atmospheric aerosols

In this chapter, the functional group composition of fresh and oxidized aerosols from wood

burning and coal combustion are characterized in an environmental chamber. The corre-

sponding FTIR spectra are related to the unburned fuel composition and oxidation products

from the major volatile organic compounds know for each source. By comparing AMS and

FTIR spectra, we find that AMS spectra of primary and aged burning aerosols in the chamber

contain functional group information that is consistent with collocated FTIR measurements.

Infrared spectra of wood burning aerosols are shown to have striking similarities with those of

ambient biomass burning aerosols regarding the spectral profile and the fingerprint absorp-

tions of biomass burning markers.

Chapter 4: Fragment ion-functional group relationships in organic aerosols using aerosol

mass spectrometry and mid-infrared spectroscopy

AMS provides high-time-resolution characterization of OM. However, the extensive fragmen-

tation of molecules poses challenges toward detailed understanding of molecular structure

of burning-associated aerosols. This chapter details various multi- and univariate statistical

techniques for understanding the composition of organic aerosols through the combination

of collocated AMS and FTIR spectroscopy measurements in an environmental chamber. Our

analysis reveals that functional group information is retained in AMS spectra in terms of a

combination of small (low m/z) and large (high m/z, source specific) fragments. AMS and

FTIR measurements are combined statistically and predictive models are developed that can

estimate high-time-resolution functional group compositions from the AMS spectra. These

models can elucidate the contribution of functional groups and their evolution during the

course of aging.

Chapter 5: Chemical evolution of primary and formation of secondary biomass burning

aerosols during daytime and nighttime

In this chapter, AMS and FTIR are used in tandem to better understand and quantify the

evolution of primary and aged bbOA, two major sources of atmospheric OM, during chemical

aging. We adopt a particle wall loss correction method based on AMS organic measurements

and develop a procedure to quantify the changes in the composition of primary and aged

bbOA. We find that 15 % of primary bbOA mass transforms at relatively short timescales on

the order of a day in the atmosphere. The results of this study allow us to evaluate the stability

of fresh bbOA molecules (including bbOA markers) and the importance of aging mechanisms

other than the homogeneous gas-phase oxidation.

9



Introduction

Chapter 6: Identification of smoke-impacted PM2.5 samples with mid-infrared spectroscopy

in a monitoring network

In this chapter, the FTIR biomass burning marker method introduced in Chapter 3 is developed

further and evaluated against satellite detection of fire and smoke. In addition, the ability

of FTIR to quantify anhydrosugars, well-known biomass burning markers, is compared to

a sensitive chromatographic method (high performance anion exchange chromatography,

HPAEC). A smoke classifier model is developed that only relies on FTIR spectra to detect the

existence of wood burning smoke in atmospheric samples. The developed method is used

to study the concentrations of biomass burning aerosols across the US in 2015 by analyzing

approximately 20,000 PTFE samples of PM2.5 collected at 160 sites of the IMPROVE network.

This work showcases the scalability of FTIR to large air pollution networks .

Chapter 7: Quantified functional group compositions in household fuel burn emissions

using FTIR

Billions of people burn solid fuels indoors for cooking and heating around the globe, which

contributes to global EC emissions and premature deaths. In this chapter, we use FTIR to

analyze PM2.5 emissions collected on PTFE filters from fifteen cookstove types and five fuel

types. FTIR spectra are found to be distinct for particulate emissions from combustion of each

fuel and to have similarities to those of unburned fuels. A multi-variate statistical method

is used to highlight the functional groups associated the most with OC from a collocated

thermal optical transmittance (TOT) carbon analyzer. Our results show that unlike other

samples analyzed in this thesis, aromatics and polycyclic aromatic hydrocarbons (PAHs) are

major constituents of particulate emissions from cookstoves. We show that FTIR is a fast and

non-destructive technique that provides information about OC that is in agreement with and

complementary to thermal-optical measurements.
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Chapter 2

Abstract Organic matter (OM) is a major constituent of fine particulate matter which con-

tributes significantly to degradation of visibility, radiative forcing, and causes adverse health

effects. However, due to its sheer compositional complexity, OM is difficult to characterize

in its entirety. Mid-infrared spectroscopy has previously proven useful in the study of OM by

providing extensive information about functional group composition with high mass recovery.

Herein, we introduce a new method for obtaining additional characteristics such as mean

carbon number and molecular weight of these complex organic mixtures using the aliphatic

C−H absorbance profile in mid-infrared spectrum. We apply this technique to spectra ac-

quired non-destructively from Teflon filters used for fine particulate matter quantification

at selected sites of Inter-agency Monitoring of PROtected Visual Environments (IMPROVE)

network. Since carbon number and molecular weight are important characteristics used

by recent conceptual models to describe evolution in OM composition, this technique can

provide semi-quantitative, observational constraints of these variables at the scale of the

network. For this task, multivariate statistical models are trained on calibration spectra pre-

pared from atmospherically relevant laboratory standards and are applied to ambient samples.

Then, the physical basis linking the absorbance profile of this relatively narrow region in

the mid-infrared spectrum to the molecular structure is investigated using a classification

approach. The multivariate statistical models predict mean carbon number and molecular

weight that are consistent with previous values of organic-mass-to-organic-carbon (OM/OC)

ratios estimated for the network using different approaches. The results are also consistent

with temporal and spatial variations in these quantities associated with aging processes, and

different source classes (anthropogenic, biogenic, and burning sources). For instance, the

statistical models estimate higher mean carbon number for urban samples and smaller, more

fragmented molecules for samples in which substantial aging is anticipated.

2.1 introduction

2.1.1 Organic aerosols and measurement methods

Organic mass is known to be an important constituent of fine particulate matter (PM). It

is estimated to constitute 20–50 % of the total fine PM at mid-latitudes and up to 90 % in

tropical forests (Kanakidou et al., 2005). This organic fraction contributes significantly to

aerosol-related phenomena such as visibility and climate change, through radiative forcing

and affecting cloud formation, and causes adverse health effects (Shiraiwa et al., 2017b;

Hallquist et al., 2009). Such effects underscore the importance of better quantification of

organic fraction in particulate matter which is a complex mixture of multitude of compounds

whose compositions, concentrations, and formation mechanisms are not yet completely

understood (Turpin et al., 2000; Nozière et al., 2015).

The determination of organic aerosol composition involves a large range of analytical and com-

putational techniques. Among the widely known techniques are gas chromatography-mass

spectrometry (GC-MS), mid-infrared spectroscopy – often referred to as Fourier transform
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2.1. introduction

infrared spectroscopy (FTIR) – and aerosol mass spectrometry (AMS). GC-MS provides molec-

ular speciation information but is limited to a small mass fraction of the organic aerosols as

low as 10 % (Hallquist et al., 2009). AMS and FTIR, however, can be used to analyze most

of the organic mass in addition to providing information about either chemical classes or

functional groups (Hallquist et al., 2009). AMS is an on-line technique with a relatively high

size and time resolution. Nevertheless, the extensive fragmentation caused by commonly

used ionization method in AMS, i.e. electron impact (EI) ionization, makes the identification

of original species difficult (Canagaratna et al., 2007; Faber et al., 2017). In recent years, soft

ionization methods such as electrospray ionization (ESI), photoionization (PI), and chemical

ionization (CI) have been used frequently for predicting physicochemical properties of OA, e.g.

volatility (Li et al., 2016; Xie et al., 2020), phase state, and viscosity (Li et al., 2020b; DeRieux

et al., 2018; Shiraiwa et al., 2017a) as a function of measured elemental composition and

molecular weight. These methods minimize analyte fragmentation, providing better estimates

of molar mass of individual molecules but often have other shortcomings such as ionization

efficiency, which varies by molecule (Nozière et al., 2015; Iyer et al., 2016; Hermans et al., 2017;

Lopez-Hilfiker et al., 2019).

In mid-infrared spectroscopy, the vibrational modes of organic molecules, whose frequencies

fall in the range of mid-infrared electromagnetic radiation, are excited. The advantages of mid-

infrared spectroscopy over other common techniques of quantifying OM are providing direct

information on functional groups, while minimizing sample alteration during the analysis

and having low sampling and analytical cost (Ruthenburg et al., 2014). However, this method

only provides bulk functional group (FG) information and has uncertainties regarding the

absorption coefficient for group frequencies (although this coefficient is roughly similar across

different compounds; Hastings et al., 1952). Moreover, interpretation of mid-infrared spectrum

is often complicated due to presence of overlapping peaks. In previous studies, different

statistical methods were used to connect mid-infrared absorbances to molar abundance of

different functional groups, from which OM, OC (organic carbon), and the OM/OC ratio

were calculated with minimal assumptions (Coury and Dillner, 2008; Ruthenburg et al., 2014;

Takahama et al., 2016; Boris et al., 2019). These studies showed good agreement between FTIR

measurements and other methods of OM characterization. For example, Boris et al. (2019)

showed that OC measured by FTIR is around 80 % of OC from thermal optical reflectance

(TOR) measurements.

In addition to the abundance of organic functional groups, mid-infrared spectroscopy is

informative about the environment in which organic bonds are vibrating (e.g., degree of

hydrogen bonding; Pavia et al., 2008), therefore can be used to extract more detailed structural

information about OM. This ability of mid-infrared spectroscopy has been investigated to a

lesser extent in the context of atmospheric OM. In this work, we used this aspect to investigate

two important structural parameters in OM, i.e. mean molecular weight, and mean carbon

number. These two parameters are important characteristics used by recent conceptual

models and parametrizations to describe evolution in atmospheric OM, in terms of its volatility

and phase state (Shiraiwa et al., 2017a; Pankow and Barsanti, 2009; Kroll et al., 2011; Donahue
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et al., 2011). Moreover, inspecting the spatial and temporal variations of these parameters

helps us understand the processes involved in aerosol aging, especially fragmentation (Murphy

et al., 2012), and can be useful for identification of the dominant sources (Price et al., 2017;

Gentner et al., 2012).

In this paper, the mean molecular weight, carbon number, and OM/OC ratio of ambient

aerosols, which were collected on polytetrafluoroethylene (PTFE) filters at selected IMPROVE

sites, were estimated using FTIR spectroscopy. First, the aliphatic C – H region (2800–3000

cm−1) was extracted from the baseline-corrected spectra of laboratory standards. The C – H

spectral bands were then normalized to eliminate abundance information. Then, partial

least squares regression (PLSR) was used to develop models on the high-dimensional and

collinear spectral data. Thereafter, the derived statistical models were used to estimate the

mean properties of ambient samples. Finally, a classification algorithm was applied to the

PLSR model estimates to provide a better understanding of how they function.

2.1.2 Aliphatic C – H absorption and the molecular structure

We have used the aliphatic C – H region (2800–3000 cm−1) in mid-infrared spectrum to build

statistical models for estimating molecular weight and carbon number. This section describes

the connection of that region of the spectrum with the molecular structure of organic aerosols

and compares the approach used in this work with previous studies.

Recent studies using FTIR and AMS have shown that the aliphatic C – H is the most abundant

functional group in organic aerosols (Russell et al., 2009b; Ruthenburg et al., 2014; Zhang et al.,

2007) highlighting its importance in OM. This functional group also exhibits characteristics of

“good group” frequencies in mid-infrared stretch region (Mayo et al., 2004). Since the hydrogen

atom is much lighter than the carbon atom, most of the displacement during oscillation is

related to the hydrogen, thereby the carbon atom and consequently its connection to the rest

of the molecule is involved to a much lesser extent in the stretch (Mayo et al., 2004). This

phenomenon results in a fairly consistent profile for C – H absorption band among different

molecules containing this functional group and makes it possible to reduce the dimensionality

of spectrum to few independent variables describing the band profile (advantageous when

constructing statistical models using a limited number of samples). The light hydrogen atom

also causes the aliphatic C – H functional group to absorb at a relatively high stretch frequency,

making it isolated from most of other absorbing bonds (Mayo et al., 2004) except the broad

carboxylic acid O – H stretch, which absorbs in the 2400–3400 cm−1 range and the ammonium

N – H stretch (Pavia et al., 2008). These broad absorption profiles can be separated from the

narrow aliphatic C – H bands by baseline correction. The unsaturated and aromatic C – H

bonds, which absorb at a slightly higher frequency than aliphatic C – H, were not considered in

this work. These bonds are not prevalent in atmospheric samples (Russell et al., 2011; Decesari

et al., 2000) and their absorption usually falls below the FTIR detection limit (Russell et al.,

2009b). The absorption bands attributed to unsaturated and aromatic C – H were not visible
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2.1. introduction

in mid-infrared spectra of atmospheric samples of this study.

The aliphatic C – H (sp3-hybridized) stretching band in mid-infrared spectrum is composed of

four absorption peaks (two doublets) that are attributed to CH2 (methylene) and CH3 (methyl)

symmetric and asymmetric stretches (Mayo et al., 2004). Methine (tertiary CH) also absorbs

in this region, but has a very weak absorption compared to methyl and methylene (Pavia et al.,

2008). The profile of these four peaks (characterized by peak frequency, intensity, and width) is

affected by the structure of the molecule, inter- and intra-molecular interactions that change

electron distribution, and the equilibrium geometry of the molecule (Atkins et al., 2017; Kelly,

2013) as discussed below.

Group vibrational modes in a molecule are not completely decoupled from the rest of the

molecule (McHale, 2017). Equation (2.1) describes a 2-body harmonic oscillator model of

molecular vibration (in a classical point of view), for which ν̄ is the fundamental wavenumber

at which the bond vibrates, c is the speed of light, K is the spring constant of the chemical

bond, mH is mass of hydrogen atom and mM is the mass of the rest of the molecule (assuming

the rest of the molecule is stiff). The reduced mass of the system, µ, increases with increasing

the molecular weight (Eq. 2.1), resulting in a decreased vibrational frequency (wavenum-

ber). There are also effects that change the vibrational frequency through changing the bond

strength. For example, electron-withdrawing effect of neighboring polar groups and ring

structure strain elevate the absorption frequency of the oscillator by increasing the equiva-

lent spring constant (Pavia et al., 2008). The Bohlmann effect, in which electron density is

transferred from the lone pair of a neighboring nitrogen or oxygen into the C – H antibonding

orbital, decreases the frequency by weakening the C – H bond (Lii et al., 2004). Hydrogen-

bonding interactions and phase state can also affect absorption frequency and intensity of

bands corresponding to vibrational modes (Fornaro et al., 2015; Kelly, 2013).

ν̄= 1

2πc

√
K

µ
,

where µ= mH mM

mH +mM
.

(2.1)

The environment in which the molecules vibrate can effect the absorption peak width through

different homogeneous and inhomogeneous broadening mechanisms. Slightly different

interaction of molecules in liquids and amorphous solids (to a lesser extent in crystals) is

the basis of inhomogeneous broadening (Kelly, 2013). This phenomenon determines the

change in peak width due to phase state by changing the level of interaction between the

molecules. Hydrogen bonding can also cause inhomogeneous broadening due to enhanced

anharmonicity (Thomas et al., 2013). The weak hydrogen bond, which can exists for aliphatic

C – H functional group (Desiraju and Steiner, 2001), broadens its absorption band slightly and

shifts its absorption frequency.

The peak height ratios in aliphatic C – H region are also indicators of some structural fea-
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Figure 2.1 – Normalized aliphatic C – H spectra of the laboratory standards (left) and several
atmospheric samples (right). This figure shows variation in absorbance profile among the
standards and atmospheric samples.

tures of the molecule. For example, the ratio of peak heights of asymmetric CH3 stretching

to asymmetric CH2 stretching shows the relative abundance of these groups in the sample

(Orthous-Daunay et al., 2013). For straight-chain alkanes and some polymers, this ratio is di-

rectly related to the chain length and can be used to estimate the carbon number of a molecule

(Lipp, 1986; Mayo et al., 2004). This ratio as well as the tertiary C – H absorption are informative

about the degree of branching in the molecule. The ratio of symmetric to asymmetric CH2

peak heights is an the indicator of rotational and conformational order in a molecule, and is

related to chain length and phase state (Hähner et al., 2005; Corsetti et al., 2017; Orendorff et al.,

2002). Price et al. (2017) compared that ratio between mid-infrared spectra of emissions under

different engine conditions for ultra-low sulfur diesel (ULSD) and hydrogenation derived

renewable diesel (HDRD) fuels and observed a slightly greater ratio for the ULSD emissions

and suggested this was due to the differences in the carbon number distribution of the two fuel

emissions. In addition, some other vibrational bands can affect this region through forming

overtones and combination bands (Thomas, 2017). Overall, the absorbance profile in the

aliphatic C – H region contains direct and indirect information about carbon number and

molecular weight and shows significant variation in laboratory standards and atmospheric

samples (Fig. 2.1) related to their molecular structure. In this work, we adopt a new approach

for using mid-infrared spectra to characterize OM. We use the variations in the aliphatic C – H

region to estimate mean carbon number and mean molecular weight of atmospheric samples.

In previous studies on the mid-infrared spectrum of atmospheric aerosols, functional group

molar abundance in laboratory standards or total OC from other methods such as TOR were

considered as the response variable, while non-normalized absorbances were considered as

independent variables (Takahama et al., 2013; Ruthenburg et al., 2014; Reggente et al., 2016).

In this manner, linear models resembling the Bougher-Lambert-Beer law were developed. In

this study, however, molecular weight and carbon number statistical models were developed

using chemical formulas of the laboratory standards (no molar abundance information) and

their normalized aliphatic C – H absorbances as independent variables. The current approach

extracts detailed information from the mid-infrared spectrum complementary to previous

approaches (Fig. 2.2).
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Figure 2.2 – Diagram showing the relation between spectral features and molecular/physical
properties. The way previous approaches (e.g. Ruthenburg et al., 2014; Takahama et al., 2013)
and the current approach use mid-infrared spectrum to estimate different parameters is
shown in blue and red boxes, respectively. Highlighted molecular properties can only be
estimated using the current approach.

2.2 Methods

We will describe the atmospheric samples as well as the laboratory standards for the calibration

and test set in Sects. 2.2.1 and 2.2.2. Thereafter, the methodology for data analysis and

interpretation will be discussed in Sects. 2.2.3, 2.2.4, and 2.2.5.

2.2.1 IMPROVE network monitoring sites (sampling and analysis)

Particulate matter with diameter less than 2.5 µm (PM2.5) was collected on PTFE filters (25

mm diameter Teflo® membrane, Pall Corporation) every third day for 24 hours, midnight

to midnight, at nominal flow rate of 22.8 L min−1 during 2011 and 2013 at selected sites in

the Inter-agency Monitoring of PROtected Visual Environments (IMPROVE) network (http:

//vista.cira.colostate.edu/improve/,lastaccess:2020-10-08). There are, in total, 814 samples

collected at 7 sites in the USA in year 2011 and 2161 samples collected at 16 different sites in

the USA 2013 (see Fig. 2.3). 1 out 7 sites in 2011 and 4 out of 16 of sites in 2013 are urban sites

and the rest are rural. FTIR analysis was performed on the PTFE filters using a Bruker-Tensor

27 FTIR spectrometer equipped with a liquid nitrogen-cooled, wideband mercury-cadmium-

telluride (MCT) detector, and at a resolution of 4 cm−1 (data intervals of 1.93 cm−1; Nyquist

sampling). For samples with low molar abundance of organic compounds, especially aliphatic

C−H, baseline correction could not be done properly in the aliphatic C−H region resulting in

irregular and negative absorbance profiles. These samples were omitted from further analysis

and only 798 were analyzed in this work. As can be seen from Fig. 2.4, data recovery is higher

in urban sites than rural sites due to having a usually more prominent aliphatic C−H peak.
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Due to this under-sampling, generalizing the results of this work to the whole of rural samples

should be done with caution.
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Figure 2.3 – The location of IMPROVE sites used for this work (the USA and Alaska); the year at
which samples are taken is differentiated by color and the type of the site by point shape.
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Figure 2.4 – Percentage of the samples which were recovered from each category (sample type
and season) after baseline correction. The number of samples in each category is shown in
red.

2.2.2 Laboratory standards (sampling and analysis)

Compounds containing relevant functional groups to atmospheric OM such as aliphatic

C−H, alcohol and acid O−H, carbonyl C=O, and with different structures (straight-chain and

cyclic) and various chain lengths were used to produce laboratory standards (Table 2.1). All

compounds used for creating the standards contained aliphatic C−H, which is the main focus

of this study. Five of these compounds were alkanes, just containing aliphatic C−H. Three were

straight-chain alcohols containing alcohol O−H as well. One was cyclic alcohol and one was a

cyclic ketone having carbonyl C=O; two were cyclic (not aromatic) sugar derivatives containing

several O−H groups. The calibration set also contained an ester, a ketone and one dicaboxcylic

acid. In addition to relevance to atmospheric OM, these standards were selected based on

the availability of spectroscopic data and their suitability for atomization. These compounds

had comparable absorption coefficients for aliphatic C−H and the effect of other functional

18



2.2. Methods

Table 2.1 – Chemicals used in the calibration set to analyze the effect of different physical/-
chemical properties of organic molecules on aliphatic C−H absorbance profile.

Compound Name Formula Class Phase State at 25◦C Molecular Weight (g mol−1) OM/OC
Tetradecane C14H30 alkane liquid 198.4 1.18
Hexadecane C16H34 alkane liquid 226.4 1.18
Heneicosane C21H44 alkane solid 296.6 1.18
Docosane C22H46 alkane solid 310.6 1.18
Triacontane C30H62 alkane solid 422.8 1.17
1-Pentadecanol C15H32O alkanol solid 228.4 1.27
1-Eicosanol C20H42O alkanol solid 298.6 1.24
1-Docosanol C22H46O alkanol solid 326.6 1.24
Cyclohexanol C6H12O cyclic alcohol liquid 100.2 1.39
Cyclohexanone C6H10O cyclic ketone liquid 98.1 1.36
Fructose C6H12O6 Sugars and their derivatives solid 180.2 2.50
Levoglucosan C6H12O5 Sugars and their derivatives solid 162.1 2.25
Suberic acid C8H14O4 dicarboxcylic acid solid 174.2 1.81
Arachdyl dodecanoate C32H64O2 ester solid 480.9 1.25
12-Tricosanone C23H46O ketone solid 338.7 1.23

groups, heteroatoms, and the molecular structure was analyzed indirectly via the change in

the aliphatic C−H absorbance profile. Some of the laboratory standards and their resulting

spectra were taken from Ruthenburg et al. (2014). The rest were created (using a similar

protocol) from methanolic solutions with a concentration of 0.1 g L−1 and analyzed by FTIR as

follows. Atomized aerosols of the desired compounds were first generated by a TSI Model 3076

Aerosol Generator using the methanolic solutions. Then these particles were conducted by

the flow system towards a 47 mm PTFE filter (Teflo® membrane, Pall Corporation), where they

were collected. The flow system was composed of a silica gel dryer (for drying the aerosols

before collection), a sharp-cut-off 1 µm cyclone and a diluter system (which facilitated the

adjustment of aerosol concentration in the line). The pressure drop needed for the flow

through the filter was provided by a rotary vacuum pump (Gast 0523-101Q-G588NDX) and

the filter flow was controlled by a gas-flow controller (Alicat MCR-100-SLPM-D/5M). The

mass on the filters ranged from few micro-grams to tens of micro-grams. After collecting the

aerosols on the filters, FTIR analysis was performed on the PTFE filters using a Bruker-Vertex

80 FTIR spectrometer equipped with a deuterated lanthanum α alanine doped triglycine

sulfate (DLaTGS) detector, with the same spectral resolution as the spectra of the ambient

samples.

In total, 168 laboratory samples with different composition and molar abundance (absorption

amplitude ranging from 0.001 to 2 before normalization) were used from which a subset of

43 samples was kept as a test set and the rest were used as the calibration set. The test set

was used solely for the purpose of evaluation of the statistical models developed using the

calibration set. However, the final statistical models, which were applied to ambient samples,

were developed using all 168 laboratory standards to increase the precision.
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2.2.3 Baseline correction and normalization

The baseline removal is often a useful step in mid-infrared spectroscopy on PTFE filters,

like in other methods of spectroscopy. The baseline arises from light scattering by the filter

membrane (Mcclenny et al., 1985) and particles collected on the filter as well as electronic

transitions of some carbonaceous materials (Russo et al., 2014; Parks et al., 2019). For baseline

removal, we used the smoothing spline method on 1500–4000 cm−1 region, where PTFE

filter does not absorb, with parameter selection criteria similar to the approach taken by

Kuzmiakova et al. (2016). Briefly, a cubic smoothing spline was fitted to the spectrum and then

was subtracted from the raw spectrum to obtain the pure contribution of functional groups at

each wavelength. The analyte region (the aliphatic C−H absorption region, 2800–3000 cm−1)

was manually excluded from the baseline by setting the weights in this region to zero in the

the smoothing spline objective function (refer to Kuzmiakova et al., 2016). The rest of the

spectrum between 1500–4000 cm−1 was included in the baseline by setting the weights one.

After baseline correction, the aliphatic C−H absorbances were scaled between zero and one

(Fig. 2.1) for all spectra so that the absorbance profiles were comparable regardless of the

absorbance intensity (functional group abundance).

2.2.4 Building the calibration models

In order to estimate molecular weight and carbon number from the normalized aliphatic C−H

absorbances in the mid-infrared spectra, we seek the solution of the following linear equation

for the calibration models:

y = Xb +e, (2.2)

where X is the normalized spectra matrix (the aliphatic C−H absorption region, 2800–3000

cm−1), y is the vector of response variable (molecular weight or carbon number) and e is a

vector of residuals (y and X are assumed to be centered). In spectroscopic applications, due to

indeterminacy (more independent variables than the number of samples) and collinearity

(inter-correlation between independent variable) the ordinary least squares (OLS) method is

not applicable or is not robust unless regularized. Among the common methods developed for

treating such a data structure, we chose univariate (y is a vector, i.e. has one variable) partial

least squares regression (PLSR) for this work (Wold et al., 1983). Univariate PLSR projects X

onto P basis with orthogonal scores T and residual matrix E (Eq. 2.3) such that the covariance

between each score column and y is maximized (in each step of deflation). Thereafter, the

response variable y is regressed linearly against the scores (Eq. 2.4). In Eq. (2.4), c is the

regression coefficient of y as a function of scores (T) and f is the vector of residuals.

X = TP>+E, (2.3)

y = Tc + f . (2.4)

Determining the optimum number of latent variable (LVs), which are linear combinations of

original wavenumbers in this study, is an essential step for developing calibration models with
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predictive capability. After solving the PLSR problem for calibration models with different

number of LVs, we ran a repeated 10-fold cross validation on the calibration models and

calculated the root mean square error (RMSE) of predictions (for the calibration set) for each

model. Thereafter, the model whose RMSE was within one standard error from the calibration

model with minimum RMSE and had fewer LVs (i.e., a simpler model) was chosen (Hastie et al.,

2009). Based on the above-mentioned procedure, the optimal number of LVs for molecular

weight and carbon number calibration models was found to be 19 and 20, respectively.

2.2.5 Interpreting the calibration models using the basic spectral features

Although the PLSR models have considerably fewer LVs (approximately 20) than the origi-

nal wavenumbers (105), the lack of physical interpretability and remaining number of LVs

still hinders their physical interpretation. Therefore, we first analyze the basic (physically

interpretable) features of the mid-infrared spectrum – peak frequencies, widths and ratios

in the aliphatic C−H region – for the calibration set and their relation with carbon num-

ber and molecular weight (Sect. 2.3.1). Spatial and temporal variation of these patterns in

the atmospheric samples are also analyzed and related to similar patterns in the laboratory

standards.

The four basic features of the ambient sample spectra were used to build a classification and

regression trees (CART) (Breiman et al., 1983) to approximate the PLSR predictions of mean

molecular weight and carbon number and to better understand their connection with the

underlying spectral absorption characteristics. In this approach, binary decision trees are

generated to classify the PLSR estimates based on partitioned domains of their basic spectral

features. The CART algorithm expands the trees in the order of decreasing explanatory power

until certain stopping conditions (e.g., minimum number of observations in terminal nodes

or minimum improvement of explanatory power at each step of splitting) are satisfied.

2.3 Results and discussions

First, the basic features of the aliphatic C−H profile are discussed in the atmospheric and the

laboratory samples followed by a similarity check between the two (Sect. 2.3.1). Then, develop-

ment of calibration models for predicting molecular weight and carbon is described, followed

by investigation of their performance in the calibration and test (Sect. 2.3.2). Thereafter, the

model estimates are discussed for atmospheric samples and compared to the results reported

in literature (Sect. 2.3.3). Finally, the basic features introduced earlier are used to classify the

results of the sophisticated (PLSR) models in order to obtain a better understanding of the

way they function (Sect. 2.3.4).
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2.3.1 Basic features

Basic features of the spectrum in the aliphatic C−H region were calculated for atmospheric

samples and laboratory standards to study their temporal and spatial variation and their

relation with molecular properties such as molecular weight, carbon number, and the OM/OC

ratio. These variables, although few, can give a good estimate of the absorbance profile and

make it more interpretable.
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Figure 2.5 – A sample C−H spectrum showing the convention of peak parameters used in this
study. The symmetric CH2 (ν̃s CH2) wavenumber is denoted by ν̃1. The asymmetric CH2 (ν̃as

CH2) wavenumber is denoted by ν̃2 and the asymmetric CH3 (ν̃as CH3) wavenumber by ν̃3.
Absorbance and width of the ith peak are also denoted by Ai and wi , respectively.

Figure 2.5 shows the convention of spectral features in the aliphatic C−H (2800–3000 cm−1)

region used in this study. Apart from methine group (tertiary C−H), which has a very weak

absorption (Pavia et al., 2008), there are two doublets in this region corresponding to CH2 and

CH3 symmetric and asymmetric stretching vibrations. The CH3 symmetric peak is typically

suppressed by the surrounding peaks and is not completely distinguishable. Among the

remaining peaks, the symmetric CH2 (ν̃s CH2) wavenumber is denoted by ν̃1. Likewise, the

asymmetric CH2 (ν̃as CH2) wavenumber is denoted by ν̃2 and the asymmetric CH3 (ν̃as CH3)

wavenumber by ν̃3. Absorbance and peak width of the ith peak are also denoted by Ai and

wi , respectively.

In the next subsections, the variation of the mentioned spectral features are studied in the

laboratory standards and atmospheric samples. For this purpose, the atmospheric samples

are separated into urban, rural and burning categories. The burning category constitutes 95

samples of urban or rural sites and is taken from clusters 9a, 9b and 10 of Bürki et al. (2020)

based on their spectral similarity. These samples are believed to be influenced by residential

wood burning or wildfires since they were usually collected during a known fire period (Rim

Fire in California in 2013) or in Phoenix, AZ, during winter months when residential wood
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burning typically occurs (Pope et al., 2017).

Asymmetric CH2 peak wavenumber (ν̃2)

We calculated the second peak wavenumber (ν̃2) for the laboratory standards and atmospheric

samples using a simple peak finding algorithm based on the first and second numerical

derivatives of the spectrum. For the laboratory standards, the frequency generally decreases

with increasing molecular weight until it reaches an asymptotic state after 200 g mol−1 (Fig.

2.6). The curve in Fig. 2.6 shows the theoretical peak frequency of the aliphatic C−H when

the bond spring constant is assumed to be 103 N m−1 (Pavia et al., 2008), and the reduced

mass is calculated based on a ball-and-string assumption composed of the hydrogen atom

(first “ball”) and the rest of molecule (second “ball”). The only effect considered in this

model is the variation of the reduced mass of the oscillator. The fact that the less-oxygenated

laboratory samples follow the theoretical line closely implies that the value of the spring

constant considered here is, on average, a good approximation. However, especially for

highly oxygenated (high OM/OC ratio) molecules and those in liquid phase (which have a

lower molecular weight), the absorption frequency deviates from the theoretical line (higher

frequency) due to higher levels of inter-molecular interaction.
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Figure 2.6 – Scatter plot showing the variation of the second peak wavenumber (ν̃2) with
molecular weight (MW) in the calibration set, affected by the OM/OC ratio and phase state (S:
solid, L: liquid). The black line shows the theoretical frequency with a spring constant equal to
103 N m−1 for all C−H bonds. The OM/OC ratio and phase state are shown for the samples.
The error bars show uncertainty in calculated peak frequency due to FTIR scan resolution.

Regarding the atmospheric samples, most of categories have a peak density in 2915–2925

cm−1, close to that of straight-chain molecules of the laboratory standards (Fig. 2.7, first row).

Urban samples have a wider shoulder on the right side (around 2925 cm−1) in summer when

the samples are expected to be more aged. Other variations are believed to be insignificant

considering the scan resolution of the FTIR instrument.
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Figure 2.7 – Kernel density estimate of second peak wavenumber (ν̃2), the ratio of peak
heights of symmetric CH2 to asymmetric CH2 stretching (A1/A2), the ratio of peak heights of
asymmetric CH3 to asymmetric CH2 stretching (A3/A2), and the second peak width (w2) of
the aliphatic C−H band in mid-infrared spectra of the atmospheric samples segregated based
on sample type and season.

Peak height ratios (Ai /A2)

Analyzing the laboratory standards shows that a relatively linear but scattered relation exists

between carbon number and the A1/A2 ratio in the calibration set (Fig. 2.8, upper panel).

Suberic acid, that is the only dicarboxylic acid in the laboratory standards, does not follow the

general trend, probably due to strong dimerization. As mentioned in Sect. 2.1.2, the A1/A2

ratio compares symmetric and asymmetric absorbance of methylene and its connection with

carbon number has already been highlighted in FTIR analysis of some types of diesel fuels

(Price et al., 2017). Increase in A1/A2 is also observed between solid and liquids, consistent

with the work of Corsetti et al. (2017). We also observe a nonlinear relation between the A3/A2

ratio and carbon number with different levels based on branching and terminal functionaliza-

tion (Fig. 2.8, lower panel). This ratio is equal to zero for molecules lacking methyl group such
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2.3. Results and discussions

as simple cyclic molecules while increasing as the number of branches containing terminal

methyl increases.

Results show a clear separation in atmospheric samples regarding the sample type and season

for both A1/A2 and A3/A2 ratios (Fig. 2.7, second and third row). The samples influenced

by burning usually have the lowest A1/A2 ratio (Fig. 2.7, second row). This observation is

consistent with the presence of molecules with longer chains, as observed for laboratory

samples. Bürki et al. (2020) showed that the urban samples (in the same dataset) have their

highest average OM/OC ratio in summer which is concurrent with the their highest A1/A2 ratio

which suggests shorter chain length. The highest A1/A2 ratio for rural samples is observed

in spring when the aerosols are highly oxidized (Bürki et al., 2020). This suggests that aged

aerosols have lower carbon number probably due to the fragmentation process. The measured

A1/A2 ratio for majority of the atmospheric samples ranges between 0.6 to 0.8, which is

consistent with the value for laboratory standards. Results also show that the A3/A2 ratio is

higher in rural samples compared to urban samples (with the exception of spring) suggesting a

higher CH3 to CH2 abundance in those samples. This observation can be due to lower carbon

number or higher number branches containing CH3. Like the A1/A2 ratio, we observe fewer

samples with low A3/A2 ratios in urban sites in summertime. The A3/A2 ratio falls between 0.1–

0.4 for majority of the atmospheric samples, which is consistent with the value for laboratory

standards. It is worth noting that peaks in atmospheric samples are more overlapped than

laboratory standards, which makes calculation of peak ratios based on extrema of the original

spectra imprecise. As a result, a peak fitting method based on Gaussian peaks was applied to

atmospheric samples in order to obtain the peak ratios more precisely.

Peak width (wi)

We observe a clear correlation between w2 and the OM/OC ratio in the calibration set when

solid and liquid phases are considered separately (Fig. 2.9). As mentioned in Sect. 2.1.2,

hydrogen bonding increases the peak width, and the extent of hydrogen bonding is usually

a good indicator of the OM/OC ratio. This is because hydroxyl, hydroperoxyl, and carboxyl

groups, which form hydrogen bonds, are among the most effective functional groups in

CNc H2Nc+2−No ONo formation due to the significant vapor pressure reduction they cause (Sein-

feld and Pandis, 2016). In this study, w2 is defined as the peak width at 75 % of the maximum

amplitude. This position is chosen for robustness of the measurement algorithm (to avoid

interference with other peaks); however, it can be converted to full width at half maximum

(FWHM) assuming the proper peak profile (w2 is 65 % of FWHM for a Gaussian peak). In

addition to hydrogen bonding and phase state, superposition of a multitude of peaks with

slightly different profiles can also have a statistical positive or negative effect on the peak

width in mixtures (see Appendix A.1.4). The observed peak width in mid-infrared spectra

of the atmospheric samples is the result of all above-mentioned factors. However, since all

laboratory standards are produced with pure compounds, the significance of the mixture

effect cannot be evaluated.
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Figure 2.8 – Scatter plots showing the relation between carbon number (nC) and the ratio
of peak heights of symmetric CH2 to asymmetric CH2 stretching (A1/A2, upper panel), and
the ratio of peak heights of asymmetric CH3 stretching to asymmetric CH2 stretching (A3/A2,
lower panel), averaged for each substance in laboratory standards. Error bars show ± one
standards error from the average and dashed lines are visual guides for the trends and levels.

Figure 2.7 (fourth row) shows a distinct distribution of w2 considering spatial and temporal

variations as well as sample category. Rural samples have a smaller value of w2 compared

to urban and burning samples, although the former are usually more oxidized (have higher

OM/OC ratio). This observation suggests that other factors such as phase state and statistical

effects likely outweigh the oxygenation effect on absorption peak width.

Spectral similarity (dimension reduction)

In previous sections, the basic features of spectra in the aliphatic C−H region were presented

and discussed for the atmospheric samples and laboratory standards. Here, we check the

spectral similarity between atmospheric complex mixtures and laboratory pure standards by

means of principal component analysis (PCA), before developing calibration models.

The spectral data of laboratory standards are highly collinear as can be seen from their correla-

tion matrix heat map (Fig. A.1). In this case, PCA is efficient for reducing the data dimension

such that only the first six principal components (PCs) explain around 99 % of variance in the

spectra (Table 2.2). For the sake of comparison, we have projected the spectra of atmospheric

samples onto the six PCs. The results show that their scores, when projected onto laboratory

PCs, are surrounded by laboratory standards. Many spectra, particularly urban ones, are
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Figure 2.9 – The average value of second peak width (w2) measured for each compound in the
calibration set versus the OM/OC ratio, colored based on compound phase state at laboratory
condition (25 ◦C). Error bars show ± one standards error from the average and dashed lines
are visual guides.

clustered close to tetradecane for the first four PCs (Fig. 2.10); greater differentiation is found

among the higher PCs. This observation suggests that the laboratory standards are able to

capture the main variations in the spectra of atmospheric samples, which have a more regular

aliphatic C−H profile close to that of straight-chain alkanes. We also found that PC3 appears

to capture phase state information (see Appendix A.1.5).

Table 2.2 – Importance of the first six principal components in the laboratory standards.

PC1 PC2 PC3 PC4 PC5 PC6
Standard Deviation 1.414 0.668 0.647 0.332 0.203 0.133
Proportion of Variance 0.651 0.145 0.136 0.036 0.014 0.006
Cumulative Proportion 0.651 0.796 0.932 0.968 0.982 0.988

2.3.2 Developing and evaluating the calibration models

PLSR with cross validation was used to develop quantitative models for molecular weight

(MW) and carbon number (nC) with the calibration set composed of 143 samples including

all compounds over the available mass range. The OM/OC ratio was then calculated from

these two parameters (OM/OC = MW
12.01nC

). The developed PLSR models gave reasonably good

fit results (r 2 ranging from 0.94 to 0.99) for molecular weight, carbon number, and indirect

OM/OC ratio in the calibration set (Figure 2.11).

The prediction ability of the PLSR models was then evaluated using a test set composed of 43

samples which were not used for developing the models. The PLSR models also performed

reasonably well in predicting molecular weight, carbon number and OM/OC ratio in the

test set with r 2 ranging from 0.92 to 0.98 (Fig. 2.11). The predictions with high relative error

were attributed to laboratory samples with low molar abundance (low signal-to-noise ratio),

for which the baseline correction had the highest uncertainty. This is not a concern when
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Figure 2.10 – Bi-plots showing the scores of normalized spectra of laboratory standards (color)
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principal components calculated for laboratory standards and listed in Table 2.2.

applying the PLSR models to atmospheric samples since the atmospheric samples with low

signal-to-noise ratio were omitted in the first step (Sect. 2.2.1).

2.3.3 Applying the calibration models to atmospheric samples

After checking the performance of the PLSR models on the calibration and test set, all lab-

oratory standards were used to build calibration models that were applied to the ambient

samples. In the following sections, the estimates of OM/OC, mean molecular weight, and
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Figure 2.11 – Scatter plot of fitted (predicted) indirect OM/OC ratio, molecular weight (MW),
and carbon number (nC) against the values from chemical formula of the calibration set (test
set). The diagonal black lines indicate the perfect fit (1:1).

mean carbon number for the ambient samples are shown in different categories based on

season and sample type (rural, urban and burning) after omitting the physically unreasonable

values. Thereafter, the trends and absolute values are compared to previous studies (when

available) and our expectations based on aging process and aerosol emission sources.

In this work, we have assumed that we can obtain mean mixture (atmospheric samples)

properties from the normalized spectrum of a mixture using the calibration models developed

for pure compounds (laboratory standards). This assumption relies on the linearity of the

property estimation models (which is consistent with our calibrations, Eq. 4.3), and equality

of the absorption coefficients of the compounds existing in the mixture (see Appendix A.1.2

for more information). Thus, the absorption coefficient of aliphatic C−H has been assumed to

be relatively similar between the compounds existing in atmospheric samples. Although the

aliphatic C−H absorption coefficients of the laboratory standards were similar in this study,
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the variability of this absorption coefficient is relatively less-studied for compounds existing in

the atmospheric OM and needs to be addressed in the future. This assumption is a potential

source of error that may change the accuracy of the results, but the estimates for atmospheric

samples shown in the following sections suggest that this assumption does not overwhelm the

findings.

OM/OC ratio

The OM/OC ratio is the first parameter that we investigate here since it has been studied

extensively in atmospheric aerosols (Bürki et al., 2020; Hand et al., 2019; Ruthenburg et al.,

2014; Takahama et al., 2011; Simon et al., 2011; Aiken et al., 2008). Moreover, it can be used

as an indirect evaluation for mean molecular weight and mean carbon number estimates as

the indirect OM/OC ratio is calculated from those two. An indirect OM/OC estimate that is

consistent with previous studies implies that estimates of molecular weight to carbon number

are also likely to be reasonable.

The OM/OC ratio is estimated to be generally lower for urban samples (≈ 1.5) than rural

samples (≈ 1.8; Fig. 2.14, first row). The lower OM/OC ratio in urban sites is thought to be

related to emission sources that are generally hydrocarbon, with low OM/OC ratio emitted

from gasoline and diesel vehicles (fuel combustion and unburned motor oil) as a major part of

anthropogenic CNc H2Nc+2−No ONo precursors (Gentner et al., 2012) as well as cooking. These

organic molecules do not undergo significant oxidation and aging as the monitoring sites are

generally close to the emission sources. In contrast, organic aerosols usually undergo several

steps of oxidation and receive substantial condensation of oxidized vapors, which results in

higher OM/OC ratio at rural and remote sites. Previous studies using several different methods

(including FTIR and AMS) show the same trend in urban and rural sites (Ruthenburg et al.,

2014; Zhang et al., 2007; Simon et al., 2011; Bürki et al., 2020). In addition, the majority of the

samples are in the range that is usually considered for OM/OC ratio, i.e.,1.4–1.7 (Russell, 2003).

We also observe that samples influenced by burning, especially residential wood burning,

have lower OM/OC ratio (≈ 1.4) than those associated with more oxidized aerosol such as

rural site, consistent with OM/OC estimates of Bürki et al. (2020).

The OM/OC ratio in urban sites is estimated to be higher in summer compared to other

seasons, especially winter (Fig. 2.14, first row) which is believed to be caused by more intense

photochemical aging in summertime (Kroll and Seinfeld, 2008). In rural sites, the trend

becomes more complicated as vegetation, as major biogenic CNc H2Nc+2−No ONo emission

sources, is more active in summer time (Yuan et al., 2018; Seinfeld and Pandis, 2016). Samples

influenced by burning are also estimated to have higher OM/OC in summer when samples

are affected by wildfires compared to winter when burning samples are mostly affected by

residential wood burning. However, the contribution of photooxidation relative to emission

sources is not clear in this case as they are coupled in these observations (Bürki et al., 2020).

In order to have a direct comparison with other methods, we chose the Phoenix, AZ, monitor-
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ing site, for which recovery percentage of the baseline correction method is close to 100 %,

and compared our indirect OM/OC ratio estimates to the corresponding ones calculated by

Bürki et al. (2020). The latter method uses molar abundance information of functional groups

in laboratory standards in addition to a much wider region of non-normalized mid-infrared

spectrum (1500–4000 cm−1). The median seasonal OM/OC ratios of this study underpredict

that of Bürki et al. (2020) by 0.12 on average, while reproducing the same temporal trends.

Some of the discrepancies may be due to insensitivity of spectral features to molecular charac-

teristics in certain domains – for instance, the variation of peak frequency ν̃2 diminishes with

increasing molecular weight (Sect. 2.3.1). However, the overall agreement between the two

methods is reasonable considering the indirect nature of estimates in our work (Fig. 2.12).
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Figure 2.12 – Bar chart showing median OM/OC ratio calculated for each season based on
samples collected in the Phoenix, AZ, monitoring site using our method and the one used by
Bürki et al. (2020).

