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Abstract

The overall performance of a tokamak strongly depends on phenomena that take place in
a thin region between the main plasma and the vessel wall, which is denoted as tokamak
boundary. In fact, the formation of transport barriers in this region can significantly
improve plasma confinement and, therefore, the tokamak fusion performance. In addition,
the tokamak boundary determines the peak heat flux to the wall, an essential quantity
for the design and the operation of fusion power plants, as well as the level of impurities
in the core, the removal of fusion ash and the dynamics of neutral particles.
The dynamics in the plasma boundary is strongly nonlinear and characterized by a wide
range of length and time scales as well as by a complex magnetic field geometry that may
feature one or more nulls of the poloidal magnetic field. Large-scale, three-dimensional
turbulence simulations are therefore often required to disentangle the complex physical
mechanisms that govern this region.
The thesis is focused on the analysis of the different turbulent transport regimes present in
the plasma boundary as they appear from three-dimensional, flux-driven, global, two-fluid
turbulence simulations carried out by using the GBS code, which is significantly extended
here to allow the self-consistent simulation of the plasma dynamics coupled to a kinetic
single-species neutral model in arbitrarily complex magnetic geometries. Considering
single-null magnetic configurations, three turbulent transport regimes are identified: (i) a
regime of suppressed turbulent transport at low values of collisionality and large values
of heat source, (ii) a regime of developed turbulent transport at intermediate values of
collisionality and heat source, and (iii) a regime of very large turbulent transport at high
value of collisionality and density, which can be associated to the crossing of the density
limit.
By leveraging the results of GBS simulations, theory-based scaling laws of the pressure
and density decay lengths in the near and far scrape-off layer are derived in the developed
transport regime from a balance among heat source, turbulent transport across the
separatrix and parallel losses at the vessel wall. The theoretical scaling of the pressure
decay length in the near scrape-off layer is successfully validated against a multi-machine
database of SOL width measurements at the outer target.
By carefully analysing the transition to the regime of large turbulent transport, we show
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that the density limit can be explained by an enhancement of turbulent transport at the
tokamak boundary when the density increases. This analysis leads to a theory-based
scaling law of the maximum edge density achievable in tokamaks, which is in better
agreement with a multi-machine database than the widely used Greenwald empirical
scaling, thus significantly improving our understanding and predictive capability of the
density limit, with important implications for the design and the operation of future
fusion power plants.
The thesis concludes by presenting the first turbulent simulations carried out in various
snowflake magnetic configurations, which are used to investigate the effect of turbulence
and equilibrium flow on the heat flux distribution among the different strike points. In
particular, the presence of an equilibrium E×B convective cell around the second order
null is found to play an important role for the activation of the unconnected strike points,
especially in the case of the exact snowflake.

Keywords: plasma physics, controlled fusion, tokamak boundary, plasma turbulence,
turbulent transport, fluid simulations, density limit, snowflake

iv



Résumé

Les performances globales d’un tokamak dépendent fortement des phénomènes qui se
produisent dans une région entre le plasma au centre et la paroi de la machine, appelée
le bord du plasma. En effet, la formation de barrières de transport dans cette région
permet d’améliorer significativement le confinement du plasma et donc les performances
de fusion. De plus, le bord du tokamak controle le pic de chaleur sur la paroi, une
quantité essentielle pour la conception et le fonctionnement des centrales à fusion, ainsi
que le niveau d’impuretés au noyau du tokamak, l’élimination des résidus de fusion et la
dynamique des particules neutres.
La dynamique dans le bord du plasma est fortement non linéaire et caractérisée par une
large gamme d’échelles de longueur et de temps ainsi que par une géométrie complexe du
champ magnétique qui peut avoir un ou plusieurs zéros du champ magnétique poloïdal.
Les simulations tridimensionnelles de turbulence du plasma sont donc nécessaires pour
étudier les mécanismes physiques qui régissent la dynamique du plasma dans cette région.
Cette thèse analyse différents régimes de transport turbulent présents au bord du plasma
tels qu’ils apparaissent dans des simulations tridimensionnelles de turbulences réalisées en
utilisant le code GBS. Ce code est considérablement étendu pour permettre la simulation
de manière cohérente de la dynamique du plasma, couplée à un modèle cinétique des
particules neutres dans des géométries magnétiques complexess.
En considérant une géométrie “single-null”, trois régimes de transport turbulent sont
identifiés : (i) un régime à basse collisionnalité et à forte source de chaleur où le transport
turbulent est réduit, (ii) un régime à des valeurs intermédiaires de collisionnalité où le
transport turbulent est bien développé, et (iii) un régime de très grand transport turbulent
à haute collisionnalité et densité, qui peut être associé au dépassement de la limite de
densité.
En utilisant les résultats des simulations de GBS, on dérive des lois théoriques pour
calculer les longueurs de décroissance de la pression et de la densité dans le “scrape-off
layer”. Ces lois sont dérivées dans le régime de turbulences développées à partir d’un
équilibre entre la source de chaleur, le transport turbulent à travers la séparatrice et les
pertes parallèles de chaleur à la paroi de la machine. Les prédictions théoriques de la
longueur de décroissance de la pression dans le “scrape-off layer” sont comparées aux
données expérimentales provenant de différentes machines, montrant un bon accord entre
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théorie et expériences.
En analysant la transition vers le régime de grand transport turbulent, on montre que la
limite de densité peut être considérée comme le résultat d’une augmentation du transport
turbulent au bord du tokamak lorsque la densité augmente. Cette analyse conduit à une
loi théorique pour la densité maximale qui peut être atteinte dans les machines à fusion.
Cette loi est capable de reproduire les données expérimentales de différentes machines
d’une meilleure manière que la loi empirique de Greenwald, qui est souvent utilisée. La
théorie proposée dans cette thèse améliore remarquablement notre compréhension et notre
capacité de prédiction de la limite de densité, et conduit à des importantes implications
pour la conception et l’exploitation des futures centrales à fusion.
La thèse se termine par la présentation des premières simulations turbulentes réalisées
dans diverses configurations magnétiques de “snowflake”, qui sont utilisées pour étudier
l’effet de la turbulence et du flux d’équilibre sur la distribution du flux de chaleur entre les
différents points de contact. En particulier, la présence d’une cellule convective d’équilibre
autour du zéro d’ordre deux du champ magnétique poloïdal s’avère jouer un rôle important
pour l’activation des points d’impact non connectés, notamment dans le cas du “snowflake”
exact.

Mots clefs : physique des plasmas, fusion contrôlée, bord du tokamak, turbulence de
plasma, transports turbulents, simulations de fluides, limite de densité, snowflake.
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1 Introduction

The continuous increase of the population and the fast economical growth of developing
countries is leading to a dramatic rise of the energy demand, which is expected to double
by 2100. Nowadays, more than 80% of the world energy production is based on fossil
fuels such as oil, gas, or coal (see Fig. 1.1). The decrease of the available resources is
expected to strongly increase the price of energy, enlarging the gap between developed
and developing countries. In addition, the combustion of fossil fuels produces greenhouse
gasses that contribute to global warming and climate changes. For example, the global
emission of CO2 doubled in the period 1975-2017 (see Fig. 1.2) and is expected to triple
by 2040 [36]. There is an urgent need to develop sustainable energy sources.

Figure 1.1 – World total energy supply by source in 2018. More than 80% of the total
energy is provided by fossil fuels. Source: the International Energy Agency.
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Chapter 1 Introduction

Figure 1.2 – Global annual emission of CO2 from 1751 to 2017. The global emission of
CO2 doubled in the period 1975-2017. Source: Carbon Dioxide Information Analysis
Center (CDIAC).

1.1 Thermonuclear fusion

One of the few alternatives to fossil fuels is provided by nuclear fusion, the energy source
of the stars. Thanks to nuclear fusion, two light nuclei fuse together generating heavier
elements and releasing energy. The energy released during a fusion reaction, Ef , is
proportional to the difference between the total mass of reactants, mr, and the total mass
of products, mp, i.e. Ef = c2(mr −mp).

Only few nuclear reactions are of interest for energy production on Earth. Among them,
the nuclear reaction of deuterium and tritium,

2
1D + 3

1T −→ 4
2He + 1

0n , (1.1)

is particularly appealing for the first generation of fusion power plants [65]. The net energy
released by this reaction is 17.6 MeV, which goes into kinetic energy of the α-particle
(3.5 MeV) and neutron (14.1 MeV). In fact, the energy density associated with the reaction
in Eq. (1.1) is very high and one gram of fuel releases approximately 350 GJ of energy.
The reaction in Eq. (1.1) does not emit CO2. In addition, deuterium can be extracted
from sea water and it is practically inexhaustible. On the other hand, being tritium
unstable, it is not generally available on Earth. However, it can be bred inside the power
plant from the neutrons produced by the nuclear reaction itself and lithium, which is an
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Introduction Chapter 1

abundant element in the Earth’s crust,

1
0n + 6

3Li −→ 3
1T + 4

2He , (1.2)
1
0n + 7

3Li −→ 3
1T + 4

2He + 1
0n . (1.3)

Since Eq. (1.1) is not based on a chain process, it is intrinsically safe and it can be
interrupted in case of emergency. In addition, Eq. (1.1) and, in general, fusion reactions
are season, weather and location independent, and for this reason they are in principle
accessible by all the countries in the world. On the other hand, fusion poses extreme
scientific and technological challenges.

In order to fuse together, two nuclei have to overtake the Coulomb repulsion acting among
the involved protons. This repulsive barrier can be overcome only at high temperatures.
In particular, D-T reactions require a temperature higher than 1 keV in order to occur.
At this temperature, the fuel of the nuclear reactor is fully ionized and in the plasma state.
This is a globally neutral gas made of electrically charged particles that interact among
each other through long-range electromagnetic interaction. The minimum condition for
a fusion power plant to produce energy, known as break-even, is met when the fusion
power (power due to α-particles and neutrons) is higher than the input power. Due to
the weak interaction between neutrons and plasma, only α-particles contribute to heat
fusion plasma. Therefore, self-sustaining fusion reactions are achieved when the power
lost from a fusion reactor is compensated by the heating power from the α-particles. This
requirement, known as ignition, is summarized by the Lawson’s criterion that, for ion
temperature Ti in the range of 10-20 keV, can be written as [115, 238]

neTiτE & 5 · 1021s m−3keV , (1.4)

where ne is the plasma density and τE is the energy confinement time, defined as the
energy content of the plasma W divided by the power losses Ploss, i.e. τE = W/Ploss.
Fusion power plants will operate between break-even and ignition.

In order to satisfy the inequality in Eq. (1.4), two main approaches are currently pursued.
The first approach is based on high density plasma, n ' 1030 m−3, and low energy
confinement time, τE ' 10−10 s. High density pellets of a deuterium and tritium mixture
are hit by several high-power lasers that ablate the pellet surface. As the surface is
ablated, the pellet core is compressed towards its center because of the rocket effect,
leading to a strong and fast increase of core temperature and density. The largest inertial
confinement fusion experiment currently operational is the National Ignition Facility in
the USA [146]. The second approach is based on much longer energy confinement times,
τE ' 1 s, and smaller plasma densities, n ' 1020 m−3. For this purpose, the Lorentz
force is used to confine the charged particles inside the reactor. Since the Lorentz force
acts only in the direction perpendicular to the magnetic field and because of the drifts
charged particles are subject to in a magnetic field [238], confinement is only possible
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Chapter 1 Introduction

(a) (b)

Figure 1.3 – Schematic representation of a stellarator (a) and tokamak (b). In (a) the
twisted magnetic field lines (green lines) are generated by a set of coils of very complex
design and production. In (b) the twisted magnetic field lines are obtained by overlapping
a toroidal magnetic field (green lines), produced by toroidal field coils, and a poloidal
magnetic field, produced by the plasma current (red arrow) induced by the central solenoid.
Image source: Eurofusion website.

when the magnetic field lines wind around toroidal surfaces [65]. Depending on how the
magnetic field is obtained, we distinguish between stellarators and tokamaks (see Fig. 1.3).
In stellarators, the magnetic field is entirely produced by a set of external coils that, in
general, have a complex non-planar shape. The two largest stellarators in the world are
Wendelstein 7-X [105] in Germany and the Large Helical Device (LHD) [99] in Japan. In
tokamaks, the toroidal magnetic field is generated by a set of external toroidal coils and
a current driven inside the plasma by means of a central solenoid. Although results from
stellarators are encouraging [217], the tokamak is currently the most advanced device for
magnetic confinement fusion. The largest tokamak in the world is JET in the UK, which
reached the highest fusion energy gain Q ' 0.67, defined as the ratio of the fusion power
to the injected power, with a triple product of neTiτE ' 8 · 1020 s m−3 keV [100].

The international tokamak experiment ITER (The Way) is being built to demonstrate
the feasibility of energy from fusion [149]. ITER is among the most ambitious scientific
projects in the world. The project started in 1986 as an agreement between European
Union (Euratom), Japan, the Soviet Union and the USA. China, Korea and India joined
it afterward. The ITER tokamak is currently under construction in Caradache, France,
and the first plasma is foreseen by the end of 2025. ITER goal is to show the possibility
to produce 500 MW of fusion power with 50 MW of input power (Q = 10) while testing
steady-state production, by achieving 1 hour discharge with Q = 5 [8]. A schematic view of
ITER is shown in Fig. 1.4. Although a fundamental step towards fusion energy production,
ITER will not be connected to the power grid. The design of future demonstrative fusion
power plants connected to the grid, such as DEMO, is ongoing [58, 252].
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Figure 1.4 – Schematic view of ITER device. Image source: official ITER website.

1.2 The tokamak device

A charged particle in a uniform and constant magnetic field is subject to the Lorentz force.
This force constraints the particle motion in the directions orthogonal to a magnetic field
line, while the particle moves freely along it. However, because of particle drifts, non-
twisted circular magnetic field lines (in practice a tokamak with only toroidal magnetic
field) are not sufficient to confine a charged particle [238]. Both toroidal and poloidal
magnetic fields are needed. In tokamaks, the toroidal magnetic field is generated by
a set of planar toroidal coils, while the poloidal magnetic field is produced by driving
a toroidal current in the plasma (see Fig. 1.3 (b)). This current is driven through a
central solenoid that induces a loop voltage inside the plasma. Thanks to the ohmic
effect, the plasma current is also used to heat up the plasma to a few keV. Since these
temperatures are not sufficiently high to start fusion reactions, other external heating
systems are used to further increase the temperature [238]. Even if the confinement of a
single charged particle is guaranteed by twisted magnetic field lines, the collective behavior
of the plasma gives rise to transport across the magnetic surfaces. For instance, this
transport is due to Coulomb collisions among charged particles. Even more important,
the presence of curvature of magnetic field lines and pressure gradients leads to the onset
of plasma instability and turbulence, which cause a much larger radial transport, known
as anomalous transport [232].

The plasma volume in a tokamak can be divided in three regions usually denoted as
core, edge and scrape-off layer (SOL), as shown in Fig. 1.5. The core is characterized
by magnetic field lines that wrap around nested flux surfaces. In the hot and well
confined core plasma (∼ 10 keV), fusion reactions take place. In the core, the density and
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Chapter 1 Introduction

Figure 1.5 – Schematic representation of core (red), edge (yellow), and SOL (blue) on
a poloidal plane. The black solid line represents the separatrix of a X-point diverted
configuration.

temperature fluctuations are usually very small compared to the equilibrium quantities
(∼ 1%).

The SOL is the outer region of the plasma and is characterized by magnetic field lines
that intersect the wall. Particles and heat from the confined region are exhausted through
the SOL to the vessel wall. To avoid material damage, the plasma in the SOL must
be much colder (∼ 10 eV) than in the core. The magnetic field lines in the SOL are
usually shaped by means of external coils, usually leading to one or more X-points where
the poloidal magnetic field vanishes (see Fig. 1.5). This magnetic field configuration
directs the plasma flow and it allows most of the heat flux to be exhausted through the
target plates, which are complex components able to withstand large heat fluxes (up to
10 MW/m2). Moreover, the SOL is also characterized by large amplitude density and
temperature fluctuations, which are comparable to the equilibrium quantities.

The edge is the thin region between the core and SOL. The edge magnetic field lines also
lie on nested flux surfaces. Since the edge connects the hot plasma in the core and the
relatively cold plasma in the SOL, it is characterized by very steep pressure gradients,
which constitute a source of free energy for plasma instability and turbulence. Although
this region has a small radial extension if compared to the core, it plays an essential
role in determining the overall performance of a fusion reactor. In fact, a steep pressure
gradient in the edge allows for high pressure in the core and therefore a larger fusion
power, being this proportional to the square of plasma pressure. The magnetic surface
that separates the edge and SOL is denoted as the last closed flux surface (LCFS) or

6
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separatrix.

1.3 The plasma boundary

The plasma boundary usually denotes the plasma region that includes the edge and the
SOL. Understanding the phenomena taking place in this region is a fundamental step
towards the realization of fusion energy. In fact, the plasma dynamics in the boundary
controls the overall performance of a fusion reactor, sets the boundary conditions for the
core, controls the plasma refueling, heat exhaust and impurity dynamics and regulates
the plasma-wall interaction.

The heat exhaust is one of the crucial issue in the design and operation of future fusion
power plants. In fact, a large fraction of the heat produced by fusion reactions in the
plasma core might be exhausted over a region few millimeters thick, leading to heat fluxes
at the limit of material survival [135]. For this reason, the heat flux in the divertor region
must be strongly mitigated by inducing radiation before the plasma reaches the target
plates. In future fusion power plants, the magnetic geometry designed for ITER may not
be sufficient to guarantee that the peak of heat flux remains below the technological limit
imposed by the materials and alternative divertor configurations are under investigation
by the fusion community [253].

Besides regulating the heat exhaust, phenomena occurring in the tokamak boundary can
strongly affect plasma and energy confinement, with important consequence on the overall
performance of a magnetic fusion device. In fact, the plasma dynamics in the tokamak
boundary is responsible of the L-H transition, which is a transition from a low (L) to high
(H) confinement regime [231]. This transition results into a very steep pressure gradient
at the plasma edge and an increase of the plasma pressure in the core by, approximately,
a factor of two. Experimental observations [51, 61, 79, 92, 112, 197, 226] have also linked
the physics of the tokamak boundary to the density limit [79, 80], i.e. the maximum
density that can be achieved in a tokamak before causing a plasma disruption.

The dynamics in the plasma boundary is strongly nonlinear and characterized by a wide
range of length and time scales, from the ion Larmor radius (ρi ∼ 0.3 mm at Te = 10 eV
and B = 1 T) to the machine size (a ∼ 1 m), and from the ion gyro-motion (∼ 10−9 s)
to the energy confinement time (∼ 1 s). In addition, large amplitude turbulent structures
do not allow for decoupling between fluctuating and background quantities. Wide range
of scales, large amplitude fluctuations, and a non-trivial magnetic geometry make the
plasma boundary extremely challenging to model and simulate.

In order to approach the complexity of the plasma boundary, gyrokinetic and fluid models
are used. Gyrokinetic models have been originally developed for the simulation of the
tokamak core where the collisionality is very low and where unstable modes develop at
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the ion and electron gyro-radius scales with small amplitude fluctuations. On the other
hand, fluid models are usually applied in the SOL, taking advantage of the higher plasma
collisionality. The edge region, the border between core and SOL, is characterized by
intermediate values of plasma collisionality. Simulating separately core, edge and SOL
limits the possibilities to advance the understanding of the plasma dynamics in the plasma
boundary since their dynamics are strongly coupled [60, 44, 81]. For this reason, significant
effort was recently carried out in order to extend gyrokinetic models towards the edge and
the SOL [64, 84, 166] and simulate the plasma boundary by means of gyrokinetic codes,
such as COGENT [45], ELMFIRE [35], GENE [157], Gkeyll [202] and XGC1 [31]. However,
because of the large computational cost of gyrokinetic simulations and the complexity of
gyrokinetic models in the plasma boundary, fluid codes, such as BOUT++ [47], GBS [170],
GDB [251], GRILLIX [212], HESEL [154] and TOKAM3X [218], are usually applied to
simulate plasma turbulence in this region.

In the present thesis, the GBS code with the domain encompassing the whole tokamak to
include core, edge and SOL interplay is used to investigate different turbulent transport
regimes in the plasma boundary of diverted configurations, such as the one in ITER, as
well as advanced magnetic configurations.

1.4 Scope and outline of the thesis

The main goal of the present thesis is to identify and characterize the turbulent transport
regimes in the tokamak boundary as they result from two-fluid turbulence simulations, a
stepping stone to the interpretation of future gyrokinetic boundary simulations. Particular
focus is dedicated to the study of the transitions among these transport regimes, which
are linked to important phenomena such as the L-H transition and the density limit. In
addition, scaling laws of relevant quantities for the operation and design of tokamaks,
such as the pressure decay length in the SOL and the maximum edge density achievable,
are derived and compared to multi-machine databases. The present thesis addresses
also the physics at play in alternative exhaust configurations, in particular the snowflake
configuration [188]. These are of large interest to the fusion community since extrapolation
of the ITER exhaust solution to fusion power plants may not guarantee a heat flux to
the wall below the technological limit imposed by the materials [252, 121].

The present thesis is structured as follows. In Ch. 2, we present a new version of the
GBS code [73], which significantly extends our simulation capability. In particular, the
physical model is extended by adding electromagnetic effects and avoiding the use of the
Boussinesq approximation in a diverted geometry. The plasma model is coupled to a
single-species kinetic neutral model, leading to the first GBS simulation in a realistic
diverted geometry that self-consistently evolves plasma turbulence and neutral dynamics.
In addition, the implementation of the Poisson, Ampère and neutral solvers are carefully
optimized, allowing us to efficiently simulate plasma turbulence in medium size tokamaks,
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such as TCV.

The characterization of different turbulent transport regimes in the plasma boundary is
presented in Ch. 3 by closely following Ref. [72], where the results of GBS electrostatic
simulations are used to identify three electrostatic turbulent transport regimes: a regime
of suppressed turbulent transport at low collisionality and high heat source, a regime of
fully developed turbulence at intermediate values of collisionality and heat source, and a
regime of extremely large turbulent transport at high collisionality and low heat source,
which is associated to the crossing of the density limit. Focusing on the edge region,
an analytical estimate of the equilibrium pressure gradient length is derived in all the
identified regimes.

In Ch. 4, we focus on the fully developed turbulent transport regime that we associate
to the L-mode operation of tokamaks. A theory-based scaling laws of the pressure and
density decay lengths in the near and far SOL are analytically derived for L-mode diverted
plasma, thus extending the results of Ch. 3 to the SOL. Similarly to Ch. 3, the near
SOL pressure and density decay lengths are obtained by balancing the power source,
perpendicular turbulent transport across the separatrix and parallel losses at the vessel
wall. A different approach is followed in the far SOL, where the pressure and density decay
lengths are derived by using a model of intermittent transport mediated by filaments.
The theoretical scaling laws are then compared to simulation results and experimental
data [74].

The effects of electromagnetic perturbations on turbulent transport and equilibrium
profiles are analyzed in Ch. 5 by leveraging the results of GBS electromagnetic simulations
at different values of collisionality, heat source and β, thus extending the electrostatic
investigation performed in Ch. 3. We show that, at high values of density, electromagnetic
effects play only a minor role in determining turbulent transport if β is below the ideal
ballooning stability limit and that the density limit can be reached independently of
the value of β. The key parameters determining turbulent transport are also identified
and used to delineate a phase space of edge turbulence, where both the β and density
limits are represented. In particular, a theory-based scaling law of the maximum edge
density achievable in magnetic fusion devices is derived and successfully validated against
a multi-machine database of density limit discharges.

By following Ref. [75], we present in Ch. 6 the first turbulent simulations in snowflake
configurations. The parallel heat flux on the target plates is analyzed in these configura-
tions and compared to a standard single-null geometry, pointing out the important role
of equilibrium drifts and turbulence in these configurations.

Finally, the conclusions and an outlook of the thesis follow in Ch. 7.
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2 The GBS code for plasma boundary
turbulence simulations

The present chapter describes a new version of the GBS code. The simulation domain is
extended to encompass the whole plasma volume, avoiding an artificial boundary with
the core, hence retaining the core-edge-SOL interplay. A new toroidal coordinate system
is introduced to increase the code flexibility, allowing for the simulation of arbitrary
magnetic configurations (e.g. single-null, double-null and snowflake configurations), which
can also be the result of the equilibrium reconstruction of an experimental discharge. The
implementation of a new iterative solver for Poisson and Ampère equations is presented,
leading to a remarkable speed-up of the code with respect to the use of direct solvers,
therefore allowing for efficient electromagnetic simulations that avoid the use of the
Boussinesq approximation. A new MPI parallelisation is implemented to evolve the
plasma and neutral models in parallel, thus improving the code scalability. The numerical
implementation of the plasma and neutral models is verified by means of the method of
manufactured solutions. The chapter ends with an example of a TCV discharge simulation
in lower-single null geometry, showing the capabilities of this new version of GBS.

2.1 Introduction

The GBS code was initially developed to study plasma turbulence in basic plasma
devices. The initial version of GBS evolved the two-dimensional plasma dynamics in the
plane perpendicular to the magnetic field [171, 174], mainly studying ideal-interchange
turbulence in simple magnetized plasma (SMT) configurations, such as TORPEX [57].
Later, GBS was extended to include the direction parallel to the magnetic field, using
a field-aligned coordinate system, and was used to perform global simulations in SMT
configurations [116, 172, 175] and linear devices [183], such as LAPD [71]. In 2012, a
new version of GBS was developed to simulate plasma turbulence in the SOL of tokamak
devices operated with limited magnetic configurations [170]. An electrostatic model in
the cold ion limit was considered. Moreover, the Boussinesq approximation was applied
to simplify the numerical implementation of the divergence of the polarisation current.
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In 2016, a second version of GBS was developed [87]. The physical model was improved
by adding the ion temperature dynamics [148] and electromagnetic effects [86]. The
plasma model was coupled to a self-consistent kinetic neutral model, leading to the first
plasma turbulence simulations of the SOL that self-consistently include the coupling to
the neutral dynamics [237]. The Boussinesq approximation was relaxed and the code
parallelisation was substantially improved by means of a three-dimensional Cartesian
communicator. The implementation of the plasma model was verified by using the method
of manufactured solutions (MMS), described in Ref. [178].

Finally, a non-field-aligned coordinate system was introduced in GBS to simulate complex
magnetic geometries including one or more X-points and a third version of the code was
reported in 2018, leading to the first GBS simulation of a diverted geometry [160]. The
second-order numerical scheme was improved to a fourth-order finite difference scheme.
Considering a simplified model with respect to the limited configuration, the diverted
version of GBS was electrostatic, made use of the Boussinesq approximation, and did not
include the neutral dynamics. Despite the use of a domain with a circular poloidal cross
section that avoids the core region, limiting the choice of magnetic geometry, the version
of GBS described in Ref. [160] was used to investigate plasma turbulence in both single-
and double-null magnetic configurations, shading light on the properties of blobs [10, 159].

The goal of the present chapter is to describe in detail a new version of GBS that
significantly improves the diverted version of GBS reported in Ref. [160]. First, while
keeping the same fourth-order numerical scheme and non-field-aligned coordinate system,
a rectangular poloidal cross section is implemented, which encompasses the whole plasma
volume avoiding an artificial boundary with the core, hence retaining the core-edge-SOL
turbulence interplay that is found to play a key role in determining the plasma dynamics
of the tokamak boundary [44, 60, 81]. Although the use of a fluid model to simulate
the whole plasma volume results in a description of the plasma dynamics in the core
region that lacks some of the fundamental elements, such as kinetic effects, at play in
this region, it avoids some unphysical phenomena due to the use of artificial boundary
conditions with the core, especially concerning the electrostatic potential and the parallel
velocities in the tokamak edge, as discussed in Ref. [160]. Moreover, the density source
due to ionization of the neutral atoms can be better described with a domain that
encompasses the whole plasma volume since ionization events may also occur in the
core region. In addition, including the core region will allow the GBS model to be
extended by adding further moments of the electron and ion distribution functions in
future, thus retaining kinetic effects and improving the simulation accuracy of plasma
turbulence in the core region [64, 102]. The new implemented geometry allows also for
more flexibility on the choice of the magnetic configuration, which can also be loaded from
an equilibrium reconstruction or a Grad-Shafranov solver. The possibility to simulate a
magnetic configuration loaded from an equilibrium reconstruction has recently allowed
for a direct comparison between GBS simulations and TCV experiments [155]. Second,
the physical model of Ref. [160] is extended by adding electromagnetic effects, and the
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self-consistent kinetic neutral model, initially developed in the context of the limited
version of GBS [87, 237], is ported to the present configuration, with an improved set of
boundary conditions. Third, both the plasma and neutral implementations are carefully
refactorized and optimized. In particular, the implementation of a new iterative solver
for the Poisson and Ampère equations is introduced, leading to a remarkable speed-up of
the code, therefore allowing for efficient electromagnetic simulations that avoid the use
of the Boussinesq approximation. Fourth, the GBS parallelisation scheme is improved
here by allowing the evolution in parallel of the plasma and neutral dynamics, and
leading to an improvement of the code scalability. In addition, the relatively simple
numerical scheme used in GBS allows for an effective parallelisation of GBS through
domain decomposition applied to all three coordinates and implemented with the Message
Passing Interface (MPI). The numerical implementation of both the plasma and neutral
models is also verified by means of the MMS for the first time. In addition, taking
advantage of the improvements of GBS brought to the present version, we present the
first GBS electromagnetic simulation of a single-null TCV equilibrium, including the
self-consistent evolution of the neutral dynamics.

The present chapter is organized as follows. The kinetic single-species neutral model
evolved by GBS is summarized in Sec. 2.2, while the fluid plasma model is reported
in Sec. 2.3. The implementation of the physical model in GBS as well as the initial
and boundary conditions are described in Sec. 2.4. Sec. 2.5 focuses on the numerical
discretization and optimization of the GBS plasma and neutral models. The code
verification is reported in Sec. 2.6, while parallelisation scalability tests are described in
Sec. 2.7. Convergence properties are presented in Sec. 2.8. The first application of the
new version of GBS described herein is then presented in Sec. 2.9. The conclusions follow
in Sec. 2.10.

2.2 The neutral model

We consider a single mono-atomic neutral species represented by a distribution function
fn with its dynamics being described by the following kinetic equation,

∂fn
∂t

+ v · ∇fn = −νizfn − νcx
(
fn −

nn
ni
fi

)
+ νrecfi , (2.1)

where fi and ni are the ion distribution function and the ion density, respectively. The
ionization, charge-exchange, and recombination processes are described through the use
of Krook operators with collision frequencies defined as

νiz = ne〈veσiz(ve)〉ve , (2.2)

νrec = ne〈veσrec(ve)〉ve , (2.3)
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and
νcx = ni〈viσcx(vi)〉vi , (2.4)

where σiz, σrec and σcx are the ionization, recombination and charge-exchange cross-
sections, ve and vi are the modulus of the electron and ion velocity and 〈·〉ve and
〈·〉vi denote the average in the velocity space over the electron and ion distribution
functions, respectively. The effective reaction rates, 〈vσ〉, are taken from the OpenADAS
database [215]. The neutral velocity is neglected in Eqs. (2.2)-(2.4) when evaluating the
relative velocity between colliding particles [211, 237]. The neutral-neutral collisions,
which have a lower reaction rate than the charge-exchange and ionization processes,
possibly except in detached conditions, are neglected in Eq. (2.1). The elastic electron-
neutral collisions are also neglected in Eq. (2.1) because of the electron-to-neutral mass
ratio, but they are retained in the electron dynamics (see Eq. (2.8)).

The boundary conditions for fn at the wall are derived under the assumption that the
impacting neutrals and ions are either reflected or absorbed. If absorbed, the neutral
particle is immediately released with a velocity that depends on the wall properties and is
independent of the impacting particle velocity. The distribution function of the neutrals
flowing from wall to the plasma volume (i.e. neutrals with velocity such that v · n̂ > 0,
with n̂ the unit vector normal to the wall) is therefore given by

fn(xb,v) = (1−αrefl)Γout(xb)χin(xb,v, Tb)+αrefl[fn(xb,v−2vp)+fi(xb,v−2vp)] , (2.5)

where αrefl is the reflection fraction, assumed the same for neutrals and ions, xb indicates
the boundary position, Γout = Γout,n + Γout,i is the sum of the neutral and ion fluxes
to the wall and projected in the direction perpendicular to it, vp = vpn̂ is the velocity
perpendicular to the boundary, with vp = v·n̂, and χin is the inflowing velocity distribution
function given by the Knudsen cosine law,

χin(xb,v, Tb) =
3

4π

m2

T 2
b

cos θ exp

(
−mv2

2Tb

)
, (2.6)

with θ = arccos(vp/v) and Tb the wall temperature [237].

Further details on the neutral model are reported in Ref. [237], while the implementation
of Eqs. (2.1) and (2.5) in GBS is described in Sec. 2.4.

2.3 The plasma model

This section briefly summarizes the derivation of the plasma model evolved by GBS. We
first report on the derivation of the Braginskii equations in the presence of neutral-plasma
collisions. Then, we consider the drift limit of these equations, which is implemented in
the GBS code.
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2.3.1 Braginskii equations

The Braginskii equations [23] were developed in the 1960s to describe the dynamics of a
highly collisional plasma. The derivation of these equations starts from the description
at a kinetic level of the plasma particle species. We consider here a single ion species
plasma and we include collision terms in the form of Krook operators to describe the
interaction with neutrals. The kinetic Boltzmann equations describing the evolution of
the ion distribution function fi is given by

∂fi
∂t

+ v · ∂fi
∂x

+ qi

(
E + v ×B

mi

)
· ∂fi
∂v

=Ci(fi, fe)− νcx

(
nn
ni
fi − fn

)
+ νizfn − νrecfi + si , (2.7)

while the kinetic equation for the evolution of the electron distribution function fe is

∂fe
∂t

+ v · ∂fe
∂x
− e

(
E + v ×B

me

)
· ∂fe
∂v

=Ce(fe, fi) + νiznn

[
2Φe(Vn, Te,iz)−

fe
ne

]
− νrecfe

+ νennn

[
Φe(Vn, Te,en)− fe

ne

]
+se , (2.8)

where mi and me are the ion and electron masses, qi is the ion charge, e is the elementary
charge, Ci(fi, fe) and Ce(fe, fi) are the collisional operators, Vn =

∫
vfndv/nn is the

neutral mean velocity, Φe(v, T ) is a Maxwellian velocity distribution function, νen =

ne〈veσen(ve)〉ve is the elastic electron-neutral collision frequency neglected in Eq. (2.1), and
si and se are external sources of particles and heat. In Eq. (2.8), the two electrons resulting
from an ionization event are considered emitted with a Maxwellian velocity distribution
function, Φe(Vn, Te,iz), of average velocity Vn =

∫
vfndv/nn and temperature Te,iz =

Te/2−Eiz/3 +meV
2
e /6−meV

2
n /3, where Te and Ve are the local electron temperature

and fluid velocity, respectively, and assuming that the electrons are released isotropically
in the neutral reference frame (see Ref. [237] for details). The electron-neutral collisions
are described in Eq. (2.8) by a loss term proportional to the electron distribution function
and a source term with a Maxwellian distribution function, Φe(Vn, Te,en), where Te,en =

Te +me(V
2
e − V 2

n )/3 (see Ref. [237]).

The density, mean velocity and temperature of a species a associated with a distribution
function fa are defined as

na(t,x) =

∫
fa(t,x,v)dv , (2.9)

Va(t,x) =
1

na

∫
vfa(t,x,v)dv = 〈v〉a , (2.10)

Ta(t,x) =
1

na

∫
m

3
(v −Va)

2fa(t,x,v)dv =
m

3
〈(v −Va)

2〉a . (2.11)
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The continuity, the momentum, and the temperature equations for a plasma composed of
electrons and a single ion species of charge Ze are then derived by taking the first three
moments of Eqs. (2.7) and (2.8), that is

∂ne
∂t

+∇ · (neVe) =nnνiz − niνrec + sn , (2.12)

∂ni
∂t

+∇ · (niVi) =nnνiz − niνrec + sn , (2.13)

mene
deVe

dt
=−∇pe −∇ · πe − ene

(
E + Ve ×B

)
+ Re

+menn(νen + 2νiz)(Vn −Ve) , (2.14)

mini
diVi

dt
=−∇pi −∇ · πi + Zeni

(
E + Vi ×B

)
+ Ri

+minn(νiz + νcx)(Vn −Vi) , (2.15)
3

2
ne

deTe
dt

+ pe∇ ·Ve =−∇ · qe − πe : ∇Ve +Qe

+ nnνiz

[
−Eiz −

3

2
Te +

3

2
meVe ·

(
Ve −

4

3
Vn

)]
− nnνenmeVe · (Vn −Ve) + nesTe , (2.16)

3

2
ni

diTi
dt

+ pi∇ ·Vi =−∇ · qi − πi : ∇Vi +Qi + nisTi

+ nn(νiz + νcx)

[
3

2
(Tn − Ti) +

mi

2
(Vn −Vi)

2

]
, (2.17)

where

de
dt

=
∂

∂t
+ Ve · ∇ , (2.18)

di
dt

=
∂

∂t
+ Vi · ∇ (2.19)

are the total time derivatives for the electrons and the ions, respectively, and pe = neTe,
pi = niTi are the electron and ion plasma pressure, respectively.

