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Abstract

Environmental extreme events can have devastating impacts on society when they interact

with vulnerable human and natural systems. Such events can result from natural causes, like

phenomena related to the El Niño-Southern Oscillation or decadal/multi-decadal climate

variations. These causes can follow an increase in human activity, e.g., through land-use

changes or anthropogenic climate change, that can influence the frequency, intensity, spatial

extent and timing of these events, and spur unprecedented extremes. To accurately understand

and quantify the risks associated with these events, it is important to identify trends related to

these causes, which may be measured or unmeasured.

Fitting models for rare events is inherently difficult because of the paucity of data available.

The most destructive extreme events are rarely isolated in space and time, so one must account

for their spatial and temporal dependencies. This thesis deals with the parametric modelling

of severe thunderstorms and wildfires using models motivated from limiting probabilistic

results.

The first part of this thesis explores influences on the magnitude and spatial extent of extremes

of environments related to severe US thunderstorms. Our results show that the risk from

severe thunderstorms in April and May is increasing in parts of the US where it was already

high, and that the risk from storms in February increases during La Niña years. We also show

that these extremes are more localized during spring/summer seasons than in the winter, and

find that some of these seasonal differences are more pronounced during El Niño years.

The second part of the thesis deals with predicting and explaining the spatial extent, frequency,

intensity and timing of wildfires using meteorological and land-use covariates. Our first

approach uses ideas from extreme-value theory in a machine learning context to give good

prediction of the distributional tails of our data. The second approach uses a novel Bayesian

hierarchical model designed specifically for extreme wildfires. We show that wildfire risk on

the French Mediterranean basin is affected by significant random effects related to land-use

and policy changes, and a seasonally-varying fire-weather index.

Keywords: Bayesian hierarchical model, environmental statistics, extreme values, generalized

extreme value distribution, generalized Pareto distribution, gradient boosting, max-stability,

model validation, severe thunderstorms, wildfire modelling
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Résumé

Les événements environnementaux extrêmes peuvent avoir des effets dévastateurs sur la

société lorsqu’ils interagissent avec des systèmes humains et naturels vulnérables. Ces événe-

ments peuvent résulter de causes naturelles, comme les phénomènes liés à l’oscillation aus-

trale El Niño ou les variations climatiques décennales/multidécennales. Ces causes peuvent

faire suite à une augmentation de l’activité humaine, par exemple par le biais de change-

ments dans l’utilisation des terres ou de changements climatiques anthropiques, qui peuvent

influencer la fréquence, l’intensité, l’étendue spatiale et le moment de ces événements, et

provoquer des extrêmes sans précédent. Pour comprendre et quantifier avec précision les

risques associés à ces événements, il est important d’identifier les tendances liées à ces causes,

qui peuvent être mesurées ou non.

L’ajustement de modèles pour les événements rares est intrinsèquement difficile en raison

de la rareté des données disponibles. Les événements extrêmes les plus destructeurs sont

rarement isolés dans l’espace et le temps, il faut donc tenir compte de leurs dépendances

spatiales et temporelles. Cette thèse traite de la modélisation paramétrique des orages violents

et des feux de forêt en utilisant des modèles motivés par des résultats probabilistes limitatifs.

La première partie de cette thèse étudie les facteurs qui influencent sur la magnitude et l’éten-

due spatiale des orages sévères aux états-unis. Nos résultats montrent que le risque d’orages

violents en avril et mai augmente dans des régions des États-Unis où il est à priori élevé, et que

le risque d’orages en février augmente pendant les années La Niña. Nous montrons également

que ces extrêmes sont plus localisés pendant le printemps et l’été par rapport à l’hiver, et nous

constatons que certaines de ces différences saisonnières sont plus prononcées pendant les

années El Niño.

La deuxième partie de la thèse traite de la prédiction et de l’explication de l’étendue spatiale,

de la fréquence, de l’intensité et du moment des incendies de forêt en utilisant des covariables

météorologiques et d’utilisation des terres. Notre première approche utilise les notions de la

théorie des valeurs extrêmes dans un contexte d’apprentissage automatique pour donner une

bonne prédiction des queues de distribution de nos données. La seconde approche utilise

un nouveau modèle hiérarchique bayésien conçu spécifiquement pour les incendies de forêt

extrêmes. Nous montrons que le risque d’incendie dans le bassin méditerranéen français est

affecté par des effets aléatoires significatifs liés à l’utilisation des terres et aux changements de

politique, ainsi que par un indice de temps d’incendie variant selon les saisons.
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Résumé

Mots-clés : Distribution généralisée de Pareto, distribution généralisée des valeurs extrêmes,

modèle hiérarchique bayésien, modélisation des incendies, orages violents, renforcement du

gradient, stabilité maximale, statistiques environnementales, valeurs extrêmes, validation du

modèle.
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Introduction

An elderly woman from the island of Evia in Greece holds her right hand over her heart in

despair. Behind her, conflagrations engulf the forest and threaten her home. A photograph

documenting her reaction to unprecedented wildfires so perfectly captures the general feeling

of distress after the release of the sixth assessment report by The Intergovernmental Panel on

Climate Change (IPCC) two days later, that it appeared on the front pages of the Daily Mail,

the Financial Times and the Guardian.

A ‘code-red for humanity’, was UN Secretary-General António Guterres’s description of the

report, which for the first time includes a chapter dedicated to environmental extremes

(Seneviratne et al., 2021). ‘The alarm bells are deafening, and the evidence is irrefutable’.

The chapter concludes that human-caused emissions of greenhouse gases have caused an

increased frequency and/or intensity of some environmental extremes.

Yet the photograph encapsulates the surprised reaction of the woman to the wildfires: ‘Why

should the forest burn? Isn’t it a sin?’ Although Greece has not experienced a heatwave quite

like this in more than three decades, there are indeed other unmeasured causes for the blazes

that had incinerated over 460,000 acres of forest in Evia by the 8th of August 2021. Several

suspected arsonists were arrested in connection with the fires, and in fact roughly 90% of all

wildfires are caused by human activity, which is difficult to quantify. Greece’s prime minister

has also apologised for ‘weaknesses’ in efforts to quell wildfires, as local officials complained

about the lack of firefighting resources, especially from the air. To assess the risks associated

with environmental extremes such as these fires, it is crucial to incorporate both measured

and unmeasured causes.

Identifying trends related to measured causes is important for policymakers and aids risk

mitigation, but these trends are uncertain. The IPCC found that even a small incremental in-

crease in global warming (+0.5◦C) worsens droughts in some regions, but findings such as this

are always subject to uncertainty. Accurately quantifying trends and their variability requires

well-specified statistical models grounded in probability theory and expert knowledge.

Apart from human casualties, environmental extremes can also lead to major economic losses.

Global insured claims due to wildfire events increased from below $10 billion in 2000–2009 to

$45 billion in the subsequent decade1. Annual losses from severe thunderstorms in the United

1https://www.swissre.com/risk-knowledge/mitigating-climate-risk/yet-more-wildfires.html
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Introduction

Figure 1 – Ritsopi Panagiota, 81, reacting to wildfires reaching her house in the village of
Gouves on Evia, Greece. Photograph by Konstantinos Tsakalidis.

States alone have exceeded $10 billion in recent years2. These economic and human impacts

are a strong motivation to study how and why environmental extremes vary from season to

season and region to region.

Extreme-value theory provides tools to study such events, which are often characterized by

their complex dependencies in both space and time. The wildfires in Evia lasted two weeks and

were not spatially isolated; other parts of Greece and neighbouring Turkey were simultaneously

battling wildfires as temperatures rose to 45◦C. Merging extreme-value theory with methods

from spatial statistics and machine learning can help to model and explain such extremal

dependencies.

The big data revolution has contributed to the boom of the aforementioned fields in the last

decades, partly prompted by the impending climate crisis and the increasing desire to use

data to assess risk. However, modelling extreme events is inherently difficult due to the paucity

of data available, and computational challenges arise when the number of covariates or data

locations increases.

This thesis deals with the analyses of measured and unmeasured causes of environmental

extremes to better understand their associated risks. Chapter 1, 2 and 3 focuses on quantifying

relevant trends from measured causes, which are of primary interest to policymakers or

intergovernmental bodies such as the IPCC. Chapter 4 advocates estimating and incorporating

unmeasured causes to better model complex processes, and we illustrate our method with an

application to wildfires.

2http://www.willisre.com/Media_Room/Press_Releases_(Browse_All)/2017/WillisRe_Impact_of_ENSO_on_
US_Tornado_and_Hail_frequencies_Final.pdf

2
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Introduction

Outline of the thesis

Severe thunderstorms are associated with concurrently elevated values of 0–180hPa Convec-

tive Available Potential Energy (CAPE; J kg−1), which measures the amount of energy available

for convection in the atmosphere, and 0–3km Storm Relative Helicity (SRH; m2s−2), which

measures vertical wind shear. For the first half of the thesis, we model the extremes of SRH,

CAPE and PROD =p
CAPE×SRH.

In Chapter 1, we present the generalized extreme value distribution, which describes the

univariate limiting distribution of block maxima, and use it to perform trend analyses of all

variables for all months. We consider time and a well known El Niño-Southern Oscillation

index as covariates, and account for multiple testing. Our results suggest that the risk from

severe thunderstorms in April and May is increasing in parts of the contiguous US where it

was already high, and that the risk from storms in February tends to be higher over large parts

of our spatial domain during La Niña years. This work has been published in the Journal of

Climate and is available as Koch et al. (2021).

Chapter 2 introduces max-stable fields as the functional limits of component-wise block

maxima, used to model the spatial dependence of extreme values. We propose three new tools

for use when fitting these fields to gridded pointwise monthly maxima, and apply them to the

data from Chapter 1. These tools are an out-sample selection scheme anchored on a local

max-stability bootstrap test based on empirical likelihood, a model selection metric based on

the block bootstrap which improves on the current state of the art, and a Brown–Resnick model

with smooth spline bases incorporated into its parameters. We show that the extremes of

thunderstorm-conducive environments tend to be more localized during spring and summer

than in the winter, and find that these seasonal differences are more pronounced during El

Niño events. This chapter will shortly be submitted to the Journal of the American Statistical

Association, Applications and Case Studies.

The second half of the thesis concerns wildfire modelling. Chapter 3 deals with the predic-

tion of wildfire counts and sizes over the contiguous US using meteorological and land-use

covariates. We introduce gradient tree boosting, and propose new loss functions motivated

by extreme-value theory that focus on good prediction of the tails of our data. One should

always have the real-world prediction scenario in mind when validating models, and we

appeal to ideas from spatial statistics to validate model predictions on spatially-dependent

data. The predictions outperform the benchmark and other approaches. Equally important is

our assessment of the importance and marginal effects of various covariates on the response,

which could prompt national wildfire predictive services to rethink the design of fire danger

warning systems across the contiguous US. This chapter has been submitted to Extremes, and

is available as Koh (2021).

Chapter 4 deals with summer wildfires in the French Mediterranean basin. We develop a

joint model for the occurrence intensity and the wildfire size distribution by combining

extreme-value theory and tools from point processes within a novel Bayesian hierarchical

3



Introduction

model. Inference is performed by integrated nested Laplace approximation, with stratified

subsampling of counts to handle computational issues arising from the large sample size. We

introduce the log-Gaussian Cox process and use it to model wildfire ignitions. Burnt areas are

numerical marks attached to points and are considered extreme if they exceed a high threshold.

We capture the non-linear influences of covariates, such as a well-known fire weather index, on

wildfire activity. The timing of periodic events in plant life cycles and stomatal control under

drought help explain some of our estimates of these effects. We estimate various unmeasured

drivers of different aspects of wildfire activity, and show that including them in our model

leads to good predictions. This chapter has been submitted to the Annals of Applied Statistics,

and is available as Koh et al. (2021).

We conclude with a discussion and outline possible extensions in Chapter 5.
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1 Trends in the extremes of environments associated

with severe US thunderstorms

This chapter is a postprint of the article written with Anthony C. Davison, Erwan Koch, Chiara

Lepore and Michael K. Tippett, published in Journal of Climate (Koch et al., 2021). Parts of

this chapter may overlap with other chapters, but we keep it self-contained for clarity. The

contributions of the doctoral candidate were in producing the results, simulations, plots and

tables, and writing a substantial part of the paper.

1.1 Abstract

Severe thunderstorms can have devastating impacts. Concurrently high values of convective

available potential energy (CAPE) and storm relative helicity (SRH) are known to be conducive

to severe weather, so high values of PROD=
p

CAPE×SRH have been used to indicate high risk

of severe thunderstorms. We consider the extreme values of these three variables for a large

area of the contiguous United States (US) over the period 1979–2015, and use extreme-value

theory and a multiple testing procedure to show that there is a significant time trend in the

extremes for PROD maxima in April, May and August, for CAPE maxima in April, May and

June, and for maxima of SRH in April and May. These observed increases in CAPE are also

relevant for rainfall extremes and are expected in a warmer climate, but have not previously

been reported. Moreover, we show that the El Niño-Southern Oscillation explains variation

in the extremes of PROD and SRH in February. Our results suggest that the risk from severe

thunderstorms in April and May is increasing in parts of the US where it was already high,

and that the risk from storms in February is increased over the main part of the region during

La Niña years. Our results differ from those obtained in earlier studies using extreme-value

techniques to analyze a quantity similar to PROD.

Key words: Convective available potential energy; El Niño-Southern Oscillation; Generalized

extreme-value distribution; Multiple testing; Severe weather; Storm relative helicity; Time

trend.

7



Chapter 1. Trends in the extremes of environments associated with severe US
thunderstorms

1.2 Introduction

Annual losses from severe thunderstorms in the United States (US) have exceeded $10 billion

in recent years.1 In addition to economic losses, 2011 was marked by 552 deaths caused by

tornadoes. These economic and human impacts are a strong motivation to study how and why

US thunderstorm activity varies from year to year and region to region. Two important aspects

are trends potentially related to climate change or multi-decadal variability, and modulation

by the El Niño-Southern Oscillation (ENSO). However, inadequacies in the length and quality

of the thunderstorm data record present substantial challenges to addressing these questions

directly (Verbout et al., 2006; Allen and Tippett, 2015; Edwards et al., 2018).

In the US, a severe thunderstorm is defined to be one that produces a tornado, hail greater

than one inch in diameter, or wind gusts in excess of 50 kts. Supercell storms are responsible

for a large fraction of severe thunderstorm reports (e.g., 79% of tornadoes according to Trapp

et al. (2005)), even though only about 10% of thunderstorms are supercells (Doswell III, 2015),

and a key element in forecasting severe thunderstorms is the prediction of where and when

supercells will occur (Corfidi, 2017). A supercell is a thunderstorm with a deep, long-lived

rotating updraft (mesocyclone). The presence of buoyancy, i.e., convective available potential

energy (CAPE), and deep-layer vertical wind shear are important determinants for supercell

development. In addition to the magnitude of the vertical shear, the angle between surface and

upper-level winds is important for mesocyclone development and persistence. A key quantity

is atmospheric helicity, which is computed relative to storm motion and is proportional to

vertical wind shear and the amount of wind direction turning from the surface to upper levels

(often 0–3 km).

Several recent studies of US tornado reports have concluded that annual numbers of reliably

observed tornadoes, i.e., those rated E/EF1 and greater, show slight but statistically insignifi-

cant trends downward over time (Brooks et al., 2014; Elsner et al., 2015), whereas measures

of tornado outbreaks or clusters show upward trends (Brooks et al., 2014; Elsner et al., 2015;

Tippett et al., 2016). Changes in regional tornado activity have also been reported (Agee et al.,

2016; Gensini and Brooks, 2018), but there is less evidence for changes in hail and damaging

straight-line wind, perhaps due to the poorer quality of the relevant databases.

In view of the limitations of the historical storm record, a valuable alternative is the analysis of

meteorological environments associated with severe thunderstorms. As mentioned above,

severe thunderstorms, especially supercell storms, are more likely in the presence of high

values of CAPE and of certain measures of vertical wind shear (see, e.g., Brooks et al., 2003;

Brooks, 2013) such as storm relative helicity (SRH). Weather forecasters have routinely used

such quantities for two decades to interpret observations and the output of numerical weather

prediction models (Johns et al., 1993; Rasmussen and Blanchard, 1998; Doswell III et al., 1996),

and they are also useful in climatological studies, especially in areas outside the US without

1http://www.willisre.com/Media_Room/Press_Releases_(Browse_All)/2017/WillisRe_Impact_of_ENSO_on_
US_Tornado_and_Hail_frequencies_Final.pdf
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1.2. Introduction

extensive historical reports (Brooks et al., 2003). The environmental approach can also provide

an indication of expected severe thunderstorm activity in a warmer climate based on climate

projections that do not resolve thunderstorms explicitly (Trapp et al., 2009; Diffenbaugh et al.,

2013). On time-scales between weather forecasts and climate projections, this approach has

provided a clearer picture of how ENSO modulates US hail and tornado activity (Allen et al.,

2015; Lepore et al., 2017).

However, there are lacunae in previous statistical studies of environments associated with

severe thunderstorms. For instance, relationships with ENSO were diagnosed based on

monthly averages, which are at best indirect proxies for behaviour on the time-scale of weather.

Similarly Gensini and Brooks (2018) computed monthly accumulations of daily maxima of a

significant tornado parameter. Tippett et al. (2016) used submonthly environmental data but

aggregated the results on an annual and US-wide basis. These gaps motivate the present work,

which focuses on extremes of the environmental values rather than on monthly averages,

and presents results that are spatially and temporally resolved. The framework that we use is

statistical extreme-value theory.

Gilleland et al. (2013) apply the conditional extreme-value framework of Heffernan and Tawn

(2004) to the product WS×Wmax, where WS is a measure of wind shear and Wmax =
p

2×CAPE,

by conditioning on the 75th percentile of that variable computed across the spatial domain.

This approach has the advantage of allowing the study of real spatial patterns under severe

conditions, as opposed to approaches looking at pointwise maxima. They show some temporal

variations in the mean simulated values from their model.

Mannshardt and Gilleland (2013) perform an unconditional univariate analysis in which they

fit the generalized extreme-value (GEV) distribution to the annual maxima of WS×Wmax and

establish the existence of a time trend in the GEV location parameter. Heaton et al. (2011)

consider three Bayesian hierarchical extreme-value models based on exceedances over a high

threshold for WS×Wmax, their third model being based on a Poisson point process with a

yearly time trend. Neither paper clarifies whether this trend is attributable to both CAPE and

WS or only to one of them. Moreover, both articles consider trends in annual quantities and

thus cannot detect month-specific features, and they do not account for multiple testing,

though this issue is briefly addressed in Gilleland et al. (2008). Finally, they consider only time

as a covariate.

Our study covers a large part of the contiguous US for individual months from 1979 to 2015 and

we consider CAPE, SRH (0–3 km) and the combined variable PROD=
p

CAPE×SRH separately.

To motivate our use of PROD, we consider the discriminant line defined in Brooks et al. (2003,

Equation (1)), which is one of the first thresholds used to distinguish low and high likelihoods

of severe thunderstorm occurrence using a function of CAPE and vertical shear. This equation

can be rewritten as S6×CAPE0.62 = 18.60, where S6 is the 0–6 km shear. Replacing S6 with

0–3 km SRH and approximating the power 0.62 by 0.5 leads to a discriminant line of the form

SRH×p
CAPE = c, i.e., PROD = c, where c is a real constant, and shows that high values of
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PROD can be expected to be indicative of an elevated risk of severe thunderstorms. PROD

has already been used as a proxy for severe thunderstorms (e.g., Tippett et al., 2016) and the

plot of Figure 1 in Brooks et al. (2003) is little changed by replacing S6 with 0–3 km SRH (not

shown). More generally, the product of CAPE and two shear-related variables (different or

not), or equivalently its square root, is commonly used as an indicator of the likelihood of

severe thunderstorm occurrence. For instance, the significant tornado parameter (STP) and

the supercell composite parameter (SCP) involve the product of CAPE, S6 and 0–1 km SRH,

and the product of CAPE, S6 and 0–3 km SRH, respectively (e.g., Thompson et al., 2003).

To ensure the soundness of our results we carefully check the suitability of the GEV model and

the use of time and ENSO as explanatory variables in its location parameter, and we account

for multiple testing by implementing the false discovery rate procedure of Benjamini and

Hochberg (1995). As stated in Gilleland et al. (2013, Section 1), in addition to studying PROD,

it is insightful to consider its components separately. Furthermore, accounting for multiple

testing is essential when testing many hypotheses simultaneously, as stressed by Gilleland

et al. (2013, Section 4).

We find a significant time trend in the GEV location parameter for PROD maxima in April, May

and August (and to a lesser extent in June and December), in CAPE maxima in April, May and

June (and to a lesser extent in August, November and January), and in SRH maxima in May

(and to a lesser extent in April). The trends in CAPE maxima are striking, because CAPE is

expected to increase in a warming climate (Del Genio et al., 2007; Van Klooster and Roebber,

2009) and are relevant to rainfall extremes (Lepore et al., 2015), but have not previously been

observed over the US. April and May are important months for PROD, as severe thunderstorms

are frequent at this period. The corresponding time slope is positive in regions of the US where

severe thunderstorms are already common, which may have implications for risk assessment

and management. Our study also reveals that ENSO can explain variation in the GEV location

parameter for PROD and SRH maxima in February. The corresponding slope is negative

over most of the region we consider, possibly suggesting an increased risk of high storm

impacts in February during La Niña years. Our results differ from those of Heaton et al. (2011),

Mannshardt and Gilleland (2013) and Gilleland et al. (2013), but are fairly consistent with

those obtained by Gensini and Brooks (2018), who inter alia consider the numbers of tornado

reports.