Molecular weight (MW)

The PLSR model estimates the mean molecular weight to range between 100–350 g mol−1 for

majority of the samples (Fig. 2.14, second row). To the best of authors’ knowledge no extensive

study has been performed on mean molecular weight of ambient organic aerosol constituents.

Nevertheless, the estimated range is reasonably close to that of the studies that have been

done. Those studies measured molecular weights up to 200 g mol−1 for CNc H2Nc+2−No ONo

constituents using GC-MS and ion chromatography (Cocker III et al., 2001; Jang and Kamens,

2001b; Kalberer, 2004), an average molecular weight between 200–300 g mol−1 for atmospheric

HUmic-LIke Substances (HULIS) using electro-spray ionization (ESI) (Graber and Rudich,

2006), and an average molecular weight between 300–450 g mol−1 for oligomers formed in

a smog chamber, measured using laser desorption/ionization mass spectrometry (LDI-MS)

(Kalberer et al., 2006). Although particle-phase oligomerization processes result in high-

MW compounds (Jang and Kamens, 2001a; Tolocka et al., 2004; Shiraiwa et al., 2014), the
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abundance of these compounds is usually debated since the available experimental results

regarding the reversibility of accretion reactions are contradictory (Kroll and Seinfeld, 2008).

Moreover, oligomer formation may be overestimated in laboratory conditions compared to

atmospheric particles (Kroll and Seinfeld, 2008; Kalberer, 2004; Trump and Donahue, 2014).

The PLSR molecular weight model estimates a lower mean molecular weight for rural samples

(≈ 200 g mol−1) compared to urban ones (≈ 240 g mol−1), while burning samples are estimated

to constitute the heaviest molecules (≈ 290 g mol−1). This observation is consistent with

our knowledge of emission sources. Emissions in urban areas are influenced by long-chain

hydrocarbons from combustion products and motor oil (Gentner et al., 2012), while biomass

burning is accepted to be the primary source of high-MW HULIS (Li et al., 2019). We also

observe a decrease in mean molecular weight peak density in urban samples from winter to

summer that is believed to be attributed to fragmentation during more intense photooxidation

in summer (Hand et al., 2019; Jimenez et al., 2009), for emission sources that do not change

drastically between the two seasons. The same phenomenon is observed in LDI mass-spectra

of some urban samples in summer and winter reported by Kalberer et al. (2006). Although

the reduction in mean molecular weight due to fragmentation can be compensated for by

addition of heavy atoms to the molecule during oxidation, our results suggest that the overall

direction of photooxidation in urban sites is reduction of the mean molecular weight.

Carbon number (nC)

The PLSR carbon number model estimates that the recovered rural samples usually have

lower mean carbon number compared to urban samples and the samples influenced by

burning (Figure 2.14, third row). Higher mean carbon number estimates in urban sites (highest

probability density around 16), which are coincident with high elemental carbon (EC) values

from TOR measurements (Fig. A.2), can be attributed to major EC sources such as combustion

of fossil fuel and biomass. This is also consistent with high CNc H2Nc+2−No ONo formation

potential of molecules with 15–25 carbon in diesel fuel shown by Gentner et al. (2012). Samples

affected by burning are estimated to have the highest mean carbon number among all samples.

This observation is consistent with the emissions of plant cuticle waxes, mainly composed of

straight-chain hydrocarbons, observed during biomass burning (Hawkins and Russell, 2010)

as well as HULIS (Graber and Rudich, 2006). We also observe a decrease in estimated mean

carbon number of urban samples from winter to summer suggesting fragmentation during

aging and photooxidation processes.

The carbon-oxygen estimates of the PLSR models are consistent with the existing numerical

simulation. We compared our estimates with the numerical simulations by Jathar et al. (2015).

Multi-generational oxidation model used by Jathar et al. (2015) (Statistical Oxidation Model,

SOM, in a 3-D air quality model) for simulating CNc H2Nc+2−No ONo in Los Angeles and Atlanta

(two urban locations) shows that carbon number in CNc H2Nc+2−No ONo ranges from 3 to 15 with

the concentration peaks around 7, 10 and 15 (Fig. 2.13). For this comparison, we calculated the

carbon-oxygen grid from our molecular weight and carbon number estimates, assuming the
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organic molecules have a chemical formula of CNc H2Nc+2−No ONo (a common assumption and

one used by Jathar et al., 2015). Our PLSR models for the IMPROVE network estimate mean

carbon number peaks (number density) for rural, urban, and burning samples to be around

8, 16 and 18 respectively, while the total range is limited to 3–19 (Fig. 2.13). We also estimate

the oxygen number to range from 2 to 6 for the majority of the samples. It should be noted

that this is as an order of magnitude comparison since the time frame and the location of the

two studies are different and the numerical simulation by Jathar et al. (2015) only considers

CNc H2Nc+2−No ONo .
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Figure 2.13 – Comparison between carbon-oxygen grid simulated by Jathar et al. (2015) for
Atlanta and Los Angeles with sample points estimated for IMPROVE network (2011 and 2013)
from the molecular weight and carbon number estimates of this study. The dashed lines show
the range of simulated carbon and oxygen and the triangles indicate the location of the highest
CNc H2Nc+2−No ONo concentrations for the simulations of Jathar et al. (2015).

2.3.4 Calibration model interpretation

Reducing the spectrum to four basic features introduced in Sect. 2.3.1 (ν̃2, A3/A2, A1/A2, w2)

is a manual data compression onto a basis set of interpretable variables. Though information

loss is inevitable, it was shown in Sect. 2.3.1 that these basic features are still sufficient for

qualitative explanation of spectral variations associated with different emission source and

aerosol aging process. In this section, predictions made by the PLSR models on the ambient

samples are grouped based on the four basic features using CART (Fig. 2.15) in order to form a

better understanding of how the sophisticated PLSR models function.

The regression trees show that the peak ratios are observed to be the main grouping parameter

for both carbon number and molecular weight (Fig. 2.15). The inverse relation of peak ratios

with carbon number appears in most of the splitting nodes of carbon number and molecular

weight regression trees (Fig. 2.15). This is consistent with the observed relation between

carbon number and peak ratios in the calibration set (Fig. 2.8). Assuming that molecular

weight is highly correlated with carbon number, the classification of molecular weight based

on peak ratios is also expected. The peak frequency (ν̃2) appears once as a node in molecular

weight tree and classifies the estimates based on the same trend that was observed in the

calibration set (Fig. 2.6). The second peak width (w2) also appears few times in the nodes
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Figure 2.14 – Kernel density estimates of indirect OM/OC ratio, molecular weight (MW) and
carbon number (nC) estimated from normalized aliphatic C−H mid-infrared absorbances by
PLSR models (segregated by sample type and season).

probably adding information about the OM/OC ratio and phase state. The two trees shown

in Fig. 2.15 explain only around 50 % of the variation of estimates made by the PLSR models.

The explained variation can be increased to an arbitrarily high number through the use of

more branches in the fitting data set, but the predictive capability of regression trees for new

samples depends highly on their similarity to the training set.

In summary, regression trees show that the predictions of the PLSR models are generally

consistent with the observed trends of the basic features in the calibration set (Appendix A.1.6

supports this conclusion for individual spectra for which the PLSR models estimate quite

different parameters). This observation implies that the PLSR predictions of carbon number

and molecular weight are not independent of these basic features. However, the sophisticated

PLSR models use other fine features in addition to the mentioned basic features to extract

more detailed information and to reduce variabilities stemming from different sources such

as baseline correction.

34



2.4. Concluding remarks

peak_rat >= 0.75

peak_rat >= 0.83

peak3_am >= 0.24

peak_wid < 16

peak3_am >= 0.24

peak_wid < 17

peak_rat >= 0.68

peak3_am >= 0.28 peak3_am >= 0.3

peak3_am < 0.35

peak_rat >= 0.698
n=68

6.4
n=11

9.6
n=30

11
n=83

10
n=34

10
n=28

13
n=23

11
n=26

16
n=7

15
n=30

15
n=74

17
n=55

yes no

peak_rat >= 0.75

peak_rat >= 0.87

peak_wid < 19

peak3_am >= 0.23

peak_rat >= 0.81

peak3_am >= 0.24

peak_rat >= 0.67

peak3_am >= 0.28 second_p >= 2918

peak3_am >= 0.3

peak_rat >= 0.69150
n=33

174
n=36

186
n=45

209
n=47

225
n=31

201
n=37

232
n=41

218
n=29

256
n=26

275
n=15

257
n=74

284
n=55

yes no

A1/A2

A1/A2

A1/A2

A1/A2 A1/A2

A1/A2

A1/A2

A3/A2

A3/A2

A3/A2

A3/A2

A3/A2

A3/A2A3/A2

A1/A2

A1/A2 A3/A2

A1/A2

MW

nC

w2 

w2 

�̃�#

w2 

Figure 2.15 – Regression tree of molecular weight (MW) and carbon number (nC) estimates in
atmospheric samples based on the basic spectral features: second peak frequency (ν̃2), the
ratio of peak heights of symmetric CH2 stretching to asymmetric CH2 stretching (A1/A2), the
ratio of peak heights of asymmetric CH3 to asymmetric CH2 stretching (A3/A2) and second
peak width (w2) of aliphatic C−H band.

2.4 Concluding remarks

Normalized aliphatic C−H absorbances in mid-infrared spectrum were used in this study to

estimate mean carbon number and molecular weight of the atmospheric OM. First, it was

shown that the spectral features, such as peak frequencies and peak height ratios are correlated

with carbon number, molecular weight, and the OM/OC ratio for laboratory standards. We

also observed a meaningful temporal and spatial variation of those features in atmospheric

aerosol samples. Thereafter, PLSR models were developed on laboratory standards to estimate

the mentioned parameters in the atmospheric aerosol samples from the IMPROVE network.

The estimated molecular weight and carbon number reconstruct the OM/OC values in the

atmospheric aerosols that are consistent with previous studies with a reasonable difference

(an average undeprediction of 0.12). These new statistical models estimate lower mean carbon

number and mean molecular weight in more aged aerosols of similar sources, highlighting the

fragmentation role in the aging process (Murphy et al., 2012). Moreover, they estimate relatively

less oxidized, heavier molecules with higher carbon number for samples influenced by burning.

The findings show that the new technique can help us better understand characteristics of

OM due to emission sources and atmospheric processes. In addition, since carbon number

and molecular weight are important characteristics used by recent conceptual models or

parametrizations (e.g., Shiraiwa et al., 2017a; Li et al., 2016; Pankow and Barsanti, 2009; Kroll

et al., 2011; Donahue et al., 2011) to describe the evolution in the OM composition, this
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technique can provide semi-quantitative, observational constraints on these variations at the

scale of the network as well as for laboratory experiments. We also found that the phase state

of the laboratory standards clearly affects their spectroscopic features. These features can be

used to develop predictive models that can estimate the phase state of atmospheric OM.

Only around 27 % of the existing samples could be analyzed with our approach due baseline

correction limitations posed by low OM mass (compared to inorganic mass) on the filters.

Under-sampling is more severe in rural sites although expected trends (such as higher OM/OC

ratio) are observed even in the current subset. As a result, one should be cautious when

extending the results of this study to draw general trends. Although some inaccuracy in the

results is likely due to extrapolating from laboratory standards and the indirect nature of the

approach (for which more research is needed), the estimates of molecular weight, carbon

number, and the OM/OC ratio were shown to be reasonable. Further evaluation with different

molecules and molecular mixtures can better constrain these estimates.
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Abstract Particulate matter (PM) affects visibility, climate, and public health. Organic matter

(OM), a uniquely complex portion of PM, can make up more than half of total atmospheric fine

PM. We investigated the effect of aging on the secondary organic aerosol (SOA) concentration

and composition formed from wood burning (WB) and coal combustion (CC) emissions, two

major atmospheric OM sources, using mid-infrared (MIR) spectroscopy and aerosol mass

spectrometry (AMS). For this purpose, primary aerosols were injected into an environmental

simulation chamber and aged using hydroxyl (diurnal aging) and nitrate (nocturnal aging)

radicals to reach an atmospherically-relevant oxidative age. A time-of-flight AMS instrument

was used to measure the high-time-resolution composition of non-refractory fine PM, while

fine PM was also collected on PTFE filters before and after aging for MIR analysis. AMS

and MIR spectroscopy indicate an approximately three-fold enhancement of organic aerosol

(OA) concentration after aging (even without wall-loss correction). The OM:OC ratios also

agree closely between the two methods and increase, on average, from 1.6, before aging, to 2,

during the course of aging. MIR spectroscopy, which is able to differentiate among oxygenated

groups, shows a distinct functional group composition for aged WB (high abundance of

carboxylic acids) and CC OAs (high abundance of non-acid carbonyls) and detects aromatics

and polycyclic aromatic hydrocarbons (PAHs) in emissions of both sources. The MIR spectra

of fresh WB and CC aerosols are reminiscent of their parent compounds with differences

in specific oxygenated functional groups after aging, consistent with expected oxidation

pathways for the major volatile organic compounds (VOCs) emitted from each source. The

AMS mass spectra also show variations with source and aging that are consistent with the

MIR functional group (FG) analysis. Finally, a comparison of the MIR spectra of primary and

aged WB aerosols in the chamber with that of ambient samples affected by residential wood

burning and wildfires reveals similarities regarding the high abundance of organics, especially

acids, and visible signatures of lignin and levoglucosan. This finding is beneficial for the source

identification of atmospheric aerosols and interpretation of their complex MIR spectra.

3.1 Introduction

Particulate matter (PM) affects visibility and climate (Hallquist et al., 2009). For example,

fine PM can play the role of cloud condensation nuclei (CCN) impacting cloud formation

(McFiggans et al., 2004). PM can also considerably perturb the transfer of different wave-

lengths of electromagnetic radiation by scattering or absorption phenomena (Seinfeld and

Pandis, 2016). In addition, exposure to ambient fine PM is estimated to have caused 8.9 million

premature deaths worldwide per year (in 2015; Burnett et al., 2018). Organic matter (OM),

which constitutes up to 90 % of total fine atmospheric PM, is a key factor in aerosol-related

phenomena (Russell, 2003; Shiraiwa et al., 2017b). However, its chemical composition and for-

mation mechanisms have not yet been fully characterized due to its compositional complexity

(Kanakidou et al., 2005; Turpin et al., 2000).

Biomass burning particulate emissions (including those from residential wood burning, pre-

scribed burning, and wildfire) are major contributors to total atmospheric OM with an increas-
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ing importance due to rising wildfire activities (Westerling, 2016; DeCarlo et al., 2008; Sullivan

et al., 2008). Biomass burning primary organic aerosols (POAs) account for 16 % to 68 % of

total OM mass in Europe (Puxbaum et al., 2007; Paglione et al., 2020) and more than 30 % of

PM2.5 mass in samples collected in Beijing (Srivastava et al., 2021). Coal combustion (for elec-

tricity and heat generation) is another major POA source in China and some regions of Europe

(Haque et al., 2019; Junninen et al., 2009), emitting considerable amounts of carcinogenic and

mutagenic polycyclic aromatic hydrocarbons (PAHs) (Sauvain et al., 2003). Approximately 40

% of the world’s electricity (and up to 66 % in China) is generated in coal-fueled power plants

(World Coal Association, 2020). Biomass burning and coal combustion are also believed to

be responsible for a large fraction of secondary organic aerosol (SOA), especially in winter

when biogenic emissions are largely absent (Qi et al., 2019; Lanz et al., 2010; Zhang et al., 2020;

Paglione et al., 2020). Recent studies highlight the contribution of biomass burning by showing

the predominance of carbon from non-fossil-fuel origins in SOA even in industrial regions

(Haddad et al., 2013; Beekmann et al., 2015). To date, primary biomass burning emissions have

been investigated in several works (e.g. Johansson et al., 2004; Bäfver et al., 2011; Alves et al.,

2011). However, SOAs and their chemical compositions have not been studied extensively until

recently (e.g. Bertrand et al., 2017; Tiitta et al., 2016; Bruns et al., 2015) due to sophisticated

experimental set-up requirements.

The determination of organic aerosols (OA) and SOA chemical composition, involves a large

range of analytical and computational techniques. Aerosol mass spectrometry (AMS) and

mid-infrared (MIR) spectroscopy are two methods capable of analyzing most of OA mass

in addition to providing information about chemical class or the functional groups (FGs)

(Hallquist et al., 2009). In an AMS, non-refractory aerosol is first vaporized (normally at 600
◦C). Thereafter, the vaporized fraction is turned to ionized fragments and is then detected by

the mass spectrometer to obtain on-line atomic composition of non-refractory aerosol. This

method is well characterized for its capability to estimate elemental composition with a high

time resolution and detection limit (Canagaratna et al., 2007, 2015). There are, however, some

known challenges: particle collection efficiency of aerodynamic lens section (Canagaratna

et al., 2007); particle bounce back in the vaporizer (Kumar et al., 2018); potential reactions

occurring in ion chamber (Faber et al., 2017); and, most importantly, extensive molecule

fragmentation (Faber et al., 2017; Canagaratna et al., 2007) with the common ionization

method (i.e. electron ionization, EI) that makes the interpretation of the AMS mass spectrum

difficult.

MIR spectroscopy, which is commonly performed off-line on polytetrafluoroethylene (PTFE)

filters, provides direct information about FG abundances in OA collected on the filters. This

information can be converted to OM, OC (organic carbon) and the OM:OC ratio with the

aid of statistical models and laboratory standards with a few assumptions (Boris et al., 2019;

Ruthenburg et al., 2014; Reggente et al., 2016; Coury and Dillner, 2008). Recent studies show

good agreement between MIR OM and OC estimates and the thermal optical reflectance

(TOR) OC and the residual OM method for monitoring networks (Boris et al., 2019). The

main advantage of MIR spectroscopy over other common methods is that it is relatively
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fast, inexpensive, and non-destructive to the filter sample during analysis (Ruthenburg et al.,

2014). However, sampling for MIR spectroscopy is usually performed for at least several

minutes resulting in lower temporal resolution (Faber et al., 2017). Moreover, the presence

of overlapping peaks complicates the interpretation of the MIR spectrum. Collocated AMS

and MIR measurements can combine the advantages of both techniques and provide high-

time-resolution measurements with FG quantification (e.g. Faber et al., 2017; Chen et al., 2016;

Frossard et al., 2014; Russell et al., 2009a; Chhabra et al., 2011b). The uncertainties of OC and

OA mass concentrations derived based on Fourier transform infrared spectroscopy (FTIR) and

AMS have been reported to be within 35 % (Dillner and Takahama, 2015; Gilardoni et al., 2009;

Russell et al., 2009b; Frossard et al., 2011; Liu et al., 2011; Corrigan et al., 2013; Frossard et al.,

2014; Reggente et al., 2019a) and 25 %, respectively (Canagaratna et al., 2007). Precision for

replicate measurements with the same instrument has been shown to be substantially higher

(e.g., Debus et al., 2019).

This study is one of the few examples of AMS and MIR spectroscopy being combined to provide

a superior chemical resolution for analyzing burning emissions in an environmental chamber

and in the atmosphere. In this work, a series of wood burning (WB) and coal combustion (CC)

experiments were conducted in an environmental chamber at the Paul Scherrer Institute (PSI).

An AMS measured the chemical composition of OA throughout the aging process while fresh

and aged fine aerosols were collected on separate PTFE filters, making it possible to combine

the measurements of the two methods. We investigated the MIR spectra and FG composition

of POA and SOA formed after diurnal and nocturnal aging processes in relation to their

parent compounds and the oxidation products of their identified volatile organic compounds

(VOCs). These results were combined with the high-resolution AMS mass spectra to evaluate

the consistency of the two techniques and to better understand differences in the chemical

composition caused by different emission sources and aging. Finally, the MIR spectra of the

chamber biomass burning samples were compared to those of some atmospheric burning-

influenced aerosols collected at the Interagency Monitoring of PROtected Visual Environments

(IMPROVE) network (http://vista.cira.colostate.edu/improve/) to understand their similarities

and to develop a method for the identification of atmospheric burning-influenced samples

using MIR spectroscopy.

3.2 Methods

In the following sections, the experimental set-up (Sect. 3.2.1), on-line and off-line measure-

ment techniques (Sects. 3.2.2 and 3.2.3), and atmospheric sample collection (Sect. 3.2.4) are

described in detail. Thereafter, the statistical methods used for post-processing are discussed

in Sects. 3.2.5 and 3.2.6.
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3.2. Methods

3.2.1 Laboratory experimental set-up and procedure

Four wood burning (WB) and five coal combustion (CC) experiments were conducted in a

collapsible Teflon chamber of 6 m3 at the Paul Scherrer Institute (PSI). We studied the effects

of fuel source and diurnal/nocturnal aging on the chemical composition of the emissions. The

experimental set-up in this work was similar to that used by Bertrand et al. (2017) (Fig. A.9).

For the WB experiments, we have followed the procedures developed in Bertrand et al. (2017,

2018a), which favor smoldering-dominated wood fires. Three beech wood logs (approximately

2.5 kg) without bark, and an additional 300 g of kindling (beech) were burned in a modern

wood stove (2010 model). The logs were ignited using three fire starters composed of wood

shavings, paraffin and natural resins. The moisture content of the logs was measured to be

around 11 %. Each burning experiment was started with a lighter followed by immediate

closing of the burner door. Emissions past the ignition, in which kindling wood and starters

were fully combusted, were injected into the chamber.

In the CC experiments, 300 g of bituminous coal from Inner Mongolia (63 % carbon content)

was burned. First, the ash drawer of the stove was loaded with kindling wood (beech), which

was ignited and served to ignite the coal. The wood was removed from the drawer after proper

ignition of the coal. The emissions past the ignition phase were injected in the chamber via a

single injection. Klein et al. (2018) have shown that the temperature in the stove at the starting

phase significantly affects the total emission rates of SOA precursors and to a lesser extent

their composition. Here, the ignition temperature spanned a similar range as in Klein et al.

(2018). Control experiments were performed to evaluate the effect of kindling wood on the

emissions, for which we followed a similar procedure as for the real experiments but without

putting coal in the stove. The resulting emissions after removing the ignited kindling were not

different from background for both particle and gas phases.

In both CC and WB experiments, the injection was continued (from 5 to 25 minutes) until

the measured concentration of primary organic aerosol by the high-resolution time-of-flight

(HR-TOF) AMS reached values of approximately 20 µg m−3. WB and CC samples were extracted

from the chimney and diluted using an ejector diluter (DI-1000, Dekati Ltd.) before being

injected into the chamber. The lines from the chimney to the environmental chamber were

heated to 413 K to limit semi-volatile compounds condensation in the lines. The average

temperature and relative humidity of the chamber after injection were maintained at 293 K

and 55–60 %, respectively. The emissions were left static for 30 minutes in the chamber after

injection to ensure proper mixing and for sampling and characterizing the primary organic

aerosol. Thereafter, emissions were aged using the hydroxyl or nitrate radical for simulating

diurnal and nocturnal aging mechanisms.

The OH radical was produced by the photolysis of nitrous acid (HONO) continuously injected

into the chamber, using UV lights (40×100 W, Cleo Performance, Philips). HONO was gener-

ated by reacting constant flows of diluted sulfuric acid (H2SO4) and sodium nitrite (NaNO2)

in a custom gas flask. Pure air passed through the flask and then a PTFE membrane filter
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before being injected into the chamber to ensure particle-free flow of HONO (the procedure

is explained by Taira and Kanda, 1990; Platt et al., 2013). Before aging, 1 µL of deuterated

butanol-D9 (98%, Cambridge Isotope Laboratories) was injected into the chamber to measure

the OH radical exposure (Barmet et al., 2012). The concentration of butanol-D9 was monitored

by a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS 8000, Ionicon

Analytik). Emissions were aged for around four hours to reach OH exposures of (2–3)×107

molec cm−3 h corresponding to 20–30 hours of aging in the atmosphere (assuming a 24-hour

average OH concentration of 1×106 molec cm−3 in the atmosphere; Seinfeld and Pandis, 2016).

For the nocturnal aging experiments, the NO3 radical was produced by a single injection of

O3 and NO2 in the chamber. The NO2:O3 ratio we have used is approximately 1, and their

concentrations were approximately 50 ppb. The contribution of NOx from combustion was

less than 10 ppb. The concentration of NO3 was inferred from the reactivity of phenol emitted

from wood burning and coal combustion (kNO3 = 3.9 × 10-12 cm3 molec−1 s−1). We calculated

an initial concentration of NO3 of 1–2.5 × 107 molec cm−3. The effects of vapor wall losses of

primary semi-volatile species and of oxidized vapors in our chamber are detailed in (Bertrand

et al., 2018a) and in (Jiang et al., 2020), respectively, and are beyond the scope of this paper.

After each experiment, the chamber was cleaned by injecting O3 for 1 hour and irradiating with

a set of UV lights while flushing with pure air. Then, the chamber was flushed with pure air in

the dark for at least 12 hours (similar to the procedure described by Bruns et al., 2015). The

pure air injection system consists of a generator (Atlas Copco SF 1 oil-free scroll compressor

with 270 L container, Atlas Copco AG, Switzerland) coupled to an air purifier (AADCO 250

series, AADCO Instruments, Inc., USA), which provides a hydrocarbon background of sub 10

ppbC. The background particle- and gas-phase concentrations were measured in the clean

chamber before each experiment. Blank experiments were performed, in which the chamber

was filled with either pure air or a mix of pure air and ambient air sampled through the heated

sampling system and the lights were switched on. In these experiments, approximately 1

µg m−3 of organic aerosol was formed.

3.2.2 On-line PM measurement

After the primary emission injections, PM emissions in the chamber were monitored using

two on-line techniques. Non-refractory particle composition was measured at a temporal

resolution of 30 seconds by a HR-TOF AMS (Aerodyne Research Inc.; DeCarlo et al., 2006)

operating in V mode (mass resolution ∆m/m = 2000), with a vaporizer temperature of 600 ◦C

and pressure of approximately 10-7 Torr, and EI operating at 70 eV, equipped with a 2.5 µm

inlet aerodynamic lens. Data post processing was performed in Igor Pro 6.3 (Wave Metrics)

using SQuirrel 1.57 and Pika 1.15Z routines. The elemental and OM:OC ratios were determined

according to Aiken et al. (2008). The reported OA concentrations were not wall-loss corrected.

The AMS ionization efficiency was calibrated using NH4NO3 particles. A condensation particle

counter (CPC, 3025A TSI) measured total particle number concentrations and a scanning

mobility particle sizer (SMPS, CPC 3022, TSI) measured particle size distribution. Particles
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were dried (Nafion, Perma Pure LLC) upstream of the AMS, SMPS and CPC. The AMS collection

efficiency was verified using SMPS and ranged between 0.7–1.1 and therefore was assumed to

be approximately 1 for our conditions.

3.2.3 Off-line PM sampling and measurement

Primary and aged PM emissions were collected on separate PTFE filters (47 mm diameter

Teflo® membrane, Pall Corporation) for 20 minutes after injection of primary emissions into

the chamber and after four hours of aging. The aerosol collection area was limited to a circle

with a diameter of 1 cm in the center of the filter using PTFE masking elements placed above

and below the filters (Russell et al., 2009b). Sampling on PTFE filters was performed at a

flow rate of 8 L min−1 using a flow system composed of a sharp-cut-off cyclone (1 µm at a

nominal flow rate of 16 L min−1) and a silica gel denuder. Hereafter, these PTFE filters are

referred to by their fuel, and oxidant: e.g. WB_OH refers to the filters corresponding to the

WB experiments aged with OH. After sampling, filters were immediately stored in filter petri

dishes at 253 K before MIR analysis to minimize volatilization and chemical reactions. The

PTFE filters were analyzed using a Bruker-Vertex 80 FT-IR instrument equipped with an α

deuterated lanthanum alanine doped triglycine sulfate (DLaTGS) detector, at a resolution of 4

cm−1. The FTIR sample chamber was continuously purged with dry air treated with a purge

gas generator (Puregas GmbH) to minimize water vapor and carbon dioxide interferences.

3.2.4 Atmospheric samples (IMPROVE network)

Particulate matter with diameter less than 2.5 µm (PM2.5) was collected on PTFE filters (25

mm diameter Teflo® membrane, Pall Corporation) every third day for 24 hours, midnight to

midnight, at a nominal flow rate of 22.8 L min−1 during 2011 and 2013 at selected sites in the

IMPROVE network (approximately 3050 samples from 1 urban and 6 rural sites in 2011 and

4 urban and 12 rural sites in 2013). The PTFE filters were analyzed using a Bruker-Tensor

27 FT-IR instrument equipped with a liquid nitrogen-cooled, wide-band mercury-cadmium-

telluride (MCT) detector, at a resolution of 4 cm−1. In this work, atmospheric samples were

divided into four mutually exclusive sub-groups: urban, rural, residential wood burning,

and wildfire (residential wood burning, and wildfire samples were identified by Bürki et al.,

2020). Bürki et al. (2020) separated and identified the burning-influenced samples in the

same dataset using cluster analysis and subsequent analysis of the clusters. They divided

the burning-influenced samples into residential wood burning and wildfire sub-categories

by extending further down the hierarchical tree. The residential wood burning sub-category

was labeled according to its occurrence during winter months in Phoenix, AZ (Bürki et al.,

2020), where residential wood burning commonly takes place (Pope et al., 2017). The wildfire

sub-category was labeled due to its occurrence during a known fire event (Rim Fire, CA, 2013).
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3.2.5 Post-processing of MIR spectra to identify and quantify functional groups
in laboratory and IMPROVE samples

After obtaining the MIR spectra of the laboratory and ambient samples, they were processed

the same. The post-processing enabled the quantification of alcohol COH (aCOH), carboxylic

acid (COOH), aliphatic CH (aCH), and non-acid carbonyl (naCO) functional groups and the

identification of PAHs, organonitrates, levoglucosan, inorganic sulfate, and nitrate. In this

section, the methods used for spectral post-processing are described in detail.

Baseline correction

Baseline correction was performed to eliminate the contribution of background drift, light

scattering by filter membrane and particles, and absorption by carbonaceous material due

to electronic transitions (Russo et al., 2014; Parks et al., 2019). For this purpose, we used a

smoothing spline method similar to the approach taken by Kuzmiakova et al. (2016). In this

method, a cubic smoothing spline was fitted to the raw spectra (excluding organic FG bands)

and then was subtracted from them to obtain the net absorption due to FG vibrations at each

wavelength. The current version extends the baseline correction algorithm by Kuzmiakova

et al. (2016) (limited to 1500–4000 cm−1) to the 400–4000 cm−1 range.

Blank subtraction

Although PTFE filters are optically thin in the MIR range, they have several absorbing bands

due to the C−F bond vibrational modes (e.g. at 1000–1320 cm−1; Quarti et al., 2013). These

bands overlap with some organic and inorganic function group bands and limit the informa-

tion that can be extracted from the analysis of OA on PTFE filters. To mitigate this issue, a

scaled version of a baseline-corrected blank filter spectrum (the contribution of filter mem-

brane scattering was excluded, and only PTFE absorptions were maintained) was subtracted

from the baseline-corrected sample spectra to retrieve some of the overlapping features (Fig.

A.10). The scaling procedure compensates for the variation in blank filter absorbances due

to factors, such as non-uniformity in PTFE membrane morphology due to manufacturing

variability and/or aerosol loading differences between filters and within the same filter (Debus

et al., 2019; Quarti et al., 2013) by scaling the C−F peak at 1210 cm−1. This approach is different

from those taken by Takahama et al. (2013) and Maria et al. (2003) that subtracted a scaled

raw spectrum of a blank filter from sample spectra before baseline correction. The blank

subtraction algorithm allowed us to identify bands related to aromatics and PAHs at 690–900

cm−1 (Centrone et al., 2005), organonitrates (RONO2) at 850 cm−1, alcohol CO stretching at

1050 cm−1, levoglucosan bands at 860–1050 cm−1, and inorganic sulfate and nitrate bands

at 620 and 1400 cm−1, and also it allowed us to better quantify the carbonyl absorbances at

around 1700 cm−1.
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Quantifying organic functional groups

After baseline correction and blank subtraction, the multiple peak-fitting algorithm described

by Takahama et al. (2013) and implemented by Reggente et al. (2019b), functioning based on

non-linear least squares analysis, was applied to the spectra to obtain major FG abundances

of aCOH, COOH, aCH, and naCO (Yazdani et al., 2021b). The RONO2 group abundances were

not quantified due to the extensive overlap of its absorbances with other compounds and in

order to keep the MIR estimates consistent with those of AMS, for which only total (organic

plus inorganic) nitrate was estimated. After estimating FG abundances, the O:C, H:C and

OM:OC ratios were calculated with few a assumptions about the number of carbon atoms

attached to each FG (refer to Chhabra et al., 2011b; Russell, 2003; Maria et al., 2002). A few

other peaks attributed to aromatics and PAHs were analyzed qualitatively due to the lack of

calibration models. In addition to the common FG analysis, we used MIR fingerprint features

to identify relevant substances to biomass burning (e.g. levoglucosan and lignin).

3.2.6 Dimensionality reduction of AMS mass spectra

While AMS provides a well-characterized, time-resolved measurement of OA aging, the ex-

tensive fragmentation of molecules, high number of ion fragments, and collinearity of ion

fragment intensities make the interpretation of AMS mass spectra complex (Faber et al., 2017;

Canagaratna et al., 2007). We used principal component analysis (PCA; Hotelling, 1933) to

reduce the dimensionality of the AMS mass spectra in order to identify the most important

drivers of variability in the spectral data and their connection with the FG composition of

OA. The advantage of PCA analysis over analysis of the normalized conventional mass frag-

ments (e.g. f43 and f44 in Fig. 3.5) is that PCA loads the highly correlated fragment ions onto

the same principal components (PCs) that are orthogonally oriented to each other, thereby

reducing redundancy among dimensions. Furthermore, PCA describes the range of variability

spanned specifically by this dataset, accentuating smaller variations that might be lost using

the conventional ranges spanned by normalized mass fragment analysis.

Before applying PCA, mass spectra at each measurement were normalized using the corre-

sponding OA concentrations to eliminate signal variability due to changes in OA concentration.

The correlation matrix of the normalized AMS mass spectra (correlation of ion intensities at

different m/z values) shows that signals at several m/z values are correlated (Fig. A.11). Thus,

the dimensionality of the mass spectra can be reduced considerably without significant loss of

information. Our data matrix, X, is a i× j matrix with i observations (2979 AMS measurements)

and j variables (335 fragment ions) with a rank l (l ≤ min{i , j }). The columns of X are centered

to avoid intercepts in scores. The PCA calculation was performed by singular value decompo-

sition of the centered data matrix (Abdi and Williams, 2010), X = P∆QT , where P is the i × j

matrix of left singular vectors, Q is the j × l matrix of right singular vectors, known as loadings,

and ∆ is the diagonal matrix of singular values (∆2 is the diagonal matrix of eigenvalues of

covariance matrix, XT X). The i × l matrix of factor scores, F, is obtained as F = P∆.
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3.3 Results and discussions

In this section, peak fitting is applied to MIR spectra to estimate major FG concentrations.

Thereafter, relative FG abundances are compared in different OAs to understand composi-

tional differences arising due to aerosol source and age (Sects. 3.3.1 and 3.3.3). In addition,

the MIR spectra of primary and aged OA emissions are compared to those of the fuel sources

for identifying the chemical similarities between POA and fuel sources and for better under-

standing the important oxidation pathways for SOA formation (Sects. 3.3.2 and 3.3.4). In

Sec. 3.3.5, AMS mass spectra are analyzed using PCA to understand the factors driving the

spectral variability and how they relate to FG composition. Finally, the MIR spectra of chamber

WB aerosols are compared to those of previously identified atmospheric burning-influenced

samples, and a new method for identifying biomass burning aerosols using MIR spectroscopy

is proposed (Sect. 3.3.6).

3.3.1 Wood burning – functional group composition

The primary WB aerosols have a high abundance of the aCH group (Figs. 3.1a and A.14a). This

FG, which absorbs in the 2800–3000 cm−1 region in the MIR spectrum (Fig. 3.2a), constitutes

around 50 % of the total mass of fresh WB OA (Fig. 3.1a). The aCOH group, which appears as a

broad peak around 3400 cm−1 (Fig. 3.2a), has the second highest concentration (around 30 %

of the total mass; Figs. 3.1a). This FG is also ubiquitous in hemicellulose, cellulose, and lignin

– three main components that constitute 20–40, 40–60, and 10–25 wt. % of lignocellulosic

biomass, respectively (McKendry, 2002). The COOH group, which appears as a broad peak in

the 2400–3400 cm−1 range and a sharp carbonyl peak at approximately 1700 cm−1 (Fig. 3.2a),

is the third most abundant FG in fresh WB aerosols and constitutes 10–20 % of the OA mass

(Figs. 3.1 and 3.2a). The primary WB samples have OM:OC ratios ranging from 1.6 to 1.8 (Figs.

3.2b and A.14b).

AMS and MIR estimates of OA concentration are highly correlated (R2 = 0.92; refer to Yazdani

et al., 2021b, for detailed comparison) and show an almost three-fold increase in OA mass

concentration with aging. The relative aCH abundance decreases substantially (by up to 30 %)

in WB aerosols with aging (Figs. 3.1a and A.14a). The relative decrease in the aCH abundance

is less prominent when aerosols are aged with the nitrate radical, probably due to the fact that

organonitrates are excluded from quantitative analysis, thus the total OA concentration being

underestimated and also because only a limited number of precursors react with the nitrate

radical, leading to different SOA species. The aCH profile changes from the superposition of

sharp peaks (observed for long-chain hydrocarbons) in primary WB spectra to broad peaks

(observed in the spectra of oxygenated species) in aged WB spectra (Fig. 3.2a; Yazdani et al.,

2021a). The aCOH relative abundance in WB aerosols also decreases with aging (Fig. 3.1a).

Relative abundances of COOH increase significantly in WB aerosol with aging, suggesting

carboxylic acid formation to be the dominant VOC oxidation pathway for biomass burning

(Fig. 3.1). The aged WB samples with high carboxylic acid concentration have a broad OH
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Figure 3.1 – (a) Bar plot of averaged MIR (separated by functional group) and AMS OA con-
centration estimates without wall loss correction. The contribution of each functional group
(with contribution > 5%) to total OA, the type of aerosol (P: primary), emission source (WB
and CC), and oxidant used for aging (OH: hydroxyl radical, NO3: nitrate radical) are indicated
for each category. (b) Bar plot of averaged MIR and AMS OM:OC estimates separated by the
contribution of each functional group. The error bars show the maximum and minimum
concentrations and OM:OC values for each category. For the estimates of each individual
experiment refer to Fig. A.14.

peak ranging from 2400 to 3400 cm−1 and their carbonyl absorption frequency is on the lower

end of its range (approximately 1708 cm−1 compared to 1715 cm−1 for ketone carbonyl; Fig.

3.2a) due to the weakening of the C=O bond in dimerized acids (Pavia et al., 2008). Fourier

self-deconvolution (Kauppinen et al., 1981)helps identifying overlapping peaks in the complex

1500–1800 cm−1 region (Fig A.12). Phenol, methoxyphenols, and naphthalene are among the

most important SOA precursors, based on their SOA yields, present in wood smoke reported

by Bruns et al. (2016)and Stefenelli et al. (2019). The high abundance of COOH in the aged WB
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OA of this study is consistent with the considerable carboxylic acid formation reported from

these precursors (Chhabra et al., 2011a; Kautzman et al., 2010; George et al., 2015). The aged

WB samples have the highest OM:OC ranging from 1.8 to 2.1 (Figs. 3.2b and A.14), with high

concentrations of COOH.
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Figure 3.2 – The MIR spectra of primary and aged (with OH and NO3) wood burning (WB)
and coal combustion (CC) OAs and their parent compounds: lignin and bituminous coal. The
dash-dotted line demonstrates the spectrum of solvent-extracted hardwood (HW) lignin (in
KBr pellets) taken from Boeriu et al. (2004). The dotted line shows the spectrum of pulverized
bituminous coal taken from Zhang et al. (2015).

MIR spectroscopy is able to distinguish between organic and inorganic nitrates due to differ-

ences in their absorption frequencies (Day et al., 2010). In this work, we have investigated the

variations in the RONO2 bands qualitatively by analyzing their absorbances at 1630, 1273, and

850 cm−1 (Day et al., 2010). These peaks are negligible in the primary WB aerosols. However,

their absorbances (thus the abundance of organonitrates) increase in WB aerosols aged by

both hydroxyl and nitrate radicals. with much more prominent contributions, when the nitrate

radical is used (Fig. 3.2a). This suggests that the RONO2 formation could be an important

SOA formation pathway from WB emissions, which, nevertheless, we do not account for

quantitatively. A relatively small peak at 1560 cm−1 is also observed in WB aerosols aged by the

nitrate radical, which can be attributed to nitroaromatics (Pavia et al., 2008). Weak signatures
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of aromatics or PAHs are visible at 690–900 cm−1 in the MIR spectra of both primary and aged

WB aerosols. The absorption in this region appears as a single peak centered around 754 cm−1.

The intensity of this peak is correlated (R2 = 0.70) to the concentration of fragments in the

AMS mass spectra that were reported to be attributed to aromatics (Bruns et al., 2015; Pavia

et al., 2008) (Fig. A.18). AMS results suggest aromatics and PAHs in WB aerosols constitute

up to 8 % of total OA. However, underestimation is possible due to the incomplete list of ion

fragments considered in this work and fragmentation of oxygenated aromatics and PAHs

during EI ionization (Appendix A.2.6).

3.3.2 Wood burning – primary signatures

Using the MIR signatures of levoglucosan in primary WB aerosols (Fig. A.19), it is estimated

that 22–48 % of the aCOH absorbance and 15–29 % of total OA mass is due to the presence of

levoglucosan as a main product of high temperature pyrolysis of cellulose and an important

biomass burning marker (Shen and Gu, 2009; Puxbaum et al., 2007; Hennigan et al., 2010).

The reported range is consistent with measurements by a thermal desorption aerosol gas

chromatograph coupled to a HR-TOF AMS (TAG-AMS) TAG-AMS obtained by Bertrand et al.

(2018a). The abundance of the AMS m/z 60 fragment ion, related to levoglucosan fragmenta-

tion, (Schneider et al., 2006) and its MIR absorbances (used for the first time in this work) are

highly correlated (R2 = 0.76; Fig. A.20), both showing a consistent decrease in levoglucosan

absolute concentration with aging regardless of the type of oxidant (Fig. A.20). The contri-

bution of levoglucosan to total OA mass is estimated to decrease to less than 5 % after aging.

This is consistent with the significant enhancement in OA mass with SOA formation and the

degradation of levoglucosan through its reaction with OH and its loss to the chamber walls

(Bertrand et al., 2018b; Hennigan et al., 2010; Zhao et al., 2014).

The MIR spectra of hard wood lignin and fresh WB aerosols are very similar, suggesting the

presence of similar molecular structures between the primary WB aerosol composition and

its parent compound, lignin (Fig. 3.2a). One specific aspect of this similarity is the high

absorbances of the aCOH group in both samples. By comparing the MIR spectra of fresh WB

aerosols with that of lignin (Appendix A.2.8), it can be inferred that the sharp peak at 1515

cm−1 and a part of the broader peak at 1600 cm−1 are attributed to aromatic rings in lignin

structure (Hergert, 1960; Yang et al., 2007; Derkacheva and Sukhov, 2008) observed also in

the spectrum of lignin monomers such as coniferyl alcohol (Bock and Gierlinger, 2019) and

pyrolysis products of lignin with the same substitution pattern (Duarte et al., 2007; Simoneit

et al., 1993). The peak at 1515 cm−1, however, diminishes with aging, implying a change in

aromatic ring substitution or ring opening by oxidant attack. The peak around 1600 cm−1 is

suppressed by the RONO2 peak around 1630 cm−1 after aging. Overall, our analysis shows that

the large majority of the primary OA from WB emissions is composed of anhydrous sugars

and lignin pyrolysis products.
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3.3.3 Coal combustion – functional group composition

Peak fitting analysis suggests that the aCH group from all compounds containing this FG

(alkanes and other compounds) constitutes around 60–80 wt. % of primary CC OA – a larger

fraction compared to fresh WB OA (Figs. 3.1b and A.14b). The abundance of short and long-

chain alkanes has also been reported in VOC emissions of bituminous coal (Liu et al., 2017;

Klein et al., 2018). The naCO group is the second most abundant FG in the fresh CC OA,

constituting, on average, 15 % of its mass (Fig. 3.1a), much higher than its contribution to WB

emissions. This functional group has been reported to constitute 5–15 % wt. of bituminous

coal VOC emissions (Liu et al., 2017; Klein et al., 2018). The concentration of the COOH group

is usually low in the primary CC aerosols (around 10 %; Fig. 3.1a). The primary CC aerosols

are estimated to have the lowest OM:OC ratios (1.35–1.5) among all samples, which is justified

by their strong aCH absorbances (Fig. 3.2b). Inorganics (ammonium, sulfate, and nitrate)

have prominent absorbances in the MIR spectra of fresh (and aged) CC aerosols, which have

not been observed in the case of WB aerosols. The high abundance of inorganic salts can

be attributed to the sulfur and nitrogen that are present in bituminous coal (Vasireddy et al.,

2011).