The terms on the right-hand side of Eqs. (2.14) and (2.15) represent the change in
momentum due to the gradient of the pressure tensor Pαβ = pαδαβ + παβ , where

p = nm〈v′2〉/3 , (2.20)

παβ = mn〈v′αv′β − v′2/3δαβ〉 , (2.21)

with v′ = v − V, while the momentum exchanged per unit time due to electron-ion
collisions is expressed in terms of

R =

∫
mv′Cdv . (2.22)
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In Eqs. (2.16) and (2.17), q denotes the heat flux associated with the thermal motion of
the particles,

q = nm

〈
v′2

2
v

〉
(2.23)

and Q represents the heat density generated as a consequence of the collisions with the
other species in the plasma,

Q =

∫
mv′2

2
Cdv . (2.24)

In Eqs. (2.16) and (2.17), the Frobenius inner product, π : ∇V = παβ∂Vα/∂xβ, is used.
Eqs. (2.12)-(2.17) are coupled to the full set of Maxwell equations to express the electric
and magnetic field.

A self-consistent model that describes the evolution of n, V and T requires that the
quantities π, q, R and Q in Eqs. (2.12)-(2.17) are expressed as a function of n, V and T .
Within the assumption of considering timescales longer than the time interval between
collisions and spatial variations occurring on scales longer than the space travelled by a
particle between two collisions, the solution of Eqs. (2.7) and (2.8) can be approximated by
a perturbed Maxwellian. As a consequence, the quantities π, q, R and Q are proportional
to n, V, T and their gradients. The proportionality coefficients are called transport
coefficients. In Ref. [23], the transport coefficients are calculated by assuming a strongly
magnetized plane, i.e. Ωe,iτe,i � 1, where Ωe,i = qe,iB/me,i are the electron/ion cyclotron
frequencies and

τe =
3
√
me

4
√

2π

(4πε0)2

Z2e4

T
3/2
e

nλ
, (2.25)

τi =
3
√
mi

4
√

2π

(4πε0)2

Z4e4

T
3/2
i

nλ
(2.26)

are the electron and ion collision times, with λ the Coulomb logarithm [209].

In the considered limit, Ref. [23] shows that the momentum transfer between ions and
electrons, R = Re = −Ri, consists of two terms: the friction force, Ru, due to electron/ion
collisions, and the thermal force, RT , due to the coexistence of a temperature gradient
in the presence of electron/ion collisions. By neglecting the friction in the direction
perpendicular to the magnetic field and terms of order 1/(Ωeτe), the friction and thermal
forces are

Ru = ene
j‖

σ‖
b , (2.27)

RT = −0.71ne∇‖Te , (2.28)

where b is the unit vector parallel to the magnetic field, j‖ = ene(V‖i−V‖e) is the current
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in the direction parallel to b, and σ‖ is the parallel conductivity,

σ‖ = 1.96
e2neτe
me

. (2.29)

Within the same approximations, the electron and ion heat fluxes appearing in Eqs. (2.16)
and (2.17) are

qe = −0.71neTe
j‖

e
− χ‖eb∇‖Te −

5

2

neTe
eB

b×∇Te , (2.30)

qi = −χ‖ib∇‖Ti +
5

2

niTi
ZeB

b×∇Ti , (2.31)

where

χ‖e = 3.16
neTeτe
me

, (2.32)

χ‖i = 3.9
niTiτi
mi

(2.33)

are the parallel thermal conductivities.

The heat generation Q is composed of the Joule heating due to friction between ions
and electrons, the electron-ion heat transfer, and the term arising from the thermal force.
For the typical timescales of turbulence in the plasma boundary, the first contribution is
negligible. The heat generation for electrons is given by

Qe =
0.71

e
j‖∇Te + 2

me

mi

n

τe
(Ti − Te) , (2.34)

while for ions by
Qi = 2

me

mi

n

τe
(Te − Ti) . (2.35)

Finally, the components of the stress tensor π, having aligned the z axis along the
magnetic field direction, can be written as

πxx = −η0

2
(Wxx +Wyy)− η3Wxy , (2.36)

πyy = −η0

2
(Wxx +Wyy) + η3Wxy , (2.37)

πxy = πyx =
η3

2
(Wxx −Wyy) , (2.38)

πxz = πzx = −2η3Wyz , (2.39)

πyz = πzy = +2η3Wyz , (2.40)

πzz = −η0Wzz , (2.41)
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where the rate-of-strain tensor W is

Wαβ =
∂Vα
∂xβ

+
∂Vβ
∂xα

− 2

3
δαβ∇ ·V , (2.42)

with

η0i = 0.96niTiτi , η3i =
niTi
2Ωi

, (2.43)

η0e = 0.73neTeτe , η3e = −neTe
2Ωe

(2.44)

the viscosities.

2.3.2 Drift-reduced Braginskii equations

The Braginskii equations describe the plasma dynamics occurring on a wide range of time
and spatial scales, ranging from the electron cyclotron frequency Ωce = eB/me ∼ 1011 s−1

up to the confinement timescale, which is of order 1 s, and from the electron Larmor
radius, which is of the order of 10−5 m (for typical values of Te in the SOL), up to typical
machine size, of the order of 1 m. On the other hand, turbulent fluctuations in the plasma
boundary occur at timescale of order 10−6s, which is therefore much slower than the
fast cyclotron motion, and on spatial scale of the order of the ion sound Larmor radius,
ρs = cs/Ωci, with cs the sound speed. It follows that simulating the plasma dynamics
by means of the Braginskii equations is extremely challenging from a numerical point of
view. It is therefore of fundamental importance to eliminate the fast timescales from the
Braginskii equations in order to obtain a model that can be addressed numerically. This
reduction consists in simplifying Eqs. (2.12)-(2.17) by applying a drift ordering,

∂

∂t
∼ VE · ∇ ∼

ρ2
s

L2
⊥

Ωci � Ωci , (2.45)

being ρs much smaller than the typical equilibrium scale length L⊥, and VE = b×∇φ/B
the E×B drift velocity. Moreover, since the plasma turbulence takes place on a spatial
scale much larger than the Debye length, we assume the plasma to be quasi-neutral, i.e.
ni = ne ≡ n.

Within the drift-reduced approximation, the particle velocities can be conveniently split
into a component parallel to the magnetic field and a component perpendicular to it. In
fact, the electron and ion perpendicular velocities can be written as [237, 249]

V⊥e = VE + Vde , (2.46)

V⊥i = VE + Vdi + Vpol + Vin , (2.47)
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where

Vde = − 1

enB
b×∇pe , (2.48)

Vdi =
1

ZenB
b×∇pi (2.49)

are the electron and ion diamagnetic drift velocities, respectively. The E × B and
diamagnetic drift velocities provide the zeroth order approximation to the perpendicular
velocity, i.e. V⊥i = VE+Vdi and, similarly, V⊥e = VE+Vde. The first order corrections
to the ion perpendicular velocity are the polarisation drift, Vpol, and the drift arising from
the ion-neutral friction due to charge exchange, Vin = (nn/n)(νcx/Ωci)(V⊥n −V⊥i)× b.
The ion polarization drift can be obtained from Eq. (2.13) by splitting the stress tensor π
into two contributions: a viscous part,

πvis =

(
bb− I

3
G

)
, (2.50)

G = −3η0

(
∇‖V‖ − κ ·V −

1

3
∇ ·V

)
, (2.51)

with G the stress function and κ = b · ∇b the field line curvature, and a finite Larmor
radius (FLR) part, πFLR, such that

∇ · πFLR =−minVdi · ∇Vi + pi

(
∇× b

Ωci

)
· ∇Vi

+∇⊥
(

pi
2Ωci
∇ · b×Vi

)
+ b×∇

(
pi

2Ωci
∇⊥ ·Vi

)
. (2.52)

The ion polarization drift can then be written as [249],

Vpol =
b

Ωci
× d

dt
V⊥i0 +

1

nmiΩci

{
b×

[
pi

(
∇× b

Ωci

)
· ∇V⊥i0

]

+b×∇⊥
(

pi
2Ωci
∇ · b×V⊥i0

)
−∇⊥

(
pi

2Ωci
∇⊥ ·V⊥i0

)}

+
1

nmiΩci
b×

(
Gκ− ∇G

3

)
, (2.53)

where d/dt = ∂/∂t + (VE + V‖ib) · ∇, being Vpol and Vin dropped because of the
drift-ordering. The diamagnetic drift cancels out the first term of Eq. (2.52).

The polarisation drift appears in the continuity equation in a divergence term, ∇· (nVpol),
which can be written as (see Ref. [249] for details)

∇ · (nVpol) = ∇⊥ ·
nc

BΩci

d

dt

(
E⊥ −

∇⊥pi
en

)
+

1

3miΩci
b× κ · ∇G . (2.54)
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On the other hand, the electron polarization drift is neglected, since ∇ · (nVpol,e) is a
factor

√
me/mi smaller than ∇ ·Vpol. Similarly, Ven is a factor

√
me/mi smaller than

Vin and it is therefore neglected. We now have the main elements to derive the set of
equations that are implemented in the GBS code.

Continuity and vorticity equations

Under the assumption of quasi-neutrality, the drift-reduced continuity equations for ions
and electrons are

∂n

∂t
+∇ ·

[
n
(
VE + Vdi + Vpol + V‖ib + Vin

)]
= nnνiz − nνrec + sn , (2.55)

∂n

∂t
+∇ ·

[
n
(
VE + Vde + V‖eb

)]
= nnνiz − nνrec + sn , (2.56)

By subtracting Eq. (2.55) and Eq. (2.56), we obtain the vorticity equation,

∇ · (nVpol) +
1

e
∇‖j‖ +∇ · [n(Vdi −Vde)] +∇ · (nVin) = 0 , (2.57)

where we assume that the modulus B of the magnetic field varies slowly along b, ∇·fb '
∇‖f . Eq. (2.57) is equivalent to ∇· j = 0. By replacing the term ∇· (nVpol) in Eq. (2.57),
the vorticity equation becomes

∇⊥ ·

[
n

BΩci

d

dt

(
E⊥ −

∇⊥pi
en

)]
+

1

3miΩci
b× κ · ∇G+

1

e
∇‖j‖ +∇ · [n(Vdi −Vde)]

+
nn
n
νcx∇ ·

(
nE⊥ −

1

e
∇⊥pi

)
= 0 , (2.58)

which determines the time evolution of E⊥.

The semi-electrostatic limit

Since the Braginskii model evaluates the electric and magnetic field as the solution of
the complete set of Maxwell equations, both compressional and shear Alfvén waves are
included in its description [16]. However, compressional Alfvén waves are several orders
of magnitude faster than typical turbulent fluctuations in the plasma boundary. Hence,
it is important to remove these fast oscillations from the model, which can be done by
neglecting the component of the vector potential perpendicular to the magnetic field.
Shear Alfvén waves are instead retained in the model as the associated oscillations are
sufficiently slow that they play a role in the turbulent dynamics of the plasma boundary.

Neglecting the displacement current, considering the Ampère’s law for the magnetic field
and current fluctuations, ∇× δB = µ0δj, and expressing the magnetic field in terms of
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the potential vector, δB = ∇× δA, we obtain

∇2δA = −µ0δj , (2.59)

where δj = j− j̄ accounts for the small-scale and small-amplitude current perturbations
(the contribution of the equilibrium current, j̄, is subtracted to the total current, j).
Therefore, Eq. (2.59) does not evolve the externally imposed equilibrium magnetic field,
which otherwise would require to couple the plasma model to a Grad-Shafranov solver and
to self-consistently simulate the plasma current, and focuses on electromagnetic effects
rising from small-scale, small-amplitude magnetic perturbations [249]. By assuming that
β = 2µ0(pe + pi)/B

2 � 1 and observing that the typical turbulent scale lengths in the
parallel direction are much larger than the ones in the perpendicular direction, Eq. (2.59)
can be written as

∇2
⊥ψ = µ0δj‖ , (2.60)

where we define ψ = −δA‖, with δA‖ = δA · b. Within the same approximations, the
electric field is given by

E = −∇φ+
∂ψ

∂t
b . (2.61)

We note that the magnetic fluctuations affect the direction of the magnetic field, and
therefore the parallel gradient,

∇‖ = (b + δb) · ∇ = b · ∇ − ∇× ψb

B
· ∇ ' b · ∇+

b

B
×∇⊥ψ · ∇ , (2.62)

where the second term is the contribution to the parallel derivative due to magnetic
fluctuations.

Parallel momentum equations

The parallel force balance equation for electrons, known as generalized Ohm’s law, can
be derived by projecting Eq. (2.14) along the parallel direction,

me

deV‖e

dt
=− 1

n
∇‖pe + e∇‖φ− e

∂ψ

∂t
+ e

j‖

σ‖
− 0.71∇‖Te

+me
nn
n

(νen + 2νiz)(V‖n − V‖e) , (2.63)

where b · (∇ · πvis,e) ' 2∇‖Ge/3 and b · (∇ · πFLR,e) ' −nmeVde · ∇V‖e (we assume
that B varies slowly along b). We note that the term −nmeVde · ∇V‖e cancels out the
electron diamagnetic convection, leading to de/dt = ∂/∂t+ (VE + V‖eb) · ∇.

Within the same approximations, by projecting Eq. (2.15) onto the parallel direction and
neglecting terms of the order me/mi and

√
me/mi, the parallel momentum equation for
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the ions is given by

mi

dV‖i

dt
= − 1

n
∇(pi + pe)−

2

3
∇‖Gi +mi

nn
n

(νiz + νcx)(V‖n − V‖i) . (2.64)

Temperature equations

The electron temperature equation is derived from Eq. (2.16) by applying the drift
ordering. By neglecting the viscous heat losses, the frictional heating related to Ru and
the electron-ion heat transfer, we obtain

3

2
n

deTe
dt

+
3

2
nVde · ∇Te + pe∇ ·

(
VE + Vde + V‖eb

)
− 0.71

Te
e
∇‖j‖

−∇‖(χ‖e∇‖Te)−
5e

2
∇·

[
pe

(
b

B
×∇Te

)]
+ 2

me

mi

n

τe
(Te − Ti) = sTe + Sn

Te , (2.65)

where the source term on the right hand side,

Sn
Te = nnνiz

[
−Eiz −

3

2
Te +

3

2
meVe ·

(
Ve −

4

3
Vn

)]
− nnνenmeVe · (Vn −Ve) , (2.66)

accounts for the interaction between electron and neutrals.

Analogously, the ion temperature equation is derived from Eq. (2.17),

3

2
n

dTi
dt

+
3

2
nVdi∇Ti + pi∇ · (VE + Vdi + Vpol + V‖ib)

−∇‖(χ‖i∇‖Ti) +
5e

2
∇ ·

[
pi

(
b

B
×∇Ti

)]
+ 2

me

mi

n

τe
(Ti − Te) = sTi + Sn

Ti , (2.67)

where

Sn
Ti = nn(νiz + νcx)

[
Tn − Ti +

1

3
(V‖n − V‖i)2

]
. (2.68)

The term ∇ ·Vpol can be evaluated by using the ion and electron continuity equations,

n∇ · (VE + Vdi + Vpol + Vin + V‖ib) = −Vdi · ∇n−
dn

dt
, (2.69)

where the terms Vpol ·∇n and Vin ·∇n are dropped because of the drift-reduced ordering,
and

dn

dt
=

den

dt
+ (V‖i − V‖e)∇‖n . (2.70)
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By using Eqs. (2.69) and (2.70), Eq. (2.67) can be rewritten as

3

2
n

dTi
dt

+ Ti∇ · nVde + pi∇ · (VE + V‖eb)− Ti
j‖

en
∇‖n

−∇‖(χ‖i∇‖Ti) +
5pi
2e

(
∇× b

B

)
· ∇Ti + 2

me

mi

n

τe
(Ti − Te) = sTi + Sn

Ti . (2.71)

2.4 Implementation of the physical model in GBS

This section presents the plasma and neutral models in normalized units, as they are
implemented in the GBS code. The spatial differential operators used by GBS are derived
in the new adopted coordinate system. The section concludes with a summary of the
boundary and initial conditions used in GBS. The numerical discretization of the physical
model and its optimization follow in Sec. 2.5.

2.4.1 The GBS plasma model

The plasma model implemented in GBS is the drift-reduced Braginskii model de-
scribed in Sec. 2.3. Namely GBS considers the density continuity equation, Eq. (2.56),
the vorticity equation, Eq. (2.58), the electron and ion parallel momentum balance,
Eqs. (2.63) and (2.64), and the electron and ion temperature equations, Eqs. (2.65) and (2.71),
which take the following form

∂n

∂t
=− 1

B
[φ, n] +

2

eB

[
C(pe)− enC(φ)

]
−∇‖(nV‖e)

+Dn∇2
⊥n+ sn + νiznn − νrecn , (2.72)

∂Ω

∂t
=− 1

B
∇ · [φ,ω]−∇ ·

(
V‖i∇‖ω

)
+
BΩci

e
∇‖j‖ +

2Ωci

e
C(pe + pi)

+
Ωci

3e
C(Gi) +DΩ∇2

⊥Ω− nn
n
νcxΩ , (2.73)

∂U‖e

∂t
=− 1

B
[φ, V‖e]− V‖e∇‖V‖e +

e

me

(
j‖

σ‖
+∇‖φ−

1

en
∇‖pe −

0.71

e
∇‖Te −

2

3en
∇‖Ge

)
+DV‖e∇

2
⊥V‖e +

nn
n

(νen + 2νiz)(V‖n − V‖e) , (2.74)

∂V‖i

∂t
=− 1

B
[φ, V‖i]− V‖i∇‖V‖i −

1

min
∇‖(pe + pi)−

2

3min
∇‖Gi

+DV‖i∇
2
⊥V‖i +

nn
n

(νiz + νcx)(V‖n − V‖i) , (2.75)
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∂Te
∂t

=− 1

B
[φ, Te]− V‖e∇‖Te +

2

3
Te

[
0.71
∇‖j‖
en
−∇‖V‖e

]
+

4

3

Te
eB

[
7

2
C(Te) +

Te
n
C(n)− eC(φ)

]
+∇‖(χ‖e∇‖Te) +DTe∇2

⊥Te + sTe −
nn
n
νenme

2

3
V‖e(V‖n − V‖e)

− 4

3

me

mi

1

τe
(Te − Ti) +

nn
n
νiz

[
−2

3
Eiz − Te +meV‖e

(
V‖e −

4

3
V‖n

)]
, (2.76)

∂Ti
∂t

=− 1

B
[φ, Ti]− V‖i∇‖Ti +

4

3

Ti
eB

[
C(Te) +

Te
n
C(n)− eC(φ)

]
− 10

3

Ti
eB

C(Ti)

+
2

3
Ti

[
(V‖i − V‖e)

∇‖n
n
−∇‖V‖e

]
+∇‖(χ‖i∇‖Ti) +DTi∇2

⊥Ti + sTi

+
4

3

me

mi

1

τe
(Te − Ti) +

nn
n

(νiz + νcx)

[
Tn − Ti +

1

3
(V‖n − V‖i)2

]
. (2.77)

Eqs. (2.72)–(2.77) are coupled to the Poisson and Ampère equations introduced in Sec. 2.3,
which take the following form

∇ ·
(
n∇⊥φ

)
= Ω−

∇2
⊥pi
e

, (2.78)(
∇2
⊥ −

e2µ0

me
n

)
V‖e = ∇2

⊥U‖e −
e2µ0

me
nV‖i +

e2µ0

me
j‖ . (2.79)

In Eqs. (2.72)–(2.79), Ω = ∇ · ω = ∇ · (n∇⊥φ +∇⊥pi/e) is the scalar vorticity, while
U‖e = V‖e + eψ/me is the sum of the electron inertia and the electromagnetic induction
contributions.

The spatial operators appearing in Eqs. (2.72)–(2.79) are the E×B convective term,

[φ, f ] = b ·
(
∇φ×∇f

)
, (2.80)

the curvature operator,

C(f) =
B

2

(
∇× b

B

)
· ∇f , (2.81)

the parallel gradient, which includes the electromagnetic flutter contribution,

∇‖f = b · ∇f +
1

B
[ψ, f ] , (2.82)

and the perpendicular Laplacian,

∇2
⊥f = ∇ ·

[
(b×∇f)× b

]
, (2.83)

where f is a general scalar function.
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The terms sn and sT are externally imposed sources in the density and temperature
equations, which are analytical and toroidally uniform functions of the poloidal magnetic
flux Ψ(R,Z),

sn =sn0 exp

(
−(ψ(R,Z)− ψn)2

∆2
n

)
, (2.84)

sT =
sT0

2

[
tanh

(
−ψ(R,Z)− ψT

∆T

)
+ 1

]
, (2.85)

where ψn and ψT are flux surfaces located inside the LCFS.

The gyroviscous terms are defined as

Gi = −η0i

[
2∇‖V‖i +

1

B
C(φ) +

1

enB
C(pi)

]
, (2.86)

Ge = −η0e

[
2∇‖V‖e +

1

B
C(φ)− 1

enB
C(pe)

]
, (2.87)

where η0i = 0.96nTiτi and η0e = 0.73nTeτe. The numerical diffusion terms, Df∇2
⊥f , are

added for numerical stability.

Eqs. (2.72)-(2.79) are implemented in GBS in dimensionless form, i.e.

∂n

∂t
=− ρ−1

∗
B

[φ, n] +
2

B

[
C(pe)− nC(φ)

]
−∇‖(nV‖e) +Dn∇2

⊥n

+ sn + νiznn − νrecn , (2.88)

∂Ω

∂t
=− ρ−1

∗
B
∇ · [φ,ω]−∇ ·

(
V‖i∇‖ω

)
+B2∇‖j‖ + 2BC(pe + τpi)

+
B

3
C(Gi) +DΩ∇2

⊥Ω− nn
n
νcxΩ , (2.89)

∂U‖e

∂t
=− ρ−1

∗
B

[φ, V‖e]− V‖e∇‖V‖e +
mi

me

(
νj‖ +∇‖φ−

1

n
∇‖pe − 0.71∇‖Te −

2

3n
∇‖Ge

)
+DV‖e∇

2
⊥V‖e +

nn
n

(νen + 2νiz)(V‖n − V‖e) , (2.90)

∂V‖i

∂t
=− ρ−1

∗
B

[φ, V‖i]− V‖i∇‖V‖i −
1

n
∇‖(pe + τpi)−

2

3n
∇‖Gi

+DV‖i∇
2
⊥V‖i +

nn
n

(νiz + νcx)(V‖n − V‖i) , (2.91)

∂Te
∂t

=− ρ−1
∗
B

[φ, Te]− V‖e∇‖Te +
2

3
Te

[
0.71
∇‖j‖
n
−∇‖V‖e

]
− 2.61νn(Te − τTi)

+
4

3

Te
B

[
7

2
C(Te) +

Te
n
C(n)− C(φ)

]
+∇‖(χ‖e∇‖Te) +DTe∇2

⊥Te

+ sTe +
nn
n
νiz

[
−2

3
Eiz − Te +meV‖e

(
V‖e −

4

3
V‖n

)]
, (2.92)
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∂Ti
∂t

=− ρ−1
∗
B

[φ, Ti]− V‖i∇‖Ti +
4

3

Ti
B

[
C(Te) +

Te
n
C(n)− C(φ)

]
− 10

3
τ
Ti
B
C(Ti)

+
2

3
Ti

[
(V‖i − V‖e)

∇‖n
n
−∇‖V‖e

]
+∇‖(χ‖i∇‖Ti) +DTi∇2

⊥Ti + sTi

+ 2.61νn(Te − τTi) +
nn
n

(νiz + νcx)

[
Tn − Ti +

1

3
(V‖n − V‖i)2

]
, (2.93)

and

∇ ·
(
n∇⊥φ

)
= Ω− τ∇2

⊥pi , (2.94)(
∇2
⊥ −

βe0
2

mi

me
n

)
V‖e = ∇2

⊥U‖e −
βe0
2

mi

me
nV‖i +

βe0
2

mi

me
j‖ , (2.95)

where the density, n, is normalized to the reference density n0, the electron and ion
temperatures, Te and Ti, are normalized to the reference values Te0 and Ti0, respectively,
the electron and ion parallel velocities, V‖e and V‖i, are normalized to the reference sound
speed cs0 =

√
Te0/mi, the magnetic field is normalized to its modulus B0 at the tokamak

magnetic axis, the electrostatic potential, φ, is normalized to Te0/e and ψ is normalized to
ρs0B0, with ρs0 = cs0/Ωci the reference ion sound Larmor radius. Perpendicular lengths
are normalized to ρs0 and parallel lengths are normalized to the tokamak major radius, R0.
Time is normalized to R0/cs0. The dimensionless parameters that regulate the system
dynamics are the normalized ion sound Larmor radius, ρ∗ = ρs0/R0, the ion to electron
reference temperature ratio, τ = Ti0/Te0, the normalized electron and ion parallel thermal
conductivities,

χ‖e =

(
1.58√

2π

mi√
me

(4πε0)2

e4

cs0
R0

T
3/2
e0

λn0

)
T 5/2
e (2.96)

and

χ‖i =

(
1.94√

2π

√
mi

(4πε0)2

e4

cs0
R0

T
3/2
e0 τ5/2

λn0

)
T

5/2
i , (2.97)

the reference electron plasma β, βe0 = 2µ0n0Te0/B
2
0 , and the normalized Spitzer resistivity,

ν = e2n0R0/(mics0σ‖) = ν0T
−3/2
e , with

σ‖ =

(
1.96

n0e
2τe

me

)
n =

(
5.88

4
√

2π

(4πε0)2

e2

T
3/2
e0

λ
√
me

)
T 3/2
e (2.98)

and

ν0 =
4
√

2π

5.88

e4

(4πε0)2

√
meR0n0λ

mics0T
3/2
e0

, (2.99)

where λ is the Coulomb logarithm. Normalized GBS units will be used throughout the
present thesis when presenting results from GBS simulations.

When the Boussinesq approximation is considered, the spatial and time dependence of
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the density in the polarization velocity is neglected, with a substantial simplification in
the numerical treatment of the Poisson equation. In fact, in this case Eq. (2.94) becomes

∇2
⊥φ = ω − τ∇2

⊥Ti . (2.100)

and the vorticity equation, Eq. (2.89), reduces to

∂ω

∂t
=− ρ−1

∗
B

[φ, ω]− V‖i∇‖ω +
B2

n
∇‖j‖ +

2B

n
C(pe + pi)

+
B

3n
C(Gi) +Dω∇2

⊥ω −
nn
n
νcxω , (2.101)

where ω is defined by Eq. (2.100). Although the Boussinesq approximation is often
applied in tokamak boundary turbulence simulations, see e.g. Refs. [10, 17, 160, 170, 245],
its validity cannot be taken for granted, especially in the tokamak edge where steep
density gradients can form. The effect of this approximation on plasma turbulence and
equilibrium profiles is discussed in Ch. 5.

2.4.2 The GBS neutral model

The implementation in GBS of the neutral model described in Sec. 2.2 is detailed in
Ref. [237] for limited configurations. Here, this model is extended to the simulation of
diverted configurations. The boundary conditions of the neutral model of Ref. [237] are
also improved by including the contribution of the E×B and diamagnetic fluxes to the
ion flux to the wall.

In the limit where the turbulent timescale is much longer than the typical time of
flight of neutrals, τturb � τn, the neutral adiabatic approximation can be applied. This
corresponds to imposing ∂tfn = 0 in Eq. (2.1). Moreover, we assume that the neutral
mean free path is shorter than the typical parallel scale lengths of the plasma structures.
Under these assumptions, the formal solution of Eq. (2.1) can be obtained by using the
method of characteristics [237],

fn(x⊥, x‖,v, t) =

∫ r⊥b

0

[
S(x′⊥, x‖,v, t)

v⊥
+ δ(r′⊥ − r⊥b)fn(x′⊥b, x‖,v, t)

]

× exp

[
− 1

v⊥

∫ r′⊥

0
νeff(x′′⊥, x‖, t)dr

′′
⊥

]
dr′⊥ ,

(2.102)

where we express a position x in terms of x⊥, the coordinate on the plane perpendicular
to B, and x‖, the coordinate parallel to B, r′⊥ is the coordinate along the neutral
characteristic defined by x′⊥ = x⊥ − r′⊥v⊥/v⊥, r⊥b denotes the distance along the
characteristic from the position x and the wall, v⊥ is the component of the velocity
perpendicular to B, and νeff = νiz + νcx is the effective collision frequency for neutral
loss. In the following, we drop the parametric dependencies on t and x‖ to simplify the
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notation.

The volumetric source term in Eq. (2.102) results from charge-exchange and recombination
processes and is given by [237]

S(x′⊥,v) = νcx(x′⊥)nn(x′⊥)Φi(x
′
⊥,v) + νrec(x

′
⊥)fi(x

′
⊥,v) , (2.103)

where Φi = [mi/(2πTi)]
3/2 exp[−miv2/(2Ti)] is the ion velocity distribution. The source

of neutrals at the wall, δ(r′⊥ − r⊥b)fn(x′⊥b, x‖,v, t), is given by the boundary conditions
in Eq. (2.5).

The ion recycling term present in the boundary conditions and the recombination term ap-
pearing in S(x′⊥,v) (see Eqs. (2.5) and (2.103)) do not depend on the neutral distribution
function and can be computed directly from the plasma quantities. On the other hand,
the charge-exchange term in S(x′⊥,v), as well as the reflected and re-emitted neutrals
in the boundary conditions (see Eqs. (2.5) and (2.103)), depend on nn(x⊥) =

∫
fndv.

This suggests to integrate Eq. (2.102). In fact, Ref. [237] shows that, by integrating
Eq. (2.102), a linear integral equation for nn(x⊥) is obtained,

nn(x⊥) =

∫
D
nn(x′⊥)νcx(x′⊥)Kp→p(x⊥,x

′
⊥)dA′

+

∫
∂D

(1− αrefl)Γout,n(x′⊥b)Kb→p(x⊥,x
′
⊥b, Tb)da

′
b

+ nn[out,i](x⊥) + nn[rec](x⊥) , (2.104)

where dA′ is the infinitesimal area in the poloidal plane D, da′b is the infinitesimal length
along the boundary ∂D, and Γout,n(x⊥b) is the neutral flux towards the wall,

Γout,n(x⊥b) =

∫
D
nn(x′⊥)νcx(x′⊥)Kp→b(x⊥b,x

′
⊥)dA′

+

∫
∂D

(1− αrefl)Γout,n(x′⊥b)Kb→b(x⊥b,x
′
⊥b, Tb)da

′
b

+ Γout,n[out,i](x⊥b) + Γout,n[rec](x⊥b) . (2.105)

The contribution to the neutral density due to the ion recycling at the wall and recombi-
nation events in Eq. (2.104), nn[out,i] and nn[rec], as well as the corresponding contribution
to the neutral flux in Eq. (2.105), Γout,n[out,i] and Γout,n[rec], are defined as

nn[out,i](x⊥) =

∫
∂D

Γout,i(x
′
⊥b)
[
(1− αrefl)Kb→p(x⊥,x

′
⊥b, Tb)

+ αreflKb→p(x⊥,x
′
⊥b, Ti)

]
da′b , (2.106)

nn[rec](x⊥) =

∫
D
ni(x

′
⊥)νrec(x

′
⊥)Kp→p(x⊥,x

′
⊥)dA′ , (2.107)
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Γout,n[out,i](x⊥b) =

∫
∂D

Γout,i(x
′
⊥b)
[
(1− αrefl)Kb→b(x⊥b,x

′
⊥b, Tb)

+ αreflKb→b(x⊥b,x
′
⊥b, Ti)

]
da′b , (2.108)

Γout,n[rec](x⊥b) =

∫
D
ni(x

′
⊥)νrec(x

′
⊥)Kp→b(x⊥b,x

′
⊥)dA′ . (2.109)

Generalizing Ref. [237], the ion flux projected in the direction perpendicular to the wall,
Γout,i, is evaluated by considering the ion parallel flux and the perpendicular fluxes due
to the E×B and the diamagnetic drifts, that is

Γout,i(x⊥b) = −ni(x⊥b)
[
V‖i(x⊥b)b + VE(x⊥b) + Vdi(x⊥b)

]
· n̂ . (2.110)

The kernel functions, appearing in Eqs. (2.104) and (2.105), involve integrals in the
velocity space, and can be developed as

Kp→p(x⊥,x
′
⊥) = Kdir

p→p(x⊥,x
′
⊥) + αreflK

refl
p→p(x⊥,x

′
⊥) , (2.111)

Kb→p(x⊥,x
′
⊥b, T ) = Kdir

b→p(x⊥,x
′
⊥b, T ) + αreflK

refl
b→p(x⊥,x

′
⊥b, T ) , (2.112)

Kp→b(x⊥b,x
′
⊥) = Kdir

p→b(x⊥b,x
′
⊥) + αreflK

refl
p→b(x⊥b,x

′
⊥) , (2.113)

Kb→b(x⊥b,x
′
⊥b, T ) = Kdir

b→b(x⊥b,x
′
⊥b, T ) + αreflK

refl
b→b(x⊥b,x

′
⊥b, T ) , (2.114)

where we consider the direct path between two points as well as the paths that include
one reflection at the wall (we neglect paths with multiple reflections as λn/L < 1, with
λn the averaged neutral mean free path and L the typical machine size in poloidal plane).
We define, for path = {dir, refl},

Kpath
p→p(x⊥,x

′
⊥) =

∫ ∞
0

1

r′⊥
Φ⊥i(x

′
⊥,v⊥) exp

[
− 1

v⊥

∫ r′⊥

0
νeff(x′′⊥)dr′′⊥

]
dv⊥ , (2.115)

Kpath
b→p (x⊥,x

′
⊥b, T ) =

∫ ∞
0

v⊥
r′⊥

cos θ′χ⊥in(x′⊥b,v⊥, T ) exp

[
− 1

v⊥

∫ r′⊥

0
νeff(x′′⊥)dr′′⊥

]
dv⊥ ,

(2.116)

Kpath
p→b (x⊥b,x

′
⊥) =

∫ ∞
0

v⊥
r′⊥

cos θΦ⊥i(x
′
⊥,v⊥) exp

[
− 1

v⊥

∫ r′⊥

0
νeff(x′′⊥)dr′′⊥

]
dv⊥ ,

(2.117)

Kpath
b→b (x⊥b,x

′
⊥b, T ) =

∫ ∞
0

v2
⊥
r′⊥

cos θ cos θ′χ⊥in(x′b,v⊥, T ) exp

[
− 1

v⊥

∫ r′⊥

0
νeff(x′′⊥)dr′′⊥

]
dv⊥ ,

(2.118)

with Φ⊥i(x⊥,v⊥) =
∫

Φi(x⊥,v)dv‖ = mi/(2πTi) exp[−miv
2
⊥/(2Ti)] and χ⊥in(x⊥,v⊥) =∫

χin(x⊥,v)dv‖ = 3m2
i /(4πT

2
i )v⊥ cos θ exp[−miv

2
⊥/(4Ti)]K0[miv

2
⊥/(4Ti)], being K0(x)

the modified Bessel function of the second kind. The vector x′′⊥ indicates a position
along the path from the source to the target points. The four kernels represent the

30



The GBS code for plasma boundary turbulence simulations Chapter 2

Figure 2.1 – Representation of a three dimensional time snapshot of the plasma electron
pressure, pe = nTe, from a GBS simulation. The domain encompasses the whole tokamak
volume, and develops over the complete toroidal angle and poloidal cross section. The
white line denotes the separatrix. The magnetic equilibrium is given by the equilibrium
reconstruction of the TCV discharge #65402 at time 1.0 s.

four possibilities for neutral particles of being generated within the plasma, p, or at the
boundary, b, and reach a point also in the plasma or in the boundary.