The remainder of the chapter is organized as follows. §1.3 presents the data and a brief

exploratory analysis. We describe our statistical approach and demonstrate its relevance in

§1.4. §1.5 details our main results, and §1.6 summarises our findings and discusses them.

1.3 Data and exploratory analysis

The data we investigate consist of 3-hourly time-series of 0–180 hPa convective potential

energy (CAPE, Jkg−1) and 0–3 km storm relative helicity (SRH, m2s−2) from 1 January 1979 at

00:00 to 31 December 2015 at 21:00. The region covered is a rectangle over the contiguous US

10
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Figure 1.1 – Empirical pointwise probabilities of 3-hourly CAPE exceeding 1400 Jkg−1 (left)
and SRH exceeding 170 m2s−2 (right) for the entire period 1979–2015. Dark grey corresponds
to grid points where no observations are available.

from −110◦ to −80◦ longitude and 30◦ to 50◦ latitude and the resolution is 1◦ longitude and 1◦

latitude. These data constitute a coarse version of reanalysis data from the North American

Regional Reanalysis (NARR); the original resolution is 32 km longitude and 32 km latitude

(see, e.g., Mesinger et al., 2006). The region contains 651 grid points, with no data available for

32 grid points over the sea or lakes. Using these time series, we build 3-hourly time series of

PROD=
p

CAPE×SRH, measured in m3s−3.

As a physical covariate we use monthly values of the NINO 3.4 index (◦C) from 1979 to 2015,

taken from the ERSSTv5 data set available on the NOAA Climate Prediction Center website.

Figure 1.1 shows the empirical pointwise probabilities that CAPE and SRH exceed thresholds

corresponding to roughly the 90th percentile of each variable across the entire region. There is

a clear North-South gradient for CAPE probabilities, while the regional spatial pattern for SRH

suggests that the high values cluster towards the centre of the region.

Figure 1.2 shows an increase in the exceedance probabilities for PROD at many grid points

over the decades; a similar result is visible for SRH, but less so for CAPE. This increase is of

interest for risk assessment, especially in regions with a high risk of severe thunderstorms.

Figure 1.2 strongly suggests the presence of a temporal trend in the maxima, but there seems

to be no geographical shift, notwithstanding the results of Gilleland et al. (2013).

The top left panel of Figure 1.3 shows a positive correlation between PROD April maxima and

time for many grid points, and the middle panels show a positive linear time trend for April

maxima of PROD, CAPE and SRH in the subregion indicated. The top right panel shows strong

negative correlation between PROD February maxima and ENSO at many grid points, while

the scatter-plots in the bottom panels show a roughly linear negative trend for all variables.

These analyses underscore the need to incorporate ENSO into our statistical modelling of

maxima.
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Figure 1.2 – Empirical pointwise probabilities of 3-hourly PROD exceeding 3300 m3s−3 during
the periods 1979–1987 (top left), 1988–1996 (top right), 1997–2005 (bottom left) and 2006–2015
(bottom right).
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Figure 1.3 – Exploratory analysis for monthly maxima: The top panels show the correlation
map with time (in years from 1 to 37) for PROD April maxima (left) and the correlation map
with ENSO for PROD February maxima (right). The middle and bottom panels display PROD
(left), CAPE (centre) and SRH (right) analyses on a subregion indicated by the black rectangle
drawn on the correlation maps. The middle panels show the region-averaged monthly maxima
time series across all 444 months in light grey, the region-averaged April maxima time series in
black and its 95% confidence interval bounds indicated by the red shaded region. Every point
in the time series is the averaged maxima across all grid points in the subregion indicated
before, for a particular month and a particular year. The bottom panels show scatter-plots
of the region-averaged February maxima with ENSO, along with the 95% confidence interval
bounds at each point indicated by the whiskers. The black line represents the best fitted local
regression trend estimate, with its 95% confidence interval bounds indicated by the shaded
blue region.
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1.4 Methodology

1.4.1 Modelling of maxima

Risk assessment entails the estimation of return levels associated with very high return periods

and of the probabilities of observing events so extreme that they have never occurred before.

Extreme-value theory provides a solid framework for the extrapolation needed to perform

these tasks for the maxima of PROD, CAPE and SRH. Here we present the statistical background

to the results in §1.5; for further explanation and references see Coles (2001) or Davison and

Huser (2015).

Let Mn denote the maximum of independent and identically distributed random variables

X1, . . . , Xn . The extremal types theorem states that if there exist sequences {an} > 0 and {bn} ∈
R such that (Mn −bn)/an has a non-degenerate limiting distribution as n → ∞, then this

distribution must be of generalized extreme-value form,

GEVη,τ,ξ(x) =
{

exp
[
−{

1+ξ(x −η)/τ
}−1/ξ
+

]
, ξ 6= 0,

exp
[−exp

{−(x −η)/τ
}
+
]

, ξ= 0,
x ∈R,

where ξ and η are real-valued, τ> 0 and, for any real a, a+ = max{a,0}. If n is large enough,

this theorem suggests using the approximation

P(Mn ≤ x) ≈ GEVη,τ,ξ(x), x ∈R, (1.1)

for suitably chosen η, τ and ξ, which are location, scale and shape parameters. The latter

defines the type of the distribution: ξ> 0, ξ< 0 and ξ= 0 correspond to the Fréchet, Weibull

and Gumbel types and allow quite different statistical behaviours, with the first giving a heavy

upper tail with polynomial decay, the second modelling bounded variables, and the third an

intermediate case, unbounded with an exponentially-decaying upper tail.

The GEV approximation for maxima remains valid if the variables are dependent, provided that

distant extremes are “nearly independent”, or, more formally, Leadbetter’s D(un) condition is

satisfied. We shall see below that near-independence is credible for our time series, so it is

plausible that (1.1) applies.

The results above provide a natural model for maxima of stationary sequences. To apply this

model we split the data into blocks of equal lengths and compute the maximum of each block.

Assume that we have T blocks of length n and let M (1)
n , . . . , M (T )

n denote the corresponding

maxima. If n is large enough, the distribution of the M (t )
n is approximately (1.1), and inference

from fitting this model to the M (t )
n is commonly called the block maximum method. As noted

in §1.3, PROD, CAPE and SRH maxima exhibit a time trend and/or a relation with ENSO

for some months, and we can allow the GEV parameters to depend upon these variables.

Figure 1.4 and results in §1.5 show that the temporal or ENSO effects only appear for certain

months. For instance, time trends for PROD, CAPE and SRH are mainly present in April and
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Figure 1.4 – Whole region-averaged monthly maxima of PROD (left), CAPE (centre) and SRH
(right). The four lines coloured from light blue to dark blue correspond to the time periods
1979–1987, 1988–1996, 1997–2005 and 2006–2015, respectively.

May, April to June and April and May, respectively. We therefore choose our blocks to be the

months and study each month separately, fitting the models

M (t )
n ∼ GEVηti(t ),τti,ξti , ηti(t ) = η0,ti +η1,tit , t = 1, . . . ,T, (1.2)

and

M (t )
n ∼ GEVηen(t ),τen,ξen , ηen(t ) = η0,en +η1,enENSOt , t = 1, . . . ,T, (1.3)

where the subscripts ti and en refer to the dependence on time and on ENSO respectively,

η0,ti, η1,ti, η0,en, η1,en, ξti and ξen are real-valued, τti and τen are positive, ENSOt is the value of

ENSO in that month for year t , and n equals 224, 232, 240 or 248, depending on the number of

days in the month, as we have eight observations per day. Figure 1.3 suggests that effects of

time and ENSO on maxima are roughly linear and impact the location parameter η only, so we

consider constant scale and shape parameters; it is generally inappropriate to allow the shape

parameter to depend on a covariate owing to the large uncertainty of its estimate. The time

trend induces non-stationarity between the blocks (i.e., across years) but does not violate the

within-block stationarity assumption; see below. Figure 1.4 suggests that the time trend does

not stem from a shift of seasonality.

We compute the monthly maximum for each month and a given grid point and thereby obtain

the maxima M (1)
31 , . . . , M (37)

31 for January, say. We then fit the models (1.2) and (1.3) by numerical

maximum likelihood estimation for each month and grid point.

Recall that, provided the block size n is large enough, within-block stationarity and the D(un)

condition ensure the validity of (1.1) and hence allow us to consider the models (1.2) and (1.3).

To check the plausibility of these two properties, we consider the 3-hourly time series of PROD,

CAPE and SRH at 50 representative grid points. For each block (associated with a triplet grid

point-month-year), we fit several autoregressive-moving average (ARMA) processes to the

corresponding time series, choose the fit that minimizes the Akaike information criterion

(AIC), and use a Box–Pierce procedure to assess the independence of the corresponding
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Figure 1.5 – Assessment of the in-sample fit of the GEV: QQ plots for PROD (left), CAPE (centre)
and SRH (right) May maxima at the grid point whose South-West corner has coordinates 32◦

latitude and −99◦ longitude. The shaded regions indicate the 95% confidence bounds.

residuals; we find no systematic departure from independence or stationarity. Often the

residual distribution appears to lie in the Fréchet or Gumbel maximum-domains of attraction,

and Embrechts et al. (1997, Section 5.5) show that in such cases convergence of the maxima to

the GEV limit occurs even for ARMA processes. Hence the time series of data within the months

seem to satisfy both stationarity and the D(un) condition. Choosing the months as blocks

thus appears reasonable, as is confirmed by our analysis in the following section, whereas

choosing seasons or years as blocks would mask many interesting features, and the sample

size associated with day- or week-long blocks is too low for the GEV approximation (1.1) to be

reasonable.

1.4.2 Assessment of GEV fit

At each grid point i and month j , we fit the GEV model to the monthly maxima, as described

in §1.4.1, resulting in location, scale and shape parameter estimates η̂i , j , τ̂i , j and ξ̂i , j . We use

the Kolmogorov–Smirnov test to assess the distributional proximity between this fitted model

and the empirical distribution of the 37 observed monthly maxima. For PROD, CAPE and

SRH, in most months, the fit appears acceptable at the 5% level at all grid points. These good

in-sample fits of the GEV distribution for all variables are confirmed by the quantile-quantile

(QQ) plots, which are displayed for one grid point in Figure 1.5.

However, these results do not take into account the fitting of the model to the data, which

systematically decreases the values of the Kolmogorov–Smirnov statistic. In order to make an

informal allowance for this decrease, for each grid point i and month j we:

1. fit the GEV distribution using the pooled observations from the eight grid points nearest

to i to obtain η̂poi , j , τ̂poi , j and ξ̂poi , j ;

2. and then use a Kolmogorov–Smirnov test to check the agreement between the “out-

sample” GEV fit with parameters η̂poi , j , τ̂poi , j and ξ̂poi , j , and the empirical distribution
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Variable Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

PROD 42 27 50 29 52 58 67 71 55 27 39 34

Sim PROD 5% 37 34 33 33 35 35 37 38 38 36 36 37

Sim PROD 95% 57 57 55 55 57 58 57 58 57 58 58 57

CAPE 59 33 48 34 60 64 71 90 67 43 58 74

Sim CAPE 5% 41 36 37 36 36 36 38 42 39 36 36 37

Sim CAPE 95% 59 58 60 56 57 58 61 63 61 60 58 59

SRH 36 23 24 21 22 42 42 34 35 26 24 36

Sim SRH 5% 36 36 34 35 34 36 36 36 34 36 36 34

Sim SRH 95% 60 59 59 53 57 57 57 58 58 58 61 57

Table 1.1 – Assessment of the out-sample fit of the GEV: Number of rejections from our out-
sample Kolmogorov-Smirnov test (at the 5% level and without accounting for multiple testing)
for each variable and each month. For each part (corresponding to one variable), the first row
gives the observed number of rejections whereas the second and third ones provide the 5%
and 95% quantiles of the empirical distributions of the number of rejections obtained from
the simulation study.

of the 37 observed monthly maxima at grid point i .

We then repeat these two steps 100 times with data simulated from independent GEV models

fitted at each grid point and compute the 5% and 95% quantiles of the empirical distribution

of the number of rejections. Table 1.1 shows that, for all variables, the observed numbers

of rejections are low compared to the number of grid points (619), especially as we did not

account for multiple testing. Moreover, they are not hugely different from those obtained

in the simulation study, although often slightly above the 95% quantile in the case of CAPE

and slightly below the 5% quantile for SRH and PROD. These discrepancies may be explained

by the substantial spatial dependence present in the data but not in the simulations. This

analysis supports the use of the GEV model at grid points at which no data are available and

thus goes beyond the initial goal of assessment of its fit.

As it fits them adequately, we conclude that the GEV distribution provides a suitable model for

the monthly maxima of PROD, CAPE and SRH.

1.4.3 Testing procedure

General

In §1.5, we assess whether time and ENSO affect the GEV location parameter for PROD, CAPE

and SRH at each of the m = 619 grid points.
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We first discuss the statistic used to test the significance of time and ENSO, respectively, in (1.2)

and (1.3), at a single grid point. In the first case, we have to test the null and alternative

hypotheses

H0 : η1,ti = 0 versus HA : η1,ti 6= 0,

by comparing the fits of the models

M0 : ηti(t ) = η0,ti, M1 : ηti(t ) = η0,ti +η1,tit , t = 1, . . . ,37,

and similarly for ENSO. We let `0(M0) and `1(M1) denote the maximized log-likelihoods for

the models M0 and M1 and compute the signed likelihood ratio statistic T̃ = sgn(η̂1,ti)[2{`1(M1)−
`0(M0)}]1/2, where sgn(η̂1,ti) is the sign of the estimated trend under model M1; T̃ has an

approximate standard Gaussian distribution under H0, and the corresponding p-value is

p = 2Φ(−|t̃ |), where t̃ is the observed value of T̃ andΦ denotes the standard Gaussian distri-

bution function.

This test would be valid if applied at a single pre-specified grid point, but we must make

allowance for the facts that we shall perform the same test at m grid points, and that spatial

patterns in the effects of time and ENSO are likely to induce correlation among the p-values

for nearby grid points. We now discuss how to obtain a valid testing procedure despite these

facts.

Multiple testing

A popular approach for multiple testing in climatology is the field significance test of Livezey

and Chen (1983), but unfortunately this gives little insight about where the results are signifi-

cant, which is of high interest to us. The regression approach of DelSole and Yang (2011) has

the same drawback. Among methods to identify which of the grid points have significant re-

sults are those, such as the Bonferroni procedure, that bound the probability that the number

of falsely rejected null hypotheses exceeds unity. When the number of hypotheses is high,

however, such methods are so stringent that their power is very low.

Benjamini and Hochberg (1995) introduce the false discovery rate (FDR), namely the expected

proportion of incorrect rejections out of all rejections, and propose a procedure to ensure

that the FDR is below a given level q when performing multiple testing. Their approach,

which we call the BH procedure, would reject H0 at all grid points i such that pi ≤ p(k), where

p(1) ≤ ·· · ≤ p(m) are the ordered p-values and

k = max

{
i : p(i ) ≤ q

i

m

}
.

The BH procedure ensures that the FDR is below qm0/m, where m0 denotes the unknown

number of grid points at which H0 is true, and is said to control the FDR at level qm0/m.

For a chosen q , let Sq be the number of grid points at which a particular covariate is declared
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significant by the BH procedure. Then we expect the true number of grid points where the

relation is significant, mA , to satisfy

mA ≥ (1−q)Sq . (1.4)

As the BH procedure ensures that the FDR is not more than qm0/m, we may argue a posteriori

that we have controlled the FDR at level

q (1) = q{m − (1−q)Sq }

m
≤ q

m0

m
,

which entails that mA ≥ (1−q (1))Sq . If we iterate this argument by defining

q (n+1) = q
{
m − (

1−q (n)
)

Sq
}

m
, n = 1,2, . . . ,

we see that the effective level at which we have controlled the FDR is qlim = limn→∞ q (n). The

limit is often well-approximated after just a few iterations, and then we have

mA ≥ (1−qlim)Sq . (1.5)

The BH procedure was originally shown to be valid for independent test statistics, but Ben-

jamini and Yekutieli (2001, Theorem 2.1) prove that it controls the FDR at level qm0/m if the

statistics have a certain form of positive dependence. Ventura et al. (2004) apply this procedure

to simulations representative of climatological data and covering the range of correlation

scales likely to be encountered in practice, and find empirically that it controls the FDR at

level qm0/m. Yekutieli and Benjamini (1999) and Benjamini and Yekutieli (2001) propose

two modifications to account for more general dependence between the test statistics. The

first is complex and does not much improve on the BH procedure, whereas the second is

applicable for any dependence structure but has greatly reduced power, so Ventura et al.

(2004) recommend the use of the BH procedure. Test statistics and p-values based on the

data there are clearly dependent, but as our data resemble those considered in Ventura et al.

(2004), applying the BH procedure at level q should control the FDR at level qm0/m, where

m0 denotes the unknown number of grid points at which H0 is true from m p-values.

1.5 Results

In this section we quantify the effects of time and ENSO in the GEV location parameter and

study their significance, using q = 0.05 and q = 0.2, corresponding to control of the FDR at the

nominal levels 5% and 20%. In each case we first discuss PROD, which is the main variable of

interest for severe thunderstorm risk, and then consider CAPE and SRH.

We begin with the effect of time. Table 1.2 shows that many of the 619 grid points exhibit a

significant time trend for PROD in April, May and August (and to a lesser extent in June and
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December). In April, this number equals 313 at the 20% level, so (1.4) implies that at least

250 of these grid points indeed have a trend; with (1.5), this number rises to 278. Figure 1.6

indicates that, in April, the North-East, a very wide South-East corner and the South-West,

show significant time trends. In the first two regions, η̂1,ti is positive, corresponding to an

increasing risk of severe thunderstorm impacts, particularly in already risky regions. Similar

conclusions may be drawn from Figure 1.7 in the case of May, though the South-East is less

prominent. The highest slope value corresponds to an annual increase of PROD maxima of

about 3% of the corresponding PROD maximum recorded in 1979. Mannshardt and Gilleland

(2013) and Heaton et al. (2011) do not find such a significantly positive time trend over the

entire region most at risk, sometimes called tornado alley, nor do they find significantly

positive trends in the North-East of our region, whereas they find a significant positive trend

towards the West. These differences probably arise because these earlier papers consider

a less recent period (1958–1999), their product variable is slightly different than ours, and

they study annual instead of monthly maxima. The discrepancies with Heaton et al. (2011)

may also be due to their use of a different, Bayesian hierarchical, approach. The evolution

found by Gilleland et al. (2013) between the second (1979–1992) and the third (1993-1999)

period is quite consistent with our trends in Spring; for the other seasons, however, the results

differ appreciably. There are also many dissimilarities in the changes between the first (1958–

1978) and the second (1979–1992) periods, but the first period does not belong to the time

range we consider. Gilleland et al. (2013) consider the mean simulated values conditional on

the total amount of energy being large, and then not all grid point values need be extreme,

whereas we analyse maxima at each grid point. Moreover, the trends we find account for the

year-to-year variation, whereas in Gilleland et al. (2013), changes can only be assessed by

comparing values for three successive periods of about 15 to 20 years. The positive time trends

we detect in Spring appear quite consistent with the results of Gensini and Brooks (2018), who

use much more recent data than the papers previously described. The remaining differences,

especially for Texas, may arise for the following reasons. First, as PROD is only an indicator

of severe weather, there are necessarily discrepancies with results based on effective tornado

reports. Second, PROD slightly differs from STP, so the corresponding results may differ

somewhat. Furthermore, the findings of Gensini and Brooks (2018) about reports concern the

total number of tornadoes per year, and those about STP are not based on the maxima of that

variable.

Regarding CAPE, April, May and June (and to a lesser extent, August, November and January)

show many grid points with a significant time trend. For April and May, Figures 1.6 and 1.7

show significantly negative η̂1,ti in the West, contrasting with a significantly positive trend in

the center and the East. As pointed out by Trapp et al. (2009) and Diffenbaugh et al. (2013), a

positive time trend for CAPE is expected in a context of climate change. However, to the best

of our knowledge, an observed trend has not been previously reported in the literature.

For SRH, May and to a lesser extent April have many significantly positive grid points spread

approximately uniformly except in a large South-West corner in April and a large South-East

corner in May. The significance for PROD in April and May comes from both CAPE and SRH.
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Figures 1.6 and 1.7 suggest that the significant positive time trend in the riskiest part of the US

stems mainly from CAPE in April and from SRH in May. Overall, no seasonal pattern appears:

CAPE seems to drive PROD in January, April, August, November and December, whereas SRH

seems to drive it in February, May, June and September. For March, July and October, there is

no clear driver. Anyway, trying to relate the behaviour of PROD maxima with that of CAPE and

SRH maxima has its limitations. Indeed, the maximum of PROD may not equal the product

of the square root of CAPE maximum and the maximum of SRH, as their maxima may not

coincide.

We now comment on the effect of ENSO. For PROD, Table 1.2 reveals that many grid points

exhibit a significant relation in February. Figure 1.8 indicates that η̂1,en is negative at those and

that the main regions concerned are the North-East, the South-Center and the North-West;

we expect higher PROD maxima during La Niña years in these regions. The highest slope

absolute value corresponds to a decrease of PROD maxima per unit of ENSO of about 10% of

the corresponding basic level of PROD maximum.

There is no strikingly significant result for CAPE, although Allen et al. (2015) found ENSO

signals in CAPE seasonal averages for winter and spring, not accounting for multiple testing.

For SRH, Figure 1.8 shows that almost all grid points in the region exhibit significance in

February, apart from a strip in the North and a tiny diagonal strip in the South-East corner.