In the aged CC aerosols, the relative abundance of the aCH group decreases drastically (on

average 40 %), especially when the hydroxyl radical is used as oxidant, despite an almost

three-fold increase in the OA mass concentration (without wall-loss correction; Figs. 3.1a and

A.14a). On the other hand, the abundance of the naCO carbonyl group increases by up to 40

%, suggesting that carbonyl production is the dominant oxidation pathway for VOCs of CC

emissions, predominantly when the hydroxyl radical is used (Fig. 3.1a). This observation is

consistent with the high carbonyl abundance in SOA formed from the OH oxidation of alkane

precursors, which are abundant in CC SOA, at close OH exposures to those in this work (Lambe

et al., 2012; Lim and Ziemann, 2009). This does not, however, preclude the contribution of

oxidation products of aromatic compounds, which are also abundant in CC VOCs (Liu et al.,

2017; Klein et al., 2018), in aged CC OA. The absence of the broad carboxylic acid OH peak for

these samples, and the peak location of the carbonyl group (1715 cm−1) in their MIR spectra

(Fig. 3.2b) suggest that the majority of the carbonyl group in the OH-aged CC aerosols is

ketone (Pavia et al., 2008). An increase in the aCOH abundance is also observed in the CC

aerosols with aging. This increase is more remarkable than that in the WB aerosols (Fig. 3.1).

The RONO2 signature becomes clearly visible in aged CC aerosols, when the nitrate radical

is used as oxidant (Fig. 3.2b) or when the hydroxyl radical is used in the presence of NOx (>

50 ppb). This observation is consistent with VOC oxidation pathways proposed by Kroll and

Seinfeld (2008) and measured by Ayres et al. (2015). In addition, a new peak at 1350 cm−1 that

can be attributed to the S=O group in sulfonates (Pavia et al., 2008) appears in some aged CC

aerosols (Fig. 3.2b).

The aromatic CH out-of-plane (OOP) absorption appears as a relatively stronger peak at

754 cm−1 compared to WB aerosols in the spectra of CC aerosols and bituminous coal (Fig.
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3.2b; Sobkowiak and Painter, 1992; Sobkowiak and Painter, 1995). The normalized CH OOP

absorbances by total OA mass are, on average, higher for CC aerosols compared WB, suggesting

a higher contribution of this FG. The concentration of AMS fragment ions corresponding to

PAHs suggest that aromatics and PAHs of CC aerosols account for up to 7 % of total OA

mass, although some underestimation is possible due to the limited number of fragment

ions considered and the fragmentation of oxygenated aromatics and PAHs upon ionization

(Appendix A.2.6). These measurements suggest lower concentrations of aromatic compounds

in CC OA compared to CC VOC emissions measured by Liu et al. (2017) and Klein et al. (2018).

The aged CC aerosols have slightly lower OM:OC ratios compared to the aged WB aerosols

(Fig. 3.1b). For both emission sources, aerosols aged with the hydroxyl radial have higher

OM:OC ratios (approximately 0.2) than those aged with the nitrate radical (Fig. 3.1b). This

can be attributed to the different rate constants of VOC reactions with nitrate and hydroxyl

radicals (Ziemann and Atkinson, 2012). Furthermore, organonitrates, which are abundant

when aerosols are aged with the nitrate radical, are not considered either in AMS OA estimates

or in MIR peak fitting. This exclusion causes the underprediction of both the OM:OC ratio and

OA concentration estimates when the nitrate radical is used.

3.3.4 Coal combustion – primary signatures

Bituminous coal contains 69–86 wt. % carbon and its chemical structure is formed by highly

substituted rings that are connected by alkyl or ether bridges (oxygen or sulfur) (Vasireddy

et al., 2011). The MIR spectra of primary CC aerosols have weaker aromatic C=C absorbances

at 1610 cm−1 than bituminous coal (Fig. 3.2b). This peak is suppressed by the RONO2 peak at

1630 cm−1 with aging (Fig. 3.2b). The carbonyl peak (1710 cm−1) observed in the spectra of

the primary CC aerosols is absent in that of bituminous coal (Fig. 3.2b), suggesting carbonyl

formation during coal combustion. Zhang et al. (2015) also reported a similar carbonyl

generation for coal oxidation at high temperatures. We also observe that the aCH peaks are

considerably sharper in the spectra of fresh CC aerosols than the pulverized coal (Fig. 3.2b),

suggesting a higher relative contribution of this FG in primary CC OA than in bituminous coal.

The analyses of Sects. 3.3.1–3.3.4 suggest that aerosol source (WB and CC) and type (primary

and aged with different oxidants) are both drivers of variability in the MIR spectra. These

changes are substantially higher than uncertainties associated with OA mass concentrations

derived based on FTIR and AMS. Furthermore, we found that aged aerosols of WB and CC,

have distinguishable functional group compositions, suggesting that MIR spectra retain source

class information at least up to the studied levels of aging.

3.3.5 Comparison between AMS mass spectra and FG composition of OA

In this section, we investigate the main differences in bulk chemical composition of the

primary and aged emissions measured by the AMS and their FG content. We applied PCA to the
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AMS mass spectra to facilitate their interpretation and to better understand the major sources

of variability in the spectra and their connection with the FG composition of OA. Moreover, we

projected AMS PMF (positive matrix factorization) factors obtained by Elser et al. (2016) and

Aiken et al. (2009) (High Resolution AMS Spectral Database: http://cires.colorado.edu/jimenez-

group/HRAMSsd/) onto the PC space to compare and contrast the AMS spectra obtained from

the chamber experiments with AMS PMF factors of atmospheric samples. By applying PCA,

the dimensionality of the normalized AMS mass spectra was reduced from 330 fragment ions

to 3 PCs while explaining around 91 % of the variance in the mass spectra (Table 3.1).

Table 3.1 – Importance of the first three principal components.

PC1 PC2 PC3
Standard Deviation 0.046 0.019 0.01461
Proportion of Variance 0.715 0.120 0.071
Cumulative Proportion 0.715 0.835 0.907
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Figure 3.3 – Loadings of the first three principal components and the normalized mean AMS
mass spectrum (shown up to m/z 80). Fragment ions with high positive/negative loadings are
indicated by their formula. Refer to Fig. A.15 for the heavier fragments.

As can be seen from Fig. 3.3, the mean (center) mass spectrum, which represents the average

of all mass spectra, has its highest values at a few ion fragments: C2H3O+, CO+, CO2
+, CHO+,

C2H3
+, C3H3

+, and C3H5
+. The loadings, which are informative about the most important

variations in the mass spectra, have also high values at a few mass fragments, making their

interpretation simple. The first PC, which explains around 72 % of the variance alone, has

high positive loadings of CO2
+ and CO+, CHO+, and C2H3O+ fragment ions (Fig. 3.3). The

CO2
+ fragment has been previously ascribed to mono- and dicarboxylic acids (Canagaratna

et al., 2007; Faber et al., 2017; Russell et al., 2009a; Frossard et al., 2014). The CO+ fragment

is estimated directly from CO2
+ (Aiken et al., 2008), and the other mentioned ion fragments

represent other oxygenated species (Faber et al., 2017; Chhabra et al., 2011a). The high

loadings of major oxygenated ion fragments and the empirical observation that primary and
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aged samples are separated along the PC1 axis (Fig. 3.4) suggest that the first PC indicates the

general direction of aging and the extent of oxidation, which appear to be the major sources of

variation in the data (based on high explained variance by PC1). As can be seen from Fig. 3.4,

PC1 scores are the lowest for primary CC and WB aerosols and increase with aging for both

WB and CC samples. The higher oxidation state of aged WB aerosols compared to aged CC

(i.e., higher PC1 score) aerosols, is consistent with the high abundance of COOH and naCO

FGs in the aged WB and CC aerosols, respectively. The WB and CC samples that are aged with

the hydroxyl radical have higher PC1 scores than those aged with the nitrate radical, indicating

the former are more oxidized. The order of PC1 scores across the samples is reminiscent of the

order of OM:OC ratios discussed earlier.

The second PC, which explains about 12 % of the variance, mainly contrasts primary WB

(with high abundance of levoglucosan and lignin) with primary CC (with high abundance of

aCH) aerosols by high positive loadings of C2H4O2
+, representing levoglucosan fragmentation

(Schneider et al., 2006), and C8H9O2
+ (Fig. A.15), representing lignin fragmentation (Tolbert

and Ragauskas, 2017; Saito et al., 2005), and negative loadings of CxHy
+ fragments, attributed

to the aCH group (Faber et al., 2017). In addition, this PC has high positive loadings of C2H3O+,

CHO+ mass fragments and high negative loadings CO+ and CO2
+ (Fig. 3.3), differentiating

between the COOH group and other oxygenated FGs such as aCOH (Faber et al., 2017). The

primary CC aerosols have the lowest PC2 scores due to high aCH content. Their PC2 scores

increase with aging (Fig. 3.4a), indicating the production of CHO+ and C2H3O+ fragments

(non-acid oxygenated FGs, such as the naCO and the aCOH groups) and decrease slightly be-

fore the end of aging probably due to the production of CO2
+ (the COOH group) outweighing

other oxygenated fragments. On the other hand, the primary WB aerosols have the highest

PC2 scores (Fig. 3.4a) due to the high abundance aCOH, levoglucosan, and lignin. The PC2

scores reduce drastically with aging for WB aerosols, especially when the hydroxyl radical

is used, suggesting the formation of the COOH group and degradation of levoglucosan and

lignin (Fig. 3.4a). PC2 scores are higher for WB and CC samples aged with the nitrate radical

compared to those aged with the hydroxyl radical (Fig. 3.4a) due to the lower concentration of

the CO2
+ fragment ion (Figs. 3.5 and A.16).

The first two principal components, which together explain 84 % of total variance, are able to

separate aerosols according to their oxidation state (PC1) and their source (PC2) and show that

the trajectories of CC and WB OA start to converge, especially when aging with the hydroxyl

radical (Fig. 3.4a). This observation implies that the spectral differences between samples of

the same or different categories decrease with aging despite the higher oxidation state (contri-

bution to PC1) of the aged WB compared to the aged CC aerosols. The primary WB aerosols on

PC1–PC2 biplot (Fig. 3.4a) are located close to biomass burning OA (BBOA) factors obtained

by Aiken et al. (2009) and Elser et al. (2016), highlighting their chemical similarity. The same is

observed for CC aerosols with coal combustion OA (CCOA) and hydrocarbon-like OA (HOA)

factors. The OH-aged aerosols are, however, more similar to the semi-volatile oxygenated

OA (SV-OOA) factor, representing less oxygenated OA (Fig. 3.4a) and have considerably lower

PC1 compared to the aged OA (OOA) factor by Aiken et al. (2009), which represents aged SOA
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(i.e., more aged than SV-OOA; not in the range of Fig. 3.4). The location of the samples in the

f44– f43 plot (far from the triangle vertex; Fig. 3.5) also suggests a moderate extent of oxidation

for the aged WB and CC samples.

The third PC, which explains 7 % of the variance, mainly separates the aged aerosols based

on the type of oxidant used and has high negative loading of C2H3O+ and positive loadings

of the C2H4O2
+ and C3H5O2

+ fragments (Fig. 3.3). PC3 scores have the highest values for

the primary WB aerosols due to the abundance of levoglucosan and decrease with aging (Fig.

3.4b) due to the degradation of levoglucosan and the generation of the C2H3O+ fragment (Fig.

3.5). PC3 scores are lower for the primary CC aerosols due to the absence of levoglucosan and

decrease further with aging due generation of the C2H3O+ fragment. For both sources, the

aerosols aged with the nitrate radical have considerably lower PC3 scores (Fig. 3.4b) due to the

high relative abundance of the C2H3O+ fragment (Figs. 3.5 and S7). The aged CC aerosols with

a high abundance of naCO also have relatively low PC3 scores (Fig. A.17b), suggesting a higher

C2H3O+ concentration for those samples (also observed from Fig. 3.5). This observation

suggest that the species formed during aging with the nitrate radical and the naCO group

produce higher concentrations of the C2H3O+ fragment.

The PCA analysis shows that both aerosol source (WB and CC) and type (primary and aged

with different oxidants) are responsible for variability in the AMS mass spectra (similar to

the MIR spectra). We also found that the primary WB and CC aerosols have similar mass

spectra to the BBOA and HOA factors, respectively, and OH-aged OAs of both sources are

similar to the SV-OOA factor. Furthermore, the spectral variations are consistent with our

functional group analysis via FTIR, suggesting that the AMS mass spectra maintain some

functional group and source class information even after aging and in spite of the extensive

fragmentation (discussed further by Yazdani et al., 2021b). However, even at the moderate

levels of aging of this work, a part of this information only exists in higher PCs, which explain

the lower variance in the data (e.g., PC2, explains 12 % of the variance across source classes

and oxidative aging studied in this work and distinguishes OH-aged CC and NO3-aged WB).

These findings are consistent with past reports suggesting that AMS is most sensitive to aging

Jimenez et al. (2009), and underscores the challenges in identifying source classes in highly

aged atmospheric OA using AMS.

3.3.6 Atmospheric biomass burning-influenced aerosols

One of the main purposes of chamber experiments is understanding the characteristics of

biomass burning aerosols in the atmosphere. We present a simplified comparison of the

MIR spectra of WB aerosols in the chamber with the mean spectra of atmospheric samples

affected by burning and other sources. Although the nitrate radical exposures in the chamber

experiments were comparable to those of atmospheric samples, no comparable RONO2 bands

were observed in ambient samples. This observation implies that organonitrates potentially

degrade later in the sequence of reactions due to thermal decomposition (Barnes et al., 1990;
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Figure 3.4 – Biplots of PC2–PC1 (a), and PC3–PC1 (b) scores. The AMS measurements cor-
responding to filter sampling periods are color-coded by category. The AMS measurements
out of filter sampling periods are illustrated by gray dots and some oxidation trajectories are
indicated by dashed curves. AMS BBOA, CCOA, HOA, and SV-OOA factors from Elser et al.
(2016) (red) Aiken et al. (2009) (black) are projected onto PCs for comparison. Average FG
composition for each category estimated from the MIR spectra is shown beside the category
with the same color scheme as Fig. 3.1.

Kroll and Seinfeld, 2008) or due to hydrolysis in the particle phase (Day et al., 2010; Ng et al.,

2017; Liu et al., 2012b). As a result, the chamber WB aerosols aged with the nitrate radical were

excluded from this comparison due to their very prominent RONO2 bands.

Mean spectra

The atmospheric samples were divided into four sub-groups: urban, rural, residential wood

burning, and wildfire as described in Sec. 3.2.4. The individual spectra were baseline-corrected

and blank-subtracted and then were normalized (Euclidean norm) based on their absorbances

in the 1300–4000 cm−1 range. This procedure allowed us to make the spectra with different

absorbance magnitudes (i.e., different aerosol mass concentrations) comparable. Thereafter,

a single mean spectrum was calculated for each sub-group and used as its average repre-

sentation. These spectra were compared to those of fresh and aged WB OAs in the chamber.

Since major inorganic compounds of fine aerosols (ammonium, sulfate, and nitrate) are also
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Figure 3.5 – Scatter plots of f 44 against f 43, f 57, f 60, and f 29. Dashed lines show the outline
of the triangle (Ng et al., 2010) and the black shapes show the location of PMF factors (Elser
et al., 2016; Aiken et al., 2009; Ulbrich et al., 2009). Average FG composition for each category
estimated from the MIR spectra are shown beside the category. Figure 3.4 legend is applicable
here.

IR-active and their absorbances overlap with those of organic FGs (especially aCOH), the

analysis of organic FGs in ambient samples is not always straightforward. To mitigate this

problem, ammonium absorbances were subtracted from the mean spectra to obtain the pure

contribution of organic compounds.

As can be seen from Fig. 3.6a, the mean spectrum of rural samples has strong absorptions at

ammonium (doublets at 3200 and 3050 cm−1), nitrate (1400 cm−1), and sulfate (620 cm−1)

regions, while the peaks attributed to organic compounds are relatively weak (e.g. very weak

aCH and carbonyl CO peaks and indistinguishable aCOH absorption due to strong inorganic

absorptions; Fig. 3.6a). The urban mean spectrum also has strong ammonium and sulfate

absorptions, suggesting the abundance of inorganic compounds in urban sites. The organic

signatures in the urban spectrum, however, are slightly stronger than those of rural sites with

the clear presence of broad carboxylic acid absorption (Fig. 3.6b). Neither rural, nor urban
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mean spectra are similar to that of chamber WB spectra.

The mean spectrum of residential wood burning samples has prominent absorptions of

ammonium, sulfate and also nitrate. Cold weather and high concentrations of nitric acid

resulting from fossil fuel combustion and biomass burning are believed to be the primary

reasons for the presence of ammonium nitrate on the filters in spite of being relatively volatile

(Chow et al., 2005; Seinfeld and Pandis, 2016). This spectrum has considerably stronger

signatures of organic compounds (Fig. 3.6b). Very sharp aCH peaks, strong acid COOH

absorptions, and a visible aCOH absorption on the left shoulder of the ammonium peak can

be seen in the mean spectrum of residential wood burning. Comparing this spectrum with that

of aged WB in the chamber reveals their striking similarities. Both spectra have close inorganic-

to-organic ratios that result in similar profiles in Fig. 3.6a. In addition, both spectra have

visible alcohol and acid signatures, which are identified to be important in biomass burning

aerosol composition (Corrigan et al., 2013; Takahama et al., 2011; Russell et al., 2011; Hawkins

and Russell, 2010). Nevertheless, the aCH absorption in the mean spectrum of residential

wood burning is stronger than that in the mean spectrum of aged WB in the chamber. This

observation might be attributed to the long-chain hydrocarbons existing in the cuticle wax of

vegetation detritus that is absent in these chamber WB experiments (Hawkins and Russell,

2010). The spectral comparison of residential wood burning aerosols and fresh WB aerosols

in the chamber shows that fresh WB lacks inorganics compared to residential wood burning.

Moreover, the relative abundance of aCOH is significantly higher in WB aerosol, indicating the

residential wood burning samples are aged to some degree.

In addition to FG identification, we can discuss the presence of specific marker compounds.

A weak signature of lignin C=C (at 1515 cm−1) can be observed in the mean spectrum of

residential wood burning (Fig. 3.6a). In addition, weak levoglucosan absorbances are visible

in some residential spectra. Both mentioned signatures in burning-influenced atmospheric

samples are stronger than that of aged chamber WB and weaker than that of fresh chamber WB

aerosols, suggesting that most of these atmospheric samples have, on average, experienced

aging within the range explored by our chamber experiments.

The mean spectrum of wildfire samples is also very similar to that of residential wood burning

except having slightly weaker aCH absorbances. Consequently, the strong COOH absorption

and the visible lignin and levoglucosan signatures are also the characteristics of the wildfire

mean spectrum as they were for that of residential wood burning. The mean spectra of aged

chamber WB, residential wood burning, and also wildfire aerosols (Fig. 3.6b) are similar to the

biomass burning PMF factor obtained by Hawkins and Russell (2010).

Finally, the samples affected by wildfire are the only atmospheric samples in the IMPROVE

network (2011 and 2013) that have visible (but weak) PAH signatures, possibly leading to a

higher PAH-related toxicity. The areal density of atmospheric and chamber aerosols collected

on PTFE filters is comparable in this work (approximately 10 µg cm−2). As a result, the low

absorbance of PAHs in the atmospheric samples implies that most of these compounds are
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degraded in the atmosphere or during the filter transportation and storage.
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Figure 3.6 – Normalized (Euclidean norm) mean spectra of ambient aerosols (rural, urban,
residential wood burning, and wildfire) and chamber WB aerosols before (a) and after (b)
subtraction of ammonium profile. Inorganic nitrate and sulfate absorbances still exist in panel
(b).

OM:OC ratios

The OM:OC ratio is an important parameter often reported for aerosols collected at moni-

toring networks (Boris et al., 2019; Ruthenburg et al., 2014; Bürki et al., 2020; Yazdani et al.,

2021a; Hand et al., 2019; Reggente et al., 2019a). We compared OM:OC ratios from these cham-

ber samples to burning samples identified by Bürki et al. (2020). They used a probabilistic

framework on MIR spectra, which resulted in OC estimates that were consistent with those

from collocated TOR measurements. The average OM:OC estimates for samples influenced

by wildfires and residential wood burning were reported to be 1.65 and 1.45, respectively

(Bürki et al., 2020) compared to 1.65 and 2 (AMS and MIR spectroscopy obtained close values)

for primary and aged WB aerosols in this work. The average OM:OC estimates for these at-

mospheric burning-influenced samples are clearly closer to that of primary WB aerosols in

chamber. Although some biases may exist between the two methods due to different estima-

tion methods and calibration standards (Reggente et al., 2019a), this observation is believed to
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be mainly due to two reasons: First, identified burning-influenced samples in the atmosphere

are not as oxidized as the aged WB aerosols in the chamber are. Second, sharp aCH peaks,

attributed to cuticle wax, are observed in the MIR spectra of ambient fire-influenced samples

(Hawkins and Russell, 2010), while being absent in that of chamber WB aerosols (without

bark). The high abundance of the aCH group might lower the OM:OC estimate of atmospheric

burning-influenced samples.

Identification of burning-influenced samples

Biomass burning aerosol composition and its molecular markers continually evolve with aging

as discussed in previous sections. This constant evolution poses a substantial challenge to

identify the burning-influenced aerosols in the atmosphere and to quantify the contribution

of biomass burning OM to the PM mass. In this section, we assess two different approaches

for the identification of atmospheric burning-influenced aerosols using MIR spectroscopy.

While each FG is not a marker for any specific source, their proportions could possibly be

informative when used with multivariate methods. Cluster analysis by Bürki et al. (2020), for

example, identified 45 burning-influenced samples (in 3050 samples) based on their spectral

similarity (i.e. FG proportions and organic-to-inorganic ratio), which were supported, to some

extent, by matching their collection time and location with the known burning events (e.g., Rim

Fire in California in 2013 and residential wood burning in Phoenix in winter). Nevertheless,

the signatures of parent compounds (e.g. lignin) and specific biomass burning markers (e.g.

levoglucosan) – direct identifiers of burning – were not considered in their approach. This is

because the extended baseline correction and filter subtraction introduced in this work are

necessary for identifying these signatures. Moreover, the contribution of these signatures to

total variations in the MIR spectra is too minor to be featured for spectral separation when

selecting only a limited number of clusters.

In contrast to FG proportions, tracers are less ambiguous for source identification, but they

eventually degrade with aging as discussed in Sec. 3.3.2. In the tracer approach developed in

this work, samples with lignin absorbances above a certain threshold were labeled burning-

influenced (absorbances> 0.0006 in Euclidean normalized spectra to account for samples with

a non-negligible contribution of lignin and absorbances> 0.0004 in non-normalized spectra to

discard samples with low mass loadings and noisy spectra). Samples with levoglucosan mass

(estimated from MIR spectroscopy) contributing more than 5 % to total OM (1.8 of collocated

TOR OC estimates) were also labeled burning-influenced (ranging from 5 to 15 % of total

OM). We identified in total 173 samples (out of 3050 samples) with the tracer approach, which

included the majority of the previously identified burning sample using cluster analysis (38

out of 45) (Fig. 3.7), suggesting that most of the atmospheric samples with a MIR spectrum

similar to that of burning aerosols have also visible tracer molecule signatures. There were,

however, 135 samples with levoglucosan and/or lignin signatures above the defined threshold

that were not identified by the cluster analysis. The relatively high number of false negatives

(i.e. missing burning label when levoglucosan and lignin peaks were present) in the cluster
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analysis suggests that uncertainties can be high with this approach. There were also 7 samples

with negligible levoglucosan and lignin signatures (not identified by the tracer method) that

were identified to be burning-influenced by the cluster analysis. The latter discrepancy might

exist due to misidentification by the cluster analysis or because the discussed signatures

diminish with extensive aging and cannot be detected by the tracer method. The same could

be true for cluster 10 of Bürki et al. (2020), which was proposed to be possibly influenced by

burning, but only 3 out of 28 samples have identifiable levoglucosan or lignin signatures.

The atmospheric burning-influenced samples identified by both methods have a high relative

abundance of OM. OM constitutes more than 50 % of fine PM mass for the majority of these

sample even at low PM loadings as observed in Fig. 3.7. However, a high OM:PM ratio cannot

always be a reliable indicator of burning alone since it is not unique to biomass burning

and there are many non-burning samples with a high OM:PM ratio (Fig. 3.7). Potassium

is considered a good inorganic tracer of biomass burning (Sullivan et al., 2011b). Bürki

et al. (2020) showed a higher-than-average K:PM2.5 ratio for the residential wood burning

samples identified in the IMPROVE network (2011 and 2013). However, as also mentioned

by Sullivan et al. (2011b), high K is not observed in wildfire samples. In addition, there are

some non–biomass-burning sources of potassium more likely to be found in urban areas

such as incinerators and fly ash. The burning-influenced samples identified by the tracer

method in this work have higher concentrations of potassium compared to the majority of

other atmospheric samples (Fig. A.24). However, there are also some samples with relatively

high K concentrations that are not impacted by burning and are most probably affected by

mineral dust due to having a prominent Si−O−H peak above 3500 cm−1 (Bürki et al., 2020).

In summary, the tracer method appears to be able to identify the atmospheric burning-

influenced samples including the majority of those identified by the cluster analysis. However,

a definitive identification of burning periods is needed to better assess this new approach.

Quantifying the contribution of biomass burning OM (fresh and aged) to the PM mass is

another remaining challenge that needs to be addressed in the future work.

3.4 Concluding remarks

In this work, we used MIR spectroscopy and AMS to obtain complementary information about

primary and secondary wood burning (WB) and coal combustion (CC) aerosols. MIR spec-

troscopy provides a detailed characterization of functional groups and implies that primary

aerosols and their parent compounds have similar chemical compositions. This similarity

diminishes after aging with the appearance of the peaks attributed to oxygenated species and

disappearance of the peaks attributed to the parent compounds. We observed distinct FG

compositions for OA based on the emission source (WB and CC), aerosol type (primary and

aged), oxidant type, and NOx concentration. The observed FG composition is informative

about the dominant oxidation pathways of WB and CC VOCs and can be used to verify and

improve the results of the chemically resolved SOA formation models.
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Figure 3.7 – Scatter plot comparing total PM2.5 and OM mass in atmospheric samples. Red
circles indicate residential wood burning and wildfire samples identified by cluster analysis
(Bürki et al., 2020). Green crosses show burning samples identified based on lignin and lev-
oglucosan signatures. Black circles indicate the existing atmospheric samples in the IMPROVE
network (2011 and 2013; approximately 3050 samples). The dotted dashed lines delineate the
range of OM mass fractions for samples designated as burning-influenced (the slope of 0.5 is
arbitrarily chosen to guide the eye). OM was estimated by multiplying OC by 1.8 (assuming an
average OM:OC ratio of 1.8). Refer to Fig. A.23 for a more detailed classification.

Dimensionality reduction of the AMS mass spectra reveals similarities between the AMS mass

spectra of the primary CC OA and the HOA factor, the primary WB OA and the BBOA factor, and

the OA aged with OH and the SV-OOA factor, respectively. In addition, this analysis suggests

that both the aerosol source and type are major drivers of variability in the AMS mass spectra.

These variations are also consistent with our FG analysis, implying that AMS mass spectra

maintain some functional group information in spite of the extensive fragmentation. However,

variations due to the change in the FG composition occasionally constitute a small fraction of

the total variation (stored in higher PCs).

We also found that the MIR spectra of WB aerosols in the environmental chamber are sim-

ilar to those of ambient samples affected by wildfires and residential wood burning. The

high abundance organics (especially acids) and existence of peaks attributed to lignin and

levoglucosan are the main aspects of this similarity. This result helped us better interpret

the MIR spectra of atmospheric samples and was used to aid the identification of ambient

burning-influenced aerosols.

Finally, it was found that PAHs and aromatics are quantifiable in chamber aerosols using

MIR spectroscopy but are not visible in the spectra of atmospheric samples except for a few

burning-influenced instances. Considering the fact that the areal density of aerosols collected

on PTFE filters is similar in the atmospheric and chamber samples, this observation suggests

that either the chamber conditions (e.g., fuel, aging, VOC and OA concentrations) are more

conductive to PAHs or most aromatics and PAHs are degraded in the atmosphere or during

the transportation and storage.
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Abstract Aerosol mass spectrometry (AMS) and mid-infrared spectroscopy (MIR) are two

analytical methods for characterizing the chemical composition of OM. While AMS provides

high-temporal-resolution bulk measurements, the extensive fragmentation during the elec-

tron ionization (EI) makes the characterization of OM components limited. The analysis of

aerosols collected on PTFE filters using MIR, on the other hand, provides functional group (FG)

information with reduced sample alteration but results in a relatively low temporal resolution.

In this work, we compared and combined MIR and AMS measurements for several environ-

mental chamber experiments to achieve a better understanding of the AMS spectra and the

OM chemical evolution by aging. Fresh emissions of wood and coal burning were injected

into an environmental simulation chamber and aged with hydroxyl and nitrate radicals. A

high-resolution time-of-flight (HR-TOF) AMS measured the bulk chemical composition of fine

PM. Fine aerosols were also sampled on PTFE filters before and after aging for the offline MIR

analysis. After comparing AMS and MIR bulk measurements, we used multivariate statistics to

identify the influential functional groups contributing to AMS OM mass for different aerosol

sources and aging processes. We also identified the key mass fragments resulting from each

functional group for the complex OM generated from biomass and fossil fuel combustion. Fi-

nally, we developed a statistical model that enables the estimation of the high-time-resolution

functional group composition of OM using collocated AMS and MIR measurements. Using

this approach, AMS spectra can be used to interpolate the functional group measurements by

MIR, allowing us to better understand the evolution of OM during the course of aging.

4.1 Introduction

Particulate matter (PM) impacts visibility, climate, and human health (Hallquist et al., 2009).

Organic matter (OM), which accounts for an important fraction of total fine atmospheric PM

mass, has profound effects on aerosol-related phenomena (Turpin and Lim, 2001; Russell,

2003; Shiraiwa et al., 2017b). Characterizing the organic fraction is necessary to reduce the

uncertainties associated with the impact of PM and can in turn affect the policies related

to climate change and air quality management (Zhang et al., 2011; Turpin and Lim, 2001).

However, OM chemical composition and formation mechanisms have not yet been fully

understood due to their complexity.

Different analytical and computational techniques exist for determination of the chemical

composition of organic aerosols (OAs) and especially secondary organic aerosols (SOAs). Mod-

eling all important SOA-related reaction and species is not feasible for large-scale models

(Jathar et al., 2015) and simpler models often do not reproduce the measured concentrations

and dynamics of SOA evolution in polluted regions (Volkamer et al., 2006). Among the analyti-

cal techniques, aerosol mass spectrometry (AMS) and mid-infrared (MIR) spectroscopy are

able to provide bulk chemical information for most of OM mass (Hallquist et al., 2009).

AMS provides information about the chemical composition of OM and its temporal variations

in terms of ensemble mass spectra acquired over short time intervals (Zhang et al., 2011).
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Aerodyne Research aerosol mass spectrometer (used in this work and referred to as “AMS”) is

the most widely used thermal desorption-based mass spectrometers in aerosol research. AMS

is capable of quantifying non-refractory species (e.g., sulfate, nitrate, ammonium, chloride,

and OM) by thermal vaporization (typically at 600 ◦C) and electron ionization (EI; typically

at 70 eV) (Canagaratna et al., 2007). In spite of the valuable information that AMS provides,

the AMS OM fragment ions are not molecule-specific and are difficult to interpret due to

the extensive fragmentation of molecules with the high-energy electron impact (EI) ioniza-

tion and flash vaporization. This limits the level of molecular details that can be extracted

from the AMS mass spectra (Canagaratna et al., 2007; Kumar et al., 2018; Faber et al., 2017;

Chhabra et al., 2011a). Organic aerosol components can also undergo oxidation, dehydration

and/or decarboxylation reactions inside the AMS ionization chamber (Canagaratna et al.,

2015). In addition, uncertainties regarding the relative ionization efficiency (Xu et al., 2018),

fragmentation tables (Aiken et al., 2008), gas-phase interference (Canagaratna et al., 2015),

and collection efficiency (Frossard et al., 2014) have been reported. There are soft ionization

methods, such as electrospray ionization (ESI) and chemical ionization (CI) that minimize the

analyte fragmentation at the expense of variable ionization efficiency, signal-to-noise ratio,

and quantifying bulk OM composition (Lopez-Hilfiker et al., 2019; Nozière et al., 2015; Iyer

et al., 2016; Zahardis et al., 2011).

MIR spectroscopy, which is commonly performed off-line on polytetrafluoroethylene (PTFE)

filters (Takahama et al., 2013; Ruthenburg et al., 2014), is used as a complementary method to

AMS in this work. This non-destructive method gives direct functional group (FG) information;

provides measurements consistent with commonly used instruments in monitoring networks

(Boris et al., 2019); and is capable of differentiating between the composition of different

oxidized OMs. For example, Liu et al. (2012a) observed very similar AMS mass spectra for

several SOA samples, while the complementary MIR spectra indicated clear chemical differ-

ences for these aerosols. In addition to FG quantification, MIR spectroscopy has been recently

used to quantify biomass burning markers in the atmospheric aerosols (e.g., levoglucosan

and lignin; Yazdani et al., 2021c). However, MIR spectroscopy on filters has low temporal

resolution compared to on-line instruments such as AMS (Faber et al., 2017; Yazdani et al.,

2021c). Moreover, volatilization of volatile organic compounds from PTFE filters during or

after sampling can affect OM mass and composition (Subramanian et al., 2004). Uncertainties

regarding variable absorptivities by different organic molecules (Hastings et al., 1952), peak

overlaps (Pavia et al., 2008), scattering, and PTFE interference (Takahama et al., 2013) have

also been reported for this technique.

Past studies compared AMS and MIR OM, O:C, and positive matrix factorization (PMF) factors

in field campaigns (Gilardoni et al., 2009; Russell et al., 2009b; Frossard et al., 2011; Liu et al.,

2011; Corrigan et al., 2013; Frossard et al., 2014), reporting reasonable agreement between

the instruments despite the aforementioned uncertainties. Two controlled laboratory studies

tried to understand the relationship between fragment ions and functional groups (Faber

et al., 2017; Russell et al., 2009a) using univariate correlations. In this work, we compare

and combine the AMS and MIR measurements for the organic aerosols of moderate to high
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complexity from biomass burning and coal combustion emissions, two major sources of

atmospheric OM, in an environmental chamber. We apply additional uni- and multivariate

techniques to further interpret the relationships between more than 300 AMS fragment ions

and 4 MIR FGs, and provide a method to predict the high-time-resolution evolution of FGs

using AMS.

4.2 Methods

In the following sections, the experimental set-up (Sect. 4.2.1), on-line and off-line measure-

ment techniques (Sects. 4.2.2 and 4.2.3) are described. Thereafter, statistical methods used for

combining AMS and MIR measurements are explained (Sects. 4.2.4–4.2.6). The experimental

set-up, procedure, and data used in this work are the same as those reported by Yazdani et al.

(2021c).

4.2.1 Laboratory experimental set-up and procedure

Briefly, we conducted four wood burning (WB) experiments with beech wood logs and five

coal combustion (CC) experiments with bituminous coal using ordinary modern stoves (Bruns

et al., 2015). The emissions were diluted and then injected into a 6 m3 Teflon bag environmen-

tal chamber of at the Paul Scherrer Institute (PSI) in Villigen, Switzerland. The injections were

continued until the concentration of PM and OM measured by the scanning mobility parti-

cle sizer (SMPS) and high-resolution time-of-flight (HR-ToF) AMS reached atmospherically-

relevant values. The emissions were held in the chamber for 30 minutes after injection to

improve mixing. Thereafter, primary emissions were chemically aged using the hydroxyl or

nitrate radical in order to simulate daytime and nighttime aging mechanisms, respectively.

For the diurnal aging simulations, the OH radical was produced by the photolysis of HONO

and the OH exposures reached (2–3)×107 molec cm−3h (measured using butanol-d9; Barmet

et al., 2012) corresponding to 20–30 hours of aging in the atmosphere. For the nocturnal

aging experiments, the NO3 radical was produced by a single injection of O3 and NO2 in the

chamber. The nitrate radical concentration was estimated to be (1.5–2.5)×107 molec cm−3 for

the first hour of aging process based on the phenol concentration decay in the gas phase.

4.2.2 Online AMS PM measurements

Non-refractory particle composition was measured with a HR-ToF AMS operating in V mode

(mass resolution ∆m/m = 2100 for m/z 200; DeCarlo et al., 2006) with a 2.5µm inlet aero-

dynamic lens throughout the experiment. The raw signal was postprocessed in Igor Pro 6.3

(Wave Metrics) using SQUIRREL 1.57 and PIKA 1.15Z routines. Elemental ratios of OM were

estimated following the approach of Canagaratna et al. (2015) (Fig. A.25). The AMS OM

concentrations reported in this work are not corrected for the chamber wall losses and the

measured nitrate is assumed to be inorganic for ease of comparison with MIR.
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4.2.3 Offline MIR PM measurements

Two 47 mm PTFE filters (Pall corporation) were used for each experiment to sample the

primary PM after its injection into the chamber and the aged PM after approximately three

to four hours of aging. The filter holder was placed downstream of a sharp-cut-off cyclone

and a silica gel denuder and the flow rate through the filter was maintained at 8 L min−1.

We used a similar naming convention for the filters to that of Yazdani et al. (2021c). Filters

were immediately stored in filter petri dishes at 253 K after sampling and before MIR analysis

to minimize volatilization and chemical reactions. The PTFE filters were analyzed using a

Bruker Vertex 80 Fourier transform infrared (FTIR) instrument equipped with an α deuterated

lanthanum alanine doped triglycine sulfate (DLaTGS) detector, at a resolution of 4 cm−1. The

spectra were averaged over 64 scans.

MIR Spectral postprocessing

The MIR spectra were baseline-corrected to eliminate the contribution of light scattering by

filter membrane and particles as well as absorption by graphitic carbon (Parks et al., 2021).

We used a smoothing spline described by Kuzmiakova et al. (2016). After baseline correction,

the scaled and baseline-corrected spectrum of a blank filter was subtracted from the baseline-

corrected sample spectra to minimized the interference of PTFE C – F bands. After baseline

correction and blank subtraction, the multiple peak-fitting algorithm described by Takahama

et al. (2013) was applied on the spectra to obtain FG abundances of alcohol (aCOH), carboxylic

acid (COOH), alkane (aCH), non-acid carbonyl (naCO) (Supplement Fig. A.25). After obtaining

FG abundances, the O:C, H:C, and OM:OC ratios (Fig. A.25) were calculated assuming 0.5

C atom for each of aCH and aCOH bonds (Chhabra et al., 2011b; Russell, 2003; Maria et al.,

2002).

4.2.4 Identifying influential MIR absorbances for AMS OM

The AMS OM estimates and the MIR spectra are combined statistically to identify the func-

tional groups that influence the former OM mass concentration the most. The results of this

method, which are affected neither by uncertainties of MIR peak fitting nor by absorption co-

efficients, identify important predictors of OM estimated by more routinely applied methods

prior to peak fitting. This technique can be applied even when absorption coefficient data are

not available for all FGs, and help decide which FGs are needed to be included in the MIR peak

fitting. The averaged AMS OM concentrations over the filter sampling periods were regressed

against the corresponding MIR spectra using partial least squares regression (PLSR). There-

after, the influential absorbances in the MIR spectra for the organic OM concentration were

determined based on variable importance in projection (VIP) scores of the PLSR model (Fig.

A.26). This procedure was applied separately for the primary and aged aerosols of each source

to highlight the compositional differences. By regressing AMS OM concentration against MIR
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absorbances, we seek a solution of the following linear equation for coefficients a:

y = Xa +e, (4.1)

where X (n×p) is the MIR spectra matrix with n samples and p independent variable (wavenum-

bers), y (n ×1) is the vector of response variable, AMS OM concentration, and e is the vector

of residuals. In this work, the univariate partial least squares regression (Wold et al., 1983) is

used. The univariate PLSR projects X onto P (p ×h) (h is the number of latent variables) basis

with orthogonal scores T (n ×h), while maximizing the covariance between scores and the

response variable, y . In Eq. (4.3), b and f indicate the regression coefficients the vector of

residuals, respectively.

X = TP>+E, (4.2)

y = Tb + f . (4.3)

After solving the regression equation using PLSR for different number of latent variable (LVs),

a repeated 10-fold cross validation was applied to find the optimal number of latent variables

and avoid under/overfitting. Examining loadings and coefficients directly can be informative

about the important absorbances. For instance, the first weight vector, w 1, can be a good

estimate of important bands but it is limited to the cases that signal is not dominated by other

factors rather than the analyte, such as inorganics, and filter absorption (Haaland and Thomas,

1988). In this work, we used a more general method, VIP scores (Wold et al., 1993), to identify

the important absorption bands. This metric is a root mean square of loading weights of all h

latent variables used in the model weighted by their fraction of the captured response (Chong

and Jun, 2005; Takahama et al., 2016). The VIP score of the j th wavenumber is calculated

by considering all h latent variables in the model as shown in Eq. (4.4). Since the average of

squared VIP scores is equal to one, generally, the wavenumbers with VIP score greater than one

are considered influential due to higher-than-average contribution to estimating the response

variable. In Eq. (4.4), t k and w k represent the kth columns of T, score matrix, and W (p ×h),

weight matrix, respectively and the relationship between T and W is described by Eq. (4.5)

(Helland, 1988).

V I P j =
√√√√p

∑h
k=1 SS(bk t k )(w j k /‖w k‖)2∑h

k=1 SS(bk t k )
,

where SS(bk t k ) = b2
k t>k t k . (4.4)

T = XW(P>W)−1. (4.5)
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4.2.5 Identifying FG-ion fragment relationships

Covariance and correlation coefficients were used to understand the connection between

fragment ions (up to m/z 202 for which the signal-to-noise ratios are still significant) and

FGs (Fig. A.27a). We used normalized functional group abundances by MIR total OM and

normalized fragment ion concentrations by AMS total OM (averaged over filter sampling peri-

ods) and calculated covariances and correlations between 4 FGs and more than 300 fragment

ions. The major difference between the fragment-FG correlation and covariance is that the

former is more informative about the fragments with low concentrations while the latter high-

lights the fragments with higher concentrations. Data normalization was performed to avoid

correlations introduced by the changes in the total OM mass concentration as oxygenated

fragments are highly correlated before normalization (Fig. A.29). In addition, negative correla-

tions (anti-correlations) and covariances were omitted as they do not show the production of

fragments by FGs. For example, often the aCH relative abundance decreases with aging as the

relative concentrations of oxygenated FGs such as COOH and oxygenated fragment ions such

as CO2
+ increase, leading to a significant anti-correlation between the aCH FG and the CO2

+

fragment. Russell et al. (2009a) and Faber et al. (2017) have already applied the univariate

fragment-FG (correlation) analysis for different sources using unit-mass-resolution and HR

AMS data, respectively. However, their analysis has been limited to only a few light fragment

ions.

Univariate methods can be difficult to interpret when ion fragments are produced by multiple

functional groups. Therefore, in addition to the univariate methods, the VIP scores method

was used to highlight the influential spectral regions and FGs for major fragment ions with high

concentrations (CO2
+, CHO+, C2H3O+, C3H5

+) and for two biomass-burning-related fragment

ions (C2H4O2
+ for levoglucosan and C8H9O2

+ for lignin). This multivariate approach, which is

not affected by the MIR peak fitting uncertainties, is similar to identifying the influential MIR

spectral regions for the AMS OM as discussed in Sect. 4.2.4 except that the concentrations of

individual fragment ions are regressed against the MIR spectra (Fig. A.27b).

4.2.6 Interpolating FG abundances using AMS mass spectra

In order to estimate the high-time-resolution FG composition of OM, FG abundances for all

filters (normalized by the MIR total OM mass concentration), which were calculated from

peak fitting, were regressed against the AMS spectra (normalized by the AMS total OM mass

concentration and averaged over the filter sampling periods) using PLSR. A repeated 10-

fold cross validation was applied to indicate the optimal number of latent variables. These

models were then used to interpolate (high-time-resolution) FG compositions using the AMS

spectra and investigate the evolution OM during the course of oxidation when only AMS

measurements existed (Fig. A.28). Thereafter, the high-resolution O:C ratios separated by FG

contribution (O : C = OCOOH : Ctotal +OnaCO : Ctotal +OaCOH : Ctotal) were calculated from the

high-resolution resolution FG compositions following the same approach of Sect. 4.2.3.
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Figure 4.1 – Statistical relations and strategy for comparison of MIR and AMS measurements.
The correlation/covariance analysis is performed between AMS mass fragments and MIR
functional group abundances from peak fitting. The PLS regression is performed using the
AMS total OM or individual fragment concentrations as the independent variable and the MIR
absorbance spectra as the dependent variables.

4.3 Results and discussions

In the following subsections, bulk OM parameters from AMS and MIR are combined and

compared in Sect. 4.3.1. There after, fragment ion-FG relationships are investigated in Sect.

4.3.2. Finally, PLSR models are developed to predict FG composition of OM using the AMS

mass spectra (Sect. 4.3.3). Our approach for combining and comparing the AMS and MIR

measurements is demonstrated in the diagram of Fig. 4.1.

4.3.1 Combination and comparison of OM measurements

Influential spectral regions of the MIR spectra and their corresponding FGs are determined for

the AMS OM using VIP scores (Sect. 4.3.1). Thereafter, the OM mass concentration, OM:OC,

O:C, and H:C ratios calculated using peak fitting to MIR spectra are compared to the average

values from AMS for the primary and aged aerosols.