We note that a neutral flux can be externally imposed by means of a gas puff that
introduces a localized source of neutrals [237]. Similarly, a pumping region on the wall can
also be considered. This can be simply implemented by multiplying the kernel functions,
Kb→p and Kb→b, by a recycling coefficient smaller than one [129].

2.4.3 Differential operators

The differential operators in Eqs. (2.80)–(2.83) are written in the (R,ϕ,Z) cylindrical
non-field-aligned coordinate system, where R is the distance from the axis of symmetry
of the torus, Z is the vertical coordinate, and ϕ is the toroidal angle. The poloidal
cross section has a rectangular shape, particularly suitable for the simulation of the TCV
tokamak, and the domain encompasses the whole plasma volume. A representation of
the GBS domain is shown in Fig. 2.1.

The toroidally symmetric equilibrium magnetic field, used to compute the GBS differential
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operators, is written in terms of the poloidal magnetic flux Ψ, as

B = RBϕ∇ϕ+∇ϕ×∇Ψ . (2.119)

The poloidal magnetic flux is a function of R and Z, and can be provided as an analytical
function, an equilibrium reconstruction, or as the result of a Grad-Shafranov solver. As
an example, the magnetic separatrix of a TCV equilibrium reconstruction is shown in
Fig. 2.1.

The spatial differential operators in Eqs. (2.72)–(2.79) are written in (R,ϕ,Z) coordinates.
They are expanded in the large aspect ratio limit, ε ∼ r/R0 � 1, assuming the poloidal
component of the magnetic field smaller than the toroidal one, δ ∼ Bp/Bϕ � 1, with a
safety factor at the midplane q ∼ ε/δ of order unity. Only the leading order terms in ε
and δ are retained.

In the following, we derive the expression of the operators as they are implemented in
GBS. As a first step, we note that, at zeroth-order in ε and δ, the modulus of the magnetic
field is constant,

B2

B2
0

=
B2
R

B2
0

+
B2
Z

B2
0

+
B2
ϕ

B2
0

=
B2
ϕ

B2
0

+O(δ2) = 1 +O(ε, δ2) , (2.120)

where the magnetic field is written as

B = BReR +BZeZ +Bϕeϕ , (2.121)

with eR, eZ and eϕ the basis vectors. Hence, the Poisson brackets, Eq. (2.80), can be
written as

[φ, f ] = b · ∇φ×∇f

= b ·
[(
∂Rφ eR + ∂Zφ eZ +

1

R
∂ϕφ eϕ

)
×
(
∂Rf eR + ∂Zf eZ +

1

R
∂ϕf eϕ

)]
(2.122)

=
1

R

BR
B

( ∂ϕφ∂Zf − ∂Zφ∂ϕf) +
1

R

BZ
B

(∂Rφ∂ϕf − ∂ϕφ∂Rf) +
Bϕ
B

(∂Zφ∂Rf − ∂Rφ∂Zf) ,

which, in dimensionless units, leads to

[φ, f ] =
ρs0
R

BR
B

( ∂ϕφ∂Zf − ∂Zφ∂ϕf) +
ρs0
R

BZ
B

(∂Rφ∂ϕf − ∂ϕφ∂Rf) +
Bϕ
B

(∂Zφ∂Rf − ∂Rφ∂Zf)

=
Bϕ
B

(∂Zφ∂Rf − ∂Rφ∂Zf) +O(ε, δ) , (2.123)

since BZ/B ∼ BR/B ∼ δ and ρs0/R ∼ ρ∗ � ε.

Neglecting local current and therefore assuming ∇ × B = 0, the curvature operator,
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Eq. (2.81), is expanded in ε and δ as

C(f) =
1

2B

(
Bϕ
B2

∂ZB
2∂Rf −

Bϕ
B2

∂RB
2∂Zf

)
+O(ε, δ) . (2.124)

The spatial derivatives ∂ZB2 and ∂RB2 can be determined by using Eq. (2.120),

∂ZB
2

B2
0

=
∂

∂Z

(
R0

R

)2

+O(δ2) = 0 +O(δ2) (2.125)

∂RB
2

B2
0

=
∂

∂R

(
R0

R

)2

+O(δ2) = −2
R2

0

R3
+O(δ2) = − 2

R
+O(ε, δ2) , (2.126)

where we use B2
ϕ/B

2
0 = R2

0/R
2 = 1 + O(ε). Finally, by keeping only the leading order

terms in ε and δ, the curvature operator, normalized to 1/(R0ρs0), becomes

C(f) =
Bϕ
B0

∂Zf +O(ε, δ) . (2.127)

The parallel gradient, Eq. (2.82), is normalized to 1/R0 and, in dimensionless units, is
given by

∇‖f =
B

B
· ∇f = ρ−1

∗

(
BR
B
∂Rf +

BZ
B
∂Zf +

Bϕ
B

ρs0
R
∂ϕf

)
= ∂ZΨ ∂Rf − ∂RΨ ∂Zf +

Bϕ
B0

∂ϕf +O(ε, δ) , (2.128)

where BR = ∂ZΨ/R, BZ = −∂RΨ/R.

The perpendicular laplacian, Eq. (2.83), can be developed as

∇2
⊥f = ∇·

[
1

B2
(B×∇f)×B

]
=

1

B2
∇·
[
(B×∇f)×B

]
−∇B

2

B4
·
[
(B×∇f)×B

]
. (2.129)

The second term on the right-hand side of Eq. (2.129) is one order ε smaller than the
first one, which can be written in cylindrical coordinates as

(B×∇f)×B =

(
B2
Z∂Rf −BZBR∂Zf −

BRBϕ
R

∂ϕf +B2
ϕ∂Rf

)
eR

+

(
B2
ϕ∂Zf −

BZBϕ
R

∂ϕf −BZBR∂Rf +B2
R∂Zf

)
eZ

+

(
B2
R

R
∂ϕf −BϕBR∂Rf −BϕBZ∂Zf +

B2
Z

R
∂ϕf

)
eϕ ,

(2.130)
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and expanded in ε and δ,

(B×∇f)×B '
B2
ϕ

B2
∂Rf eR +

B2
ϕ

B2
∂Zf eZ +O(ε, δ) . (2.131)

Thus, the leading order terms of Eq. (2.131) can be expressed as

∇2
⊥f = ∂2

RRf + ∂2
ZZf +O(ε, δ) . (2.132)

In addition to the differential operators given by Eqs. (2.80)–(2.83), there are three
operators appearing in Eqs. (2.72)–(2.77) that can be derived from Eqs. (2.80)–(2.83)
by applying the same ordering in ε and δ: the parallel laplacian, ∇2

‖f , the curvature of
the parallel gradient, C(∇‖f), and the parallel gradient of the curvature, ∇‖[C(f)]. In
dimensionless units, the parallel laplacian is given by

∇2
‖f =

(
∂ZΨ∂2

RZΨ− ∂RΨ∂2
ZZΨ

)
∂Rf +

(
∂RΨ∂2

RZΨ− ∂ZΨ∂2
RRΨ

)
∂Zf

+
[
(∂ZΨ)2∂2

RRf + (∂RΨ)2∂2
ZZf − 2∂ZΨ∂RΨ∂2

RZf
]

+ 2
Bϕ
B
∂ZΨ∂2

ϕRf − 2
Bϕ
B
∂RΨ∂2

ϕZf + ∂2
ϕϕf +O(ε, δ) ,

(2.133)

the curvature of the parallel gradient by

C(∇‖f) =
Bϕ
B

(
∂ZZΨ∂Rf+∂ZΨ∂RZf−∂RZΨ∂Zf−∂RΨ∂ZZf

)
+∂Zϕf+O(ε, δ) , (2.134)

and the parallel gradient of the curvature by

∇‖[C(f)] =
Bϕ
B
∂ZΨ∂RZf −

Bϕ
B
∂RΨ∂ZZf + ∂Zϕf +O(ε, δ) . (2.135)

In summary, the differential operators implemented in GBS (in normalized units) are

[φ, f ] =
Bϕ
B

(∂Zφ∂Rf − ∂Rφ∂Zf) , (2.136)

C(f) =
Bϕ
B
∂Zf , (2.137)

∇‖f = ∂ZΨ∂Rf − ∂RΨ∂Zf +
Bϕ
B
∂ϕf (2.138)

and
∇2
⊥f = ∂2

RRf + ∂2
ZZf . (2.139)
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2.4.4 Boundary and initial conditions

The large electric field established on the ρs scale in the magnetic pre-sheath violates the
hypothesis behind the drift-approximation. Consequently, the boundary conditions are
applied at the magnetic pre-sheath entrance in the GBS code. The set of generalized
Bohm-Chodura sheath boundary conditions implemented in GBS was originally derived
in Ref. [123] in the cold ion limit and extended in Ref. [148] to include warm ions. In
this version of GBS, we neglect the correction terms arising from the variation of the
density and electrostatic potential in the direction tangent to the wall, and we apply
the magnetic pre-sheath boundary conditions at the walls containing the strike points,
i.e. the walls where the divertor legs terminate. For instance, in the case of the TCV
magnetic equilibrium shown in Fig. 2.1, magnetic pre-sheath boundary conditions are
applied at the bottom and inner walls. The boundary conditions assume the following
form:

V‖i =± cs
√

1 +
Ti
Te
, (2.140)

V‖e =± cs exp

(
Λ0 −

eφ

Te

)
, (2.141)

∂sn =∓ n

cs

√
1 + Ti

Te

∂sV‖i , (2.142)

∂sTe = ∂sTi = 0 , (2.143)

Ω =∓ min

e
cs

√
1 +

Ti
Te
∂2
ssV‖i , (2.144)

∂sφ =∓ mics

e
√

1 + Ti
Te

∂sV‖i , (2.145)

where Λ0 = log
√
mi/(2πme) ' 3 for hydrogen plasmas, and s denotes the derivative

in the direction perpendicular to the wall (s = Z for the top and bottom walls, and
s = R for the inner and outer walls). The top (bottom) sign refers to the magnetic field
pointing towards (away from) the target plate. In addition to the boundary conditions
in Eqs. (2.140)–(2.145), we simply consider ψ = 0 at the magnetic pre-sheath entrance.
In order to avoid the discontinuity of the parallel velocities at the location where the
magnetic field is tangent to the wall, a smoothing function from +cs to −cs is applied
to guarantee that V‖i and V‖e vary without strong discontinuities. In these smoothing
regions, we also impose ∂s|V‖i| = 0 and ∂2

ss|V‖i| = 0 in Eqs. (2.140)-(2.145), since the
derivative normal to the wall of |V‖i| can become negative, leading to unphysical boundary
conditions for n, φ and Ω. We highlight that the smoothing affects less than 2% of the
wall surface and is at certain distance from the strike points, therefore it has a negligible
effect on the overall dynamics.

The boundary conditions in Eqs. (2.140)-(2.144) are also applied at the walls that do not
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contain strike points, while the Dirichlet boundary condition φ = ΛTe/e is used for φ, with
Λ = Λ0 − log

√
1 + Ti/Te. In fact, Poisson equation is ill-defined if a Neumann boundary

condition for the electrostatic potential is applied at the four walls of the domain.

In our analysis, we focus on the quasi-steady state that is established after a transient
when sources, parallel and perpendicular transport, as well as losses at the vessel balance
each other. As long as this quasi-steady state is statistically independent of the initial
conditions, these do not present physical interest. Therefore, as initial condition for our
simulations, we impose φ = ΛTe/e, with Te the initial electron temperature, which is
uniform over the entire GBS domain. Also Ω, n, and Ti have initial uniform profiles. The
electron and ion parallel velocities are properly designed functions to satisfy the boundary
conditions V‖e,i = ±cs

√
1 + Ti/Te with ∂sV‖e,i = 0 at the wall, being s the coordinate

perpendicular to it. The constraint ∂sV‖i = 0 at the wall guarantees vanishing Neumann
boundary conditions for n, φ, ω, in agreement with the uniform initial profiles of these
quantities. Random noise is added to all fields to trigger the turbulent dynamics.

2.5 Numerical implementation and optimization of the GBS
model

While the time evolution is provided by a fourth-order Runge-Kutta algorithm and the
spatial discretization by a fourth-order centered finite differences scheme, similarly to the
GBS diverted version of Ref. [160], GBS now relies on an optimized iterative solver for the
Poisson and Ampère equations. In addition, the kinetic neutral model, initially developed
in the limited version of GBS [87, 237] and ported here to the diverted geometry, is
significantly optimized.

The workflow of GBS is shown in Fig. 2.2. Following the initialization of the simulation,
plasma and neutral modules are run simultaneously. Each Runge-Kutta substep, used to
advance the GBS plasma equations, performs three tasks (see the grey area of Fig. 2.2).
First, the boundary conditions are applied to every plasma quantity and the necessary
spatial operators are applied to the plasma fields. Then, the right-hand side of the
drift-reduced Braginskii equations is evaluated and Eqs. (2.72)–(2.77) are advanced,
updating the values of n, Te, Ti, Ω, U‖e and V‖i. Finally, the Poisson and Ampère
equations, Eqs. (2.78) and (2.79), are numerically solved to update φ and ψ. After every
Runge-Kutta time step (see the blue area of Fig. 2.2), the plasma module checks if the
neutral calculation is completed and updates the value of the neutral-related terms in
Eqs. (2.72)–(2.77) with the result of the new neutral calculation, if available. In parallel
to the plasma evolution, the neutral density, temperature and velocity are computed by
the neutral module (red area in Fig. 2.2). At the beginning of each neutral calculation,
GBS computes the reaction rates, Eqs. (2.2)–(2.4), by using the current plasma quantities.
Then, it evaluates the kernel functions, Eqs. (2.111)–(2.114), and finally it computes the
neutral density, temperature and velocity by solving Eq. (2.104). After every neutral
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Figure 2.2 – Workflow of the GBS code. The grey and blue areas highlight a Runge-
Kutta substep and step, respectively, for the solution of the plasma equations. After
every Runge-Kutta time step the plasma module checks if updated values of the neutral
quantities are available. The workflow of a neutral calculation is highlighted by the red
area. The synchronization is performed at the end of each neutral calculation.

calculation, the plasma and neutral modules synchronize, and the values of the plasma
density, electron and ion temperatures used to compute the reaction rates is updated.
The minimum neutral calculation frequency can be imposed in order to guarantee a good
convergence of the simulation results, as detailed in Sec. 2.8.

The remainder of this section is structured as follows. First, we describe the spatial
discretization of the plasma equations. Then, we focus on the implementation and
optimization of the Poisson and Ampère laws. Finally, we report on the implementation
and optimization of the neutral model.

2.5.1 Spatial discretization of the plasma equations

All plasma quantities are evaluated on a uniform Cartesian grid, which discretizes the R,
Z and ϕ coordinates, with a size NR ×NZ ×Nϕ, where NR, NZ and Nϕ are the number
of grid points in the radial, vertical and toroidal direction, respectively. The grid spacing
is denoted as ∆R, ∆Z and ∆ϕ. The grid for n, Te, Ti, Ω, and φ, denoted as φ-grid, is
staggered in the vertical and toroidal directions with respect to the grid for V‖e, V‖i and
ψ, which is denoted as v-grid. More precisely, the φ-grid is shifted by ∆Z/2 and ∆ϕ/2,
along the vertical and toroidal directions, respectively, with respect to the v-grid. The
use of staggered grids prevents the formation of checkerboard patterns that can appear
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when treating an advection problem with a finite centered difference scheme, as shown
in Ref. [161]. In the following, we denote a quantity at the position (Ri, ϕj , Zk) in the
v-grid as fi,j,k and a quantity at the position (Ri, ϕj+ 1

2
, Zk+ 1

2
) in the φ-grid as fi,j+ 1

2
,k+ 1

2
.

The neutral quantities are also discretized on a uniform grid in the (R,ϕ,Z) cylindrical
coordinate system, N ′R ×N ′Z ×N ′ϕ, that is in general coarser than the plasma grid in the
poloidal plane (N ′R < NR and N ′Z < NZ), while the neutral and plasma grid resolutions
along the toroidal direction are the same (N ′ϕ = Nϕ). The neutral grid is located at the
toroidal position of the φ-grid.

The differential operators in Eqs. (2.81)–(2.83) are computed as a linear combination of
first and second derivatives along R, Z and ϕ, with subsequent interpolation between
staggered grids, if needed. For instance, the first derivative along Z is discretized at the
fourth-order by means of a 5-point stencil as

(∂Zf)i,j,k =
1

∆Z

(
1

12
fi,j,k−2 −

2

3
fi,j,k−1 +

2

3
fi,j,k+1 −

1

12
fi,j,k+2

)
, (2.146)

if both the field and its derivative are evaluated on the v-grid. On the other hand, we
have

(∂Zf)i,j+ 1
2
,k+ 1

2
=

1

∆Z

(
1

24
fi,j,k−1 −

9

8
fi,j,k +

9

8
fi,j,k+1 −

1

24
fi,j,k+2

)
, (2.147)

if the field is evaluated on the v-grid and its derivative on the φ-grid. Analogous expressions
to Eqs. (2.146) and (2.147) hold for fields evaluated on the φ-grid, if their derivatives
are evaluated on the φ-grid or v-grid, respectively. A quantity evaluated on the v-grid is
interpolated to the φ-grid by using a fourth-order interpolation,

(IZf)i,j+ 1
2
,k+ 1

2
= − 1

16
fi,j,k−1 +

9

16
fi,j,k +

9

16
fi,j,k+1 −

1

16
fi,j,k+2 , (2.148)

and an analogous expression is used to interpolate from the φ-grid to the v-grid. The
second derivative along Z is discretized by

(∂ZZf)i,j,k =
1

∆Z2

(
− 1

12
fi,j,k−2 +

4

3
fi,j,k−1 −

5

2
fi,j,k +

4

3
fi,j,k+1 −

1

12
fi,j,k+2

)
, (2.149)

if both the field and its derivative are evaluated on the v-grid. Analogous expression holds
if both the field and its derivative are evaluated on the φ-grid. The Poisson brackets,
Eq. (2.80), are discretized by means of a fourth-order Arakawa scheme [162]. We note that
the discretization at fourth-order of the curvature-related contributions in the gyroviscous
terms, Eqs. (2.86) and (2.87), requires a 7-point stencil because of the presence of second
derivatives on the φ-grid of a quantity evaluated on the v-grid and vice versa. In order
to use a 5-point stencil for all GBS operators, these derivatives are implemented at the
second-order. For example, the second derivative on the φ-grid of a field evaluated on the
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v-grid is given by

(∂ZZf)i,j+ 1
2
,k+ 1

2
=

1

∆Z2

(
1

2
fi,j,k−1 −

1

2
fi,j,k −

1

2
fi,j,k+1 +

1

2
fi,j,k+2

)
. (2.150)

2.5.2 Implementation and optimization of the Poisson and Ampère
equations

In Ref. [160], the Boussinesq approximation is applied, thus considerably simplifying
the implementation of the Poisson equation, and the electrostatic potential is computed
by a direct inversion of the perpendicular laplacian operator, Eq. (2.83), through LU
factorization using the external MUMPS library [2]. Despite being computationally
demanding, the LU factorization is carried out once for all at the beginning of a simulation
and therefore does not significantly impact the cost of a simulation.

In the version of GBS described here, the Boussinesq approximation is avoided, requiring
the implementation at fourth-order of the ∇ · (n∇⊥φ) = ∂R(n∂Rφ) + ∂Z(n∂Zφ) operator,
i.e. [

∂R(n∂Rφ)
]
i,j,k

=
1

∆R2

(
δi−2,j,kφi−2,j,k + δi−1,j,kφi−1,j,k + δi,j,kφi,j,k

+ δi+1,j,kφi+1,j,k + δi+2,j,kφi+2,j,k

)
, (2.151)

with
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and similarly for
[
∂Z(n∂Zφ)

]
i,j,k

. Since n depends on time, the δ coefficients vary in

time, therefore the matrix that discretizes the Laplacian operator has to be assembled
and factorized every time step, leading to a dramatic increase of the computational
effort, which becomes prohibitively large already for a medium size grid, such as the one
used to simulate a medium size tokamak as TCV, if a LU factorization is used to solve
Poisson equation. In fact, an initial profiling of GBS, carried out on a TCV poloidal
grid (NR ×NZ = 300× 600), shows that, if the MUMPS direct solver is used, more than
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50% of the time used to advance the plasma equations is spent in the factorization of
the matrix that discretizes Poisson equation. We note that a similar matrix needs to be
assembled and inverted every time step to solve the Ampère equation (see Eq. (2.79)).
However, the factorization of the Poisson matrix is computationally more expensive than
the factorization of the matrix that discretizes Ampère equation.

In order to avoid the LU factorization and improve GBS performance, an iterative solver
is used. We rely on the Data Management for Structured Grids (DMDA) of the PETSc
library [9] that provides a flexible framework to implement a large number of solvers
and preconditioners. By carrying out a scan on different solvers and preconditioners,
analysing more than 2000 combinations, we find that the best performance is achieved
with the algebraic multigrid preconditioner boomerAMG provided by the external package
HYPRE [56] and the deflated GMRES solver [233]. In order to fine tune the preconditioner
parameters, we focus on the main options of boomerAMG, i.e. the strong threshold, the
maximum number of levels, the coarsen type, and the interpolation type (see Ref. [56]
for details). The best performance is achieved by using a strong threshold of 0.25, a
maximum of levels of 30, the Falgout coarsen type, and the ext+i interpolation type.

In order to evaluate the performance gain arising from the iterative solver implemented
with the PETSc library with this set of optimized parameters, we run a set of GBS
simulations considering the NR×NZ = 150× 300, NR×NZ = 300× 600 and NR×NZ =

600× 1200 grids. We refer to these grids as the half-TCV, TCV and double-TCV grids,
since NR ×NZ = 300× 600 is the typical poloidal grid used for a simulation of a TCV
discharge with toroidal magnetic field of 0.9 T [155]. The time to solution per time step is
shown in Fig. 2.3 for the different grid sizes. Across all sizes considered here, we observe
a speed-up of, approximately, a factor of 40 when the iterative solver is used, with respect
to a direct solver, reducing considerably the cost of our simulations and making the
simulation at the TCV scales possible, otherwise prohibitively expensive. As an aside,
we also note that the solution of the Poisson and Ampère equations using the iterative
solver and the evaluation of the right-hand side of Eqs. (2.88)-(2.93) have approximately
the same computational cost in the half-TCV and TCV simulations. On the other hand,
more than half of the computational time is spent to solve the Poisson equation in the
double-TCV simulation, even using the iterative solver (see Fig. 2.3). Simulations at
scales larger than TCV require therefore further optimization.

2.5.3 Implementation and optimization of neutral model in diverted
geometry

By discretizing the kernel functions, Eqs. (2.111)–(2.114), the equations for the neutral
density, Eq. (2.104), and neutral flux to the wall, Eq. (2.105), can be written as a linear

40



The GBS code for plasma boundary turbulence simulations Chapter 2

Figure 2.3 – Time to solution per time step averaged from simulations of 10 time steps
that consider different poloidal grid sizes. No coupling to neutral dynamics is considered
here. The simulations are carried out on one node (36 cores) of the multi-core partition
of Piz Daint (Cray XC40 equipped with two 18-core Intel Xeon E5-2695 v4 CPUs at
2.10GHz) and are performed taking as initial conditions the results of a simulation in
turbulent state. This allows us to compare the solvers in typical working conditions. The
iterative and direct solvers are based on the PETSc and MUMPS libraries, respectively.
The time of MUMPS includes the factorization.

system,[
nn

Γout,n

]
=

[
νcxKp→p (1− αrefl)Kb→p
νcxKp→b (1− αrefl)Kb→b

][
nn

Γout,n

]
+

[
nn[rec] + nn[out,i]

Γout,n[rec] + Γout,n[out,i]

]
. (2.153)

The linear system of Eq. (2.153) can then be solved by inverting the kernel matrix,

K =

[
νcxKp→p (1− αrefl)Kb→p
νcxKp→b (1− αrefl)Kb→b

]
, (2.154)

which, in the limit of large aspect ratio considered here, has [N ′RN
′
z + 2(N ′R + N ′Z)]2

elements and is inverted for each poloidal plane at every neutral calculation. Since
our simulation domain encompasses the whole plasma volume, contrary to the previous
neutral version of GBS, the K matrix is a dense matrix with, in principle, all its elements
strictly positive. However, since the value of the matrix elements decays exponentially
with the distance between the two connected points, becoming negligible when their
distance is several neutral mean free paths, we introduce a threshold value below which the
matrix element is considered as vanishing. Since the evolution of the neutral dynamics is
computationally more expensive than the evolution of the plasma dynamics, we recalculate
the neutral quantities over a time interval longer than the time step used to evolve the
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plasma equation, but still smaller than the turbulence timescale.

The solution of the kinetic equation is a two-step process. First, the elements of the
K matrix are computed, requiring the evaluation of the kernel functions, Eqs. (2.111)–
(2.114). In the present version of GBS, the evaluation of K is optimized by improving
the code vectorisation and avoiding unnecessary computation. Then, the K matrix is
inverted to compute the neutral density by using Eq. (2.153). The matrix inversion is
improved by avoiding an expensive LU factorization.

We first focus on the evaluation of the K matrix. This requires to compute [N ′RN
′
Z +

2(N ′R + N ′Z)]2 elements, all of them involving the evaluation of one of the four kernel
functions defined in Eqs. (2.111)–(2.114), a computationally expensive evaluation. In fact,
approximately 65% of a neutral step is spent in the computation of the K matrix elements
(the remaining time is spent in the solution of the associated linear system). In the version
of GBS presented in Ref. [237], each element of the K matrix was evaluated by using the
same routine that included logic conditions used to identify points belonging to the plasma
volume or the wall. Here, the logic conditions are moved outside the routine that evaluates
the elements of K, which is split into four specialized routines, each of them computing
one of the kernel functions in Eqs. (2.111)-(2.114). Therefore, points belonging to the
plasma and the wall are separated at the beginning of the simulation and a whole subset
of K is evaluated instead of computing each single element. In addition, the modified
Bessel function of second kind involved in the Kb→p and Kb→p kernels is pre-computed at
the beginning of the simulation and later re-used at the cost of a memory access. Finally,
the computation of the integral

∫ r′⊥
0 νeff(x′′⊥)dr′′⊥ appearing in the four kernel functions,

Eqs. (2.111)–(2.114), is improved. This requires first the interpolation of the plasma
quantities necessary to compute νeff along the neutral trajectory and then the numerical
evaluation of the integral. The interpolation is performed by using a second-order method
that is carefully implemented to enable the compiler auto-vectorisation. In contrast to
Ref. [237], here we use the same routine to integrate along the neutral trajectory and over
the velocity space. Moreover, integrals can be evaluated by either the (left) rectangular
or midpoint rules.

We focus now on the inversion of the K matrix in Eq. (2.153). We note that the K
matrix evolves in time, similarly to the matrix associated with the Poisson and Ampère
equations. While a direct solver based on the MUMPS library was used in Ref. [237],
requiring an expensive LU factorization, here we implement an iterative solver. Also in
this case, we choose to use the framework provided by the PETSc library, opting for the
use of the GMRES solver without preconditioner.

In order to evaluate the improvement of performance arising from the new implementation,
we analyze the time to carry out one neutral step with various neutral grid sizes. We
consider a coarse neutral grid of size N ′R ×N ′Z = 25× 50, a medium neutral grid of size
N ′R × N ′Z = 50 × 100, and a fine neutral grid of size N ′R × N ′Z = 100 × 200, which is
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Figure 2.4 – Time to solution per neutral calculation of the implementation based on
an iterative solver and the evaluation of a subset of the K matrix, compared to the
implementation based on a direct solver and the evaluation of single elements of the K
matrix. Tests are carried out for different neutral grid sizes (one poloidal plane) on one
computing node of the multi-core partition of Piz Daint (Cray XC40 equipped with two
18-core Intel Xeon E5-2695 v4 CPUs at 2.10 GHz). The implementation of the iterative
and direct solvers are based on the PETSc and MUMPS libraries, respectively.

typical of a simulation of a TCV discharge. In Fig. 2.4, the time to solution per neutral
time step of the implementation that evaluates single elements of the K matrix and uses
the direct solver is compared to the one of the implementation that evaluates a whole
subset of the K matrix and uses the iterative solver. We note that the speed-up arising
from the new implementation increases with the size of the system, ranging from a factor
of four to a factor of ten.

2.6 Verification of GBS implementation

The validation of GBS results has been addressed in several works and carried out with a
state of art methodology (see, e.g., Refs. [68, 155, 179]) and it is not discussed here. In
this section, we report on the verification of the plasma and neutral implementation, i.e.
on the assessment that the model equations are correctly implemented in the GBS code.

2.6.1 Verification of the plasma model

Similarly to the past versions, we verify the plasma model implementation in the present
version of GBS by using the MMS. Here, we briefly describe the MMS. A detailed
description can be found in Ref. [178] where the MMS was applied for the first time to
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verify a plasma turbulence code.

In order to verify the numerical implementation of a model M , the analytical solution s of
the model M , which satisfies M(s) = 0, is compared to the numerical solution sh of the
discretized model Mh, where h is the discretization parameter. The code is successfully
verified if the discretization error eh = ||s − sh|| → hp as h → 0, with p the order of
the adopted discretization scheme. Since the analytical solution of a model equations
is in general unknown, the main idea behind the MMS is to manufacture an arbitrary
analytical function, u, and evaluate S = M(u). We remark that, in general, S 6= 0, since
u is not the solution of M . On the other hand, the arbitrary function u is solution of
the model N , defined as N(u) = M(u)− S = 0. Since S can be analytically evaluated,
Nh and Mh are affected by the same discretization error. Therefore, verifying Nh is
equivalent to verify Mh, with the discretization error given by eh = ||u− uh||.

In the following, we report for the first time the verification of the implementation
in GBS of the plasma model that avoids the Boussinesq approximation and includes
electromagnetic effects. We consider a simulation domain with a rectangular poloidal
cross section of size LR = 37.5 ρs0 and LZ = 50 ρs0, in the radial and vertical directions,
respectively. The verification is carried out with ρ−1

∗ = 100, ν = 1, βe0 = 10−4, τ = 1 and
mi/me = 1. The dimensionless parameters are chosen so that the terms on the right-hand
side of Eqs. (2.88)–(2.93) are all of the same order of magnitude.

The magnetic field considered for the verification is analytically obtained by solving the
Biot-Savart law in the infinite aspect ratio limit for a current density with a Gaussian
distribution inside the simulation domain, which guarantees continuity and derivability
of the magnetic field, and an additional current filament outside the simulation domain,
which produces the X-point. This leads to

Ψ(R,Z) =
I0

2

{
log

[
(R−R1)2 + (Z − Z1)2

ρ2
s0

]
+ EI

[
(R−R1)2 + (Z − Z1)2

σ2
0

]

+ log

[
(R−R1)2 + (Z − Z2)2

ρ2
s0

]}
,

(2.155)

where EI(x) is the exponential integral function, with I0 = 40 ρ2
s0B0, σ0 = 6.25 ρs0,

R1 = 100 ρs0, Z1 = 0, and Z2 = −40 ρs0. The manufactured solutions for the evolved
scalar quantities u = n, Te, Te, V‖e, V‖i,Ω, φ, ψ are chosen as

uM (R,Z, ϕ, t) = Au

[
Bu + sin(CuZ + αu) sin(Duϕ+ βu) sin(Eut+ FuR+ γu)

]
, (2.156)

where Au, Bu, Cu, Du, Eu, Fu, αu, βu, and γu are arbitrary constants whose value is
chosen to excite all terms in the right-hand side of Eqs. (2.88)–(2.95), ensuring that none
of them provides a dominating contribution to the numerical error. The source terms can
be computed by substituting Eq. (2.156) into Eqs. (2.88)–(2.95). This process is carried
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out by using the symbolic calculation offered by the Mathematica software package [241]
and the analytical expressions of the source terms are directly converted to the Fortran
language of the GBS code.

In order to decouple the tolerance error associated with the iterative solver from the
discretization error, we first consider the verification of GBS where Poisson and Ampère
equations are solved with a direct method. As a second step, we discuss the verification
of the iterative solver. We do not include the curvature-related contributions appearing in
the gyroviscous terms, Eqs. (2.86) and (2.87), since they are implemented at second-order.
These terms are verified independently.

Figs. 2.5 (a) and (b) show the L2 and L∞ norms of the discretization errors at t =

0.01. We consider various grid refinements as a function of the discretization parameter
h = ∆R/∆R0 = ∆Z/∆Z0 = ∆ϕ/∆ϕ0 = ∆t/∆t0, where ∆R0, ∆Z0, and ∆ϕ0 is the
spacing of the NR ×NZ ×Nϕ = 256× 256× 256 grid, with time step ∆t0 = 6.25× 10−6.
The coarsest grid considered for the verification is NR × NZ × Nϕ = 8 × 8 × 8 with
∆t = 2× 10−4. The order of accuracy,

p =
log(erh/eh)

log r
, (2.157)

with rh indicating the coarsening of the temporal and spatial grids by a factor of r, is
shown in Figs. 2.5 (c) and (d). Since a fourth-order numerical scheme is used to discretize
both space and time, we expect the discretization error to decrease as h4 when h→ 0, in
good agreement with the result of Fig. 2.5 that shows the convergence to p = 4 for both
the L2 and L∞ norms as h decreases.

We discuss now the verification of the iterative solver. The error affecting the solution of
an iterative solver is the combination of the discretization error and the tolerance error,
the last depending on the tolerance threshold. We consider the solution of Poisson and
Ampère equations and we compare the results of the direct and iterative solvers based on
the MUMPS and PETSc libraries. Fig. 2.6 shows the global and local errors of φ, for
Poisson equation, and ψ, for Ampère equation, as a function of the relative tolerance of
the iterative solver. We note that the errors decrease with the relative tolerance until a
value of 10−7. Below this value, the discretization error dominates, independently of the
solver tolerance.

2.6.2 Verification of the neutral model

We verify here, for the first time, the implementation of the neutral model. We proceed
in two steps. First, we verify the correct implementation of the routine used to perform
integrals over a neutral trajectory and over the velocity space, which appear in the kernel
functions, Eqs. (2.111)–(2.114). Second, we focus on the construction and inversion of
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Figure 2.5 – Local, L∞, (a) and global, L2, (b) norms of the discretization error as
a function of the grid resolution parameter h = ∆R/∆R0 = ∆Z/∆Z0 = ∆ϕ/∆ϕ0 =
∆t/∆t0, where ∆R0, ∆Z0, and ∆ϕ0 is the grid spacing for the NR × NZ × Nϕ =
256× 256× 256 grid with time step ∆t0 = 6.25× 10−6. The order of convergence p is also
shown for the local (c) and the global (d) norms of the discretization errors. As expected
from the order of convergence of the numerical scheme, p tends to 4 as h decreases.
Results are shown in dimensionless units.
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Figure 2.6 – Local (a) and global (b) errors of φ and ψ as a function of the relative
tolerance of the iterative solver based on the PETSc library for the grid NR×NZ ×Nϕ =
64× 64× 64, and LR = 37.5 ρs0 and LZ = 50 ρs0. The horizontal dashed lines represent
the discretization error when the direct solver based on the MUMPS library is used.
Convergence is achieved for values of the relative tolerance below 10−7. Results are show
in dimensionless units.

the matrix K, Eq. (2.154), used to evaluate the neutral density.

To carry out the first verification step, we perform unit tests that allow us to verify
individually the routines used to numerically integrate and to interpolate along a neutral
trajectory. The interpolating routine is tested on an analytical function f , considering
various resolutions. Fig. 2.7 shows the typical discretization error in a point of f domain
as a function of the grid resolution. The order of convergence is correctly retrieved
as h decreases. The integration routine is tested by comparing the numerical and
analytical result of the integral of an analytical function f over an arbitrary interval. The
discretization error as well as the order of convergence is shown in Fig. 2.8. The results
of the unit tests point out the correct implementation of the routines used to evaluate
integrals along a neutral trajectory.