The estimate η̂1,en is highly negative in most of the region but very positive in the extreme

South-East, with a very rapid change in sign, presumably due to proximity with the Gulf of

Mexico. There is a significant negative relation in regions at risk of thunderstorms or large-

scale storms, for which SRH plays an essential role. The risk of large impacts may increase

during La Niña years. A relationship between seasonal averages of SRH and ENSO in winter

was noticed by Allen et al. (2015). Finally, Figure 1.8 suggests that CAPE contributes more than

SRH to PROD in terms of significance, though the relation with ENSO is more pronounced for

SRH than for CAPE.

We also consider the residuals of PROD, CAPE and SRH maxima after accounting for ENSO or

temporal effects. For instance, if we observe a time trend, the idea of considering the residuals

after accounting for ENSO is to determine whether the time trend is explained by ENSO. This

allows us to determine whether the time and ENSO effects are “independent”.

In the case of PROD, Table 1.2 shows that removing ENSO does not much decrease the number

of grid points exhibiting a significant time trend; there is a slight decrease for April but a

small increase for some other months. Accounting for the time trend, on the other hand, can

slightly increase the number of grid points showing a significant relation with ENSO. For CAPE,

removing ENSO decreases the number of grid points exhibiting a significant time trend for

March, but there is a slight increase for other months, whereas accounting for time slightly

decreases the number of grid points showing a significant relation with ENSO in January and

March only, with a slight increase in other months. Regarding SRH, removing ENSO decreases

the number of grid points exhibiting a significant time trend in February but there is little
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Variable Covariate q Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

PROD Time 0.05 7 0 1 41 36 0 0 36 2 0 0 22

Time 0.2 40 0 4 313 203 81 13 148 23 0 0 98

ENSO 0.05 0 58 10 0 0 1 0 0 0 0 0 1

ENSO 0.2 1 172 26 0 3 3 0 0 0 0 0 1

CAPE Time 0.05 37 13 28 109 60 89 18 55 4 0 30 1

Time 0.2 92 37 73 268 273 206 75 133 35 40 134 16

ENSO 0.05 15 0 0 0 0 2 2 0 0 0 1 1

ENSO 0.2 27 11 21 0 0 3 16 14 0 1 6 13

SRH Time 0.05 0 1 0 7 43 2 1 7 0 0 0 0

Time 0.2 15 44 4 138 230 14 50 45 6 0 0 27

ENSO 0.05 0 255 0 0 1 0 0 0 0 0 0 0

ENSO 0.2 3 384 59 18 4 0 8 7 4 1 0 82

PROD res. Time 0.05 7 0 2 30 88 0 0 41 2 0 0 38

Time 0.2 50 16 6 274 221 86 21 137 18 0 2 100

CAPE res. Time 0.05 35 20 15 87 96 89 25 59 9 0 19 2

Time 0.2 88 46 51 219 267 223 91 139 54 41 120 29

SRH res. Time 0.05 0 0 0 7 38 2 1 7 0 0 0 0

Time 0.2 20 1 6 126 241 7 46 41 1 0 0 60

PROD res. ENSO 0.05 1 66 8 0 0 1 0 0 0 0 0 7

ENSO 0.2 1 178 26 0 49 3 0 0 0 0 0 33

CAPE res. ENSO 0.05 1 0 0 0 0 3 5 1 0 0 0 2

ENSO 0.2 21 38 0 1 0 4 17 16 0 0 1 21

SRH res. ENSO 0.05 0 209 0 0 4 0 0 0 1 0 0 0

ENSO 0.2 1 359 20 38 14 0 3 7 2 1 0 63

Table 1.2 – Number of grid points where η̂1,ti and η̂1,en are significant for PROD, CAPE and SRH
maxima for each month (top); number of grid points where η̂1,ti is significant for PROD, CAPE
and SRH maxima residuals after accounting for the relation with ENSO (middle); number
of grid points where η̂1,en is significant for PROD, CAPE and SRH maxima residuals after
accounting for the relation with time (bottom). We have accounted for multiple testing using
the BH procedure with the values of q displayed.
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Figure 1.6 – Values and significance of the slope η̂1,ti for PROD (top), CAPE (middle) and SRH
(bottom) maxima in April. Large and small circles indicate significance (after accounting for
multiple testing using the BH procedure) at any level not lower than 5% and 20%, respec-
tively. The units of η̂1,ti are m3s−3yr−1, Jkg−1yr−1 and m2s−2yr−1 for PROD, CAPE and SRH,
respectively. Dark grey corresponds to grid points where no observations are available.
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Figure 1.7 – Same content as in Figure 1.6 in the case of May.
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Figure 1.8 – Values and significance of the ENSO coefficient η̂1,en for PROD (top), CAPE
(middle) and SRH (bottom) maxima in February. Large and small circles indicate significance
(after accounting for multiple testing using the BH procedure) at any level not lower than 5%
and 20%, respectively. The units of η̂1,en are m3s−3◦C−1, Jkg−1◦C−1 and m2s−2◦C−1 for PROD,
CAPE and SRH, respectively.
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Chapter 1. Trends in the extremes of environments associated with severe US
thunderstorms

impact for other months. The conclusions are similar when accounting for the time trend and

studying the ENSO effect. The maps of the residuals (not shown) indicate that when removing

a covariate has little impact on the number of grid points at which the relation with the other

covariate is significant, it has almost no impact on their positions either. In summary, the

effects of time and ENSO appear “independent”, except for CAPE in January and March and

SRH in February.

1.6 Conclusion

This article quantifies the effects of time and ENSO on the distribution of monthly maxima of

PROD, CAPE and SRH, which are highly relevant to the risk of severe thunderstorms. The use

of the GEV distribution appears justified in our setting. After allowance for multiple testing

we detect a significant time trend in the GEV location parameter for PROD maxima in April,

May and August, CAPE maxima in April, May and June and SRH maxima in April and May.

The observed upward time trend for CAPE, although expected in a warming climate, has not

been reported before. April and May are prominent for PROD, as severe thunderstorms are

common at this period, and the corresponding trend is positive in parts of the US where the

risk is already high, which may have important consequences. We also find ENSO to be a

good covariate in the GEV location parameter for PROD and SRH maxima in February. The

corresponding relationship is negative over most of the region we consider, suggesting that the

risk of storm impacts in February increases during La Niña years. Our results differ from those

of Heaton et al. (2011), Mannshardt and Gilleland (2013) and Gilleland et al. (2013), but are

quite consistent with those obtained by Gensini and Brooks (2018), perhaps in part because

these authors consider a period similar to ours, more recent than in the earlier studies.

We investigate the effects of time and ENSO on the marginal (at each grid point) extremal

behaviour of PROD, CAPE and SRH. Quantifying the potential impacts of these covariates

on the local spatial extremal dependence of these variables would also be useful for risk

assessment. Modelling the extremal dependence between CAPE and SRH might also be

informative.

Finally, although concurrently high values of environments such as CAPE and SRH are con-

ducive to severe weather, they do not guarantee that severe thunderstorms will occur. The

degree to which changes in environmental characteristics result in changes in thunderstorm

properties is also uncertain (Hoogewind et al., 2017). Hence, an interesting issue is the precise

implication of an increase of PROD (or SRH) maxima in terms of risk. PROD can be seen as

a proxy for the probability of severe thunderstorm occurrence, so it is natural to think that

PROD maxima may be aligned with the maximum number of severe thunderstorms daily. If

so, then those days with the highest values of PROD would tend to also have the most severe

thunderstorm impacts. Better insight into this potential relationship would be valuable.
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2 Practical tools for fitting max-stable fields, applied to

severe US thunderstorm environments

This chapter is based on a preprint of a paper, jointly written with Anthony C. Davison and

Erwan Koch. The chapter is self-contained and may overlap with other chapters. The contri-

butions of the doctoral candidate were in producing the results, simulations, plots and tables,

and writing the bulk of the paper.

2.1 Abstract

Concurrently high values of convective available potential energy (CAPE) and storm relative

helicity (SRH) are conducive to hazardous convective weather associated with severe thun-

derstorms, so it is valuable to have probabillity models for the extremes of both variables

to account for their spatial dependence. We propose three new tools for fitting max-stable

random fields with unknown margins to gridded pointwise monthly maxima: an out-sample

selection scheme based on a local max-stability bootstrap test, a model selection procedure

that improves on the current state of the art, and a Brown–Resnick model with smooth spline

bases incorporated into its parameters, such that non-stationary dependencies can be mod-

elled and estimation strength can be shared across months. Our results show differences

in the parameters for CAPE, SRH and a product variable, in the spring and summer, so the

corresponding extremes are more localized during these seasons than in the winter. We also

find that these seasonal differences tend to be more pronounced during El Niño events.

Keywords: Bootstrap; Brown–Resnick field; environmental statistics; information criteria;

max-stability test; splines

2.2 Introduction

In the United States (US), severe thunderstorms are responsible for a substantial fraction of

economic and human losses due to natural disasters. Hence it is imperative to model the time

evolution of US thunderstorm activity, important drivers of which include climate change

and the El Niño-Southern Oscillation (ENSO). A severe US thunderstorm is defined to be one
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Chapter 2. Practical tools for fitting max-stable fields, applied to severe US thunderstorm
environments

that produces tornadoes, hailstones greater than one inch (2.54 cm) in diameter, or wind

gusts in excess of 50 kts (1 kt corresponds to approximately 0.51 m s−1). Supercells, which are

thunderstorms with a deep and persistent rotating updraft (mesocyclones), are responsible

for a large fraction of severe thunderstorm reports (e.g., 79% of tornadoes according to Trapp

et al., 2005), even though only about 10% of thunderstorms are supercells (Doswell III, 2015).

The limitations of the available thunderstorm data record (Verbout et al., 2006; Allen and

Tippett, 2015; Edwards et al., 2018) due, for example, to observational bias, make its use for

modelling non-trivial, so it is worthwhile to consider meteorological environments which

are conducive to severe thunderstorms. Such storms, especially supercell storms, are more

probable in the presence of elevated values of convective available potential energy (CAPE) and

of certain measures of vertical wind shear (e.g., Brooks et al., 2003; Brooks, 2013) such as storm

relative helicity (SRH), which have been used by weather forecasters and climatologists for

over two decades. High values of the combined variable PROD =p
CAPE×SRH are favorable

to severe thunderstorms, and PROD has been used, e.g., by Tippett et al. (2016) and Koch

et al. (2021), as a proxy of severe thunderstorm activity, for justification, see Brooks et al. (2003,

Equation 1) and Koch et al. (2021, Section 1). In addition to the absence of observational bias,

an advantage of using thunderstorm environments instead of thunderstorm reports is that

their reanalysis values are available at high and regular spatio-temporal resolution (typically

1◦ longitude and 1◦ latitude every hour or 3 hours), which allows the use of many techniques

from extreme-value theory and geostatistics. Moreover, these environments allow one to draw

conclusions from numerical climate models that do not resolve thunderstorms explicitly.

Our study focuses on severe thunderstorms over a large rectangle over the contiguous US that

contains the most risky region of the US, the famous Tornado Alley. We use reanalysis data from

the North American Regional Reanalysis (NARR), which consists of 3-hourly time-series of

CAPE and SRH from 1979 to 2015. These variables have been used to study how decadal/multi-

decadal climate variations or large-scale weather signals, such as ENSO, modulate severe US

thunderstorm activity. Mannshardt and Gilleland (2013) fitted the generalized extreme-value

(GEV) distribution to the annual maxima of a related product variable in an unconditional

univariate analysis and found a time trend in the location parameter. Heaton et al. (2011)

considered a Bayesian hierarchical extreme-value model for the same product variable, based

on a Poisson point process with a yearly time trend. Allen et al. (2015) and Lepore et al. (2017)

showed a clear link between ENSO and seasonal or monthly means of environments during

winter and spring in the US, and Koch et al. (2021) investigated the link between ENSO and

monthly maxima of PROD and showed that PROD maxima in February are significantly larger

during La Niña years.

The aforementioned papers focused on marginal effects (grid point by grid point) only, but

data and physical arguments suggest that ENSO and other covariates may also affect how

strongly maxima are dependent in space and time. For instance, El Niño episodes tend to warm

the northern part of the US (including Alaska) and to make the southern part wetter (Halpert

and Ropelewsk, 1992), a combination that is expected to lead to larger areas of instability,
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2.2. Introduction

and thus to increase the spatial extent of individual intense events of PROD. As pointwise

maxima arise as a mixture of several individual events, the characteristic range of spatial

dependence in the field of pointwise maxima is an increasing function of the spatial extent

of the individual extreme events (Dombry et al., 2018). Thus, if the spatial extent of extreme

events of PROD tends to increase with ENSO, the same will apply to the spatial dependence of

its field of pointwise maxima. Apart from being influenced by large-scale weather signals such

as ENSO, extreme values of CAPE, SRH and PROD depend on the month, and interactions

between weather signals and seasonality are expected, as the effect of ENSO differs from one

month to the next. In order to model these features in a flexible way, we propose max-stable

random fields whose spatial dependence parameters are linked to covariates that account for

seasonality and large-scale weather signals.

Max-stable fields (e.g., de Haan, 1984; de Haan and Ferreira, 2006; Davison et al., 2012) consti-

tute a natural extension of multivariate extreme-value distributions to the infinite-dimensional

setting. They are well-suited to modeling spatial extremes, as they arise as the only possible

non-degenerate limits of appropriately rescaled pointwise maxima of independent replica-

tions of a random field. Commonly-used max-stable models, such as the extremal t (Opitz,

2013) and Brown–Resnick (Brown and Resnick, 1977; Kabluchko et al., 2009) models, involve

an underlying Gaussian field whose correlation function or variogram contains a range param-

eter. We propose to introduce covariates into the range parameter. Although incorporating

covariates with trend surfaces in the marginal parameters (GEV parameters) of a max-stable

field has been proposed (e.g., Davison et al., 2013, and references therein), to the best of our

knowledge, doing so in their dependence parameters has been less explored in the multivari-

ate and spatial contexts. To model temperature maxima, Huser and Genton (2016) developed

non-stationary max-stable dependence structures with covariates, while Mhalla et al. (2017)

proposed a semi-parametric methodology to estimate non-stationary Pickands functions,

which characterise the dependence of max-stable random vectors.

We present a general model and consider the month and ENSO as covariates. We show by

simulation that the model parameters can be estimated rather accurately even in a complex

setting, and that there are differences in the parameters for PROD, CAPE and SRH in the spring

and summer, so the corresponding extremes are more localized during these seasons than

in the winter. These seasonal differences are more pronounced during El Niño and La Niña

events, though the associated uncertainty can be high.

In environmental applications, data may exhibit asymptotic independence, implying that

max-stable fields are unsuitable, and several subasymptotic models have been proposed to

alleviate this (e.g., Huser et al., 2021; Huser and Wadsworth, 2019). Thus, one should always

assess the suitability of max-stable models in applications. Gabda et al. (2012) and Buhl and

Klüppelberg (2016) proposed graphical diagnostics, and here we add a max-stability test based

on empirical likelihood that is applicable when data have unknown margins.

Owing to the complexity of the model we consider, estimating the marginal generalized
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extreme-value (GEV) parameters at each grid point and the dependence parameters of the

max-stable field in a single step (optimizing the likelihood with respect to all parameters)

is too computationally intensive. Thus, estimation must be performed in two steps: we

estimate the GEV parameters at each grid point separately, transform the data to have standard

Fréchet margins and then fit the dependence parameters using a pairwise likelihood (e.g.,

Padoan et al., 2010). We show that in such a two-step procedure, it is inappropriate to use

the sandwich matrix to compute confidence intervals, and the non-parametric bootstrap

gives better coverage. We also show that using the composite likelihood information criterion

(CLIC) computed from the sandwich matrix in this two-step procedure is not optimal, and

we propose estimating the composite Kullback–Leibler divergence with the non-parametric

bootstrap.

The remainder of the chapter is organized as follows. In Section 2.3, we briefly review max-

stable fields and their estimation by pairwise likelihood, and present the data and some

exploratory analyses. Section 2.4 presents our main methodological contributions: the pro-

posed model, the max-stability test, and the bootstrap-based confidence intervals and CLIC.

Section 2.5 is dedicated to the case study: we use the model and methodologies developed in

Section 2.4 to answer our concrete question. Section 2.6 summarizes our main contributions

and findings and proposes some future perspectives.

2.3 Preliminaries

2.3.1 Max-stable random fields

In the following,
d= and

d→ denote equality and convergence in distribution, respectively; in

the case of random fields, distribution has to be understood in terms of the set of all finite-

dimensional multivariate distributions. A random field {Z (s) : s ∈Rd } is said to be max-stable

if there exist sequences of functions {an(s), s ∈Rd }n≥1 > 0 and {bn(s), s ∈Rd }n≥1 ∈R such that,

for any n ≥ 1, {maxn
i=1 Zi (s)−bn(s)

an(s)
: s ∈Rd

}
d=

{
Z (s) : s ∈Rd

}
,

where the equality is in distribution and Z1, . . . , Zn , are independent replicates of Z . Let

T̃1, . . . , T̃n be independent replications of a random field {T̃ (s) : s ∈Rd }, and let
{
cn(s), s ∈Rd

}
n≥1 >

0 and
{
dn(s), s ∈Rd

}
n≥1 ⊂R be sequences of functions. If there exists a non-degenerate ran-

dom field {G(s) : s ∈Rd } such that{
maxn

i=1 T̃i (s)−dn(s)

cn(s)
: s ∈Rd

}
d→

{
G(s) : s ∈Rd

}
, n →∞, (2.1)

then G is necessarily max-stable (de Haan, 1984). This explains the relevance of max-stable

fields in the modelling of pointwise maxima of random fields. If {Z (s) : s ∈Rd } is a max-stable

field, then, for any s ∈ Rd , Z (s) follows the GEV distribution with location, scale and shape
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parameters ηs , τs > 0 and ξs . Max-stable fields having standard Fréchet margins, i.e., such

that P(Z (s) ≤ z) = exp(−1/z), z > 0, s ∈Rd , are said to be simple.

Any simple max-stable field can be written as (de Haan, 1984)

Z (s) = ∞
max
i=1

RiUi (s), s ∈Rd , (2.2)

where the (Ri )i≥1 are the points of a Poisson point process on (0,∞) with intensity function

r−2dr and the (Ui )i≥1, are independent replicates of a non-negative random field {U (s), s ∈Rd }

such that E{U (s)} = 1 for any s ∈Rd . Any field defined by (2.2) is simple max-stable, moreover,

and this has enabled the construction of parametric models of max-stable fields. The best

known are the Smith (Smith, 1990), Schlather (Schlather, 2002), Brown–Resnick (Brown and

Resnick, 1977; Kabluchko et al., 2009), and extremal-t (Opitz, 2013) models; the last two are

flexible models that have been found to capture extremes well, and in our case study (Section

2.5) we use the Brown–Resnick model. Write W (s) = exp{ε(s)−Var(ε(s))/2}, s ∈ Rd , where

Var denotes variance, and {ε(s) : s ∈ Rd } is a centred Gaussian random field with stationary

increments and semivariogram γ. Using U =W in (2.2) leads to the Brown–Resnick random

field associated with the semivariogram γ. A frequently used isotropic semivariogram is

γ(s) = (‖s‖/ρ
)α, s ∈Rd , where ρ ≥ 0 and α ∈ (0,2] are the range and smoothness parameters,

respectively, and ‖.‖ is the Euclidean distance. Such an unbounded semivariogram implies

that the field is mixing, which is appropriate if the extreme events are spatially localized. It

is possible to account for geometric anisotropy by introducing a symmetric positive definite

matrix (e.g., Blanchet and Davison, 2011), which, for d = 2, is

A =
(

cosκ −sinκ

r sinκ r cosκ

)
, (2.3)

where r > 0 and κ ∈ [0,π] are the scaling and rotation parameters, respectively. The resulting

semivariogram is

γ(s) = (‖As‖/ρ
)α , s ∈Rd . (2.4)

For any simple max-stable field, we have, for s1, . . . , sD ∈Rd and z1, . . . , zD > 0,

P{Z (s1) ≤ z1, . . . , Z (sD ) ≤ zD } = exp
{−Vs1,...,sD (z1, . . . , zD )

}
, (2.5)

where (Pickands, 1981)

Vs1,...,sD (z1, . . . , zD ) =
∫
SD

max

{
w1

z1
, . . . ,

wD

zD

}
dM(w1, . . . , wD ),

where Ms1,...,sD is a measure on the D-dimensional simplex SD satisfying∫
wk dMs1,...,sD (w1, . . . , wD ) = 1,
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for each k ∈ {1, . . . ,D}. The function Vs1,...,sD , called the exponent measure of the max-stable

random vector (Z (s1), . . . , Z (sD ))
′
, entirely characterizes its dependence and is homogeneous

of order −1. Several summaries of the dependence (so-called dependence measures) have

been proposed for max-stable fields/vectors. One is the extremal coefficient (Schlather and

Tawn, 2003). The bivariate distribution function of a simple max-stable field Z satisfies

P(Z (s1) ≤ u, Z (s2) ≤ u) = exp

(
−θ(s1, s2)

u

)
, s1, s2 ∈Rd , (2.6)

where u > 0 and θ(s1, s2) is the bivariate extremal coefficient. By homogeneity of the exponent

measure, θ(s1, s2) =Vs1,s2 (1,1). Furthermore, θ(s1, s2) ∈ [1,2] for any s1, s2 ∈Rd , with values 1

and 2 indicating perfect dependence and independence, respectively. The lower the value

of θ(s1, s2), the higher the dependence. The extremal coefficient can be estimated without

assuming any parametric model, as it has a one-to-one relation with the F-madogram νF

(Cooley et al., 2006); this allows efficient non-parametric estimation of θ(s1, s2). If Z in (2.6) is

a Brown–Renick field associated with the semivariogram γ, then (e.g., Davison et al., 2012)

θ(s1, s2) = 2Φ
(√

γ(s2 − s1)/2
)

, s1, s2 ∈Rd , (2.7)

whereΦ denotes the standard univariate Gaussian distribution function.