Influential group frequencies for total AMS OM

VIP scores of the PLSR models regressing MIR absorbances against AMS OM mass concentra-

tion highlight certain FGs to be important regarding the OM mass for each fuel burned and

aerosol age. As can be seen from Fig. 4.2, carbonyl CO, aCOH have the highest VIP scores

(greater than one) for primary WB aerosols, highlighting their importance in the primary WB

70



4.3. Results and discussions

OM. The high VIP scores of aCOH is consistent with the fact that aCOH is a major part of wood

constituents. Although ν(CH2) and ν(CH3) (stretching vibrational modes) at 2800–3000 cm – 1

do not have high VIP scores for primary WB aerosols, the VIP scores for δ(CH2) at 1470 cm – 1

(bending vibrations) are high, suggesting the importance of aCH. The PLSR model probably

use the information from the bending peak due to the lower overlap with other bands in the

primary WB spectra. The peak around 1600 cm−1 which has a greater-than-one VIP score

for primary WB is the result of several overlapping peaks attributed to the organonitrates,

aromatic ring ν(C –– C), amine δ(N – H), amide δ(N – H), and carboxylate ν(C –– O) (Pavia et al.,

2008). These overlapping absorbances make peak assignment in this region uncertain and

complex. However, this peak is accompanied by the lignin-related ν(C –– C) vibrations at 1515

cm – 1 (Yazdani et al., 2021c), suggesting the abundance of lignin-like products in primary WB

OM as also proposed by Bertrand et al. (2018a). For the aged WB aerosols, VIP scores are the

highest for the broad carboxylic ν(OH) absorbances at 2400–3400 cm – 1 and carbonyl ν(CO)

(acid carbonyl) at 1700 cm – 1, suggesting carboxylic acids to be important contributors to the

OM mass after SOA formation (Yazdani et al., 2021c). In contrast to the primary WB aerosols,

aCOH does not have high VIP scores for the aged WB aerosol (Yazdani et al., 2021c).

For the primary CC aerosols, ν(CH2) has the highest VIP scores, suggesting the abundance

of hydrocarbons likely from volatile compounds of coal. The aromatic ring ν(C –– C) peak

at 1600 cm – 1, however, has relatively lower VIP scores, implying that the aromatic rings do

not constitute the majority of primary CC OM although coal is mainly composed of highly

substituted aromatics. The ammonium ν(N – H) peaks at 3200–3400 cm – 1 have negative

coefficients and high VIP scores, implying that the PLSR model compensates ammonium

interference with organics by assigning negative coefficients to the region. For the aged CC

aerosols, which are mostly composed of CC SOA, the VIP scores of ν(CH2) are considerably

lower. By contrast, carbonyl ν(CO) and aCOH regions (observed on the shoulder of ν(N – H)

peaks) have the highest VIP scores, suggesting that CC SOA is mostly composed of carbonyls

and alcohols. The out-of plane aromatic CH band, γ(CH), at 750 cm – 1, in spite of being visible,

does not have high VIP scores in spite of their positive coefficient, suggesting that aromatic

CH (rCH) is not a major part of the aged CC. The RONO2 absorption region at 1630 cm – 1 does

not have high VIP scores although this region is very prominent in the aerosols aged with the

nitrate radical (Yazdani et al., 2021c). This is because the AMS OM concentrations used in this

study do not consider the majority organonitrate mass as both NO2
+ and NO+ are attributed

to inorganic nitrate. As a result, the organonitrate abundances do not affect the regression

models.

In general, the important FGs highlighted by the VIP scores method are the same ones targeted

in past studies of atmospheric aerosols (e.g., Ruthenburg et al., 2014; Russell et al., 2009b)

and are consistent with our knowledge of POAs and SOAs related to combustion sources (e.g,

Bertrand et al., 2018a, 2017; Yazdani et al., 2021c). In addition, they provide insight into the

fraction of the combusted fuel that is important for OM formation (e.g., hydrocarbons in CC).
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Figure 4.2 – VIP scores of the MIR absorbances regressed against the AMS OM concentration
(averaged over the filter sampling periods) for (a) primary wood burning, (b) aged wood
burning, (c) primary coal combustion, and (d) aged coal combustion aerosols. Blue/red
regions correspond to wavenumbers with positive/negative regression coefficients in the
PLSR models, respectively. Solid curves show the average spectrum (± one standard deviation
shown by the shaded bands) for each category. Important FGs and their locations are indicated
for each category. The PTFE C – F absorption regions are masked by gray rectangles.

AMS and MIR OM mass concentrations

It was shown in the last section that four FGs, aCH, COOH, aCOH, and naCO are the most

influential functional groups regarding OM mass. The abundances of the mentioned FGs were

estimated using peak fitting to the MIR spectra. The aromatic C –– C group (rC –– C) was not

quantified due to the interference with other functional groups and the lack of absorption

coefficient data. The peak-fitting results show that the OM concentration estimates from AMS

and MIR are highly correlated (Fig. 4.3a, R2 = 0.92). The slope of the MIR OM concentration

versus that of AMS (not corrected for collection efficiency) is 1.3. This slope is within the

previously reported range (Gilardoni et al., 2009; Russell et al., 2009a,b; Liu et al., 2011) consid-

ering collection efficiency of AMS (Yazdani et al., 2021c; Kumar et al., 2018; Canagaratna et al.,

2007) and the aerosol volatilization artifacts from PTFE filters (Ruggeri, 2017; Subramanian

et al., 2004). Yazdani et al. (2021c) reported the AMS the collection efficiency to range between

0.7 and 1.1 for the same experiments. The OM concentrations estimated by both methods

indicate the significant enhancement with aging even without particle and vapor wall loss

consideration (on average 2.4 and 2.7 times by AMS and MIR, respectively). The enhancement

ratios are in the range of values that were previously reported for SOA formation from log-

wood stoves (Bertrand et al., 2017; Tiitta et al., 2016; Grieshop et al., 2009; Heringa et al., 2011;

Hennigan et al., 2010). Using different absorption coefficient values for MIR FGs (discussed by

Reggente et al., 2019a) has little effect on the correlation coefficient.
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AMS and MIR OM:OC ratios

The OM:OC ratios calculated from the AMS mass spectra were averaged over the filter sampling

periods and compared to those measured from peak fitting to MIR spectra. The OM:OC

estimates of these two methods agree very well (R2 = 0.82 and slope = 0.99; Fig. 4.3b) with

an average difference of less than 0.15 (Yazdani et al., 2021c). The correlation coefficient of

OM:OC ratios is also found to be insensitive to the choice of absorption coefficients reported

by Reggente et al. (2019a) for MIR spectroscopy. The fact that both methods capture similar

OM:OC and mass concentration trends, suggests that a similar fraction of OM is monitored

by both and the uncertainties associated with each method is less than variations due to fuel

sources and aging processes. The primary CC aerosols are estimated to have the lowest OM:OC

ratios (1.35–1.5), which is justified by their strong hydrocarbon (aCH) signatures (Fig. 4.2c).

The primary WB samples have slightly higher OM:OC ratios (1.6–1.7 from AMS) primarily due

to a relatively higher concentration of aCOH (Fig. 4.2a). Both instruments estimate that the

aged aerosols of the two sources, regardless of the aging method, have higher OM:OC than
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the primary ones (Fig. 4.3b). The aged WB aerosols have the highest OM:OC ranging from

1.9 to 2.1 (from AMS), with high concentrations of COOH (from MIR). The aged CC aerosols

have lower average OM:OC ratios compared to the aged WB aerosols, ranging from 1.6 to 1.8.

For both emission sources, AMS and MIR show that aerosols aged with the hydroxyl radical

have higher OM:OC ratios than those aged with the nitrate radical (Fig. 4.3b). Attributing

total AMS nitrate to organics to estimate an upper bound for OM:OC, makes this difference

less prominent. However, the nitrate radical only reacts efficiently with certain precursors

compared to the hydroxyl radical, resulting in different SOA composition that is reflected in

both AMS and MIR measurements.

AMS and MIR van Krevelen trajectories

The local slope of the aging trajectory in the van Krevelen diagram is informative about the

changes in the functionality of OM (Heald et al., 2010; Ziemann and Atkinson, 2012; Chhabra

et al., 2011a), which is also directly measured with MIR spectroscopy. Figure 4.4 shows the

van Krevelen diagram of the WB and CC OM in different experiments. In the WB experiments,

AMS oxidation trajectories vary between a straight line and a convex (L-shaped) curve. In the

first WB experiment with the hydroxyl radical (WB_OH_1), AMS aging trajectory is almost

a straight line implying a monotonic change of FGs during the course of aging (Fig. 4.4a).

In the second experiment (WB_OH_2), however, the trajectory is convex with a reduced

slope toward the end of aging, implying an increase in the abundance of FGs resulting in a low

trajectory slope, e.g. acids (Fig. 4.4b). This is supported by the high concentration of the COOH

group observed in the MIR spectra of the corresponding aged aerosols (Yazdani et al., 2021c)

and will be investigated further in Sect. 4.3.3. The WB experiment with the nitrate radical

(WB_NO3_1) has a slope close to zero with a lower final O:C probably due to the exclusion

of the organonitrate group and different SOA formation reactions of the nitrate radical. The

relatively low decrease in H:C with aging is supported by a relatively lower decrease of aCH

absorptions in the MIR spectra of WB aerosols that are aged with the nitrate radical (Yazdani

et al., 2021c). The modest decrease in H:C with aging is observed to be a characteristic of aging

with the nitrate radical regardless of the emission source (Fig. 4.4d, h, and i), suggesting a

more effective H atom abstraction by OH.

The starting points of the WB oxidation trajectories (from AMS) have H:C ratios in the range

of 1.6–1.8 and O:C ratios in the range of 0.3–0.4. The ending points have H:C ratios in the

range 1.4–1.6 and O:C ratios in the range of 0.6–0.7. The observed values are close to that of

OA measured by Chhabra et al. (2011a), the OA emissions of logwood combustions by Tiitta

et al. (2016), and ambient OA reported by Heald et al. (2010). The average O:C and H:C trends

calculated from MIR spectroscopy are generally consistent with that of AMS, showing a decline

in H:C ratio and increase in O:C ratio. However, there is an offset in the absolute values; in

general, H:C is estimated to be approximately 0.2 higher by MIR spectroscopy both for the

primary and aged WB aerosols.

For the CC experiments, AMS oxidation trajectories usually start at H:C ratios around 1.7–1.9
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(higher than that of WB supported by the strong aCH signature; Fig. 4.2c) and O:C ratios around

0.20–0.25 and end usually at H:C and O:C ratios around 1.5–1.7 and 0.35–0.55, respectively. The

high H:C ratios before aging support the low amount of aromatics to aliphatic CH observed

from MIR spectra. In most of the experiments, a positive curvature in trajectory is observed

(Fig. 4.4e-i), implying a change in the type of FGs produced during the course of aging. The

average slopes are close to −1 (from AMS) in the majority of experiments and are slightly

higher than those of the WB experiments. The average oxidation slopes that are estimated from

MIR spectroscopy are also higher for the CC experiments compared to WB. This observation

is supported by the formation of SOAs with higher naCO abundances for CC (Yazdani et al.,

2021c), resulting in higher trajectory slopes . However, MIR generally estimates higher O:C (by

0.05–0.1) and lower H:C ratios (by approximately 0.2) for the aged CC aerosols compared to

AMS.

The observed deviations between the two instruments might stem from the low OM mass

collected on the filters that increases the baseline correction and peak fitting uncertainties in

MIR analysis, in addition to the existence of FGs that are not considered in the peak fitting

algorithm (e.g., ethers, PAHs, rC –– C and rCH). Sampling biases of semi-volatile compounds

on PTFE filters (Subramanian et al., 2004) and the uncertainties of AMS elemental ratio

calibrations (Canagaratna et al., 2015; Aiken et al., 2008) can also affect the results.
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Figure 4.4 – Comparison of AMS van Krevelen (H:C vs O:C) aging trajectories (color circles) for
wood burning (WB) and coal combustion (CC) experiments with MIR estimates for aerosols
collected on PTFE filters before and after aging (red stars). Black circles in AMS trajectories
correspond to the filter sampling periods for the primary and aged aerosols. The filter names
are the same as Yazdani et al. (2021c). P: primary, A: aged.

4.3.2 AMS fragment ion-MIR FG relationships

In Sects. 4.3.2 and 4.3.2, the connection between the AMS fragment ions and MIR FGs is

investigated using different statistical methods (covariance, correlation, and VIP scores). The

combined summary of these analyses is shown in Table 4.1.
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Table 4.1 – Summary of important fragment ions for each functional group based on the
analysis method. Important fragments are shown in blue.

FGs Covariance Correlation VIP scores

Multivariate
regression

CO2
+, CHO+, C2H3O+

aCH CxH2x±1
+ (e.g.,

C3H7
+, C4H9

+)
CxHY

+ (e.g., C3H5
+,

C3H7
+, C6H9

+, C8H9
+,

heavy fragments:
C8H17

+)

C3H5
+ –

aCOH CHO+, CH3O+,
C2H4O2

+
C2H5O+, C3H6O2

+,
C5H6

+ (phenol)

CHO+,
C2H4O2

+,
C8H9O2

+

CHO+, C2H3O+

COOH CO2
+, CO+,

C2H3O+,
CHO+

CxHyO>1
+ (e.g.,

C2H3O2
+, C7H5O4

+)

CO2
+ CO2

+, CHO+

naCO CO2
+, CO+,

C2H3O+
CxHyO1

+

(e.g.,C7H4O+)

C2H3O+ C2H3O+

RONO2 – C2H3O+, C4H9NO3
+,

C6H10NO2
+

CHO+,
C2H3O+

–
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Correlation and covariance analyses (univariate)

The aCH group has high covariance with CxH2x – 1 and CxH2x+1 fragments (C3H5
+, C3H7

+,

C4H7
+, C4H9

+, and C5H9
+; Fig. 4.5). The highest correlations are between the aCH group and

C3H5
+, C3H7

+, C5H7
+, and C6H9

+ (Fig. 4.6). The relationship of heavier fragments such as

C7H13
+ and C8H15

+ with aCH is more prominent in the correlation analysis. These fragments

are especially abundant in the primary CC aerosols, suggesting these aerosols is composed

of relatively longer chain hydrocarbons that even after fragmentation, produce relatively

heavy fragments. This observation is also supported by the MIR spectra of these samples,

which possess sharp CH2 and weak CH3 peaks (Yazdani et al., 2021a). Faber et al. (2017)

have previously shown the relation between C4H7
+ and aCH. The m/z 57 signal in the unit-

mass-resolution mass spectra (which also includes C4H9
+ signal) has been proposed to be a

tracer of unburned fuel emissions (Schneider et al., 2006). However, its correlation coefficient

with aCH has been shown to be quite variable and sometimes negative (Russell et al., 2009a).

This discrepancy partly stems from the contribution of C3H5O+ to m/z 57 (Faber et al., 2017)

and partly from the fact that molecules with different chain-lengths, degrees of branching,

and heteroatoms produce different and source-dependent fragmentation patterns for CxHy
+.

In addition, the existence of several highly correlated ion fragments with aCH in this study

suggests the superiority of a multi-variate approach to obtain information about aCH from

the AMS mass spectra.

The COOH group has the highest covariance with CO2
+, CO+, C2H3O+, and CHO+. Since the

CO+ concentration is estimated from that of CO2
+, the former fragment it not investigated

separately. The highest correlations are, on the other hand, with C2H3O2
+ and several heavier

fragments with multiple oxygen atoms such as C7H5O4
+, which are abundant in the aged

WB aerosols. The high covariance with the CO2
+ fragment is supported by the fact that CO2

+

is produced from the fragmentation of mono- and dicarboxylic acids (Duplissy et al., 2011;

Zhang et al., 2005). The heavier fragments with multiple oxygen atoms (CxHyOz>1
+) are also

indicative of the COOH FG as also reported by Lambe et al. (2012) and might be source-specific

as, for example, C7H5O4
+ is only detected in the WB aerosols. In the WB aerosols, the COOH

group is correlated significantly (r ∼ 0.96) with CHO2
+, the fragment known to be produced

from the α-cleavage of carboxylic acids (Pavia et al., 2008). The C2H4O2
+ fragment is also

known to be produced from acids having γ hydrogen through McLafferty rearrangement and

its concentration increases with the extensive aging for the WB and CC aerosols (Yazdani

et al., 2021c). However, the strong interference of levoglucosan fragmentation, abundant in

WB emissions, with C2H4O2
+ makes investigation of COOH-C2H4O2

+ relation difficult. With

the help of MIR, which does not suffer from the same interference, samples with negligible

levoglucosan concentrations were separated. For these samples, a fairly strong correlation

(r ∼ 0.82) between COOH and C2H4O2
+ was observed.

The aCOH group covaries most significantly with CHO+, CH3O+, C3H5O+ (which contributes

to m/z 57 in the unit-mass-resolution spectra), C2H3O+, and C2H4O2
+. The CHO+ fragment

has been often interpreted as the tracer of esters, polyols and compounds with polyfunctional

77



Chapter 4

groups without the carboxylic COOH (Canagaratna et al., 2015). This fragment, however, is

also known to be produced by aldehydes although the aldehyde C – H band is not observed in

the MIR spectra of the samples under study. Faber et al. (2017) also showed that the signal

ratio of C2H3O+ to C4H7
+ is linearly correlated with the molar ratio of aCOH to aCH. The

connection of C2H3O+ with alcohols, however, should be treated with caution as carbonyls

can also produce the same mass fragment. The C2H4O2
+ fragment appears to be important

for aCOH and has been previously shown to be related to anhydrous sugars in the biomass

burning smoke (Schneider et al., 2006). The CH3O+ fragment is produced from the α cleavage

of alcohols (Pavia et al., 2008). The highest correlations in this work are, however, between

the aCOH group and C2H5O+ and C3H6O2
+ fragments and some other fragments such as

C5H6
+. The C2H5O+ fragment is known to be produced from the α cleavage of alcohols (Pavia

et al., 2008). The C5H6
+ fragment, correlated to a lower extent with aCOH, can be produced by

phenol fragmentation after loosing CO, which is also abundant in WB emissions (Bruns et al.,

2017).

The naCO group covaries most significantly with CO+, C2H3O+, and CO2
+. Contrary to COOH,

CHO+ appears to have a low covariance with naCO. The C2H3O+ fragment is known to be

produced by aliphatic ketones and aldehydes (Pavia et al., 2008; Eadon et al., 1971). As dis-

cussed by Yazdani et al. (2021c), the naCO in the CC samples are believed to be mostly ketone

based on their C –– O frequency. The naCO group is highly correlated with some CxHy
+ frag-

ments (e.g., C4H3
+, C6H4

+) and some single-oxygen fragments (e.g, C5HO+, C7H4O+, and

C7H5O+). The C7H5O+ fragment is known to be produced by aromatic ketones (Pavia et al.,

2008) and CxHyO1
+ has been attributed to carbonyls (Lambe et al., 2012). The C2H3O+:CO2

+

ratio is relatively higher in samples aged with the nitrate radical or samples that have consider-

able amounts of the naCO group (Fig. A.29), suggesting that C2H3O+ is produced mainly by

molecules possessing naCO or SOAs formed with the nitrate radical.

There are mid-infrared signatures attributed to levoglucosan and lignin that are prominent in

the primary WB aerosols and diminish with aging. These signatures are important markers

of biomass burning and have been used to identify atmospheric smoke-impacted samples

(Yazdani et al., 2021c). Correlation analysis of these features with the AMS ion fragments (Fig.

A.30) show that the C8H9O+ fragment is related to lignin. In fact, one might attribute the m/z

121 fragment to two peaks C7H5O2
+ and C8H9O+ for hydroxyphenyl (H) lignin and C4H9O2

+ of

guaiacyl (G) lignin, respectively (Li et al., 2012; Tolbert and Ragauskas, 2017). The C2H4O2
+ and

C3H5O2
+ fragments have high correlation with MIR levoglucosan signatures. The fragment at

m/z 102, in spite of having generally a low concentration, has the highest correlation with the

levoglucosan concentration measured from the MIR spectra. This fragment might be used

alternatively in case the interference of other compounds (e.g., acids) for the lighter fragments

related to levoglucosan is substantial.

In this work, organonitrates were not quantified. However, the MIR peak attributed to RONO2

has high correlation coefficients with C2H3O+ and several other oxygenated fragments such as

C4H7O+. Nitrogenated fragments containing the nitrate and nitro groups such as C4H9NO3
+
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and C6H10NO2
+ also appear to have moderate correlation coefficients (approximately 0.6) with

the RONO2 peak in the MIR spectrum (Fig. A.31) although the quantification of nitrogenated

fragments is often not accurate in the V mode due to peak overlapping..

To summarize, the high correlation coefficients of several fragments with each FG suggest that

FG information is retained to a good degree in the AMS spectra. We also found that multiple

FGs are correlated with each of the major oxygenated fragments, (CO+, C2H3O+, CO2
+, and

CHO+). As a result, a multivariate approach should be taken to infer FG abundances from the

AMS spectra.
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Figure 4.5 – Bar plots showing covariances of normalized AMS fragment ion concentrations
and normalized FG abundances. Only positive covariances are shown.

VIP scores (multivariate)

As can be seen from Fig. 4.7, the CO2
+ fragment has the highest VIP scores for the carbonyl

ν(CO) and broad acid ν(OH) peaks from 2400 to 3400 cm−1. This is consistent with previous

studies (e.g., Zhang et al., 2005) and our univariate analyses (Sect. 4.3.2). On the other hand,

the ν(CH) region (2800 to 3200 cm−1), interfering with the broad acid OH stretching band, has

high VIP scores with negative regression coefficient, showing that aCH relative concentration

is anti-correlated with CO2
+. Although some interference for the CO2

+ fragment is expected
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Figure 4.6 – Bar plots showing the Pearson correlation coefficients of normalized individual
fragment ion concentrations and normalized FG abundances. Only values > 0.7 are shown.

from gas-phase CO2 in the AMS spectra, our results show that the compensation method

appears to eliminate this interference effectively.

The COH+ has the highest VIP scores for the RONO2 peaks and the broad alcohol ν(OH) at

3400 cm−1. These results suggest that alcohols and the SOA species produced during the aging

with the nitrate radical (that can also be alcohols) are mostly responsible for producing this

mass fragment. Although the interference form the gas-phase 15N 14N can be significant for

CHO+, our results show that CHO+ appears to be meaningfully indicative of alcohols after

compensation for the gas-phase interference.

The C2H3O+ fragment has the highest VIP scores for the carbonyl CO and the RONO2 peaks

and also to a lesser extent for the broad acid ν(OH) peak. This observation suggests that

C2H3O+ is mostly produced by fragmentation of carbonyls and SOA species formed by aging

with the nitrate radical and to a lesser extent carboxylic acids.

The C3H5
+ fragment was chosen for the VIP scores analysis due to having high concentrations

for both CC and WB aerosols. This fragment has the highest VIP scores with positive regression

coefficients for the ν(CH) (2800–3000 cm−1) and δ(CH) (1300–1500 cm−1) peaks, showing that
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Figure 4.7 – VIP scores of MIR absorbances regressed against AMS fragment ion concentrations
(averaged over the filter sampling periods). Blue and red scores correspond to wavenumbers
with positive and negative regression coefficients in the PLSR models, respectively. Important
FGs for each mass fragment are indicated and PTFE absorption regions are masked by gray
rectangles.

this fragment is directly related to aCH for both sources. This result has been expected but

also highlights the fact that CxHy
+ fragments should be chosen wisely based on the aerosol

source to provide useful information about the aCH group.

Regarding the biomass burning markers, the C8H9O2
+ fragment that is proposed to be pro-

duced by the fragmentation of lignin molecules (Li et al., 2012; Tolbert and Ragauskas, 2017)

has the highest VIP scores with positive coefficients in the aromatic ν(C –– C) (1515 and 1600

cm−1) and aCOH regions, suggesting the connection of this fragment with aromatic com-

pounds having a lignin-like substitution that generates the sharp peak at 1515 cm−1 and

aCOH groups. The C2H4O2
+ fragment that is proposed to be produced predominantly by

fragmentation of levoglucosan molecules has the highest VIP scores with positive coefficients

in the aCOH region (3400 cm−1), suggesting the abundance of aCOH in molecules producing

this fragment. In addition, high VIP scores with positive regression coefficients is observed

in the 850–1000 cm−1 region, which was previously proposed to be related to levoglucosan
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fingerprint absorbances (Yazdani et al., 2021c).

We also performed a simple multivariate linear regression between the oxygenated FGs (aCOH,

naCO, and COOH) and major fragments (CO2
+, CHO+ and C2H3O+; Fig A.32) for the experi-

ments in which the hydroxyl radical was used as oxidant. As shown in Fig. A.32, regressing

CO2
+ against COOH, aCOH, and naCO results in the highest regression coefficient for the

COOH group. In a similar regression for CHO+, the relative contribution of aCOH increases

(Fig. A.32). However, a high regression coefficient for COOH is still observed. The regression

for C2H3O+ highlights a relatively greater contribution of naCO (Fig. A.32). However, as for

CHO+, a high regression coefficient for COOH is also observed. As summarized in Table 4.1,

different statistical methods suggest that the major fragments are usually produced more by

a certain oxygenated FG, while interference from other FGs might also be significant. This

motivates the use of multivariate methods for predicting FG abundances using fragment ion

concentrations in the following section.

4.3.3 MIR FG interpolation using AMS mass spectra

We showed in previous sections that AMS and MIR measurements are consistent. We also

found that FG information is maintained in the AMS mass spectra, which motivated the use of

multivariate methods to access this information. For this purpose, normalized AMS spectra

were regressed against normalized FG compositions from MIR peak fitting. The fit quality of

the developed models is reasonable (Figs. A.33 and A.34) with their R2 ranging from 0.71 to

0.94. These models use mass fragments to predict the FG compositions that were found to

be important in previous sections. We used the developed PLSR models to interpolate the

functional group composition of WB and CC OM between the filter sampling periods (primary

and aged) using the AMS spectra (Fig. 4.8). These models are especially helpful as AMS has a

considerably better time resolution and can be used to investigate the FG evolution of OM

during the course of aging.

The interpolated functional group compositions (Figs. 4.8, A.35, and A.36) show different

FG compositions and trends during the course of oxidation for WB and CC aerosols. This is

predominantly seen in the fraction of oxygenated functional groups that emerge with aging.

For the WB experiments, the aCH relative abundance falls steeply as aging with the hydroxyl

radical starts (Fig. 4.8a). This is also observed for aCOH. On the other hand the COOH relative

abundance increases significantly as soon as the aging starts and levels off after two hours of

aging. The relative abundance of naCO, however, does not change significantly compared to

other FGs for the WB experiment (Fig. 4.8a). There are slight differences between different ex-

periments of WB aging with the hydroxyl radical (also observed in their van Krevelen trajectory

in Fig. 4.4a–c). For instance, the relatively linear trajectory of the WB_OH_1 experiment (Fig.

4.8a) is concurrent with monotonic FG composition change (Fig. A.35a). On the other hand,

the curved van Krevelen trajectories of WB_OH_2 and WB_OH_3 (Fig. A.36b–c) correspond

to the consumption of naCO produced after the start of aging and the gradual increase of
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the COOH relative abundance (Fig. A.36b–c). The different SOA species formed by oxidation

with hydroxyl and nitrate radicals is also reflected in the evolution of OM FG composition.

When aging with the nitrate radical, the decrease in the relative abundance of aCH is much

less prominent after the start of aging compared to aging with the hydroxyl radical (Fig. 4.8b)

although the OM mass enhancement is comparable between the two (Fig. A.35a–d). This

observation suggests the formation of different SOA species with higher relative abundance of

aCH when the nitrate radical is used. This is also supported by the horizontal trajectory in the

van Krevelen diagram (no decrease in H:C) (Fig. 4.4d). No clear difference in the composition

of oxygenated FGs (except organonitrate) is observed between aging with the hydroxyl and

nitrate radicals. However, when the nitrate radical is used, the O:C ratio increases to lower

levels and reaches a plateau faster (Fig. 4.8e–f; also true for the CC OM). This observation

is consistent with the fact that the nitrate radical is produced with a single injection but the

hydroxyl radical is generated continuously throughout the aging. It is observed that most

prominent changes in the FG composition for both oxidants occur in the first hour of aging

when the OM mass changes the most (Fig A.35), while small changes are observed toward the

end of aging. Looking at the absolute abundances of functional groups, we observe that the

mass concentrations of all FGs including aCH and aCOH increase during the course of aging

(Fig A.35) and it is the different rate of their increase that changes their relative abundance as

shown in Fig. 4.8.

We observe for the CC experiments a different composition of FGs emerging after the start of

aging that also evolves differently as aging continues. Like for the WB experiments, the aCH

relative abundance decreases drastically with aging (Fig. 4.8c), while its absolute concentration

increases only slightly with aging (Fig. A.35). The decrease in the aCH relative abundance

is, however, less prominent when the nitrate radical is used (Fig. 4.8d) as also supported

by the lower decrease in the H:C shown the van Krevelen plots (Fig. 4.4h–i). Unlike the WB

experiments, the relative abundance of the aCOH group increases slightly with aging when

using both oxidants (Fig. 4.8c–d). The relative abundances of naCO and COOH show more

complex behaviors. The relative abundance of naCO increases sharply and naCO becomes the

major FG with the start of aging for both oxidant but decreases slightly after continued aging

(Fig. 4.8c–d). The relative abundance of COOH decreases initially (Fig. 4.8c), however, after

about one hour into the aging process (earlier with the nitrate radical), when there is no more

significant OM enhancement, the COOH relative abundance starts to increase gradually. This

observation is consistent with the ripening phenomenon (Wang et al., 2018b) in which the

composition of the SOA keeps changing and becomes more oxidized, while the change in OM

mass is minimal. This phenomenon is also observed in the L-shaped oxidation trajectories of

CC OM in the van Krevelen plot of Figs. 4.4e–i for both oxidants.

To summarize, the interpolated FG compositions are supported by the van Krevelen trajecto-

ries, but provide insight into the oxidation pathways that cannot be independently obtained

from the van Krevelen plots (e.g., several combinations of FGs can produce similar slopes).

For two CC experiments, negative concentrations of COOH are predicted (Fig A.36e–f). These

unphysical values are believed to resulted due to uncertainties of PLSR models and quantifi-
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cation uncertainties for the COOH group from the MIR peak fitting. The predicted trends,

however, are still informative.
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Figure 4.8 – Time series of normalized concentration of functional groups interpolated us-
ing AMS mass spectra (a–d) and time series of O:C ratios calculated from the interpolated
functional groups (e–h). An example for each source (CC and WB) and oxidant (OH and NO3)
has been shown. The time zero indicates the start of aging (UV lights turned on or oxidant
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4.4 Concluding remarks

By comparing MIR and AMS measurements for a series of environmental chamber exper-

iments, we found that the four MIR functional groups (FGs) highlighted by the VIP scores

method (i.e., aCH, aCOH, COOH, and naCO) explain the OM mass, OM:OC, H:C, and O:C in

good agreement with AMS measurements for the wood burning (WB) and coal combustion

(CC) aerosols.

By using univariate and multivariate methods, we found that several small (low m/z) and

large (m/z > 100 and generally source-specific) AMS fragment ions are informative about the

FG composition of primary and secondary OMs. The heavy, source dependent fragments

identified in the aged wood burning aerosols can potentially be used to identify and quantify

the secondary biomass burning OM in the atmosphere.

The multivariate analysis indicates that when OMs with different proportions of oxygenated

FGs (i.e., COOH, COH, and naCO) are fragmented in the AMS, they produce different propor-

tions of the major oxygenated fragments (i.e., CO2
+, CHO+, C2H3O+). A multivariate method

was used to extract the high-time-resolution FG information from the AMS spectra to better

understand the evolution of the OM composition during the course of aging. The results

suggest the formation of moderately oxygenated FGs (e.g., naCO) soon after the start of aging

and the transformation of moderately oxygenated FGs to the more oxygenated FG, COOH,
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with continued aging.
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Abstract Primary emissions from wood and pellet stoves were aged in an atmospheric sim-

ulation chamber. Both daytime and nighttime conditions were simulated. Online AMS and

offline FTIR measurements agreed reasonably well in terms of the organic aerosol (OA) mass

concentration, OA:OC trends, and concentrations of biomass burning markers – lignin-like

compounds and anhydrosugars. Around 15 % of the primary organic aerosol (POA) mass

underwent some form of transformation (evaporation or oxidation) during the daytime ox-

idation at relatively short timescales (equivalent to 6–10 hours of atmospheric exposure)

and to a lesser extent during the nighttime oxidation. The decay of certain semi-volatile

(e.g., levoglucosan) and less volatile (e.g., lignin-like) POA species was substantial during

aging, highlighting the role of gas-particle partitioning and heterogeneous reactions with

oxidants. Lignin-like compounds were observed to degrade efficiently under both daytime

and nighttime conditions, whereas anhydrosugars degraded efficiently only under daytime

conditions. Among the marker mass fragments of primary biomass burning OA (bbPOA), large

ones (higher m/z) were relatively more stable with regard to aging. The AMS and FTIR spectra

of the formed biomass burning secondary OA (bbSOA) became more oxidized with continued

aging and resembled those of aged organic aerosols in the atmosphere. The bbSOA formed

during the daytime oxidation was dominated by acid contributions. Organonitrates, on the

other hand, appeared to be an important product of nighttime reactions in both humid and

dry conditions.

5.1 Introduction

Fine particulate matter (PM) in the atmosphere impacts climate and visibility (McFiggans et al.,

2004; Hallquist et al., 2009) and is known to cause respiratory and cardiovascular diseases,

leading to premature deaths (Pope et al., 2009; Shiraiwa et al., 2017b; Burnett et al., 2018). A

major fraction (up to 90 %) of fine PM is organic. Organic aerosol (OA) has various sources

and formation mechanisms in the atmosphere, resulting in its complex chemical composition

(Russell, 2003; Kanakidou et al., 2005; Hallquist et al., 2009). Primary organic aerosols (POA)

are emitted directly from their sources, whereas secondary organic aerosols (SOA) are formed

through chemical reactions and condensation of volatile, intermediate-volatility, and semi-

volatile organic compounds (VOCs, IVOCs, and SVOCs, respectively) (Seinfeld and Pandis,

2016). Oxygenated OA is often the most important part of atmospheric OA, highlighting the

role of atmospheric chemistry and aging for OA (Zhang et al., 2007) as particles and gases are

exposed to oxidants for days in the atmosphere (Wang et al., 2018b). Different types of aging

have been proposed and investigated in previous studies: homogeneous gas-phase oxidation

(Donahue et al., 2012), oligomerization (Kalberer et al., 2006), heterogeneous reactions with

oxidants (Robinson et al., 2006a; George et al., 2008), and photolysis (Bateman et al., 2011;

Henry and Donahue, 2012). Homogeneous gas-phase reactions are generally believed to

dominate (Henry and Donahue, 2012), while other mechanisms may be important under

different conditions (e.g., Hearn et al., 2005; Hung et al., 2005; Nah et al., 2014).

Biomass burning (BB) contributes significantly to atmospheric primary and secondary OA
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(POA and SOA) (Puxbaum et al., 2007; Qi et al., 2019; Lanz et al., 2010) and black carbon

(BC) (Bond et al., 2013). BB is expected to have an increasing contribution to PM2.5 in the

foreseeable future (Ford et al., 2018). Primary biomass burning OA (bbPOA) and the secondary

OA (bbSOA) formed using hydroxyl and nitrate radicals have been investigated in several

environmental chamber studies (Johansson et al., 2004; Bäfver et al., 2011; Alves et al., 2011;

Hennigan et al., 2011; Tiitta et al., 2016; Bruns et al., 2015; Bertrand et al., 2017, 2018a; Yazdani

et al., 2021a). These studies highlighted a net enhancement in the OA concentration with

aging and different chemical compositions for bbSOA formed using different oxidants. In

order to estimate the contribution of bbPOA after aging in the chamber experiments or in field

measurements, it has often been assumed implicitly or explicitly to be stable during the course

of aging (e.g., Robinson et al., 2007; Grieshop et al., 2009; Tiitta et al., 2016; Kodros et al., 2020),

neglecting the effects of heterogeneous reactions, photolysis, and gas-particle partitioning of

its component. This is while several studies have reported significant degradation of bbPOA

markers like anhydrosugars and methoxyphenols (Hennigan et al., 2010, 2011; Slade and Knopf,

2013; Bertrand et al., 2018a; Yazdani et al., 2021c). These compounds constitute a significant

fraction (up to 50 %) of the bbPOA mass (Fine et al., 2002; Bertrand et al., 2018a; Yazdani

et al., 2021c) and their chemical processing can impact the bbPOA mass and composition

significantly. Nonetheless, the overall change in the bbPOA mass and composition during the

course of aging with different oxidants is not well understood.

Recent efforts using the volatility basis set (VBS; Donahue et al., 2006) address the volatility

and gas-particle partitioning of POA including primary bbOA in simulations (Robinson et al.,

2007; Theodoritsi et al., 2020). The chemical processing of bbPOA remains uncertain and

heterogeneous reactions of bbOA compounds are not included in most models. Moreover,

chemical transport models (CTMs) have difficulties reproducing the OA in areas or periods

affected by fires (Fountoukis et al., 2014; Theodoritsi et al., 2020).

Aerosol mass spectrometry (AMS) and mid-infrared (MIR) spectroscopy are two methods

used in this study that provide information about the bulk composition of the OA (Nozière

et al., 2015) and certain bbOA markers (Schneider et al., 2006; Yazdani et al., 2021c). AMS has

some known limitations due to the extensive molecule fragmentation and the variability of

particle collection efficiency (Canagaratna et al., 2007; Faber et al., 2017; Kumar et al., 2018).

Fourier transform infrared spectroscopy (FTIR) is a non-destructive method that measures the

abundance of certain functional groups but with a limited temporal resolution. Functional

group abundances are then used to estimate the OA mass concentration and elemental ratios

(Coury and Dillner, 2008; Ruthenburg et al., 2014; Reggente et al., 2016; Boris et al., 2019). A

recent study also shows the ability of FTIR to quantify bbOA marker molecules (Yazdani et al.,

2021c).

In this work, primary biomass burning emissions are injected into an environmental sim-

ulation chamber and aged. AMS and FTIR are used in tandem to better understand and

quantify the evolution of primary and aged bbOA during the chemical aging. We adopt a

particle wall loss correction method based on AMS organic measurements and develop a
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procedure to quantify the overall changes in the composition of primary and aged bbOA. The

results of this study allow us to evaluate the stability of bbPOA (including its markers) and the

importance of other aging mechanisms compared to the homogeneous gas-phase oxidation

under atmospherically relevant conditions.

5.2 Methods

5.2.1 Experimental set-up and procedure

Primary emissions from common wood and pellet stoves were diluted and injected for 30–40

minutes into a 10 m3 Teflon atmospheric simulation chamber located at the Foundation for

Research and Technology-Hellas (FORTH), Greece. Olive wood logs with bark and ENplus®

A1 pellets were used as fuel. Details of the chamber and combustion facilities have been

discussed elsewhere (Kaltsonoudis et al., 2017; Kodros et al., 2020). The fuels and stoves used

in this work are commonly used in the region. Primary emissions were held in the chamber

after the injection for around two hours to ensure proper mixing and to characterize chamber

wall losses.

Nine experiments were conducted in this work. For the three reference experiments (Table

5.1), emissions were held in the dark chamber without addition of any oxidants. For the two

experiments simulating the daytime aging, reactions were initiated by turning on UV lights

(J NO2 = 0.59 min−1) for 2 h and the subsequent generation of the hydroxyl radical via ozone

photolysis in the presence of water vapor. For these experiments the average RH was roughly

50 % and the average OH concentration was (3–5)×106 molec cm−3. This corresponds to

6–10 h of aging in the atmosphere assuming an average OH concentration of 106 molec cm−3

(Seinfeld and Pandis, 2016). The OH radical concentration was estimated using a proton-

transfer-reaction mass spectrometer (PTRMS) monitoring the concentration of 1-butanol-d9

(Barmet et al., 2012). The four nocturnal aging experiments were conducted under two

different RH regimes: dry (8–10 %) and humid (60–80 %). For these experiments, roughly 100

ppb of NO2 was injected into the chamber before the injection of primary biomass burning

emissions. Around two hours after the injection of primary emissions, aging was initiated by

injection of O3 (roughly 100 ppb) and production of the NO3 radical via the reaction of ozone

with NO2.

5.2.2 On- and off-line PM measurements

The composition of non-refractory aerosols in the chamber was measured by a HR-ToF AMS

(Aerodyne Research Inc.) operating in V mode with a 1µm inlet aerodynamic lens. For certain

experiments, AMS also measured the composition of chamber aerosols after being passed

through a thermodenuder to study their volatility. A scanning mobility particle sizer (classifier

model 3080, DMA model 3081, CPC model 3787, TSI) was used with adjusted flow rates

to measure particle number size distribution in the 15–700 nm range. Primary and aged
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Table 5.1 – Description of experiments and initial O3 and NO2 concentrations.

Experiment Type Fuel NO2 (ppb) O3 (ppb) RH (%)
Exp. 1 Reference (no oxidant) Wood – – 10
Exp. 2 Reference (no oxidant) Pellet – – 10
Exp. 3 Reference (no oxidant) Wood – – 50
Exp. 4 UV + 30 pbb SO2 Wood – – 50
Exp. 5 UV + 80 pbb SO2 Wood – – 50
Exp. 6 Dark and dry Wood 100 100 10
Exp. 7 Dark and dry Pellet 100 100 10
Exp. 8 Dark and humid Wood 100 100 80
Exp. 9 Dark and humid Pellet 100 100 60

PM1 were collected on 47 mm PTFE filters (Pall corporation, 1 cm diameter of the collection

surface). Sampling on PTFE filters was performed at a flow rate of 8 L min−1 for 20 min using

a flow system composed of a silica gel denuder to minimize aerosol water and a sharp-cut-

off cyclone. Filters were immediately stored in filter petri dishes at 253 K after sampling to

minimize volatilization of aerosols and chemical reactions. Filters were analyzed using a

Bruker Vertex 80 FTIR instrument equipped with an α deuterated lanthanum alanine doped

triglycine sulfate (DLaTGS) detector and a custom-made filter mini-chamber to minimize

water vapor and CO2 interferences. The spectra were obtained at a resolution of 4 cm−1 and

were averaged over 128 scans.

5.2.3 Data analysis

Initial spectral post-processing

The AMS raw signal was post-processed using the AMS software toolkits SeQUential Igor

data RetRiEvaL (SQUIRREL) v1.57 and the Peak Integration by Key Analysis (PIKA) v1.16. The

elemental and OA:OC ratios were calculated using the approach of Canagaratna et al. (2015).

Organic nitrate concentrations were calculated based on NO+ and NO2
+ peak ratios in the

AMS mass spectra following the approach of Farmer et al. (2010).

Baseline correction was performed on the FTIR spectra to eliminate the contribution of light

scattering from the spectra (Russo et al., 2014; Parks et al., 2019) using smoothing splines.

After baseline correction, blank subtraction was done to recover some of the overlapping

features with PTFE peaks (e.g., levoglucosan fingerprint bands 860–1050 cm−1). A multiple

peak-fitting algorithm was applied on the FTIR spectra to estimate abundances of alcohol

(referred to as aCOH), carboxylic acid (COOH), alkane (aCH), and non-acid carbonyl (naCO)

groups (Takahama et al., 2013). The ratio of fingerprint absorbances related to levoglucosan

and similar anhydrosugars (multiple peaks in the 860–1050 cm−1 range; Yazdani et al., 2021c)

and lignin-like compounds (single sharp peak at 1515 cm−1) were compared between primary

and aged aerosols to estimate the diminution of these two biomass burning markers with
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aging. Absolute levoglucosan concentrations were estimated using the mentioned finger-

print absorbances and the absorption coefficients calculated from aerosolized levoglucosan

standards.

Wall loss correction and subsequent analysis

Particle wall loss correction was carried out assuming a first-order, time independent wall loss

rate for the OA mass concentration (Pathak et al., 2007):

lnCOA(t ) =−kOAt + lnCOA(0), (5.1)

where kOA is the wall loss rate constant and COA is the AMS OA mass concentration. The rate

constant for each experiment was calculated using OA concentrations from 0.5–1 h after the

injection of primary emissions into the chamber (to ensure proper mixing) up to the start of

chemical aging or until the end for reference experiments . After calculating wall loss rate

constants, wall-loss-corrected concentrations of individual AMS fragments were calculated by

C cor
i (t ) =C obs

i (t )+kOA

∫ t

0
C obs

i (t )d t , (5.2)

where C obs
i (t ) is the measured concentration of fragment i at time t , and C cor

i (t ) is its wall-loss-

corrected concentration at time t . The fragments that fall below their initial concentration

indicate POA transformation. The difference between the wall-loss corrected and initial

concentrations of diminishing fragments (those with C cor
i (t )−C cor

i (0) < 0) was used to quantify

the extent of POA transformation at each time after the start of aging:∑
(C cor

i (t )−C cor
i (0))

CPOA(0)
. (5.3)

The apparent contribution of the fresh POA to aged OA spectra (FTIR or AMS) was calculated

using Eq. (5.4) assuming no evaporation, condensation, or heterogeneous reactions,

sPOA(t ) = sPOA(0)exp(−kOAt ), (5.4)

where sPOA(t ) is the apparent POA spectrum at time t , and sPOA(0) is the POA spectrum at the

start of aging. The residual spectrum at time t , sres(0), was then calculated by subtracting the

apparent POA spectrum at time t from that of the aged OA (Appendix A.4.1):

sres(t ) = sOA(t )− sPOA(t ). (5.5)

The residual spectrum is composed of positive and negative elements. The positive elements

indicate the SOA species or oxidation products of fresh POA (e.g., due to heterogeneous oxidant

reactions). The negative elements, on the other hand, indicate the loss of fresh POA species.
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Wall loss rates calculated from AMS OA (kO A) were compared to those calculated from AMS

sulfate concentrations kSO4 and the size-resolved coagulation-corrected rates from SMPS (kc )

(Wang et al., 2018a) for consistency check. The average kc values are reported in the Table 5.2

based on the size distribution of organic particles.