We focus now on the verification of the correct construction and inversion of the matrix
K. For this purpose, we compare the numerical solution of the neutral density, nn, to the
analytical manufactured solution,

nn,M = An +Bn sin(αnR) cos(βnZ) , (2.158)

where An, Bn, αn, and βn are arbitrary constants. In addition, we consider the manufac-
tured neutral flux as vanishing, i.e. Γout,n,M = 0. The analytical source term required by
the MMS is directly computed by substituting nn,M and Γout,n,M in Eq. (2.104),

SM (x⊥) = nn,M (x⊥)−
∫
D
nn,M (x′⊥)νcx(x′⊥)Kp→p(x⊥,x

′
⊥)dA′ , (2.159)
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Figure 2.7 – Discretization error of the interpolated test function f(x) = 2x2 + 4y2,
discretized on an arbitrary domain x ∈ [x0, x1] and y ∈ [y0, y1], as a function of the
discretization parameter h = dx/dx0 = dy/dy0 at the position x0 = −10, x1 = 10,
y0 = −7 and y1 = 7 (a), and the corresponding order of convergence (b). The expected
order of convergence to the analytical result is correctly retrieved.
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Figure 2.8 – Result of the unit test to verify the numerical integration routine used in
GBS. The discretization error resulting from the numerical integration of the test function
f(x) = cosx (a) and the corresponding order of convergence (b) are shown as a function
of the discretization parameter h = dx/dx0. The integral is performed between x = 1 and
x = 3. The expected order of convergence to the analytical result is correctly retrieved
for both the rectangular and the midpoint rules.

48



The GBS code for plasma boundary turbulence simulations Chapter 2

h
10

0
10

1
10

2

||
e h
||
∞
/|
|e

0
||
∞

10
-2

10
-1

10
0

(a)
h

100 101 102

O
rd

e
r 

o
f 
c
o

n
v
e
rg

e
n
c
e

0.8

0.85

0.9

0.95

1

(b)

Figure 2.9 – Local discretization error of the neutral density as a function of the discretiza-
tion parameters h = dv/dv0 (a) and the corresponding order of convergence (b). The
poloidal neutral spatial grid considered here is N ′R ×N ′Z = 10× 10. The expected order
of convergence of nn to the analytical solution nn,M is correctly retrieved as h decreases.

where the contribution from the ion flux is not included to decouple the neutral and plasma
modules. We note that Eq. (2.159) requires the analytical evaluation of the kernel function
Kp→p(x⊥,x

′
⊥), Eq. (2.111). For simplicity, we choose νiz(x⊥) = 0, χ⊥in(x⊥,v⊥) = 0,

νcx(x⊥) = const, and

Φ⊥(x⊥,v⊥) =
2mi√
πTi0

r⊥ exp

(
νcxr⊥
v⊥

−
miv

2
⊥

Ti0

)
. (2.160)

The choice of these functions allows for the straightforward analytical evaluation of
Kp→p(x⊥,x

′
⊥), resulting in Kp→p(x⊥,x

′
⊥) = const. As a consequence, all the elements of

the matrix associated to Kp→p arising from the discretization are equal. The integral over
the poloidal plane in Eq. (2.104), evaluated through the matrix inversion (see Eq. (2.153)),
is discretized using the rectangular integration rule. Therefore, the numerical solution of
the neutral density is expected to converge to the manufactured solution with the order
of convergence p = 1 as h decreases. The local discretization error of the neutral density
and the corresponding order of convergence are shown in Fig. 2.9 as a function of h. The
expected order of convergence of the neutral density to the analytical solution is retrieved,
hence verifying the correct implementation in GBS of Eq. (2.153).

2.7 Parallelisation scalability tests

The use of finite differences on a uniform (R,ϕ,Z) grid allows for an effective implementa-
tion of GBS on parallel high-performance computers. Domain decomposition is applied to
all three spatial dimensions and implemented with the Message Passing Interface (MPI)
for both the plasma and neutral equations. Communication between different processors
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is carried out by means of ghost cell passing, using standard MPI functions. In addition,
the global MPI communicator is split into two independent ones in order to evolve the
plasma and neutral equations in parallel. After every neutrals calculation, the neutral
and the plasma modules synchronize, i.e. the neutral terms appearing in the plasma
equations and the plasma quantities in the neutral module are updated (see Fig. 2.2).
The splitting of the MPI communicators has some important advantages with respect to
the serial approach: (i) the neutral density is evolved continuously, updating the neutral
sources in the plasma equations at the desired frequency by choosing the number of MPI
tasks for the plasma and neutral modules, (ii) the time to solution is reduced, and (iii) the
code scalability is improved allowing us to run on a larger number of computing nodes,
which is essential on large systems due to the large amount of memory required by the
neutral module. We show here that this approach leads to a very efficient strong and
weak scalability.

Being independent, the parallelization properties of the plasma and neutral modules are
analyzed separately. Focusing, first, on the plasma module, we consider a typical grid
size of a TCV simulation, with npR, npZ and npϕ the number of MPI tasks in the R,
Z and ϕ direction, respectively. To avoid the demanding communications on poloidal
planes required by the Poisson and Ampère equations, the strong scalability test is
carried out by only increasing the MPI resources allocated to the ϕ dimension, i.e. by
solving whole RZ-planes on a computing node. As shown in Fig. 2.10 (a), GBS scales
with an almost perfect efficiency up to npϕ = 32, while efficiency decreases to 0.75 at
npϕ = 64 (two toroidal planes per computing node), pointing out the high scalability of
GBS especially on the toroidal direction, mainly thanks to the fact that the Poisson and
Ampère equations are solved independently on each poloidal plane. The weak scalability
of the plasma module is carried out on grids of size NR ×NZ ×Nϕ = 300× 600× 2npϕ,
where npϕ is the number of MPI tasks in the toroidal direction. The results are shown in
Fig. 2.10 (b), confirming the good scalability properties of the plasma module in GBS.

The strong scalability of the neutral module is carried out on a neutral grid typical of
medium size simulations such as TCV. Similarly to the plasma scalability, we consider
one computing node in the RZ-plane, while increasing npϕ, starting from the minimum
number of nodes allowed by memory requirements. In fact, the solution of the neutral
system, Eq. (2.153), requires the allocation of matrices of sizes [N ′R×N ′Z + 2(N ′R +N ′Z)]2

in each poloidal plane, thus being highly memory consuming. As shown in Fig. 2.11 (a),
the speed-up is almost ideal up to npϕ = 128. The weak scalability is performed on
neutral grids of size N ′R ×N ′Z ×N ′ϕ = 300× 600× 2npϕ. Fig. 2.11 (b) shows an almost
perfect efficiency as the system size increases.
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Figure 2.10 – Strong (a) and weak (b) scalability tests performed on the multi-core
partition of Piz Daint (Cray XC40 equipped with two 18-core Intel Xeon E5-2695 v4
CPUs at 2.10GHz). The strong scalability is carried out on a grid of size NR×NZ×Nϕ =
300 × 600 × 128, with one node (36 cores) on the RZ-plane. GBS scales with an
almost perfect efficiency up to npϕ = 32, while efficiency decreases to 0.75 at npϕ = 64,
corresponding to npR × npZ × npϕ = 2304 cores (64 nodes). The weak scalability test is
carried out on grids of size NR ×NZ ×Nϕ = 300× 600× 2npϕ, where npϕ is the number
of MPI tasks in the ϕ direction.
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Figure 2.11 – Strong (a) and weak (b) scalability tests of the neutral module performed
on the multi-core partition of Piz Daint (Cray XC40 equipped with two 18-core Intel
Xeon E5-2695 v4 CPUs at 2.10GHz). The strong scalability is carried out on a neutral
grid of size N ′R ×N ′Z ×N ′ϕ = 100× 200× 128, with one node (36 cores) on the RZ-plane,
and is tested starting from 32 nodes, which is the minimum number of nodes required by
memory constraints. The speed-up is almost ideal up to npϕ = 128, corresponding to a
total of 4608 cores (128 nodes). The weak scalability is carried out on neutral grids of
size N ′R ×N ′Z ×N ′ϕ = 300× 600× 2npϕ, where npϕ is the number of MPI tasks along ϕ.
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2.8 Convergence properties

We test here the convergence of GBS results with respect to the plasma and neutral
grid refinement. We consider the magnetic field given by the analytical flux function
in Eq. (2.155) and we compare the results of three simulations with increasing plasma
grid resolution and no coupling with neutrals, and of three simulations with increasing
neutral grid resolution and same plasma grid resolution. The results are analyzed when
the simulations reach a quasi-steady state, resulting from the balance between the plasma
and heat sources and losses at the wall. We also study the convergence with respect to
the frequency of the neutral computation.

The simulations considered for studying the convergence with respect to the plasma grid
are performed with a coarse (∆R = ∆Z = 3.75 ρs0 and R0∆ϕ = 65.4 ρs0), a medium
(∆R = ∆Z = 2.50 ρs0 and R0∆ϕ = 49.1 ρs0) and a fine (∆R = ∆Z = 1.67 ρs0 and
R0∆ϕ = 32.7 ρs0) resolution grid. In order to investigate the convergence, we consider
the time and toroidally averaged radial profiles at the outer midplane of n, Te, Ti and
φ. As shown in Fig. 2.12, the radial profiles clearly converge to the ones obtained from
the simulation with the finest resolution. Assuming that ρs0 is the characteristic spatial
length along the direction perpendicular to the magnetic field for phenomena occurring in
our simulations, we conclude that ∆R = ∆Z ' 2.50 ρs0 is the minimum spatial resolution
of the plasma grid on the poloidal plane that guarantees convergence of simulation
results. In order to guarantee stability of the simulations, the resolution along ϕ is chosen
according to the ratio of the poloidal to the toroidal component of the magnetic field,
R0∆ϕ . B0∆Z/BZ ∼ B0∆R/BR.

The convergence with respect to the neutral grid refinement is tested by comparing the
results of three simulations with the same plasma resolution, ∆R = ∆Z = 1.67 ρs0 and
R0∆ϕ = 32.7 ρs0, and different neutral grid resolutions: coarse (∆R′ = ∆Z ′ = 0.15 λn),
medium (∆R′ = ∆Z ′ = 0.075 λn), and fine (∆R′ = ∆Z ′ = 0.038 λn) resolutions, where
λn is the mean free path of neutrals for ionization, evaluated by considering a value of Te
and n in the simulations near the separatrix (Te ' 20 eV and n ' 4× 1019 m−3). The
resolution along ϕ is given by the plasma grid. The neutral density is evaluated every
∆t = 0.08 R0/cs0. The time traces of the spatially averaged neutral density, neutral
temperature and neutral parallel velocity show a clear convergence to the results of the
finest neutral grid (see Fig. 2.13). We also analyze the time and the toroidal averages
of the neutral density and ionization source, Siz, at the bottom wall, where the two
strike points are located. Fig. 2.14 shows that there is no noticeable difference in the
neutral density and ionization source profiles between simulations with different neutral
grid resolutions, pointing out that the resolution ∆R′ = ∆Z ′ ' 0.075 λn is sufficient to
guarantee the convergence of the simulation results.

Finally, we study the convergence of GBS results with respect to the frequency of
the neutral calculation. We consider three simulations with a plasma grid resolution
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Figure 2.12 – Time and toroidally averaged radial profiles of density (a), electron tempera-
ture (b), ion temperature (c), and electrostatic potential (d) at the outer midplane of GBS
simulations at different plasma grid resolutions (NR ×NZ ×Nϕ = 80× 110× 24, coarse
grid; NR ×NZ ×Nϕ = 120× 160× 32, medium grid; NR ×NZ ×Nϕ = 180× 240× 48,
fine grid). The dashed vertical line represents the position of the separatrix.
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Figure 2.13 – Time traces of the spatially averaged neutral density (a), neutral temperature
(b) and neutral parallel velocity (c) at different neutral grid resolutions (N ′R×N ′Z = 24×28,
coarse; N ′R ×N ′Z = 42× 56, medium; N ′R ×N ′Z = 84× 112, fine).
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Figure 2.14 – Time and toroidal average of the neutral density (a) and ionization source
(b) at the bottom wall at different neutral grid resolutions (N ′R ×N ′Z = 24× 28, coarse;
N ′R ×N ′Z = 42× 56, medium; N ′R ×N ′Z = 84× 112, fine).

of ∆R = ∆Z = 1.67 ρs0 and R0∆ϕ = 32.7 ρs0, and a neutral grid resolution of
∆R′ = ∆Z ′ = 0.075 λn. The neutral density is evaluated every ∆t = 0.04 R0/cs0,
∆t = 0.08 R0/cs0 and ∆t = 0.16 R0/cs0, respectively. Fig. 2.15 shows that the time and
toroidally averaged radial density profile at the outer midplane and neutral density at
the bottom wall do not display any significant difference among the three simulations
considered here. We conclude that evaluating the neutral density every ∆t ' 0.1 R0/cs0
guarantees the correct convergence of the results. We note that, since in our simulations
turbulence is typically driven by ballooning modes with a maximum growth rate of
γB =

√
2cs/

√
LpR0 [147], with Lp = |pe/∂Rpe| the equilibrium pressure gradient length

at the separatrix on the outer midplane, the minimum neutral calculation frequency that
guarantees the convergence of the simulation results is γB∆t ' 0.7. Since the neutral
and the plasma models can be evolved simultaneously, the number of MPI tasks for the
plasma and neutral modules can be chosen to guarantee this neutral calculation frequency.

2.9 First simulation results in an experimentally-relevant
scenario

As an example of application of the new version of GBS presented here, we report on the
results of the first GBS electromagnetic simulation that includes the coupling with neutral
dynamics of a lower single-null discharge performed in the TCV tokamak (tokamak major
radius R0 = 0.9 m and minor radius measured from the tokamak magnetic axis to the
separatrix at the outer midplane a = 0.20 m). The magnetic equilibrium considered in the
simulation is given by the equilibrium reconstruction of the TCV discharge #65402 at 1 s
(plasma elongation and triangularity at the separatrix κ = 1.71 and δ = 0.35, respectively,
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Figure 2.15 – Time and toroidally averaged radial density profile at the outer midplane (a)
and neutral density at the bottom wall (b) of GBS simulations with the neutral density
evaluated every ∆t = 0.04 R0/cs0, ∆t = 0.08 R0/cs0 and ∆t = 0.16 R0/cs0.

toroidal magnetic field at the tokamak magnetic axis B0 = 0.9 T, plasma current
Ip=146 kA). The discharge considered here is in forward field (ion-∇B drift direction
pointing toward the active X-point). The upstream density and electron temperature
at the separatrix, taken as reference density and temperature in the simulation, are
n0 = 0.6× 1019 m−3 and Te0 = 35 eV, respectively. With these reference values, the ion
sound Larmor radius is ρs0 ' 1 mm, the sound speed is cs0 ' 4.1 × 104 m/s, and the
reference time is t0 = R0/cs0 ' 0.02 ms. In order to reduce the computational cost of the
simulation, we consider here a domain corresponding to half size of TCV, i.e. LR = 300 ρs0
and LZ = 600 ρs0. We note that full size TCV simulations have been recently performed
and validated against TCV data, as shown in Ref. [155]. The dimensionless simulation
parameters are ρ−1

∗ = 450, τ = 1, η0e = 3× 10−4, η0i = 1, χ‖e = 20, χ‖i = 1, Df = 7 for
f = {n, Te, Ti,Ω, U‖e, V‖i}, mi/me = 3000, βe0 = 2× 10−6, and ν0 = 0.05. The amplitude
of the electron temperature source is chosen so that Te/Te0 ' 1 at the separatrix. This
leads to a power source with an intensity, in physical units, of approximately 150 kW,
which is close to the experimental estimated value of the power crossing the separatrix,
Psep = 120 kW. No external ion temperature source is used in the simulation and the
ion heating is provided by the equipartition term in Eq. (2.77). The value of neutral
reflection coefficient is αrefl = 0.2. Although we consider a discrete gas puff in the private
flux region, most of the neutral particles are generated from the ion recycling at the wall.
A discrete pump at the bottom wall in the region R > 500ρs0 is also considered.

The plasma spatial grid is NR ×NZ ×Nϕ = 150× 300× 64 and the neutral spatial grid
is N ′R ×N ′Z ×N ′ϕ = 50 × 100 × 64. The time step is dt = 10−5R0/cs0 and the neutral
kinetic equation is solved every ∆t = 0.04 R0/cs0. The simulation reaches the turbulent
quasi-steady state after approximately 80 R0/cs0, starting from flat initial profiles of
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Figure 2.16 – Typical snapshots of the density (a), electron temperature (b), ion temper-
ature (c), electrostatic potential (d), parallel current (e) and fluctuating vector potential
(f) for the TCV simulation described in Sec. 2.9.

density and temperature.

We briefly discuss here the simulation results, showing that they are in agreement with
typical experimental observations. Typical snapshots on a poloidal plane of n, Te, Ti, φ,
j‖ and ψ are presented in Fig. 2.16. As experimentally observed (see, e.g., Refs. [38, 63]),
the tokamak core is characterized by low-amplitude density and temperature fluctuations,
which increase from the core to the edge. A wave-like turbulent dynamics, experimentally
observed [67, 243], is clearly visible in the edge (see Fig. 2.16). When crossing the
separatrix, the turbulent eddies experience a strong E×B shear and detach from the
main plasma, forming filaments that propagate radially in the SOL, in agreement with
experimental observations described, e.g., in Refs. [67, 243]. In addition, as it is also
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(a) (b) (c)

Figure 2.17 – Typical snapshots of the neutral density (a), ionization source (b) and
neutral parallel velocity (c) for the TCV simulation described in Sec. 2.9.

experimentally observed [78, 219, 223, 236], turbulence in the far SOL is characterized by
intermittent events due to coherent plasma filaments [48].

The strong electric field gradient observed across the separatrix also reflects experimental
observations [138, 196]. Because of the ambipolarity of the plasma flow at the sheath,
the electrostatic potential in the SOL is positive and proportional to the electron tem-
perature [211]. Therefore, the electrostatic potential increases from the far SOL to the
separatrix. On the other hand, the electrostatic potential inside the separatrix is negative
with an electric field proportional to the ion pressure gradient. As a consequence, a strong
electric field gradient and an associated poloidal E×B shear form in the region across
the separatrix. The E×B shear can play an important role in suppressing turbulence at
the tokamak edge, as discussed in Ch. 3 where GBS simulations are used to investigate
the turbulent transport regimes in this region.

Typical snapshots of nn, Siz and V‖n are shown in Fig. 2.17. As expected, the neutral
density is larger in the proximity of the target plates, where most of the recycling takes
place, although a non-negligible fraction of neutrals can be found in the core, mainly in
the region close to the X-point. In fact, a significant fraction of neutral particles reaches
the separatrix from the target on the high-field side before being ionized (see Fig. 2.17 (b)).
In our simulation, core ionization accounts for approximately 25% of the total ionization
source, which is in agreement with the fact that the TCV discharge considered here is in
the low-density and low-recycling regime. We note that V‖n is positive in the outer strike
point region and negative in the inner strike point region (see Fig. 2.17 (c)). Since the
direction of the magnetic field points towards (away from) the outer (inner) target, the
parallel neutral flux is directed towards the wall at both targets.
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2.10 Conclusions

The present chapter describes a new version of GBS, where the simulation domain is
extended to encompass the whole plasma volume, avoiding an artificial boundary with the
tokamak core and retaining the core-edge-SOL turbulence interplay. Both the plasma and
neutral implementations are carefully optimized leading to a significant speed-up of the
code. In particular, a new iterative solver based on the PETSc library is implemented and
optimized for the solution of Poisson and Ampère equations, allowing us to efficiently carry
out electromagnetic simulations, while avoiding the use of the Boussinesq approximation.
Moreover, the neutral module is refactored and optimized by implementing an iterative
solver based on the PETSc library.

The implementation of the plasma and neutral models is then carefully verified by means
of the MMS, including, for the first time, the verification of the electromagnetic terms
and of the kinetic neutral model. The verification of the neutral model is completed by
a set of unit tests to verify the routines used to compute the integrals over the neutral
trajectories.

Our tests show the efficient scalability of GBS on parallel high-performance computers,
mainly thanks to the numerical scheme used to discretize the differential operators.
The uniform Cartesian grid allows for a massive parallelisation through MPI domain
decomposition. The splitting of the plasma and neutral communicators improves the
parallelisation of GBS.

The convergence properties with respect to the plasma and neutral grid refinement are
tested in typical turbulence simulations, showing that convergence of the simulation
results is achieved with a plasma and neutral grid spacing of approximately 2.5 ρs0 and
0.075 λn, respectively. The convergence with respect to the neutral calculation frequency
is also studied, showing that evaluating the neutral density every ∆t = 0.1R0/cs0 is
sufficient to guarantee the convergence of the simulation results.

Finally, the results of the first GBS electromagnetic simulation of a TCV lower single-null
discharge, which include the self-consistent evolution of neutral dynamics, are presented.
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3 Turbulent transport regimes in the
tokamak edge

The goal of this chapter is to present an overview of the turbulent transport regimes that
can be identified in the tokamak edge from the results of three-dimensional, flux-driven,
two-fluid electrostatic simulations in single-null configuration carried out by using the
GBS code. In particular, three turbulent transport regimes are identified: (i) a developed
transport regime with turbulence driven by an interchange instability, which shares a
number of features with the standard L-mode of tokamak operation; (ii) a suppressed
transport regime, characterized by a higher value of the energy confinement time, low
relative amplitude fluctuations driven by a Kelvin-Helmholtz (KH) instability, a strong
E×B sheared flow, and the formation of a transport barrier, which recalls the H-mode;
(iii) a degraded confinement regime, characterized by a catastrophically large interchange-
driven turbulent transport, which reminds the crossing of the Greenwald density limit.
For each transport regime, an analytical scaling of the edge pressure gradient length is
derived and compared to simulation results, showing a good agreement. We also discuss
the transitions between the developed and suppressed transport regime.

The main results of this chapter have been recently published in Ref. [72].

3.1 Introduction

The turbulent plasma dynamics in the tokamak edge plays a key role in determining the
overall performances of a tokamak. In fact, fundamental phenomena, such as the L-H
transition [231] and the density limit [79, 80], strongly depend on the plasma dynamics
in this region and have been associated to the transition between different turbulent
regimes. Understanding the physical mechanisms behind these phenomena, identifying
the edge turbulent regimes and their transition while improving our predictive capability,
is therefore of fundamental importance in the design and operation of future magnetic
fusion devices.

Focusing on the L-H transition, an empirical scaling law of the power threshold for
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H-mode access, PLH, has been proposed in Ref. [134] based on an international H-mode
threshold power database:

PLH ∝ n0.78±0.04
e B0.77±0.03

0 a0.98±0.08R1.0±0.1, (3.1)

where ne is the line-averaged electron density. In addition, it has been experimentally
observed in a single-null geometry that PLH is lower when the ion-∇B drift direction is
towards the X-point, rather than away from it [6]. Moreover, experimental results show
that PLH depends inversely on mi/me [128, 176]. Experimental observations in Alcator
C-Mod [205] and DIII-D [222] tokamaks have pointed out the presence of hysteresis in
the L-H transition, although this is not a feature universally observed [187]. Furthermore,
just before the L-H transition, it has been experimentally observed the formation at the
tokamak edge of a clear well in the radial electric field profile that induces a strong E×B

shear flow, which, in turn, suppresses plasma turbulence [25, 82, 186].

In the present chapter, we consider a set of GBS simulation to explore the edge turbulent
regimes. The simulations are carried out by using the drift-reduced two-fluid model
described in Ch. 2, simplified here by taking the electrostatic limit, making use of the
Boussinesq approximation and neglecting the coupling with neutrals. The importance of
the electromagnetic effects and of the Boussinesq approximation is discussed in Ch. 5.
While using a fluid model in the SOL is well justified by the high plasma collisionality,
its application to the tokamak edge, especially in H-mode, depends on machine size and
density. For instance, if we consider typical values of density and temperature at the top
of the pedestal for neutral beam heated discharges of a medium size tokamak such as
TCV, λe/L‖ ranges from 0.05 (Te ' 100 eV and n ' 5× 1019 m−3) to 0.4 (Te ' 200 eV
and n ' 3× 1019 m−3), depending on the external gas injection rate [201], thus providing
a justification to the use of a fluid model. On the other hand, in the case of JET tokamak,
typical values of density and temperature at the top of the pedestal [14] (Te ' 900 eV
and n ' 7 × 1019 m−3) lead to λe/L‖ ' 2. Focusing on the drift approximation that,
contrary to more advanced fluid models (see e.g. Ref. [240]), does not allow us to describe
finite-Larmor radius effects, we observe that the dominant modes in our simulations
satisfy k⊥ρi � 1, consistently with our model hypothesis, although turbulence in the
tokamak edge can also be driven by unstable modes with k⊥ρi ∼ 1 [43, 101].

GBS simulations point out the presence of various turbulent transport regimes in the
tokamak edge, which we identify according to the value of the edge collisionality and heat
source. In particular, we identify a regime of developed transport with turbulence driven
by a resistive interchange instability, a regime of suppressed transport with turbulence
driven by a KH instability, and a regime of extremely large turbulent transport. The
transition between the developed and the suppressed transport regime is carefully analyzed,
leading to an analytical estimate of the power threshold to access the suppressed transport
regime. The analysis presented in this chapter is focused mainly on the tokamak edge.
The extension of this analysis to the SOL is reported in Ch. 4, where analytical scaling
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laws of the near and far SOL widths are derived in the developed transport regime
and compared to experimental data taken from a multi-machine database of L-mode
discharges. The transition to the degraded confinement regime is instead treated in Ch. 5,
where a theoretical scaling law of the maximum density achievable in magnetic fusion
devices is derived and successfully validated against a multi-machine database of density
limit discharges.

The present chapter is structured as follows. An overview of the simulation results is
presented in Sec. 3.2. The mechanisms that regulate the electrostatic potential in the
tokamak boundary are described in Sec. 3.3. The developed transport regime is presented
in Sec. 3.4, the suppressed transport regime in Sec. 3.5, while the degraded confinement
regime in Sec. 3.6. The transition from the developed to the suppressed transport regime
is studied in Sec. 3.7, where an analytical estimate of the heat source threshold to access
the suppressed transport regime is derived. The conclusions follow in Sec. 3.8.

3.2 Overview of simulation results

We consider a set of GBS simulations carried out with the following parameters: ρ−1
∗ = 500,

a/R0 ' 0.3, τ = 1, η0e = 5×10−3, η0i = 1, χ‖e = χ‖i = 1, LR = 600, LZ = 800, sn0 = 0.3,
∆n = 800, ∆T = 720, and Df = 6. The simulations have been run at different values
of heat source, sT0 (see Eq. (2.85)), and resistivity, ν0 (see Eq. (2.99)), at both ion-∇B
drift directions (see Tab. 3.1), considering the same values of temperature source for
both the ion and electron species. Regarding the numerical parameters, the grid used is
NR ×NZ ×Nϕ = 240× 320× 80 and the time-step is 2× 10−5.

The single-null magnetic configuration considered for this set of simulations is analytically
obtained by solving the Biot-Savart law for a straight current filament, which is located
outside the domain, and a current density with Gaussian profile, which is centered at
the tokamak magnetic axis, i.e. at the position (R0,Z0), and mimics the plasma current
(see Fig. 3.1). The current filament and the plasma current are centered at the same
radial position. The amplitude and the width of the current density is chosen to have a
safety factor q0 ' 1 at the tokamak axis and q ' 4 at the tokamak edge. The plasma
current is parallel to the toroidal magnetic field when the ion-∇B drift points upwards
and anti-parallel when it points downwards. The value of the current in the filament is
chosen to be equal to the plasma current. Contour lines of the poloidal flux function are
displayed in Fig. 3.1. The radial and vertical components of the dimensionless poloidal
magnetic field as well as its norm are shown in Fig. 3.2.

After an initial transient, the simulations reach a global turbulent quasi-steady state,
resulting from the interplay between the sources in the closed flux surface region, the
turbulence that transports plasma and heat from the core to the SOL, and the losses at
the vessel. The analysis is carried out in the quasi-steady state conditions.
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sT0 ν0 ion-∇B drift

0.6 0.9 upwards
0.3 2.0 upwards
0.3 0.9 upwards
0.3 0.9 downwards
0.3 0.6 upwards
0.3 0.2 upwards
0.15 2.0 upwards
0.15 0.9 upwards
0.15 0.9 downwards
0.15 0.6 upwards
0.15 0.2 upwards
0.075 2.0 upwards
0.075 0.9 upwards
0.075 0.2 upwards
0.075 0.2 downwards

Table 3.1 – Temperature source strength, normalized resistivity, and ion-∇B drift direction
for the set of GBS simulations considered in the present chapter.
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Figure 3.1 – Contour plot of the poloidal flux function ψ (black dashed lines). The
separatrix is shown as a solid black line. The boundary domain is indicated by a solid
grey line. The red circle represents the plasma current, while the blue point, located
outside the domain, represents the current filament used to generate the X-point.
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(a) (b) (c)

Figure 3.2 – Radial component (a), vertical component (b), and norm (c) of the dimen-
sionless poloidal magnetic field considered in the present chapter.

In the following, we refer to the equilibrium of any quantity f as its time and toroidal
average, f̄ = 〈f〉ϕ,t, and to its fluctuating component as f̃ = f − f̄ . In addition,
we consider the (∇ψ,∇χ,∇ϕ) flux-aligned coordinate system, where ∇ψ denotes the
direction orthogonal to flux surfaces, ∇ϕ is the toroidal direction, and ∇χ = ∇ϕ×∇ψ.

We define Sn and ST as the total density and temperature source integrated over the
area inside the separatrix,

Sn =

∫
ALCFS

ρ∗sn(R,Z) dRdZ (3.2)

and
ST =

∫
ALCFS

ρ∗sT (R,Z) dRdZ , (3.3)

where the factor ρ∗ appears from the normalization. Analogously, we define the electron
power source Sp =

∫
ALCFS

ρ∗sp dRdZ, with sp = nsTe + Tesn and sTe the electron
temperature source.

An example of typical simulation results is shown in Fig. 3.3, where the equilibrium
density, electrostatic potential, electron temperature, ion temperature, vorticity, and
parallel current is from the simulation with sT0=0.15 and ν0=0.2. We note that n̄ is
approximately a factor of 20 larger in the core than in the near SOL and a factor of 100
larger than in the far SOL. Similar profiles are observed for T̄e and T̄i. The equilibrium
electrostatic potential φ̄ is positive in the SOL and increases from the far SOL towards
the separatrix, while it drops and becomes negative inside the LCFS. The change in
slope of the electrostatic potential across the separatrix, associated with a change of
sign in the equilibrium vorticity, generates a region of very strong E×B shear, which
is the main element responsible of the transition between the developed and suppressed
transport regimes. The equilibrium parallel current inside the LCFS is mainly regulated
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by the pressure profile. In fact, by taking the time and toroidal average of Eq. (2.89) and
retaining only the dominant terms, we obtain

B∇‖j̄‖ ' −2C(p̄e + τ p̄i) . (3.4)

The equilibrium parallel current in the SOL close to the target plates is imposed by the
boundary conditions through the electrostatic potential (see Eqs. (2.140) and (2.141))
and has been the subject of Ref. [122].

Typical radial profiles at the low-field side (LFS) midplane of the equilibrium electron
pressure, electrostatic potential and E×B shear are shown in Fig. 3.4 for three different
values of ν0 corresponding to the three turbulent transport regimes revealed by our
simulations. In particular, we consider the simulations with sT0 = 0.15, ion-∇B drift
pointing upwards, and ν0 = 0.2 (suppressed transport regime), ν0 = 0.6 (developed
transport regime), and ν0 = 2.0 (degraded confinement regime). In the suppressed
transport regime, the electrostatic potential drops significantly inside the separatrix,
generating a strong E×B shear across it. This is associated to a steep gradient in the
density, electron and ion temperatures. With respect to the suppressed transport regime,
the electrostatic potential across the separatrix is flatter in the developed transport
regime. In addition, the equilibrium E×B shear is reduced, transport due to turbulence
is larger and, consequently, the density and temperature gradient at the tokamak edge is
significantly lower. In the degraded confinement regime, turbulent transport is extremely
large, leading to a flat profile of density, temperature and electrostatic potential. We
note that analogous transitions can be observed by varying the heat source while keeping
ν0 constant. We also observe that the transition from the developed to the suppressed
transport regime is rather sharp. The transition from the developed transport regime to
the degraded confinement regime is instead gradual.

Typical snapshots of plasma turbulence in the three transport regimes can be seen
in Fig. 3.5, where the relative density fluctuations and the corresponding normalized
standard deviation are shown for the three simulations we are considering. In the case
of ν0 = 0.2, turbulence is localized near the separatrix and, as a consequence of being
sheared apart by the strongly varying E × B radial profile, turbulent structures are
elongated along the ∇χ direction, effectively reducing the cross-field transport. While
the value of the normalized standard deviation of density fluctuations is comparable in
the three simulations, the radial extension of turbulent structures is larger for ν0 = 0.6

and ν0 = 2.0. In particular, at ν0 = 2.0, turbulent structures penetrate into the core
region, leading to a larger normalized standard deviation of density fluctuations inside the
separatrix. This is in agreement with experimental observations of density fluctuations
when the density limit is approached [111]. In addition, in the case of ν0 = 0.2, density
fluctuations are generated both at the LFS and high-field side, while, in the other two
cases, turbulence mainly develops at the LFS.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3 – Equilibrium density (a), equilibrium electrostatic potential (b), equilibrium
electron temperature (c), equilibrium ion temperature (d), equilibrium vorticity (e), and
equilibrium parallel current (f) in the simulation with sT0 = 0.15 and ν0 = 0.2. The
white line represents the separatrix.
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Figure 3.4 – Radial profiles at the LFS midplane of the equilibrium pressure (a), equilibrium
electrostatic potential (b) and equilibrium E × B shear (c) for the simulation with
sT0 = 0.15 and ν0 = 0.2 (suppressed transport regime), ν0 = 0.6 (developed transport
regime) and ν0 = 2.0 (degraded confinement regime). The radial coordinate is normalized
to the radial position a of the separatrix at the midplane.

In order to highlight the difference on the confinement properties between the different
regimes, we compute the electron energy confinement time,

τE =

3
2

∫
ALCFS

p̄e dRdZ∫
ALCFS

sp dRdZ
, (3.5)

for the set of simulations considered in the present chapter, at different values of ST and
ν0 (see Fig. 3.6). At a given ν0 or ST , we note that the simulations in the suppressed
transport regime have a higher energy confinement time than the simulations in the
developed transport regime. For this reason, we also refer to the developed transport
regime as the L-mode and to the suppressed transport regime as the H-mode. The energy
confinement time increases by a factor of two from the L-mode to the H-mode, as observed
in the experiments.

3.3 Mechanisms regulating the equilibrium electrostatic po-
tential

The equilibrium electrostatic potential plays a key role in suppressing turbulent transport
through the poloidal equilibrium E×B shear. It is therefore important to understand
the mechanisms that regulate its equilibrium radial profile.

In the SOL, ambipolarity of the plasma flow at the sheath imposes that the electrostatic
potential is proportional to the electron temperature, φ̄ ∼ ΛT̄e [124, 211]. In fact, the
dominant terms of the equilibrium generalized Ohm’s law (see Eq. (2.74)), as identified
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(a) Suppressed transport (b) Developed transport (c) Degraded confinement

(d) Suppressed transport (e) Developed transport (f) Degraded confinement

Figure 3.5 – Typical snapshot of the relative density fluctuations (top raw) and normalized
standard deviation of the density fluctuations (bottom raw) for three simulations with
sT0 = 0.15 in the suppressed transport regime, ν0 = 0.2 [(a) and (d)], developed transport
regime, ν0 = 0.6 [(b) and (e)], and degraded confinement regime, ν0 = 2.0 [(c) and (f)].

from GBS simulations, lead to

∇‖φ̄ ∼
∇‖p̄e
n̄

+ 0.71∇‖T̄e , (3.6)

since the contribution of the parallel current can be neglected. By assuming that the
density variation along magnetic field lines is weaker than the electron temperature one,
Eq. (3.6) can be easily integrated [124],

φ̄ ∼ 1

2
(φt1 + φt2) + 1.71

[
T̄e −

1

2
(Te,t1 + Te,t2)

]
, (3.7)

where φt1, φt2 and Te,t1, Te,t2 are the values of the electrostatic potential and electron
temperature at the two magnetic pre-sheath entrances on the target plates. If we neglect
the temperature variation along magnetic field lines and assume Te,t1 = Te,t2, Eq. (3.7)
can be further simplified, and the sheath ambipolarity condition φt1 ' φt2 ' ΛT̄e leads
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Figure 3.6 – Electron energy confinement time for the set of simulations with ion-∇B
drift pointing upwards. The dashed black line represents the heat source threshold to
access the suppressed transport regime (derived in Sec. 3.7). The transition between
the developed transport and the degraded confinement regimes (dotted black line) is
discussed in Ch. 5.

to
φ̄ ∼ ΛT̄e . (3.8)

A comparison between the analytical estimate of Eq. (3.8) and the equilibrium electrostatic
potential obtained from the simulation is shown in Fig. 3.7 for the simulation with
sT0 = 0.3 and ν0 = 0.9. The analytical theory reproduces well the equilibrium electrostatic
potential in the SOL, while failing when approaching the separatrix, where the electrostatic
potential drops and the sheath ambipolarity condition is not satisfied.