If {Z (s) : s ∈Rd } is a simple max-stable field, then (e.g., Davison et al., 2012)

lim
z→∞Pr{Z (s1) > z | Z (s2) > z} = 2−θ(s1, s2), s1, s2 ∈Rd . (2.8)

Thus, unless Z is a purely independent field, it is asymptotically dependent, as there exist

s1, s2 such that the limit in (2.8) is strictly positive. A possible way to assess the suitability of

max-stable models consists in testing if the left hand-side of (2.8) is zero for different pairs of

grid points, e.g., using the tests reviewed by de Carvalho and Ramos (2012); see for instance

Bacro et al. (2010). However, evidence of asymptotic dependence in data does not entail

suitability of max-stable models, as data may show asymptotic dependence without being

max-stable. In this chapter, we instead explicitly test the null hypothesis of max-stability; see

Section 2.4.2.

2.3.2 Estimation of max-stable fields

Let s1, . . . , sD ∈R2 denote grid points at which we observe a field of pointwise maxima {M(s) :

s ∈ R2} at a specific time scale. Due to the results in Section 2.3.1, it is classical to take a

max-stable field as a model for M . As we will justify in Section 2.4.1, we model the margin

related to each grid point si , i = 1, . . . ,D, with a GEV distribution having location, scale and

shape parameters ηsi , τsi and ξsi , which entails having 3 × D (i.e., 3 × 619 = 1857 in our

setting) marginal parameters to estimate. Due to computational constraints, the classical

approach first estimates these GEV parameters by maximum likelihood, and then estimates the

dependence parameters of the max-stable field by maximizing the composite log-likelihood

32



2.3. Preliminaries

in a second step; this section is dedicated to the latter.

Unless D is small, the D-dimensional multivariate density of max-stable random fields is often

intractable, as the exponent measure in (2.5) can be difficult to characterize and the exponen-

tial leads to a combinatorial explosion of the number of terms in the density. Full likelihood

inference is thus impossible and composite likelihood techniques (e.g., Varin et al., 2011) have

been extensively used. Pairwise composite likelihoods are most common (e.g., Padoan et al.,

2010; Blanchet and Davison, 2011; Davison et al., 2012), but higher order composite likelihoods

have also been considered (e.g., Huser and Davison, 2013; Castruccio et al., 2016). Under mild

regularity conditions, the maximum pairwise likelihood estimator is strongly consistent and

asymptotically normal but does not attain the Cramér–Rao lower bound. Padoan et al. (2010)

and Sang and Genton (2014) showed that truncating the pairwise likelihood by ignoring pairs

of sites that are far apart can improve the statistical efficiency of that estimator; for similar

findings in other settings, see the references in Sang and Genton (2014). Ignoring some pairs

also decreases the computational burden, which is valuable for large values of D, as in our

setting with D = 619. Castruccio et al. (2016) showed that the benefit of truncation in terms

of statistical efficiency is larger for pairwise or triplewise likelihoods than for higher order

composite likelihoods.

For any s ∈R2, let Z (s) denote the transformed version of M(s) that approximately follows the

standard Fréchet distribution. We let zs,t denote the realization of Z (s) during the t-th period,

ψ denote the vector of dependence parameters of the max-stable model, and fsi ,s j ;ψ denote

the corresponding pairwise density for sites si , s j ∈R2. The truncated pairwise log-likelihood

is

l (ψ) =
T∑

t=1

D−1∑
i=1

D∑
j=i+1

I{||si−s j ||≤
p

2c2
} log fsi ,s j ;ψ(zsi ,t , zs j ,t ), (2.9)

where c is the truncation distance and I{·} is the indicator function.

We choose a value of c adapted to the context of our chapter through a simulation study.

We consider a Brown–Resnick field having semivariogram (2.4) with r = 1, κ= 0, α= 1 and

ρ ∈ {1,2,4,8,12}, on squares containing 25 (5×5), 100 (10×10), and 225 (15×15) grid points.

In each of these 15 settings, we simulate 444 (37×12) independent realizations of the field,

and this 400 times independently. For each of these 400 experiments, we estimate ρ using

the truncated pairwise log-likelihood (2.9) with c = 1,2,3,4. The scale r = 1 and angle κ= 0

(corresponding to an isotropic semivariogram), and smoothness α= 1, are close to those for

our dataset. We let the value of the range parameter and the spatial domain vary. Figure 2.1

shows that the lower ρ is and the higher the D is, the more accurate the estimation; a similar

result was reported by Sang and Genton (2014). In most settings, c = 2 leads to the most

accurate estimation, so this is the value we use below.
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Figure 2.1 – Boxplots of the relative errors of the estimates of ρ for c = 1,2,3,4 (from left to
right). The boxplot associated with the lowest relative root mean squared error is highlighted
in grey. The rows correspond to D = 25 (top), 100 (middle), 225 (bottom) and each column
corresponds to a value of ρ: 1,2,4,8,12 (from left to right).

2.3.3 Data and exploratory analysis

The data we study are used in Koch et al. (2021) and constitute a coarse version of reanalysis

data from the North American Regional Reanalysis (NARR). They consist of 3-hourly time-

series of 0–180 hPa CAPE (J kg−1) and 0–3 km SRH (m2 s−2) from 1 January 1979 at 00:00

Coordinated Universal Time (UTC) to 31 December 2015 at 21:00 UTC. For consistency, we

removed data recorded on February 29; this does not impact our findings. The area considered

is a rectangle over the contiguous US from −110◦ to −80◦ longitude and 30◦ to 50◦ latitude

(see Figure 2.7), thus containing Tornado Alley, the most risky region of the US in terms of

severe thunderstorms. The resolution of the data set is 1◦ longitude and 1◦ latitude, leading to

651 grid points in our region; no data are available for 32 grid points over water. We use the

time series of CAPE and SRH to build 3-hourly time series of PROD =p
CAPE×SRH (m3 s−3).

Finally, as a measure of ENSO, we use monthly values of the Niño-3.4 index (◦C) from 1979 to

2015, taken from the ERSSTv5 data set publicly available from the NOAA Climate Prediction

Center.

Figure 2.2 shows that for PROD maxima in April, the bivariate extremal coefficient function

tends to be lower during El Niño episodes than during neutral ENSO states, which indicates

that the spatial extent of individual PROD events is higher during El Niño episodes. This

confirms what could be expected based on physics: El Niño events tend to trigger larger areas

of instability over the US. Similarly, we observe lower extremal coefficients in January than in
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Figure 2.2 – The dots correspond to the empirical pairwise extremal coefficients for PROD
using all grid points in the square from −110◦ to −106◦ longitude and 40◦ to 44◦ latitude
(indicated by the red region on the map in the right panel). The solid lines depict the best
fitted local polynomial regression curves and the dotted lines define the related 95% pointwise
confidence intervals (assuming that the estimates are independent and known). The left panel
concerns April maxima during positive (red) and small (blue) ENSO states, corresponding
to ENSO >+0.5°C and |ENSO| ≤ 0.5°C, respectively. The right panel concerns January (black)
and July (grey) maxima.

July, suggesting larger PROD events in January. This agrees with the fact that weather events

tend to be more localized in summer than in winter (convective versus large-scale events).

The curves depicted in Figure 2.2 were obtained on a rectangle from −110◦ to −106◦ longitude

and 40◦ to 44◦ latitude.

2.4 New methodology

2.4.1 Model

General version

We propose a space-time random field model that is simple max-stable at each time point.

Let T be the number of time points and let the time index represent the month. Let x =
(x1, . . . , xp )′ be a vector of p covariates at the time points, leading to xt = (x1,t , . . . , xp,t ), t =
1, . . . ,T . Examples of covariates are large-scale weather signals such as ENSO and the North

Atlantic Oscillation (NAO), or the month associated with time t . Our space-time model arises

by considering independent simple max-stable fields {Z (s, t ) : s ∈R2, t = 1, . . . ,T } whose spatial

dependence varies with t through the vector of covariates xt .

Many parametric max-stable models such as the Brown–Resnick or extremal t random fields

have range and smoothness parameters that appear in the correlation function of the underly-

ing standard stationary Gaussian field. Typical examples include the powered exponential,

Cauchy and Whittle-Matérn functions. Both parameters are tightly linked to extremal de-

pendence: the range accounts for the characteristic dimension of individual events and the
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smoothness for the roughness of the field. We could allow these parameters to depend on the

covariates xt through a regression model, writing the parameter’s value at at time t in terms

of a linear basis expansion of xt ,

at = g

(
M∑

m=1
βmhm(xt )

)
, (2.10)

where g is a monotonic link function, h1, . . . ,hM are functions from Rp to R, and βm are real

numbers. A natural choice for g in the case of the range parameter is the exponential function,

which ensures that at > 0. Other constraints on the βm and/or hm may be necessary for other

parameters. Modelling both the smoothness and range parameters with (2.10) can lead to

identifiability issues (both parameters capturing similar effects) and, for parsimony, we keep

the scaling and rotation parameters r and κ constant. Depending on the choice of hm , (2.10)

can represent a generalized linear model or a more flexible and non-linear model (when the

hm are, e.g., splines or wavelets). We refer the reader to Wood (2017) for a detailed review of

splines. Cyclic P-splines are appropriate when using the month as covariate, as they allow a

smooth transition between the first and the last month. Radial cubic splines are useful for

continuous variables such as weather variables (e.g., ENSO) and tensor product splines allow

one to capture interactions between different covariates.

Version for the case study and simulations

Finding appropriate and parsimonious trend surfaces for the marginal parameters is challeng-

ing for the large and meteorologically heterogeneous region considered here. Using incorrect

trend surfaces may lead to a bias in the dependence, so we model the monthly maxima using

the GEV parameters fitted separately at each grid point, and we subsequently model the field

obtained after transforming the data to standard Fréchet using those estimated parameters.

The space-time model we propose for the standardized versions of CAPE, SRH and PROD is

in the spirit of Section 2.4.1. We choose as max-stable field the Brown–Resnick model with

variogram (2.4) as it often fits environmental data well (Davison et al., 2012). Based on physical

knowledge and our exploratory analysis (Figure 2.2), we model the range parameter ρ as in

(2.10) with month and ENSO as covariates, and keep the parameters α, r and κ constant.

Considering the unit of time to be the month, (i.e., t = 1 means January 1 00:00 UTC of the 1st

year, t = 2 means February 1 00:00 UTC of the first year, . . . ), our vector of covariates at t is

xt = (ENSOt , t mod 12)′, t = 1, . . . ,444, (2.11)

where mod denotes the modulo operation and ENSOt is the value of ENSO for the month

following t . The effect of these covariates on ρ appears to be non-linear and the covariates

interact, so we choose the functions hm as a tensor product spline basis between a cyclic

P-spline basis in the month direction and a radial cubic spline basis in the ENSO direction,

which allows us to borrow strength from neighbouring months and ENSO states. Finally, our

model at time t = 1, . . . ,T , denoted {Z (s, t ) : s ∈R2}, is the Brown–Resnick field associated with
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the variogram

γ(s, t ) =
(

‖As‖
exp

(∑M
m=1βmhm(xt )

))α
, s ∈R2, (2.12)

where A is the matrix (2.3) with r > 0 and κ ∈ [0,π]. Fitting a classical Brown–Resnick model

for each month separately showed no evidence for month-specific smoothness, scaling and

rotation parameters (not shown), for any of PROD, CAPE or SRH. To choose M and the knots,

we fix a number of knots in each direction and place them in a regular way. We fit models

with different numbers of knots in each direction and then choose the best one using the

bootstrap-based CLIC developed in Section 2.4.3.

We now check by simulation that the model parameters are identifiable and can be estimated

reasonably well in a setting close to the case study (in terms of number of parameters and

data amount). Such a check is especially important for our model in (2.12) owing to its

complexity and the large number of parameters, and detecting temporal non-stationarity

in the extremal dependence appears challenging without enough data. We consider (2.12)

with T = 444 (37×12) on a square containing 625 (25×25) grid points and with parameters

r = 0.72, κ = −0.08, and α = 1.26. We choose four knots in the month direction, located at

0.5, 4.5, 8.5, 12.5, and three knots in the ENSO direction whose coordinates, −1.06, 0.05, 1.16,

correspond to the 10% and 90% quantiles of observed ENSO values and their mid-point. As

we use a circular P spline basis in the month direction, the values of the spline are the same

at 0.5 and 12.5. Consequently, we have three distinct knots in both the month and ENSO

directions, giving nine knots over the space of covariates. The corresponding coefficients

are β0 = 0.52 (intercept), β1 = −0.03, β2 = 0.02, β3 = 0.07, β4 = 0.11, β5 = −0.07, β6 = −0.23,

β7 =−0.03, β8 = 0.02, and β9 = 0.04. We simulate 100 independent replicates of this field with

standard Fréchet margins and, using the month and ENSO covariates in the data of Section

2.3.3, estimate all parameters. Figure 2.3 suggests that all estimators are unbiased and that

all parameters are recovered in a satisfactory way, but that the variability of the estimates

varies: the errors tend to be larger for the parameters associated with the spline basis than

for the others. The smoothness parameter α and the scaling factor r are very well estimated.

Figure 2.4 also shows that signals (in March here) and non-signals (in September) are equally

well-identified.
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Figure 2.3 – Relative error for the parameters in the simulation study described in Section 2.4.1.
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Figure 2.4 – The estimated range parameter with form given in (2.10), based on the simulation
study giving Figure 2.4, for t mod 12 = 3 (March, left) and t mod 12 = 9 (September, right).

2.4.2 A max-stability test in an applied setting with unknown margins

Assume that a max-stable field with standard Gumbel margins, {Z (s) : s ∈Rd }, is observed in a

testing region T ⊆Rd consisting of a finite set of grid points {s1, . . . , sD }, and let ∆= {1, . . . ,D}.

The homogeneity of order −1 of the exponent measure in (2.5) implies that for any S ⊆ ∆,

the variable ηS = max j∈S Z (s j ) has a Gumbel distribution with location parameter logVs j , j∈S

(Gabda et al., 2012), where Vs j , j∈S is the exponent measure of the random vector {Z (s j ), j ∈ S}.

In practice, the cardinality of S, labelled |S|, must be chosen, and a Gumbel distribution, with

location logV̂s j , j∈S estimated from temporal realizations of ηS , can be compared with the

empirical distribution of ηS using a probability-probability plot (e.g., Gabda et al., 2012; Buhl

and Klüppelberg, 2016).

Here we extend this idea to a formal statistical test more appropriate in applications, where

environmental fields do not usually have standard Gumbel margins and we would first need to

estimate and then transform them before performing the test. We assess evidence against the
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null hypothesis that the multivariate distribution is max-stable by using an Anderson–Darling

statistic to measure the distance between the empirical distribution of ηS and a Gumbel

distribution with location logV̂s j , j∈S . The null distribution of our test statistic should include

the uncertainty arising from the estimation of both logVs j , j∈S and the margins, and we achieve

this using a bootstrap. In the following, we fix S =∆without loss of generality.

Our proposed bootstrap test is parametric for the margins and non-parametric for the de-

pendence, as we do not want to assume a parametric model for the latter. Let (z?1,m , . . . , z?D,m)′

denote the vector of the m-th observed maxima at all grid points in S, where m ∈ {1, . . . , M }.

For each grid point d ∈ {1, . . . ,D}, we first fit the GEV distribution using z?d ,1, . . . , z?d ,M to obtain

estimators η̂?d , τ̂?d and ξ̂?d . To find the approximate distribution of the Anderson–Darling

statistic under the null hypothesis of max-stability, we repeat the following procedure B times:

1. Using the approach with empirical likelihood (Owen, 2001) outlined in the Supplemen-

tary Material 2.7.1, simulate M replicates of a max-stable vector, denoted (z̃1,1, . . . , z̃D,1)′,
. . . , (z̃1,M , . . . , z̃D,M )′, such that z̃d ,1, . . . , z̃d ,M , d ∈ {1, . . . ,D}, are drawn from a GEV distri-

bution with location, scale and shape parameters η̂?d , τ̂?d and ξ̂?d ;

2. For each d ∈ {1, . . . ,D}, fit a GEV distribution to z̃d ,1, . . . , z̃d ,M , by maximum likelihood.

Then, transform them with these GEV parameter estimates such that zd ,1, . . . , zd ,M are ap-

proximately standard Gumbel distributed, yielding (z1,1, . . . , zD,1)′, . . . , (z1,M , . . . , zD,M )′;

3. Evaluate ηS,m = max j∈S z j ,m , m = 1, . . . , M , and fit a Gumbel distribution to ηS,1, . . . ,ηS,M

using maximum likelihood, giving the location parameter estimate logV̂s j , j∈S ;

4. Calculate the Anderson–Darling statistic measuring the distance between the empir-

ical distribution of ηS,1, . . . ,ηS,M and a Gumbel distribution with location parameter

logV̂s j , j∈S .

We perform two experiments with D = 25, and M = 40 block maxima of size 240. We first

generate from a max-stable multivariate logistic distribution

G(y1, . . . , yD ) = exp

−
(

D∑
i=1

y−1/λ
i

)λ , y1, . . . , yD > 0,

with dependence parameter λ ∈ {0.1,0.5,0.9}, and perform our max-stability test on these

observations with B = 200. Secondly, we perform the same experiment but generate from a

multivariate Gaussian distribution with common pairwise correlation ζ ∈ {0.1,0.5,0.9,0.99}.

To assess the empirical size and power of the test, we repeat both experiments 1000 times. The

field of pointwise maxima of Gaussian fields converges in (2.1) to the degenerate independent

max-stable field, but a block size of 240 is insufficient for convergence. As such, our approach

using the multivariate normal distribution is an approximate but reasonable way to assess the

power of our test.
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5% 20% p-val AD p-val KS
Max-stable logistic, λ= 0.1 5.20 20.90 0.77 0.94
Max-stable logistic, λ= 0.5 4.70 20.30 0.17 0.29
Max-stable logistic, λ= 0.9 6.12 22.20 0.08 0.20
Normal, ζ= 0.1 5.20 20.20 0.02 0.04
Normal, ζ= 0.5 9.30 26.30 0.00 0.00
Normal, ζ= 0.9 16.20 34.50 0.00 0.00
Normal, ζ= 0.99 7.02 24.02 0.01 0.03

Table 2.1 – Empirical size (%) (top three) and power (%) (bottom three) for tests at the 5% and
20% nominal level with (B , p) = (200,0.9), for 1000 samples of size n = 240×40, and different
levels of dependence. The last two columns show the p-values for the Anderson–Darling and
Kolmogorov–Smirnoff tests of uniformity for the 1000 p-values.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Expected quantile from U(0,1)

O
bs

er
ve

d 
p−

va
lu

es

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Expected quantile from U(0,1)

O
bs

er
ve

d 
p−

va
lu

es

Figure 2.5 – Quantile-quantile plots for the 1000 p-values with the simulation setting involving
the max-stable logistic, λ= 0.1 (left), and normal, ρ = 0.9 (right), distributions.

Table 2.1 shows that the empirical size of the test is controlled reasonably well in this setting,

with the 1000 Anderson-Darling and Kolmogorov-Smirnoff p-values correctly showing no

departure from uniformity at the 5% level for the logistic max-stable cases. All tests for

uniformity of the p-values are rejected at the 5% level for the multivariate normal cases. The

power rises first as dependence increases, but falls when ζ= 0.99, probably because this setting

gives simulated empirical distributions that are very close to the perfectly dependent max-

stable distribution. The power is similarly low when ζ= 0.1, perhaps because the empirical

distributions here are close to the independent max-stable distribution. Figure 2.5 shows

quantile-quantile plots of the p-values in two simulation settings, and illustrates the departure

from uniformity for the p-values in the multivariate normal case with ζ= 0.9.
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Selection of data used for validation

To validate a model, one should analyse whether its fit deteriorates non-negligibly when ap-

plied to pertinent new data not used for model fitting, so it is imperative to put a validation set

aside. In our spatial extremes setting, it is common to exclude a full time-series of observations

at randomly chosen locations (e.g., Huser and Wadsworth, 2019; Davison et al., 2012) before

fitting models, but we would like to avoid omitting data in an extreme-value setting where

data are scarce.

We split our spatial region into 24 small windows of 25–36 locations each. For each window

and month, we implement the max-stability test developed in Section 2.4.2 for each window,

i.e., D = |K | = 25–36. To choose our validation set, we select data from locations and time

points in window-month combinations that failed the max-stability test. This ensures that

we only exclude data for which we do not observe max-stability and that might corrupt our

max-stable model fit. Since our test for the spatial dependence is non-parametric, no bias

arises if the procedures we use to validate our models is model-independent. If validation is

based on any notion of max-stability however, then this out-sample selection approach may

be conservative.

Our procedure can be applied to large heterogeneous space and time frames in practical

settings where the margins must be estimated. The small spatial testing windows we test allow

us to identify data from small regions where a max-stable model may be unsuitable. However

in our context we instead discard these data before estimating our models and only use the

omitted data for validation. This ‘Swiss cheese’ approach to out-sample selection, where we

omit spatial holes in the data for given months, also encourages us to consider models that

borrow estimation strength across months.