Dimension reduction of AMS spectra

We also used principal component analysis (PCA; Hotelling, 1933) to simplify the high-

dimensional, inter-correlated AMS spectra. This allowed us to better understand the evolution

of bbOA during the course of aging in the chamber and to compare it to atmospheric aerosols.

PCA calculations were performed on the normalized and uncentered AMS spectra (by total

AMS OA concentration) from the chamber experiments (1600 spectra with 800 fragments)

using singular value decomposition (Abdi and Williams, 2010). Thereafter, positive matrix

factorization (PMF) factors for atmospheric OA from previous studies (e.g., Aiken et al., 2009)

were projected onto the PC space for comparison.

5.3 Results

The wall loss rates calculated from the AMS OA are generally close to those calculated from

the AMS sulfate or the size-resolved coagulation-corrected rates from SMPS (Table 5.2). The

wall loss rates based on AMS OA are able to explain well the overall variations in the OA

concentration for the reference experiments and before the initiation of aging for other experi-

ments (Figs. A.38a and A.39a). Small but systematic differences between loss rates of different

fragments was observed (Fig. 5.1a) that is investigated further in Sect. 5.3.1. The decrease

in the OA concentration due to wall losses estimated by FTIR peak fitting for the reference

experiments closely matched (less than 10 % difference) that by AMS. The latter supports the

wall loss rate constants derived from AMS OA. In general, a reasonable agreement observed

between OA mass concentrations estimated by AMS and FTIR (Appendix A.4.2).

5.3.1 Evolution of primary biomass burning aerosols

The chemical composition of primary wood burning (WB) aerosols has been characterized

elsewhere (e.g., Bertrand et al., 2017; Yazdani et al., 2021c) and is only treated here briefly. The

FTIR spectra of primary aerosols of WB largely resemble that of wood constituents such as

lignin (Yazdani et al., 2021c). The aCOH FG is additionally very prominent for these aerosols

and signatures of levoglucosan are observed in their FTIR spectra (Fig. A.41). The aCH peaks

are more prominent in the FTIR spectra of WB aerosols of this work compared to those of

Yazdani et al. (2021c) likely due to the combustion of wood with bark. Primary pellet burning

(PB) aerosols also have similar FTIR spectra to that of wood (Pandey, 1999) and have higher

relative concentrations of aCOH and levoglucosan compared to WB aerosols (Fig. A.41). For

different fuels (wood and pellet), different ratios of lignin-related fragments (e.g., C8H9O2
+,
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Table 5.2 – Summary of wall loss rates for each experiment. The ratio of certain markers before
aging (first PTFE filter) and after aging (second PTFE filter) are compared to that of apparent
POA concentration.

Reference (no oxidant) UV Dark(NO3)anddry Dark (NO3) and humid
Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6b Exp. 7 Exp. 8 Exp. 9

AMS OA wall loss rate, kOA (h−1) 0.057 0.063 0.082 0.103 0.099 0.071 0.088 0.112 0.097
AMS SO4 wall loss rate, kSO4 (h−1) 0.052 0.037 0.074 0.087 0.093 0.063 0.077 0.084 0.076
SMPS wall loss rate kc (h−1) 0.10±0.06 0.07±0.03 0.10±0.06 0.10±0.05 0.10±0.03 0.07±0.02 0.07±0.02 0.12±0.04 0.09±0.05
POA (CPOA(t )/CPOA(0)) 0.90 0.85 0.73 0.63 0.68 0.77 0.73 0.64 0.68
Levoglucosan FTIR 0.88 0.83 0.54 0.27 0.40 – 0.88 0.35 0.65
C2H4O2

+ 0.88 0.91 0.52 0.27 0.36 0.90 0.78 0.40 0.54
C3H5O2

+ 0.96 0.91 0.67 0.36 0.45 0.90 0.79 0.51 0.58
Lignin FTIR 1.01 0.83 0.84 0.10 0.24 – 0.89 0.34 0.10
C8H9O2

+ 0.94 0.79 0.73 0.13 0.18 0.65 0.69 0.20 0.25
C9H11O3

+ 0.95 0.70 0.78 0.10 0.11 0.53 0.68 0.18 0.50
C10H13O3

+ 0.94 0.82 0.77 0.40 0.56 0.90 0.72 0.48 0.50
aCH FTIRa >1 >1 >1 0.50 0.45 – 0.45 >1 >1
C4H9

+ 0.91 0.83 0.75 0.35 0.38 0.75 0.60 0.59 0.50
C5H11

+ 0.90 0.84 0.75 0.35 0.48 0.80 0.55 0.60 0.52

a Approximate values by which FTIR POA spectra should be scaled to avoid inverted local CH peaks when
subtracting from aged OA spectra.
b FTIR measurements were discarded for Exp. 6 due to the unusually low OA mass sampled on the filter.

C9H11O3
+, C10H13O3

+; Tolbert and Ragauskas, 2017; Bertrand et al., 2017; Li et al., 2012) are

observed, reflecting different composition of the fuels. We also observe that the relative

abundance of lignin- and levoglucosan-related fragments and their FTIR absorbances vary

among different experiments with the same fuel probably due to slightly different burning

conditions.

We focus the rest of this section on the evolution of primary bbOA with aging. For this purpose,

all fragments were corrected for wall losses and normalized by their concentrations at the

start of aging. The trends were observed to be similar within each aging scenario regardless of

the fuel burned. An experiment representing each category is shown in Fig. 5.1. The increase

in the normalized concentration of fragments (usually oxygenated fragments) indicates the

appearance of new species, for example, through SOA formation. A decrease in the normalized

concentrations suggests that certain species diminish with aging either due to heterogeneous

reactions or evaporation. As can be seen from Fig. 5.1a, in a reference experiments (Exp. 38),

fragments follow the general trend of the total OA with minor deviations. This observation

suggests that the composition of OA does not change noticeably in the absence of oxidants.

The same is concluded from the similar FTIR spectral profiles of OA in the beginning and at

the end of the reference experiments (Fig. 5.2a). A slight divergence, however, is observed

in the time series after around two hours of leaving aerosols in the chamber (Fig. 5.1a). This

diverging trend indicates minor differences in the effective loss rates of different compositions

probably related to gas-particle partitioning of certain semi-volatile species. The fragment

attributed to levoglucosan (and anhydrosugars) fragmentation (C2H4O2
+) and light CxHy

+

fragments (e.g., CH2
+, C2H2

+, C4H6
+) appear to have a higher-than-average loss rates, while

the fragment attributed to lignin-related compounds (C9H11O3
+) appears to diminish less.

Similar trends are observed for all WB experiments during the period before the start of aging,

implying slight but systematic differences between the loss rates of different OA species.

94



5.3. Results

0

2

4

6

−2 0 2 4
Relative Time (hrs)

N
or

m
al

ize
d 

C
on

ce
nt

ra
tio

n
0

1

2

3

4

5

−2 0 2 4
Relative Time (hrs)

No
rm

al
ize

d 
Co

nc
en

tra
tio

n

(b) UV

Lignin (C9H11O3
+)

Levoglucosan (C2H4O2
+)

Hydrocarbon (C4H9
+)

Total OA

Acid (CO2
+)

0.8

0.9

1.0

1.1

1.2

−2 0 2 4
Relative Time (hrs)

N
or

m
al

ize
d 

C
on

ce
nt

ra
tio

n

(c) Dark  and dry (d) Dark and humid

0

2

4

6

−2 0 2 4
Relative Time (hrs)

No
rm

al
ize

d 
Co

nc
en

tra
tio

n

CO2
+

(a) Reference

Other fragments

0

2

4

6

−2 0 2 4
Relative Time (hrs)

N
or

m
al

ize
d 

C
on

ce
nt

ra
tio

n

(c) Dark and dry

0

1

2

3

4

5

−2 0 2 4
Relative Time (h)

N
or

m
al

ize
d 

C
on

ce
nt

ra
tio

n

Divergence

Figure 5.1 – Wall-loss-corrected and normalized concentrations of individual fragments ions
in different aging scenarios. Only mass fragments contributing more than 0.25 % to total OA
mass concentration are shown. Panels a–d represent Exp. 1, 4,6, and 8, respectively. Time zero
indicates the start of aging.

As soon as the aging starts in the UV experiments (e.g., Exp. 4; Fig. 5.1b), several oxygenated

fragment ions increase in concentration, among those, CO2
+ has the most prominent growth.

At the same time, the wall-loss-corrected concentrations of several mass fragments decrease by

more than 50 % (Fig. 5.1b). Among these fragments, C9H11O3
+, attributed to lignin-like com-

pounds, and C2H4O2
+, related to levoglucosan, decrease the most significantly. The C10H13O3

+

fragment – a larger and less abundant fragment attributed to lignin-like compounds– appears

to be more stable with regards to aging (Fig. A.42). The FTIR signatures of levoglucosan

and lignin-like compounds also decrease significantly with aging with UV (Table 5.2), caus-

ing negative peaks in the residual spectra (Fig. 5.2b). The extent of the diminution for the

mentioned species is significantly higher than what can be attributed to wall loss rate uncer-

tainties (standard deviation = 0.016 h−1 across all experiments). In addition, the diminution

is captured in all UV experiments by both AMS and FTIR, suggesting the insubstantial role

of sampling artifacts for FTIR and variable collection efficiency (CE) for AMS. In addition to

the mentioned fragments, several non-oxygenated fragments with the CxHy
+ formula, related

to hydrocarbons and aromatics, are also lost with aging (e.g., C4H9
+, C5H11

+, C6H6
+, C8H7

+,

and C8H9
+; Table 5.2). A locally inverted aCH peaks in the FTIR residual spectra of Exp. 4 (Fig.

5.2b) supports the hypothesis that hydrocarbons are lost with aging. The aforementioned

observations suggest a significant change in certain POA components during aging with UV

lights. There are also fragments (with single oxygen like C3H4O+ or related to aromatics like

C7H7
+) that increase in concentration briefly after the start of aging (around 30 min) and fall
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below their initial concentration with continued aging. These fragments might indicate the

moderately oxygenated intermediate species or those that partition to the particle phase with

increased OA loading but their decay becomes more apparent with continued aging.

When emissions are aged with the nitrate radical in dry conditions (e.g., Exp. 6; Fig. 5.1c),

the CO2
+ fragment has the highest increase. Contrary to the UV experiments, the mass

fragments related to levoglucosan fragmentation do not diminish more than total OA. The

same is inferred from the FTIR spectra (Table 5.2). This implies that levoglucosan is relatively

less reactive toward the nitrate radical. Only few fragments decrease more than average,

among those, the lignin-related fragments, C9H11O3
+, and C8H9O2

+, decay the most. When

emissions are aged with the nitrate radical oxidation in humid conditions (e.g., Exp. 8; Fig.

5.1d), CO2
+ has the highest increase as in other cases. However, like the UV experiments,

several mass fragments decrease more than what can be attributed to wall losses. The majority

of the diminishing fragments are hydrocarbons (CxHy
+) or the fragments related to lignin-like

compounds. The same is observed from the FTIR spectra (Table 5.2). We observe that the

lignin- and levoglucosan-related fragments decay more prominently in humid compared to

dry conditions. However, the decreasing trend for the levoglucosan-related fragment is also

observed before the initiation of aging and it is not affected by it. This observation suggests

that the nitrate radical reactions are not responsible for the decay of levoglucosan. In this case,

other factors such as acid catalyzed levoglucosan reactions in the aqueous phase (Holmes and

Petrucci, 2006) or a more efficient removal of gas-phase levoglucosan by chamber walls might

play a role.

Our analysis shows that in the reference experiments around only up to 2 % of POA mass

is transformed after leaving the emissions in the chamber for around 4 h. This value is

considered as a baseline for other aging scenarios. By aging with UV lights, 10–15 % of total

POA mass undergoes some form of transformation (oxidation and/or evaporation) (Fig. A.43).

Aging with the nitrate radical in dry conditions results in negligible POA transformation,

close to what observed in the reference experiments. Aging with the nitrate radical in humid

conditions, however, results in a slightly higher POA transformation (approximately 5 %). The

values obtained using our method should be considered as a lower bound estimate for the

chemical processing of primary bbOA. This is because the increase in the concentration of

some oxygenated fragments owing to SOA condensation might outweigh the decay for the

same fragments caused by POA oxidation or evaporation. This can especially render the loss

of light oxygenated fragments that are not specific to one species undetectable by the method.

For instance in a UV experiment (Exp. 4), the most important levoglucosan-marker fragments

in the AMS spectra (C2H4O2
+, and C3H5O2

+), which decrease the most significantly with aging,

constitute only around 4 % of POA mass at the start of aging. Unlike these fragments, CHO+,

which is also produced in considerable amounts by levoglucosan fragmentation does not

diminish during the course of aging due to the effect of SOA condensation on this fragment.

In this experiment, we estimate that levoglucosan constitutes around 20 % of POA mass at

the start of aging using FTIR. This value is consistent with previous studies determining the

contribution of levoglucosan to primary bbOA (Bertrand et al., 2018a). We also estimate
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that the loss of levoglucosan alone during the course of aging is equivalent to more than 10

% of POA mass. The inverted aCH in the FTIR residual spectrum (Fig. 5.2c ) accounts for

around 4 % of POA mass (10 % aCH mass). The decay of lignin-like compounds, however, was

not quantified due to the lack of absorption coefficient and knowledge about their detailed

molecular structure.

Gas-particle partitioning, heterogeneous oxidant reactions, and photolysis can play a role in

the diminution of the mentioned species in the particle phase. Bertrand et al. (2018b) proposed

the prominent role of gas-particle partitioning and the subsequent vapor loss to the cham-

ber walls for the depletion of levoglucosan. Comparing the trends of levoglucosan-related

fragments between reference and UV experiments of this work, the reaction of levoglucosan

with the hydroxyl radical appears to be the dominant factor for its depletion in the particle

phase. For semi-volatile compounds like levoglucosan, particle-phase depletion can be the

result of gas-phase depletion and the subsequent gas-particle partitioning. However, the

fast diminution of fragments that are produced by less volatile species (e.g., heavy lignin-like

compounds) highlights the role of photolysis and heterogeneous reactions. In addition, a

similar fast depletion of CxHy
+ fragments merely due to heterogeneous reactions with the

hydroxyl radical was also reported by George et al. (2008).

The FTIR signature (sharp peak at 1515 cm−1) used for identification of lignin-like compounds

in this work has also been observed in the FTIR spectra of the HUmic LIke Substance (HULIS)

isolated from aqueous extracts of atmospheric aerosols (Graber and Rudich, 2006). As dis-

cussed by Yazdani et al. (2021c), this peak can also be produced by small and relatively volatile

molecules with a similar aromatic ring substitution to lignin (e.g., methoxyphenols and sub-

stituted syringols). The C9H11O3
+ and C10H13O3

+ fragments in the AMS spectra might not

be exclusive to non-volatile lignin and can be produced by smaller, more volatile molecules

in bbOA resulting from lignin pyrolysis. There are, however, three observations that suggest

the lignin-related fragments in this work can be attributed to compounds with at a lower

volatility than levoglucosan that exist predominantly in the particle phase under the condi-

tions of the experiments (e.g., OA loading and temperature). First, the thermodenuder data

suggest the lower volatility of compounds producing C9H11O3
+ and C10H13O3

+ compared to

species producing C2H4O2
+, mainly levoglucosan (Fig. A.46). These compounds, however,

appear to evaporate at higher temperatures and are still categorized as SVOC. Second, the

lower loss rate of C9H11O3
+ in the absence of oxidants compared to other fragments including

C2H4O2
+ (Fig. A.44) suggests its lower volatility in that its concentration is mainly affected by

particle-phase wall losses compared to particle- and gas-phase wall losses for levoglucosan.

Third, in two separate WB experiments in dry and humid conditions, ammonium sulfate seeds

(approximately 40 µg m−3) were injected into the chamber. The increase in the ammonium

sulfate concentration in both dry and humid conditions resulted in an increase in the total

OA concentration. This increase, however, was not uniform across all organic fragments,

suggesting different partitioning behavior of different species: The levoglucosan-marker frag-

ment (C2H4O2
+) showed a significant increase and the lignin-related fragment, C9H11O3

+

showed no dependence on the injection (Fig. A.45). The latter also suggests that the lignin-like
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compounds producing C9H11O3
+ are predominantly present in the particle phase under the

conditions of the experiments as a significant increase in absorbing mass or surface area

has no effect on them. These results highlight the role heterogeneous reactions for these

compounds.

5.3.2 Characterization of oxidized biomass burning aerosols

In this section, the residual FTIR and AMS spectra are used to characterize the oxidized OA

formed during the course of aging, including SOA and aged POA. Fig. 5.3 shows the average

residual spectra for each aging scenario, calculated for approximately 3–4 hours after the

initiation of aging concurrent with the sampling on the second PTFE filters. As expected, in

the absence of UV lights or oxidants, no significant change in the wall-loss corrected AMS

and FTIR spectra is observed from the beginning to the end of experiments. Thus, fragment

concentrations or absorbances in the residual AMS and FTIR spectra, respectively, are noisy

and close-to-zero (Figs. 5.2a and 5.3a), implying negligible emergence of new species.
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Figure 5.2 – FTIR spectra of aged aerosols (red), their apparent primary fraction (green), and
the residual OA (black) for different aging experiments. Panels a–d represent Exp. 1, 4,7, and
8, respectively. Normalized functional group composition from peak fitting is shown for the
residual spectra. Ammonium subtracted spectra for panels b and c are shown in Fig. A.47.

When emissions are aged with UV lights, the OA concentration and composition change signif-

icantly, allowing us to estimate meaningful residual spectra by subtracting wall loss-corrected

POA spectra from those of aged OA. In this procedure, we obtained positive values for the

majority of FTIR absorbances and AMS fragment concentrations, suggesting a significant

formation of new oxidized species. However, we also calculated negative values for some

elements (e.g., levoglucosan, hydrocarbons, and lignin-like compounds) related to the decay

98



5.3. Results

0.0

0.1

0.2

12 38 55 67 77 87 96
m/z (AMU)

No
rm

al
ize

d 
in

te
ns

ity

0.00

0.05

0.10

0.15

0.20

0.25

12 38 55 67 77 87 96
m/z (AMU)

No
rm

al
ize

d 
in

te
ns

ity

CO+ CO2
+

−0.05

0.00

0.05

12 38 55 67 77 87 96m/z (AMU)

No
rm

al
ize

d 
in

te
ns

ity

CHO2
+

H2O+ CHO+

C2H3O+

0.00

0.02

0.04

0.06

0.08

12 38 55 67 77 87 96
m/z (AMU)

No
rm

al
ize

d 
in

te
ns

ity
C3H3O+

C4H3O3
+

CO+
CO2

+

C3H3O+

H2O+

CHO+

C2H3O+

C3HO2
+

CH3
+

C3H5O+

C4H5O2
+

C3H3
+

CH3O+

(a) Reference

(c) Dark and dry

(b) UV

(d) Dark and humid

C2H3O2
+
C3H3O2

+

CO+ CO2
+

CHO2
+

H2O+ CHO+

C2H3O+

C4H3O2
+

C2H3O2
+
C3HO2

+

0.00

0.02

0.04

0.06

0.08

12 38 55 67 77 87 96
m/z (AMU)

No
rm

al
ize

d 
in

te
ns

ity

0.00

0.02

0.04

0.06

0.08

12 38 55 67 77 87 96
m/z (AMU)

No
rm

al
ize

d 
in

te
ns

ity

Figure 5.3 – Normalized AMS residual spectra of for biomass burning emissions aged with
UV lights and the nitrate radical in dry and humid conditions. Spectra are averaged over
experiments of the same aging category and error bars show the range across the experiments.

of fresh POA species. Since POA transformation was discussed in the previous section, we

only consider the positive elements of the residual spectra here. As can be seen from Fig.

5.3b, the normalized residual spectrum in the UV experiments is mainly composed of CO2
+

(and the fragments directly estimated from it: CO+, H2O+, and OH+), suggesting the abun-

dance of carboxylic acids (Aiken et al., 2007). Other major oxygenated fragments that are

prominent in primary bbOA (CHO+ and C2H3O+) appear to be weaker in this spectrum. A

few heavier mass fragments with two or more oxygen atoms (e.g., CHO2
+, C2H3O2

+, C4H5O2
+,

and C4H3O3
+) have non-zero values and can also be indicators of acids (Lambe et al., 2012)

and polyfunctional organics. Although the concentrations of these fragments are considerably

lower compared to that of CO2
+, they are still statistically greater than the uncertainties across

the experiments (Fig. 5.3b). The sharp low-frequency carbonyl peak in the residual FTIR

spectrum (1700 cm−1) besides the broad OH peak of dimerized acids (2400–3400 cm−1) are

other indicators of carboxylic acids in the residual OA (Fig. 5.2b). The latter, which is partially

masked by the ammonium NH stretching peaks, becomes more prominent upon ammonium

peaks subtraction (Fig. A.47a). Although the relative contributions of SOA and oxidized POA

to the residual spectra are not clear, the formation of carboxylic acids via the oxidation of

major wood burning VOCs and the abundance of carboxylic acids in the secondary bbOA have

already been reported (Yazdani et al., 2021c; George et al., 2015; Chhabra et al., 2011a).

The difference in the residual spectra of WB and PB when these emissions are aged with the

nitrate radical is not substantial and the average is reported here (Fig. 5.3c–d). CHO+ and

C2H3O+ are among the most prominent fragments in the residual spectra in dark (NO3) and

dry conditions (Fig. 5.3c). This observation suggests the abundance of non-acid oxygenated

species in the SOA formed by the nitrate radical. Some heavier mass fragments with single
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oxygen atom (e.g., C3H3O+ and C3H5O+) are also observed in the residual spectrum and sup-

port this hypothesis (Fig. 5.3c). Apart from the oxygenated mass fragments, high abundances

of light CxHy
+ fragments (CH3

+, and C3H3
+) are observed in the residual AMS spectrum. In

dark (NO3) and humid conditions, the residual AMS mass spectra are fairly similar to those of

UV experiments and they are mainly composed CO2
+ (Fig. 5.2d). In the residual FTIR spectra

of dark aging experiments, higher abundance of the aCOH group relative to UV experiments

is observed (Fig. 5.2c–d), suggesting a different FG formation in reactions with the nitrate

radical. The formation of organic nitrates is also confirmed in the residual FTIR spectra (Fig.

5.2c–d) as well as by AMS.

The composition of OA changes with aging due to the condensation of SOA onto the existing

primary aerosols in addition to the change in the composition of POA and SOA over time due

to different aging mechanisms. The latter causes the positive residual AMS spectra (negative

elements omitted) to evolve during the course of aging. First, we examine the variation of the

residual OA (represented by positive residual spectra) composition during the aging process

simply by observing its oxidation trajectory in the f 44-f 43 (f CO2
+ -f C2H3O+ ) plot. As can be seen

from Fig. 5.4, the trajectory for total OA (the sum of apparent POA and residual OA) spans

a much smaller range of the plot and is located in the lower section of the triangle. For the

residual OAs formed using UV lights, however, the trajectories start in the lower section of the

triangle (Ng et al., 2011a) and continue upward until they end close to the upper vertex. The

end points are also close to the location of the OOA factor , suggesting the extent of aging in

the chamber is relevant to what observed in the atmosphere. Taking Exp. 4 as an example

(Fig. A.48a), we observe that f 44-f 43 ratios for the total and residual OA increase gradually

until the end of experiment, while the wall-loss corrected OA mass concentration reaches a

constant level about 1 h after the start of aging and the wall loss corrected organic carbon

(OC) decreases gradually. Since, there is a net loss of carbon from the particle phase and OA

becomes more oxidized without an increase in its mass, other aging mechanisms such as

heterogeneous OH reactions and fragmentation appear to be significant. The f 44-f 43 for the

residual OA is reminiscent of the extent of POA transformation in this case (Fig. A.48a).

The residual OA from WB and PB emissions aged with the nitrate radical in dry conditions

occupy the lower part of the triangle plot with no significant change in f 44 and f 43 with aging

(Fig. 5.4). In humid conditions with the nitrate radical, the trajectories resemble those of

UV experiments except for the elevated f 43 (Fig. 5.4), suggesting the importance of aqueous

nitrate radical reactions for oxidizing bbOA.

PCA extends the comparison to other fragments rather than CO2
+ and C2H3O+. We applied

PCA to chamber AMS spectra before the separation of apparent POA and the residual OA.

Thereafter, the residual chamber spectra and atmospheric PMF factors from Aiken et al.

(2009) (Mexico City) and Finokalia (unpublished data) were projected onto the PC space (Fig.

5.5). The closeness of points in the PC space implies their spectral similarity. The first three

principal components (PCs), whose loadings are shown in Fig. A.49, describe 87 % of the total

variance in AMS spectra. These PCs have with high loadings only for few fragments, making
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Figure 5.4 – Oxidation trajectories of residual spectra of wood burning (WB) and pellet burning
(PB) emissions using UV lights and nitrate radical in dry and humid conditions.

their interpretation straightforward. PC1 mainly indicates the general direction of aging, PC2

indicates the abundance of the CHO+ fragment (usually considered as a surrogate for alcohols),

and PC3 captures the degradation of biomass burning markers (e.g., levoglucosan) with aging.

As shown in Fig. 5.5, the atmospheric bbOA factor from Aiken et al. (2009) is located close

to the primary wood burning aerosols in the PC space, suggesting their similar composition.

The residual OA formed by the nitrate radical in dry conditions is the least aged among all

(e.g., higher PC1 loading) located closer to aged chamber OA (mixture of POA and and residual

OA). The residual OA aged with the nitrate radical in humid conditions is, however, more aged

than that in dry conditions and it is located closer to the atmospheric semi-volatile OA factor

(OOA-2). The residual OA in the UV experiment has the most aged spectrum and is located the

closest to the atmospheric low-volatility oxygenated OA (OOA-1) in the PC1-PC2 and PC1-PC3

biplots (Fig. 5.5).

5.3.3 Implications for atmospheric aerosols

We found that the AMS spectra of chamber primary and residual bbOA are similar to the

atmospheric bbOA and OOA factors, respectively, suggesting the compositional similarity

between the two. We also expect that a similar evolution of primary POA due to evaporation

and/or oxidation to occur in the atmosphere even at relatively short timescales on the order

of a day. The net effect appears to be a more oxidized OA (higher f 44:f 43) compared to what

expected from the mere condensation SOA on the existing POA. This can subsequently affect

the hygroscopicity, cloud condensation nuclei (CCN) activity, radiative forcing, and residence

time of organic aerosols in the atmosphere (Kanakidou et al., 2005).

The signatures of biomass burning markers, levoglucosan and lignin-like compounds, in spite

of being observed in atmospheric aerosols, are among the fastest degrading ones in the FTIR

and AMS spectra, making the identification of aged bbOA in the atmosphere challenging.

We found that heavier lignin-related fragments (e.g., C10H13O3
+) are more stable regarding
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aging than lighter ones and their ratio to lighter, less stable marker fragments (e.g., C9H11O3
+

and C8H9O2
+) can be informative about the extent of aging. Heavy, oxygenated fragments

that appear to be specific to secondary bbOA can be an alternative for the identification of

aged bbOA. Yazdani et al. (2021b), for example, showed that the C7H5O4
+ fragment is highly

correlated with acids from FTIR in WB SOA but it is not detected in coal combustion SOA.

Yazdani et al. (2021c) used lignin- and levoglucosan- related mid-infrared signatures to iden-

tify smoke-impacted atmospheric PM2.5 samples collected on PTFE filters and showed a

reasonable agreement of this method with other smoke identification approaches. However,

these signatures were not observed or were very weak in the FTIR spectra of certain samples

collected in known fire periods (Yazdani et al., 2021e). For these samples, however, a unique

spectral profile with very high abundance of carboxylic acids was observed (Fig. A.50) re-

sembling the aged bbOA (with UV) of this work (Fig. A.47) except for the more prominent

methylene peaks in the atmospheric samples caused by leaf wax (Hawkins and Russell, 2010).

These chamber studies (including Yazdani et al., 2021c) support the emergence of distinct
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spectral profiles that can be used to identify aged atmospheric bbOA when fresh markers are

not detected in the FTIR spectra.

5.4 Conclusion

In this work, we developed a procedure to quantify the evolution of primary bbOA with aging.

We detected some form of transformation (oxidation and/or evaporation) for up to 15 % of

the POA mass at short timescales. The estimates of POA transformation with aging, which are

more intense during the day-time conditions, are believed to be a lower bound estimate due

to the extensive overlap of mass fragments related to primary and secondary bbOA in the AMS

spectra.

AMS and FTIR measurements suggest that biomass burning markers such as lignin-like com-

pounds and anhydrosugars in addition to hydrocarbons are among the POA compounds that

degrade the most. Unlike hydrocarbons and lignin-like compounds that degrade during both

day- and night-time oxidations, anhydrosugars were observed to degrade effectively only dur-

ing the day-time oxidation. Since the degradation occurs for semi-volatile (levoglucosan) and

less volatile (larger lignin-like) compounds, both gas-particle partitioning and heterogeneous

reactions are believed to play a role.

We found that the aged fraction of bbOA (including bbSOA) resembles that of the oxidized

atmospheric OA especially when aged with UV or in the dark and humid conditions . This

fraction becomes more oxidized with continued aging and in certain cases this oxidation hap-

pens without a significant increase in the bbOA mass, highlighting the role of heterogeneous

reactions.
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Abstract Biomass burning, including residential wood burning, wildfire, and prescribed burn-

ing, is an important source of primary and secondary organic aerosols (POA and SOA, respec-

tively) with an increasing effect on climate and air pollution due to soaring wildfire activities

around the world. We introduce a fast and non-destructive method for identification of smoke-

impacted PM2.5 aerosols collected on PTFE filters. This method uses the fingerprint signatures

of biomass burning markers (i.e., anhydrosaccharides and lignin-like compounds) in the

mid-infrared spectra of PTFE filter samples. We evaluate the method for samples collected at

selected sites in the Inter-agency Monitoring of PROtected Visual Environments (IMPROVE)

network during wildfire and prescribed burning events in 2013 against satellite observations

and find reasonable agreement. The new method allows us to quantify the concentration

of biomass burning tracers and to estimate a lower bound for the contribution of biomass

burning organic aerosols (bbOA) to total atmospheric fine particulate matter. Our estimates

of levoglucosan concentration agree very well with those measured by the high-performance

anion exchange chromatography (HPAEC) for more than 300 atmospheric samples (R2 = 0.92).

A smoke classifier model is developed using the biomass tracer signatures and the carbonyl

group peak in the mid-infrared spectra. This classifier provides results that are comparable to

the smoke identification using water-soluble organic carbon (WSOC) and HPAEC anhydrosac-

charide measurements. We use the new method, which is one of the few scalable to large air

pollution monitoring networks, to study bbOA in around 20,000 filter samples collected in the

US IMPROVE network in 2015 and find that 20 % of samples are impacted by wood smoke.

In addition, indications of secondary bbOA condensation are observed in several of these

samples. It is believed that the bbOA concentration is underestimated on average by 3.6 times

using the levoglucosan signatures for these samples due to the marker degradation and SOA

condensation.

6.1 Introduction

Natural (wildfire) and anthropogenically-driven (residential biomass combustion, prescribed

burnings, agricultural fires) biomass burnings are becoming increasingly important sources of

atmospheric organic matter (OM) (Westerling, 2016; Ford et al., 2018; Puxbaum et al., 2007).

These aerosols have been the subject of recent studies as they can impact air quality, visibility,

and climate directly and indirectly (Smith et al., 2013; IPCC, 2013). The oxidative stress caused

by reactive oxygen species (ROS) is believed to be one of the contributors to the negative health

effects of PM pollution (Tao et al., 2003). Using the dithiothreitol (DTT) assay, Verma et al.

(2015) found that biomass burning organic aerosols (bbOAs) are one of the most important OM

components regarding the ROS generation capability (Verma et al., 2015). Biomass burning is

a major source of primary and secondary organic aerosols (POA and SOA, respectively) and

light absorbing carbon (brown and black carbon) (Puxbaum et al., 2007; Qi et al., 2019; Wong

et al., 2019). Large wildfires have been increasing in frequency in recent years due to various

reasons including global warming and a similar trend is expected to continue (O’Neill et al.,

2021). For example, emissions from wildfires in California are predicted to increase up to 100
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% by 2100 above the baseline period (1961–1990) (Hurteau et al., 2014).

In order to understand the effect of biomass burning in the atmosphere, both primary and

secondary bbOA should be quantified properly. The quantification of primary bbOA is usually

done by relying on specific molecular markers and statistical models (e.g., positive matrix

factorization and the chemical mass balance model) (e.g., Srivastava et al., 2021; Sullivan et al.,

2008; Zhang et al., 2010; Ramadan et al., 2000; Lee et al., 2008). Water-soluble potassium (K+)

has been used as an stable, inorganic marker to estimate the contribution of primary biomass

burning to atmospheric PM2.5 (Ramadan et al., 2000; Lee et al., 2008) but has interference from

other sources such as dust (Duvall et al., 2008). Anhydromonosaccharides (levoglucosan, man-

nosan, and galactosan), which are produced from pyrolysis of cellulose and hemicellulose, are

more specific to organic biomass burning markers and are identifiable by different analytical

methods such as aerosol mass spectrometry (AMS; Schneider et al., 2006), nuclear magnetic

resonance (1H-NMR; Paglione et al., 2014), ion chromatography (Sullivan et al., 2008), and

Fourier transform infrared spectroscopy (FTIR; Yazdani et al., 2021c). However, the majority of

the mentioned methods are destructive to the samples and cannot be scaled to large datasets

(e.g., large monitoring networks with thousands of samples) due to high labor costs, expensive

equipments, and being time consuming. Another problem with relying on the mentioned

markers is that they are only found in primary bbOA, are semi-volatile (Bertrand et al., 2018a),

and tend to degrade with aging (Hennigan et al., 2010). As a result, the contribution of primary

bbOA is underestimated using the mentioned methods (Hennigan et al., 2010). Environmental

chamber experiments suggest up to seven times enhancement of the OM mass concentration

after aging with the hydroxyl radical due to SOA condensation at atmospherically relevant

OH exposures (e.g., Yazdani et al., 2021c; Bertrand et al., 2017; Tiitta et al., 2016). Recent

studies have tried to identify secondary bbOA burning markers but still little is known about

these molecules (Nozière et al., 2015; Li et al., 2020a) and thus the contribution of secondary

bbOA is often not estimated properly in the atmosphere via measurements. Moreover, simula-

tions of bbOA using chemical transport models (CTMs) have often difficulties reproducing its

measured concentrations (Fountoukis et al., 2014; Theodoritsi et al., 2020).

Despite advanced and expensive methods for biomass burning characterization, what can be

accomplished to understand the impact of biomass burning over a wide spatial and temporal

scale (permitted by existing monitoring network infrastructure) is still very limited. FTIR

on PTFE filters is a fast, nondestructive, and cost effective method for quantification of the

majority of functional groups (FGs) in OM and is shown to be able to characterize around 70–

80 % OM mass (Boris et al., 2019; Russell et al., 2009a; Liu et al., 2012a). Specific mid-infrared

spectral profiles have also been reported for bbOA in the atmosphere and environmental

chambers (Russell et al., 2011; Takahama et al., 2011; Bürki et al., 2020; Yazdani et al., 2021c).

In addition, Yazdani et al. (2021c) showed recently that anhydrosaccharides and lignin-like

compounds that are ubiquitous in bbOA have rather unique signatures in the mid-infrared

spectra. These characteristics make FTIR one of the only methods suitable for the analysis

of large number of samples collected in networks such as the US Inter-agency Monitoring of

PROtected Visual Environments (IMPROVE) network.
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In this work, the identification and quantification of atmospheric bbOA by FTIR is evaluated

against remote sensing and high-performance anion exchange chromatography (HPAEC).

A smoke classifier is developed by combining FTIR and HPAEC measurements. Thereafter,

the new bbOA identification and quantification method is applied to around 20000 samples

collected in the IMPROVE network in 2015 to better understand the impact of biomass burning

on OM concentrations at the scale of this monitoring network. Finally, indications of biomass

burning SOA condensation in several samples of this dataset is demonstrated and discussed.

6.2 Methods

The sampling procedure for the filter samples selected from the IMPROVE network are dis-

cussed in Sect. 6.2.1. The basis of smoke identification using remote sensing for the periods

and locations of the filter samples are discussed in Sect. 6.2.2. Quantification of biomass burn-

ing markers using ion chromatography is explained in Sect. 6.2.3. FTIR spectral analysis and

smoke detection method is discussed in Sect. 6.2.4. Section 6.2.5 describes the development

of smoke classifier using FTIR spectra.

6.2.1 Sampling PM2.5 aerosols in the IMPROVE network

25 mm PTFE filters from Pall Corporation were used to collect particulate matter with an

aerodynamic diameter smaller than 2.5 µm every third day at a flow rate of 22.8 L min−1 from

midnight to midnight at selected sites of the Interagency Monitoring of PROtected Visual

Environments (IMPROVE) network (http://vista.cira.colostate.edu/improve/) in years 2008,

2011, 2013, and 2015 (Fig. 6.1). From samples collected in 2013, 122 filters were selected

in the period of forest fire (Rim Fire, from June until October) at Yosemite National Park,

Hoover (northeast of Yosemite NP), and Bliss State Park (Lake Tahoe) monitoring sites and

87 filters were selected in the period of prescribed burns (from January until April) in the

southeastern US in 2013 at Cape Romain National Wildlife Refuge (South Carolina), Saint

Marks (Florida), and Okefenokee National Wildlife Refuge (Georgia) monitoring sites. In total,

303 PTFE samples were selected from the IMPROVE network from 2011 and 2008 in spring,

summer, and fall, for which potential influence of fire was anticipated. In 2015, the first year

for which FTIR spectra are available for the entire network, more than 20000 filters from 162

monitoring sites across the US were analyzed.

In parallel to PTFE filters, quartz-fiber filters (25 mm diameter, Pallflex Tissuquartz, Pall Corpo-

ration, Port Washington, NY) were collected and analyzed using a thermal optical reflectance

(TOR) instrument for organic and elemental carbon (OC and EC) using the IMPROVE A proto-

col (Chow et al., 2007). TOR-OC concentrations have been used to support the results where

needed.
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●2008, 2011 (IC comparison)
▲2013 (satellite comparison)
＋2015 (only FTIR analysis)

Figure 6.1 – The IMPROVE network sites where PM2.5 samples of this study were collected.

6.2.2 Fire and smoke plume detection using remote sensing

We characterized sampling days as “probably" or “maybe" fire impacted using a qualitative

weigh-of-evidence approach. Fire detects and smoke plume extents from the National Oceanic

and Atmospheric Administration’s Hazard Mapping System (NOAA HMS) served as the primary

sources of fire information. The NOAA HMS fire detect dataset compiles thermal anomaly

(“hot spot”) data from a suite of polar-orbiting and geostationary satellites along with human

quality control to minimize false detections, such as from persistent heat sources like metal

smelters (McNamara et al., 2004). NOAA HMS smoke plume extents are digitized outlines of

smoke as identified in visible satellite imagery by trained analysts (Brey et al., 2018). For each

sampling event (site and day), four proximity scores were calculated: number of fire detects

within 10–100 km of the site, the minimum distance to nearest fire detected, density of nearby

hot spots using a kernel density function, distance from the smoke plume extent to site (highest

score if the site is within a plume). Sampling events with low scores across all metrics were

categorized as “no evidence of smoke impact". Those with high scores in any individual metric

or high average scores were examined individually using one or more additional analyses,

including assessment of visible imagery, back-trajectory analysis, review of nearby PM2.5

monitors, and wildland fire smoke dispersion modeling using BlueSky Playground (Larkin

et al., 2010). Using this weight-of-evidence approach and expert judgment, sampling events

were characterized as “maybe” or “probably” smoke-impacted. This analysis was conducted

independently and prior to the FTIR-based characterization for the corresponding periods

and sampling locations of the 228 PTFE filter samples collected in 2013.

6.2.3 Smoke detection using HPAEC-PAD and WSOC

The method, which is similar to that described by Sullivan et al. (2008, 2011a,b), was used to

analyze 303 PTFE filters collected in 2008 and 2011. Briefly, after obtaining the FTIR spectra,

the whole filter was extracted in 15 mL of deionized water by sonication. A subsequent
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filtration step with a PTFE syringe filter was performed on the extract to discard the non-

water-soluble fraction of aerosols. The extracts were, thereafter, analyzed, in the same day,

for levoglucosan (1,6-anhydro-β-D-glucopyranose) and its stereoisomers, mannosan (1,6-

anhydro-β-D-mannopyranose) and galactosan (1,6-anhydro-β-D-galactopyranose), using

high-performance anion-exchange chromatography with pulsed amperometric detection

(HPAEC-PAD). A Dionex DX-500 series ion chromatograph equipped with a Dionex GP-50

pump and Dionex ED-50 electrochemical detector (amperometric mode, waveform A) was

used. Separation was done with Dionex CarboPac PA-10 guard (4 × 50 mm) and analytical (4

× 250 mm) columns and each run took 59 min to complete. Each run included an isocratic

elution for 10 min at 10 mM NaOH to detect anhydrosugars, 19 min of linear gradient from

10 ro 70 mM for the detection of sugars (e.g., galactose, mannose, and glucose) followed by

the cleaning of the column at 180 mM for 19 min, and finally the reequilibration step for 16

min. Although this method is able to separate carbohydrates and anhydrosugars (important

chemical markers of wood smoke), it has limitations regarding the separation of sugar alcohols

(e.g., mannitol, and arabitol; detected in fungal spores; Bauer et al., 2008) and anhydrosugars.

Based on the sampling time (24 h) and flow rate (22.8 L min−1) of this study the limit of

detection (LOD) for the carbohydrates is estimated to be less than 0.1 ng m−3 and the detector

response was found to be linear in the range concerning this study. The agreement of this

method with GC-MS measurements for levoglucosan from PTFE filters have already been

shown (Sullivan et al., 2011a).

A Sievers Turbo total organic carbon (TOC) Analyzer (Model 800) operating in Turbo mode

was used to measure water-soluble organic carbon (WSOC). In this instrument, organic

carbon (OC) is completely oxidized by the hydroxyl radical produced from the photolysis of

water and persulfate and is turned in to CO2. CO2 is then measured using membrane based

conductometric CO2 sensors. The LOD was estimated to be approximately 0.06 µg C m−3.

Sullivan et al. (2006) found that bbOA and SOA are two main sources of WSOC. Thus, a sub-

stantial contribution of levoglucosan (as a bbOA marker) to WSOC indicates also a substantial

contribution of fresh bbOA. However, the threshold above which a sample is considered

smoke-impacted is rather subjective. Since, we were interested in identifying samples even

with low contributions of bbOA and levoglucosan tends to degrade rapidly in the atmosphere

(Hennigan et al., 2010), we chose a rather strict threshold: samples with the contribution of

levoglucosan to WSOC over 1 % (levoglucosan C/WSOC > 0.01) were considered to be “smoke-

impacted" and samples with the contribution below 1 % were considered uninfluenced by

wood smoke. The levoglucosan C/WSOC > 0.01 threshold is roughly equivalent to fresh bbOA

/ OM > 0.07 (Appendix Sect. A.5.1). It should be noted that this criterion only considers the

contribution of primary bbOA to WSOC via levoglucosan and might not be optimal when

there is substantial degradation of bbOA markers or substantial formation of secondary bbOA.
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6.2.4 FTIR analysis, post-processing, and smoke detection

FTIR spectra in the 400–4000 cm−1 range were obtained from PTFE filters with a Bruker-Tensor

27 FTIR instrument equipped with a liquid nitrogen-cooled, wide-band mercury-cadmium-

telluride (MCT) detector at a resolution of 4 cm−1. PTFE filters were kept in petri dishes

(without refrigeration) before the analysis. FTIR spectra were baseline-corrected and blank-

subtracted to eliminated the effect of light scattering, absorption by carbonaceous material

and minimize the interference of PTFE absorbances with organic signatures. We used a

smoothing spline to estimate the baseline for each spectrum (Kuzmiakova et al., 2016).

The fingerprint absorbances of anhydrosaccharides (three peaks in the 860–1050 cm−1 range)

and lignin-like molecules (molecules with similar ring substitution to lignin such as mono-

lignols and lignin pyrolysis products; single sharp peak at 1515 cm−1) were used for identifi-

cation of bbOA (Yazdani et al., 2021c). The concentration of anhydrosugars was quantified

using the mentioned fingerprint absorbances and the absorption coefficient calculated from

aerosolized levoglucosan standards. Aerosolized samples were generated following the ap-

proach of Ruthenburg et al. (2014) and calibration curves were produced using the weight

of deposited aerosols and the height of levoglucosan peaks. The height of each peak was

calculated from the absorbance at the peak location minus the average of absorbances at the

location of the left and right shoulders. The absorption coefficient of lignin-like compounds

was not estimated since these molecules refer to a class of substituted aromatics with various

molecular structures.

The contributions of anhydrosaccharides and lignin-like compounds to bbOA depend on the

burning conditions, the extent of exposure to oxidants, the fuel type, combustion efficiency,

and OM concentrations (Fine et al., 2002; Robinson et al., 2006b; Bertrand et al., 2018a; Yazdani

et al., 2021d). We considered measurements from Fine et al. (2002) as reference in that regard

since they analyze bbOA from a variety of fuel types in atmospherically-relevant conditions.