In contrast to the SOL, where the dynamics of φ̄ is mainly imposed by the sheath, in
the tokamak core the equilibrium radial electric field is proportional to the ion pressure
gradient, ∂ψφ̄ ∼ −∂ψp̄i/n̄, as experimentally observed (e.g., see Refs. [196] and [138]).
The relation between φ̄ and T̄i can be derived from the drift-reduced Braginskii equations
by following a procedure similar to the one outlined in Ref. [250]. We consider the leading
order terms of the equilibrium density and vorticity equations (see Eqs. (2.88) and (2.89)),

−ρ−1
∗ [φ, n]− 2n̄C(φ̄) + 2C(p̄e)−∇‖(n̄V̄‖e) ' 0 , (3.9)

∇‖j̄‖ + 2C(p̄) ' 0 . (3.10)

We then subtract Eq. (3.10) to Eq. (3.9) and approximate ∇‖(n̄V̄‖e) ' −∇j̄‖, obtaining

ρ−1
∗ [φ, n] + 2n̄C(φ̄) + 2C(p̄i) ' 0 . (3.11)
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The Poisson bracket in Eq. (3.11) can be decomposed in an equilibrium and a fluctuating
component, leading to

[φ, n] =
(
∂χφ̄∂ψn̄− ∂ψφ̄∂χn̄

)
+ ∂χφ̃∂ψñ− ∂ψφ̃∂χñ . (3.12)

If we restrict our analysis to the tokamak core, the fluctuating component is negligible
with respect to the equilibrium one. Since equilibrium quantities are approximately
flux functions, they can be expanded in Fourier series retaining only the first order
contribution, leading to

φ̄ ∼ φ0(ψ) + φ1(ψ) cos(χ+ ϑφ) , (3.13)

n̄ ∼ n0(ψ) + n1(ψ) cos(χ+ ϑn) , (3.14)

p̄i ∼ pi0(ψ) + pi1(ψ) cos(χ+ ϑp) , (3.15)

(3.16)

where φ1 � φ0, n1 � n0 and pi1 � pi0, with χ denoting the poloidal angleI. Simulation
results show that the phase difference between φ1, n1 and pi1 is negligible, i.e. ϑφ ' ϑn '
ϑp ' 0. By expanding n̄, φ̄ and p̄i in Eq. (3.11), we obtain

−ρ−1
∗ (φ1∂ψn0 − n1∂ψφ0) + 2n0∂ψφ0 + 2∂ψpi0 ' 0 . (3.17)

The quantity φ1 can be estimated from the leading order terms in Eq. (2.74),

∂χφ1 '
∂χpe1
n

+ 0.71∂χTe1 ∼ 2.71∂χn1 . (3.18)

By approximating ∂χTe1 ∼ ∂χn1 and substituting φ1 in Eq. (3.17), the radial electric
field is given by

∂ψφ0 ∼
−2∂ψpi0 + 2.71ρ−1

∗ n1∂ψn0

2n0 + ρ−1
∗ n1

. (3.19)

We highlight that, although generally small, poloidal variations of density and temperature
contribute to the radial electric field through the terms proportional to ρ−1

∗ n1. However,
neglecting any poloidal variation in Eqs. (3.13)-(3.15), leads to

∂ψφ̄ ∼ −
∂ψp̄i
n̄

, (3.20)

which is in agreement with the theoretical result derived in Ref. [250]. A comparison
between the numerical result and the analytical estimate of ∂ψφ̄ (see Eq. (3.20)) is shown
in Fig. 3.7 for the simulation with sT0 = 0.3 and ν0 = 0.9. The agreement is good
throughout the entire core, while it breaks close to the separatrix where the assumption of
small fluctuations in the Poisson brackets of Eq. (3.11) breaks down, being the fluctuating

IThe analysis is carried out in the confined region where the coordinate χ ∈ [0, 2π], associated with
the (∇ψ,∇χ,∇ϕ) flux coordinate system, corresponds to the poloidal angle.
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Figure 3.7 – Comparison between the equilibrium radial electrostatic potential profile
(black line) and the equilibrium radial electron temperature profile (red line) in the SOL
at the outboard midplane for the simulation with sT0 = 0.3 and ν0 = 0.9 (a). Flux-surface
average of the equilibrium radial electric field (black line) and ion pressure gradient (red
line) inside the LCFS for the same simulation (b).

component in Eq. (3.12) comparable to the equilibrium one. Moreover, in the proximity
of the separatrix, the contribution of the polarization current, associated to the presence
of zonal flows, has to be included in Eq. (3.10), making it very challenging to proceed
analytically.

3.4 Developed transport regime

The developed transport regime, shown by GBS simulations at intermediate values of
heat source and collisionality, is characterized by turbulent transport driven by nonlinear
development of interchange-driven electrostatic ballooning modes [147] with a negligible
effect of the shear flow. This can be verified by removing the interchange drive from
the simulations, i.e. by toroidally averaging the term proportional to C(pe + τpi) in
Eq. (2.73). The result of this test is displayed in Fig. 3.8, where a snapshot of the electron
temperature, with and without the interchange drive, is shown for a simulation in the
developed transport regime (sT0 = 0.075 and ν0 = 0.9). Plasma turbulence is strongly
suppressed when the term C(pe + τpi) is toroidally averaged and, as a consequence, an
increase of the equilibrium temperature and pressure gradients is observed. On the other
hand, turbulent structures and plasma profiles do not change significantly when the
Reynolds stress, i.e. the term ρ−1

∗ [φ, ω]/B appearing in Eq. (2.73), is toroidally averaged
(see Fig. 3.8). This shows that the E ×B shear and the KH instability do not play a
major role in the developed transport regime.

We provide now an analytical estimate of the pressure gradient length across the separatrix
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(a) (b) (c)

Figure 3.8 – A typical snapshot of the electron temperature for the simulation with
sT0 = 0.075 and ν0 = 0.9 (a). Snapshots of simulations with the same parameters but
the interchange drive C(pe + τpi) term in Eq. (2.73) toroidally averaged (b), and with
the KH drive term ρ−1

∗ [φ, ω]/B in Eq. (2.73) toroidally averaged (c).

in the developed transport regime by balancing the perpendicular heat flux crossing the
separatrix with the heat source integrated over the volume inside the LCFS. As shown
in Fig. 3.9, the equilibrium cross-field heat flux near the separatrix is negligible with
respect to the turbulent one, p̄e∂χφ̄� p̃e∂χφ̃, and therefore we focus on the perpendicular
turbulent transport, qψ ' p̃e∂χφ̃, at the LCFS. The quantity ∂χφ̃ is estimated from the
leading terms of the linearized electron pressure equation, which is obtained by linearizing
and summing Eqs. (2.88) and (2.92),

∂tp̃e ∼ ρ−1
∗ ∂ψp̄e∂χφ̃ , (3.21)

where the curvature and parallel gradient terms are significantly smaller than the terms we
retain. In Eq. (3.21), we estimate the time derivative as the growth rate of the ballooning

instability driving the transport, γi =
√

2T̄e/(ρ∗Lp). We also approximate |∂ψp̄e| ∼ p̄e/Lp
being Lp the equilibrium pressure gradient length. The resulting expression of ∂χφ̃ can
then be used to evaluate the cross-field interchange-induced heat flux as

qψ,i ∼ ρ∗γi
p̃2
e

p̄e
Lp . (3.22)

The amplitude of the pressure fluctuations appearing in Eq. (3.22) can be estimated by
observing that the growth of the linearly unstable modes saturates when the instability
drive is removed from the system, i.e. kψp̃e ∼ p̄e/Lp [173, 174]. The perpendicular heat
flux is then written as

qψ,i ∼ ρ∗
γi
k2
ψ,i

p̄e
Lp

, (3.23)
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(a) (b)

Figure 3.9 – Equilibrium (a) and turbulent (b) cross-field heat flux inside the LCFS for
the simulation with sT0 = 0.015 and ν0 = 0.6.

where kψ,i can be derived from non-local linear calculations, as show in Ref. [174], which
lead to kψ,i '

√
kχ,i/Lp. The poloidal wavenumber of the ballooning instability kχ,i can

then be obtained by balancing the interchange drive and the parallel current terms in
Eq. (2.73). Since turbulence in this regime is driven by resistive ballooning modes [147],
the parallel current is limited by the resistivity [89, 88], from which it follows that
kχ,i = (n̄νq2γi)

−1/2. As a consequence, Eq. (3.23) becomes

qψ,i ∼ ρ
1/4
∗
√
n̄νq2

(
2T̄e
Lp

)3/4

p̄e . (3.24)

We observe that the heat source integrated over the poloidal plane inside the LCFS
corresponds, approximately, to the perpendicular turbulent heat flux crossing the LCFS
on a poloidal plane:

Sp(R,Z) '
∮
LCFS

qψ,i(R,Z) dl . (3.25)

The integral on the right-hand side of Eq. (3.25) can be computed by noting that turbulent
transport is driven by ballooning modes that develop in the bad-curvature region (see
Fig. 3.8). As a consequence, we assume that qψ,i(R,Z) has a constant value at the LCFS
on the LFS and vanishes at the high-field side, i.e.

Sp ∼
Lχ
2
qψ,i , (3.26)

where Lχ =
∮
LCFS dl is the length of the LCFS poloidal circumference. The equilibrium

pressure gradient length across the separatrix is obtained by using Eqs. (3.24) and (3.26),
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Lp,i ∼

[
ρ∗
2

(νq2n̄)2

(
Lχ
Sp
p̄e

)4]1/3

T̄e , (3.27)

where n̄, T̄e, and p̄e are evaluated at the LCFS.

We highlight that T̄e at the LCFS appearing in Eq. (3.27) depends on Sp. The relation
between T̄e at the LCFS and Sp can be obtained by balancing Sp with the parallel losses
to the vessel walls. As an order of magnitude estimate, this balance can be expressed by
integrating the heat flux over the SOL width, ∆SOL, as∫

∆SOL

p̄ec̄s dl ∼ Sp , (3.28)

where we assume to be in the sheath limited-regime (i.e. no temperature drop in the
divertor region) and that the plasma outflows at the divertor plate with the sound speed.
This assumption restricts the applicability of the Lp scaling derived here to the low-
density and low-recycling regime. An extension of this scaling to high density regimes is
discussed in Ch. 5. By assuming that the electron pressure and electron temperature decay
exponentially in the SOL on the scale Lp and LT , respectively, with LT ' (1 + ηe)Lp/ηe
and ηe ' 0.77 given by Ref. [174], T̄e at the LCFS is derived by integrating Eq. (3.28),
leading to

T̄e ∼

[(
1 +

ηe
2(1 + ηe)

)
Sp
n̄Lp

]2/3

. (3.29)

The final expression of Lp,i is derived by replacing T̄e, Eq. (3.29), in Eq. (3.27),

Lp,i ∼

[
1

8

(
1 +

ηe
2(1 + ηe)

)8

ρ3
∗ν

6
0q

12L12
χ n̄

10S−4
p

]1/17

. (3.30)

We show in Fig. 3.10 the ratio of Lp, the equilibrium pressure gradient length directly
obtained from the simulations, to Lp,i, the interchange estimate in Eq. (3.30), for the
different values of ST and ν0 considered in the present chapter. At low values of ST and
high values of ν0, we note that Lp/Lp,i ' 1, thus revealing a good agreement between
the analytical estimate of Eq. (3.30) and the simulation results. Hence, in the developed
transport regime (as well as in the degraded confinement regime), turbulence is driven
by the interchange instability with a negligible effect of the shear flow. On the other
hand, for high values of the heat source and low ν0, the pressure gradient length of the
simulations is larger than the value predicted by Eq. (3.30), Lp/Lp,i > 1, meaning that a
mechanism different than the interchange instability is responsible for driving turbulent
transport and setting the equilibrium pressure gradient length.

It should be noted that, despite being still described as the result of the development of
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Figure 3.10 – Ratio of Lp, the equilibrium pressure gradient length directly obtained
from the simulations, to Lp,i, the estimate in Eq. (3.30) based on the assumption that
transport is driven by the interchange instability, for all the simulations considered in the
present study. The dashed black line represents the heat source threshold to access the
suppressed transport regime (derived in Sec. 3.7). The transition between the developed
transport and the degraded confinement regimes (dotted black line) is discussed in Ch. 5.

the interchange instability, turbulent transport becomes catastrophically large at high
values of ν0 and low heat source values, with turbulent eddies that extend from the edge
towards the tokamak core, a behaviour that we associate to the crossing of the density
limit (discussed in Ch. 5).

3.5 Suppressed transport regime

As shown in Fig. 3.4, the equilibrium electrostatic potential profile inside the LCFS in
the suppressed transport regime is significantly different from the one in the developed
transport regime. As detailed in Sec. 3.3, φ̄ radially increases as one moves from the
magnetic axis towards the LCFS (−∂rp̄i/n̄ > 0) and then decreases from the LCFS towards
the far SOL (∂rT̄e < 0). It follows that φ̄ peaks near the separatrix (see Fig. 3.4 (b)). As
sT0 increases or ν0 decreases, both Te and Ti increase and, as a consequence, also the
E×B shear flow across the LCFS increases (see Fig. 3.4 (c)). Because of the E×B shear,
the turbulent eddies in the edge resulting from the interchange instability are sheared
along the ∇χ direction. Furthermore, when the shearing rate, ρ−1

∗ ∂2
ψφ̄, is comparable

to γi, ballooning turbulence is nonlinearly suppressed [25, 220]. At the same time, the
E×B shear provides the drive of the KH instability through the Reynolds stress [150]. In
fact, as shown in Fig. 3.11 for the simulation with sT0 = 0.15 and ν0 = 0.2, at sufficiently
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(a) (b)

Figure 3.11 – Maximum growth rate of the interchange instability (a) and E×B shear
rate (b).

high values of the heat source or low values of resistivity, ρ−1
∗ ∂2

ψφ̄ is larger than γi in the
proximity of the LCFS and, as a consequence, the interchange instability is suppressed in
the edge, with the KH instability that becomes the primary instability driving turbulent
transport [150, 180].

A typical snapshot of the electron temperature for a simulation in the suppressed transport
regime (sT0 = 0.6 and ν0 = 0.9) is shown in Fig. 3.12 and compares to two simulations
having the same parameters, but with the KH and ballooning drives removed. Turbulence
is strongly suppressed when the Reynolds stress is toroidally averaged. On the other hand,
no significant effect on turbulence is noticed when the interchange drive is removed. This
shows that the KH instability is the main drive of turbulent transport and, consequently,
regulates the equilibrium pressure gradient in the suppressed transport regime.

An analytical estimate of the equilibrium pressure gradient length in the edge when
turbulence is driven by the KH instability can be derived by following a procedure
similar to the one detailed in the previous section and discussed for a linear device in
Ref. [183]. The growth rate of the KH instability is proportional to the E×B shear [150],
γKH ∼ ρ−1

∗ ∂2
rrφ̄ ∼ ρ−1

∗ T̄e/L
2
p, where we assume that Lφ ∼ Lp. Since the KH instability

leads to a global mode, the size of the turbulent eddies that it generates is comparable
to the pressure gradient length, kψ,KH ∼ 1/Lp. Therefore, similarly to Eq. (3.23), the
KH-driven heat flux can be expressed as

qψ,KH ∼
T̄ep̄e
Lp

. (3.31)
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(a) (b) (c)

Figure 3.12 – A typical snapshot of the electron temperature for the simulation with
sT0 = 0.6 and ν0 = 0.9 (a). Snapshots of simulations with the same parameters but
the KH drive term ρ−1

∗

[
φ, ω

]
/B in Eq. (2.73) toroidally averaged (b), and with the

interchange drive term C(pe + τpi) in Eq. (2.73) toroidally averaged (c).

By balancing the heat source integrated over the region inside the LCFS and the perpen-
dicular turbulent heat flux crossing the LCFS, similarly to Eq. (3.25), but assuming that
qψ,KH is approximately uniform along the LCFS, we obtain

Lp,KH ∼
p̄eT̄e
4Sp

Lχ , (3.32)

where T̄e and p̄e are evaluated at the LCFS. By replacing T̄e at the LCFS given by
Eq. (3.29) in Eq. (3.32), we obtain the final expression for Lp,KH:

Lp,KH ∼ 2−6/7

(
1 +

ηe
2(1 + ηe)

)4/7
S

1/7
p L

3/7
χ

n̄1/7
. (3.33)

The ratio of Lp, the equilibrium pressure gradient length directly obtained from the
simulations, to Lp,KH is displayed in Fig. 3.13 for the simulations considered in the present
chapter. At large values of ST and small ν0, Lp,KH well reproduces the simulation results.
In fact, the results of Figs. 3.10 and 3.13 show that turbulent transport is driven by the
KH instability in the suppressed transport regime, otherwise the interchange instability
regulates the equilibrium pressure gradient length. Furthermore, we note that Lp > Lp,KH

in the ballooning-driven parameter region, while Lp > Lp,i in the suppressed transport
regime, as expected from the fact that the mode driving turbulence minimises the pressure
gradient.

The suppressed transport regime shows some of the main key aspects observed experi-
mentally in H-mode discharges, such as the presence of a strong sheared flow (see Fig. 3.4
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Figure 3.13 – Ratio of Lp, the equilibrium pressure gradient length directly obtained from
the simulations, to Lp,KH, the estimate in Eq. (3.33) based on the assumption that the
transport is driven by the KH instability. The dashed black line represents the heat source
threshold to access the suppressed transport regime (derived in Sec. 3.7). The transition
between the developed transport and the degraded confinement regimes (dotted black
line) is discussed in Ch. 5.

(c)), the reduction of the turbulence level with respect to the L-mode that leads to the
formation of a transport barrier near the separatrix (see Fig. 3.4 (a)), and the increase of
the energy confinement time (see Fig. 3.6). All this occurs when a power threshold is
exceeded, as detailed in Sec. 3.7. We conclude this section by remarking that the KH
instability, which characterizes the suppressed transport regime described here, is weakly
affected by the value of the viscosity, even at large viscosity when the KH instability is
expected to be suppressed [97]. Moreover, as detailed in Ch. 5, this is a consequence of
the use of the Boussinesq approximation.

3.6 Degraded confinement regime

At high values of ν0 and low values of sT0, poor confinement properties and a catastroph-
ically large turbulent transport are observed. In fact, in this parameter regime, despite
being described as the non-linear development of a ballooning mode, turbulence results
into high level fluctuations, with amplitude comparable to the equilibrium quantity, that
propagate from the edge to the core region, as shown in Fig. 3.5. This is due to the fact
that, since kχ,i ∝ ν−1/2

0 and kψ,i '
√
kχ,i/Lp,i ∝ ν−7/12

0 , the radial size of the turbulent
structures increases with ν0. The radial extension of turbulent eddies normalized to the
tokamak minor radius are shown in Fig. 3.14 for the various simulations considered in
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Figure 3.14 – Radial wavenumber computed from the correlation length of turbulent
eddies, normalized to the tokamak minor radius, for the simulations with ion-∇B drift
pointing upwards. The dashed black line represents the heat source threshold to access
the suppressed transport regime (derived in Sec. 3.7), while the dotted black line the
threshold to access the degraded confinement regime (see Ch. 5).

the present study. In particular, if the value of ν0 is sufficiently large and sT0 sufficiently
small, turbulent eddies appear to have a size comparable to the tokamak minor radius, i.e.
kψa ∼ 1. As a consequence, they extend towards the core region leading to a very large
cross-field turbulent transport throughout the closed field line region. In these conditions,
the core temperature can significantly drop and MHD modes, which are beyond the
description provided by our model, can lead to a plasma disruption [70]. The degraded
confinement regime is linked to high values of the density. For this reason, we associate it
to the crossing of the density limit, in agreement with the result of Ref. [85]. Experimental
evidences that the density limit is due to an increase of edge collisionality, proportional
to ν0 in our model, are reported in Refs. [51, 50, 61, 92, 112, 197, 226] for both tokamaks
and stellarators.

Three main effects are observed when crossing the density limit. First, the E×B shear
near the separatrix in the degraded confinement regime is weaker than in the developed
transport regime, as shown in Fig. 3.4 (c). This is in agreement with recent experiments
that show how the edge shear flow collapses when the density limit is approached [92].
The E×B shear turns out to be an important quantity not only to explain the transition
from the developed transport regime to the suppressed transport regime, but also to
recognize the crossing of the density limit. Second, the degraded confinement regime
is characterized by a flatter equilibrium density profile in the SOL with respect to the
developed and suppressed transport regimes (see Fig. 3.15). In fact, the blob size increases
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Figure 3.15 – Equilibrium density radial profile at the outboard midplane for simulations
at sT0 = 0.075 and various values of ν0.

with the collisionality [48, 152, 10], leading to an enhancement of the cross-field turbulent
transport in the far SOL (a detailed analysis of the far SOL and blob dynamics is reported
in Ch. 4). The density profile becomes flatter with no clear distinction between the
edge, near SOL and far SOL. Experimental observations of the flattening of the density
profiles as the density increases towards the density limit are reported in Ref. [111]. Third,
the large amplitude fluctuations that extend towards the core region lead to a strong
enhancement of cross-field turbulent transport and the loss of confinement. This regime
is discussed in details in Ch. 5.

3.7 Heat source threshold to access the suppressed trans-
port regime

In this section, we provide an analytical estimate of the heat source threshold to access the
suppressed transport regime, while the transition to the degraded confinement regime is
discussed in Ch. 5. The transition from the developed transport regime to the suppressed
transport regime occurs when Lp,i ' Lp,KH, namely when the turbulent transport due
to the interchange instability equals the one due to the KH instability. By equating
Eqs. (3.30) and (3.33), we obtain

SLH
p ∼ 29/5

(
1 +

ηe
2(1 + ηe)

)−4/15

ρ
14/15
∗ ν

14/15
0 q28/15L11/15

χ n̄29/15 . (3.34)

In order to compare the theoretical heat source threshold to access the suppressed
transport regime to the simulation results, we express Eq. (3.34) in terms of ST by using
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Sp ' ST /n̄,

SLH
T ∼ 29/5

(
1 +

ηe
2(1 + ηe)

)−4/15

ρ
14/15
∗ ν

14/15
0 q28/15L11/15

χ n̄14/15 . (3.35)

The analytical estimate of the threshold SLH
T as a function of ν0 is displayed in Fig. 3.13,

showing a very good agreement between the analytical prediction of Eq. (3.35) and the
simulation results.

We also link the transition from the developed to the suppressed transport regime with
experimental observations of the L-H transition. In order to identify the scaling of SLH

p

with the main experimental parameters, we write the power threshold in Eq. (3.34) in
physical units

PLH = 2πR0S
LH
p ' 0.01A−3/5n29/15R

22/15
0 q28/15a11/15(1 + κ2)11/30B

−11/15
T

' 0.01A−0.6n1.9R1.5
0 q1.9a0.7(1 + κ2)0.4B−0.7

T ,
(3.36)

where the factor 2πR0 takes into account the integration along the toroidal direction, PLH

is the power crossing the separatrix in units of MW, A is the mass number of the main
plasma ions, n is the density at the LCFS in units of 1019 m−3, R0 is the tokamak major
radius in units of m, Lχ ' 2πa

√
(1 + κ2)/2 is written in terms of the tokamak minor

radius a (in m) and of the plasma elongation κ, and BT is the toroidal magnetic field at
the magnetic axis.

The scaling law in Eq. (3.36) correctly reproduces the isotope effect observed in the
experiments [128, 176] and also found in previous theoretical investigations [42]. The
dependence on a and R0 shows a good agreement with the experimental scaling law in
Eq. (3.1). The exponent of the density in Eq. (3.36) is approximately a factor 2.7 larger
than the one predicted by the experimental scaling law in Eq. (3.1), although we remark
that the density in Eq. (3.36) is evaluated at the LCFS, while the density in Eq. (3.1)
denotes the line-averaged density. The power threshold in Eq. (3.36) depends inversely on
the toroidal magnetic field, while the experimental scaling law in Eq. (3.1) shows a direct
dependence on BT . Moreover, in contrast to the experimental scaling law in Eq. (3.1),
the power threshold in Eq. (3.36) depends on the safety factor. We remind that the
power threshold in Eq. (3.36) is derived by considering that turbulence in the suppressed
transport regime is driven by the KH instability. On the other hand, we show in Ch. 5
that the KH instability observed in this turbulent transport regime is a consequence of
the use of the Boussinesq approximation. In fact, as shown in Ch. 5, GBS simulations
that avoid the use of the Boussinesq approximation point out that turbulence in the
suppressed transport regime is instead driven by the drift-wave instability. The different
linear instability at play in the suppressed transport regime could possibly explain the
inverse dependence of PLH on BT in Eq. (3.36).

As an example of the evaluation of Eq. (3.36) in experimental conditions, we consider
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Figure 3.16 – Radial profiles at the LFS midplane of the equilibrium density (a), equilib-
rium electrostatic potential (b) and equilibrium E×B shear (c) for the simulation with
sT0 = 0.075, ν0 = 0.2 and both favorable and unfavorable magnetic field directions.

the value of the power threshold predicted for typical parameters of the TCV tokamak
(a = 0.25 m, R0 = 0.88 m, line-averaged density ne ' 4× 1019 m−3, density at the LCFS
n ' 2×1019 m−3, BT ' 1.4 T, and q ' 4). The estimate in Eq. (3.36) gives PLH ' 142 kW,
a power threshold that has the same order of magnitude as the experimental TCV power
threshold, PLH ' 260 kW (see, e.g., Refs. [192, 133]).

We investigate now the dependence of the heat source threshold in our simulations
on the ion-∇B drift direction. In fact, experimental measurements show that the
power to access the H-mode is lower when the ion-∇B drift direction is towards the
X-point, rather than away from it [6]. We consider a pair of simulations with parameters
sT0 = 0.075 and ν0 = 0.2 close to the transition when the ion-∇B drift direction points
upwards (unfavorable for H-mode access). As shown in Fig. 3.16, the equilibrium density,
electrostatic potential and E×B shear profiles at the LFS midplane do not show significant
differences between the simulations with favorable and unfavorable ion-∇B drift direction,
both simulations belonging to the developed transport regime. Similar observations
hold for the simulations with parameters sT0 = 0.3, ν0 = 0.9 and opposite ion-∇B drift
direction. Therefore, at least in the cases analysed here, the power threshold to access the
H-mode is independent of the toroidal magnetic field direction in our simulations. The
discrepancy between experimental and simulation observations may be due to the absence
of kinetic effects involving passing and trapped particles. Among these, we mention
the effects of ion orbit loss that can be important in establishing the dependence of the
L-H transition on the ion-∇B drift direction [214, 20], as also pointed out by XGC1
simulations [106].

Experimental observations [205, 222] and theoretical models [46, 90] point out the presence
of hysteresis on the power threshold for the L-H transition, i.e. once in H-mode, the
hysteresis allows for a decrease of the power below the threshold for H-mode access without
inducing the H-L transition. The presence of hysteresis in our simulations is investigated
by performing a set of simulations at ν0 = 0.2 and different values of sT0 in the proximity
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Figure 3.17 – Energy confinement time for simulations with ν0 = 0.2 and different values
of sT0. Simulations in the developed transport regime are denoted by blue squares and
in the suppressed transport regime by red diamonds. Starting from a simulation in the
developed transport regime, sT0 is progressively increased from 0.045 to 0.105. The
transition to the suppressed transport regime occurs approximately at sT0 ' 0.085. The
heat source is then progressively reduced until the reverse transition occurs, approximately
at sT0 ' 0.065. The transitions are represented as dotted black lines.

of the threshold to access the suppressed transport regime (more precisely we consider
sT0 = 0.045, 0.055, 0.065, 0.075, 0.085, 0.095, 0.105). Starting from a simulation in the
developed transport regime, sT0 is progressively increased from 0.045 to 0.105 where the
transition to the suppressed transport regime occurs. Then, by using the simulation at
sT0 = 0.105 in the suppressed transport regime as initial condition, we perform a second
set of simulations where sT0 is progressively reduced, observing the H-L transition at
sT0 ' 0.065 (see Fig. 3.17). Therefore, the transition from the developed transport regime
to the suppressed transport regime occurs at a higher value of the heat source than the
reverse transition, thus pointing out the presence of hysteresis in the considered model.

The presence of hysteresis can be explained as follows. In the suppressed transport regime,
the E×B shear is strong near the separatrix and the turbulent transport is mainly driven
by the KH instability. As the heat source decreases, the E×B shear near the separatrix
decreases, but it remains sufficiently strong to stabilize ballooning modes, thus allowing
for a decrease of the heat source below the L-H transition threshold with no collapse
of the E×B shear. This collapse is suddenly followed by the onset of the interchange
instability, with the developed transport regime eventually reached.

As an aside observation of Fig. 3.17, we note that, within the same transport regime, the
energy confinement time decreases as the heat source increases, the only exception being
the simulation at sT0 = 0.085 in the developed transport regime, which is in proximity of
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the transition. The decrease of the energy confinement time following the increase of the
heat source is also observed in many experiments [40, 246].

3.8 Conclusions

In the present chapter, results of GBS simulations are used to study the important
role of the heat source and edge collisionality in driving turbulence in the tokamak
edge, showing the presence of three turbulent transport regimes: a regime of developed
turbulent transport, which is linked to the L-mode observed in the experiments, a regime
of suppressed turbulent transport, with similarities to the H-mode, and a regime of
degraded confinement, which is associated to the crossing of the density limit. The
developed transport and degraded confinement regimes appear at low values of heat
source and large values of collisionality, with turbulent transport driven by the interchange
instability, while the suppressed transport regime appears at large values of heat source
and low values of collisionality, with turbulent transport driven by the KH instability.
An analytical estimate of the equilibrium pressure gradient length in the tokamak edge is
derived for all the transport regimes.

The transition from the developed to the suppressed transport regime shows many features
in common with the L-H transition observed experimentally, such as the presence of a
strong sheared flow, the reduction of the turbulence level, the formation of a transport
barrier near the separatrix and the presence of a power threshold. This transition is
subject to hysteresis as it occurs at a higher value of the heat source with respect to the
inverse transition. However, at least in the case analyzed here, no dependence of the
power threshold to access the suppressed transport regime on the ion-∇B direction is
observed in GBS simulations.

The transition to the degraded confinement regime is associated to the crossing of the
density limit. This transition is extensively discussed in Ch. 5, where a theory-based
scaling of the density limit is derived and validated against experimental data of a
multi-machine database of density limit discharges.

Besides the use of the Boussinesq approximation and the electrostatic limit, we remark
that the model considered in this chapter neglects coupling with neutrals dynamics,
neoclassical and kinetic effects. These terms can definitely have an impact on the edge
turbulent regimes. In fact, neutral dynamics may affect the L-H transition dynamics, as
shown in Ref. [29, 156, 199]. Neoclassical terms may play an important role on the radial
electric field responsible for the onset of a transport barrier [33, 34, 229]. In addition,
kinetic effects are also expected to be important [20, 214].
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4 Theory-based scaling of the L-mode
near and far SOL decay lengths

The aim of this chapter is to derive theoretical scaling laws of the near and far SOL density
and pressure decay length in the developed transport regime described in Ch. 3 and
corresponding to the L-mode tokamak operation. We show herein that the pressure profile
is characterized by one decay length across the separatrix, thus linking the equilibrium
pressure gradient length in the tokamak edge to the one in the near SOL. Therefore,
we extend the analysis of Ch. 3, carried out in the tokamak edge, to the near SOL. We
derive a theory-based scaling law for the pressure and density decay length in the near
SOL that is written in terms of engineering parameters and successfully validated against
experimental measurements taken from a multi-machine database of divertor heat flux
profiles at the outer target.

In addition, turbulent transport in the far SOL is analyzed and a theory-based scaling of
the density and pressure decay length in this region is derived. The theoretical predictions
of the far SOL pressure decay length are then compared to simulation results and to
experimental measurements in TCV L-mode discharges.

The main results of this chapter have been recently published in Ref. [74].

4.1 Introduction

Understanding the mechanisms that regulate turbulent transport in the SOL and pre-
dicting the SOL power decay length is of fundamental importance to determine the
operational window for a divertor solution compatible with a good core confinement.
This is true for ITER where the limit of 10 MW/m2 on the peak heat flux at the target
plate imposed by materials [121, 164] is expected to be exceeded without high volumetric
power radiation in the SOL and partial divertor detachment [32, 52, 49, 117, 135] and,
even more, for all future high-performance fusion devices.

As observed experimentally (see, e.g., Refs. [21, 28, 107, 111, 184]), the SOL presents two
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density and power decay lengths; a shorter one in the near SOL and a longer one in the
far SOL, which is the result of different turbulence dynamics in these two regions. Indeed,
as experimentally shown, e.g. in Refs. [67, 243], turbulence dynamics is wave-like in the
near SOL and intermittent in the far SOL.

Significant experimental efforts were made in the past few years to derive experimental
scaling laws of the power fall-off length in the near SOL at the divertor plates in L-mode
diverted plasmas (see, e.g., Refs. [1, 93, 120, 193, 203]). Recently, a nonlinear regression
has been carried out on a set of power fall-off length measurements from a multi-machine
database including the Alcator C-Mod, COMPASS, EAST, JET and MAST tokamaks [93].
By combining five hundred L-mode outer and inner divertor heat flux profiles obtained by
Langmuir probes or IR camera, thirteen credible scaling laws were derived. A scaling law
in good agreement with the experimental data (describing R2 = 92% of data variation)
obtained by considering only outer divertor measurements is [93]

λq = 2800

(
a

R0

)1.03

f0.48
GW j

−0.35
p , (4.1)

where λq is the power fall-off length in units of mm, fGW is the Greenwald fraction, a
is the tokamak minor radius in m, R0 is the tokamak major radius in m, and jp is the
plasma current density in units of MA/m2.

In parallel to the experimental effort, recent theoretical and numerical studies based
on two-fluid models, justified by the high plasma collisionality in the plasma boundary,
have investigated the mechanisms that regulate the near SOL width in L-mode, leading
to analytical and numerical scaling laws of the SOL density and pressure gradient
lengths in both limited [59, 87, 88, 89] and diverted [10, 72, 143, 150] geometries. A direct
comparison of theoretical scaling laws to experimental data has been carried out in limited
geometry [89, 96, 87, 153], showing a good agreement with experimental measurements.
However, no in-depth comparison between first-principles theory-based scaling laws and
experimental data taken from a multi-machine database has been carried out in L-mode
diverted geometry.

While turbulence in the near SOL is characterized by a wave-like dynamics, turbulent
transport in the far SOL is dominated by intermittent events due to coherent plasma
filaments, also known as blobs [48]. Filaments extend along the parallel direction with
a cross section spatially localized on the poloidal plane and their associated density
fluctuations have an amplitude even larger than the background density. Filaments
originate near the LCFS as the result of the nonlinear saturation of interchange-like
instabilities, with the density fluctuations sheared apart by the E × B velocity and
detached from the main plasma [67, 48]. Then, the vertical charge separation inside
the filaments, caused by magnetic gradients and curvature drifts, generates a vertical
electric field that, in turns, gives rise to a radial E×B drift that transports filaments
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outwards, contributing significantly to the perpendicular transport in the far SOL,
flattening the density and pressure profile, and increasing the plasma-wall contact, as
experimentally observed in Ref. [22]. Plasma filaments have been experimentally studied
in tokamaks [12, 78, 108, 219, 223, 236], stellarators [190], reversed field pinch [210], and
basic plasma devices [3, 30, 67, 103].