2.4.3 Bootstrap-based uncertainty assessment and model selection

Let Y = (Y1, . . . ,YT )′ be a data matrix, where Y1, . . . ,YT are independent replicates of a D-

dimensional random vector Y . In our case, Yt would be the vector of maxima at time t at

all grid points in our region. We model the dependence in Y , and the ultimate goal of this

section is to propose a way to adequately quantify uncertainty of the dependence parameters’

estimates and select the best dependence model when using composite likelihood when the

margins have been modelled and estimated in a first step. Assume that we have a parametric

model for each margin of Y and that the marginal parameters of all components of Y are

gathered in λ. Below, we consider both the virtual case where the exact marginal models

and λ are known, and the realistic one where λ is estimated by λ̂ in a first step. Let ta be a

function depending on a vector a that transforms a data matrix having modelled margins with

parameters gathered in a into a data matrix with specified common parameter-free margins.

Let Z1, . . . , ZT and Z be transformed versions of Y1, . . . ,YT and Y so that they have the specified

margins, and let Z = (Z1, . . . , ZT )′. We have Z = tλ(Y ) ifλ is known and Z = tλ̂(Y ) ifλ has to

be estimated by λ̂ in a first step.
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Assume that we model Z using a family of density functions with common parameter-free

margins (typically standard Fréchet in the spatial extremes setting) and dependence parameter

ψ, denoted F = { f (z ,ψ) : z ∈ RD ,ψ ∈ Ψ ⊆ Rp }, and that we use composite likelihood for

inference. The composite likelihood is LC (ψ;Z ) =∏T
t=1 fC (ψ; Zt ), where fC is defined through

the density f and characterizes the composite likelihood (see, e.g., Varin and Vidoni, 2005,

Definition 1), and we denote by ψ̂ the maximum composite likelihood estimator. In the case

of the truncated pairwise likelihood (2.9), fC is the sum over all pairs of the tapered bivariate

densities.

Provided that the true marginal models andλ are known, under mild regularity assumptions,

ψ̂ ∼̇ Np {ψ, I(ψ)−1} for T large, where I(ψ) = H(ψ)J(ψ)−1H(ψ) with

H(ψ) = E{−∇2
ψ logLC (ψ;Z )}, J(ψ) = V{∇ψ logLC (ψ;Z )},

where ∇2
ψ and ∇ψ denote the Hessian and gradient operators with respect toψ, and V indi-

cates the covariance matrix operator; I(ψ) is the sandwich information matrix and we call its

inverse the sandwich variance matrix. Approximate confidence intervals can be computed

from the estimated sandwich variance matrix ˆ̃I(ψ) = Ĥ(ψ̂)−1Ĵ(ψ̂)Ĥ(ψ̂)−1 (Padoan et al., 2010),

where

Ĥ(ψ̂) =−∇2
ψ logLC (ψ̂;Z ), Ĵ(ψ̂) =

T∑
t=1

{∇ψ log fC (ψ̂; Zt )}{∇ψ log fC (ψ̂; Zt )}′.

After fitting several models in F using composite likelihood, it is standard to select that with

the highest observed value of the composite likelihood information criterion (Varin and Vidoni,

2005)

CLIC = logLC (ψ̂,Z )− tr{Ĵ(ψ̂)Ĥ(ψ̂)−1}, (2.13)

or equivalently the lowest observed value of (Padoan et al., 2010)

−2logLC (ψ̂,Z )+2tr{Ĵ(ψ̂)Ĥ(ψ̂)−1}, (2.14)

where tr denotes the trace; in the following, CLIC refers to (2.14) and not (2.13), as commonly

done in the spatial extremes literature.

But ifλ has been estimated in a first step, as is often the case in the field of spatial extremes, us-

ing respectively ˆ̃I(ψ) and CLIC for uncertainty assessment of ψ̂ and model selection within F

is suboptimal, as the effect of estimating the marginal parameters inλ is ignored. The depen-

dence parameters’ uncertainty is typically underestimated, and an alternative approach that

addresses this (see our simulation study in Section 2.4.3) uses the non-parametric bootstrap.

In spatial extremes, this method for uncertainty assessment is employed by, e.g., Davison

et al. (2013, 2018) and Huser and Wadsworth (2019), showing that researchers are aware of the

shortcomings of using the estimated sandwich variance matrix. The same cannot be said of

the use of CLIC for model selection in a two-step setting, as most studies in this context (such

as, e.g., Davison et al., 2013, 2018; Huser and Genton, 2016; Huser et al., 2021) use it only after
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the margins have been estimated and then transformed.

In order to account for the effect of marginal estimation on model selection when using com-

posite likelihood, we propose a model selection criterion based on bootstrap estimation of the

non-normalized composite Kullback–Leibler divergence (Varin and Vidoni, 2005). Although

we deal with max-stable fields in this chapter, the methodology we develop is valid in a general

setting. First, we consider that the margins are known and extend the results by Shibata (1997)

and Cavanaugh and Shumway (1997) to the composite likelihood setting; see Section 2.4.3.

Elaborating on this, we then define our new criterion, which enables one to account for the

marginal effects (Section 2.4.3). Section 2.4.3 illustrates the benefits of this method through

a simulation study. We do not show the dependence of Y , Z , and ψ̂ on T for notational

simplicity.

Case of known margins

We assume that λ in tλ is known and we wish to find the best model for Z = tλ(Y ). To this

end, we estimate the non-normalized composite Kullback–Leibler divergence of a model to

the truth using non-parametric bootstrap, as Cavanaugh and Shumway (1997) and Shibata

(1997) did for the non-normalized Kullback–Leibler divergence.

Let g (z), z ∈RD , be the true generating density of Z . The non-normalized composite Kullback–

Leibler divergence for a model with density in F is dT (ψ) = Eo{− logLC (ψ;Z )}, where Eo is

the expectation under the true density g . The divergence of the model estimated by maximum

composite likelihood (with ψ̂ as estimated parameter) to the truth is thus

dT (ψ̂) = Eo{− logLC (ψ;Z )} |ψ=ψ̂, (2.15)

but this is impossible to evaluate unless we know g . Varin and Vidoni (2005) showed that

a biased estimator of (2.15) is − logLC (ψ̂;Z ), and adjusting for the bias with a first-order

correction leads to (2.13). Now, suppose that ψ̂∗ is a bootstrap replicate of ψ̂, and let E∗

denote the expectation with respect to the bootstrap distribution of ψ̂. With arguments

similar to those in Cavanaugh and Shumway (1997), one can show under the usual regularity

conditions that

Bias∗T =−2
[
E∗ {− logLC

(
ψ̂∗;Z

)}+ logLC
(
ψ̂;Z

)]
(2.16)

converges almost surely to the bias of − logLC (ψ̂;Z ) as T →∞. A Monte Carlo estimator from

B bootstrap replicates yields a strongly consistent (as B →∞) estimator of Bias∗T ,

ˆBias?T =− 2

B

B∑
b=1

[− logLC
{
ψ̂∗

b ; tλ(Y )
}+ logLC

{
ψ̂; tλ(Y )

}]
. (2.17)

43



Chapter 2. Practical tools for fitting max-stable fields, applied to severe US thunderstorm
environments

Thus, a natural estimator of twice the quantity in (2.15) is

−2logLC
{
ψ̂; tλ(Y )

}−2 ˆBias?T = 1

B

B∑
b=1

[
2logLC

{
ψ̂; tλ(Y )

}−4logLC
{
ψ̂∗

b ; tλ(Y )
}]

. (2.18)

For T and B large enough, we expect model selection based on CLIC and (2.18) to be equiva-

lent.

Case of unknown margins

We now assume thatλ in tλ is unknown and is estimated in a first step. Its estimate is denoted

λ̂, and we are interested in finding the best model within F for Z = tλ̂(Y ). An attractive

property of the bootstrap-based estimator of the non-normalized composite Kullback–Leibler

divergence developed in Section 2.4.3 is that the effects of estimating the margins can be

accounted for in model selection. More precisely, in order to compute the maximum com-

posite likelihood estimate of ψ for the b-th bootstrap replicate, b = 1, . . . ,B , we do not treat

the marginal parameters as fixed and given by λ̂, but we estimate them on the bootstrapped

data, yielding the estimate λ̂∗
b . We make this explicit by writing the estimates ψ̂ and ψ̂∗

b as

functions of λ̂ and λ̂∗
b , respectively. The expectation E? in (2.16) with respect to the bootstrap

distribution of ψ̂ takes the effect of estimating the margins into account. Following (2.18), our

new criterion for model selection is therefore

CLICb = 1

B

B∑
b=1

[
2logLC

{
ψ̂

(
λ̂

)
; tλ̂(Y )

}−4logLC
{
ψ̂∗

b

(
λ̂∗

b

)
; tλ̂(Y )

}]
, (2.19)

and the model minimizing CLICb should be chosen. As a full likelihood is a particular instance

of composite likelihood, the approach proposed in this section can also be used in the case of

full likelihood inference.

The matrices Ĥ(ψ̂) and Ĵ(ψ̂), required for the calculation of sandwich-based (i.e., based on

the estimated sandwich variance matrix) confidence intervals or CLIC, are often cumbersome

to compute and careful application of pseudo-inverse procedures may be needed if Ĥ(ψ̂) is

singular, especially for complex models with many parameters such as those introduced in

Section 2.4.1. This provides an additional argument supporting the use of CLICb, on top of

its ability to account for the effect of estimating the margins in a first step. The bootstrap is

anyway needed for an appropriate uncertainty quantification of the model parameters, so the

calculation of CLICb comes at no extra computational cost.

Expressions asymptotically equivalent to (2.16) could be used, similarly as in Shibata (1997,

Section 2), leading to different but asymptotically equivalent specifications of CLICb.
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Pk/Pu/Pb

True/Alternative D = 25 D = 100 D = 225

SM0/BR1 93/82/89 90/54/90 94/20/81
BR0/BR1 84/44/80 84/30/76 85/28/76

Table 2.2 – Frequency (in %, computed over 200 repetitions) of selection of the true (simpler)
model for each experiment, procedure and value of D .

Simulation study

We perform two experiments with three procedures: Pk, where the margins are assumed

(correctly) known when fitting the models and CLIC is subsequently used for selection; Pu,

where the margins are supposed to be GEV distributed, estimated in a first step, and then

transformed before fitting the dependence models and using CLIC for selection; and Pb, as Pu,

but using CLICb in (2.19) for model selection with a non-parametric block bootstrap (B = 200)

where each replicate is a block. In all procedures, the dependence models are fitted using the

approach of Section 2.3.2. Procedure Pk is associated with the ideal but virtual setting, and

serves as an approximation to the best that CLIC can do.

In the first experiment, we generate 40 independent replicates at D ∈ {25,100,225} grid points

of a Smith field (Smith, 1990) with common standard Fréchet margins and twice the 2×2

identity matrix as covariance matrix, and apply Pk, Pu and Pb to choose between an isotropic

Smith model labelled SM0 and a two-parameter Brown–Resnick model labelled BR1; the latter

has one parameter too many to estimate, as the Smith field corresponds to the Brown-Resnick

field with α= 2 (e.g., Huser and Davison, 2013). We repeat this 200 times, and Table 2.2 shows

that Pk correctly chooses SM0 approximately 92% of the time for any D. This figure is much

lower for Pu, dropping rapidly to as low as 20% when D increases, probably due to more

unaccounted uncertainty from the estimation of the margins. By incorporating the effects of

estimating the margins, Pb achieves true selection frequency that is close to that of Pk.

In the second experiment, we generate 40 independent replicates at D ∈ {25,100,225} grid

points of a Brown–Resnick field with common standard Fréchet margins, ρ = 2 and α= 1 (to

reflect a configuration that could be realistic in an environmental application), and apply Pk,

Pu and Pb to choose between BR1 and a simpler Brown–Resnick model labelled BR0 with ρ = 2

fixed andα estimated. As above, we repeat this 200 times, and Table 2.2 shows that Pk correctly

chooses BR0 approximately 84% of the time for every D; this number would be expected in

the full likelihood inference setting with n large. The frequency of true selection ranges from

28% and 44% with Pu, and is between 76% and 80% for Pb.

According to the paired proportions test of McNemar (1947), all tests of differences between Pu

and Pb are significant at the 95% level for both experiments (not shown). Thus, if the marginal

and dependence parameters have to be estimated in two distinct steps and if composite

likelihood is used, we strongly advocate the use of CLICb in (2.19) instead of the commonly

used CLIC in (2.14).
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Figure 2.6 – Nominal 95% sandwich (left) and bootstrap (right) confidence intervals for the
range parameter ρ (with logarithm as variance stabilizing transform) in the model BR1 using
the two-step estimation procedure, from 200 simulations with 40 replications, D = 25 (top)
and D = 225 (bottom). The red confidence intervals do not cover the true value represented by
the red dashed line.

In the second experiment, we also compare the 95% confidence intervals of the range pa-

rameter estimates of BR1 calculated using the estimated sandwich variance matrix and the

non-parametric block bootstrap (Davison and Hinkley, 1997, basic intervals in Chapter 5.2)

with logarithm as variance stabilizing transform; see Figure 2.6 for D ∈ {25,225}. The coverage

of the sandwich-based intervals deteriorates from 61% to 39% as D increases from 25 to 225,

probably as more marginal parameter estimates are treated as known, and is much below 95%,

contrary to the coverages of the bootstrap-based confidence intervals (respectively 90% and

85%).

2.5 Case study

2.5.1 Choice of validation locations

Figure 2.7 shows the windows where the max-stability test rejects the null hypothesis for PROD.

Similar results hold for CAPE and SRH. The maximum number of months rejected per region

is four at the north-west. The problematic areas tend to cluster around the western part of

our region, implying that max-stability is spatially dependent. There is also time dependence,

as there are more late winter and spring months (e.g., February) where the test is rejected

for SRH, late summer (e.g., August) rejections for CAPE, and early winter (e.g., November)

rejections for PROD. Leaving out window-month combinations that fail the max-stability test

leads to our omitting approximately 15% of data.
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Figure 2.7 – The chosen validation sites from the failure of the max-stability test for PROD. The
number in each window indicates the months 1, . . . ,12 (January, . . . , December) for which we
choose the locations in the window for our validation set. The shade is proportional to this
number (the more months, the darker) .

2.5.2 Results

We apply the model introduced in Section 2.4.1 to our data, with k1 ∈ {2,3,4} knots in the ENSO

direction and k2 ∈ {4,5} knots in the month direction. The knots for ENSO are placed evenly

between the 10% and 90% quantiles of the ENSO values, i.e., between −1.06◦C and 1.16◦C, and

those for the month are positioned evenly between 0.5 and 12.5; both latter points represent

mid-December and correspond to the same cyclic spline values. We also consider the case

of a constant range parameter involving no covariate. For each variable, the calibration set

corresponds to all corresponding data apart from the validation set. We fit all models to the

calibration set using the truncated pairwise likelihood approach (Section 2.3.2) with c = 2.

We assess the uncertainty of our estimates with basic confidence intervals, using non-parametric

block bootstrap with 200 replicates. For the range parameter, we use the logarithm as a vari-

ance stabilizing transformation (Davison and Hinkley, 1997, p. 195) and derive the basic

confidence intervals of the log-transformed range before transforming them back onto the

original scale. For model selection, we use CLICb in (2.19) using the same bootstrap replicates

as above. Our block bootstrap resamples the 37 years of data from all grid points to retain the

spatial structure of the observations. We choose 19 resampling blocks (18 consist of two con-

secutive years and one consists of one year), which partly preserves the dependence between

December and January.

Table 2.3 shows that the best models for PROD and CAPE have two and four knots in the
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Knots PROD CAPE SRH
None 19’519’829 18’472’723 16’552’412
2×4 19′510′372 18′466′193 16’516’130
3×4 19’515’502 18’468’421 16’629’860
4×4 19’520’216 18’472’426 16’520’391
2×5 19’511’256 18’466’535 16′516′015
3×5 19’519’077 18’470’945 16’521’017
4×5 19’527’238 18’475’342 16’525’644

Table 2.3 – Values of CLICb for different configurations of k1 ×k2, where k1 and k2 are the
number of knots in the ENSO and month direction, respectively.

Parameter PROD CAPE SRH
α? 1.29 (1.27,1.31) 1.33 (1.30,1.36) 1.47 (1.44,1.50)
r 0.72 (0.71,0.73) 0.76 (0.75,0.78) 0.61 (0.60,0.62)
κ −0.08 (−0.10,−0.06) −0.13 (−0.15,−0.10) −0.07 (−0.08,−0.05)

Table 2.4 – For each variable, estimates of the model parameters (an asterix indicates that the
estimate has been bootstrap bias-corrected) with their 90% confidence intervals in brackets.

ENSO and month directions, and that the best one for SRH involves two and five knots. These

models clearly outperform that involving a constant range, suggesting that incorporating

ENSO and the month is valuable. Graphically, two knots seem enough to capture the ENSO

effect, as increasing their number does not substantially modify the main features of the

obtained surface; compare Figure 2.8 and plots in Section 2.7.2 of the Supplement. Thus, such

an increase seems to bring useless additional complexity, which may explain the systematic

choice of two knots in the ENSO direction by CLICb. It also increases the uncertainty on the

parameter estimates (not shown). Below, for each variable, by model we mean the best model.

Table 2.4 suggests that the models for PROD and CAPE tend to generate slightly rougher

sample paths than for SRH, and that moderate anisotropy is present for all variables, with a

non-negligible compression in the longitude direction (factor ranging from 0.6 to 0.8) but with

a small rotation. Sandwich-based confidence intervals are much narrower for all parameters

(not shown), as the non-parametric bootstrap leads to more honest uncertainty quantification

since it appropriately accounts for the effects of estimating the margins. For the smoothness

parameter, there is a small but systematic difference between the bootstrap estimates and the

original one. We estimate the mean of this difference from bootstrap replicates and use it to

bias-correct the original estimate.

Figure 2.8 shows that, for all variables, the range parameter ρ is lowest during summer or

early fall (July–September) and is highest in winter and spring (December–May). High ENSO

values are associated with a shift of the highest range period towards late winter and spring

(February–May) and to larger range values during that same period; for each corresponding

month, the curve of ρ with respect to ENSO exhibits a kink at 0◦C and increases above that

value. However, the uncertainty associated with these trends is high for PROD and CAPE.
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Figure 2.8 – Trend surface plots of the estimated range parameter ρ̂ of the model for PROD
(top), CAPE (middle) and SRH (bottom). The right panels show the two-dimensional slice of
the surface at April in black with, in grey, the values of exp{2log(ρ̂)− log(ρ̂?b )}, b = 1, . . . ,200,
where ρ̂?b is the b-th bootstrap estimate, and, within the dashed lines, the 90% bootstrap
pointwise confidence intervals. On all plots, the small red and black dots represent the ENSO
values for April and the other months, respectively. The black dots on the trend surfaces
indicate the knot positions.

Some of these trends are insignificant at the 90% level, so confirmation would be needed in

future studies through the use of more data.

It follows from (2.4) and (2.7) that the bivariate extremal coefficient is decreasing in the range

parameter, so our findings on the range parameter also apply to the extremal coefficient. For

any value of ENSO and each month, we can compute the bivariate extremal coefficient of our

model by combining (2.7) and (2.12). We build Figure 2.9 by doing so for each of the 200 sets

of parameter estimates obtained from the 200 bootstrap replicates, and for grid points that

are 1◦ longitude apart. For ENSO = 0◦C, the estimates are rather stable across months, except
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Figure 2.9 – In blue, bootstrap bias-corrected estimates of the model’s bivariate extremal
coefficient for PROD (top), CAPE (middle), SRH (bottom), when ENSO equals −1◦C (left),
0◦C (center) and 1◦C (right), for two grid points 1◦ longitude apart. The grey dots display the
200 values of h−1{2h(θ̂)−h(θ̂?b )}, b = 1, . . . ,200, where θ̂?b is the b-th bootstrap estimate and
h(x) = log{(x −1)/(2− x)}, x ∈ [1,2]. The black dots indicate the lower and upper confidence
bounds of the 90% bootstrap confidence intervals.

for SRH for which they are higher in summer (June–August). The seasonal variation is more

pronounced when ENSO =−1◦C and ENSO = 1◦C for all variables, and becomes significant at

the 95% level for SRH; e.g., the estimated extremal coefficient during an El Niño event in July

is significantly higher than in January–April, November and December. The decrease of the

extremal coefficient (related to an increase of the range parameter) in late winter and spring

during El Niño years is also clearly visible. For SRH, Figure 2.10 displays at each grid point the

value of the estimated model bivariate extremal coefficient between that point and a reference

point at the center of the map. The extremal coefficients are lower in April than August for the

three chosen values of ENSO (−1◦C, 0◦C, 1◦C) and decrease with ENSO in April; this indicates

an increase of the extremal dependence, consistent with the increased range parameter. The

contour lines in Figure 2.10 nicely illustrate the variation with ENSO of the spatial extent of

the extreme events of SRH.
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Figure 2.10 – Heat maps of the bootstrap bias-corrected estimates of the model’s bivariate
extremal coefficient for SRH (with one reference fixed in Colorado, indicated by the black dot
on each map) when ENSO equals −1◦C (left), 0◦C (center) and 1◦C (right), in April (top) and
August (bottom). The grey contour lines represent the 1.2, 1.4 and 1.6 levels.

2.5.3 Model validation

We assess our model’s performance on the validation set specified in Section 2.5.1. Figure 2.11

shows that the theoretical pairwise extremal coefficients computed from our model agree with

the empirical ones, despite slight underestimation on the right panel. Our model appropriately

captures the general dependence decrease as distance increases. Moreover, for PROD and

SRH in the chosen window-month combinations, elevated values of ENSO are associated with

lower empirical extremal coefficients than when ENSO is close to 0◦C, which is not the case

for CAPE in the chosen window in August; our model captures these effects well. Overall, the

out-sample performance of our model is satisfactory.