6.2.5 Development of a smoke classifier

In order to develop a classifier that only needs FTIR spectra and is equivalent to that using

WSOC and HPAEC-PAD levoglucosan, WSOC should be replaced by a relevant parameter

obtained from the FTIR spectra. We used the carbonyl peak as a proxy to WSOC (Appendix

A.5.2). Peak height of the FTIR signatures related to anhydrosaccharides (PLG1, PLG2, and

PLG3), lignin-like compounds (PLig), and the carbonyl group (PCarb) in the FTIR spectra were

used to develop a binary smoke classifier that agrees the best with the smoke identification

using WSOC and HPAEC-PAD levoglucosan measurements. For this purpose, we considered

five parameters: These parameters are the weights for the three levoglucosan peaks (a, b, c)

that might interfere with different organic and inorganic peaks, the weights of the lignin-like

compounds peak (d) and an offset value (e) taking into account inaccuracies in the peak

height estimation caused by an imperfect baseline correction (Eq. 6.1). The carbonyl peak

(PCarb) was used as a proxy to WSOC in order to build a classifier that only requires FTIR
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spectra to function.

A = aPLG1 +bPLG2 + cPLG2 +dPLig +e

PCarb
> 0.01. (6.1)

The dataset (303 samples from 2008 and 2011) was divided into a training set (202 samples)

and a test set (101 samples). A floating point genetic algorithm (Mitchell, 1996) was used

to find parameters that maximize the F1 score, TP/(FP+0.5(FP+FN)), on the test set. This

parameter, which is a measure of accuracy of the classifier, is the harmonic mean of precision

(the fraction of selected observations that are relevant, TP/(TP+FP)) and recall (the fraction

of relevant observations that are selected, TP/(TP+FN)). TP (true positive) is the number of

samples that FTIR classifies as smoke-impacted (A > 0.01) in agreement with the HPAEC-PAD

criterion (considered as reference). FP (false positives) and FN (false negatives) are defined

similarly by taking the HPAEC-PAD criterion as the reference. The F1 score is the preferred

performance measure for imbalanced datasets (Jeni et al., 2013) like our dataset with 25 %

probability that a sample is smoke-impacted.

6.3 Results and discussions

In the following subsections, first the FTIR limit of detection and selectivity of bbOA marker

signatures are evaluated in Sect. 6.3.1. FTIR smoke detection is compared to remote sensing

detection of fires and smoke plumes in Sect. 6.3.2. FTIR quantification of bbOA markers and

classification of samples based on the contribution fresh bbOA markers are compared to that

from HPAEC in Sect. 6.3.3. In Sect. 6.3.4, we analyze the impact of biomass burning on the

samples collected in the IMPROVE network across the US in 2015.

6.3.1 Selectivity and LOD of FTIR signatures of bbOA marker

Anhydrosaccharides

In this work, three peaks observed at 860, 890, and 920 cm−1 in the FTIR spectra (Fig. A.53;

referred to as PLG1, PLG2, PLG3, respectively) have been used for the identification of levoglu-

cosan in atmospheric aerosols. The peaks in this range are believed to be related to the

symmetric C – C – O vibrations in alcohols (Smith, 1998) and appear to have a unique pattern

in anhydrosaccharides. As can be seen from the FTIR spectra of levoglucosan, mannosan,

and galactosan in Fig. 5 of Kamińska et al. (2018), the mentioned three peaks appear to have

similar heights in the FTIR spectrum of levoglucosan in ordered crystalline and plastic phases.

Similar relative peak heights are observed in the aerosolized samples of levoglucosan in this

work (Fig. A.53). The 890 cm−1 appears be the dominant peak for mannosan, while the 920

cm−1 peak appears to be slightly stronger for galactosan (Kamińska et al., 2018). Although
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other factors such a the phase state of the molecules (e.g., liquid, ordered crystal, and plastic

crystal) can affect the peak height ratios, the ratios can still be informative about the relative

abundance of these three compounds. We considered an average of the three peaks to estimate

the abundance of anhydrosaccharides. The mentioned peaks were not observed in the spectra

of other alcohols such as straight-chain alcohols (e.g., docosanol; Yazdani et al., 2021c), sac-

charides (e.g., glucose, mannose, and galactose; Fig. A.54), and sugar alcohols (e.g., mannitol;

Fig. A.54). In the complex atmospheric samples, emergence of peaks related to organics or

inorganics in the 800–1000 cm−1 region can hinder the quantification of anhydrosaccharides.

As an example, the bisulfate peak at around 870 cm−1 (Krost and McClenny, 1994) and the

organonitrates peak at around 850 cm−1 (Yazdani et al., 2021c) might interfere with those of

anhydrosaccharides.

The signal noise at the location of levoglucosan peaks was analyzed for 55 blank 25 mm PTFE

filters after baseline correction and blank subtraction. Considering the sampling time and

flow rates of this work, the LODs based on the 3σblank/b, where b is the calibration slope

(Fig. 6.2a), were estimated to be 7, 16, 27, and 12 ng m−3 for PLG1, PLG2, PLG3, and PLG, ave

(average of the three levoglucosan peaks) as shown in Fig. 6.2b. The FTIR LODs are around

two orders of magnitude higher than that of HPAEC-PAD for anhydrosaccharides but with a

significant speed advantage (5 min for FTIR analysis compared to 100 min for HPAEC-PAD

analysis) and without the need for any sample preparation.The LOD based on the standard

error of estimate of the calibration curve, 3Sy x /b, where Sy x =
√

ŷi−yi

n−2 , is 167 ng m−3 (Fig.

6.2a). However, the latter is believed to be an overestimation of the LOD due to uncertainties

associated with the weighing of the PTFE filter samples and the higher signal noise at higher

concentrations (heteroscedacity). Based on the measurements of Fine et al. (2002) for OM

from combustion of six different wood types, levoglucosan constitutes on average 8 % of OM

mass (assumed to be 1.8 times OC; Malm and Hand, 2007) under atmospherically relevant

dilutions and temperatures. This contribution is lower than that measured by Yazdani et al.

(2021c) (15–29 %) in the environmental chamber experiments but is believed to represent

atmospheric conditions more closely due to using atmospherically relevant dilutions and a

variety of wood species found in the US. Using this ratio and the LOD of levoglucosan (based

on PLG, ave; 12 ng m−3) the FTIR LOD for fresh bbOA was calculated to be approximately 0.15

µg m−3.

Lignin pyrolysis products

A sharp 1515 cm−1 peak is observed in the FTIR spectra of aromatic compounds with specific

ring substitutions (Yazdani et al., 2021c) due to the stretching vibrations of aromatic C –– C

(Feldman, 1985). These compounds include lignin, monolignols (conyferyl, coumaryl, and

sinapyl alcohols) or molecules resulting from the pyrolysis of lignin such as substituted sy-

ringols and guaiacols (Bertrand et al., 2018a; Fine et al., 2001) and are referred to as lignin-like

compounds here. The 1515 cm−1 peak has already been observed in the FTIR spectra of the

water-soluble extracts of atmospheric samples likely affected by biomass burning (Duarte
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Figure 6.2 – The calibration curve used to derive the absorption coefficient of levoglucosan (a)
and the box and whisker plot showing the variability of absorbances (converted to concentra-
tions) at the location of the three levoglucosan peaks in blank filters after baseline correction
and blank subtraction (the absorption coefficient of lignin-like compounds is assumed to be
the same as that of levoglucosan in this plot).

et al., 2005). However, this peak is believed to have lower selectivity compared to the lev-

oglucosan signatures at lower frequencies (fingerprint region). Although the methoxy group

(O – CH3) is observed in the structure of coumaryl and sinapyl alcohols, its absorption below

2850 cm−1 (Degen, 1968) is not distinguishable from normal aliphatic CH absorbances neither

in the fresh wood burning spectra of Yazdani et al. (2021c) nor in atmospheric samples of this

study. The 1515 cm−1 is prone to interference with PTFE absorbances, vibrorotational bands

from water vapor in the FTIR chamber, and interference from the carbonyl peak (only in the

case of high OM loading).

The FTIR LOD for fresh bbOA based on this peak in the chamber experiments of Yazdani

et al. (2021c) was calculated to be approximately 16 ng m−3. However, the relatively high OM

concentrations in the chamber experiments of Yazdani et al. (2021c) (on average 30 µg m−3)

favors the partitioning of bbOA markers into the particle phase and thus tend to overestimate

their contribution to fresh bbOA.

Hennigan et al. (2010) estimated the lifetime of levoglucosan in the atmosphere to be 0.7–

2.2 days, assuming an average OH concentration of 106 molec. cm−1. Given this lifetime, it

is estimated that 5 µg m−3 of fresh bbOA becomes undetectable by FTIR (i.e., the levoglu-

cosan concentration falls below the LOD of FTIR) after 2.5–7.7 days of exposure to typical

summertime OH levels (without considering dilution effects). In addition, a significant under-

prediction of aged bbOA concentrations is also anticipated using this marker. Yazdani et al.

(2021c) found that the FTIR signatures of lignin-like compounds diminish at an even faster

rate than levoglucosan in the presence of OH. Unlike levoglucosan, these compounds also

degrade substantially in the presence of the NO3 radical. As a result, their lifetime is expected

to be shorter especially when the precursors of the nitrate radical, NO2 and O3, are available

during the nighttime.
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6.3.2 Comparison of FTIR and satellite smoke detection

For the comparison between FTIR and satellite smoke detection methods, satellite measure-

ments were taken as reference and confusion matrices were generated. Samples categorized

either as “probably" or “maybe" impacted by smoke were all considered as smoke-impacted

by satellite. Samples with either levoglucosan or lignin signatures three times above their LOD

in the FTIR spectra were categorized as smoke-impacted by FTIR after the visual inspection

of the corresponding peaks to avoid any misidentification due to interference from other

compounds.

As can be seen from Table 6.1a, among 87 samples for the period of prescribed burns from

January until April 2013 in the southeastern US, 20 samples are classified as smoke-impacted

by both FTIR and satellite. The biomass burning signatures are visible in these samples with 24

h average OM concentrations (assumed to be 1.8 times TOR OC) ranging from 1 to 22.6 µg m−3.

The FTIR spectra of these samples usually have very prominent aliphatic CH and carboxylic

acid signatures ( Figs. 6.3 and A.55). For 51 samples, neither FTIR nor satellite observations

detect any evidence of smoke. For 5 samples, only FTIR detects signatures of smoke, and for

10 samples only satellite confirms the existence fire or smoke. The 10 samples detected only

by FTIR to be smoke-impacted have also spectral profiles (Fig A.55b) similar to those of smoke

samples shown in previous studies (e.g., Russell et al., 2011; Bürki et al., 2020), supporting the

hypothesis that they are smoke-impacted. The spectra of these samples usually have strong

absorbances of organics, especially in the aliphatic CH (2800–3000 cm−1) and carboxylic acid

OH (broad band, 2400–3400 cm−1) regions. Carboxylic acids are believed to be abundant in

secondary bbOA (Yazdani et al., 2021c; Li et al., 2020a). The lack of detection by satellite for

these samples may be attributed to the cloud coverage, or the low resolution of satellite images

(approximately 1 km2). For the 5 samples categorized only by satellite to be smoke-impacted

(Fig A.55c), FTIR spectra are dominated by inorganics and the absorbances of organic bands

are relatively weak. This observation might be due to the significant dilution and aging of

smoke in the atmosphere that renders OM concentrations low and the marker signatures

below their FTIR LODs. The low OM loading and lack of bbOA marker signatures can be also

related to the direction of wind or high smoke plumes that do not considerably affect the

samples collected at the surface level. The latter is, however, not expected for prescribed

burns due to a lower intensity of these controlled burns. Nonetheless, the number of samples

with conflicting FTIR and satellite smoke detections (i.e., false positives and negatives) is

considerably lower (17 % of all observations) than those in agreement. In general, samples

categorized as “probably" smoke-impacted by satellite have higher OM concentrations (from

TOR OC) than those categorized as “maybe" smoke-impacted (7.5±3.7 µg m−3 against 2.9±2.4

µg m−3). A higher percentage of the former was detected to be smoke-impacted by FTIR (75%

against 63 %).

As can be seen from Table 6.1b, from 122 samples collected in the Rim Fire period, both the

FTIR and satellite methods confirm the impact of smoke for 31 samples. The OM concentration

from TOR OC ranges from 2.0 to 54.0 µg m−3 for these samples and the aliphatic CH peaks
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Table 6.1 – Confusion matrices of FTIR and satellite smoke detection methods for prescribed
burns (a) and RIM fire (b) in 2013. P and M indicate probably and maybe smoke-impacted,
respectively.
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Figure 6.3 – Mean spectra of samples classified as smoke-impacted by both satellite obser-
vations and FTIR for the prescribed burn and wildfire datasets. The gray band shows the
PTFE absorption region.Vertical lines show the signatures of levoglucosan (LG) and lignin-like
compounds.

are prominent in their FTIR spectra (Figs. 6.3 and A.55d). The spectral profiles of 5 of these

samples with prominent alcohol absorptions (Fig. A.55d) are reminiscent of those of fresh

wood burning aerosols from the chamber experiments of Yazdani et al. (2021c). For 61 samples,

FTIR and satellite detect no evidence of smoke. For 4 samples, only FTIR detects signatures of

smoke. These samples have spectral profiles with prominent aliphatic CH peaks (Fig A.55e),

which is one of the characteristics of smoke-impacted samples (Hawkins and Russell, 2010).

For 26 samples, only the satellite method confirms the existence smoke. The number of

misidentified samples in Rim Fire dataset is more than that for prescribed burns (21 % of all

observations). The 24 h average of TOR OC for the misidentified samples ranges from 1 to 5.4

µg m−3. Prominent aliphatic CH and carboxylic OH peaks are observed in the FTIR spectra of

10 and 2 of these samples, respectively (Fig A.55e). Although the latter suggests the impact of

wood smoke, lignin and levoglucosan peaks are not identified for these samples either due to
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the degradation of markers or interfering peaks. We believe that relatively high OM (especially

acid) concentrations for the two mentioned samples are due to secondary bbOA formation

(Yazdani et al., 2021c). In the wildfire dataset, two of the levoglucosan peaks (PLG2 and PLG3)

have significant interference with two peaks located at 875 and 910 cm−1. These peaks, which

have variable ratios, are believed to be related to inorganics because they are also observed in

samples with OM concentrations as low as 1 µg m−3 and high inorganic loadings (e.g., strong

absorption of ammonium). It was necessary to subtract the interfering peaks for some of the

samples to identify the levoglucosan signatures (e.g., Fig. A.56). For the samples with false

negative error that have low organic loadings, the height of the smoke plume might cause

the discrepancy between FTIR (ground-level) and satellite detections (ground-level and high

altitude). The latter is more likely for wildfires as the intensity of fire and the smoke plum height

are higher compared to prescribed burns. However, in general, smoke-impacted samples

identified by satellite in the wildfire period have higher OM concentrations at the ground

level (7.3±9.1 µg m−3, from TOR OC) than those collected in the prescribed burns period

(4.5±3.5 µg m−3). A considerably higher percentage of samples categorized as “probably"

smoke-impacted compared to those categorized as “maybe" smoke-impacted by satellite are

detected to be smoke-impacted by FTIR (70 % against 46 %) in the wildfire dataset. The former

category has also a considerably higher concentrations of OM (13.1± 13.1 µg m−3 against

4.2±3.2 µg m−3). The mean spectrum of smoke-impacted samples collected in the wildfire

period has relatively stronger peaks related to organics and bbOA markers but lacks the broad

acid peak compared to that of prescribed burns (Fig. 6.3). Both atmospheric processes and

different fuel might cause the compositional difference in OM between these two categories.

6.3.3 Comparison of FTIR and HPAEC-PAD smoke marker measurements

In this section, a more quantitative approach has been taken by comparing smoke marker

measurements from FTIR to those from HPAEC-PAD for 303 PTFE filters samples collected at

selected sites of the IMPROVE network in 2011 and 2013. In order to compare FTIR levoglu-

cosan measurements to those of levoglucosan, mannosan and galactosan from HPAEC-PAD,

we chose samples for which concentrations of all three anhydrosaccharides were above their

LOD in HPAEC-PAD. In total, 90 samples with this criterion were found in the dataset. The

FTIR-based levoglucosan concentrations (from PLG, ave) were found to be highly correlated

with the concentrations of levoglucosan and the sum of anhydrosaccharides from HPAEC-PAD

(R2 = 0.93 and 0.88, respectively; Fig. 6.4). Although R2 values were relatively high for the

entire dataset, they decreased to 0.48 and 0.45, respectively, for a subset of samples with

HPAEC-PAD levoglucosan concentrations below 0.5 µg m−3, showing weaker agreement in

low-concentration samples. This issue is believed to be mainly due to the interference with

the 875 and 910 cm−1 peaks in samples with high loadings of inorganics and low loadings of

levoglucosan. We also observed a higher R2 for HPAEC-PAD levoglucosan against PLG1 (0.47)

compared to PLG2 (0.39) and PLG3 (0.22) for the low-levoglucosan samples (below 0.5 µg m−3),

suggesting lower interference from other compounds for PLG3. This result is while PLG2 and

PLG3 have higher R2 (0.94 and 0.93, respectively) compared to PLG1 (0.89) when the whole
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dataset, including high-levoglucosan samples, is used.

In order to investigate the ability of FTIR to detect low concentrations of levoglucosan in

atmospheric samples, the FTIR spectra of several filter samples with HPAEC-PAD levoglucosan

concentrations below 10 ng m−3 were visually inspected. Among these spectra, for those

the interfering peaks did not overwhelm the levoglucosan fingerprint region, two of the

levoglucosan peaks were observed (PLG1 and PLG2; Fig. A.57a). For samples with significant

interference from inorganics, PLG1 was usually visible on the right shoulder of the interfering

peak (Fig. A.57b) but since the other two levoglucosan peaks were not detected, the certainty

of levoglucosan detection was lower. This analysis suggests that the main limiting factor

for identification and quantification of levoglucosan using FTIR in atmospheric samples

is the interference with inorganics and not the lower LOD compared to HPAEC-PAD. Peak

fitting or equivalent statistical methods are required to properly quantify overlapping peaks

in these cases. We also used partial least squares regression (PLSR) to predict HPAEC-PAD

levoglucosan in low-levoglucosan samples using the levoglucosan fingerprint region in the

FTIR spectra, which let a significant improvement in the correlation coefficient for these

samples (R2 = 0.91 compared to R2 = 0.48 when using PLG, ave), while maintaining reasonable

fit quality for high-concentration samples (Appendix A.5.6).
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Figure 6.4 – Scatter plot of FTIR equivalent levoglucosan concentrations (from PLG, ave) versus
the sum of anhydrosaccharides measured by HPAEC-PAD.

The higher R2 for FTIR-based levoglucosan concentration (from PLG, ave) against the HPAEC-

PAD sum of anhydrosaccharides compared to HPAEC-PAD levoglucosan suggests that PLG, ave

is probably more representative of the sum of anhydrosaccharides rather than only levoglu-

cosan. The slope of the calibration line was measured to be 1.18 (Fig. 6.4) for the sum of

anhydrosaccharides and 1.50 when only considering HPAEC-PAD levoglucosan. Mannosan

and Galactosan concentrations were measured to be 16.3± 10.9 % and 4.4± 4.0 % of that

of levoglucosan from HPAEC-PAD for this dataset. The relatively higher concentrations of
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anhydrosaccharides measured by FTIR (i.e, greater-than-one slopes of the calibration lines)

might be related to the lower-than-unity extraction efficiency of anhydrosaccharides from

PTFE filters before the HPAEC-PAD analysis. The slope for the sum of anhydrosaccharides

(1.18) appears to be more consistent with the reported extraction efficiencies of levoglucosan

from PTFE filters (Nozière et al., 2015).

Although FTIR absorbances related to lignin-like compounds and anhydrosaccharides are cor-

related for the majority of samples (R2 = 0.7 for all samples), there are samples for which the ra-

tio of lignin-like to levoglucosan absorbances deviate significantly from the average trend (Figs.

6.5 and A.57) probably due to variations in the fuel type and combustion conditions, different

extent of oxidation of the markers in the atmosphere, and different interfering compounds.

This deviation is especially prominent in samples with low lignin- and levoglucosan-related

absorbances (lower than 0.01 and 0.002 respectively). As a result, FTIR signatures related to

lignin-like compounds can add additional information about the contribution of bbOA. This

feature can help compensate for the interference from inorganic compounds and the higher

LOD of FTIR for anhydrosaccharides compared to HPAEC-PAD.
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Figure 6.5 – Scatter plot of FTIR absorbances related to levoglucosan (PLG, ave) and lignin-like
compounds (PLig).

FTIR smoke classifier

A smoke classifier was developed by optimizing the parameters in Eq. (6.1) using the genetic

algorithm. The optimized parameters a–e for Eq. (6.1) are 1.9, 0.66, 0.14 , 0.74, and -9.3 ×10−5

respectively. Considering the fact that the peaks related to levoglucosan have often similar

heights in the laboratory standards (Fig. A.53), these values suggest the relative importance of

PLG1, PLG2, PLig for the smoke classifier. A slightly negative value for e probably takes into ac-

count an approximately constant error caused by baseline correction artifacts or interference

from other compounds. PLG3 does not appear to be as informative as other levoglucosan peaks
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probably because it is often suppressed by the interfering peak at 910 cm−1. The classifier built

using Eq. (6.1) performs reasonably well on the training set (F1 = 0.90; Fig. A.52a) with 44 and

148 true positiver and negative results. There are eight false negatives, which are located below

the HPAEC LG / WSOC < 0.025 threshold. Although the classifier fails to classify these samples

as smoke-impacted, lignin and levoglucosan signatures are visible in the spectra of six of these

samples. WSOC for false negative samples ranges from 0.28 to 1.30 µg m−3. There are two false

positives with HPAEC LG / WSOC > 0.005, which have clear lignin-like signatures in their FTIR

spectra. WSOC is measured to be 1.20 and 1.95 µg m−3 for these samples. The performance of

the classifier degrades slightly on the test set (F1 = 0.82; Fig. A.52b). The five false negatives in

the test set have HPAEC LG / WSOC < 0.017 and WSOC ranges from 0.70 to 3.94 µg m−3 for

them. Lignin or levoglucosan signatures are visible for four of these samples. There are three

false positives in the test set with HPAEC LG / WSOC > 0.005, for which WSOC ranges from

1.11 to 5.25 µg m−3. For two of these samples the lignin signature is visible. Even in samples in

the false negative error category, bbOA signatures are observed in the FTIR spectra but are

not quantified correctly according to the threshold. In addition, the majority of false positives

have prominent signatures of lignin-like compounds, which are not quantified by HPAEC,

and thus are believed to be true smoke-impacted samples. This analysis shows that the FTIR

classifier performs reasonably well. No significant change in the classifier performance was

observed (i.e., similar F1 score) by changing the threshold to 0.005 or 0.02.
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Figure 6.6 – Scatter plot comparing the smoke classifier that uses FTIR smoke signatures and
the carbonyl peak to that using WSOC and HPAEC levoglucosan measurements. A is defined
in Eq. (6.1). Vertical and horizontal solid black lines indicate the threshold (0.01) of smoke
classification by each method.

Using the carbonyl peak as a proxy for WSOC does not lose any accuracy in classification

(Appendix A.5.7), which suggests that FTIR might be used independently to detect smoke-

impacted aerosols with comparable results to the detection with HPAEC and WSOC instru-

ments combined. We also developed a classifier that uses levoglucosan concentration from

a PLSR model instead of PLG1, PLG2, and PLG3 (Appendix A.5.7). PLSR is able to alleviate

the interference from other (inorganic) peaks and improve the levoglucosan concentration
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estimates for low-loading samples. The PLSR classifier performs slightly better over that re-

ported here on both the training and test sets (F1 = 0.97 and 0.85 for the training and test sets,

respectively). The better performance is likely because the APLS parameter is better correlated

to HPAEC LG / WSOC at lower values (close to the 0.01 threshold; Fig. A.61) than A (Fig. 6.6).

In addition to working as a classifier, the value of A (or APLS) is informative about the extent of

bbOA contribution to WSOC. The way this smoke classifier classifies samples based their FTIR

levoglucosan and lignin signatures is visualized in Fig. A.62 for different thresholds.

6.3.4 Analysis of IMPROVE samples from 2015 using the FTIR smoke detection
method

FTIR analysis on PTFE filters is one of the few methods capable of being scaled to an air

quality monitoring network as extended as the IMPROVE network. We analyzed around

20000 filters collected in 2015 at 162 sites of the IMPROVE network across the US. For these

filters, levoglucosan concentrations were estimated using FTIR (PLG, ave). The concentration

of primary bbOA was estimated based on the contribution of levoglucosan to the fresh bbOA

mass (8 % based on the data from Fine et al., 2002). Thereafter, the smoke classifier developed

in the previous section was used to determine smoke-impacted samples.

Figure 6.7 shows monthly maximum concentrations of primary bbOA in the US estimated

at the IMPROVE network sites and represented by contour lines. It should be noted that

the spatial density of IMPROVE monitoring sites might not be optimal for a continuous rep-

resentation everywhere across the US. However, the spatial density is relatively higher for

the western and northwestern regions of the US where the majority of wildfire activities are

observed and multiple sites are impacted. As can be seen from Fig. 6.7, the identification of

smoke using FTIR on PTFE filters reveals the clear seasonal variation of bbOA concentrations

and several smoke hot-spots in different months of 2015. The wildfire season in this year

was reported to be the most destructive in the last ten years regarding the land area burned

(National Interagency Fire Center, 2021). For August 2015, very high concentrations of bbOA

(monthly maximum of 42 µg m−3 and monthly average of 11 µg m−3) are observed in the north-

western US (Fig. 6.7). The average contribution of fresh bbOA to OM for the filters collected

in the northwestern US (Washington, Oregon, Idaho, Montana, and Wyoming) in this month

is estimated to be approximately 12 % with its maximum contribution reaching 80 %. This

observation is concurrent with one of the largest wildfires in the history of Washington State

that burned more than 400,000 hectares (National Centers for Environmental Information,

2021). Our analysis suggests that daily mean concentrations of primary bbOA frequently

rose above 10 µg m−3 in monitoring sites located in California from July to December (e.g., in

Fresno, Kaiser, Yosemite NP, Lava Beds NM, Lassen Volcanic NP, and Trinity). This observation

is also consistent with the wildfire data from CALFIRE (2021), showing that wildfires in certain

areas of California were not contained until late December. In addition to the wildfire season,

high concentrations of bbOA are observed in several monitoring sites in colder months. For

examples, the monitoring site in Phoenix, AZ, where residential wood burning for heating is
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common (Pope et al., 2017), experienced daily mean bbOA concentrations up to 11 µg m−3.

The average wintertime contribution of primary bbOA to OM in this site is estimated to be

approximately 15 % with its maximum contribution reaching 70 %, consistent with estimates

of (Ramadan et al., 2000). The 1515 cm−1 peak related to lignin-like compounds also provides

information about the distribution of bbOA that is consistent with that from levoglucosan

with only minor differences (Fig. A.64).
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Figure 6.7 – Maximum monthly concentrations of primary bbOA in the US in 2015 estimated
from FTIR levoglucosan signatures. These values represent lower bound estimates of primary
bbOA concentrations assuming levoglucosan constitute 8 % of fresh bbOA mass.

The contribution of primary bbOA to OM and PM2.5 across the US in 2015 is estimated to

be on average 5 % and 3 %, respectively. The annual mean of levoglucosan concentration

form all sites is estimated to be approximately 19 ng m−3 in this year. This value is close to

the measurements of Robinson et al. (2006b) for Pittsburgh from July 2001 to June 2002. The

annual mean of levoglucosan for the southeastern US (sites located in Alabama, Georgia, and

South Carolina) is estimated to be 28 ng m−3 for 2015, which is considerably lower than that

measured by Zhang et al. (2010) for this region in 2007 (107 ng m−3). Different locations of

monitoring sites and different periods of analysis between the two studies are believed to be

the main reasons for this discrepancy.

The results of the smoke classifier developed based on the FTIR spectra are illustrated in Fig.

6.8 for this dataset. The fraction of smoke-impacted samples is the lowest in May and June but

considerably increases in cold months and also during the wildfire season. In total, around 20
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% of samples from the IMPROVE network are classified as smoke-impacted for the year 2015.

This number approaches 100 % in certain sites located in the northwestern US during the

wildfire season. Except for the northwestern US, which is impacted by wildfires, the fraction

of smoke-impacted samples is the highest in winter months (Fig. A.65). The smoke-impacted

samples appear to have similar distribution of OM concentration to normal samples but their

OM / PM2.5 is generally higher than other sample (Fig. A.66).
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Figure 6.8 – Fraction of smoke impacted-samples in each month in 2015 determined by the
FTIR smoke classifier.

6.3.5 Indications of aged bbOA

Atmospheric samples with relatively high OM concentrations (e.g., > 25 µg m−3) and high con-

tributions of levoglucosan to OM in the confirmed periods of biomass burning (e.g., wildfire)

are believed to be the least aged smoke-dominated atmospheric samples. We compared the

spectra of samples with these characteristics to that of fresh bbOA from chamber experiments

of Yazdani et al. (2021c) with similar OM concentrations. This comparison suggests consid-

erably weaker marker signatures but similar or more aged spectral profiles (e.g., prominent

carbonyl peak) for the atmospheric samples (Fig. A.67). The lower contribution of primary

bbOA markers even in the least aged smoke-dominated atmospheric samples compared to the

chamber experiments is likely because these molecules tend to degrade and evaporate with

dilution and chemical aging in the atmosphere (Hennigan et al., 2010; Yazdani et al., 2021d).

As a results, the bbOA contributions predicted based on the levoglucosan signatures should be
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considered as lower bound estimates especially when marker degradation and SOA formation

are anticipated (e.g., for monitoring sites distant from the smoke source in summertime).

As an example, TOR measurements at the IMPROVE sites show high OM concentrations (esti-

mated as 1.8 times OC; up to 35 µg m−3) all over the northwestern US on August 19 (Fig. A.68a).

This is concurrent with the widespread wildfire activities reported in that region and is also

supported by the high levoglucosan concentrations for the samples collected at monitoring

sites in the region (Fig. A.68b; and also elevated potassium and EC concentrations). These

observations suggest that biomass burning is the main source of OM in those areas. However,

the OM concentrations are considerably higher than those of primary bbOA estimated from

FTIR levoglucosan (Fig. A.68b;). In addition, the high OM persists over a larger area compared

to FTIR-based levoglucosan measurements. The latter can be justified by the chemical aging

of biomass burning emissions and dilution that reduces the concentrations of fresh bbOA

markers. Figure A.68c, shows the FTIR spectra of two samples collected in the Pasayten Wilder-

ness and Columbia River Gorge sites on that date. While both samples have comparable OM

concentrations (around 25 µg m−3) and visible biomass burning markers in their FTIR spectra,

the sample collected in the Columbia River Gorge site has substantially weaker signatures of

levoglucosan and lignin. This sample is also substantially more oxidized with prominent peaks

related to carboxylic acids, a major constituent of secondary bbOA (Yazdani et al., 2021c),

suggesting the prominent contribution of secondary bbOA. If we assume that the OM in

high-OM samples (e.g., > 20 µg m−3) collected in confirmed wildfire locations and periods (in

the northwestern US in August) can be completely attributed to biomass burning due to lack

of any other dominant source, bbOA (bbPOA and bbSOA) concentrations are 3.6 ± 2.6 times

more than those estimated using levoglucosan The latter is believed to be due a combined

effect of SOA condensation and degradation of levoglucosan.. This value is also reminiscent of

the OM concentration enhancement in the chamber experiments due to aging (Yazdani et al.,

2021c; Bertrand et al., 2017; Tiitta et al., 2016).

We performed cluster analysis on smoke-impacted samples identified by the smoke classifier

using k-means method (MacQueen, 1967). In this analysis, samples were clustered based

on similarity in their 2-norm normalized FTIR spectra in the 1300–4000 cm−1 region. As can

be seen from Fig. 6.9, biomass burning samples appear to be characterized not by a single

distinct profile but several recurring profiles that vary in inorganic fraction, but also organic

functional group contributions as observed through peak ratios. This analysis supports the

existence of variations found in BB factor profile from FTIR positive matrix factorization (PMF)

modeling in past studies (Hawkins and Russell, 2010; Russell et al., 2011; Takahama et al., 2011;

Bürki et al., 2020). Cluster 2 and 4 show smoke dominated samples due to having dominant

organic peaks. Cluster 2 has prominent acid and carbonyl peaks and weak signatures of fresh

biomass markers. Even cluster 4, which appears to be more similar to the fresh bbOA spectra

of environmental chamber experiments (e.g., Yazdani et al., 2021c) has considerably stronger

carbonyl peaks compared fresh bbOA in the chamber experiments (e.g., Fig. A.68). The latter

suggests that smoke-impacted aerosols in the atmosphere are relatively more oxidized.
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Figure 6.9 – The averaged normalized spectrum of six clusters of smoke-impacted samples.
Gray band show the mean ± one standard deviation. The shaded vertical rectangles show the
PTFE interference region. Number of samples in each cluster is indicated.

6.4 Concluding remarks

We found that FTIR is able to identify and quantify the fresh bbOA markers on PTFE filters with

a LOD of a few ng m−3. The good agreement of FTIR smoke detection using bbOA markers

was found against remote sensing for wildfires and prescribed burning events in the US in

2013. Levoglucosan concentrations estimated by FTIR were highly correlated (R2 = 0.93) to

those from a more sensitive analytical method, HPAEC-PAD, for a series of PTFE filter samples

collected in the IMPROVE network. A smoke classifier was developed that used only molecular

markers and carbonyl absorbances in the FTIR spectra and performed comparably (F1 score

= 0.90) to the smoke identification with a combination of HPAEC-PAD anhydrosaccharides

and WSOC measurements.

The new FTIR smoke detection method was used to study bbOA in the US at the scale of

the IMPROVE network in 2015 and showed good agreement with the recorded wildfires and

known residential wood burning events. We found that for around 20 % of samples collected

across the US in that year, levoglucosan carbon constituted more than 1 % of WSOC. Samples

affected by biomass burning were found to be characterized by several recurring FTIR profiles

that varied in organic and inorganic compositions, consistent with different smoke FTIR PMF

profiles identified in previous studies.

Atmospheric smoke-impacted samples were found to have weaker marker signatures com-

pared to fresh bbOA of previous chambers studies (e.g., Yazdani et al., 2021c). Prominent

carbonyl and carboxylic acid peaks were observed in atmospheric samples anticipated to be
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aged bbOA. We found the concentration of atmospheric bbOA to be, on average, 3.6 times

of that measured using levoglucosan concentrations due to the SOA condensation and the

degradation of levoglucosan.
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Abstract Globally, billions of people burn fuels indoors for cooking and heating, which con-

tributes to millions of premature deaths and chronic illnesses annually. Additionally, res-

idential burning contributes significantly to black carbon emissions, which are estimated

to have the highest global warming impact second to carbon dioxide. In this study, we use

Fourier transform infrared spectroscopy (FTIR) to analyze PM2.5 emissions collected on Teflon

membrane filters from fifteen cookstove types and five fuel types. We compare the FTIR mea-

surements to the thermal optical method EC-OC, gravimetric PM2.5, and polycyclic aromatic

hydrocarbons (PAHs) measurements from GC-MS. Only emissions from three fuel types (char-

coal, kerosene, and red oak wood) were above the minimum detection limit for the functional

group (FG) analysis using FTIR and OC-EC analysis using the thermal optical transmittance

(TOT) method. We find distinct spectral profiles for particulate emissions. Kerosene emissions

are dominated by aromatics and show the most distinct profiles compared to the unburned

fuel in the FTIR spectra. Charcoal particulate emissions are enriched in hydrocarbons likely

from the volatile fraction of charcoal and red oak emissions possess the most similar spectra to

the unburned fuel. We highlight the FGs associated the most with organic carbon (OC) using a

multivariate statistical method and show that organic carbon (OC) estimates from collocated

FTIR and TOT are highly correlated. We use the out-of-plane aromatic CH vibrational bands

in the FTIR spectra for the first time to quantify the aromatic fraction organic matter (OM)

and find that the abundance of aromatic compounds from FTIR is highly correlated with the

sum of PAHs from GC-MS measurements. The baseline in the FTIR spectra of particulate

emissions is also found to be informative about the abundance of elemental carbon (EC).

Since FTIR analysis is fast and non-destructive and provides complementary functional group

information, it can significantly reduce the need for thermal-optical measurements.

7.1 Introduction

Residential burning is a major source of organic carbon (OC), and contributes approximately

30% of global emissions of black carbon, which is estimated to have the second highest

global warming impact after carbon dioxide (Ramanathan et al., 2008; Bond et al., 2013). The

World Health Organization (WHO) estimates that 3–4 million premature deaths per year are

associated with exposure to household air pollution, mainly from solid-fuel burning (WHO,

2014). Recent studies have typically categorized fine particulate matter (PM2.5) emissions

from household fuel burn emissions by mass, organic carbon (OC), and elemental carbon (EC)

emission factors using gravimetric and thermal-optical methods (e.g., IMPROVE and NIOSH

protocols) (Roden et al., 2006; Sharma and Jain, 2019; Jetter et al., 2012). However, thermal-

optical EC/OC measurements take more than 45 minutes per sample and are completely

destructive, while providing limited information (OC and EC alone are only broad categories

of carbonaceous particles).

In contrast to thermal-optical methods, Fourier transform infrared spectroscopy (FTIR) mea-

surements take few minutes per sample, are non-destructive and highly reproducible, and

provide more cheminformatics. FTIR measurements have been shown to be in good agree-
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Figure 7.1 – Flow chart from sample collection to measurements, post-processing, and results.

ment with common methods for chemical characterization of organic matter (OM) such

as aerosols mass spectrometry (AMS) and and thermal-optical analysis (Takahama et al.,

2013; Dillner and Takahama, 2015; Reggente et al., 2016; Takahama et al., 2016; Yazdani et al.,

2021a,c; Boris et al., 2019). However, FTIR has not been extensively used to characterize

primary particulate emissions from residential burning.

In the current study, we used FTIR to quantify the organic functional group (FG) composition

of PM2.5 emissions from cookstove collected on polytetrafluoroethylene (PTFE) filters. We

found that OC estimates from FTIR measurements are in good agreement with those from

thermal optical transmittance (TOT). Our analysis highlighted spectral differences between

unburned fuels (charcoal, kerosene, red oak wood, alcohol, and liquefied petroleum gas)

and their particulate emissions during combustion. FTIR measurements also suggested

high abundances of aromatics and polycyclic aromatic hydrocarbons (PAHs) in particulate

emissions from charcoal, kerosene, and red oak wood, in agreement with gas chromatography-

mass spectrometry (GS-MS) measurements.

7.2 Materials & Methods

Details of cookstove testing, emissions sampling, OC-EC measurements, GC-MS PAH mea-

surements, FTIR measurements, and post-processing are illustrated via Figure 7.1’s flow chart

and described or cited to previous publications in subsections below.

In short, a range of stoves and fuels were tested for burn emissions, from which parallel PTFE

and quartz fiber (Qf) air membrane filter samples were collected. PTFE filters were used

to measure gravimetric PM2.5 mass, and then scanned using transmission-mode FTIR. The

quartz filters were used to measure TOT OC-EC as well as GC-MS PAHs. From these sets of

measurements, partial least squares regression (PLSR) models were built for the identification

of important FTIR group frequencies for OC and PAH, and peak fitting and quantification of

FGs, OC, and OM/OC were performed.
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Figure 7.2 – Photo showing 15 stoves used in this work. Charcoal stoves: (A) EcoZoom Jet, (B)
Prakti Leo, (C) CH4400, (D) Jiko Koa (inset), and (E) Éclair (inset). Kerosene stoves: (F) Model
2668 / Butterfly Wick and (G) Model 2412 / Butterfly Pressure. Red oak wood stoves: (H) Jiko
Poa, (I) Envirofit G3300, (J) Philips, (K) Home Stove (Biolite), (L) EcoChula XXL (inset), and (M)
3-Stone Fire (inset). Alcohol stove: (N) CleanCook (inset). LPG stove: (O) Solgas.

7.2.1 Cookstove emissions testing & sampling

Cookstove emission tests were conducted at the U.S. EPA cookstove test facility in Research

Triangle Park, NC. Details of the facility and protocols are described in previous publications

(Jetter and Kariher, 2009; Jetter et al., 2012; Shen et al., 2017a,b; Xie et al., 2018). We analyzed

152 samples from 15 different stoves and five fuel types, pictured in Figure 7.2. Fuels tested

covered charcoal (56 samples), kerosene (21 samples), red oak wood (69 samples), alcohol (3

samples), and liquefied petroleum gas (LPG, 3 samples).

In this study, particulate emissions from stoves during the water boiling test (WBT) were

sampled. The WBT protocol (version 4, Global Alliance for Clean Cookstoves, 2014) includes

three test phases: (1) a high-power cold-start (CS) phase in which the stove, pot, and water are

at ambient temperature; (2) a high-power hot-start (HS) in which the stove is hot; and (3) a

low-power simmer phase (SIM) in which the water temperature is kept 3 ◦C below the boiling

point (Fig. A.69) (Jetter et al., 2012). A modified protocol described in Jetter et al. (2012) was

used for the charcoal stove.

PM2.5 was sampled isokinetically on Qf (47-mm diameter Tissuquartz™ pure quartz no binder,

Pall Corporation) filters and PTFE membrane filters (47-mm diameter Teflo® membrane, Pall

Corporation) positioned in parallel and downstream of PM2.5 cyclones (URG; Chapel Hill,

NC) at a flow rate of 16.7 liters per minute. Aerosols were also sampled downstream of the

PTFE filter using a Qf back filter for artifact correction. The filter-based PM sampling was

conducted in a primary dilution tunnel for low-emission fuel-cookstove combinations (e.g.,
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forced-draft biomass stoves), and in a secondary dilution tunnel for those with high emissions

(e.g., natural-draft biomass stoves) to avoid overloading filters. After sampling, filters were

stored in filter petri dishes at 253 K to minimize volatilization and chemical reactions.

7.2.2 Measurements

From the PTFE and Qf filter samples collected, three quantitative measurements were ob-

tained on all samples for use in FTIR post-processing: gravimetric PM2.5 mass, TOT OC-EC

measurements, and GC-MS PAH measurements. FTIR spectra were gathered in transmission

mode on the collected PTFE filters.

PM2.5 mass was determined by measuring the PTFE filters gravimetrically with a microbalance

(MC5, Sartorius, Germany) before and after sampling. These masses are used for artifact-

correction on TOT OC-EC measurements and GC-MS PAH measurements, as well as for

comparison with functional group quantifications from FTIR post-processing.

OC and EC on Qf samples were measured using a thermal-optical transmittance instrument

(TOT; Sunset Laboratory, Portland, OR) and a revised NIOSH method 5040 (NIOSH, 1999).

Blank PTFE and Qf filters were also collected at the cookstove test facility and the associated

PM2.5 mass, OC, and EC backgrounds were measured and subtracted from test samples. In

order to make measurements on Qf (EC, OC, GC-MS) and PTFE (FTIR, gravimetric) filters more

comparable (i.e., to minimize the differences due to volatilization and adsorption artifacts

for semivolatile aerosols) artifact correction was performed. For this purpose, the values

measured on the Qf back filters were subtracted from those on the Qf parallel samples in

parallel to the PTFE filter.

Thermal extraction GC-MS (TEx-GC-MS) was utilized to identify and quantify individual

PAHs in 31 sampled cookstove emissions as described by Shen et al. 2017(Shen et al., 2017b).

Briefly, a 0.4 cm2 Qf punch (or three punches for artifact filters and low-emission samples

from LPG) was carefully placed inside a glass tube pre-baked to 550 ◦C and spiked with 1 µL of

an internal standard mixture containing deuterated PAH compounds. Following automated

tube insertion into the oven unit, the sample was heated to 325 ◦C at a rate of 50 ◦C/min

and held for 11 min; 50 ml/min of He flowed over the sample. Desorbate was directed to a

cryogenically cooled programmable temperature vaporization inlet at -85 ◦C operating in

splitless mode. The GC inlet was rapidly heated at 720 ◦C/min to 325 ◦C. The sample was

chromatographed on an ultralow-bleed capillary column (DB-5, 30 m × 0.25 mm I.D. × 0.25

µm film thickness) with helium as the carrier gas (1 ml/min). The GC oven was temperature-

programmed as follows: 65 ◦C for 10 min ramped to 325 ◦C at a rate of 10 ◦C/min and held

for 15 min. Chromatographed compounds were detected using an Agilent 5973 MS detector

operating in selected ion monitoring mode. The internal standard method and a multilevel,

linear (R2 > 0.9) calibration was used (0.1–1 ng) for PAH quantification. A mid-level calibration

check was performed daily prior to sample analysis and was used as a continuing calibration

in cases where measured and fixed concentrations were not within 20%. Daily checks were
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within 20% for most targets even when replicated over months. Mid-level check recoveries for

PAHs were within 105±33% on average. PAHs below their detection limit were reported as

"ND". Retention time shifts were negligible (< 1%) throughout the analysis. Target analyte

validation was achieved using the retention times and isotopic fragment ratios exceeding a 3:1

signal-noise ratio. Carryover tests were performed by reheating the TEx sample/apparatus

immediately following the initial extraction and then examining the GC-MS chromatogram

for the presence of target compounds, which indicated an extraction efficiency of > 98%.

Naphthalene was the only PAH detected (0.16±0.11 ng) above its method detection limit (0.02

ng) in the blank filters. Similar to EC and OC, artifact correction was performed for PAHs by

subtracting value of the quartz back filters from those of the parallel filters.