An analytical theory, referred to as two-region model, based on considering separately
the divertor region and the upstream SOL region, has been proposed to describe the
propagation of filaments in the SOL. Four regimes of filament motion have been identified,
depending on the mechanism responsible for balancing the charge separation driven by
the magnetic curvature and gradient drifts [151]: the sheath connected regime (Cs),
where the curvature drive is balanced by the current flowing to the sheath; the ideal
interchange mode regime (Ci), where the ion polarization current due to fanning of the
flux surfaces in the divertor region damps the charge separation; the resistive ballooning
regime (RB), where the damping of upstream ion polarization current dominates; and the
resistive X-point regime (RX), where the parallel current flowing between the upstream
and divertor regions is the key damping mechanism. Each damping mechanism results
into a different dependence of filament velocity on filament size. The two key parameters
that determine the filament regime are the collisionality parameter,

Λ =
νeiL

2
‖1

ρsΩceL‖2
, (4.2)

and the size parameter [151],

Θ =

(
ab
a∗

)5/2

, (4.3)

where νei is the electron to ion collision frequency, ρs = cs/Ωci is the ion sound Larmor
radius, with cs =

√
Te/mi the sound speed and Ωci = eB/mi the ion cyclotron frequency,

L‖1 is the parallel connection length from upstream to the divertor region entrance, L‖2
is the parallel connection length from the divertor region entrance to the target plate,
Ωce = eB/me is the electron cyclotron frequency, ab is the filament size in the poloidal
plane, and a∗ is the reference filament size introduced in Ref. [244] and then redefined in
Ref. [159] taking into account effects described by the two-region model,

a∗ = ρs

(
2L2
‖2

ρsR0

nb
n′

)1/5

, (4.4)

with nb the average of the filament density and n′ the density at the near-to-far SOL
interface. The two-region model for filament motion has been extensively validated
against experimental results (see, e.g., [7, 221, 223]) and verified through numerical
simulations. These include recent numerical nonlinear two-dimensional [15, 142], three-
dimensional single-seed filament [47, 200], as well as three-dimensional self-consistently
generated filament simulations in realistic geometry [10, 152, 159], which have shown a
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good agreement with the two-region model, also in H-mode plasmas [37]. Moreover, the
work carried out in Ref. [10] in double-null geometry has shown that the far SOL density
decay length can be described as the result of the transport associated to filaments, whose
velocity is described by using the two-region model.

The considerations reported in the present chapter are based on the physical model
considered in Ch. 3, namely we consider the GBS model described in Ch. 2 in the
electrostatic limit, we neglect the coupling to the neutral dynamics and we make use
of the Boussinesq approximation. Following an overview of the simulation results in
Sec. 4.2, the analysis described in Ch. 3 for the tokamak edge is extended to the SOL.
A theory-based scaling law of the pressure and density decay length in the near and far
SOL, written in terms of engineering parameters, are derived in Sec. 4.3. In Sec. 4.4, the
theoretical predictions from the pressure decay length scaling in the near SOL are then
compared to experimental measurements of the power decay length at the outer divertor
plate taken from a multi-machine database of L-mode discharges in attached conditions
and the pressure decay length in the far SOL is compared to experimental measurements
from TCV L-mode discharges. The conclusions follow in Sec. 4.5.

4.2 Simulation results: turbulence in the near and far SOL

We focus here on the set of simulations in the L-mode turbulent transport regime described
in Ch. 3. These simulations are carried out with the following parameters: ρ−1

∗ = 500,
a/R0 ' 0.3, τ = 1, η0e = 5×10−3, η0i = 1, χ‖e = χ‖i = 1, Df = 6 for all fields, LR = 600,
LZ = 800, sn0 = 0.3, ∆n = 800, ∆T = 720, and different values of sT0 (see Eq. (2.85))
and ν0 (see Eq. (2.99)), with both favorable and unfavorable ion-∇B drift directions
being considered. The magnetic equilibrium, described in Ch. 3, is analytically obtained
by solving the Biot-Savart law in the infinite aspect-ratio limit for a current density with
a Gaussian distribution centered at the tokamak magnetic axis, which mimics the plasma
current, and an additional current filament outside the simulation domain to produce the
X-point. The value of the plasma current and the width of its Gaussian distribution are
chosen to have a safety factor q0 ' 1 at the tokamak axis and q95 ' 4 at the tokamak
edge. The simulation results are analyzed when they reach a global turbulent quasi-steady
state resulting from the interplay between the sources in the closed flux surface region,
turbulence, which transports plasma and heat from the core to the SOL, and the losses
at the vessel. Similarly to Ch. 3, we refer to the equilibrium of any quantity f as its
time and toroidal average during the quasi-steady state, f̄ = 〈f〉ϕ,t, and to its fluctuating
component as f̃ = f − f̄ .

An example of typical simulation results is shown in Fig. 3.3, where the equilibrium
density, the normalized standard deviation and the skewness of density fluctuations in the
plasma boundary is shown for the simulation with sT0=0.15 and ν0=0.6. Since in this
chapter we focus on the SOL turbulence, the core region in Fig. 3.3 is not shown. The
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(a) (b) (c)

Figure 4.1 – Equilibrium density, n̄, (a), normalized standard deviation, σn, (b) and
skewness, µn, (c) of density fluctuations at the plasma boundary for the simulation with
sT0=0.15 and ν0=0.6. In order to improve the visualisation in the plasma boundary,
avoiding the saturation of the colorbar, the core region is not shown. The white line
represents the separatrix.

normalized standard deviation of the density fluctuations peaks on the LFS and remains
relatively large throughout the entire LFS SOL, as expected from turbulent transport
being driven by ballooning modes. The near and far SOL is characterized by large
fluctuations with amplitude comparable to the equilibrium quantity, as experimentally
observed in Refs. [18, 95, 109, 111]. The skewness is small in the LFS of the near SOL,
suggesting wave-like turbulence, and increases in the far SOL, hinting at the presence of
intermittent turbulent events. A snapshot of the normalized density fluctuations for the
same simulation (see Fig. 4.2 (a)) shows that density fluctuations mainly develop across
the separatrix, forming eddies that extend in the radial direction and detach from the
main plasma. Detached eddies give rise to filaments that radially propagate in the far
SOL and are ultimately responsible for its intermittent nature. Therefore, turbulence in
the far SOL arises from the steep pressure and density gradients across the separatrix
and not from the local equilibrium pressure and density profiles. The different nature of
plasma turbulence in the near and far SOL, namely the highly intermittent and non-local
character of turbulence in the far SOL in contrast to wave-like turbulence dynamics in
the near SOL, is highlighted in Fig. 4.2 (b), where two typical time traces of the density
in the near and far SOL are shown.

As a consequence of the different transport mechanisms taking place in the near and
far SOL, density and pressure show a different decay length in these two regions. Two
distinct exponential decay lengths have been observed also in experiments (see, e.g.,
Refs. [28, 107]) as well as in other fluid simulations (see, e.g., Refs. [10, 62]). An example
from one of our simulations is shown in Fig. 4.3, where the equilibrium pressure and
density radial profiles at the outer midplane are fitted by assuming only one or two
distinct exponential decay lengths. One exponential overestimates the decay length in
the near SOL and underestimates the one in the far SOL. On the other hand, the fit
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Figure 4.2 – Typical snapshot of normalized density fluctuations on a poloidal plane (a)
and typical time traces of the density in the near and far SOL (b) for the simulation with
sT0=0.15 and ν0=0.6. The position where the time traces are extracted is indicated by a
black cross.

based on two distinct exponential decay lengths agrees well with the equilibrium pressure
and density radial profiles on the entire plasma boundary. We note that, as revealed by
the fit based on two exponential functions, the decay lengths of density and pressure in
the near SOL match the ones in the tokamak edge inside the LCFS, in agreement with
experimental observations that show the presence of one characteristic pressure decay
length across the separatrix [216]. Since the position of the near-to-far SOL interface
depends on ν0, in agreement with experimental observations [111, 145, 109], the fitting
regions in Fig. 4.3 are properly chosen by identifying the near and far SOL in all the
simulations and excluding the transition between these.

Fig. 4.4 shows the near and far SOL pressure (density) decay lengths, denoted as Lp,GBS

(Ln,GBS) and L′p,GBS (L′n,GBS), respectively, for the set of GBS simulations considered here.
The near SOL pressure gradient length increases as the collisionality increases or the heat
source decreases. In fact, as outlined in Ch. 3, the effective turbulent diffusion coefficient
associated to resistive ballooning turbulent transport increases with collisionality and,
therefore, for the same value of the input power (i.e. sT0), the pressure gradient decreases
as ν0 increases. The far SOL pressure decay length shows a weak dependence on the heat
source and collisionality, especially for high values of collisionality and heat source where
L′p seems to saturate. Similar conclusions can be drawn for the near and far SOL density
decay lengths.
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Figure 4.3 – Radial profile of the equilibrium electron pressure, p̄e, (a) and density, n̄,
(b) at the outer midplane (black dots) for the simulation with sT0 = 0.075 and ν0 = 0.2,
and overposed the exponential fits based on one (blue line) or two (red lines) exponential
decay lengths. The vertical dashed black line denotes the position of the separatrix.

4.3 Theoretical derivation of the near and far SOL decay
lengths

We now estimate the near and far SOL pressure and density decay lengths and we express
them in terms of engineering parameters. Since density and pressure scale lengths in
the near SOL correspond to the ones in the edge, we rely on the results of Ch. 3. In
addition, turbulent transport in the far SOL is studied by means of a pattern-recognition
algorithm for filament detection/tracking that is applied to the results of GBS simulations.
Based on a balance between perpendicular transport due to filament motion and parallel
transport in the far SOL, theoretical estimates of the density and pressure decay lengths
are derived in this region and compared to simulation results.

4.3.1 Near SOL decay length

Fig. 4.3 shows that the equilibrium pressure profile exhibits one decay length across the
separatrix. Therefore, the estimate of Lp in the developed transport regime of Ch. 3
(see Eq. (3.30)) can be applied to the near SOL. This is confirmed by Fig. 4.5 that
shows a good agreement between the analytical estimate of Lp, given by Eq. (3.30), and
the pressure decay length in the near SOL obtained from GBS simulations. A strong
connection between confined edge and near SOL physics has been also experimentally
observed in Refs. [24, 54, 204] across various confinement regimes. The equilibrium density
gradient length in the near SOL can be directly obtained from Eq. (3.30) and the relation
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(b) Pressure decay length in the far SOL.
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(c) Density decay length in the near SOL.
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Figure 4.4 – Near and far SOL pressure ((a) and (b)) and density ((c) and (d)) decay
lengths, normalised to ρs0, obtained from GBS simulations at the various values of sT0

and ν0 considered in this work with the ion-∇B drift pointing upwards. Comparable
values are obtained for the simulations with downwards ion-∇B drift direction. The
numerical value of the equilibrium gradient length is reported next to the data points.
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Figure 4.5 – Comparison between the analytical estimates of the near SOL pressure (a)
and density (b) decay lengths and the corresponding ones obtained from GBS simulations.

Ln ' (1 + ηe)Lp, leading to

Ln ∼ (1 + ηe)

[
1

8

(
1 +

ηe
2(1 + ηe)

)8

ρ3
∗ν

6
0q

12L12
χ n̄

10S−4
p

]1/17

, (4.5)

where ηe = Ln/LTe ' 0.77 [174].

We now extend the results of Ch. 3 by expressing Lp in terms of engineering parameters,
such as the power entering into the SOL, PSOL, the tokamak major and minor radius, R0

and a, and the toroidal magnetic field, BT . This facilitates the comparison to experimental
results and the applicability of Eq. (3.30) to tokamak operation. Therefore, we substitute
Sp ' PSOL/(2πR0), Lχ ' 2πa

√
(1 + κ2)/2 and ν0, Eq. (2.99), into Eq. (3.30) and we

express all the quantities in physical units. This leads to

Lp ' 5.6A1/17q12/17R
7/17
0 P

−4/17
SOL a12/17(1 + κ2)6/17n10/17B

−12/17
T , (4.6)

where Lp is in units of mm, A is the mass number of the main plasma ions, R0 and a are
in units of m, PSOL is in units of MW, ne is the density at the LCFS in units of 1019 m−3,
and BT is in units of T.

We note that the theoretical scaling in Eq. (4.6) depends on q, PSOL and BT with
exponents that are comparable to the ones of the experimental scaling law derived in
Ref. [203] from a nonlinear regression performed on λq measurements of L-mode ASDEX
discharges. This nonlinear regression has been carried out by considering the same fitting
quantities as the ones considered in the H-mode scaling of Ref. [52], providing a link
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between the L-mode and the H-mode scaling laws. In particular, we note that, combining
the dependence on q and BT , the theoretical scaling law of Eq. (4.6) inversely depends
on the poloidal magnetic field, a feature shared with the heuristic drift-based H-mode
scaling law derived in Ref. [77].

It is also interesting to analyze the analogies and differences between the theoretical
scaling law of Eq. (4.6) to the empirical scaling in Eq. (4.1), which is derived from a
nonlinear regression of experimental results. For this purpose, Eq. (4.6) is written in
terms of the Greenwald fraction fGW and of the current density jp,

Lp ' 8.2A0.06

(
n

〈n〉

)0.59

R−0.06
0

(
a

R0

)0.47

(1 + κ2)0.98κ−0.12j−0.12
p

(
PSOL

SLCFS

)−0.24

f0.59
GW ,

(4.7)
where n/〈n〉 is the ratio of the edge density to the line-averaged density that appears from
the definition of fGW and SLCFS ' 4π2aR0

√
(1 + κ2)/2 is the area of the LCFS. We note

that the theoretical Lp increases with the aspect ratio and the Greenwald fraction and
decreases with the plasma current density, with exponents that are comparable to the
experimental ones (see Eq. (4.1)). According to the theoretical scaling, Lp decreases with
PSOL/SLCFS, a dependence that is not present in the experimental scaling of Eq. (4.1),
although a similar dependence on PSOL/SLCFS has been retrieved in other credible
experimental scaling laws derived from the same database in Ref. [93]. No dependence
on A is found in the experimental scaling of Eq. (4.1), in agreement with our theoretical
scaling that, in fact, depends very weakly on A.

4.3.2 Far SOL decay length

In order to characterize the turbulence dynamics in the far SOL of our simulations, a
pattern-recognition algorithm for filament detection/tracking, described in Refs. [152, 159],
is applied to the GBS simulations considered in the present chapter. This allows us
to determine the filament size, velocity and the collisionality parameter as well as to
identify the filament regime according to these parameters. A typical dispersion plot
of the averaged collisionality parameter Λ, Eq. (4.2), and size parameter Θ, Eq. (4.3),
of each detected filament in the simulation with sT0 = 0.15 and ν0 = 0.6 is shown in
Fig. 4.6 (a). The dashed lines delimit the four regimes of filament motion [151]. We
note that filaments belong to the RX and RB regimes, a feature in common with all the
simulations considered here. We restrict therefore our analysis to the RX and RB regimes.
In Fig. 4.6 (b), the averaged normalized velocity v̂ = vb/v∗ of each filament, with

v∗ = cs

[
2

(
πaψ
aχ

)2
nb
n̄′
ρ2
sL‖2ρ

2
∗

]1/5

(4.8)
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Figure 4.6 – Dispersion plot in the phase space (Λ,Θ) of detected filaments in the
simulation with sT0 = 0.15 and ν0 = 0.6 (a). Black dashed lines are used to delimit the
four regimes. Normalized filament velocity as a function of filament size of each detected
filament in the same simulation (b). The dashed black line represents the velocity scaling
predicted by the two-region model in the RB regime (Θ < Λ), while the dashed red line
the one in the RX regime (Θ > Λ) [151]. All quantities are obtained by averaging over
the filament life.

being the reference filament velocity (see Ref. [159]), is displayed for the same simulation
as a function of the normalized size, â = ab/a∗. In Eq. (4.8), aψ and aχ denote the average
size of filaments along the ∇ψ and ∇χ direction, respectively. The normalized filament
velocities are mainly scattered between zero and a maximum velocity that varies as a
function of size and collisionality, in agreement with the analytical normalized velocity
predicted by the two-region model [151]. This numerical result agrees with experimental
observations that show that the theoretical predictions constitute an upper bound for the
filament velocities [223]. Indeed, some mechanisms responsible for decreasing the radial
filament velocity, such as the filament-filament interaction and the filament rotation, are
not included in the two-region model of Ref. [151].

Since filament dynamics is responsible of the far SOL pressure and density transport, as
shown in Ref. [10], we derive an analytical estimate of the equilibrium pressure decay
length in the far SOL by balancing the perpendicular transport due to filament motion
with parallel heat transport. For this purpose, we take the sum of Eq. (2.88), multiplied
by Te, and Eq. (2.92), multiplied by n. Then, by time and toroidal averaging the resulting
equation, we obtain

ρ−1
∗ ∂ψ q̄b,ψ +∇‖(p̄ev̄‖e) +

2

3
1.71p̄e∇‖v̄‖e +

2

3
0.71T̄ev̄‖e∇‖n̄ ' 0 . (4.9)

In Eq. (4.9), we identify the perpendicular heat transport with the one mediated by
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filaments, q̄b,ψ. By assuming that the electron parallel velocity is of the order of cs, and
approximating ∂ψ ∼ 1/L′p and ∇‖ ∼ 1/L‖, Eq. (4.9) yields

ρ−1
∗
q̄′b,ψ
L′p
' C p̄

′
ec̄
′
s

L‖
, (4.10)

where C = 1 + 1.71 (2/3) + 0.71 (2/3) ' 2.6. In Eq. (4.10), the prime symbol appearing
in p̄′e, c̄′s, and q̄′b,ψ denotes that these quantities are evaluated at the near-far SOL
interface [10, 159]. We note that Eq. (4.10) only holds in case of negligible variation of
electron temperature along the magnetic field lines, which is the case of the low-recycling
regime considered here. The far SOL pressure decay length can then be obtained from
Eq. (4.10),

L′p ∼
ρ−1
∗
C

q̄′b,ψL‖

p̄′ec̄
′
s

, (4.11)

which relates L′p to the perpendicular heat flux associated to the filament motion.

In order to estimate q̄′b,ψ, we assume that a filament can be described on the poloidal
plane as a coherent structure with Gaussian peak pressure pb,i and half width at half
maximum aψ,i, along the ∇ψ direction, and aχ,i, along the ∇χ direction (i is the index
identifying the i-th filament). The heat flux associated to the filament motion can be
estimated by multiplying the pressure associated with a filament and the filament center
of mass radial velocity, vb,i, and summing over all the filaments. We obtain

q′b,ψ(ψ, χ) ∼
∑
i

pb,ivb,i exp

(
−

(ψ − ψb,i)2

(2aψ,i)2
−

(χ− χb,i)2

(2aχ,i)2

)
, (4.12)

where ψ and χ denote coordinate variations along ∇ψ and ∇χ, and (ψb,i, χb,i) are the
i-th filament center of mass coordinates. An estimate of the heat flux due to filament
transport is then obtained by averaging qb,i over time and over the LFS SOL area [185],

q̄′b,ψ =

〈
1

ASOL

∫
ASOL

qb(ψ, χ)dψdχ

〉
t

=
2π

ASOL log 2

∑
i

〈aψ,iaχ,ipb,ivb,i〉t , (4.13)

where ASOL represents the total far SOL area. We note that poloidal variations of the
filament size and velocity are present in our simulations, in agreement with experimental
observations [165, 113]. By neglecting possible correlation between filaments [144] and
defining Nb as the average number of filaments such that the averaged peak pressure is
given by pb ∼

∑
i〈pb,i〉t/Nb, Eq. (4.13) can be approximated as

q̄′b,ψ ∼
2

log 2
fbpbvb , (4.14)

where fb = Nbπaψaχ/ASOL is the blob packing fraction.
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In order to make further progress, since filament and background pressure are both
progressively drained by the parallel heat flow as moving radially through the far SOL, we
assume that the filament peak-to-background pressure ratio remains constant. In Ref. [10],
the density fluctuations in the far SOL were assumed to be three times larger than in the
near SOL to account for turbulent transport being mainly due to large filaments. Here,
as an order of magnitude estimate, we consider that pressure fluctuations in the near and
far SOL have similar values, leading to

pb
p̄′e
∼ p̃e
p̄e
∼ 1

Lpkψ
. (4.15)

The peak filament pressure at the near-far SOL interface can then be obtained,

pb ∼
p̄′e

Lpkψ
. (4.16)

The blob packing fraction is estimated from the average filament number by balancing the
filament generation and loss rates. As filaments are generated by the nonlinear development
of the ballooning instability appearing across the LCFS, the filament generation rate
Rb,gen is given by the ballooning mode wavenumber along the LCFS, Lχkχ/(2π), divided
by the filament generation time, which can be approximated by the time that a streamer
takes to travel its own extension, i.e. 4aψ/vb. We obtain

Rb,gen ∼
Lχkχkψvb

4π2
. (4.17)

The filament loss rate Rb,loss is given by the average filament number on a poloidal plane
divided by the time that a filament takes to cross the radial domain,

Rb,loss ∼
Nbvb
Lψ

. (4.18)

The average filament number is then obtained by equating Eqs. (4.17) and (4.18),

Nb ∼
ASOLkχkψ

4π2
, (4.19)

where ASOL ' LχLψ. By using Eq. (4.19), the blob packing fraction becomes

fb ∼ π/16 , (4.20)

where we consider aψ ∼ π/(2kψ) and aχ ∼ π/(2kχ). In all the simulations considered
here, the value of fb is of the order of 0.1 and approximately constant, in agreement
with Eq. (4.20) which predicts that fb is independent of SOL parameters, a feature
also observed in experiments [27]. We note that the same estimate for fb is derived in
double-null geometry in Ref. [10].
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The last quantity to estimate in Eq. (4.14) is the filament velocity, vb = v̂v∗, where
the normalized filament velocity v̂ depends on the filament motion regime. From the
two-region model (see Refs. [151, 159] for details), we estimate

v̂RB ∼ â1/2 (4.21)

in the RB regime, and
v̂RX ∼ Λâ−2 (4.22)

in the RX regime, with

ab '
(

2

π
aχ

)4/5

a
1/5
ψ (4.23)

and
Λ = νn̄′

L‖1

csL‖2
. (4.24)

By replacing the analytical estimates of pb, vb, and Lp in Eq. (4.14), the far SOL pressure
decay length of Eq. (4.11) becomes

L′p,RX ∼
2148/85

C log 2

(
1 +

ηe
2(1 + ηe)

)−32/85

(1 + ηe)
−3/5

fbn̄
9/17ν

27/85
0 L‖L

2
‖1

q116/85L
14/85
χ S

18/85
p ρ

63/85
∗

(4.25)

in the RX regime and

L′p,RB ∼
2211/170√π
C log 2

(
1 +

ηe
2(1 + ηe)

)−32/85

(1 + ηe)
−1/10 fbn̄

9/17q54/85ν
27/85
0 L‖

S
18/85
p L

14/85
χ ρ

63/85
∗

(4.26)

in the RB regime, where we approximate n̄′ and T̄ ′e with n̄ and T̄e at the LCFS, with T̄e
being given by Eq. (3.29). This approximation is justified by the weak dependence of the
ratio q̄′b,ψ/(p̄

′
ec̄
′
s) ∝ vb/c̄′s, appearing in Eq. (4.11), on the radial position of the near-to-far

SOL interface.

The equilibrium density decay length in the far SOL can be obtained by following the
same procedure described above for the pressure decay length. The perpendicular particle
flux due to filament motion, Γb,ψ, is balanced to the parallel particle transport and,
considering the leading order terms in Eq. (2.88), this leads to

ρ−1
∗ ∂ψΓ̄b,ψ +∇‖(n̄v̄‖e) ' 0 , (4.27)

and we obtain

L′n ∼ ρ−1
∗

Γ̄′b,ψL‖

n̄′c̄′s
, (4.28)

where
Γ̄′b,ψ ∼

2

log 2
nbfbvb , (4.29)
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Figure 4.7 – Comparison between the analytical estimates of the far SOL pressure (a) and
density (b) decay lengths and the corresponding ones obtained from GBS simulations. The
comparison is carried out by numerically solving a filament dispersion relation that links
the filament velocity to the filament size (see Ref. [159] for details), without considering
the limit Λ� Θ or Λ� Θ.

with nb ∼ n̄′/(Lnkψ). The far SOL density decay length is then obtained by replacing in
Eq. (4.29) the analytical estimates of nb, vb, Lp and Ln, leading to

L′n,RX ∼
2148/85

log 2

(
1 +

ηe
2(1 + ηe)

)−32/85

(1 + ηe)
−8/5

fbn̄
9/17ν

27/85
0 L‖L

2
‖1

q116/85L
14/85
χ S

18/85
p ρ

81/85
∗

, (4.30)

in the RX regime, and to

L′n,RB ∼
2211/170√π

log 2

(
1 +

ηe
2(1 + ηe)

)−32/85

(1 + ηe)
−11/10 fbn̄

9/17q54/85ν
27/85
0 L‖

S
18/85
p L

14/85
χ ρ

81/85
∗

, (4.31)

in the RB regime.

Fig. 4.7 shows a comparison between the analytical prediction of the far SOL pressure
and density decay lengths and the numerical results obtained from GBS simulations. This
comparison is carried out by numerically solving a filament dispersion relation that links
the filament velocity to the filament size (see Ref. [159] for details), without considering
the limit Λ� Θ or Λ� Θ. The agreement is good for the pressure and density decay
lengths, with differences between theoretical and simulation results of the order of 20%
for the pressure decay length, while the difference can be of 40% for the density decay
length.
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Similarly to the near SOL decay length, the far SOL pressure decay lengths for the
RB and RX regimes can be written in terms of engineering parameters by replacing
Sp ∼ PSOL/(2πR0), Lχ ' 2πa

√
(1 + κ2)/2 and ν0, Eq. (2.99), into Eqs. (4.25) and (4.26).

In physical units, this leads to

L′p,RX ' 3.5fbq
−1.36R−1.73

0 L‖L
2
‖1P

−0.21
SOL a−0.16(1 + κ2)−0.08n0.52A0.05B−0.64

T (4.32)

and

L′p,RB ' 6.1fbq
0.64R0.27

0 L‖P
−0.21
SOL a−0.16(1 + κ2)−0.08n0.52A0.05B−0.64

T , (4.33)

where L′p,RX and L′p,RB are here in units of mm, R0 and a are the tokamak major and
minor radii in units of m, L‖ is the parallel connection length from upstream to the outer
target plate in units of m, L‖1 is the parallel connection length from upstream to the
divertor region entrance in units of m, n is the density at LCFS in units of 1019 m−3,
PSOL is the power entering into the SOL in units of MW, and BT is the toroidal magnetic
field at the magnetic axis in units of T.

4.4 Validation of the theoretical scaling laws

We present here the validation of the near and far SOL pressure decay length scaling laws
derived in Sec. 4.3. The experimental results used for the validation are taken from a
multi-machine database of discharges carried out in Alcator C-Mod, COMPASS, JET,
MAST and TCV tokamaks.

4.4.1 Near SOL validation

In order to validate the near SOL pressure decay length derived in Sec. 4.3 against
experimental data, we consider the multi-machine database of Ref. [93] that contains
a set of power fall-off lengths obtained from a nonlinear regression of measurements of
divertor heat flux profiles in attached conditions with probes or infrared (IR) cameras on
different tokamaks. Both favorable and unfavorable ion-∇B drift directions are considered.
We restrict our comparison to the outer target, considering data from Alcator C-Mod,
COMPASS, JET and MAST tokamaks. We extend this database by including the TCV
λq measurements in attached conditions presented in Ref. [136]. These values are obtained
from heat flux profile measurements at the TCV outer target by using an IR camera.

In order to relate the analytical scaling of Lp at the outboard midplane with λq experi-
mentally measured at the outer target, we first report λq upstream accounting for the flux
expansion. We also assume that, being the considered discharges in attached conditions,
the pressure gradient along the magnetic field lines can be neglected. This allows for a
direct comparison between Lp in Eq. (4.6) and the experimental λq, i.e. λq ∝ Lp, where
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Figure 4.8 – Comparison of the theoretical scaling law of Eq. (4.6) to experimental values
of λq taken from the multi-machine database of Ref. [93] extended including TCV data
from Ref. [136]. The dashed black line represents the best fit λq = αLp with α the unique
fitting parameter.

the proportionality factor is determined from the best fit of experimental and theoretical
results, similarly to the procedure outlined in Ref. [87]. Since only the line-averaged
density 〈n〉 is available in the considered database, we assume the edge density contained
in the analytical scaling to be proportional to the line-averaged density, n ∝ 〈n〉, where
the proportionality factor is included in the unique fitting parameter. This assumption
is supported by experimental observations that show the presence of an almost linear
proportionality between n and 〈n〉 in low-density discharges (see, e.g., Ref. [1]). The
quality of the fit is then expressed through the R2 parameter.

The result of the fitting procedure is shown in Fig. 4.8. The theoretical scaling reproduces
experimental data with a very high goodness parameter, R2 ' 0.85. We highlight that the
value of R2 obtained from the comparison between the theoretical scaling and experimental
data is even higher than some of the most credible scaling laws derived in Ref. [93] from
a direct nonlinear regression of experimental results. In fact, as extensively discussed
in Refs. [93, 94], the number of parameters that can be included in a scaling based on
the direct nonlinear regression of experimental measurements is limited by their mutual
correlation. For instance, a very strong correlation is found between R0 and PSOL/V [94],
with the consequence that including both of them in the nonlinear regression leads to
an ambiguity on their exponent. The mutual correlation between experimental input
parameters limits the use of nonlinear regressions to find scaling laws directly from
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experimental databases, a limitation that is overcome by theory-based first-principles
scaling laws, such as the one derived in the present work.

The proportionality constant returned by the fit is approximately 0.2. We note that this
constant includes both the proportionality factor between λq and λp (we use here λp to
refer to the experimental value of the pressure decay length, while Lp is used for the
theoretical prediction of Eq. (4.6)) and the one between n and 〈n〉. By assuming that pe
and Te decay exponentially in the SOL on the λp and λT ∼ 2λp scales, respectively, the
power fall-off length can be written as

λq ∼

(
1

λp
+

1

2λT

)−1

∼ 4

5
λp . (4.34)

Moreover, from the experimental results shown in Ref. [1], we assume n̄ ∼ 4〈n〉, thus
leading to

λq
Lp
∼ λq
λp

(
ne
n̄e

)10/17

∼ 4

5

(
1

4

)10/17

∼ 0.3 , (4.35)

which is close to the proportionality factor returned by the best fit.

Despite the very high value of R2, we note a dispersion of the experimental measurements
around the best fit in Fig. 4.5. This may suggest incomplete or missing dependencies
in the theoretical scaling law of Eq. (4.6). In particular, our theoretical scaling law
does not include the effect of plasma triangularity, which has been studied with GBS in
Refs. [177, 179] for a limited configuration, showing that the near SOL width is enhanced
(reduced) by positive (negative) values of triangularity, in agreement with experimental
observations [55]. In addition, interchange-like turbulence, which can develop along the
divertor leg, can increase the power fall-off length at the target plate [69]. This may be
especially the case in TCV, where magnetic configurations with a long outer divertor leg
are considered. This effect is not included in the present model.

The theoretical scaling of Eq. (4.6) with the proportionality constant given by the fitting
procedure can be used to predict the SOL width for future tokamaks, such as ITER,
COMPASS Upgrade, JT-60SA, and DTT. Considering the baseline scenario just before
the L-H transition, we obtain λq,th ' 3.5 mm for ITER (R0 = 6.2 m, a = 2 m, q = 2,
PSOL = 18 MW, κ = 1.4, n̄e = 4 · 1019 m−3, and BT = 5.3 T [4]), λq,th ' 1.8 mm for
COMPASS Upgrade (R0 = 0.89 m, a = 0.27 m, q = 2.6, PSOL = 3.7 MW, κ = 1.8,
n̄e = 2 · 1020 m−3, and BT = 5.0 T [158]), λq,th ' 7.1 mm for JT-60SA (R0 = 2.9 m,
a = 1.2 m, q = 3, PSOL = 10 MW, κ = 1.9, n̄e = 6.3 · 1019 m−3, and BT = 2.3 T [76]),
and λq,th ' 3.0 mm for DTT (R0 = 2.1 m, a = 0.6 m, q = 3, PSOL = 15 MW, κ = 1.7,
n̄e = 1.8 ·1020 m−3, and BT = 6.0 T [39]). The theoretical value of λq for ITER L-mode is
within the range of values predicted by the experimental scaling laws derived in Ref. [93].
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Figure 4.9 – Comparison of the theoretical scaling law of Eq. (4.33) to experimental
values of pressure decay length measured with a fast reciprocating probe at the outboard
midplane of TCV L-mode discharges in conduction regime. Experimental data are taken
from Ref. [223]. The dashed black line represents the best fit λ′p,exp = αL′p,RB with α the
unique fitting parameter.

4.4.2 Far SOL validation

The absence of a multi-machine database or experimental scaling laws for the pressure
decay length in the far SOL strongly limits the possibility to carry out a complete
validation of our theoretical scaling. As a preliminary comparison with experimental data,
we consider a set of measurements of the far SOL decay length taken at the outboard
midplane of TCV L-mode discharges in lower single-null configuration by using a fast
reciprocating probe [19]. Experimental far SOL decay lengths are measured at fixed
BT = 1.4 T, in both reversed and forward magnetic field direction, at various values of
density, plasma current, and connection length. A detailed description of the considered
database as well as of the experimental setup are reported in Refs. [223, 228]. The result
of the comparison is shown in Fig. 4.9.

There are two main difficulties that affect the fitting of the experimental pressure profiles
to derive the far SOL experimental pressure decay length. First, in low-density discharges,
the transition between the near and far SOL appears to be very close to the LFS tokamak
wall, thus making it difficult to clearly distinguish its position and reducing the numbers
of data points available for the fit of the far SOL pressure profile. In fact, as shown in
Refs. [109, 111, 145], the position of the near-far SOL interface depends on the density
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and moves towards the first wall as the density decreases. Therefore, an exponential
function with a value of decay length close to the one in the near SOL is able to fit
the entire experimental profile and the fit with two exponential functions returns near
and far decay lengths that are very similar. The discharges that allow a more precise
analysis of the far SOL decay length are at high density, in the conduction regime with
the presence of significant electron temperature variation along the parallel direction,
which questions the applicability of the present model, in particular for the absence of
the neutral-plasma interaction processes that might affect the far SOL, as experimentally
observed in Refs. [227, 242]. For the comparison of the far SOL decay length presented
in Fig. 4.9, we choose to exclude the discharges that do not allow a clear identification of
the near and far SOL and consider high-density discharges, despite the questions on the
applicability of this model.

The second difficulty emerges when fitting experimental data at high value of λ′q. In fact,
a small variation of the fitting range produces a large variation of λ′q. This is reflected
on large experimental uncertainties that prevent us from an accurate comparison with
the theoretical prediction and potentially hide some dependencies. In fact, as shown by
the error propagation, the relative uncertainties of λ′p,exp inversely depend on the radial
derivative of the pressure profile, meaning that a particularly flat radial pressure profile
leads to large uncertainties of λ′p,exp.

The subset of the database considered for this comparison includes discharges that are
mainly in the RB regime [223] and hence we fit experimental data by using the theoretical
RB scaling law in Eq. (4.33) with the unique fitting parameter being the proportionality
constant between experimental measurements and Lp,RB. The quality of the fit is then
expressed through the R2 parameter. As shown in Fig. 4.9, there is a very weak correlation
between theoretical predictions and experimental data, being R2 only slightly positive.

This preliminary analysis prompts for the need for further investigations in high-recycling
conditions, possibly including data from multiple tokamaks and diagnostics. In fact,
recent GBS simulations with the self-consistent evolution of the plasma and neutral
dynamics in diverted geometry have shown that the neutral dynamics can significantly
affect the far SOL parallel transport by decreasing [129], an effect that should be taken
into account in the derivation of the far SOL pressure decay length.

4.5 Conclusions

In the present chapter, a theoretical scaling of the pressure and density decay lengths in
the near SOL of L-mode diverted plasma discharges valid in low-recycling conditions is
analytically derived by balancing the heat source in the core region, the perpendicular
heat flux crossing the separatrix, and the parallel losses at the vessel walls. Similarly, by
balancing the perpendicular turbulent transport due to plasma filament motion and the

104



Theory-based scaling of L-mode near and far SOL decay lengths Chapter 4

parallel flow, an analytical scaling for the far SOL pressure and density exponential decay
lengths is analytically derived in the RB and RX filament regimes.