The few departures between our model and the data likely stem from the spatially-constant

extremal dependence in our model and the heterogeneity of the considered region in terms

of weather influences. Koch et al. (2021, Figure 8) showed that the February maxima at each

grid point are significantly increasing with ENSO around the Gulf of Mexico, although they

significantly decrease with ENSO over the remainder of the region considered. If the marginal

impact of ENSO varies across space, its effects on the dependence may also be space-varying.

Finally, our model validation is not entirely fair as the model extremal coefficient is computed

for a given distance and ENSO value, whereas the boxplots of Figure 2.11 are built using a

range of distances and ENSO values.
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Figure 2.11 – Out-sample performance of the model for PROD (left), CAPE (center) and SRH
(right), on the window-month combinations (8th, February), (17th, August) and (2nd, March),
respectively, where the window’s numbering is from West to East and North to South. The lines
depict the bootstrap bias-corrected model’s extremal coefficients computed at ENSO=1◦C
(red) and ENSO=0◦C (blue) with respect to distance in the transformed space; the latter has
been computed using (2.3) with the estimated κ and r . The whiskers indicate the pointwise
basic 90% confidence intervals calculated with non-parametric boostrap. The four pairs of
boxplots summarize the empirical estimates of the extremal coefficient for pairs of grid points
whose distance in the transformed space belongs to [0.5,1.5), [1.5,2.5), [2.5,3.5) and [3.5,4.5).
The red and blue ones correspond to the values when ENSO> 0.5◦C and |ENSO| < 0.2◦C,
respectively.

2.5.4 Meteorological explanation

As mentioned in Section 2.3.1, the range parameter ρ in (2.4) can be interpreted for each

variable as a characteristic spatial dimension of the individual extreme events of that variable,

and may thus be viewed as a characteristic dimension of cyclones or thunderstorm systems

(including multi-cell storms, squall lines, supercells and mesoscale convective systems). Thus,

our results indicate that cyclones and thunderstorm systems are more localized in summer

than in winter, in agreement with the fact that weather systems generally have a larger scale

in winter than in summer. Our findings also suggest that the cyclones and thunderstorms

systems are more spatially extended during El Niño events than during neutral ENSO states or

La Niña events. On the other hand, Koch et al. (2021) found that, in late winter and spring,

maxima of PROD, CAPE and SRH tend to be larger during La Niña years, possibly implying

more intense thunderstorm systems. The combination of findings points to more spatially

widespread but less intense thunderstorm systems during El Niño years than La Niña years.

Possible rough physical explanations are as follows. El Niño winter events tend to be associated

with positive and negative temperature anomalies in respectively the northern and southern

part of the US (e.g., Ropelewski and Halpert, 1986; Zhang et al., 2011), and thus with a less

pronounced north-south temperature gradient than during neutral ENSO states or La Niña

episodes. El Niño periods are also related to positive rainfall anomalies in the southern part

of the US, especially California (e.g., Ropelewski and Halpert, 1986; Jong et al., 2016). These

anomalies tend to persist during the following spring, while progressively weakening (see

https://www.oc.nps.edu/webmodules/ENSO/NA_EN.html). The temperature gradient is

a key factor of instability as the shock between warm and cold air typically triggers rising

motion, and one generally expects larger gradients to be linked with more localized and more
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dynamic cyclones or mesoscale systems such as mesoscale convective systems. Another, less

plausible, explanation is that the combination of the warming in the northern part of the US

and increased rainfall amounts in the south associated with El Niño is expected to lead to

larger areas of instability, as warm air and moisture are two important ingredients of instability.

The main drivers of weather are not the same across the region, and thus finding an interpre-

tation that is true throughout it is delicate. More investigation as well as collaborations with

climatologists would be needed to confirm these coarse interpretations and to thoroughly

understand the very complex physical mechanisms involved. The link between ENSO and the

spatial extent of weather phenomena has received relatively little attention from researchers;

see, e.g., Lyon (2004) and Lyon and Barnston (2005) in the case of the drought and rainfall

extremes, respectively.

2.6 Discussion

This chapter provides three tools for fitting max-stable fields to gridded pointwise maxima.

The first, a max-stability test which we used for out-sample selection, allowed us to pinpoint

regions where a max-stable model may be unsuitable, without relying on testing secondary

properties like asymptotic independence (e.g., Bacro et al., 2010). Indeed, even if data show

no evidence of asymptotic independence, this need not imply that max-stable models should

be used; data could be asymptotically dependent but not max-stable. The development of

subasymptotic models remains important, and the test developed here provides an additional

diagnostic to assess whether these subasymptotic models are needed.

The second tool is a new model selection procedure based on the block bootstrap for use in

situations where one uses composite likelihood in two-step inference, where the margins are

first estimated and then standardized, and then the dependence structure is estimated. This

fixes the way the CLIC is currently computed, though the relevance of the CLIC itself could be

questioned if the primary focus is on specific regions (e.g., Tornado Alley) or months (e.g., in

spring, where the risk of thunderstorms is highest), rather than on the full dataset. Scores for

out-sample analysis remain an open question, especially for extreme values (Brehmer and

Strokorb, 2019).

The third tool is a Brown–Resnick model that can capture non-stationarities in the dependence

in the extremes of data via a spline-based methodology. An alternative is to adapt the covari-

ance function associated with the Brown–Resnick model, and ideas could be borrowed from

Huser and Genton (2016) and Risser and Calder (2015) to introduce other non-stationarities

through covariates in this way, though care should be taken not to overparameterize spatial

covariance functions.

Using the tools developed, our case study assessed ENSO and month-related signals that affect

the spatial dependence of the extremes of PROD, CAPE and SRH. Our models appear justified

in this setting: we use the max-stability test to filter data before model fitting, and model
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validation shows satisfactory results. The models pool information from all months to estimate

seasonal ENSO signals. We detect differences in the range parameter for all variables in the

spring and summer; the corresponding extremes are more localized during these seasons than

in the winter, especially during El Niño events. These conclusions are significant and clearer

for SRH (and to a lesser extent, PROD), but less so for CAPE because of the wide bootstrap

confidence intervals. These results add to those in Koch et al. (2021), who found ENSO to be a

good covariate in the location parameter of the GEV for PROD and SRH maxima in February.

The corresponding relationship is negative over the same region we consider, implying that

the risk of storm impacts in February decreases during El Niño years. The results here suggest

that the spatial extents of storm events in these years are also higher.
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2.7 Supplement

2.7.1 Algorithms

Let y j = (y1, j , . . . , yD, j )′ denote the j -th three-hourly observation, empirically transformed to

be standard Fréchet-distributed, where D is the number of locations. Given n three-hourly

observations, let (y 1, . . . , y n)′ ∈ Rn×D denote the transformed dataset. The procedure for

generating the max-stable vector is

1. Compute R̃ j = ||y1, j , . . . , yD, j ||1, known as the radial coordinates, where || · ||1 is the L1

norm. Then calculate W̃ j = y j /R̃ j , j = 1, . . . ,n, commonly referred as angular coor-

dinates. Keep those W̃ j for which R̃ j > r0, with r0 fixed to be the empirical p ∈ (0,1)

quantile of R̃1, . . . , R̃n , so the retained number of observations is n0 = (1−p)n. Let Ri

and Wi (i = 1, . . . ,n0) denote the coordinates retained.

2. Following the empirical likelihood approach of Einmahl and Segers (2009), but extended

to D > 2, we find the estimated angular probability measure

Q̂(w ) =
n0∑

i=1
qi I{Wi<w }, w ∈ [0,1]D ,

where I{·} is the indicator function and the tilting probabilities {qi }n0

i=1 satisfy

qi = argmax
qi

n0∏
i=1

qi , such that
n0∑

i=1
qi = 1 and

n0∑
i

qi Wi /Ri = D−1, (2.20)

where D−1 = (1/D, . . . ,1/D)′, and (2.20) is solved using Lagrange multipliers.

3. With {qi }n0

i=1 and {Wi }n0

i=1, generate a simple max-stable vector using Algorithm 1, based

on Dombry et al. (2016).

2.7.2 Plots of trend surfaces

Figures 2.12, 2.13 and 2.14 show the same plots as the left panels of Figure 2.8, for the fitted

models from Table 2.3.
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Algorithm 1: Simulate max-stable vector using tilting weights

Input: Tilting weights {qi }n0

i=1 and vectors {Wi }n0

i=1
Output: Max-stable D-dimensional vector with standard Frechét margins
Generate E? ∼ Exp(1) ;
Set R? = D/E?;
Set Z = (Z1, . . . , ZD ) = (0, . . . ,0);
while R? > min{Z1, . . . , ZD } do

Draw W
′ = (W

′
1, . . . ,W

′
D ) from the set {W1, . . . ,Wn0 } with sampling probabilities

{q1, . . . , qn0 };
for j ← 1 to D do

Set Z j = max(Z j ,R?W
′
j );

end
Generate E? ∼ Exp(1);
Set R? = 1

(1/R?+E?/D) ;

end
return Z ;
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Figure 2.12 – Trend surface plots of the range parameter in the models with (from top left to
bottom right) 2×4 , 3×4, 4×4, 2×5, 3×5, 4×5 knots in the ENSO and month direction for
PROD. The black dots on the trend surfaces indicate the knots’ positions.
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Figure 2.13 – Same as Figure 2.12, but for CAPE.
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Figure 2.14 – Same as Figure 2.12, but for SRH.
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3 Gradient boosting with extreme-value theory for wild-

fire prediction

This chapter is a preprint of a paper that has been submitted to a peer-reviewed journal, so it

is structured to be self-contained and may overlap with other chapters. It is available as Koh

(2021). The doctoral candidate is entirely responsible for this work.

3.1 Abstract

This chapter details the approach of the team Kohrrelation in the 2021 Extreme Value Analysis

data challenge, dealing with the prediction of wildfire counts and sizes over the contiguous

US. Our approach uses ideas from extreme-value theory in a machine learning context with

theoretically justified loss functions for gradient boosting. We devise a spatial cross-validation

scheme and show that in our setting it provides a better proxy for test set performance than

naive cross-validation. The predictions are benchmarked against boosting approaches with

different loss functions, and perform competitively in terms of the score criterion, finally

placing second in the competition ranking.

Keywords: Cross-validation; Generalized Pareto distribution; Gradient boosting; Loss likeli-

hood; Wildfire prediction

3.2 Introduction

Wildfires occur in every season of the year and are a natural phenomenon of the forest ecosys-

tem, important for clearing out decayed vegetation and helping plants to reproduce. However,

they have the potential to become conflagrations—intense, destructive fires—that may have

huge environmental and ecological impacts. Apart from human casualties, these fires can lead

to substantial economic losses; global insured claims due to wildfire events have increased dra-

matically in recent years, from below $10 billion in 2000–2009 to $45 billion in the subsequent

decade1.

Wildfires are complex dynamic processes: their occurrences and behaviour are the product of

interconnected factors that include the ignition source, fuel composition, topography and the

1https://www.swissre.com/risk-knowledge/mitigating-climate-risk/yet-more-wildfires.html
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weather. For example, the wind plays a big role in the spread and ease of fire containment, but

its effect is magnified in the presence of accumulated biomass on a hilly boreal forest after a

prolonged dry spell. The modelling of wildfires is made even more complicated by the need

to model the Wildland-to-Urban interface (Stewart et al., 2007), as 90% of fires are caused by

human activity.

An important measure of wildfire impact and size is the burned area of wildfire events, com-

monly used by government agencies and aggregated at different spatial and temporal scales

for reporting purposes, e.g., National Interagency Fire Center (2021). There is a positive but

non-linear relationship between wildfire counts and sizes in the contiguous US. In 2020, nearly

26,000 wildfires burned approximately 9.5 million acres (ac) in the west, compared with the

over 33,000 fires that burned just under 0.7 million ac in the east. Similarly, although the

numbers of wildfires have fallen since the 1990s, the average annual acreage burned since

2000 has more than doubled.

Many statistical approaches have been developed to aid in wildfire prevention and risk mitiga-

tion, with most studies modelling wildfire occurrences and sizes separately (Taylor et al., 2013;

Xi et al., 2019; Pereira and Turkman, 2019; Jain et al., 2020), though models that identify latent

factors affecting both have been proposed (e.g., Koh et al., 2021). Point processes are natural

models for the spatiotemporal pattern of occurrences (Peng et al., 2005; Genton et al., 2006;

Tonini et al., 2017; Opitz et al., 2020b). Cumming (2001), Cui and Perera (2008) and Pereira

and Turkman (2019) suggested modelling fire sizes with various probability distributions. As

data usually show heavy-tailed behaviour, only a small fraction of wildfires account for the

vast majority of the area burned. Obvious candidates to capture this stem from extreme-value

theory, such as the generalized Pareto distribution (GPD) for modelling threshold exceedances

(De Zea Bermudez et al., 2009; Turkman et al., 2010; Pereira and Turkman, 2019).

Both Bayesian and frequentist methods have been used for explanatory modeling, the former

predominantly for hierarchical mixed effect models (Koh et al., 2021; Joseph et al., 2019;

Pimont et al., 2021) and the latter within the generalized additive modelling (GAM, Wood,

2017) framework (Preisler et al., 2004; Woolford et al., 2011; Brillinger et al., 2006; Vilar et al.,

2010). Covariates include weather variables such as humidity, temperature, precipitation and

meteorologically-based fire danger indices such as the Canadian Fire Weather Index (van

Wagner, 1977). When available, land-use or locally observed anthropogenic variables like

population density and the distance to the nearest train line are used to help to explain human-

induced occurrences; spatiotemporal random effects have been incorporated as surrogates

for these variables.

If accurate prediction is of primary interest, then machine learning (ML) techniques offer an

attractive alternative to the statistical modelling approaches described above. Since the 1990s,

the surge in the availability of data and covariates has spurred the use of these techniques to

predict wildfire behaviour. Jain et al. (2020) found 127 journal papers or conference proceed-

ings published up to the end of 2019 on ML applied to fire occurrence, susceptibility and risk;
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of these adversarial neural networks (ANN) were the most prominent (e.g., Liang et al., 2019;

Dutta et al., 2013; Shidik and Mustofa, 2014). For wildfire occurrences, most studies focus on

classification tasks instead of count modelling. Sakr et al. (2010) used metereological variables

with support vector machines to predict a four-class fire risk index based on the daily number

of fires in Lebanon. Dutta et al. (2013) compared ten ANN based cognitive imaging systems to

determine the relationship between monthly fire incidence and climate for Australia. Xie and

Peng (2019) and Mitsopoulos and Mallinis (2017) showed that ensemble learning methods

like random forests and boosting trees performed well in estimating area burned or classifying

wildfire sizes in Portugal and Greece, respectively.

Gradient boosting techniques (Friedman, 2001) have exploded in popularity over the last

decade, in part due to the development and dissemination of open-source packages such

as gbm (Greenwell et al., 2020) and xgboost (Chen and Guestrin, 2016). A key ingredient

of gradient boosting is the loss function used to train these models, and choices for these

functions have largely been restricted to those that emphasize good prediction of the distribu-

tional bulk instead of the tails. For example, squared loss, the default when modelling wildfire

sizes, implicitly presupposes normality of the response given the covariates, which may be

inappropriate if the focus is predominantly on extreme values. The Poisson loss is popular

for modelling wildfire counts within a grid cell, but the zero-inflated nature and potentially

heavy tails of count distributions suggest that this loss may be unsuitable. Evaluation metrics

should also reflect the non-linear impact of wildfire events; e.g., in many cases, predicting a

false negative occurrence is much costlier than predicting a false positive.

As ML methods are prone to overfitting, it is imperative to evaluate models with held-out

datasets using robust validation schemes. A realistic approach in the forecasting context (when

there are no trends) is to leave out the most recent portion of the dataset (e.g., Dutta et al.,

2013; Koh et al., 2021; Joseph et al., 2019; Woolford et al., 2011). Dutta et al. (2013) explored

different combinations of training-testing splits to identify the best possible paradigm to

maximize the generalization capability of their ANN architecture. K -fold cross-validation is

also popular (De Angelis et al., 2015; Shidik and Mustofa, 2014; Xie and Peng, 2019; Mitsopoulos

and Mallinis, 2017), but it may give overly optimistic evaluations for spatially dependent data

(Roberts et al., 2017). An alternative is spatial cross-validation (Pohjankukka et al., 2017), but it

is still unclear how best to construct spatial folds in this context, and doing so anyway ignores

time dependencies.

Our work aims to tackle the limitations of the studies mentioned above, and does so in the

context of the Extreme Value Analysis 2021 data challenge (Opitz, 2021). We develop novel

gradient boosting models trained with loss functions appropriate for predicting extreme

values. Our model for fire counts is a discrete generalized Pareto distribution (Shimura,

2012) relying on a covariate-dependent parameter that models a chosen high quantile of the

distribution, and a shape hyperparameter selected by cross-validation. The model for fire sizes

has three components and covariate-dependent probabilities. The first component models

the probability of observing no fires, and the others model the probabilities of observing
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medium-sized and extreme fires. We approximate the conditional distribution above a high

threshold with a GPD, and the conditional distribution below the threshold with a truncated

log-gamma distribution.

To improve our models, we also engineered new covariates that incorporate more spatial

information into the climatic and land-use covariates provided by averaging them across

neighbouring grid cells each month. With a smart imputation method for replacing missing

data, we also use the wildfire counts as a covariate when predicting wildfire sizes, and vice

versa.

We develop a spatiotemporal cross-validation scheme that provides a better proxy for our

models’ test set performance than the naive scheme. This involves fitting a space-time latent

Gaussian model to pseudo-binary observations that indicate whether a grid cell was masked

in a particular month, and then simulating from the fitted model to generate folds of train-test

regimes.

In the remainder of the chapter, we first explore the data on wildfires and their covariates,

and then introduce the problem set out by the data challenge in §3.3. We provide general

background on extreme-value theory and gradient boosting and on how to combine them

in §3.4. Our spatiotemporal cross-validation scheme is developed in §3.4.4 and the specific

model structure is detailed in §3.5. We highlight the prediction of wildfire activity components

in §3.5.2, and compare them to related and competing approaches. We conclude with a

discussion and outlook in §3.6.

3.3 Data and exploratory analyses

The Extreme Value Analysis 2021 data challenge dealt with the prediction of monthly wildfire

counts and burned areas at 3503 grid cells across the contiguous US over the period 1993–2015.

As fuel moisture is an integral of past precipitation and evaporation mediated by soil field

capacity, temporal scales longer than hourly or daily (e.g., monthly in our case) are appropriate

for predicting fire risk from climatic covariates.

The data comprise the monthly numbers of wildfires (CNT) and the aggregated burned

area (BA) in each grid cell based on a 0.5°×0.5° grid of longitude and latitude coordinates

(roughly 55km ×55km) covering the study area, from March to September each year. Figure

3.1 shows that the grid cells with the highest averaged CNT tend to be clustered towards the

west (California) and southeast (North and South Carolina) corners of the study region, while

clusters in the west (near the border of Idaho and Nevada), southwest (Arizona, New Mexico

and Texas), and southeast (Florida) are observed for BA.

Thirty-five auxiliary variables related to land cover, weather and altitude are provided at the

same spatial and temporal resolution, and can be used for modelling. Figure 3.2 hints at the

importance of some of these variables, such as meteorological covariate 5 (clim5; potential
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evaporation, measured in meter water equivalent – mwe) and land cover covariate 7 (lc7; tree

needleleave evergreen closed to open, measured in % of the grid cell), for predicting high BA.

However it also indicates that their effect differs over space, and that the interactions between

these covariates may be important for predicting large burned areas.

The Rocky Mountain Area and Great Basin, two regions defined formally as ‘Geographic Area

Coordination Centers’ by the United States Department of Agriculture, have empirical ex-

ceedance probabilities that respond differently to both covariates. For instance, the probability

tends to decrease, then increase (after the 75% quantile) with potential evaporation in the

Great Basin, while the opposite holds for the Rocky Mountain Area, though the associated

large uncertainties suggest that there is substantial heterogeneity within each region.

The original dataset has no gaps, but missing data were artificially created to compare pre-

dictive approaches; the full dataset was split into training and testing subsets to evaluate

participants’ test scores. No data were masked in the odd years, but 80,000 observations of

each variable were masked in the even years. Figure 3.3 shows that the spatial and temporal

positions of test data are clustered in space, while there is little evidence for temporal de-

pendence across months. Moreover, the test grid cells for BA and CNT are correlated. This

masking is reminiscent of a real-world situation in which two related and spatially dependent

processes could render both CNT and BA unobservable at small spatial clusters every month

(e.g., from spatially dependent but temporally independent measurement error), and one

could only use the available covariates and responses from the surrounding non-masked

regions for prediction.