For FTIR analysis, the mid-infrared spectra in the 400–4000 cm−1 range were obtained using a

Bruker Tensor 27 FTIR instrument equipped with a α deuterated lanthanum alanine doped

triglycine sulfate (DLaTGS) detector, at a resolution of 4 cm−1, in transmission mode, averaged

over 64 scans.

7.2.3 Post-processing

In the following subsections, the post-processing of FTIR spectra to identify and quantify FGs

is described or cited to previous publications.

Baseline correction and blank subtraction

The FTIR spectra were baseline-corrected using smoothing splines to exclude the contribution

of light scattering by the PTFE filter membrane and particles, and absorption by carbonaceous

material (Kuzmiakova et al., 2016; Russo et al., 2014; Parks et al., 2019). After baseline cor-

rection, a scaled version of the baseline-corrected blank filter spectrum was subtracted from

the baseline-corrected sample spectra (Yazdani et al., 2021c). This procedure allowed us to

identify and quantify some organic FG absorptions such as the out-of-plane (OOP) aromatic

CH bands.

Determination of influential functional groups for TOT OC

In order to identify the FGs that contribute the most to TOT OC, we statistically combined

collocated TOT OC (on Qf filters) with FTIR (on PTFE filter) measurements. For this purpose,

artifact-corrected TOT OC concentrations regressed against the baseline-corrected, blank-

subtracted FTIR spectra using partial least squares regression (PLSR). Thereafter, influential

FGs for OC were determined based on their VIP scores. By regressing TOT OC concentrations

against FTIR spectra, we seek the solution of the following equation:

y = Xb+e, (7.1)
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where X (n×p) is the FTIR spectra matrix (n samples and p wavenumbers), y (n×1) is the

vector TOT OC concentration, and e is the vector of residuals. We chose the univariate PLSR

to solve the equation above (Wold et al., 1983). Univariate PLSR projects X onto basis P with

orthogonal scores T and residual matrix E (Eq. 7.2) such that the covariance between each

score column and y is maximized. In Eq. (7.3), b is the regression coefficient of y as a function

of scores (T) and f is the vector of residuals.

X = TPT +E, (7.2)

y = Tb+ f. (7.3)

After solving the regression equation using PLSR, a repeated 10-fold cross validation was

applied to indicate the optimal number of latent variables. We used variable importance in

projection (VIP) (Wold et al., 1993; Chong and Jun, 2005; Takahama et al., 2016), to identify the

important FGs. The VIP score of the jth wavenumber is calculated by considering all h latent

variables in the model as shown in Eq. (7.4):

V I P j =
√√√√p

∑h
k=1 SS(bk tk )(w j k /‖wk‖)2∑h

k=1 SS(bk tk )
, (7.4)

where SS(bk tk ) = b2
k tt

k tk . Since the average of squared VIP scores is equal to one, wavenumbers

with VIP scores greater than one are considered to have higher-than-average contribution to

the response variable (i.e., are influential).

Quantification of functional groups

After determining the important functional groups (by VIP scores method), their abundances

were quantified using a multiple peak-fitting algorithm (Takahama et al., 2013; Reggente

et al., 2019b). Aliphatic CH (aCH), aromatic CH (rCH), alcohol COH (aCOH), carboxylic acid

(COOH), and non-acid carbonyl (naCO) were quantified in this work. OC concentrations and

OM:OC ratios were then calculated using FG abundances with few assumptions about the

number of carbon atoms attached to each FG (Chhabra et al., 2011b; Russell, 2003; Maria et al.,

2002).

7.3 Results & Discussion

In the following sub sections, first, we compare OC, EC, and PM2.5 measurements among

different fuel types, test phases, and stoves. Thereafter, FTIR spectra of particulate emissions

are analyzed qualitatively and compared to those of unburned fuels. TOT OC measurements

are then combined statistically with the FTIR spectra to identify FGs the highest association

with OC. Finally, influential FGs are quantified to estimate OC, OM, and OM/OC, as well as to
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Figure 7.3 – Artifact-corrected emission factors (mg/MJ) of PM2.5 (gravimetric), TOT OC, and
EC separated by fuel type and test phase (CS: cold start, HS: hot start, SIM: simmering). Blue
crosses show the median for each category.

compare with TOT OC and GC-MS PAH measurements.

7.3.1 OC, EC, and PM2.5 emission factors

OC, EC, and PM2.5 emission factors, expressed in grams of emission per MJ of energy delivered

to the pot, are shown in Fig. 7.3. We observe a significant variation across red oak stoves in

terms emissions factors. In particular, the 3-Stone fire and the Envirofit G3300 stove (natural

draft) have relatively high emission factors of EC and OC accompanied by lower modified

combustion efficiencies (MCEs; Fig. A.70). On the other hand, gasifier stoves such as EcoChula

XXL have higher MCEs and around 10 times lower EC and OC emissions. Lower absorbances

are also noticeable in the FTIR spectra of EcoChula XXL stove especially in the CS and HS

phases. EC and OC emission factors appear to be slightly lower in the SIM phase compared to

CS and HS phases. Nevertheless, the variations observed in the PM composition form red oak

combustion across phases (characterized by elemental-carbon-to-total-carbon ratio, EC/TC,

where TC = EC + OC) is not substantial when compared to the variability in each phase (Fig.

A.70 and). The average EC/TC for red oak combustion aerosols is 0.58±0.19. This value is on

the higher end of those reported in previous studies (0.07–0.64) (Roden et al., 2006; Novakov
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et al., 2000).

Kerosene combustion has on average 2 to 10 times lower EC, OC, and PM2.5 emission factors

compared to red oak and charcoal. The Butterfly model 2412 pressure-style cookstove that

uses kerosene as fuel shows relatively high emission across all phases in three experiments.

The high OC emissions are corroborated by high absorbances in the FTIR spectra (Fig. A.70)

and are believed to be because of its orifice being clogged. Omitting the mentioned outlier

samples, the variation of emission factors across phases are small. The average EC/TC ratio

for kerosene is 0.44±0.31 and appears to be in general lower in the SIM phase (Fig. A.70).

The variation in emission factors across phases are more significant for charcoal combustion

emissions compared to other fuels. The HS phase has the highest OC emission factor (Fig. 7.3).

The EC emission factor and the EC/TC ratio increase significantly in the CS phase. The average

EC/TC ratios of charcoal combustion aerosols for the CS phase and all phases combined are

0.78±0.23 and 0.30±0.40, respectively.

Inorganic salts (e.g., ammonium sulfate and ammonium nitrate) are believed to contribute neg-

ligibly to the emissions for the majority of samples as EC and OM (estimated as OM/OC×OC,

where OM/OC is estimated from FTIR measurements) constitute the majority of the gravimetrically-

measured PM2.5 mass (Fig. A.71). However, for a few wood and charcoal combustion samples

PM2.5 is considerably higher than the sum of EC and OM. For example, the EcoZoom and Jiko

Koa stoves (both ceramic-insulated) have higher PM2.5 and low EC during the SIM phase (Fig.

A.70) accompanied by a relatively lower MCE. These are among samples with relatively high

inorganic nitrate absorbances in their FTIR spectra (Fig. A.31).

7.3.2 FTIR spectra

Figure 7.4 exhibits distinct spectral profiles for PM2.5 emitted from combustion of different

fuel types. The FTIR spectra of alcohol and LPG particulate emissions were omitted as they

were noisy and had organic absorptions comparable to those of blank filters. This observation

is corroborated by the negative or close-to-zero TOT OC measurements for alcohol and LPG

emissions.

As can be seen from Fig. 7.4, the average spectra of red oak combustion aerosols for different

phases are very similar to the spectrum of wood (Pandey, 1999). The strong and broad

band at 3500 cm−1 related to aCOH is observed in the spectra of all phases. This group is

abundant in wood constituents (lignin, cellulose, and hemicellulose). In addition, medium

aCH absorbances at 2800–3000 cm−1, medium carbonyl CO absorbances at around 1700 cm−1,

and strong aromatic C –– C absorbances at 1600 cm−1 are observed in the spectra of red oak

combustion aerosols. The absorption band attributed to the lignin aromatic ring stretching

vibration at 1515 cm−1 is also prominent in several spectra (Boeriu et al., 2004), suggesting

the existence of aromatic compounds with similar structure to monolignols. Aromatic CH

OOP bands at around 750 cm−1 (Centrone et al., 2005) and occasionally aromatic stretching
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Figure 7.4 – Average mid-infrared spectra of unburned fuels and their particulate emissions
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aCH bands at around 3050 cm−1 are also visible in the FTIR spectra. The mean spectrum

of the SIM phase has the weakest aromatic OOP band among all phases. Levoglucosan

signatures described by Yazdani et al. (2021c) are observed in several spectra for all three

phases. Inorganic nitrate absorbances at 1400 and 830 cm−1 are visible in some red oak

samples especially in CS and HS phases. Among all fuel types, the spectra of particulate

emissions from red oak present the greatest similarity to the unburned fuel except for some

samples that are dominated by aromatic signatures. No systematic difference between the

spectral profiles of emissions from different stove types (e.g., 3-stone fire, natural draft, and

forced draft) was observed (Fig. A.73).

Kerosene is predominately composed of hydrocarbons with 6–16 carbons. The majority of

these hydrocarbons are straight-chain and cyclic and the rest are aromatic (Collins, 2007).

The mid-infrared spectrum of kerosene from Xia et al. (2017) has relatively strong aCH peaks

and weak rCH stretching (3050 cm−1) absorbances. The elemental analysis presented in

Fig. A.74 also shows the insignificant contribution of elements other than H and C and a

molar H/C ratio about 2.1. The relative aCH absorbances, however, are much weaker in

the particulate emissions of kerosene combustion in all three phases with high CH3/CH2

peak ratios that indicate branched or small hydrocarbons. By contrast, rCH absorptions are

more prominent in the particulate emissions (Fig. 7.4), suggesting a significant formation

of aromatic and PAHs during the combustion process. In the majority of spectra, moderate

aCOH absorbances are observed. In several samples taken from the emissions of the Butterfly

model 2668 wick-style cookstove, a sharp CO carbonyl peak at 1695 cm−1 is observed (Fig.

A.73). This peak is accompanied by a broad peak at 2400–3400 cm−1 (with doublets at 2400

and 2600 cm−1 attributed to the dimerized carboxylic acid OH), suggesting high abundances

of carboxylic acids (Pavia et al., 2008). The carbonyl peak with a relatively low frequency

and the high abundance of rCH indicate the existence of aromatic acids (Pavia et al., 2008).

Aromatic signatures appear to be more prominent in the CS and HS phases. The combustion

mechanism used (wick or orifice) appears to have a dominant effect on the composition of

the emitted OM (Fig. A.73).

The charcoal spectrum taken from (Guo and Bustin, 1998) has weak aCH and carbonyl CO

and strong aromatic C –– C and aCOH absorbances. The weak aCH peak are consistent with the

low hydrogen content of the fuel (Fig. A.74). However, the mid-infrared spectra of particulate

emissions from charcoal combustion show strong aCH peaks (Fig. 7.4). The prominent aCH

are believed to be associated with volatile compounds emitted from charcoal. The same

observation has been reported for coal combustion particulate emissions (Yazdani et al.,

2021c). The aCH peaks are especially prominent in the HS phase for which coal is added

to the hot bed (Fig. A.69). In addition, the carbonyl CO peak at 1700 cm−1 emerges in the

charcoal combustion spectra in the HS phase, while being absent in the charcoal spectrum

itself. This observation suggests the formation of carbonyls during charcoal pyrolysis and

burning. Charcoal combustion in the cold start phase has the highest EC emission factor

(Fig. 7.3), concurrent with prominent C –– C absorbances at around 1600 cm−1 in the FTIR

spectra. The ratio of the aromatic C –– C peak (1600 cm−1) to aromatic CH (750 cm−1) is higher

137



Chapter 7

0.0

0.5

1.0

1.5

2.0

2.5

1000200030004000
Wavenumber (cm-1)

VI
P 

sc
or

e

0

1

2

3

4

5

6

1000200030004000
Wavenumber (cm-1)

VI
P 

sc
or

e

0

1

2

3

4

1000200030004000
Wavenumber (cm-1)

VI
P 

sc
or

e

0

2

4

6

8

1000200030004000
Wavenumber (cm-1)

VI
P 

sc
or

e

0

2

4

6

8

1000200030004000
Wavenumber (cm-1)

VI
P 

sc
or

e

0

2

4

6

8

1000200030004000
Wavenumber (cm-1)

VI
P 

sc
or

e

0

1

2

3

4

5

6

1000200030004000
Wavenumber (cm-1)

VI
P 

sc
or

e

Charcoal

Kerosene

Red Oak

All samples

0

2

4

6

8

1000200030004000
Wavenumber (cm-1)

VI
P 

sc
or

e

aCH

aCHs

rCHs

aCHs

aCH
aCOH

aCOH

rC=C

Carboxylic OHs

Carbonyl COs
rCHoop

rC=C

rCHoop

Carbonyl COs

aCOH

rC=C

P
TF

E
 F

ilt
er

rCHoop

Figure 7.5 – VIP scores of TOT OC regressed against baseline-corrected mid-infrared ab-
sorbances for each fuel type. Important group frequencies for each fuel are indicated. The
regions with negative (positive) regression coefficients are shown in red (blue).

for charcoal burning aerosols compared to other fuels, suggesting that aromatic compounds

are poor in hydrogen ( –– C – H groups).

7.3.3 Influential group frequencies for OC

As seen in Fig. 7.5, the absorption region of the aCOH group in the 3400–3500 cm−1 range

has the highest VIP scores for red oak combustion, suggesting this group is the the most

influential FG for the OC emitted from red oak combustion. After aCOH, the carbonyl CO,

aromatic ring C –– C, and out-of-plane aromatic CH, and aCH regions have the highest VIP

scores, respectively. As expected, although the inorganic nitrate peak is prominent in spectra

of the oak burning aerosols at 1400 cm−1, this group does not have either high VIP scores or

positive regression coefficients of TOT OC. The greater-than-one VIP scores in the 2400–3400

cm−1 range are believed to indicate the alcohol group in sugar moieties, which are abundant

in wood burning aerosols. The 3100–3400 cm−1 region, in which ammonium absorbs strongly,

has high VIP scores with negative regression coefficients for all fuel. The PLSR models use the

information from this region to correct the ammonium interference with organics.

For aerosols emitted from kerosene combustion, both the out-of-plane and the stretching

bands of rCH have the highest high VIP scores, indicating the importance of aromatic com-

pounds for OC emitted from kerosene combustion. The carbonyl peak along with the region
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indicating the dimerized acid OH have also high VIP scores, suggesting that carboxylic acids

are also important constituents of OC. Although aCH is the most important group in unburned

kerosene, it does appear to be as important in OC emitted from kerosene combustion (i.e., no

high VIP scores).

For aerosols emitted from charcoal combustion, the aCH region (2800–3000 cm−1) has con-

siderably higher VIP scores than other FGs, suggesting that the majority of OC is due to this

functional group. Regions attributed to the aromatic ring C –– C, carbonyl CO, and aCOH have,

in order, the highest VIP scores after aCH.

When the PLSR model is developed using all samples in stead of each fuel, the resulting VIP

scores are similar to the average of previously calculated VIP scores for each fuel. However, the

regression is pulled more toward those of red oak aerosols due to their higher OC emissions.

Based on the VIP scores, aromatic CH (rCH), alcohol COH (aCOH), aliphatic CH (aCH), aro-

matic C –– C, non-acid carbonyl (naCO), and carboxylic acid COOH are the best predictors

for OC emitted from the combustion of red oak, kerosene, and charcoal. Since FGs such

as amine, organonitrate, and carboxylate absorb in the same region as the aromatic C –– C,

the quantification of C –– C group is uncertain. Moreover, the absorption coefficient of C –– C

band is variable and is enhanced by the irregularity of aromatic molecules caused by different

ring substitutions (Russo et al., 2014), adding to this uncertainty. We used the rCH FG as an

alternative means to quantify carbon and hydrogen atoms of aromatic rings.

7.3.4 Quantifying functional groups from FTIR spectra

aCH, rCH, naCO, COOH, and COH groups were quantified by peak fitting to mid-infrared.

The results of peak fitting are shown in Fig. 7.6 in terms of OM emission factors and OM/OC

ratios. Red oak aerosols have the highest mean OM emissions factors for all phases (Fig. 7.6),

consistent with TOT OC measurements (Fig. 7.3). Among different phases, the simmering

phase has a slightly lowest OM emission. For all three phases, aCOH, aCH, and rCH groups

constitute the majority OM. The rCH group abundance is significantly lower in the simmering

phase. The lower concentration of this group in the SIM phase is also observed for other fuel

types. This is also reflected in the higher OM/OC ratio of this phase compared to other phases.

The average OM/OC ratio of red oak combustion aerosols is estimated to be around 1.7.

Kerosene combustion OM is estimated to have the lowest average OM emissions factors

compared to other fuels in all phases (Fig. 7.6; around 4 times lower than red oak). No clear

difference is observed between the mean OM emission factor among different phases. The

rCH is estimated to be the most prominent FG for the kerosene burning aerosols followed in

order by aCOH, aCH, and COOH. The average OM/OC ratio is 1.8 for the kerosene aerosols.

Like red oak, the simmering phase has the highest OM/OC ratio due to a higher abundance

of abundance COOH (more oxygenated) and lower abundance of rCH (likely due to a more

complete combustion).

139



Chapter 7

CS HS SIM CS HS SIM CS HS SIM
0

10

20

30

40

Em
is
si
on

 (m
g
M
J)

CS HS SIM CS HS SIM CS HS SIM
0

5

10

15

20

Ar
ea

l C
on

ce
ntr

ati
on

 (µ
g

cm
2 )

naCO
carboxylicCOOH
alcoholCOH
aromaticCH
alkaneCH

Charcoal Kerosene Red Oak

naCO
COOH
aCOH
rCH
aCH

CS HS SIM CS HS SIM CS HS SIM
1.00

1.25

1.50

1.75

2.00

O
M
/O
C

Figure 7.6 – OM emission factors calculated from mid-infrared spectroscopy, separated by
functional group contribution, and averaged over each phase (upper row). OM/OC ratios
calculated from mid-infrared spectroscopy, separated by functional group contribution (lower
row). CS = cold start, HS = hot start, SIM = simmering.

140



7.3. Results & Discussion
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Figure 7.7 – Scatter plot comparing OC (areal density on filters) estimated from TOT and FTIR.

Charcoal burning aerosols have average OM emission factors slightly lower than those of red

oak combustion (Fig. 7.6). The aCH group is the most important FG for charcoal burning

aerosols constituting up to 50 % of OM. The aCOH and rCH are the most abundant groups

after aCH. Other FGs exist in negligible amounts in charcoal burning aerosols. The average

OM/OC ratio for charcoal burning aerosols is 1.6, slightly lower than that of other fuels. Like

other fuel types, the simmering phase has the highest OM/OC ratio and the lowest abundance

of aromatics.

FTIR OC estimated from the abundances of functional groups is highly correlated with TOT

OC measurements (R2 = 0.83; Fig. 7.7). However, FTIR OC underpredicts TOT OC by around

40% although artifact correction has been performed for TOT OC using Qf back filters. This

underprediction can be attributed to quartz adsorption artifacts, PTFE volatilization artifacts

(Subramanian et al., 2004), and the undermentioned of the fractional carbon associated with

each FG (possibly due to presence of unmeasured functional groups) (Bürki et al., 2020). The

operationally-defined EC and OC separation threshold for TOT might also be another cause of

this discrepancy

The concentration of rCH was estimated in this work for the first time using the peak at 750

cm−1 calibrated to laboratory standards of aerosolized anthracene. These estimates are highly

correlated (R2 = 0.84; slope = 19.6) with the total PAH concentration by CG/MS (Fig. A.77).

The VIP scores of GC/MS total PAH concentration regressed against mid-infrared absorbances

also indicate the importance of the 750 cm−1 band for PAHs (Fig. A.78). The magnitude of

PAHs and aromatic estimated using this band is almost an order of magnitude higher than

that measured by GC/MS probably due to accounting for other unmeasured aromatic and

PAH compounds. Previous studies correlate aromatics and PAHs with mutagenicity and

carcinogenicity (Riedel et al., 2018; Shiraiwa et al., 2017b; Gibbs-Flournoy et al., 2018; Mutlu

Esra et al., 2016). Our analysis shows that these compounds are abundant even in relatively
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clean fuels (i.e., with low emission factor) like kerosene, suggesting their harmfulness. This

observation along with the highly oxygenated FGs present in kerosene OM is consistent with

previous studies providing some evidence that kerosene emissions may impair lung function

and increase infectious illness, asthma, and cancer risks (Lam et al., 2012).

Graphitic carbon contributes to the mid-infrared spectra through electronic transition absorp-

tions (Russo et al., 2014; Parks et al., 2021). After eliminating the variability of FTIR baseline

due to PTFE filter membrane, we regressed the baseline value at 4000 cm−1 against EC and OC

(major components of PM2.5 in this study). The results of this regression suggest a relatively

large and statistically significant coefficient for EC (2.2 times the coefficient of OC, R2 = 0.72;

Fig. A.80). This observation suggests that EC contributes significantly to the FTIR baseline of

combustion aerosols. Thus, this baseline might be used to extract information about EC.
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8.1 Summary and conclusion

Chemical characterization of OM is crucial for understanding its sources and its impacts on

the climate and human health. Atmospheric OM is a complex mixture of thousands of species

from different sources that undergo various processes during their lifetime in the atmosphere.

These features make the characterization of OM difficult. Mid-infrared spectroscopy has a

great potential as an informative analytical tool for aerosol chemical analysis. Nevertheless,

its signal complexity and lack of systematic methods for spectrum interpretation has impeded

its widespread use by the community.

In this work mid-infrared spectroscopy was used as the main technique to characterize fine

OM in samples collected on PTFE filters from the atmosphere, smog chambers, and cookstoves.

We showed that FTIR spectroscopy provides measurements that are consistent with other

analytical techniques (e.g., aerosol mass spectrometry, ion chromatography, gas chromatogra-

phy, and thermal optical techniques) in terms of the OM mass concentration (Chapters 3 and

7), functional group (FG) composition (Chapters 3 –4), elemental ratios (Chapter 4), and the

concentrations certain marker molecules (Chapters 3–7) either qualitatively or quantitatively.

The statistical combination of FTIR with AMS measurements helped us better understand

the molecular structure of species associated with different small and large mass fragments

in the AMS spectra (Chapter 4). Since AMS is widely adopted by the aerosol community, a

better interpretation of its complex spectra can be beneficial. This combination also allowed

us to take advantage of the high-temporal resolution of AMS measurements and the direct FG

measurements by FTIR in order to estimate the high-temporal-resolution FG composition of

OM (not readily available from either technique individually). The latter was used to study the

dynamic evolution of OM during the course of oxidation in terms of formation of different

oxygenated FGs based on emission sources, oxidants used, and exposure time.

The ability of FTIR to provide information about specific marker molecules and the molecular

structure of OM (apart from its FG composition) did not received enough attention in previous

studies. These two features of FTIR spectroscopy were emphasized more in this work as they
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provide very insightful information about OM sources and processes in the atmosphere (e.g.,

fragmentation). We found that in addition to the functional group composition, FTIR can be

used to provide additional information about the average molecular structure of OM (e.g.,

mean molecular weight and carbon number; Chapter 1) through the variations in the mid-

infrared spectral profiles. Certain bbOA marker molecules (anhydrosaccharides and lignin-like

compounds) were also identified and quantified using their FTIR fingerprints, showing good

agreement with other analytical techniques (Chapter 3-6). These signatures were used to

quantify the evolution of fresh bbOA with aging (Chapter 5) and to identify smoke-impacted

atmospheric samples (Chapter 6). The identification of marker molecules using FTIR on PTFE

filters does not require any prior sample preparation, is fast and non-destructive, and can be

used at the scale of large air pollution monitoring networks. These characteristics make FTIR

advantageous over time consuming, destructive, and more expensive separation and mass

spectroscopic techniques for the study of longterm aerosol-related trends at large scales.

In this thesis, several aspects of data post-processing on PTFE filter samples were developed

and improved. For example, often absorptions below 1500 cm−1 were omitted in previous FTIR

studies on PTFE filter samples. This omission was mainly due to the significant interference

from C – F bands of the PTFE membrane in this region. In Chapter 3, the baseline correction

algorithm was extended to wavenumbers as low as 400 cm−1. It was shown that in spite of

the significant interference, quantitative information about certain organic and inorganic

species can be obtained from the 400–1500 cm−1 region (e.g., levoglucosan, PAHs, sulfate,

inorganic and organic nitrate). In Chapter 7, after manipulating the baseline of FTIR spectra

to account for the variations in scattering by PTFE filters, quantitative information about

elemental carbon (EC) was obtained from the baseline. The latter can be especially important

for the analysis of EC in monitoring networks, which is currently carried out using time-

consuming thermal optical methods. As another example, a Fourier self-deconvolution

code was developed to analyze overlapping peaks in the chamber studies (Chapter 3). This

algorithm proved useful for the analysis of the 1500–1800 cm−1 region in the FTIR spectra of

particulate matter, which contains several overlapping peaks (e.g., carbonyl, amine, amide,

aromatic and alkene C –– C, carboxylate C –– O, and organic nitrate).

8.2 Outlook and improvements

We found that FTIR spectral profiles can be used to identify the chemical environment in

which bonds are vibrating. This can especially be important in regard to the identification of

the phase state of OM, which is a determining factor regarding its impact on climate change

and air pollution (Shiraiwa et al., 2017a). Although the feasibility of determining the phase

state of OM was discussed in this work, it was treated rather briefly and merits further attention

given its importance. Using a wider set of atmospherically-relevant laboratory standards can

be beneficial for a robust estimation of the phase state.

Although the common belief has been that the identification individual molecules with FTIR
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is not feasible in the condensed phase mixtures due to the broad absorption bands (Nozière

et al., 2015), we showed that FTIR can be used to identify and quantify bbOA marker molecules

with concentrations in the low ng m−3 range in complex atmospheric mixtures. An effort to

differentiate between signatures and general spectral profiles of different types of biomass

burning (e.g., hardwood, softwood, grass, and leaves) can be useful for a more detailed source

apportionment of atmospheric bbOA. In addition, the identification of marker signatures

in the FTIR spectra for other important atmospheric POA and SOA sources such as fossil

fuel combustion and biogenic emissions can considerably improve our understanding of the

contribution these sources to atmospheric aerosols at large scales.

The wood smoke identification method developed in Chapter 6 shows the promising potential

of FTIR to analyze bbOA at the scale of large monitoring networks. This method might be

used to study bbOA concentrations, and their temporal and spatial distributions over multiple

years to better characterize the trend and impact of biomass burning on the air pollution. In

addition, this method can be used to validate the chemical transport models with regard to

bbOA concentrations, and to help policymakers with respect to emission-reduction policies.

All FTIR analyses in this work were performed on PTFE filters and showed good agreement

with other offline (e.g., TOR-OC, GS-MS, IC) and online (AMS) analytical techniques. However,

an efforts to better characterize sampling artifacts such as the loss of semi-volatile compounds

on these filters can be beneficial to understand the biases. Contrary to the US, the majority

of monitoring networks in Europe employ quartz fiber filters, which are considerably more

opaque in the mid-infrared range compared to PTFE filters. Our primary analysis of atmo-

spheric PM2.5 collected on quartz filters using a single-bounce ATR instrument (Fig. A.81)

suggested that FTIR spectra obtained from quartz filters are suitable at least for qualitative

analyses. The applicability of qualitative and quantitative FTIR analyses on quartz filter sam-

ples directly or indirectly (e.g., via electrospray extraction; Arangio et al., 2019) merits further

investigation. In addition, the collection of particles on transparent substrates coupled with a

semi-online FTIR analysis can alleviate certain shortcomings of FTIR analysis on PTFE filters

related to its temporal resolution and interference of organic and inorganic peaks with those

of the PTFE membrane. The latter has been the focus of a recent study by Dudani (2021).

In addition to hardware improvements suggested in the previous paragraph, the post-processing

algorithms developed or improved in this work might be incorporated as a standard suite of

analyses for future FTIR studies on PTFE filter samples.
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A.1 Appendix to chapter 2

A.1.1 Correlation matrix heat map

Figure A.1 – Correlation matrix heat map (absolute values) of mid-infrared spectra of the
laboratory standards in aliphatic C−H region. In this heat map, absolute values of correlation
coefficient of absorbances at each wavenumber with absorbances at other wavenumbers are
demonstrated (ranging between zero to one).

A.1.2 Relating mixture property to pure compound property

Laboratory standards which have been used for model development are aerosols of single

organic compounds, while atmospheric organic aerosols are generally complex mixtures

of multitude of species (Hallquist et al., 2009). This fundamental difference highlights the

importance of investigating the validity of the models for mixtures. Herein, the validity of the

models developed on pure compounds is rationalized mathematically for estimating mean

molecular properties of a non-interacting mixture.

In the aliphatic C−H region, a particular absorbance profile is observed due to different

absorbance at each wavenumber. The absorbance profile is dependent on areal molar density

n (mole per area of the filter) and the absorption coefficient ε= ε(ν̃) of the compound, which

is a function of wavenumber (ν̃). Thus, the absorbance profile A can be written as

A = nε, (A.1)

In this work, spectra are normalized before applying the models. This normalization step is

done by a function denoted as g . The function g scales the profile between 0 and 1 regardless

of the molar abundance, thus is scale invariant, meaning that

g (x) = g (sx), (A.2)
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where s is a an arbitrary scalar. After the normalization step, the model (function) f is applied

to the spectra for estimating a molecular property (carbon number or molecular weight) of

the laboratory standards or atmospheric samples. f is linear if

f (
∑

i
xi ) =∑

i
f (xi ), (A.3)

which is true for the linear calibration models used in this work. A pure compound i with the

absorption coefficient εi is estimated to have the property Φi calculated by a scale-invariant

model f (g (.)) (combining the model with the normalization step),

Φi = f (g (Ai )) = f (g (εi )). (A.4)

For a mixture, the true mean property Φ̄tr ue can be written as an molar average of the model

estimates for pure compounds assuming no strong interaction between them in the mixture,

Φ̄tr ue =
∑

i niΦi∑
i ni

=
∑

i ni f (g (εi ))∑
i ni

(A.5)

for which if the model is linear,∑
i ni f (g (εi ))∑

i ni
= f

(∑
i ni g (εi )∑

i ni

)
= Φ̄l i n . (A.6)

However, when applying the models to a mixture spectrum, the actual value of Φ̄ is estimated

from the measured mixture absorbance profile, which is the sum of pure compound spectra,∑
i Ai as

Φ̄mi x = f

(
g

(∑
i

Ai

))
. (A.7)

Since the normalization function g scales the profile between 0 and 1, i.e. g (x) = x/max(x),

the true mixture mean assuming a linear model will be:

Φ̄l i n = f

(∑
i ni g (εi )∑

i ni

)
= f

(∑
i
ξi g (εi )

)
= f

(∑
i

ξiεi

max(εi )

)
, (A.8)

where ξi = ni /
∑

i ni is the mole fraction of the i th component in the mixture. However, the

estimated molecular property for a mixture based on the mixture spectrum (Φ̄mi x ) is

Φ̄mi x = f

(∑
i

Ai

)
= f

( ∑
i niεi

max(
∑

i niεi )

)
= f

( ∑
i ξiεi

max(
∑

i ξiεi )

)
= f

(∑
i

ξiεi

max(
∑

i ξiεi )

)
. (A.9)

As a result, Φ̄mi x and Φ̄l i n are different because of their different denominators (max(
∑

i ξiεi )

and max(εi )). This means that the true mean property of a mixture is not necessarily the

property estimated by applying the model to the mixture spectrum. The difference is, however,

negligible as long as the models are linear and the compounds in the mixture have relatively

similar absorption coefficients. These two conditions are valid for majority of compounds
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considered in the laboratory standards.

A.1.3 Elemental carbon and carbon number
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Figure A.2 – Scatter plot showing the relationship between collocated measurements of EC
concentration and carbon number estimates by PLSR models in the IMPROVE network in
2011 and 2013.

A.1.4 Mixture effect on absorption peak width

The mid-infrared spectrum of a mixture has particular features compared to that of a pure

compound. For instance, a comparison between the spectrum of n-hexane and mineral oil

(Nujol) indicated that Nujol, which is a complex mixture of high-molecular-weight alkanes has

a simpler mid-infrared spectrum than hexane (Mayo et al., 2004). This is while the number of

normal vibrational modes of a molecule increases with the number of atoms existing in the

molecule, thus more vibrational modes are expected for Nujol molecules. The simplification

of the Nujol spectrum over that of n-hexane, however, can be explained by considering the

fact that in the mid-infrared spectrum of a large mixture of compounds, only those absorption

bands which have highly consistent wavenumber values absorb above the background level

(Mayo et al., 2004). In addition to some absorption bands disappearing in mixture spectrum,

the absorbance profile, especially absorption line width, can vary between mixture and pure

compound. This effect, which is similar to inhomogeneous broadening in pure compounds, is

mainly caused by the slightly different energy levels of the same functional group in different

molecules of a mixture.

In this section, the mixture effect on absorption peak width is investigated through a sim-

ple statistical simulation. For this purpose, we have assumed that there is a mixture com-

posed of many compounds with hypothetical Lorentzian (y = 1
1+((x−µ)/σ)2 ) absorbance profiles

(Kelly, 2013) with varying mean (µ) and standard deviation (σ) (equivalent to peak frequency

and width, respectively). The mid-infrared spectrum of this mixture is the superposition of

Lorentzian profiles for which a certain distribution of mean and standard deviation is consid-
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ered (µ= 0+N (0,m) and σ= 1+N (0,n), where N is a normal distribution). After superposing

and normalizing, the resulting peak is compared to the reference Lorentzian peak (y = 1
1+(x)2 ;

Fig. A.3). We observe that if the variation of mean (m) is small compared to variation in

standard deviation (n), the resulting normalized peak appears to be sharper than the reference

profile close to the peak (Fig. A.3, right). However, if the variation of mean is very larger

compared to peak width (m >> n, left) then the resulting peak will be broader (Fig. A.3, right).

In other words, peak width in mid-infrared spectrum of a mixture may vary form that of the

pure compound due to superposition of slightly different peaks.
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Figure A.3 – Normalized profile resulted from superposition of 10000 individual Lorentzian
profiles (y = 1

1+((x−µ)/σ)2 where µ= 0+N (0,m) and σ= 1+N (0,n); black profile) and reference

Lorentzian profile (y = 1
1+(x)2 ; red profile) when m << n (right), and when m >> n (left).

Previously it was discussed that absorption peak width is also affected by the OM/OC ratio

and the phase state. An interesting case of peak width is rural samples which have generally

narrower absorption, especially close to the peak, compared to urban ones although they are

more oxidized (Ruthenburg et al., 2014; Bürki et al., 2020; Zhang et al., 2007). This suggests

that either the mixture effect or the physical phase has dominant narrowing effect on the peak

width.
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A.1.5 Estimating atmospheric organic aerosol phase state

In this study, the measured melting point of the laboratory standards was taken as reference

and standards with melting temperature below the laboratory temperature were considered

liquid and vice versa. In order to develop statistical models to estimate phase state of at-

mospheric aerosols, first, PCA was applied on the normalized aliphatic C−H profiles of the

laboratory standards. Thereafter, a logistic regression with a step-wise parameter selection

algorithm was used to model their phase state using the PC scores. The resulting logistic

regression only uses PC3 scores as can be seen from Fig. A.4 (liquid and solid laboratory

standards are completely separated based on the PC3 scores).
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Figure A.4 – Phase state probability of the laboratory standards (liquid = 0, solid = 1) against
their PC3 scores. Black curve indicates the phase state probability estimated by the logistic
regression.

In order to estimate the phase state of the atmospheric samples, their normalized aliphatic

C−H profiles were projected onto the PC space to calculate their PC3 scores. The logistic re-

gression predicts that urban samples with lower OM/OC show more liquid-like characteristics

(Fig. A.5). The glass transition temperature (Tg) (parametrized by Shiraiwa et al., 2017a) was

also calculated for the atmospheric samples using the estimated mean molecular weight and

the O/C ratio of this study. As can be seen from Fig. A.5, PC3 scores and calculated Tg are

roughly correlated, suggesting a physical connection between Tg and PC3 scores (i.e., spectral

features related to phase state). Although the logistic regression appears to capture qualitative

phase state behavior, it should be noted that a calibration set with a limited number of samples

was used in this study and a more diverse calibration set is suggested for future phase state

studies.
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Figure A.5 – PC3 score (used in logistic regression for modeling phase state) regressed against
glass transition temperature (Tg) calculated using the estimated mean molecular weight and
the O/C ratio of this study.
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A.1.6 Individual samples

In order to have a better understanding of the way the PLSR models function, the spectra of

some individual atmospheric samples with different estimated properties were compared

in this section. For this purpose, we took the estimates of the PLSR model as reference and

compared the spectra of two samples for which one of the carbon number or the OM/OC ratio

estimates was almost identical and the other was different. Since only two parameters among

molecular weight (MW), carbon number (nC) and the OM/OC ratio are independent and

the third one can be derived from the other two, we essentially observe the effect of moving

horizontally and diagonally in the estimated MW-nC space (Fig. A.6) by this choice of samples.

This kind of analysis is useful as molecular weight and carbon number are highly correlated in

the calibration set and differentiating the factors affecting each is not straightforward.

MW

nC

Lines of constant OM/OC

Figure A.6 – MW-nC space considering the molecular weight (MW) and carbon number (nC)
of organic aerosols as independent variables. Dashed lines show constant OM/OC ratio lines.

Similar OM/OC

Here, two samples having similar estimated OM/OC ratio (≈ 1.4) and slightly different molec-

ular weight and carbon number are considered (Table A.1). Both samples have similar peak

width and frequency. However, the sample with higher carbon number and molecular weight

has a shorter first (A1) and third peak (A3) (Fig. A.7), which is consistent with what observed

in the calibration set. This example shows that A1 is the main factor used by the models for

carbon number estimates.
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Figure A.7 – Normalized baseline-corrected spectra of two ambient samples which have similar
estimated OM/OC ratios, but different estimated molecular weight and carbon number.

Table A.1 – Predicted molecular weight, carbon number and OM/OC ratio for individual
samples having similar OM/OC ratio.

Site name/date MW (g mol−1) nC OM/OC

Phoenix 2011.01.12 288 17 1.40

Puget Sound 2013.04.04 268 16 1.40

Similar carbon number (nC):

Two samples with similar estimated carbon number and fairly different molecular weight

and OM/OC ratio are considered (Table A.2). The sample with higher molecular weight has

slightly lower peak frequency (Fig. A.8) although having the same carbon number. However,

this sample has lower frequency which is consistent with observations in the calibration set as

well. This shows that molecular weight estimation is probably based on peak ratio (due to its

correlation with carbon number) as well as peak frequency besides some unidentified fine

features.
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Figure A.8 – Normalized baseline-corrected spectra of two ambient samples which have similar
carbon number but different molecular weight and OM/OC ratio.
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Table A.2 – Predicted molecular weight, carbon number and OM/OC ratio for individual
samples having similar carbon number.

Site name/date MW (g mol−1) nC OM/OC

Fresno 2013.01.13 280 16 1.5

Phoenix 2011.10.24 257 16 1.4

To conclude, studying the individual spectra shows that the predictions made by the PLS

models in atmospheric samples are generally consistent with the trend of the basic features

in the calibration set. Nonetheless, there are also instances that the predictions cannot be

justified suggesting that the PLS models rely on a combination of basic feature (peak ratio,

frequency and width) as well as some fine structures in the spectra that are not captured by

basic features.
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A.2 Appendix to chapter 3

A.2.1 Experimental set-up

Figure A.9 – Schematic of the experimental set-up used for photo-oxidation and dark oxidation
of biomass burning and coal combustion emissions.

A.2.2 Blank subtraction

As can be seen from Fig. A.10, the blank subtraction algorithm used in this work permits

better identification of organic FG absorbances that are either overlapping with PTFE ab-

sorbances (e.g. the carbonyl peak) or are completely masked by them (e.g. the levoglucosan

and organonitrate peaks). In addition, water vapor and CO2 bands are eliminated with this

method.
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Figure A.10 – Comparison between baseline-corrected (red) and blank-subtracted baseline-
corrected spectra (blue) of WB aerosols.
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A.2.3 Dimensionality reduction

Figure A.11 – Heat map of correlation matrix of mass fragments.
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A.2.4 Fourier self-deconvolution

Figure A.12 – Example of Fourier self-deconvolution applied to the 1500–1800 cm−1 region of
FTIR spectra of primary (a) and aged (b) wood burning aerosols using UV lights.
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A.2.5 The MIR and AMS spectra and chemical composition of the chamber exper-
iments
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Figure A.13 – Baseline-corrected spectra of wood burning (WB) and coal combustion (CC)
emissions separated by emission source and aerosol type.
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Figure A.14 – (a) Bar plot comparing AMS and MIR OA concentration estimates separated by
functional group. The emission pairs (primary and aged emissions of the same experiment)
are grouped by vertical lines. The type of aerosol (P: primary, A: aged), emission source (WB
and CC), and oxidant used for aging (OH: hydroxyl radical, NO3: nitrate radical) are indicated
for each experiment. The percentage of each FG to total OA mass before and after aging is
indicated for some experiments. (b) Bar plot comparing AMS OM:OC estimates with that of
MIR spectroscopy separated by contribution of each functional group.

A.2.6 Aromatics and Polycyclic aromatic hydrocarbons (PAHs)

In this work, the following AMS fragment ions attributed to aromatics are quantified (Bruns

et al., 2015; Pavia et al., 2008): C6H5
+, C7H7

+, C7H5O+, C8H5O2
+, C6H6

+, C6H6O+, C8H9
+,

C8H10
+, C8H8

+, C7H7O+, and C7H8O+. The summed concentration of these fragments is
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Figure A.15 – Loadings of the first three principal components and the normalized mean AMS
mass spectrum (from m/z 80 to m/z 202). Fragment ions with high positive/negative loadings
are indicated by their formula.
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Figure A.16 – AMS normalized mass spectra (shown up to m/z 80) averaged during filter
sampling for 20 minutes (left) and normalized mid-infrared spectra (Euclidean norm) of WB
(a) and CC (b) on filter.

correlated with the MIR out-of-plane aromatic CH peak absorbance at 754 cm−1 (R2 = 0.70; Fig.

A.18). This correlation is considerably stronger than that of AMS total OA mass concentration

with the MIR out-of-plane aromatic CH peak absorbance (R2 = 0.49), suggesting a physical

connection between the AMS fragments and the MIR absorbance at 754 cm−1. The mentioned

aromatic fragments contribute up to 6 % to the total OA mass. It is believed that oxygenated
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Figure A.17 – Biplots of PC2–PC1 (a), PC3–PC1 (b). The AMS measurements corresponding
to filter sampling periods are color coded. The oxidation trajectories out of filter sampling
periods are illustrated by gray dots. The clusters of samples based on their fuel and oxidant
are indicated by dashed circles.

aromatics undergo fragmentation during electron impact ionization; thus, their contribution

is possibly underestimated using AMS fragments.

From the PAH fragment ions suggested by Bruns et al. (2015) and Elser et al. (2016), C10H7
+,

C10H8
+, C10H9

+, C12H8
+, C13H9

+, C14H10
+, C16H10

+ fragment ions were quantified in this

work. The mentioned aromatic fragments contribute up to 3 % to the total OA mass. However,

the fragments quantified in this work are not complete and oxygenated PAHs are also believed

to undergo fragmentation during electron impact ionization (McLafferty and Tureček, 1993);

thus, their contribution is possibly underestimated.

Mid-infrared aromatic CH absorbances are, however, not significantly different between

oxygenated and non-oxygenated aromatics and PAHs. The mid-infrared OOP peak absorbance

normalized by total OA mass can be an indicator of relative contribution of aromatic CH. This

parameter is on average four times higher for CC aerosol compared to WB.
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Figure A.18 – Scatter plot comparing MIR absorbance at 754 cm−1 (attributed the aromatic
CH out-of-plane vibration) and sum of AMS fragment ions attributed to aromatics over the
filter sampling periods for each experiment (R2 = 0.70). The corresponding fragments were
taken from Bruns et al. (2015) and Pavia et al. (2008).
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A.2.7 Levoglucosan detection and quantification using MIR spectroscopy

In previous studies (e.g. Russell et al., 2009a; Faber et al., 2017), the alcohol COH abundances

(calculated using MIR spectra) were compared to the abundance of AMS fragment ions

attributed to levoglucosan fragmentation (C2H4O2
+ and C3H5O2

+), often resulting in low

correlation coefficients. Levoglucosan, however, absorbs at several specific frequencies in

mid-infrared range (860, 890, 920, 950, 990, 1012, and 1050 cm−1) which are not observed

for other compounds containing the aCOH group (Interference with other anhydrous sugars,

monnasan and galactosan is possible; Fig. A.19a). In addition to lack of these specific absorp-

tion other compounds usually have high abundance of non-alcohol FGs that dominate the

spectra. As a results, the specific levoglucosan peaks, which become identifiable after blank

subtraction, have been used in this study to quantify levoglucosan (an important tracer of

biomass burning). By scaling the mentioned peaks in a pure levoglucosan MIR spectrum to

that of WB samples, it can be seen that approximately 40 % of the aCOH functional group

in WB_OH_2_P (a primary WB sample having high concentration of levoglucosan) is due

to levoglucosan (Fig. A.19b). By using the same method, we estimate that levoglucosan is

responsible for, on average, 20 % of the aCOH group in primary WB aerosols and less than

10 % in aged WB aerosols, suggesting levoglucosan degradation with aging (Hennigan et al.,

2010). The specific levoglucosan absorbances in primary and aged CC aerosols are generally

below detection limit of FT-IR (negative absorptions at peak in 860-1050 cm−1 region; Fig.