The theoretical scaling laws for pressure and density decay lengths in the near and far
SOL are then compared to GBS results. In the near SOL, there is a good agreement
between theoretical and numerical results, with a difference between simulation results and
theoretical predictions below 20%. The theoretical estimates of the far SOL pressure and
density decay lengths in RB and RX regimes agree with simulation results within an error
of 20 % for the pressure and 40 % for the density, pointing out that the model considered
here contains the main physics, although the dispersion of simulation results around the
analytical prediction suggests the need of future investigations with a more accurate
model for the filament velocity, which accounts for the filament-filament interaction and
filament rotation.

The theoretical predictions of the near SOL pressure decay length are compared to
experimental measurements of the power fall-off length taken from a multi-machine
database, showing a remarkable good agreement that is reflected on the high value of
R2 ' 0.85. The theoretical scaling predicts a near SOL width for ITER L-mode plasma
of 3.5 mm, a value close to the one predicted by the empirical scaling laws derived in
Ref. [93].

Analogously, the theoretical scaling law of the far SOL pressure decay length in the RB
regime is compared to experimental measurements obtained from a fast reciprocating
probe located at the outboard midplane in TCV L-mode lower single-null discharges. This
preliminary comparison shows a very weak correlation between theoretical predictions
and experimental results (R2 ' 0.1). However, the presence of significant temperature
variation along the magnetic field lines in the far SOL observed experimentally for the
considered discharges and not included in the present work, the experimental difficulty
in identifying at low density the interface between near and far SOL, and the large
experimental uncertainties affecting measurements of long pressure decay lengths make
the present comparison not conclusive and call for further investigations in high-recycling
conditions and possibly including data from multiple tokamaks and diagnostics.
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5 Electromagnetic phase space of edge
turbulence and the density limit

In Ch. 3, a phase space of edge turbulence is presented based on electrostatic turbulence
simulations that make use of the Boussinesq approximation. These simulations reveal
the presence of a turbulent regime that can be associated to the crossing of the density
limit. However, the importance of electromagnetic effects in the density limit has been
pointed out in the past [50, 181, 182, 198]. This motivates the present chapter where
the transition to the regime associated to the crossing of the density limit is revisited
extending the results presented in Ch. 3 through the investigation of the effects of
electromagnetic perturbations and of the Boussinesq approximation on turbulence and
equilibrium profiles. The main parameters controlling turbulent transport in the tokamak
boundary are identified and used to delineate a phase space of edge turbulence, where
both the density and the β limits are reported. We show that the density limit can be
explained as the result of an enhanced turbulent transport in the tokamak boundary due
to a resistive electrostatic mode with negligible impact of the electromagnetic fluctuations.
This leads to the derivation of a theory-based scaling law of the maximum achievable
edge density in tokamaks. The theoretical predictions provided by this scaling agree well
with density limit measurements carried out in the ASDEX Upgrade (AUG), JET and
TCV tokamaks.

5.1 Introduction

The density limit imposes a maximum value of the plasma density that can be achieved in
magnetic fusion devices before the onset of MHD modes that lead to strong performance
degradation or even a plasma disruption. A widely used empirical scaling law of the
maximum density achievable in tokamaks has been proposed in 1988 by Greenwald [80],

nGW [1020m−3] =
Ip[MA]

πa[m]2
, (5.1)
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where nGW , known as Greenwald density, is the line-averaged density, Ip is the plasma
current and a is the tokamak minor radius.

Experimental observations indicate that the plasma cooling in the tokamak boundary
and the subsequent increase of the plasma edge collisionality is a strong factor limiting
the maximum achievable density in tokamaks, providing a strong link between density
limit and the edge collisionality [51, 61, 79, 92, 112, 197, 226]. Moreover, a Multifaceted
Asymmetric Radiation From the Edge (MARFE) is commonly observed when crossing
the density limit [66, 118, 119, 139]. Experiments also reveal that the Greenwald limit
can be significantly exceeded through pellet injection that mainly affects the core, and
only weakly, the edge density [11, 83], again underlining a key role played by the edge
physics. Experimental observations show that the density limit is in general preceded
by a collapse in the edge temperature that is followed by a temperature profile decrease
in the core region, leading to changes in the q profile and internal inductance [104, 191].
The change in internal inductance indicates a modified plasma current profile that is
susceptible to tearing modes and, finally, plasma disruption [70].

The density limit is often studied experimentally by increasing the gas flux and thus
plasma density until causing an intentional disruption, as shown in Fig. 5.1 for the JET
discharge #80823. The density increases until the onset of a MARFE, as identified by a
strong increase in the radiation intensity in the region above the X-point (see Fig. 5.1),
which is followed by an MHD mode and plasma disruption. Fig. 5.2 shows the radial
profiles of the electron density, electron temperature and electron pressure at three times
before the onset of the MARFE. The density increase is accompanied by a cooling of
the electron temperature at the tokamak edge and an increase of the edge collisionality.
This increase of plasma collisionality, while approaching the density limit, is expected to
enhance turbulent transport, as experimentally shown in Ref. [111]. The enhancement of
turbulent transport further decreases the edge temperature and thus pressure gradients
until they collapse (see Fig. 5.2). Finally, the collapse of the edge temperature and
pressure gradients, that occurs at the MARFE onset, leads to a reduced plasma current
channel and then to a change on the q profile that triggers MHD modes.

The relation between density limit and edge turbulent transport was initially studied
in Ref. [198] and further developed in Refs. [181, 182]. These theoretical works have
associated the crossing of the density limit to a regime of catastrophically large turbulent
transport in the tokamak edge, which was explained as due to a nonlinear effect of
electromagnetic perturbations on turbulence. The phase space of edge turbulence derived
in Ref. [182] claims that no density limit can be retrieved in the electrostatic case.
More recently, Ref. [50] has linked the crossing of the density limit to a transition from
an electrostatic to an electromagnetic ballooning regime, once again underlining the
important role played by electromagnetic fluctuations in the density limit. On the other
hand, Ref. [85] argues that turbulent transport in the tokamak boundary is mainly
controlled by the plasma collisionality, with only a minor role played by β. Namely,
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Figure 5.1 – Time trace of the gas flux, electron density from Thomson scattering, radiation
intensity and magnetic perturbations in the JET discharge #80823. The MARFE event
is identified by the strong increase of the radiation measured above the X-point. The
MARFE onset precedes the appearance of a locked mode, which eventually leads to the
plasma disruption. The red dashed vertical line represents the time of the MARFE onset,
tM ' 20.9 s. The onset of the locked N = 1 mode occurs at 21.95 s, while the disruption
time is at 21.1 s.

Ref. [85] suggests that a regime of enhanced turbulent transport compatible to the crossing
of the density limit can be retrieved at high collisionality and low β.

In contrast to the aforementioned theoretical works, a different approach is followed in
Ref. [70] where the density limit is explained as the onset criterion for radiation driven
islands, with a normalized internal inductance derived by fitting experimental data at the
density limit in the JET tokamak [239]. The radiation at the density limit is also the
key element of a recent explanation of the origin of the density limit [247, 248]. This is
based on a thermal balance between the heating power, the radiative emission and the
radial transport evaluated by using an effective perpendicular heat diffusivity coefficient.
A reduced scaling law for the edge density limit, which improves the Greenwald empirical
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(a) (b) (c)

Figure 5.2 – Radial profile fitted from Thomson scattering of the electron density (a),
electron temperature (b) and electron pressure (c) as a function of the normalized radial
coordinate ρpol at three different times of the JET discharge #80823. The time of the
MARFE onset is denoted as tM (see Fig. 5.1).

scaling, is derived in Ref. [247],

n∗[1020m−3] = 0.3
Z

4/9
eff

(f0 + Zeff − Zi)5/9

P [MW]4/9Ip[MA]4/9

π8/9a[m]16/9
, (5.2)

where n∗ is the maximum density achievable at the position of the edge radiative layer,
P is the total heating power, f0 is the effective concentration parameter and Zeff is the
plasma effective charge [247].

Herein, we extend the results of Ch. 3, which linked the density limit to an electrostatic
regime of enhanced turbulent transport, by performing a new set of GBS simulations that
include electromagnetic fluctuations and avoid the use of the Boussinesq approximation.
The effects of electromagnetic perturbations on turbulence and equilibrium profiles are
investigated by considering a wide range of β values, from the electrostatic limit to the
high-β limit. Special focus is dedicated to the study of the density limit, in particular with
the aim of disentangling the role played by electrostatic and electromagnetic turbulence.
The effect of the Boussinesq approximation on turbulent transport is also addressed,
pointing out a different turbulent transport regime at low collisionality than the one
described in Ch. 3.

The present chapter is organized as follows. An overview of the simulation results is
presented in Sec. 5.2, where the effects of electromagnetic perturbations on turbulence
and equilibrium profiles are investigated. In Sec. 5.3, the main parameters controlling
turbulent transport in the plasma boundary are identified and used to delineate the
electromagnetic phase space of edge turbulence. In Sec. 5.4, the theoretical scaling law of
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(a) (b) (c) (d)

Figure 5.3 – Typical snapshots of density for a simulation in the suppressed transport
regime, ν0 = 0.05 and βe0 = 10−6 (a), in the developed transport regime, ν0 = 0.2 and
βe0 = 10−4 (b), above the density limit, ν0 = 10 and βe0 = 10−4 (c), and above the β
limit, ν0 = 0.2 and βe0 = 4 × 10−4 (d). The same value of sT0 = 0.3 is considered for
these simulations. The white line represents the separatrix.

the density limit is written in terms of engineering parameters and compared to density
limit measurements of the AUG, JET and TCV tokamaks. The conclusions follow in
Sec. 5.5.

5.2 Overview of the simulation results

The GBS simulations considered here have been carried out with the following dimen-
sionless parameters: ρ−1

∗ = 500, a/R0 ' 0.3, sn0 = 0.3, ∆n = 800, ∆T = 720, χe0 = 10,
χi0 = 1, upward ion-∇B drift direction, sT0 = {0.15, 0.3}, ν0 = {0.05, 0.1, 0.2, 0.6, 10},
and various values of βe0 ranging from 10−6 to 5× 10−3. The magnetic equilibrium corre-
sponds to the one used in Ch. 3, and it is analytically obtained in the infinite aspect-ratio
limit by solving the Biot-Savart law for a current density with a Gaussian distribution
centered at the tokamak axis, mimicking the plasma current, and an additional current
filament outside the simulation domain to produce the X-point. The value of the plasma
current and the width of its Gaussian distribution are chosen to have a safety factor q0 ' 1

at the tokamak axis and q95 ' 4 at the tokamak edge. We note that the value of χe0
considered here is larger than the one considered in Ch. 3, although it remains a factor
20 smaller than typical values in the tokamak boundary. This is due to the very large
computational cost required to run simulations at realistic values of χe0. While no major
difference in turbulence and equilibrium profiles is observed when comparing simulations
at different χe0 in the range allowed by our numerical algorithm, with the parallel heat
convection in the SOL dominating over the parallel heat conduction in all the considered
simulations, we expect the parallel heat conduction to dominate over the parallel heat
convection at realistic values of χe0. As in the past chapters, the analysis described here
is carried out when the simulations are in a global turbulent quasi-steady state resulting
from the balance among the sources in the closed flux surface region, turbulence that
transports plasma and heat from the core to the SOL, and the losses at the vessel.
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In Fig. 5.3, typical snapshots of the plasma density for the electromagnetic simulations
that avoid the Boussinesq approximation are shown at various values of ν0 and βe0,
corresponding to the different turbulent transport regimes observed in our simulations.
In contrast to Ch. 3, four different turbulent regimes can be identified.

At very low values of collisionality, a regime of suppressed turbulence is observed. In
contrast to Ch. 3, here turbulence is mainly driven by drift-waves with the presence of a
strong E×B shear flow near the separatrix, which reduces turbulence and, consequently,
leads to a steep edge pressure gradient. The main instability driving turbulence is
identified by performing a test similar to the ones described in Ch. 3. Namely, for
the simulation with ν0 = 0.05, sT0 = 0.3 and βe0 = 10−6, drift-waves are removed
from the system, i.e. the term ∇‖pe/n + 0.71∇Te in Eq. (2.90) is zeroed out. Fig. 5.4
shows that density fluctuations vanish when this term is removed from the dynamics,
clearly indicating that in the low collisionality and high heat source regime turbulence
is mainly generated by drift-waves. On the other hand, only a weak effect on density
fluctuations is observed when the drive of KH instability (the term ∇· [φ,ω] in Eq. (2.89))
is removed from the system, thus excluding KH from being the primary instability in
these simulations (Fig. 5.4 (c)). This contrasts with the findings in Ch. 3, where the
suppressed transport regime found at low collisionality and large values of heat source is
characterized by turbulence being driven by the KH instability, with much larger values
of the E×B shear than typical values observed in the electromagnetic simulations.

We note that the differences between the present simulations and the ones of Ch. 3 persist
also at low β values. In fact, they are due to the use of the Boussinesq approximation
in Ch. 3, ∇ · (n∇⊥φ + τ∇⊥pi) ' n(∇2

⊥φ + τ∇2
⊥Ti), which is avoided here. In fact,

although the Boussinesq approximation has usually a weak effect on plasma turbulence
and equilibrium profiles in the SOL [17, 245], its validity becomes questionable in the
tokamak edge [213], where steep density gradients can form, especially in the regime of
suppressed turbulent transport. The results of GBS simulations presented here show
that the use of the Boussinesq approximation at low collisionality leads to a change
of the primary instability driving turbulent transport, with a non-negligible effect on
edge turbulence, equilibrium profiles and shear flows. On the other hand, a regime of
suppressed turbulent transport, qualitatively similar to the one presented in Ch. 3, is still
observed even when the Boussinesq approximation is relaxed. A regime dominated by
drift-wave turbulence has been recently found also in gyro-fluid simulations and associated
to the I-mode regime observed in tokamaks [131]. In addition, the theoretical study
of Ref. [182] associates the transition to the H-mode to a transition to a regime where
turbulence in the tokamak boundary is mostly driven by the drift-wave instability. The
detailed investigation of the properties of the suppressed turbulent regime identified in
GBS simulations is left as future work.

At intermediate values of collisionality and β, the resistive ballooning instability dominates
over the drift-wave instability, the E×B shear plays only a minor role, and no transport
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(a) (b) (c)

Figure 5.4 – Typical density fluctuations for the simulation with ν0 = 0.05, sT0 = 0.3
and βe0 = 10−6 (a). The panels (b) and (c) show density fluctuations in the case where
the drive of the drift-wave instability (the term ∇‖pe/n+ 0.71∇Te in Eq. (2.74)) or of
the Kelvin-Helmholtz instability (the term ∇ · [φ,ω] in Eq. (2.73)) is removed from the
system.

barrier forms across the separatrix. Similarly to Ch. 3, this regime can be associated
to the standard L-mode of tokamak operation. In contrast to the suppressed turbulent
transport regime, the use of the Boussinesq approximation in the resistive ballooning
regime has a weak effect on turbulence and equilibrium profiles.

The effect of electromagnetic fluctuations on the developed transport regime is investigated
in Fig. 5.5, where the equilibrium radial profiles of density, electrostatic potential and
E×B shear at the midplane are shown for the simulations at ν0 = 0.2, sT0 = 0.3 and
three different values of βe0, covering a range of two orders of magnitude values. The
radial profiles show a very weak dependence on βe0, suggesting that turbulent transport
is weakly affected by this parameter for realistic values of βe0. Therefore, we conclude
that electromagnetic effects play only a minor role on turbulent transport in the tokamak
boundary in the developed transport regime.

At large values of ν0, turbulent eddies extend throughout the entire closed field lines
region (see Fig. 5.3 (c)) and turbulent transport is extremely large. Consequently, the
equilibrium pressure and temperature gradients near the separatrix collapse. This regime
of very large turbulent transport and flat pressure and temperature profiles, which is
retrieved at high density, is linked to a regime beyond the density limit, in agreement
with the result of electrostatic simulations presented in Ch. 3. At these large values of
collisionality, the Boussinesq approximation and the electromagnetic perturbations have
no effect on turbulence and equilibrium profiles.

Finally, at large values of βe0, the ideal branch of the ballooning instability overcomes the
resistive one [147]. Consequently, ideal ballooning modes become the main mechanism
driving turbulence. The onset of the ideal ballooning instability generates global modes
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Figure 5.5 – Equilibrium radial profiles at the midplane of density (a), electrostatic
potential (b) and E×B shear (c) for simulations at various values of βe0 with sT0 = 0.3
and ν0 = 0.2. The vertical dashed line represents the position of the separatrix.

that affect the entire confined region, as shown in Fig. 5.3 (d), eventually leading to a
loss of confinement that corresponds to a plasma disruption. This regime, characterized
by global modes and large values of β, is associated to a regime beyond the β limit.

In the theoretical study proposed in Refs. [181, 182], the crossing of the density limit is
described as the result of the presence of electromagnetic fluctuations that inhibit the
formation of sheared flows, which provide a saturation mechanism for resistive ballooning
modes. In our simulations, however, the density limit is observed even at very low values
of βe0 or in the electrostatic limit. In fact, at high values of edge collisionality, simulations
show negligible sheared flows near the separatrix at any value of βe0, while nonlinear
saturation of the growing modes is provided by the gradient removal mechanism described
in Ch. 3, rather than the presence of electromagnetic effects. On the other hand, the
presence of a density limit at low values of βe0 observed in the simulations presented
here is in agreement with the theoretical investigations of Ref. [85], arguing that the edge
collisionality is the main key parameter that controls turbulent transport and density limit
crossing, independently of the β value. We note that an almost negligible dependence
of turbulent transport and equilibrium profiles on β has been observed also in recent
gyrokinetic electromagnetic simulations in the open field lines region [130]. Similarly, an
increase of turbulent transport with βe0 is reported in Ref. [86] only for values of β that
are above the β limit.

5.3 Electromagnetic phase space of edge turbulence

By leveraging the results of GBS simulations presented in the previous section and having
identified the key parameters that control turbulent transport in the tokamak boundary,
we now outline a phase space of edge turbulence that takes into account electromagnetic
effects. The result of this analysis is summarized in the phase space of Fig. 5.6, where the
time and toroidal average of the radial extension of the turbulent eddies is shown for all the
simulations considered in the present chapter. Four main regions can be identified in this
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Figure 5.6 – Time and toroidal average of radial extension of the largest turbulent eddies
normalized to the tokamak minor radius, 1/(kψa), for all the simulations considered in the
present work, as a function of the parameters βe0S

18/17
p /ν

10/17
0 and ν3/2

0 /Sp, which define
our edge turbulence phase space. The green (see Eq. (5.3)) and red (see Eq. (5.6)) dashed
lines correspond to the density and β limits, respectively, and delimit the parameter
space where the plasma is confined. Square, circle and diamonds markers correspond to
simulations where turbulence is mainly driven by drift-wave (DW), resistive ballooning
(RBM) and ideal ballooning instabilities, respectively. The dotted vertical line separates
the simulations in the resistive ballooning and in the drift-wave regimes.

parameter space: (i) a region where the radial extension of turbulent eddies is significantly
smaller than the tokamak minor radius, 1/(kψa)� 1, and turbulence is mainly driven by
the drift-wave instability; (ii) a region where 1/(kψa) ' 0.1 and turbulence is mainly driven
by resistive ballooning modes; (iii) a region at high collisionality that is characterized by
very large turbulent transport, poor plasma confinement and 1/(kψa) ' 0.5, associated to
the crossing of a density limit; and (iv) a region at large values of βe0 that is characterized
by large scale modes affecting the whole confined region, 1/(kψa) ' 1, associated to a
regime beyond the β limit. The regime of operation of a tokamak is bounded by the
density and β limits represented in the phase space of Fig. 5.6. This region includes
simulations with turbulence being driven either by resistive ballooning modes or drift-
waves. In the following, we do not consider the transition between the drift-wave and the
resistive ballooning regime. The resistive ballooning regime is described in Ch. 3, while
the analysis of the drift-wave regime will be performed in a future work. We focus instead
on the boundaries that delimit the region in Fig. 5.6 where the plasma is confined.

Starting with the density limit (green line in Fig. 5.6), experimental observations (see
Fig. 5.2) show that this limit is overcome when the edge pressure gradient collapses.
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This collapse is estimated by Lp becoming comparable to the tokamak minor radius, i.e.
Lp ∼ a. By imposing this condition in Eq. (3.30), we obtain

ν
3/2
0

Sp
∼ 213/4

25π3

a5/4

ρ
3/4
∗ q3n̄5/2(1 + κ2)3/2

. (5.3)

The left-hand side of Eq. (5.3) depends on the parameters ν0 and Sp, which vary across the
simulation set, while the right-hand side is approximately constant in all the simulations
considered here and is approximately equal to 0.5. As shown in Fig. 5.6, the theoretical
limit provided by Eq. (5.3) agrees well with the results of GBS simulations. In fact,
turbulent eddies in the simulations with ν3/2

0 /Sp & 0.5 have a radial extension comparable
to the tokamak minor radius, 1/kψ ∼ a, which leads to a very large cross-field turbulent
transport and, consequently, to a flat pressure profile.

The transition at high β is associated to the onset of the ideal ballooning instability,
which becomes unstable when the parameter

αMHD ∼
q2

ρ∗
βe0

n̄T̄e
Lp

(5.4)

exceeds a value of the order of unity [125, 249]. By substituting the analytical estimates
of T̄e and Lp given by Eq. (3.29) and Eq. (3.30), respectively, into Eq. (5.4), αMHD can
be written as

αMHD ∼
βe0

21/1752/17π20/17

(
q14S18

p

ρ22
∗ a

20(1 + κ2)10ν10
0 n̄11

)1/17

. (5.5)

The condition αMHD & 1 in Eq. (5.5) leads to

βe0S
18/17
p

ν
10/17
0

& 21/1752/17π20/17

(
ρ22
∗ a

20(1 + κ2)10n̄11

q14

)1/17

, (5.6)

where the left-hand side in Eq. (5.6) depends on the parameters βe0, ν0 and Sp, which
vary across the simulation scan, while the right-hand side is approximately equal to 0.2 in
all the simulations. As shown in Fig. 5.6, the radial extension of the turbulent eddies in

simulations with βe0S
18/17
p

ν
10/17
0

& 0.2 is approximately equal to the tokamak minor radius. The

whole confined region is therefore affected by large scale and large amplitude fluctuations,
thus leading to a total loss of plasma and heat (see Fig. 5.3 (d)).

Although turbulence simulation above the density and β limits can be performed (see
Fig. 5.3), these regimes of extremely large turbulent transport are experimentally inacces-
sible, since the resulting equilibrium profiles lead to a global MHD instability and the
subsequent plasma disruption.
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We conclude this section by analysing the main analogies and differences between the
edge phase space outlined in Fig 5.6 and the one derived in Ref. [182] based on the
results of flux-tube simulations. The first important difference is on the choice of the
edge parameters used to delineate the phase space. The parameters chosen in Ref. [182]
are αMHD, defined here in Eq. (5.4), and the diamagnetic parameter

αd =

√
micsτe

0.51me4π2q2R0

(
R0

Lp

)1/4

∝ ν−1/2 . (5.7)

Both the αMHD and αd parameters depend on Lp. In turn, Lp depends on turbulent
transport and a constant value of Lp is considered in Ref. [182]. We note that in Ref. [50]
the parameter αd is replaced by αt = (Lp/R0)1/2/(παd)

2 ∝ ν, which retains the key
dependence on the plasma collisionality and removes the dependence on Lp.

In agreement with the phase space of Ref. [182], Fig. 5.6 shows the presence of a regime of
reduced turbulent transport at low collisionality, i.e. high value of αd, where the drift-wave
instability dominates over the resistive ballooning instability. In Ref. [182], this regime
of reduced transport is associated to the H-mode of tokamak operation. On the other
hand, a more recent work based on gyro-fluid simulations has linked the regime where
turbulence is driven by drift-waves to the I-mode regime observed in experiments [131].
The β limit derived here is also in agreement with the one described in Ref. [182]. On
the other hand, the density limit presented here significantly differs from the one derived
in Ref. [182]. In fact, in the phase space of Ref. [182], the density limit can be achieved
only for values of αMHD larger than 0.1 and is fundamentally linked to electromagnetic
effects. Similarly, a recent work has associated the density limit to a transition from the
electrostatic to the electromagnetic resistive ballooning regime, again underlining the
need of electromagnetic effects to describe the density limit [50]. However, the simulations
presented here show that the density limit can be exceeded at any values of βe0 (below
the β limit), and even in the electrostatic limit, with turbulent transport that becomes
extremely large also without the presence of electromagnetic modes.

The increase of the size of turbulent eddies with resistivity, and therefore as the density
limit is crossed, can be estimated by balancing the interchange drive term, 2C(p), and the
parallel current term, ∇‖j‖, in Eq. (2.89). The term C(p) is estimated from the linearized
pressure equation, Eq. (3.21), leading to

C(p̃) ∼ − p̄

γρ∗Lp
k2
χφ̃ . (5.8)

The term ∇‖j‖ is estimated from the electron parallel momentum balance, Eq. (2.90),
which leads to

∂ψ

∂t
∼ νj̃‖ +∇‖φ̃ , (5.9)

where the electron inertia is neglected. The term on the left-hand side of Eq. (5.9) is
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estimated by using Eq. (2.95), which leads to ∂ψ/∂t ∼ γβe0/(2k2
⊥)j̃‖. For typical values of

electron density and electron temperature at the edge of a JET discharge in the proximity
of the density limit, ne ' 5× 1019 m−3 and Te ' 20 eV (see Fig. 5.2), and considering
γ as the growth rate of the interchange instability, γ '

√
2Te/(ρ∗Lp), the ratio of ν to

γβe0/(2k
2
⊥) is of the order of 10. Consequently, in Eq. (5.9) the term νj‖ dominates over

the term ∂ψ/∂t, and the resistive and the parallel electric field terms balance. In fact,
taking its parallel divergence, Eq. (5.9) can be written as

∇‖j̃‖ ∼
∇2
‖φ̃

ν
. (5.10)

The balance between Eq. (5.8) and Eq. (5.10) leads to kχ ∝ ν−1/2. Namely, the size
of turbulent eddies increases with resistivity, becoming very large even in absence of
electromagnetic modes, and can be ascribed to a change of the linear properties of the
driving resistive ballooning modes.

Dedicated experimental investigations have been carried out in the past with the aim of
validating the phase space derived in Ref. [182] (see, e.g., Refs. [51, 112]). In particular,
experimental observations show that turbulent transport in the tokamak boundary strongly
depends on αd, especially at high density, pointing out the important role played by the
edge collisionality in the density limit [51, 111, 112]. In addition, the boundary of the
density limit experimentally found in Ref. [112] shows also a dependence on the αMHD

parameter, a result that may suggest a role of electromagnetic fluctuations. However, we
remind that αMHD depends on the edge pressure gradient and, therefore, on turbulent
transport, independently of its electrostatic or electromagnetic nature, i.e. the dependence
of the density limit on the αMHD parameter is not sufficient to conclude that the density
limit is caused by electromagnetic rather than electrostatic turbulent transport. In
addition, due to the pressure gradient dependence in αMHD and αd, these two parameters
are correlated and, therefore, cannot be varied independently in the experiments, thus
making it challenging to decouple the effects due to collisionality and the ones due to β.

5.4 Theory-based scaling of the density limit

The aim of this section is to provide a theory-based scaling of the density limit written in
terms of engineering parameters, which can be directly compared to experimental data.
In contrast to the simulations considered in Sec. 5.2 and Sec. 5.3, where a reduced value
of parallel heat conductivity is used for numerical reason, in experiments the parallel
heat conduction in the SOL is expected to dominate over the convection. Therefore, in
order to describe typical experimental conditions, the theoretical scaling of Lp derived in
Ch. 3 (see Eq. (3.30)) in the heat convection limit is extended here to the conduction
limit. This new scaling of Lp is then used to derive a theory-based scaling of the density
limit that can be compared to experimental data.
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5.4.1 Pressure decay length in the conduction regime and theory-based
scaling for the density limit

In contrast to Ch. 3, where T̄e at the LCFS is estimated in the sheath-limited regime
assuming that the heat parallel transport in the SOL is mainly convective, we consider
here parallel conduction to dominate over the parallel convection. In the heat conduction
limit, the global balance of Eq. (3.28) becomes

Sp '
∫
SOL

q‖ b · ∇χ
||∇χ||

dl , (5.11)

where the parallel heat flux in the SOL is given by

q‖ = χ‖e∇‖T̄e =
2

7
χ‖e0∇‖T̄ 7/2

e . (5.12)

An analytical estimate of the electron temperature at the LCFS can be obtained from
Eq. (5.11) by assuming ∇‖ ∼ 1/L‖, with L‖ the parallel connection length in the SOL.
This leads to [211]

T̄e ∼

(
7

2

SpL‖

χ‖e0Lp

q

aρ∗

)2/7

, (5.13)

where we approximate b · ∇χ/||∇χ|| ∼ q/(ρ∗a).

Finally, an analytical estimate of Lp is obtained by substituting T̄e into Eq. (3.27), leading
to

Lp ∼
78/29π28/29

21/29
ρ
−1/29
∗ (1 + κ2)14/29a20/29ν

14/29
0 q36/29n̄42/29S−20/29

p χ
−8/29
‖e0 L

8/29
‖ . (5.14)

The scaling in Eq. (5.14) describes the equilibrium pressure gradient length near the
separatrix at intermediate and high density, where parallel heat conduction in the SOL
dominates over parallel heat convection. This estimate of Lp extends the one derived in
Ch. 3 assuming no temperature gradient along magnetic field lines in the SOL. We note
that the scaling in Eq. (5.14) shares with the scaling in Eq. (3.30) a similar dependence on
a, ν0 and q, while it shows a stronger dependence on n̄ and Sp. In fact, while parallel heat
transport in the sheath-limited regime depends linearly on density, q‖ ' nTecs, there is
no density dependence on the parallel heat conduction, q‖ ' ∇‖(χ‖e∇‖Te). Consequently,
in the sheath-limited regime, the increase of density is accompanied by an increase of
parallel heat transport that partially compensates for the increase of turbulent transport
and, therefore, of Lp (see Eq. (3.24)). On the other hand, in the conduction regime,
parallel heat transport is not affected by the increase of the density, while cross-field
turbulent heat transport increases with it, leading to an increase of Lp. This change on
the parallel heat transport mechanism in the SOL further reduces Lp, thus suggesting
an important link between parallel heat transport in the SOL and density limit, as also
observed in experiments [98, 111].
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A theoretical estimate of the maximum achievable edge density is derived from Eq. (5.14)
by imposing Lp ∼ a, i.e. by noticing that, at the crossing of the density limit, turbulence
relaxes the edge pressure gradient that becomes comparable to a fraction of the tokamak
minor radius. This leads to

nlim ∼
21/42

74/21π2/3
ρ

1/42
∗ a3/14(1 + κ2)−1/3q−6/7ν

−1/3
0 S10/21

p χ
4/21
‖e0 L

−4/21
‖ . (5.15)

By substituting the expression for Sp ' PSOL/(2πR0), χ‖e0 (see Eq. (2.96)) and ν0 (see
Eq. (2.99)) in Eq. (5.15) and writing all the quantities in physical units, we obtain

nlim ∼ A1/6a3/14P
10/21
SOL R

−5/6
0 q−6/7(1 + κ2)−1/3B

2/3
T L

−4/21
‖ , (5.16)

where nlim is in units of 1020 m−3, A is the mass number of the main plasma ions, a and
R0 are the tokamak minor and major radii in units of m, PSOL is the power crossing the
separatrix in units of MW, BT is the toroidal magnetic field in units of T and L‖ is the
SOL parallel connection length in units of m.

We note that, given the weak dependence on L‖, Eq. (5.16) can be simplified by approxi-
mating L‖ ' qR0, leading to

nlim = αA1/6a3/14P
10/21
SOL R

−43/42
0 q−22/21(1 + κ2)−1/3B

2/3
T , (5.17)

where the parameter α is a numerical coefficient, of order unity, that accounts for all the
numerical constants and approximations from order of magnitude estimates. In principle,
this proportionality constant could depend on the plasma shape, divertor geometry and
wall type. However, as shown later, a unique value of α is sufficient, at first order, to
describe the maximum density achievable for all the tokamaks and discharges considered
here.

In order to compare the theoretical scaling in Eq. (5.17) to the empirical scaling in
Eq. (5.1), Eq. (5.17) is written in terms of the plasma current,

nlim ∼ A1/6P
10/21
SOL R

1/42
0 B

−8/21
T (1 + κ2)−1/3 I

22/21
p

a79/42
, (5.18)

where Ip is the plasma current. We note that Eq. (5.18) and the empirical scaling law in
Eq. (5.1) share a main dependence on Ip and a. On the other hand, the density limit in
Eq. (5.18) depends also on PSOL, in agreement with experimental observations [13, 53,
98, 140, 167]. The theoretical scaling in Eq. (5.18) shows also a weak dependence on BT
and a negligible dependence on A and R0.
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Ip [MA] PSOL [MW] navg [1020m−3]
AUG 0.6 – 1.0 0.8 – 6.0 0.3 – 1.1
JET 1.5 – 2.5 0.3 – 8.7 0.4 – 0.8
TCV 0.1 – 0.2 0.1 – 0.7 0.5 – 0.9

Table 5.1 – Range of plasma current, power crossing the separatrix and line-averaged
electron density values in the multi-machine database considered here.

5.4.2 Comparison with experimental data

The theoretical predictions provided by Eq. (5.17) are now compared to the experimental
measurements of edge density at the onset of the MARFE in density limit discharges
of the AUG, JET and TCV tokamaksI. Two different scenarios are considered: (i) a
standard scenario where the density limit is reached in L-mode (i.e. no H-mode phase),
where the plasma density is increased up to the density limit, and (ii) an ITER-relevant
scenario where the density limit is preceded by an H-mode phase [13, 98, 132, 114, 230].
More precisely, in the second scenario, the plasma undergoes first an L-H transition, then,
as the density is increased, plasma confinement degrades until an H-L transition occurs
and, once in L-mode, a density limit is attained. The pre-disruption L-mode phase shows
dynamics similar to those described in the first scenario and shown in Fig. 5.1. The
multi-machine database considered here for the comparison covers a wide range of values
of the density, plasma current and heating power with several external heating systems,
such as Neutral Beam Injection (NBI), Electron Cyclotron Resonance Heating (ECRH)
and Ion Cyclotron Resonance Heating (ICRH). In particular, the plasma current ranges
from 0.1 MA to 2.5 MA, the toroidal magnetic field from 1.4 T to 3 T and the power
crossing the separatrix from 0.1 MW to 9 MW, yielding line-averaged electron density
ranging between 2× 1019 m−3 and 1.1× 1020 m−3 (see Tab. 5.1).

The comparison is carried out by fitting the experimental edge density at the MARFE
onset with the theoretical scaling in Eq. (5.17), with the numerical factor α treated as
the only fitting parameter, which is the same for all discharges and all tokamaks. The
experimental value of the density at the MARFE onset is obtained by averaging the edge
density, measured by means of Thomson scattering, in the region between ρpol = 0.85

and ρpol = 0.95 in all the discharges and tokamaks. This radial interval is chosen to
reduce uncertainties of the experimental density. We note that, while choosing the interval

IThe following discharges are considered in the database. AUG: 29244, 29244, 29866, 26346, 26592,
26694, 26901, 26902, 28137, 28330, 28331, 28726, 28727, 28728, 28729, 29809, 29810, 29811, 29812, 29816,
32424, 32447, 32449, 32450, 33626, 33629, 33675, 33676, 33678, 33679, 33680, 33681, 33682, 36098, 36100,
36107, 36112, 36113, 36114, 36298, 36312, 36316, 36317, 36319, 37243, 37245, 37537. JET: 80331, 80821,
80823, 80824, 80962, 80976, 81197, 81200, 81203, 81228, 81469, 81540, 81542, 81543, 81544, 81545, 81547,
81548, 81549, 81550, 81637, 81640, 81643, 81929, 81930, 82502, 82932, 82956, 82960, 82963, 82976, 82980,
82981, 84161, 85106, 85210, 85727, 85774, 85861, 85944, 85964. TCV: 45180, 45180, 46796, 46813, 46842,
46845, 63847, 64855, 64858, 64859, 64914, 64915, 64916, 64917, 64918, 64924, 65253, 65281, 65282, 65336,
65469, 65474, 65488, 65527, 68643, 68699, 68919, 68984, 68987, 69133.
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between ρpol = 0.9 and ρpol = 1.0 does not affect the overall results presented here, it adds
significant uncertainties on the experimental values of density. The choice of the MARFE
onset as the reference time is motivated by considering the MARFE as a precursor of the
density limit. In fact, the MARFE occurs when the pressure gradient at the tokamak
edge collapses, which precedes a locked mode that engenders a plasma disruption.