The evaluation metrics used for the competition (see Opitz, 2021) require estimates of the

probability Pr(BA < uBA) and Pr(CNT < uCNT) for 28 thresholds uCNT and uBA. The metrics

are variants of weighted ranked probability scores and put relatively strong weight on good

prediction in the extremes of the distributions of counts and burned areas. As such, we expect

that models that emphasize accurate modelling of the largest counts and burned areas will

perform better, and we achieve this by appealing to extreme-value theory.
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Figure 3.1 – Maps of CNT (top) and BA (bottom) averaged across all months and years for each
grid cell.
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Figure 3.3 – The test set grid cells (in red) for CNT (left) and BA (right) in March 1994. The
number at the top right indicates the number of masked grid cells.
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3.4 Methodology

3.4.1 Extreme-value theory

The generalized Pareto distribution (GPD) arises asymptotically for excesses above a large

threshold of a random variable X ∼ F , when the distribution F satisfies mild regularity condi-

tions. Let x? = sup{x : F (x) < 1}. The excess distribution above u < x? can be approximated

(Davison and Smith, 1990) as

Pr(X > x +u | X > u) ≈ 1−GPDσ,ξ(x) =
{

(1+ξx/σ)−1/ξ
+ , ξ 6= 0,

exp(−x/σ), ξ= 0,
x > 0, (3.1)

with shape parameter ξ ∈R and scale parameterσ=σ(u) > 0, where a+ = max(a,0). The shape

parameter determines the rate of tail decay, with slow power-law decay for ξ> 0, exponential

decay for ξ= 0, and polynomial decay towards a finite x?, for ξ< 0. When the approximation

(3.1) is exact asymptotically (i.e., when u → x?), we say that the random variable X lies in the

maximum domain of attraction of a generalized Pareto distribution with shape parameter ξ,

written X ∈ MDAξ.

Positive discrete random variables

We say that a discrete non-negative random variable Y lies in the discrete maximum domain

of attraction, Y ∈ dMDAξ, if there exists a random variable X ∈ MDAξ with ξ ≥ 0 such that

Pr(Y ≥ k) = Pr(X ≥ k), for k = 0,1, . . . ,. The random variable X is called the version of Y , and

many popular discrete distributions such as the geometric, Poisson and negative binomial

distributions lie in dMDAξ.

For Y ∈ dMDAξ and large integers u,

Pr(Y −u = k | Y ≥ u) ≈ GPDσ,ξ(k +1)−GPDσ,ξ(k)

= (1+ξk/σ)−1/ξ
+ − (1+ξ(k +1)/σ)−1/ξ

+ , (3.2)

where the last term is the probability mass function of the discrete generalized Pareto dis-

tribution (dGPD). Several studies have used this distribution to model count data; Prieto

et al. (2014) modelled numbers of road accidents and Hitz et al. (2017) modelled numbers of

extreme tornadoes per outbreak and multiple births.

3.4.2 Gradient tree boosting

The generic gradient boosting estimator (Bühlmann and Hothorn, 2007) is a sum of base

procedure estimates. Regression trees (Breiman et al., 1984, CART) are popular base proce-

dures, as they include non-linear covariate interactions by construction, and are invariant

under monotone transformations of covariates, so the user need not search for good data
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transformations.

Let D = {(xi , yi )}, xi ∈Rp , yi ∈R, i = 1, . . . ,n, be a dataset with n observations and p covariates.

A binary split of the covariate space uses a splitting variable indexed by j ∈ {1, . . . , p} and

a split point v ∈ R to partition the space into the pair of half-spaces {x ∈ Rp : x j ≤ v} and

{x ∈Rp : x j > v}, where x j is the j -th component of x .

By successive binary splits, a regression tree partitions the covariate space into a set of L

disjoint regions A1, . . . , AL , and fits a simple model such as a constant in each region. The

regions created by the splits are called nodes; a terminal node is called a leaf and an interior

node is called a branch. We index leaves by l ∈ {1, . . . ,L}, with leaf l representing region Al . The

simplest tree is one with two leaves, known as a stump. A learning algorithm needs to decide

the tree structure, i.e., the splitting variables and split points.

Suppose that L leaves with regions A1, . . . , AL have been chosen and we model the response as

a score cl ∈R in each region. A regression tree is a function

f (xi ) =
L∑

l=1
cl I(xi ∈ Al ),

where I is the indicator function. A gradient tree boosting model uses T such trees to model

the boosting estimate

ŷi =
T∑

t=1
ft (xi ), ft ∈T , (3.3)

where T is the space of regression trees. The boosting estimate using stumps will be additive

in the original covariates, because every base estimate is a function of a single covariate. A

boosting model that has trees with at most L leaves has interactions of order at most L−2. Thus,

constraining the maximum number of nodes in the base procedure controls the complexity of

the model.

Gradient tree boosting learns the set of trees used in (3.3) by minimizing a regularized objective

function in a greedy iterative fashion; at each iteration we add the tree that most improves our

model according to an objective function O . More precisely, let ŷ ( j )
i be the boosting estimate

for the i -th observation at the j -th iteration. We add a tree f j at each iteration to minimize

O ( j ) =
n∑

i=1
L {yi , ŷ ( j−1)

i + f j (xi )}+Ω( f j ),

whereΩ( f j ) = ηL( j ) +λ||c ||2/2, L is a differentiable convex loss function, L( j ) is the number

of leaves in the tree f j and c ∈RL( j )
is the corresponding vector of scores. The regularization

term Ω is added to penalize the complexity of each tree, and the positive parameters η and

λ control the penalization. The form ofΩ is simple enough to allow parallel computational

(Chen and Guestrin, 2016).
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Using a second-order approximation for the objective (Friedman et al., 2000) gives

O ( j ) '
n∑

i=1

{
L (yi , ŷ ( j−1)

i )+ gi f j (xi )+hi f 2
j (xi )

}
+Ω( f j ), (3.4)

where gi = ∂L (yi , ŷ ( j−1)
i )/∂ŷ ( j−1)

i and hi = ∂2L (yi , zi )/∂z2
i |

zi=ŷ ( j−1)
i

. We then minimize (3.4)

with respect to the tree structure and weight vector c .

Let Il = {i : xi ∈ Al } denote the instance set of leaf l . For a fixed tree structure with regions

A1, . . . , AL( j ) , the optimal weights c? can easily be found and have components

c?l =−
∑

i∈Il
gi∑

i∈Il
hi +λ

, l = 1, . . . ,L( j ).

Plugging the weights c? into (3.4) and removing the term that does not depend on f j gives

Õ ( j ) =−1

2

L( j )∑
l=1

(
∑

i∈Il
gi )2∑

i∈Il
hi +λ

+ηL( j ), (3.5)

which can be used as a scoring function to measure the quality of the tree structure, a role

similar to the impurity score in Breiman et al. (1984).

Assume that a split has been performed, and let IL and IR denote the instance sets of the left

and right leaves from this split. Define I = IL ∪ IR . The loss reduction from this split is

G = 1

2

{
(
∑

i∈IL
gi )2∑

i∈IL
hi +λ

+ (
∑

i∈IR
gi )2∑

i∈IR
hi +λ

− (
∑

i∈I gi )2∑
i∈I hi +λ

}
−η, (3.6)

and (3.6) is used for evaluating candidate split variables and points.

As it is impossible to enumerate all possible tree structures, most existing tree boosting im-

plementations, such as in scikit-learn (Pedregosa et al., 2011) and gbm (Greenwell et al.,

2020), use greedy algorithms that start from a single leaf and iteratively add branches to the

tree based on (3.6), until the gain for the best split is negative. Here we use the greedy algo-

rithm implemented in xgboost (called the approximate algorithm with weighted quantile

sketch Chen and Guestrin, 2016, Appendix A), that further reduces computational cost and

parallelizes computations when the data do not fit into memory. This algorithm proposes can-

didate splitting points from the empirical quantiles of each covariate, instead of considering

all possible splitting points for each variable. We also subsample a proportion s ∈ [0,1] of the

covariates at each iteration, like in the random forest algorithm (Breiman, 2001), to further

prevent overfitting and to accelerate parallel computation.

As gradient tree boosting is an ensemble method combining predictions from many trees,

the exact relationship between covariates (or their interactions) and the response is difficult

to determine. Suppose we treat the covariates as random, and let XS denote the random
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subvector (of size l < p) of the full covariate vector X = (X1, . . . , Xp )T , indexed by the set

S ⊂ {1, . . . , p}. Let C be the set complementary to S . For a predictive function f at a fixed

point x ∈Rl , the partial dependence function (Friedman, 2001),

fS (x) = EXC
f {(x , XC )T },

can be estimated by Monte Carlo as

f̂S (x) = 1

n

n∑
i=1

f {(x , xiC )T }, (3.7)

where x1C , . . . , xnC are realisations of XC from the training data.

Metrics used to rank covariates in terms of their importance include the coverage for a chosen

covariate, which is the sum of the second order gradients hi from (3.5), in each node which uses

this covariate, standardized by dividing by the sum of the metrics for all other covariates (so

the resulting metric is a proportion). The gain metric represents the fractional contribution of

a chosen covariate to the model based on the total gain of all the splits involving this covariate,

measured by G in (3.6); it is the total improvement of the model in terms of the objective

function, from the branches that include the covariate. In both cases a higher proportion

implies a more important predictive variable.

The loss function L in (3.4) strongly governs the type of models that we fit, and we discuss

choices for this next.

3.4.3 Loss functions

For wildfire counts

Given n monthly wildfire counts in a grid cell, y1, . . . , yn , a simplified Poisson loss is

LPois(yi , ŷi ) = yi log{yi /exp(ŷi )}− yi +exp(ŷi ), (3.8)

where Stirling’s approximation log(yi !) ≈ yi log(yi )− yi is used and the boosting estimate ŷi

models the log mean of the i -th Poisson count. Although (3.8) is the most common choice

for modelling wildfire counts in the literature, the zero-inflation and potentially heavy tails of

count distributions suggest that it may be unsuitable.

Instead, if we let α= 1/ξ> 0 and λ=σα in (3.2), we motivate a new loss function for counts

from extreme-value theory, the discrete generalized Pareto (dGPD) loss

LdGPD(yi , ŷi ) = {1+exp(ŷi )yi }−α− {1+exp(ŷi )(yi +1)}−α. (3.9)

The boosting estimate ŷi models the logarithm of the rescaled scale parameter λi . If α> 1, the
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predicted mean of the i -th count is

m̂i =
∞∑
k

1/{1+exp(ŷi )k}α, (3.10)

but otherwise the mean does not exist.

The first and second derivatives of (3.9) with respect to the boosting estimate, i.e.,

g dGPD
i =−α{1+exp(ŷi )yi }−α−1{exp(ŷi )yi }

+α{1+exp(ŷi )(yi +1)}−α−1{exp(ŷi )(yi +1)},

hdGPD
i =−α(−α−1){1+exp(ŷi )yi }−α−2{exp(ŷi )yi }2

−α{1+exp(ŷi )(yi +1)}−α−1{exp(ŷi )y}

+α(−α−1){1+exp(ŷi )yi }−α−2{exp(ŷi )(yi +1)}2

+α{1+exp(ŷi )(yi +1)}−α−1{exp(ŷi )(yi +1)},

are used in the second-order approximation of the objective in (3.4) and are essential for

determining split variable and split point candidates when building trees with (3.6).

For wildfire sizes

The squared loss is the dominant choice in the literature on predicting burned areas in this

regression context, but it implicitly presupposes normality of the response conditional on

the covariates, which may be inappropriate if the distributional tail decays more slowly than

exponential. Moreover, burned areas cannot be negative. Modelling log-transformed burned

areas addresses the latter issue, though doing so still excludes conditional distributions with

Pareto-like tails.

Another approach to modelling the full distribution of wildfire sizes is to use a mixture, first

choosing an appropriately high threshold and fitting the burned areas below and above that

threshold with different loss functions.

To model the monthly burned area in a grid cell, yi , below a chosen threshold u > 0, the

negative log-loss likelihood of a truncated distribution could be used. The probability density

function of a truncated gamma distribution is

f (x) = (µ/k)k xk−1 exp(−xk/µ)

γ(k,ku/µ)
, x > 0,

where µ > 0 is the rescaled scale parameter, k > 0 is the shape parameter and γ(k, s) =∫ s
0 t k−1 exp(−t)dt , s > 0, is the lower incomplete gamma function. Modelling log(µ) with
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the boosting estimate gives

LtrGamma(yi , ŷi ) =− log{(exp(ŷi )/k)k yk−1
i }

+ yi k/exp(ŷi )+ logγ{k,ku/exp(ŷi )},

g trGamma
i =exp(ŷi ){k/exp(ŷi )− yi k/exp(ŷi )2

+γ′{k,ku/exp(ŷi )}/γ{k,ku/exp(ŷi )}},

htrGamma
i =exp(ŷi )2

{
−k/exp(ŷi )2 +2yi k/exp(ŷi )3

+ γ{k,ku/exp(ŷi )}γ′′{k,ku/exp(ŷi )}−γ′{k,ku/exp(ŷi )}2

γ{k,ku/exp(ŷi )}2

}
+ g trGamma

i ,

whereγ′{k,ku/exp(ŷi )} andγ′′{k,ku/exp(ŷi )} are the first and second derivatives ofγ{k,ku/exp(ŷi )}

with respect to ŷi , and have closed forms (see Supplement §3.7).

To model only the excesses above a threshold u, we can use the GPD in (3.1), and assume

that ξ> 0, since burned areas tend to be heavy-tailed. If we reparameterize and model the

logarithmic κ ∈ [0,1] quantile of the excesses with the boosting estimate, i.e., ŷi = log[{(1−
κ)−ξ−1}σi /ξ], we can define the generalized Pareto (GPD) loss and obtain its derivatives

LGPD(yi , ŷi ) =ξ+1

ξ
log

{
1+ yi {(1−κ)−ξ−1}σi

exp(ŷi )

}
,

g GPD
i =− f ′{yi ,exp(ŷi ),ξ}exp(ŷi )

f {y,exp(ŷi ),ξ}
,

hGPD
i =−exp(ŷi )2 f {yi ,exp(ŷi ),ξ} f ′′{yi ,exp(ŷi ),ξ}− f ′{yi ,exp(ŷi },ξ}2

f {yi ,exp(ŷi ),ξ}2

−exp(ŷi )[ f ′{yi ,exp(ŷi },ξ)/ f {yi ,exp(ŷi },ξ}],

where f ′ and f ′′ are the first and second derivatives of the reparameterised probability density

function f {yi ,exp(ŷi ),ξ} given in Supplement §3.7.

For wildfire size classification

Adopting the mixture modelling approach to wildfire sizes requires us to model the probability

that a fire belongs to each size component 1, . . . ,C , where C is the number of components. Let

yi = (yi ,1, . . . , yi ,C ) denote the vector of wildfire size component indicators, where yi ,c = 1 if the

i -th fire size is in component c, and otherwise yi ,c = 0. We can model the probability of each

class with the boosting estimate using the softmax function σ :RC → [0,1]C defined by

σ(z)i = exp(zi )∑C
j=1 exp(z j )

, i = 1, . . . ,C , z = (z1, . . . , zC ) ∈RC . (3.11)

73



Chapter 3. Gradient boosting with extreme-value theory for wildfire prediction

The generalization of the logistic (Cox, 1958) loss to multiple classes is the cross-entropy loss,

which can be reweighted to give

LCE(yi , ŷi ) =−wi

C∑
c=1

yi ,c log
{

exp(ŷi ,c )/
C∑

d=1
exp(ŷi ,d )

}
, (3.12)

where the vector of component probabilities is modelled by applying (3.11) to the boosting es-

timate ŷi = (ŷi ,1, . . . , ŷi ,C )T , and the weights w1, . . . , wn could be chosen to improve predictions

in unbalanced classification tasks.

3.4.4 A spatiotemporal cross-validation scheme

The use of k-fold cross-validation generally presupposes independent replicates, so it would

produce optimistic predictive performance estimates in our setting because data points that

are geographically closer will have stronger dependencies. To address this, we first study

the spatiotemporal process leading to grid cells being masked, which we call the masking

process. Figure 3.3 hints at either a common or two inter-correlated spatially dependent latent

processes governing the observed masking processes for CNT and BA, which we model with a

common latent Gaussian process (Rasmussen and Williams, 2005). We then fit a Bernoulli

model to observations arising from the masking process, and simulate observations from the

model to generate cross-validation folds.

We consider only the months m with masked observations, and let M denote the number of

those months and D denote the number of grid cells. Let RCNT
d ,m and RBA

d ,m denote the binary

0-1 observations indicating whether the grid cell d ∈ {1, . . . ,D} (with centroid sd ) at month

m ∈ {1, . . . , M } was masked for the CNT and BA responses, respectively. Our hierarchical model

for the masking processes is

RCNT
d ,m |µCNT

dm ∼ Bernoulli{expit(µCNT
dm )},

RBA
d ,m |µBA

dm ∼ Bernoulli{expit(µBA
dm)};

µCNT
dm =βCNT

0 + gm(sd )+εCNT
m ,

µBA
dm =βBA

0 +βgm(sd )+εBA
m ;

gm(•) ∼GP (ζ),

εCNT
m ,εBA

m ∼N (0,φ),

β∼N (0,ω);

θ = {β0,β,ζ,φ,ω} ∼ Priors,
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where expit(x) = {1+exp(−x)}−1 is the inverse logit function.

We fit this model using the integrated nested Laplace approximation (INLA, Rue et al., 2009),

which is an approximate Bayesian inference technique well-suited for latent Gaussian models.

The parameter β governs the degree of latent sharing between the two masking processes and

we use a flat and independent zero-centered Gaussian hyperprior for it. Similar frameworks

were used by Koh et al. (2021) for the joint modelling of different wildfire risk components

and by Diggle et al. (2010) and Pati et al. (2011) to model preferential sampling. The spatial

process g t is independently replicated in time and each replicate has a Gaussian process prior

GP with a Matérn covariance structure governed by the parameter vector ζ. We represent

these Gaussian processes via a numerically convenient Gauss–Markov random field approxi-

mation, constructed by solving a stochastic partial differential equation (Lindgren et al., 2011).

Supplement §3.7 details the full procedure.

We generate samples from this Bayesian model by first sampling parameters from the posterior

distribution, and then generating observations from the Bernoulli model with the sampled

parameters. We do this for all months, including in those where observations were masked; if

a location was already part of the test set, i.e., if it was already masked, then we removed it

from validation set. Five samples were generated to obtain five folds for our cross-validation

scheme. Figure 3.4 shows two samples from this model for March 1993. The degree of spatial

and inter-variable dependencies resemble those of the masking processes in Figure 3.3, and

the numbers of grid cells masked and chosen for validation in each month are also similar.

The triplet (2.5% posterior quantile, posterior mean, 97.5% posterior quantile) for the scaling

parameter β is (0.28,0.42,0.58).
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Figure 3.4 – The first (top) and second (bottom) validation folds (in red) for CNT (left) and BA
(right) for March, 1993, from our spatiotemporal cross-validation scheme, generated from the
Bayesian spatial model. The number at the top right indicates the sum of grid cells chosen.

3.5 Models

3.5.1 Fitting procedure

We fit our gradient tree boosting models with the approach outlined in §3.4.2, minimizing the

loss functions described in §3.4.3.

We use the Poisson and dGPD loss functions to fit models on the full CNT distribution. We

experimented with different high thresholds u but achieved the best prediction when we

modelled the full distribution with the dGPD, i.e. u = 0.

For wildfire sizes, we fit models with the squared loss on log(1+BAi ), i = 1, . . . ,n. We also

consider mixture models which require split modelling of the distribution. For these, we first

choose a sufficiently high (95% empirical quantile) threshold at 200ac. We then use the fire

sizes above the threshold to fit a model with the GPD loss, and the log-transformed positive

sizes below the threshold with the truncated gamma loss. Lastly, we fit a multi-class classifier

to the wildfire size component indicators yi = (yi ,1, . . . , yi ,3), defined in §3.4.3, using the cross-

entropy loss from (3.12); here, yi ,1 = 1 if we observe no fire, yi ,2 = 1 if BAi is a medium fire

(between 0 to 200ac), and yi ,3 = 1 if it is a large fire (> 200ac).

Given the covariates at the i -th observation xi , we combine the three model components to
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get the prediction of the cumulative conditional probability for each observation

P̂r(BAi ≤ b | xi ) =P̂r(yi ,1 = 1 | xi )+ P̂r(yi ,2 = 1 | xi )P̂r(BAi ≤ b | xi , yi ,2 = 1)

+ P̂r(yi ,3 = 1 | xi )P̂r(BAi ≤ b | xi , yi ,3 = 1), b ≥ 0.

We also engineered new covariates to improve our predictions. To incorporate more spatial

information from our covariates (other than the longitude and latitude coordinates), we took

the average value of the covariate across neighbouring grid cells for each month; this smooths

the climatic variables across space. We also allow land-use covariates at neighbouring grid

cells to help predictions at each grid cell.

The relationship between CNT and BA is positive but non-linear; a high CNT does not necce-

sarily imply a high BA, though CNT=0 implies that BA=0. Thus, it is natural to consider the

other response as a covariate when modelling a given response, or at least to use this infor-

mation whenever possible. As the test grid cells for BA and CNT are correlated, there are

instances where the BA response was masked but the CNT wasn’t, and vice versa; for 39% of

masked BA observations, their corresponding CNT observations were unmasked. Using the

CNT/BA covariate to predict BA/CNT thus raises the question of how best to impute its value

if it was masked for a given observation. The default way to handle a missing covariate is to

impute its mean across all observations, as in algorithms such as xgboost or gbm, though this

will be sub-optimal for predictions on a spatially heterogenous dataset. Instead, we use an

imputation method which fits a model for the covariate and then imputes the best estimate

from this model.

When modelling BA, we first fit a gradient boosting model with the dGPD loss on the CNT

response, without using BA as a covariate, and then use the estimated parameters to find the

estimated mean CNT for each observation using (3.10); we then impute this estimate whenever

CNT was masked. When modelling CNT, we first fit a gradient boosting model, without using

CNT as a covariate, with the cross-entropy loss on the wildfire size component indicators yi ,

i = 1, . . . ,n, and then impute the estimates of the probabilities Pr(yi ,1 = 1), Pr(yi ,2 = 1) and

Pr(yi ,3 = 1) from the fitted model, whenever BA was masked; when BA wasn’t masked, we use

the observed indicators yi as a covariate.