A.20), suggesting negligible amounts of levoglucosan in these samples.

The C2H4O2
+ fragment ion (m/z 60 in unit mass resolution) in AMS spectrum is shown to be

a tracer of levoglucosan (Aiken et al., 2009; Faber et al., 2017; Schneider et al., 2006) in spite

of having interference from other molecules, such as long-chain carboxylic acids (Schneider

et al., 2006). In order to calculate levoglucosan concentrations from AMS measurements, 0.3 %

of OA was subtracted from the C2H4O2
+ ion fragment signal (accounting for other molecules

producing the same signal) and the remaining signal was called “levoglucosan-equivalent”

concentration. The averaged “levoglucosan-equivalent” signal over the filter sampling periods

is highly correlated to levoglucosan peak intensities in MIR spectra (Fig. A.20).

The decrease in levoglucosan-equivalent AMS signal (on average 1.11 h−1) and FT-IR lev-

oglucosan absorbances (on average 0.75 h−1) with aging are much more that what can be

attributed solely to particle-phase wall losses with a rate constant on the order 0.2–0.3 h−1.
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Figure A.19 – (a) Baseline corrected spectra of six different organic compounds containing
the aCOH group (e.g. sugars, sugar derivatives, cyclic and straight-chain alcohols). Peak
frequencies of levoglucosan are indicated by vertical lines (860, 890, 920, 950, 990, 1012,
and 1050 cm−1). (b) Baseline-corrected spectra of fresh wood burning (WB) aerosols and
levoglucosan scaled based of its signature at 860–1050 cm−1. The contribution of levoglucosan
to the fresh WB aCOH is estimated to be approximately 40 % in this case (WB_OH_2_P). The
spectra of d-glucose and fructose are taken from Ruthenburg et al. (2014).

166



A.2. Appendix to chapter 3

−0.001

0.000

0.001

0.002

0.00 0.25 0.50 0.75 1.00
AMS C2H4O2

+ concentration (µg/m3)

M
id
−i

nf
ra

re
d 

ab
so

rb
an

ce
 a

t 8
90

 c
m
-1

PSI_002
PSI_003
PSI_004
PSI_005
PSI_006
PSI_007
PSI_008
PSI_009
PSI_010
PSI_011
PSI_012
PSI_013
PSI_014
PSI_015
PSI_016
PSI_017
PSI_018
PSI_019
PSI_020
PSI_022

WB_OH_1_P
WB_OH_1_A
WB_OH_2_P
WB_OH_2_A
WB_OH_3_P
WB_OH_3_A
WB_NO3_1_P
WB_NO3_1_A
CC_OH_1_P
CC_OH_1_A
CC_OH_2_P
CC_OH_2_A
CC_NO3_1_P
CC_NO3_1_A
CC_NO3_2_P
CC_NO3_2_A
CC_OH_3_P
CC_OH_3_A
CC_NO3_3_P
CC_NO3_3_A

WB

CC

Figure A.20 – Scatter plot comparing the MIR absorbances attributed to levoglucosan and AMS
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+ fragment ion concentration averaged over the filter sampling periods (R2 = 0.76).
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+ mass concentration to account for
the non-levoglucosan sources (Aiken et al., 2009). Arrows show the change in levoglucosan
with aging.
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A.2.8 Lignin signatures

The peak at 1515 cm−1 is observed in lignin, WB aerosols, and coniferyl alcohol (a monolignol)

due to aromatic ring stretching. A similar peak is observed in para-substituted compounds

with a few cm−1 shift in the peak frequency from that of lignin. No similar peak is observed

compounds without para substitutions. The methoxy peak at 2820 cm−1 is also relatively weak

for lignin, coniferyl alcohol, and WB aerosols.
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Figure A.21 – MIR spectra of hardwood lignin (KBr Pellet) from Boeriu et al. (2004),
fresh beech wood burning aerosols (this work), coniferyl alcohol (film) from Boeriu et al.
(2004), and some other substituted aromatic compounds (neat) from SpectraBase database
(https://spectrabase.com/).

The peak at 1515 cm−1 is correlated with the AMS C8H9O2
+ fragment (R2 = 0.68), which is

attributed G lignin fragmentation (Tolbert and Ragauskas, 2017; Saito et al., 2005).
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Figure A.22 – Scatter plot comparing the MIR 1520 cm−1 peak absorbance, attributed to lignin,
and the AMS C8H9O2

+ fragment ion concentration averaged over the filter sampling periods
(R2 = 0.68).

A.2.9 Atmospheric smoke impacted samples

Figure A.23 – Scatter plot comparing total PM2.5 and OM mass in atmospheric samples. Orange
and red circles indicate residential wood burning and wildfire samples identified by cluster
analysis (Bürki et al., 2020), respectively. Blue triangles and green crosses shows burning sam-
ples identified based on lignin and levoglucosan signatures, respectively. Black circles indicate
the existing atmospheric samples in the IMPROVE network (2011 and 2013; approximately
3050 samples). The dotted dashed lines delineate the range of OM mass fraction for samples
designated as burning-influenced (the slope of 0.5 is arbitrarily chosen to guide the eye). OM
was estimated by multiplying OC by 1.8 (assuming an average OM:OC ratio of 1.8). The Venn
diagram at the top left compares the burning samples identified by each method.
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Figure A.24 – Box plot comparing potassium concentration of smoke-impacted and non-
smoke-impacted samples in the IMPROVE network from X-ray fluorescence measurements.
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A.3 Appendix to chapter 4

A.3.1 Methodology diagrams

Figure A.25 – Diagram showing the MIR and AMS measurements of bulk OM and the initial
postprocessing. Parallelograms, rectangles, and rounded rectangles show data, processes, and
final postprocessed data, respectively.

Figure A.26 – Diagram showing how the MIR spectra and AMS OM estimates are combined to
determine the influential FGs.
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(b) Multivariate method(a) Univariate method

Figure A.27 – Diagrams showing how (a) MIR FG abundances or (b) MIR spectra are com-
bined with the concentration of AMS fragment ions to determine which FGs produce certain
fragment.

Figure A.28 – Diagram showing how high-temporal-resolution FG compositions are calculated
by combining AMS and MIR measurements.

172



A.3. Appendix to chapter 4

A.3.2 AMS fragment ion-FG connections

Figure A.29 – Scatter plot highlighting the correlation between major AMS mass fragments
before and after normalization by total AMS OM. Green circles show the experiments for which
the nitrate radical was used as oxidant.
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Figure A.30 – Barplot showing the Pearson correlation coefficients of lignin, levoglucosan and
out-of-plane aromatic peaks in the MIR spectra and the concentration of AMS fragment ions.
Only fragments with r > 0.7 have been shown.

Fig A.32 shows the results of multivariate linear regressions that regress standardized (unit

standard deviation and zero mean) FG abundances against standardized concentrations of

three major fragments (and vice versa). The parameter selection is done using an stepwise

algorithm working based on the Akaike information criterion (AIC). Only experiments with

the hydroxyl radical are considered as aging with the nitrate radical causes the mentioned

173



Appendix A. Appendix

𝑟

0.5

0.6

0.7

0.8

0.9

C
C
H N

C
H
2

N
H

C
H
3 O

N
H
2

C
H
4

H
O

N
H
3

H
2O

Ar
pl
us
2

C
O
2p
lu
s2 N
a

SO
pl
us
2 C
2

C
2H

C
2H

2
C
2H

3
C
O N
2

C
H
O

C
2H

5
N
O

C
H
2O

C
2H

6
C
H
3O
S

O
2

C
H
4O H
2S H
C
l

C
3

C
3H

C
3H

2 K
C
3H

3 Ar
C
3H

4
C
2H

O
C
3H

5
C
2H

2O
C
3H

6
C
2H

3O
C
3H

7
C
O
2

C
2H

4O
C
3H

8
C
H
O
2

C
2H

5O N
O
2

C
H
2O

2
C
2H

6O
C
H
3S

C
H
3O

2 SO C
4

C
4H

C
4H

2
C
4H

3
C
2N

2
C
4H

4
C
3H

O
C
4H

5
C
3H

2O
C
4H

6
C
3H

3O
C
4H

7
C
2O

2
C
3H

4O
C
4H

8
C
2H

O
2

C
3H

5O
C
4H

9
C
2H

2O
2

C
3H

6O
C
4H

10
C
O
P

C
2H

3S
C
2H

3O
2

C
3H

7O C
SO C
5

C
2H

4O
2

C
3H

8O
C
H
SO C
5H

C
2H

5O
2

C
H
2S
O

C
5H

2
C
2H

6O
2

C
H
3S
O

C
5H

3
SO

2
C
4O

C
5H

4
H
SO

2
C
4H

O
C
5H

5
C
4H

2O
C
5H

6
C
4H

3O
C
5H

7
C
3O

2
C
4H

4O
C
5H

8
C
3H

O
2

C
4H

5O
C
5H

9
C
3H

2O
2

C
4H

6O
C
5H

10
C
3H

3O
2

C
4H

7O
C
5H

11 C
6

C
3H

4O
2

C
4H

8O
C
5H

12
C
6H

C
3H

5O
2

C
4H

9O
C
6H

2
C
3H

6O
2

C
4H

10
O

C
6H

3
C
3H

7O
2

C
S2

C
5O

C
6H

4
C
3H

8O
2

C
5H

O
C
6H

5
C
3H

9O
2

C
H
2S
O
2

C
5H

2O
C
6H

6
C
5H

3O
C
6H

7
H
Br

SO
3

C
4O

2
C
5H

4O
C
6H

8
H
SO

3
C
4H

O
2

C
5H

5O
C
6H

9
H
2S
O
3

C
4H

2O
2

C
5H

6O
C
6H

10
C
4H

3O
2

C
5H

7O
C
6H

11 C
7

C
4H

4O
2

C
5H

8O
C
6H

12
C
7H

C
4H

5O
2

C
5H

9O
C
6H

13
C
7H

2
C
4H

6O
2

C
5H

10
O

C
6H

14
C
7H

3
C
4H

7O
2

variable

lignin

org_nitrate

0.5

0.6

0.7

0.8

0.9

C
5H

11
O

C
6O

C
7H

4
C
4H

8O
2

C
5H

12
O

C
2H

SO
2

C
6H

O
C
7H

5
C
4H

9O
2

C
2H

2S
O
2

C
6H

2O
C
7H

6
C
4H

10
O
2

C
6H

3O
C
7H

7
C
5O

2
C
6H

4O
C
7H

8
C
5H

O
2

C
6H

5O
C
7H

9
C
5H

2O
2

C
6H

6O
C
7H

10
C
H
4B
r

C
5H

3O
2

C
6H

7O
C
7H

11 C
8

C
5H

4O
2

C
6H

8O
C
7H

12
H
SO

4
C
8H

C
5H

5O
2

C
6H

9O
C
7H

13
H
2S
O
4

C
8H

2
C
5H

6O
2

C
6H

10
O

C
7H

14
C
8H

3
C
5H

7O
2

C
6H

11
O

C
7H

15
C
7O

C
8H

4
C
5H

8O
2

C
6H

12
O

C
7H

16
C
7H

O
C
8H

5
C
5H

9O
2

C
6H

13
O

C
7H

2O
C
8H

6
C
5H

10
O
2

C
6H

14
O

C
7H

3O
C
8H

7
C
5H

11
O
2

C
6O

2
C
7H

4O
C
8H

8
C
6H

O
2

C
7H

5O
C
8H

9
C
6H

2O
2

C
7H

6O
C
8H

10
C
6H

3O
2

C
7H

7O
C
8H

11 C
9

C
6H

4O
2

C
7H

8O
C
8H

12
C
9H

C
6H

5O
2

C
7H

9O
C
8H

13
C
9H

2
C
6H

6O
2

C
7H

10
O

C
8H

14
C
9H

3
C
6H

7O
2

C
7H

11
O

C
8H

15
C
8O

C
9H

4
C
6H

8O
2

C
7H

12
O

C
8H

16
C
8O

H
C
9H

5
C
6H

9O
2

C
7H

13
O

C
8H

17
C
8H

2O
C
5H

6S
O

C
9H

6
C
6H

10
O
2

C
7H

14
O

C
8H

18
C
8H

3O
C
5H

7O
3

C
9H

7
C
6H

11
O
2

C
7H

15
O

C
4H

4O
4

C
5H

8O
3

C
9H

8
C
5H

9O
3

C
9H

9
C
4H

6O
4

C
8H

6O
C
5H

12
N
O
2

C
4H

7O
4

C
8H

7O
C
4H

9N
O
3

C
5H

11
O
3

C
4H

8S
2

C
4H

8O
4

C
8H

8O
C
9H

12
C
3H

5O
5

C
4H

9O
4

C
8H

9O
C
9H

13
C
7H

6O
2

C
4H

10
O
4

C
8H

10
O

C
9H

14
C
3H

7O
5

C
7H

7O
2

C
8H

11
O

C
5H

3N
O
3

C
6H

5O
3

C
3H

9O
5

C
6H

7N
O
2

C
7H

9O
2

C
10
H
7

C
6H

9N
O
2

C
9H

19
C
6H

8O
3

C
10
H
8

C
6H

10
N
O
2

C
4H

O
5

C
6H

9O
3

C
10
H
9

C
9H

7O
C
10
H
11

C
8H

5O
2

C
5H

9O
4

C
10
H
13

C
4H

9O
5

C
8H

9O
2

C
6H

5N
O
3

C
7H

7O
3

C
9H

15
O

C
7H

9O
3

C
11
H
9

C
5H

9N
O
4

C
11
H
15

C
5H

9O
5

C
10
H
13
O

C
8H

7O
3

C
5H

11
O
5

C
6H

2N
O
4

C
8H

8O
3

C
12
H
8

C
7H

5O
4

C
7H

7N
O
3

C
8H

9O
3

C
6H

5N
O
4

C
7H

7O
4

C
8H

11
O
3

C
5H

9O
6

C
13
H
9

C
12
H
21

C
9H

6O
4

C
14
H
10

C
16
H
10 N
A

variable

lignin

org_nitrate

m/z 12 

m/z 202

m/z 87

m/z 
87

0.80

0.70

0.60

0.60

0.70

0.60

0.50

0.80

0.90

0.90

C2H3O+

C4H7O+

C4H9NO3
+

C6H10NO2
+

Figure A.31 – Barplot showing the Pearson correlation coefficient of RONO2 peak in MIR
spectra and the concentration of AMS organic fragment ions. Only fragments with r > 0.5
have been shown.
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Figure A.32 – Scatter plots showing the measured and calculated AMS fragment concentra-
tions using MIR FG concentrations and vice versa. The FG and fragment concentrations
are standardized (zero mean and unit standard deviation) to make regression coefficients
comparable. Regression equations are shown below each plot. The experiments for which the
nitrate radical was been used have been omitted due to causing poor fit results.

fragments to vary significantly without affecting the abundance of oxygenated FGs except

organonitrates.
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A.3. Appendix to chapter 4

A.3.3 PLS models
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Figure A.33 – Scatter plots showing fitted (PLSR models) normalized functional group compo-
sition using AMS mass spectra against their values from the MIR peak fitting.
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Figure A.34 – Plots showing the root mean squared error (RMSE) of predictions in the 10-fold
cross validation for different number of latent variables in the PLSR models. The resulting
PLSR models are used to predict normalized FG abundances using the AMS spectra.
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Figure A.35 – Time series of high-resolution stacked absolute functional group concentrations
calculated using the AMS mass spectra. Total CO refers to the sum of COOH and naCO. The
naming is the same as Fig. 4.4. The absolute concentrations are calculated by multiplying
normalized concentrations by the total AMS OM and are not corrected for chamber wall losses.
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Figure A.36 – Time series of high-resolution normalized functional group concentrations
calculated using the AMS mass spectra. Total CO refers to the sum of COOH and naCO.
Vertical black lines show the filter sampling periods before and after aging. The naming is the
same as Fig. 4.4 of the main manuscript. The time zero indicates the start of chemical aging.

As can be seen from Fig. A.36, the predicted COOH concentrations are slightly negative for

two CC experiments (CC_OH_1 and CC_OH_2) during the course of aging. These unphysical

values, which are not substantial compared to total OM concentration (up tp 15 % of total
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OM), might be attributed to: uncertainties of each instrument especially uncertainties in MIR

COOH estimation for primary CC samples; model uncertainties (especially as models were

developed using very different experiments), and errors introduced due to the use of models

to predict compositions fairly different from those of filter sampling periods. However, the

dynamic trend of COOH is still captured in these cases.

Figure A.37 compares the oxidation trajectories from AMS and the reconstructed trajectories

from the elemental ratios calculated from the interpolated FGs. The constructed trajecto-

ries are able to capture the curvatures observed in the original trajectories although some

discrepancies are observed in the absolute values.
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Figure A.37 – Comparison between van Krevelen trajectories from the AMS elemental ratios
(circle) and elemental ratios reconstructed from the interpolated FGs (cross) for a WB and a
CC experiment.
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A.4 Appendix to chapter 5

A.4.1 Residual spectrum calculation

The procedure for obtaining FTIR residual spectra is explained an illustrated in an example

(Exp. 5). First, a first-order loss is fitted to the AMS OA before the start of aging (in the −1.5–0 h

range). The fitted curve is shown by a dashed curve in Fig. A.38a). The concentration of the

apparent POA during the sampling of the second filter (F2) is estimated based on the fitted

curve to be 0.68 that of primary aerosols (F1), assuming that particle wall loss is the dominant

process for POA. The spectrum of apparent POA during the sampling of the second filter (F2)

is estimated by scaling by 0.68 the spectrum of the first filter (F1) based on the first-order

loss curve. The residual spectrum for the second filter (black, Fig. A.38b) is calculated by

subtracting the apparent POA spectrum from that of the second filter (F2). Negative peaks

observed in the residual spectrum suggest processes other than particle wall loss are also

important for the POA during the course of aging.
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Figure A.38 – AMS OA concentration and apparent POA concentration using a first-order wall
loss for Exp. 5 (a). Residual FTIR spectrum based on the wall loss rate estimated from AMS OA
(b). Vertical lines indicate the periods of sampling for primary and aged aerosols.

A.4.2 AMS-FTIR comparison

OA concentrations estimated by FTIR and AMS are correlated (r 2 = 0.75; Fig. A.40). Aging with

UV increases the OM:OC ratio more than the nitrate radical. We also observe that the general

increase in OM:OC with aging is captured by both methods (Fig. A.40c). However, the absolute

values are different. PTFE filters that belong to each experiment are as follows: Exp. 1 (filters

F1, F2), Exp. 2 (F9, 10), Exp. 3 (F16, 17), Exp. 4 (F18, 19), Exp. 5 (F20, 21), Exp. 6 (F4, 5), Exp. 7

(F11, 12), Exp. 8 (F6, 7), and Exp. (F13, 14). F3, 8, and 18 are blank filters put in the chamber

for few minutes. AMS OA is not corrected for CE.
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Figure A.39 – AMS OA concentration and the first-order fit for Exp. 1 (reference (a). Injection
of biomass burning emissions happens at -2 h. AMS size-resolved organic mass. The results
are based on particle time-of-flight data averaged from -2 to 2 h (b).

Figure A.40 – (a) OA mass concentration measured by FTIR (functional groups are color
codded) and AMS (averaged over filter sampling periods). (b) Scatter plot comparing OA
concentrations measured by AMS and FTIR. (c) OM:OC ratios measured by AMS and FTIR.
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A.4.3 FTIR spectra of primary biomass burning aerosols
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Figure A.41 – FTIR spectra of primary wood burning (WB) and pellet burning (PB) aerosols.
Important functional groups or biomass burning markers are indicated.

A.4.4 Investigating lignin-related fragments
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Figure A.42 – Smoothed time series of AMS OA concentration, and different tracer fragments
in a UV experiment (Exp. 4).
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A.4.5 POA transformation

0

10

20

30

40

0

5

10

15

−4 −2 0 2 4
Relative Time (h)

O
A 

C
on

ce
nt

ra
tio

n 
(µ

g
m

3 ) %
 PO

A M
ass Transform

ed

Figure A.43 – Smoothed time series of AMS OA concentration (green) and the percentage of
POA transformed (black) in a UV experiment (Exp. 4).
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A.4.6 Investigating the volatility of lignin-like compounds
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Figure A.44 – Normalized concentrations of AMS fragments in a reference experiment (Exp. 3).
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Figure A.45 – Smoothed time series of normalized AMS OA and sulfate concentration, and mass
fragments attributed to certain tracers for a dark aging (nitrate) experiment in dry conditions.

In order to estimate the volatility of different species responsible for marker fragments, we

assumed that the equilibrium state in gas-particle partitioning is reached at all temperatures

and used the equation below:

Ai (T ) = Gi (T )+ Ai (T )

1+C?
i (T )/M(T )

, (A.10)

where Ai (T ) and Gi (T ) are aerosol-phase and gas-phase concentrations of the fragment i

at temperature T and M(T ) denotes the total organic mass. The sum of Ai (T ) and Gi (T )

are assumed to be the same between the bypass line and the thermodenuder line. The
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Figure A.46 – Normalized concentrations of individual AMS fragments after passing chamber
OA through a thermodenuder.

Clausius-Clapeyron equation was used to relate saturation concentrations, C?
i at different

temperatures:

C?
i (T ) = 298

T
C?

i (298) exp(
∆Hv

R
(

1

T
− 1

298
)). (A.11)

We neglected particle losses due to thermophoresis. The total organic concentration has been

assumed to be the value estimated by AMS considering a collection efficiency of unity. ∆Hv

is assumed to be equal to 40 kJ mol−1. The Levenberg-Marquardt nonlinear least-Squares

algorithm was used to find the optimum C? for different marker fragments. For C2H4O2
+,

C9H11O3
+, C10H13O3

+, CO2
+, and C4H9

+, the C?(298) was estimated to be 5.42, 1.83, 1.32,

0.76, and 2.94 µg m−3, respectively. The C2H4O2
+ is produced by the most volatile species

(levoglucosan, anhydrosugars) and the CO2
+ by the least volatile ones. However the differences

are within one order of magnitude for all the fragments above. Due to simplifying assumptions

(e.g., omission of thermophoresis or equilibrium state) these values should be considered

as order of magnitude estimates. The value of C? estimated for the levoglucosan is slightly

lower than previous studies (Bertrand et al., 2018b) but still reasonably close considering the

simplifying assumptions made here.
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A.4.7 Ammonium subtracted spectra

Figure A.47 – Ammonium-subtracted residual FTIR spectra of wood burning OA aged with UV
and nitrate radical (Exp. 4, and 8, respectively).
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A.4.8 f 44:f 43 ratios in residual spectra

In Fig. A.48 the wall-loss corrected OA was calculated base on

C cor
OA (t ) =C obs

OA (t )+kOA

∫ t

t0

C obs
OA (t )d t , (A.12)

where C obs
OA (t) is the observed (measured) OA concentration at time t , C cor

OA (t) is the wall-

loss-corrected OA at the t , kOA is the first-order wall loss rate based on the AMS OA. OC was

calculated from the sum of C concentration for all fragments. Dividing OA time series by

OM:OC time series gives a similar trend with different absolute values.
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Figure A.48 – Time series of OA, OC concentrations, percentage of POA aged, and f 44:f 43 for
wood burning emissions in different aging scenarios.
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A.4.9 Dimensionality reduction of AMS mass spectra

Figure A.49 – Loadings of the first three PCs.

A.4.10 Atmospheric smoke impacted FTIR spectrum
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Figure A.50 – An example of atmospheric smoke impacted PM2.5 samples (prescribed burning
in the eastern US 2013, validated by satellite observations; Yazdani et al., 2021e) with high
organic loading and high acid signatures and very weak levoglucosan and invisible lignin-like
signatures.
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A.5 Appendix to chapter 6

A.5.1 Contribution of fresh bbOA to OM

Assuming that levoglucosan constitutes on average 8 % of fresh bbOA (Fine et al., 2002),

WSOC/OC is 0.42 (regression line slope in Fig. A.51), and the average OM:OC ratio is 1.8, the

levoglucosan C/WSOC > 0.01 threshold is roughly equivalent to bbOA (µg m−3)/OM (µg m−3)

> 0.07.
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Figure A.51 – Scatter plot of TOR OC and WSOC. The dashed line shows the regression line.
Red points are not considered in the regression.

A.5.2 The carbonyl peak as proxy to WSPC

This carbonyl peak represents non-acid carbonyls (e.g., ketones, aldehydes, esters) and car-

boxylic acids, which are polar and hydrophilic functional groups. The hydroxyl group was not

considered here as its quantification is more involved and uncertain due to the significant over-

lap of the OH stretching band with ammonium NH stretching peaks in the 3200–3400 range

cm−1. In addition, the estimate of carbonyl abundance has been shown to be robust with

respect to different estimation methods due to its well-defined peak Reggente et al. (2019a).

The high correlation (R2 = 0.94 omitting one point shown with the red circle) of WSOC mea-

sured by the carbon analyzer and the carbonyl peak in the FTIR spectra can be seen from

Fig. A.52. The correlation holds reasonably well (R2 = 0.77) even for samples with low WSOC

concentrations (< 2 µg m−3), suggesting that using the carbonyl peak as a proxy to WSOC

does not introduce large errors for low-concentration samples, for which the identification of

smoke is already challenging.
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Figure A.52 – Scatter plot of the carbonyl peak absorbance in the FTIR spectra against WSOC
from the carbon analyzer instrument.

A.5.3 Levoglucosan fingerprint in FTIR spectra of laboratory standards
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Figure A.53 – Baseline-corrected and blank-subtracted FTIR spectra of laboratory standards of
aerosolized (atomized) levoglucosan collected on PTFE filters. The three peaks at 860, 890,
and 920 cm−1 in the fingerprint region that have been used for the identification levuglucosan
have been shown with vertical lines.
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A.5.4 Selectivity of levoglucosan fingerprint signatures.
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Figure A.54 – Analysis of interference of the fingerprint signatures of levoglucosan. The
mid-infrared spectra of levoglucosan (transmission, KBr wafer), mannose (transmission, KBr
wafer), galactose (transmission, KBr wafer), glucose (transmission, KBr wafer), and mannitol
(transmission, KBr wafer) are taken from the SpectraBase database (https://spectrabase.com/).
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A.5.5 Satellite vs. FTIR smoke detection

Table A.3 – Table comparing satellite and FTIR smoke detection methods for the period of
prescribed burns and RIM Fire in 2013. X and O indicate the detection of levoglucosan and
lignin-like compound signatures in the FTIR spectra respectively. M and P refer to “maybe"
smoke-impacted and “probably " smoke-impacted categories by satellite.

Date
Okefenokee St. Marks Cape Romain

Satellite FTIR Satellite  FTIR Satellite  FTIR
2013-01-13 M O M
2013-01-16 P X M
2013-01-19 M XO XO
2013-01-22 M X XO M XO
2013-01-25 M X M X M X
2013-01-31 M XO
2013-02-03 XO XO XO
2013-02-06 P X
2013-02-18 M X O
2013-03-02 X X
2013-03-05 XO M X
2013-03-08 M X P XO P XO
2013-03-14 M X P XO M X
2013-03-17 M
2013-03-23 X
2013-03-29 P X P X P XO
2013-04-10 M M

Date Yosemite Bliss S. P. Hoover
Satellite  FTIR Satellite  FTIR Satellite FTIR

2013-06-18 M XO
2013-06-21 O
2013-06-30 M M XO M
2013-07-03 M M M
2013-07-09 M
2013-07-18 P P P
2013-07-24 M X M
2013-07-27 M X M XO
2013-07-30 P XO P XO P XO
2013-08-02 M XO P XO
2013-08-05 M XO M P XO
2013-08-08 M M M
2013-08-11 M X M
2013-08-17 O M XO
2013-08-20 M XO
2013-08-23 M P XO
2013-08-26 M P XO P XO
2013-08-29 P P XO P
2013-09-01 P XO M XO P XO
2013-09-04 M M X M
2013-09-07 P P XO M XO
2013-09-10 P XO M XO M O
2013-09-13 P XO M
2013-09-16 M M O
2013-09-19 M M O
2013-09-28 XO
2013-10-22 M
2013-10-31 O

(a) Prescribed burns 2013

(b) RIM fire 2013
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Figure A.55 – Normalized spectra of samples with true positive, false positive, and false negative
results from FTIR smoke detection compared to satellite observations.
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Figure A.56 – Levoglucosan region before and after subtraction of inorganic interference in a
smoke-impacted sample. Vertical lines show the expected location of levoglucosan peaks.
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A.5.6 HPAEC-PAD vs. FTIR smoke detection

0e+00

1e−04

2e−04

3e−04

860880900920
Wavenumber (cm-1)

Ab
so
rb
an
ce

0.000

0.001

0.002

0.003

860880900920
Wavenumber (cm-1)

Ab
so
rb
an
ce

OC = 310 ng/m3

WSOC = 280 ng/m3

HPAEC-PAD LG = 9.6 ng/m3

HPAEC-PAD anhydroschharide = 10.2 ng/m3

OC = 720 ng/m3

WSOC = 810 𝜇g/m3

HPAEC-PAD LG = 9.1 ng/m3

HPAEC-PAD anhydroschharide = 11.1 ng/m3

(a)

(b)

Figure A.57 – Levoglucosan region in two samples with low levoglucosan loadings. Vertical
lines show the expected location of levoglucosan peaks. TOR-OC, WSOC, and concentrations
of anhydrosaccharides from HPAEC-PAD are shown for each sample.
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Figure A.58 – FTIR spectrum of an atmospheric sample with visible lignin-like compounds
signature, while levoglucosan signatures are not detected due to the low concentration and/or
existence of interfering peaks. TOR OC, WSOC, and concentration of levoglucosan from
HPAEC-PAD are shown.
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Estimating HPAEC-PAD-equivalent anhydrosaccharide concentrations using FTIR and PLSR

As discussed in the main text, in the levoglucosan fingerprint region (830–950 cm−1) in the

FTIR spectra of ambient samples, often two interfering peaks from inorganics are observed.

This interference complicates the quantification of levoglucosan especially for samples with

low levoglucosan loadings. Generally, HPAEC-PAD and FTIR levoglucosan measurements

are highly correlated. However, the correlation becomes significantly weaker for the subset

of samples with HPAEC-PAD levoglucosan below 0.5 µg m−3 when FTIR levoglucosan is esti-

mated simply from the average height of its three peaks. This phenomenon is probably due to

the significant the interference from inorganic peaks and an imperfect baseline correction.

In order to alleviate this issue, the absorbances in the 830–950 cm−1 region were regressed

against HPAEC-PAD sum of anhydrosaccharides using partial least squares regression (PLSR;

Wold et al., 1983). The regression was performed for the subset of samples with levoglu-

cosan, mannosan, and galactosan concentrations above the detection limit of HPAEC-PAD

(90 samples).

PLSR models have been shown to be able to quantify organic functional groups in atmospheric

samples without the need for prior baseline correction or peak fitting (e.g., Reggente et al.,

2019a) in the presence of interfering inorganic peaks (e.g., ammonium). As a result, PLSR is

expected to perform better than a simple peak height measurement for the quantification of

levoglucosan in the presence of interfering peaks. We used PLSR to find the coefficients of the

following linear equation, a:

y = Xa +e, (A.13)

where X (n×p) is the FTIR spectra matrix with n samples and p wavenumbers in the mentioned

region, y (n ×1) is the vector of HPAEC-PAD sum of anhydrosaccharides, and e is the vector

of residuals. After solving the regression equation using PLSR, a 10-fold cross validation was

used to choose the optimum number of latent variables.

Applying PLSR to all samples results in a fit with R2 = 0.92, which is very similar to that obtained

when regressing HPAEC-PAD sum of anhydrosaccharides against PLG, ave. This is because in

this case high-concentration samples dominate the regression and for these samples, PLG, ave

is minimally affected by interference or an imperfect baseline correction. If we apply PLSR

on the subset of samples with HPAEC-PAD levoglucosan < 0.5 µg m−3, we obtain R2 = 0.91

for the subset. This value suggests a significant improvement over the regression coefficient

of the HPAEC-PAD sum of anhydrosaccharides against PLG, ave (R2 = 0.48). The PLSR model

developed on the samples with low levoglucosan concentrations also performs reasonably

well for the whole dataset, including high-concentration samples (R2 = 0.85; Fig. A.59a).

As can be seen from Fig. A.59b, the regression coefficients (from PLSR) in the (830–950 cm−1)

range are maximum and positive around the expected locations for the levoglucosan peaks

and negative of close to zero in the vicinity of interfering peaks.
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Figure A.59 – HPAEC-PAD sum of anhydrosaccharides versus fitted values using PLSR models
on FTIR spectra (a) and regression coefficients of the wavenumbers in the levoglucosan
fingerprint region calculated using PLSR. Vertical black black show the location levoglucosan
peaks and red lines show the location interfering peaks.

A.5.7 Alternative smoke classifiers

In this section, alternative statistical models for building classifiers are discussed. The sum-

mary of these models has been show in Table A.4.

Table A.4 – Summary of alternative classifiers.

Classifier Training set F1
score

Test set F1 
score Advantages

Simple (A) 0.90 0.82 Simple and physically interpretable

Simple (+PLSR, APLS) 0.97 0.85
More accurate and robust with regard
to the inorganic interference in low
concentrations

Logistic (+PLSR) 0.88 0.88 Provides probabilities

SVM (+PLSR) 0.92 0.89

Accepts PCarb as direct input.
Has hyperparameters that can be tuned
using cross validation. Thus,
performance on the test set does not
degrade significantly

Smoke classifier using WSOC and FTIR signatures

A smoke classifier was developed by optimizing the parameters in Eq. (A.14) using the genetic

algorithm. In Eq. (A.14) WSOC is not substituted by the carbonyl peak. The results of this

classifier (Fig. A.60) are similar to those of Eq. (6.1) in the main manuscript.
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Figure A.60 – Comparison of the performance of the smoke classifier that uses FTIR smoke
signatures and WSOC on training and test sets. B is defined in Eq. (A.14). Vertical and
horizontal lines indicate the threshold (0.01) of smoke classification by each method.

B = aPLG1 +bPLG2 + cPLG2 +dPLig +e

W SOC
> 0.01. (A.14)

Building classifiers using PLSR results

The classifiers developed on the PLSR models are similar to those developed using PLG1, PLG2,

and PLG3 peaks except that these three peaks are substituted by PLG, PLS as in Eqs. (A.16)

and (A.15). PLG, PLS represents the response of the PLSR models developed by regressing

the levoglucosan fingerprint region (830–950 cm−1) in the FTIR spectra against HPAEC-PAD

levoglcusoan measurements. The dataset (303 samples from 2008 and 2011) was divided

into a training set (approximately two thirds) and a test set (approximately one third). PLSR

models were developed on the training set and the optimization for a, b, and c was carried

out using the genetic algorithm. The optimization was performed to maximize the F1 scores

for FTIR and HPAEC-PAD (assumed as reference) smoke classifications for two cases: using

the carbonyl peak as a proxy to WSOC (Eq. A.15) and using FTIR biomass burning markers

and WSOC data (Eq. A.16).

APLS =
aPLG, PLS +bPLig + c

PCarb
> 0.01 or (A.15)

BPLS =
aPLG, PLS +bPLig + c

WSOC
> 0.01. (A.16)

Comparing Figs. A.61, A.60, and 6.6 , one can see that the performance of classifiers using

PLSR models output is improved slightly compared to those using PLG1, PLG2, and PLG3 on the
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training and test sets.
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Figure A.61 – Comparison of the performances of smoke classifiers that use FTIR smoke
signatures and WSOC (c–d) or the carbonyl peak (a–b) on training and test sets. APLS and BPLS

are defined in Eqs. (A.16) and (A.15). Vertical and horizontal black lines indicate the threshold
(0.01) of smoke classification by each method.

The way the smoke classifier classifies samples based on their levoglucosan and lignin signa-

tures is shown in Fig. A.61.

Building classifiers using PLSR results and logistic regression

A smoke classifier using logistic regression has been shown in Fig. A.63. In this classifier, two

categories based on HPAEC-PAD measurements have been considered (no smoke, smoke-

impacted). The advantage of this classifier is that it estimates a probability for the smoke-

impacted samples. The logistic regression coefficients are solved by maximizing the likelihood

of the equation below for the dataset. The PLG, PLS appears to be the determining factor in this

classifier.

logit(Pr(Y = 1)) =β0 +β1PLG, PLS/PCarb +β2PLig/PCarb. (A.17)

Adjusting the threshold of smoke-impacted to 0.28 gives the highest F1 score for the training
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Figure A.62 – Scatter plot showing how the smoke classifier classifies samples based on their
levoglucosan and lignin signatures and the selected threshold. Smoke-impacted samples
having HPAEC-PAD LG / WSOC > 0.02 and maybe 0.01 < HPAEC-PAD LG / WSOC < 0.02 are
shown in red and orange, respectively. One of the coordinates of the points located on the log
axes is zero.

set (0.88). This threshold gives a reasonably high F1 score on the test set as well (0.88).
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Figure A.63 – Logistic regression for smoke classification. Smoke-impacted samples (HPAEC-
PAD LG / WSOC > 0.01) are shown in red. The solid curve shows the probably of a sample
being smoke-impacted or maybe smoke-impacted.

199



Appendix A. Appendix

Building classifiers using support vector machine

A soft-margin support vector machine classifier (Steinwart and Christmann, 2008) was used as

another flexible method for building smoke classifiers . The dataset was divided into a training

(202 samples) and a test set (101). The features used were either PLG1, PLG2, PLG3 , PLig, and

PCarb or PLG, PLS , PLig, and Pcarb. A radial basis function (RBF) kernel was used,

K (x, x ′) = exp(−γ||x −x ′||2), (A.18)

where x and x ′ are feature vectors of observation pairs. A 10-fold cross validation was used

to find the optimum kernel parameter, γ, and the optimum regularization parameter in the

Lagrange formulation. The F1 scores obtained when using levoglucosan peaks were 0.83 and

0.77 for the training and test sets, respectively. The F1 scores obtained when using the PLSR

model output were 0.92 and 0.89 for the training and test sets, respectively. These results are

comparable to those of the simple classifier used in the main text.

A.5.8 Smoke analysis of IMPROVE 2015 data

0.01
0.02
0.03
0.04
0.05

level

0.01
0.02
0.03
0.04
0.05

level

0.01
0.02
0.03
0.04
0.05

level

0.01
0.02
0.03
0.04
0.05

level

0.01
0.02
0.03
0.04
0.05

level

0.01
0.02
0.03
0.04
0.05

level

0.01
0.02
0.03
0.04
0.05

level

0.01
0.02
0.03
0.04
0.05

level

0.01
0.02
0.03
0.04
0.05

level

0.01
0.02
0.03
0.04
0.05

level

0.01
0.02
0.03
0.04
0.05

level

0.01
0.02
0.03
0.04
0.05

level

Jan. Feb. Mar. Apr.

May Jun. Jul. Aug.

Sep. Nov.Oct. Dec.

2015 Monthly max
lignin absorbances

0.01
0.02
0.03
0.04
0.05

level

Figure A.64 – Monthly maximum absorbance of lignin-like compounds in the FTIR spectra
from IMPROVE filter samples in 2015.
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Figure A.65 – The fraction of smoke-impacted samples separated by season. The contiguous
US is divided into four quadrants (vertical and horizontal lines indicating 40◦ N and −100◦ W).
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Figure A.66 – Kernel density estimates of OM concentrations (a) and OM / PM2.5 (b) for
smoke-impacted (red) and normal samples (green).
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Figure A.67 – FTIR spectra of fresh wood burning fine aerosols (high LG/OM ratio) from the
IMPROVE network (color) and environmental chamber experiments of Yazdani et al. (2021c)
(black). Vertical lines indicate the location of bbOA marker signatures. The gray rectangle
indicates the PTFE interference.

Figure A.68 – Comparison of OM (a) and bbPOA concentrations (b) for two sites impacted by
smoke and their FTIR spectra (c).
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A.6 Appendix to chapter 7

A.6.1 WBT protocol

The WBT protocol used in this study is illustrated as a schematic in Fig. A.69

Figure A.69 – Schematic of WBT protocol for each fuel.

A.6.2 EC, OC, and PM2.5 emissions

As can be seen from Fig. A.71, for the majority samples, the sum of EC and OM (OM/OC × OC,

OM/OC is calculated from FTIR measurements) constitutes the majority of PM2.5 mass. This

suggests that PM2.5 is mostly composed of EC and OM and the contribution of inorganics is

negligible. There are three samples from alcohol burning that have non-zero EC and OC but

zero PM2.5. There wood and charcoal combustion samples in the 0.4 <(OM+EC)/PM2.5< 0.7

range a clear inorganic nitrate peak is observed (Fig. A.72).
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Figure A.70 – The emissions factors, EC/TC, and modified combustion efficiency (MCE;
(∆CO2+∆CO)/∆CO2) separated by fuel type, test phase, and cookstove.
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Figure A.71 – Scatter plot comparing PM2.5 (gravimetric) measurements with the sum of
artifact-corrected TOT OM (OM/OC × OC, where OM/OC is calculated from FTIR) and EC on
quartz fiber filters.
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Figure A.72 – Spectra of three samples from charcoal particulate emissions with significant
contributions of inorganic nitrate.
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A.6.3 Mid-infrared spectra of PM2.5 separated by stove type
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Figure A.73 – Average mid-infrared spectra of particulate emissions separated by source and
phase and stove (normalized by energy delivered to the pot). CS = cold start, HS = hot start,
SIM = simmering. Black spectra are for unburned fuels (wood, kerosene, and charcoal).
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A.6.4 Fuels Analysis, Original Fuel Compositions

Figure A.74 – Elemental composition of unburned fuels. Data shown in Supplemental Table
A.5.
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Figure A.75 – Scatter plot of aromatic CH stretching at 3050 cm−1 and out-of plane absorbances
at 750 cm−1.

A.6.5 Using out-of-plane vibrations for quantifying aromatic CH

The aromatic CH stretching absorbances usually have low absorption coefficients and and

overlap with the ammonium NH stretching, making them hard to quantify. In this work,

out-of-plane band, which has a relatively higher absorption coefficient, and do not overlap

significantly with other group frequencies are used for the first time to quantify the aromatic

CH group in the organic aerosols. The latter is highly correlated to that at 3050 cm−1 but is

expected to have higher sensitivity (Fig. A.75). Contrary to the peak at 3050 cm−1, the peak

at 1600 cm−1 attributed to aromatic C –– C is not highly correlated with the out-of-plane peak,

especially for red oak burning aerosols likely due high abundance of lignin pyrolysis products

substituted rings (Fig. A.76).

The aromatic CH concentration estimated using the peak at 750 cm−1 is also correlated

(r = 0.84; slope = 19.6 ) with estimated total PAH concentration estimated by GC-MS (Fig. A.77.

VIP scores of GC/MS total PAH concentration regressed against mid-infrared absorbances

also shows high scores at 750 cm−1, highlighting the importance of this region for PAHs (Fig.

A.78). On the other hand, there is a non-linear relationship between EC concentration and the

aromatic CH concentration (Fig. A.79).

A.6.6 EC information in the FTIR spectra

The absorbance at each wavenumber is the sum of functional group absorbances at that

wavenumber, PTFE filter membrane light scattering, organic material light scattering, inor-

ganic material light scattering and absorption of elemental carbon due to electronic transitions.

In the current data set, inorganic salts are not present thus, except the filter light scattering,

only EC and OC change the absorbance. There are some variations in filter light scattering
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Figure A.76 – Scatter plot of aromatic C –– C stretching at 1600 cm−1 and out-of plane ab-
sorbances at 750 cm−1.
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Figure A.77 – Scatter plot of aromatic CH concentration estimated using the peak at 750 cm−1

and GC/MS total PAH concentration.
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Figure A.78 – VIP scores of GC-MS sum of PAHs regressed against FTIR spectra.
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Figure A.79 – Scatter plot of aromatic CH concentration estimated using the peak at 750 cm−1

and TOT EC concentration.
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from sample to sample due to factors such as thickness variation, fiber orientation and fil-

ter porosity. As the filter scattering is believed to be the major absorbing component due

to its substantial mass and thickness compared to particulate matter, initially, its variation

should be eliminated. For this purpose, the highest C – F absorption peak was chosen. Each

spectrum was baseline-corrected, which separated the spectrum in two parts. The first part

which is called the baseline-corrected spectrum, contains variations due to functional group

absorptions, which appear usually as sharp to semi-broad peaks. The second part contains

low level gradual variations, which usually arise from light scattering of filter and particulate

matter, and EC absorption. In order to eliminate filter contribution to background, a scaled

version of an empty filter background spectrum was subtracted from the background part of

each spectrum. During the scaling process, the absorbance at each wavenumber for empty

spectrum was multiplied by a factor which made the highest peak equal to that of the desired

spectrum. By regressing the slope of corrected background absorption to EC and OC we get a

relatively high correlation coefficient r = 0.85 (Fig. A.80).

The EC coefficient from ordinary least squares solution is approximately 2.2 times that of OC

or approximately 4 times that of OM (assuming OM is 1.8 times OC).

0.0

0.1

0.2

0.3

0.9 1.0 1.1 1.2 1.3
Abs(4000) − Abs(1500)

4.
9 

EC
 +

 2
.2

 O
C

Fuel
Charcoal

Kerosene

Red Oak

Phase
CS

HS

SIM

Figure A.80 – Baseline at 4000 cm−1 in the FTIR spectra regressed against EC and OC measured
by TOT. The coefficients of the regression are shown on the vertical axis.
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Figure A.81 – The single-bounce ATR-FTIR spectrum of atmospheric fine PM collected on a
quartz fiber filter.
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