The result of the comparison between the experimental edge density at the MARFE onset
and the theoretical predictions provided by Eq. (5.17) is shown in Fig. 5.7. The theoretical
scaling well reproduces the measured edge density at MARFE onset, as indicated by the
high fitting quality parameter, R2 ' 0.8, with α ' 3.7± 0.3. Fitting separately the three
tokamaks leads to differences of α that are below 10 %, showing the robustness of this
approach with respect to machine specificities. We underline that both the L-mode and
the ITER baseline scenarios follow the theoretical scaling. The density limit for both
scenarios is thus described with the same plasma dynamics, independently of discharge
history and/or wall type (TCV has a carbon wall whereas the other machines feature
metal walls).

The uncertainty on the theoretical predictions is mainly due to the experimental mea-
surement of the power crossing the separatrix, which is estimated from the total power
coupled to the plasma, having subtracting the core radiated power. The later is inferred
by line integrated measurements of the bolometer cameras looking at the main plasma
(typically by a tomographic inversion) and is affected by an experimental uncertainty that
can be up to 50 %. In order to reduce the experimental uncertainty, the power crossing
the separatrix is averaged on a time window of 20 ms before the MARFE onset, excluding
the values close to the MARFE event where this quantity drops significantly because of
the strong increase of the core radiated power. As indicative value, we estimate a 20 %
uncertainty for the experimental values of the edge density as well as for its theoretical
prediction.

Fig. 5.8 (a) shows a comparison between the maximum line-averaged density of the
discharges considered here to the empirical scaling law predictions from Eq. (5.1) (red
line in Fig. 5.8 (a)). The quality of the agreement is also evaluated through the parameter
R2 and a proportionality constant is also used for the empirical scaling (black line in
Fig. 5.8 (a)). Although the empirical scaling is able to reproduce the overall experimental
trend, there is a significant scatter in experimental data, which indicates missing depen-
dencies in Eq. (5.1) and leads to low R2. Similarly, a comparison between the maximum
edge density and the predictions provided by the reduced scaling in Eq. (5.2) is shown
in Fig. 5.8 (b), where the quality of the agreement is again evaluated through the R2

parameter and a proportionality constant is used for the reduced scaling (black line in
Fig. 5.8 (b)). We note that the predictions of Eq. (5.2) agree well with the experimental
density limit of JET discharges, while Eq. (5.2) overestimates the maximum edge density
for both TCV and AUG discharges, leading to a low value of R2. The misalignment
between discharges of different tokamaks in Fig. 5.8 (b) is mainly due to the weaker
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Figure 5.7 – Experimental edge density measured by means of Thomson scattering at the
onset of the MARFE compared to the theoretical prediction nlim provided by Eq. (5.17)
with α = 3.7± 0.3. Different marker shapes and colors are used to distinguish between
the standard density limit (DL) and the density limit of discharges with an H-mode
phase (HDL). As examples, the errorbars are shown for the discharge with the lowest
and highest density.

dependence on the plasma current of the density limit in Eq. (5.2) than the one present
in Eqs. (5.1) and (5.17).

5.5 Conclusions

Results of GBS simulations that include electromagnetic effects and avoid the Boussinesq
approximation are used to identify various turbulent transport regimes as well as the
key parameters that control turbulent transport in the tokamak boundary, extending the
work presented in Ch. 3. Based on these parameters, a phase space of edge turbulence
simulations is derived, where both the density and the β limits are represented, showing
a good agreement between simulation results and theoretical predictions.

Our simulation scan allows us to identify four different regimes. A regime at low
collisionality where turbulence is mainly driven by the drift-wave instability, a regime
at intermediate values of collisionality and β where turbulence is driven by resistive
ballooning modes, a regime at high β where turbulence is driven by the ideal ballooning
instability, and a regime at high collisionality where turbulent transport, driven by
resistive ballooning modes, is extremely large. In contrast to Ref. [182], the simulations
considered in the present chapter show that this regime of extremely large turbulent
transport can be retrieved independently of the β value. More in general, a weak effect of
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(a) Empirical scaling in Eq. (5.1)
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(b) Reduced scaling in Eq. (5.2)

Figure 5.8 – (a) Experimental measured maximum line-averaged density (navg) compared
to the prediction provided by the empirical scaling law in Eq. (5.1) (red dashed line).
(b) Experimental maximum edge density measured by means of Thomson scattering
compared to the reduced scaling provided by Eq. (5.2) (red dashed line), with f0 = 0.5,
Zeff = 2 for TCV, and Zeff = 1.2 for AUG and JET [247]. For comparison purpose,
a proportionality factor is also considered in both scaling laws when evaluating the
R2 parameter. Different marker shapes and colors are used to distinguish between the
standard density limit (DL) and the density limit of discharges with an H-mode phase
(HDL).

electromagnetic perturbations on turbulence and equilibrium profiles is found at realistic
values of βe0.

By leveraging experimental observations that show a collapse of the edge pressure gradient
when crossing the density limit, we derive a theory-based scaling of the density limit from
a balance among heat source, cross-field turbulent heat transport near the separatrix and
parallel heat losses at the vessel wall due to parallel heat conduction. This theoretical
scaling is in better agreement with density limit measurements in the AUG, JET and
TCV tokamaks than the widely used Greenwald empirical scaling.

We conclude with a prediction of the density limit for ITER. The theoretical scaling in
Eq. (5.17) with ITER parameters (R0 = 6.2 m, a = 2 m, BT = 5.3 T, q = 3 and κ = 1.5)
yields to nITER

lim ' 0.4 P
10/21
SOL . We compare two values of PSOL, below and above the power

threshold to access the H-mode, PSOL = 15 MW (L-mode) and PSOL = 25 MW (H-mode).
This gives nITER

lim ' 1.4×1020 m−3 (L-mode) and nITER
lim ' 1.8×1020 m−3 (H-mode), where

both values are higher than the Greenwald density for ITER, nITER
GW ' 1.2 × 1020 m−3.

We underline that fusion power plants will operate with a much larger PSOL than present
day tokamaks, leading to higher values of density limit than the Greenwald scaling, with
important implications for the design and operation of future fusion power plants.
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6 Turbulence and flows in snowflake
magnetic configurations

The present chapter is focused on the first study of plasma turbulence, equilibrium flows
and heat flux at the target in alternative magnetic configurations by means of first-
principle turbulence simulations. Among the various magnetic configurations that have
been proposed to address the heat exhaust issue of future large scale fusion devices [5], we
consider here a set of snowflake (SF) configurations [188]. The SF features a second-order
null of the poloidal magnetic field, i.e. a point where all the first and second derivatives
of the poloidal flux function vanish. As a consequence, the null-point is connected to the
vessel wall through four legs, which define four strike points. It has been observed that
these four strike points can distribute the exhaust power on a larger area than standard
divertor configurations that feature two strike points. The simulations described in the
present chapter consider the same physical model of Ch. 3. Namely, with respect to
the full GBS model described in Ch. 2, we consider the electrostatic limit, we apply the
Boussinesq approximation and we neglect the coupling to neutral dynamics.

The main results of this chapter have been recently published in Ref. [75].

6.1 Introduction

While ITER will employ a single-null X-point divertor, alternative exhaust solutions have
been proposed in the recent years in order to mitigate the heat vessel loads in fusion
reactors [5, 253]. Among the alternative configurations currently under consideration, we
mention the super-X divertor, where the outer target is located at larger major radius
than standard X-point configurations, keeping the radiative zone away from the core; the
X-point divertor, where an additional X-point is generated close to the target in order
to significantly increase the poloidal flux expansion; and the snowflake configuration,
which features a second-order null of the poloidal magnetic field. An overview of the
possible alternative exhaust solutions under consideration for DEMO can be found in
Refs. [141, 168, 253]. Here, we focus on the SF configuration [188].
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The SF configuration allows a distribution of the particle and heat fluxes on multiple legs,
provides an increase of the connection length on flux surfaces close to the second-order
null, and allows a stable radiation between two nulls in case of multiple X-points. On the
other hand, the designed SF configuration for DEMO leads to a very high stress on the
toroidal field coils, which makes the SF divertor challenging from an engineering point
of view. In addition, the accessibility of the divertor region for installation and remote
handling operations is expected to be difficult in a DEMO SF configuration [141].

SF configurations are obtained experimentally by generating two first-order X-points close
to each other. When the two X-points coincide, a second-order null point is obtained.
However, in practice, the two X-points never coincide perfectly. The X-point associated
with the separatrix that encloses the plasma is denoted as primary, while the other, the
secondary X-point, lays either in the private flux region of the primary X-point or in the
common flux region. The first configuration is denoted as the snowflake plus (SF+), the
latter as snowflake minus (SF−), while the configuration with the two X-points coinciding
is usually referred to as the exact SF. In the SF−, the secondary X-point can be positioned
either on the high-field side (HFS SF−) or on the low-field side (LFS SF−) with respect
to the primary separatrix. All these configurations have been experimentally investigated
in the TCV [110, 137, 163, 169], NSTX [207, 208], and DIII−D [206] tokamaks.

Experimental measurements in TCV have shown a reduction of the peak heat fluxes
in SF configurations as compared to similar single-null (SN) configurations [169]. This
was explained as the result of the presence of an additional cross-field transport channel
into the private flux region. In Ref. [137], the effective SOL width in the LFS SF−,
inferred from the measured power repartition between the two SOL regions created by
the secondary X-point, was twice as large as that measured by a reciprocating probe at
the outboard midplane, an observation interpreted as the result of an enhanced cross-field
turbulent transport in the null-region. Numerical simulations of SF configurations, carried
out by means of the EMC3-Eirene [127, 126] and the SOLPS [157] codes, are unable to
reproduce these experimental observations and predict a negligible heat flux on the strike
points connected to the secondary X-point [127]. These simulations assume constant
diffusion parameters and neglect equilibrium drifts.

The discrepancies between experimental observations and simulations call for a detailed
investigation of the presence of mechanisms leading to an enhanced cross-field transport.
By evolving self-consistently the turbulent and the equilibrium cross-field transport,
first-principles global turbulence simulations such as the one that are allowed by the GBS
code can point out the existence of regions where the perpendicular transport is strong
and the mechanisms behind it. The present chapter describes the first simulation based
on a turbulent model of SF configurations.

The present chapter is organized as follows. The SF magnetic configurations implemented
in GBS are presented in Sec. 6.2. An overview of simulations results as well as the
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Figure 6.1 – Contour plot of the poloidal flux function, Ψ, in the exact SF configuration
implemented in GBS (black dashed line). The separatrix is shown as a solid black line.
The GBS boundary domain is indicated by a solid green line. The three blue circles
represent the position of the current filaments, located outside the simulation domain,
responsible of creating the SF configuration, while the red circle represents the center of
the plasma current.

analysis of the heat flux distribution is reported in Sec. 6.3. The role of turbulence in SF
configurations is discussed in Sec. 6.4. The conclusions follow in Sec. 6.5.

6.2 The snowflake magnetic equilibrium

Similarly to the equilibrium considered in Ch. 3-5, the magnetic poloidal flux Ψ of a SF
configuration is analytically obtained by integrating the Biot-Savart law in the infinite
aspect-ratio limit by considering three straight current filaments and a current density
with Gaussian profile, which mimics the plasma current. The position of the filaments
and the plasma current is shown in Fig. 6.1. The plasma current is centered at (Rp, Zp),
its integral value is Ip and its width σ. We denote (Ri, Zi) and Ii, with i = 1, 2, 3,
the position of the three filaments and their current, respectively. The position of the
filaments are chosen, for instance, to develop a left-right symmetric equilibrium in the
exact SF case. This imposes R1 +R2 = 2Rp, R3 = Rp, I1 = I2 ≡ αIp and Z1 = Z2. The
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distance between the first and the second filament, d ≡ R2 −R1, and α are derived by
following the procedure described in Ref. [188]. In practice, we impose ∇Ψ, ∂R∇Ψ and
∂Z∇Ψ to vanish at the second-order X-point and we obtain

α = −
Z ′1σ

2

[
Z ′3 − (βZ ′p + Z ′3) exp

(
Z ′ 2p /2σ

2
)]2

exp
(
Z ′ 2p /σ

2
)[
K1 −K2 exp

(
−Z ′ 2p /2σ2

)] , (6.1)

d = −
2Z ′1

[
K3 exp

(
Z ′ 2p /2σ

2
)
−K4

]1/2

[
K1 exp

(
Z ′ 2p /2σ

2
)
−K2

]1/2
, (6.2)

where β = I3/Ip,

K1 = σ2
[
Z ′ 23 (Z ′p + Z ′1) + βZ ′ 2p (Z ′1 + Z ′3)

]
, (6.3)

K2 = Z ′ 23 (Z ′ 2p Z
′
1 + Z ′pσ

2 + Z ′1σ
2) , (6.4)

K3 = σ2
[
βZ ′ 2p (Z ′3 − Z ′1) + Z ′ 23 (Z ′p − Z ′1)

]
, (6.5)

K4 = Z ′ 23

[
σ2(Z ′p − Z ′1)− Z ′ 2p Z ′1

]
, (6.6)

with Z ′p = Zp−ZX , Z ′1 = Z1−ZX , and Z ′3 = Z3−ZX , being ZX the vertical position of
the X-point. The SF+ and SF− configurations are obtained by varying the current of
the i = 1 and i = 2 filaments.

In the following, we choose σ = 63.3, Ip = 11.4, Z ′p = 410, Z ′1 = −280, Z ′3 = −330

and β = −7.0 for all the SF configurations. This leads to a safety factor of q0 ' 1 at
the magnetic axis and q95 ' 5 at the tokamak edge. The parameters α and d are then
evaluated from Eqs. (6.1) and (6.2), leading to α ' 3.91 and d ' 240 for the exact SF.
The values of the current in the three filaments for the four configurations are reported in
Table 6.1. The ion-∇B drift direction points upwards (unfavourable for H-mode access).

In order to evaluate the benefits deriving from the SF on the power exhaust compared
to standard exhaust solutions, we consider a single-null (SN) configuration with core
conditions similar to the exact SF. The SN configuration is obtained by using the same
set of filaments as well as the same physical and numerical parameters as in the SF
simulations, but α = 0.3, d = 1000, Z ′p = 410, Z ′1 = 0, Z ′3 = −480 and β = 1.17. The
value of the current in the three filaments in the SN is also reported in Table 6.1.

The SF and SN configurations are designed to have similar flux-averaged safety factor
and magnetic shear profiles in the core, as shown in Fig. 6.2. The low-field side (LFS)
connection length, L‖, defined as the length of a magnetic field line connecting the outer
midplane to the LFS target, is displayed in Fig. 6.2 (c) for all the configurations. The
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Table 6.1 – Values of the current in the three filaments normalized to the plasma current
for all the considered configurations. Negative currents flow in the direction opposite to
the plasma current.

Configuration I1/Ip I2/Ip I3/Ip

Exact SF 3.91 3.91 -7.00
SF+ 3.94 3.94 -7.00
HFS SF− 3.91 3.72 -7.00
LFS SF− 3.72 3.91 -7.00
SN 0.3 0.3 1.17

SN configuration has a longer LFS connection length than the exact SF, the SF+ and
the HFS SF− within a distance from the separatrix larger than approximately 0.1 ρs0,
considerably shorter than the SOL width. This is typical for present-day devices, but
the distance from the separatrix at which the L‖ of a SF configuration is equal to L‖
of a comparable SN configuration in fusion reactors is expected to be larger than the
SOL width [169]. The connection length in the LFS SF− diverges at the location of the
secondary separatrix, whose distance from the primary separatrix at the LFS midplane is
approximately 7 ρs0.

6.3 Heat flux distribution at the target plates

The simulations presented here are carried out with the following parameters: ρ−1
∗ = 700,

a/R0 = 0.25, ν0 = 0.1, τ = 1, LR = 660, LZ = 880, sn0 = 0.3, ∆n = 900, sT0 = 0.3

and ∆T = 800. Regarding the numerical parameters, in all cases, the grid used is
NR × NZ × Nϕ = 240 × 320 × 80 and the time-step is 2 × 10−5 R0/cs0. The analysis
that follows is performed when a quasi-steady state is reached, where sources, turbulent
transport and losses at the vessel balance each other. A snapshot of the density on a
poloidal plane is shown in Fig. 6.3 for all the magnetic configurations considered here.

In this section, we focus on the distribution of the equilibrium parallel heat flux among
the four target plates of the exact SF, the SF+, the LFS SF−, and the HFS SF−. Since
our simulations are in the sheath-limited regime, the parallel heat flux is dominated by
the parallel convection, q‖ = pev‖e, (as in the previous chapters, any quantity f is written
as a sum of the time and toroidal averaged component f̄ , denoted here as equilibrium,
and the fluctuating component f̃ , i.e. f = f̄ + f̃). The q‖ flux is proportional to the
power reaching the wall through the sheath heat transmission coefficient [211].

Fig. 6.4 shows q‖ in the proximity of the four strike points, which are denoted, from the
HFS to the LFS, as SP1, SP2, SP3, and SP4, and whose position is displayed in Fig. 6.3.
The distance from the separatrix is evaluated at the midplane in order to remove the
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Figure 6.2 – Flux-surface averaged safety factor, 〈q〉Ψ, and magnetic shear, 〈s〉Ψ,
inside the separatrix for all the considered configurations as a function of ρN =√

(Ψ−Ψ0)/(ΨLCSF −Ψ0), where ΨLCFS and Ψ0 are the poloidal flux values at the
last closed flux surface and at the magnetic axis, respectively (panels (a) and (b)). The
low-field side connection length is shown in panel (c). The vertical dashed line at the
distance R −Rsep ' 7 from the primary separatrix, where L‖ diverges, corresponds to
the location of the secondary separatrix of the LFS SF−.

(a) Exact SF (b) SF+ (c) LFS SF− (d) HFS SF− (e) SN

Figure 6.3 – Typical snapshot of density, n, on a poloidal plane for the exact SF (a), the
SF+ (b), the LFS SF− (c), the HFS SF− (d), and the SN (e). The dashed white line
indicates the separatrices and the solid white lines the locations where the parallel heat
flux is evaluated. Starting from the HFS, we label the strike points as SP1, SP2, SP3
and SP4 for the SF configurations, and SP1 and SP4 for the SN configuration.
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Figure 6.4 – Equilibrium parallel heat flux at the target plates, normalized to q0 = n0Te0cs0,
as a function of the distance from the separatrix, which is evaluated at the midplane
and normalized to ρs0. The position of the strike points is shown in Fig. 6.3 (solid white
lines). The positive (negative) sign of the distance refers to a region to the right (left) of
the separatrix.

Table 6.2 – Fraction of the deposited power on the different strike points for all the
considered magnetic configurations. See Fig. 6.3 for the position of the strike points.

SP1 SP2 SP3 SP4

Exact SF 28% 20% 18% 34%
SF+ 30% 14% 18% 38%
LFS SF− 28% 53% 9% 10%
HFS SF− 6% 8% 60% 26%
SN 46% − − 54%

effect of the flux expansion at the target, which is different for all the configurations and
could be compensated by a poloidal tilt of the target in a dedicated device. The fraction
of the deposited power on the strike points is listed in Table 6.2. As an aside, we note
that the SOL width at the LFS midplane computed from the pressure profile is similar
for all the configurations and its value is approximately 10 ρs0. This recalls experimental
observations that show a weak dependence of the upstream SOL width on the different
magnetic configurations [137, 169].

In the exact SF, in absence of perpendicular transport, we expect that the heat flux
flows along the magnetic field lines to SP1 and SP4. On the other hand, we notice that
the integrated heat flux redistributes quite homogeneously among the four strike points
(see Table 6.2). The activation of the inner strike points (SP2 and SP3) is due to a
convection cell induced by the equilibrium E×B drift, qeq

E = p̄ev̄E, which is present in
the region around the null-point (see Fig. 6.5 (a)), while the turbulent flux is negligible in
the null-point region, as also observed experimentally in the SN configuration [234]. We
point out that the convective cell width is comparable to the SOL width evaluated at the
X-point, i.e. retaining the effect of the flux expansion. In agreement with our simulation,
experimental observations suggest that the E × B drift in SF configurations provides
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(a) Exact SF (b) SF+

Figure 6.5 – Equilibrium E×B heat flux in the null-point region for the exact SF (a)
and SF+ configurations. The size of the arrows is proportional to the intensity of the
heat flux. Black dashed lines indicate contour levels of the electrostatic potential while
the solid blue line indicates the separatrix.

an important transport mechanism in the null-region and contributes to the heat flux
distribution among the four strike points [26]. This mechanism has also been pointed
out by measurements in the null-region of SN configurations [195, 194]. We note that
Refs. [189, 224] argue that an electromagnetic instability, the churning mode, may provide
the redistribution of the heat flux over the four divertor legs. Our simulation shows that
the redistribution occurs also when electromagnetic fluctuations are not included.

In the SF+, the v̄E drift in the region between the two X-points activates SP2 and SP3
(see Fig. 6.5 (b)). However, the equilibrium parallel heat flux on SP2 and SP3 is reduced
with respect to the exact SF. This reminds of experimental observations in TCV [169]
that show a decrease of the heat flux on the secondary strike points (SP2 and SP3) as
the distance between the two X-points increases. We highlight that, in our simulation,
the distance between the two X-points is comparable to the SOL width evaluated at the
primary X-point, corresponding to the width of the convective cell (see Fig. 6.5 (b)). This
is sufficient to lead to a reduction of 40% of the flux to SP2. In order to have significant
activation of SP2 and SP3, we expect that the vertical distance between the two X-points
must be comparable to the SOL width evaluated at the primary X-point. Such a request
may be challenging for DEMO, whose SOL width is foreseen to be smaller than 1 mm [49].

Regarding the LFS SF− configuration, we notice that the strike points connected to the
secondary X-point are only partially activated, i.e. only 9% and 10% of the total power is
deposited on SP3 and SP4, respectively. In Fig. 6.6, we show qeq

E around the primary and
secondary X-point. The intensity of the circulation cell around the secondary X-point
is an order of magnitude smaller than around the primary X-point and qeq

E is localized
around the X-point in a region of size smaller than the SOL width. It follows that, since
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the distance between the two X-points is approximately twice as large as the SOL width
evaluated at the primary X-point, the convective cell around the primary X-point does
not affect the heat fluxes in the proximity of the secondary X-point.

In the HFS SF− configuration, we observe that SP1 and SP2 are only partially activated
(see Fig. 6.4) and most of the power (60%) flows to SP3. In this case, a very strong
equilibrium E×B drift is found in the region around the primary X-point (see Fig. 6.6 (c)),
such that it leads to a strong heat transport from the divertor leg connected to SP4 to
the divertor leg connected to SP3. Around the secondary X-point qeq

E is more than one
order of magnitude smaller (see Fig. 6.6 (d)) and therefore its role is negligible.

We compare now the parallel heat flux for the SF and SN configurations. The peak value
of the parallel heat flux in the SN configuration is more than twice as high as the one in
the exact SF (Fig. 6.4), as a consequence of the uniform parallel heat flux distribution
among all the four divertor legs. This highlights the benefit of the heat flux redistribution.
The same is valid for the SF+, although the integrated power in SP2 and SP3 is reduced
with respect to the exact case. In the case of the LFS SF− configuration, the peak value
of the parallel heat flux, which occurs in SP2, is comparable with the peak value of the
parallel heat flux in the SN configuration. This is a consequence of the fact that in the
LFS SF− configuration the heat flux is not as well distributed among all the strike points.
Worst considerations can be drawn for the HFS SF−, where the peak value of the parallel
heat flux, which occurs in SP3, is 50% larger than the one in the SN.

6.4 The role of turbulence in the heat flux distribution

In order to highlight the role played by turbulence in SF configurations, especially in the
LFS SF−, we consider the distribution of the heat flux between the LFS strike points
of this configuration (SP2, SP3, and SP4), more precisely between the LFS strike point
connected to the primary X-point, i.e. SP2, and the strike points connected to the
secondary X-point, i.e. SP3 and SP4. For this purpose, we first consider q‖ at the LFS
midplane in a region where the parallel flow is directed towards the LFS targets [110].
We integrate q‖ over the SOL region between the primary and the secondary separatrix
and over the whole SOL region. The ratio between these two integrals, equal to 0.87
in our simulation, is larger than the ratio of the integrated power reaching SP2 to the
power reaching the three LFS strike points, which is approximately 0.74. Therefore,
cross-field transport must occur between the midplane region and the strike points. In
fact, we observe in Fig. 6.7 (a) the presence of a region in the LFS between the two
separatrices of strong turbulent E×B perpendicular flux, qt

E = p̃e ṽE. Therefore, heat is
transported across the secondary separatrix and parallel flows to the secondary X-point.
This reduces the heat flux reaching SP2. Due to the presence of the small but not
completely negligible E×B convective cell around the secondary X-point, the heat flux
on the SOL region outside the secondary separatrix is partially distributed towards SP3
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(a) Primary X-point (b) Secondary X-point

(c) Primary X-point (d) Secondary X-point

Figure 6.6 – Equilibrium E×B heat flux for the LFS (top line) and HFS (bottom line)
SF− configurations around the primary [(a) and (c)] and secondary [(b) and (d)] X-points.
The size of the arrows is proportional to the intensity of the heat flux. Black dashed lines
represent the contour levels of the electrostatic potential. The separatrix is indicated by
a solid blue line. In (b) and (d), the arrow size is multiplied by a factor of 10 with respect
to (a) and (c).

and SP4. We note that the presence of turbulent structures in the region between the two
nulls of the LFS SF− has been experimentally observed in Ref. [235]. On the other hand,
qeq
E is important only in the region around the primary X-point and cannot provide a

mechanism to transport heat across the secondary separatrix. Moreover, there is no strong
perpendicular equilibrium E×B flux that connects the two X-points. This explains the
small heat flux exhausted at SP3 and SP4.
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(a) LFS SF− (b) HFS SF−

Figure 6.7 – Intensity of the E×B turbulent heat flux projected along ∇Ψ, qfΨ,E , in the
LFS and HFS SF− configurations normalized to q0 = nTe0cs0 ((a) and (b) respectively).
The dashed black line highlights the region of strong turbulent transport. The white solid
lines represent the two separatrices.

Analogously to the LFS SF− configuration, the secondary X-point of the HFS SF− splits
the SOL in two regions. In order to investigate possible effects due to turbulence, the same
analysis as in the LFS SF− is performed, but in this case at the HFS. By integrating q‖
at the HFS midplane, where the parallel heat fluxes are directed towards the HFS targets,
over the region inside and outside the secondary separatrix, we expect that 85% of the
total HFS power flows towards SP3. In fact, the integrated power on SP3 normalized to
the total power flowing in the HFS SOL and reaching the HFS strike points (SP1, SP2,
and SP3) is approximately 81%, in good agreement with the expected value. As shown
in Fig. 6.7, there is no strong perpendicular turbulent transport across the secondary
separatrix in the case of HFS SF−. The fact that the perpendicular turbulent transport is
enhanced only on the LFS of the LFS SF−, where large radial pressure gradients exist in
the bad curvature region, indicates that it is driven by ballooning-like modes. This result
confirms the hypothesis of Ref. [137], where the measured power on SP4 was found to be
significantly larger than expected, and ballooning-like turbulent transport in the SOL
between the primary and secondary separatrices was suggested as possible explanation.

For both the SF− configurations, the distance between the two separatrices can be
optimized in order to achieve a better heat flux redistribution [110, 225]. The optimization
requires that the distance between the primary and secondary separatrix is set to fractions
of the SOL width. The enhancement of perpendicular turbulent transport for the LFS
SF− increases the distance at which the uniform heat flux distribution is reached, which is
particularly beneficial for DEMO-like reactors. On the other hand, the width of the E×B

convection cell around the primary X-point is approximately a factor of 2 smaller in SF−
configurations than in the other SF configurations, decreasing the potential importance
of qeq

E .
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6.5 Conclusions

In the present chapter, the results of the first global turbulence simulations in various
snowflake configurations are presented. These simulations point out that the activation of
the secondary strike points in the exact SF and in the SF+ configurations, experimentally
observed in Ref. [169], can be explained by the presence of an equilibrium E×B convective
cell in the region around the primary X-point. The effect of the convective cell is strongly
reduced as the distance between the two X-points becomes larger than the SOL width
evaluated at the primary X-point, which is the case for our SF− configurations. In addition,
the turbulence simulation in the LFS SF− configuration shows the presence of a region of
enhanced cross-field turbulent transport driven by ballooning-like modes, thus confirming
the hypothesis in Ref. [137] based on experimental observations. No enhancement of
turbulent transport is instead observed in the other snowflake configurations considered
here.

The simulations presented in this chapter point out some potential benefits of SF configu-
rations with respect to the standard SN magnetic configuration, such as the activation
of the four strike points due to the presence of an equilibrium E × B convective cell
around the second order null of the poloidal magnetic field. Understanding the origin of
this E×B convective cell is therefore important to extrapolate these results to future
magnetic fusion devices. Besides more detailed theoretical investigations, the results
presented here call for the need of further GBS simulations with the full model described
in Ch. 2, which will allow investigating the effect of electromagnetic perturbations and
Boussinesq approximation on the presence and robustness of this E×B convective cell
around the X-point. Simulations with electromagnetic effects are also needed to address
the churning mode and its effect on the heat flux distribution [189, 224]. Finally, results
of GBS simulations that evolve the neutral dynamics are needed to investigate possible
advantages of detachment in SF configurations.
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7 Conclusions and outlook

In the present thesis, different turbulent transport regimes in the tokamak boundary
are identified and analyzed by means of three-dimensional, global, flux-driven, two-fluid
turbulence simulations carried out by using the GBS code. Analytical expressions of the
cross-field turbulent heat-flux at the separatrix are derived from a quasi-linear theory and
then used to estimate the equilibrium pressure gradient length in the tokamak boundary.
Thanks to these theoretical estimates and exploring also alternative divertor solutions,
the thesis addresses some of the key aspects related to the design and the operation of
future tokamaks, such as the heat flux to the target plates and the physics behind the
density limit, providing a theoretical interpretation of this limit based on edge turbulent
transport. In particular, theory-based scaling laws for the pressure decay length in the
SOL of L-mode single-null tokamak discharges and for the crossing of the density limit
are provided and successfully validated against a multi-machine database.

Following the introduction, Ch. 2 describes a new version of the GBS code, recently
submitted for publications [73]. The GBS domain is extended to encompass the whole
plasma volume, thus retaining the interplay among core, edge and SOL physics, while
avoiding the use of an artificial boundary with the core. A new non-field aligned coordinate
system is adopted, significantly extending the GBS capability to handle complex magnetic
geometries, which can also be the result of a magnetic reconstruction of an experimental
discharge. The implementation of the Poisson and Ampère equations is carefully optimized
by means of an iterative solver based on the PETSc library, leading to a speed-up of
medium size tokamak simulations of approximately a factor of 40. The physical model is
improved by coupling the plasma model to a single-species kinetic neutral model, leading
to the first simulation of a TCV discharge in lower single-null with the self-consistent
evolution of plasma turbulence and neutral dynamics.

In Ch. 3, results of electrostatic GBS simulations are leveraged to study the effect of
collisionality and heat source on plasma turbulence at the tokamak boundary. Three
edge turbulent transport regimes are identified: (i) a regime of suppressed turbulence at

137



Chapter 7 Conclusions and outlook

low values of collisionality and large values of heat source, which shows some similarities
with the H-mode regime, (ii) a regime of developed turbulence at intermediate values
of collisionality and heat source, which can be associated to the L-mode regime, (iii)
and a regime at large values of collisionality, characterized by a very large turbulent
transport, not compatible with a tokamak operational scenario and therefore associated
to a regime that is beyond the density limit. An analytical estimate of the equilibrium
pressure gradient length is derived in all the identified regimes. The main results of this
chapter are published in Ref. [72].

In Ch. 4, we focus on the SOL plasma dynamics of the L-mode regime identified in Ch. 3.
Theory-based scaling laws of the pressure and density decay lengths are derived in the
near and far SOL. The theoretical scaling law of the pressure decay length in the near
SOL is derived from a balance among the heat source, the cross-field turbulent heat flux
across the separatrix and the parallel heat losses at the vessel wall, and it is compared to
the results of GBS simulations at different values of collisionality and heat source, showing
a good agreement between the theoretical predictions and the numerical results, with
differences that are below 20 %. The scaling law of the near SOL pressure decay length
is also compared to experimental measurement of the power fall-off length taken from a
multi-machine database that includes discharges of the C-mod, COMPASS, JET, MAST
and TCV tokamaks. The result of this comparison shows that the theoretical scaling
is able to reproduce well the experimental data, with a high value of R2 ' 0.85. The
theoretical scaling laws of the far SOL pressure and density decay lengths are derived by
balancing the perpendicular and parallel transport in the far SOL due to blobs, and then
compared to GBS results, showing differences between the theoretical predictions and the
numerical results up to 40 %. As a preliminary comparison, the theoretical predictions
of the far SOL pressure decay length are compared to experimental measurements at
the outboard midplane of TCV L-mode lower single-null discharges, showing a weak
correlation between the theoretical scaling and experimental data, thus calling for further
theoretical and experimental investigations. The main results of this chapter are published
in Ref. [74].

In Ch. 5, the effects of electromagnetic perturbations and of the Boussinesq approximation
on turbulence and equilibrium profiles are investigated by using GBS simulations. The
electromagnetic phase space of edge turbulence is derived by analysing the results of GBS
simulations at various values of β, collisionality and heat source. Depending on the values
of these parameters, the main instability driving turbulence is identified. We show the
presence of a transition from resistive ballooning modes to drift-waves as collisionality
decreases and from resistive ballooning modes to ideal ballooning modes as β increases.
The transition to the ideal ballooning instability is associated to the crossing of the β-limit
observed in experiments. In addition, a transition to a regime of extremely large turbulent
transport is observed at large values of collisionality, independently of the value of β. This
transition is associated to the crossing of the density limit. We show that the density limit
can be seen as the result of enhanced turbulent transport at the tokamak boundary and
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we derive a theory-based scaling law of the maximum edge density achievable in tokamaks,
which is in better agreement with a multi-machine database of density limit discharges in
the AUG, JET and TCV tokamaks than the widely used Greenwald empirical scaling.

In Ch. 6, the results of the first three-dimensional turbulence simulations of snowflake
configurations are presented. The parallel heat flux distribution over the four legs
is analyzed in different snowflake geometries and compared to a standard single-null
configuration. The activation of the secondary strike points in the exact SF and SF+

configurations is shown to be due to an equilibrium E×B flow that transports particles
and heat from the SOL to the private flux region. The role of turbulence in snowflake
configurations is investigated, pointing out the presence of enhanced turbulence in a
region between the two separatrices of the LFS SF−, which contributes to the heat flux
redistribution among the LFS strike points.

Despite the progresses in the simulation of plasma turbulence in the tokamak boundary
with the GBS code described here and the physics understanding of its dynamics, some
limitations persist that prevent us to simulate plasma turbulence in the boundary of
large-scale fusion devices with realistic parameters. This is a necessary step to assess
the extrapolation of our understanding to these configurations. For this purpose, as an
important step towards the simulation of ITER and DEMO, GBS is being ported to
Graphics Processing Units (GPUs). In fact, a GPU can process data several orders of
magnitude faster than a CPU due to massive parallelism, thus strongly reducing the
time required to perform simulations of plasma turbulence in large scale magnetic fusion
devices. In addition, the flexibility of the GBS geometry is being improved by adopting a
curvilinear coordinate system that will allow us to carry out simulations with a realistic
wall geometry [91]. The neutral model is also being extended by including multiple species
whose dynamics is expected to become important in the detached regimes required to
safely operate fusion power plants [41]. Finally, we remind that the use of a fluid model is
limited to the study of high collisional plasma. Therefore, its applicability is questionable
in the hot boundary of an H-mode plasma, where kinetic effects are expected to play
an important role. For this reason, kinetic effects will be included in the GBS plasma
model by adding further moments of the electron and ion distribution functions [64, 102].
Ultimately, this will allow the exploration of the boundary turbulent regimes with a more
reliable model.
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