To assess models using these covariates, a cross-validation scheme should also reflect this

imputation procedure; thus, it becomes even more important to appropriately model the

inter-variable dependence between CNT and BA of the masking processes, i.e., the parameter

β in our spatiotemporal cross-validation scheme described in §3.4.4.

Our models have hyperparameters that must be tuned by cross-validation. They include

the regularization parameters λ and η, the proportion s of covariates subsampled at each

iteration, the maximum number of leaves for each tree L, and the number of trees T (see

§3.4.2). Other hyperparameters from the loss functions include k, ξ, and α, which govern the

shape and tails of the fitted conditional distribution, and weights wi (i = 1, . . . ,n) which govern

the importance of each observation in the cross entropy loss. Some of our models assume
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Figure 3.5 – The average rescaled evaluation score across all five folds of our spatiotempo-
ral cross-validation scheme for a mixture model, as a function of the number of trees M .
The shaded region shows the pointwise one-standard-error bound. The red point shows
the minimum average validation score and the blue point shows the M chosen by the one-
standard-error rule.

common shape parameters ξ and α governing the tails of wildfire sizes and counts across the

whole sample space; our preliminary analysis suggests that this assumption is reasonable in

space, as the frequentist estimates of the shape parameters from pooled data are relatively

homogeneous across the wildfire coordination regions.

We use the Bayesian optimization procedure outlined in Snoek et al. (2012) to choose the

parameters (excluding the number of trees M) minimizing the average evaluation metric,

calculated on the five cross-validation folds generated in §3.4.4. This procedure treats the

objective function as random and first places a Gaussian process prior on it. After gathering

function evaluations, the prior is updated to form the posterior distribution over the objec-

tive function, which is then used to construct an infill sampling criterion. For the mixture

model, we implement separate Bayesian optimization procedures for each of the three model

components.

Given the other parameters, we choose M with the one-standard-error rule (Hastie et al.,

2009); i.e., we select the largest M within one standard error of the parameter that achieves

the minimum in terms of the evaluation metric. Figure 3.5 shows the evaluation metric on the

validation folds as a function of M for the wildfire size classifier in a mixture model.

3.5.2 Results

The benchmark models are described in Opitz (2021). That for CNT corresponds to a general-

ized linear model (GLM, Wood, 2017) with a Poisson response distribution and log link linear

predictor using all the original covariates. The benchmark for BA first fits a generalized linear

model with Gaussian response and log-link using all of the original covariates. The probability
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Model Ours 5-fold Truth

Counts
Benchmark∗ 5172 5235 5565

Poisson∗ 3413 3213 3302
Poisson 3283 3102 3131
dGPD∗ 3304 3092 3194

dGPD 3215 2896 3068

Sizes
Benchmark∗ 3923 3834 4244

Log-Normal∗ 3553 3450 3771
Log-Normal 3473 3202 3501

Mixture∗ 3480 3403 3582
Mixture 3364 3089 3446

Table 3.1 – The averaged rescaled evaluation score for all models, according to our cross-
validation scheme outlined in §3.4.4, the 5-fold cross-validation scheme with random parti-
tioning, and the true score. The bold figures highlight the best model chosen by our cross-
validation approach. The asterisks indicate models not using the CNT/BA covariate.

predictions, Pr(BAi ≤ uBA), are obtained by combining the log-Gaussian BA model with the

estimated probability that CNTi =0, obtained from the benchmark Poisson model for CNT.

We relied on our cross-validation scheme devised in §3.4.4, using the evaluation metrics used

from the competition outlined in §3.3, to choose which model predictions to use for the

competition. After the competition, we had access to the truth and could calculate how the

predictions of every model would have performed on the test set.

Table 3.1 shows that incorporating the engineered CNT and BA covariates improves the scores

of all models by up to 7%. According to our cross-validation scheme, the best model for

wildfire sizes is the mixture model, and for the counts it is the dGPD model. The best mixture

model and dGPD models from the Bayesian optimization procedure have α= 52 and ξ= 0.8.

This implies a fat tail for the size distribution, but a thinner (Gumbel-like) tail for the wildfire

count distribution, though the parameter α in the dGPD loss provides additional flexibility

to the model that gives slightly better predictions than the Poisson model. All our gradient

boosting models outperform the benchmark by around 10–50%.

Our cross-validation scheme tends to perform better than the 5-fold cross-validation scheme

as a proxy for the true test set performance; the scores from the 5-fold cross validation scheme

are generally too optimistic compared to the true test error, especially for the wildfire size mod-

els. This optimism is especially pronounced when evaluating models that use the engineered

CNT and BA covariates. Our scheme is better able to capture the inter-variable dependence

between the CNT and BA masking processes, giving a better reflection of how the models that

incorporate the engineered covariates would perform when predicting responses on the test

set.

Figure 3.6 shows that the gain and coverage metrics introduced in §3.4.2 give similar orderings

for the importance of covariates when predicting the probability of being in a given wildfire
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Figure 3.6 – The coverage (left) and gain (right) metrics for the top 20 covariates in the wildfire
size classifier submodel of the best mixture model for BA (without using the engineered
covariates). More information about the covariates is given in Opitz (2021).

size component with the best mixture model. As hypothesized in §3.3, clim5, lc7 and the

spatial covariates of longitude (lon) and latitude (lat) are among the five most important

variables for both metrics. The other variables (e.g., clim4, clim7, clim9, year, lc16, etc.) are

relevant, but each is less than half as important as clim5, the most important covariate.

To evaluate the marginal effect of clim5 on the CNT response in the best dGPD model, we

transformed the partial dependence estimate (3.7) by (3.10) to get the predicted mean count

m̂i , and evaluated and plotted it with clim5 in the set of interest S in (3.7). As it is computa-

tionally infeasible to evaluate all data points xiC in our setting with over 500,000 observations,

we subsampled 10,000 observations to obtain our estimates.

Figure 3.7 shows that the marginal effect of clim5 on m̂i tends to be negative, especially above

−0.03mwe. Figure 3.8 displays the joint marginal effects of clim5 and land cover covariate

12 (lc12; grassland, in %) on the predicted mean count, i.e., with clim5 and lc12 in the set

of interest S in (3.7). The figure hints at interaction between the two covariates; increasing

lc12 tends to decrease the response CNT slightly if clim5 is low, but not when clim5 is high.

Although the partial dependence plot is useful for showing the overall marginal trend of a

covariate on the response across all observations considered, it is important to to be honest

about the uncertainty associated with the Monte Carlo estimate in (3.7). The estimates in

Figures 3.7 and 3.8 are associated with high uncertainty throughout (not shown for the latter);

our dataset is very heterogeneous and it is not possible to quantify the marginal effects of

covariates with less uncertainty.

Our chosen models perform competitively when compared to the other teams’ submission in

the data challenge (Opitz, 2021), placing second out of 28 teams in the final ranking; the other

top three teams used other popular prediction techniques such as random forests, hierarchical
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Bayesian modelling and ANN models with adapted loss functions (Opitz, 2022).
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3.6 Discussion

We have implemented novel gradient boosting models for wildfire activity that are trained with

loss functions motivated by extreme-value theory. Compared to models trained on the Poisson

loss, our chosen model for wildfire counts has an additional parameter α that governs the tail

of the count distribution, which, after tuning by cross-validation, enables the model to give

better predictions. Our chosen model for burned areas has specific components for extreme

fire sizes. According to the given score criteria which puts more weight on large fire sizes, this

model improves on the models that do not discriminate between extreme and non-extreme

fire sizes.

As the use of other data sources, e.g., covariates not included in the provided dataset, was

strictly prohibited for the competition, we were not able to leverage other spatial information,

such as the Geographic Area Coordination Center of a grid cell. Each center follows its

own governing jurisdictions that could affect its fire mitigation and suppression strategies.

Including this information, either by incorporating additional covariates, or by having a

separate gradient boosting model for each coordination center, would improve predictions.

Our mixture model has the threshold fixed at u = 200ac. However, u could have also been

allowed to as an additional parameter chosen by cross-validation (e.g., as in Opitz et al., 2018),

though the computational cost would be significantly higher, as the optimization of the model

components would need to be done jointly as they all rely on u.

Our best chosen dGPD model from the Bayesian optimization procedure has α= 52, which

implies a thin tail for the CNT distribution that is not too different from the Poisson distribution.

This explains the slight improvement of the model using the dGPD compared to the Poisson

loss. Had the tail of the CNT distribution been fatter, as in the case of another data application

(e.g., insurance claim counts), we would have also noticed a larger improvement in predictions

by the dGPD model.

We have implemented a spatial cross-validation scheme for our context which partly fixes the

optimism when using traditional k-fold cross validation to evaluate complex models with en-

gineered covariates over a spatially heterogeneous but dependent dataset. One should always

have the real-world prediction scenario in mind when choosing a cross-validation scheme,

and we appealed to tools from spatial statistics to aid the validation of model predictions on

our test data.

Apart from cross-validation approaches, model comparison using other predictive scores,

e.g., Continuous Ranked Probability Scores (CRPS, Matheson and Winkler, 1976) or tail-

weighted CRPS (Gneiting and Ranjan, 2011), could be used to compare simulated predictive

distributions of burned areas or counts. These scores, along with graphical summaries for

validating models, are an important future topic of research, and have already been explored

in the extreme wildfire prediction context by Joseph et al. (2019), Pimont et al. (2021) and Koh

et al. (2021). Due to the time constraints of the competition however, this is out of the scope of
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this chapter.

Our gradient boosting models have hyperparameters from the loss functions that govern the

tails of the predictive distributions: ξ, and α, which, once chosen by cross-validation, are fixed

in the model. To allow more flexible modelling of the distributional tails, one could incorporate

them as an additional boosting estimate in §3.4.2 which would allow these parameters to

depend on the covariates. The boosting estimate ŷi , gradient gi and hessian hi in (3.4) would

then be vectors. The recent work on extreme quantile regression by Velthoen et al. (2021) has

similarities to the described approach.

Apart from better predictions, our models improve decision support in wildfire management.

The partial dependence plots in Figures 3.7 and 3.8 allow marginal and interaction effects of

covariates to be assessed, though one should be aware of the large uncertainty associated with

these estimates. Importance metrics like the gain and coverage in Figure 3.6 could be used for

covariate selection and could prompt national wildfire predictive services to rethink designs

of fire danger warning systems (e.g., indices) across the contiguous US.

3.7 Supplement

3.7.1 Terms in the gradients and hessians

For the truncated gamma loss

The lower incomplete gamma function is γ(k, s) = ∫ s
0 t k−1 exp(−t)dt , s > 0. Set s = ku/ŷi . By

applying the fundamental theorem of calculus and the chain rule, taking derivatives with

respect to ŷi gives

γ′{k,ku/exp(ŷi )} =∂γ(k,ku/ŷi )
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exp(ŷi )
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ŷi

)
ku

ŷ2
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For the GPD loss

Let κ ∈ (0,1). We first reparameterise the GPD probability density function as

f {yi ,exp(ŷi ),ξ} =
{

1+ yi {(1−κ)−ξ−1}σi

exp(ŷi )

}−(ξ+1)/ξ

, ξ> 0, ŷi ∈R. (3.13)

The functions f ′{yi ,exp(ŷi ),ξ} and f ′′{yi ,exp(ŷi ),ξ} are obtained by differentiating (3.13) with

respect to ŷi . Write A = yi {(1−κ)−ξ−1}σi /exp(ŷi ), and notice that ∂A/∂ŷi = A′ =−A. Then

f ′{yi ,exp(ŷi ),ξ} = A
ξ+1

ξ
(1+ A)−(2ξ+1)/ξ ,

and so

f ′′{yi ,exp(ŷi ),ξ} =−A
(ξ+1)(2ξ+1)

ξ
(1+ A)−(3ξ+1)/ξ− f ′{yi ,exp(ŷi ),ξ}.

3.7.2 Priors and SPDE triangulation

This section details the prior and SPDE triangulation specifications of the spatiotemporal

Bernoulli model for the masking processes. Fuller details of INLA and the SPDE approach are

outlined in §4.10 and §4.11.

The fixed effect coefficient βCNT
0 and βBA

0 in our model was assigned a flat Gaussian prior

with zero mean and precision 0.001. The prior for the scaling parameter β is a zero-centered

Gaussian distribution with precision ω= 1/20. Lastly, we assigned a log-gamma hyperprior

with mean unity and precision 0.0005 to the variance hyperparameter φ.

To have tractable conditional distributions of spatial Gaussian random effects gm , we follow

the approach described in §4.4.5.

The discretization points when triangulating the spatial domain in (4.9) are chosen as the

nodes of a finite element representation which enables efficient inference for random effects

representing spatial variation. Our spatial triangulation mesh in Figure 3.9 has 508 nodes.

It is sparser in the extended zone around the study area to ensure that the SPDE boundary

conditions have negligible influence on the study area.

For computational reasons, we only use observations of the masking processes from the first

ten months, and subsample 30% of the data when fitting our model.
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Figure 3.9 – Triangulation mesh of the spatial study region (blue contours) for the SPDE
approach. Neumann boundary conditions are set on the exterior (black) boundary to obtain a
unique solution. The blue points represent the centroids of the grid cells. The finite element
solution defines a Gauss–Markov random vector with one variable in each node.
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4 Spatiotemporal wildfire modeling through point pro-

cesses with extreme marks

This chapter is based on a preprint of a paper that has been submitted to a peer-reviewed

journal. It is jointly written with Jean-Luc Dupuy, François Pimont and Thomas Opitz, and is

available as Koh et al. (2021). The chapter is structured to be self-contained and may overlap

with other chapters. The contributions of the doctoral candidate were in producing the results,

simulations, plots and tables, and writing the bulk of the paper.

4.1 Abstract

Accurate spatiotemporal modeling of conditions leading to moderate and large wildfires

provides better understanding of mechanisms driving fire-prone ecosystems and improves

risk management. Here we develop a joint model for the occurrence intensity and the wild-

fire size distribution by combining extreme-value theory and point processes within a novel

Bayesian hierarchical model, and use it to study daily summer wildfire data for the French

Mediterranean basin during 1995–2018. The occurrence component models wildfire ignitions

as a spatiotemporal log-Gaussian Cox process. Burnt areas are numerical marks attached to

points and are considered as extreme if they exceed a high threshold. The size component is a

two-component mixture varying in space and time that jointly models moderate and extreme

fires. We capture non-linear influence of covariates (Fire Weather Index, forest cover) through

component-specific smooth functions, which may vary with season. We propose estimating

shared random effects between model components to reveal and interpret common drivers of

different aspects of wildfire activity. This increases parsimony and reduces estimation uncer-

tainty, giving better predictions. Specific stratified subsampling of zero counts is implemented

to cope with large observation vectors. We compare and validate models through predictive

scores and visual diagnostics. Our methodology provides a holistic approach to explaining

and predicting the drivers of wildfire activity and associated uncertainties.

Keywords: Bayesian hierarchical model; Cox process; Extreme-value theory; Forest fires;

Shared random effects.
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4.2 Introduction

Wildfires are defined as uncontrolled fires of combustible natural vegetation such as trees in a

forest. Their activity usually shows seasonal cycles, as several conditions must coincide for

their occurrence: the presence of combustible material as fuel, its easy flammability resulting

from weather conditions such as droughts, and a trigger. Triggers include natural causes such

as lightning, but the majority of occurrences in Europe are caused by human activity, either

intentional (arson), neglectful (cigarette stubs) or accidental (agriculture).

Wildfires represent major environmental and ecological risks worldwide. They provoke many

human casualties and substantial economic costs, and can trigger extreme air pollution

episodes and important losses of biomass and biodiversity. While climate change is expected

to exacerbate their frequency and extent (Jones et al., 2020), wildfires themselves contribute

an important fraction of global greenhouse gases that can accelerate climate change. To aid in

wildfire prevention and risk mitigation, one must identify the factors contributing to wildfires

and predict their spatiotemporal distribution. Prediction maps of various components of

wildfire risk are relevant for the study of historical periods, for short-term forecasting and for

long-term projections.

The study of wildfire activity has led to a large body of statistical and machine learning

literature on methods for identifying risk factors and producing risk maps (Preisler et al., 2004;

Xi et al., 2019; Pereira and Turkman, 2019). Most studies focus on modeling either occurrence

counts or sizes, the latter usually represented by the burnt areas of spatially and temporally

contiguous wildfire events. In occurrence modeling, the spatial or spatiotemporal pattern of

ignition points (or other representative points of separate wildfire events) can be analyzed

with point process tools (Peng et al., 2005; Genton et al., 2006; Xu and Schoenberg, 2011; Serra

et al., 2013; Tonini et al., 2017; Pereira and Turkman, 2019; Opitz et al., 2020b). Often, data are

available as presence/absence or counts over dense spatial or spatiotemporal grids, or have

been transformed to such representations to facilitate modeling and to harmonize different

spatial-temporal scales of wildfire and predictor data such as weather conditions, land cover

and land use.

Burnt area, a key measure of wildfire impact, usually provides a good proxy for biomass loss

and greenhouse gas emissions. Many univariate probability distributions have been explored

for modeling fire sizes (e.g., Cumming, 2001; Schoenberg et al., 2003; Cui and Perera, 2008;

Pereira and Turkman, 2019). Empirical distributions are usually heavy-tailed, as with the

wildfire data we consider in Mediterranean France, and a few extreme wildfires account for a

very large fraction of total burnt area. There is no consensus on which distribution provides

the best fit (Pereira and Turkman, 2019). Distributions suggested by extreme-value theory,

such as the generalized Pareto distribution (GPD), have been studied (e.g., approaches by De

Zea Bermudez et al., 2009; Mendes et al., 2010; Turkman et al., 2010; Pereira and Turkman,

2019).

Joint statistical analyses of wildfire occurrence and sizes have been proposed and often use
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tools for marked point processes, where numerical marks represent burnt areas. Descrip-

tive approaches (e.g., Tonini et al., 2017) characterize different regimes of wildfire activity

(i.e., numbers, sizes, spatialtemporal autocorrelation) by taking into account weather, land

cover, fire management and environmental factors. For explanatory and predictive model-

ing, Bayesian hierarchical models are useful; they can include latent Gaussian components

to allow for observation and estimation uncertainty and capture nonlinear influences of

covariates. One may consider only categorical information (e.g., small and large wildfires)

without attempting to model the continuous distribution of sizes; for example, Serra et al.

(2014) construct a Bayesian spatiotemporal “hurdle” model for large wildfires. As to con-

tinuous distributions, Ríos-Pena et al. (2018) implement MCMC inference for zero-inflated

Beta-regression to model the occurrence of wildfires in spatial units, with absence correspond-

ing to zero-inflation, while the positive area fraction covered by wildfires is captured through

the Beta distribution. Joseph et al. (2019) estimate separate regression models with random

effects for occurrence numbers in areal units and for sizes, and study posterior predictive

distributions for block maxima of wildfire sizes. Pimont et al. (2021) developed a marked

spatiotemporal log-Gaussian Cox process model, called Firelihood, for daily data by applying

the integrated nested Laplace approximation (INLA, Rue et al., 2009) for Bayesian inference

on most components of the model. Their distribution of wildfire sizes over positive values is

based on estimating exceedance probabilities and excess distributions over a range of severity

thresholds. Weather information is included through a nonlinear effect of the Fire Weather

Index (FWI, van Wagner, 1977), constructed to yield high correlation with wildfire activity.

In this work, we develop the following novelties to address key shortcomings of the works cited

above. As large wildfires play a dominant and critical role for fire activity due to the heavy

tails of burnt areas, we focus on accurate modeling of their distribution, and in particular its

spatiotemporal variation. However, models constructed using only extreme wildfires would

lead to high estimation uncertainty when inferring complex spatiotemporal structures. We

therefore propose the joint estimation of extreme and non-extreme wildfires where the model

borrows strength from the latter to help estimate the former; the large number of observations

available for moderate fires improves the prediction of larger fires, so changes in extreme fire

activity are better accounted for.

Complex models such as Firelihood require separate estimation of the occurrence and size

model components, thus hampering inferences that exploit interactions between them. Tem-

poral stochastic structures are often restricted to the spatiotemporal variability in covariates.

In Pimont et al. (2021), simulated predictive distributions of wildfire activity for various di-

visions of the space-time domain failed to capture some very extreme events, specifically

the year 2003. Here we increase the flexibility of the spatiotemporal structure, especially for

extremes.

Our new approach leverages a combination of marked point processes defined over con-

tinuous space and time and extreme-value theory to represent the mechanisms leading to

wildfires exceeding a high severity threshold for burnt areas. The point pattern of extreme fires
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is viewed as a thinning of the full pattern, and we select a suitable threshold before using the

GPD model for threshold excesses.

We also advocate sharing spatial random effects that affect several model components simul-

taneously: these effects are estimated for one response variable (e.g., wildfire counts) but

we also include them with scaling coefficients in other response variables (e.g., wildfire size

exceedances). This approach decreases uncertainty in the estimation of those regression

equations whose vector of observed responses carries too little information to estimate com-

plex predictive structures. We will highlight the improved inferences through sharing in our

wildfire application. Besides increasing model parsimony, sharing also provides new scientific

insight by highlighting joint drivers of different wildfire components.

The FWI quantifies the influence of weather drivers on wildfire activity and is often mapped

as an index for fire danger, for instance by the French weather service Météo France. Model

diagnostics of Pimont et al. (2021) showed that the predictive power of FWI in France may

diminish in some seasons, and we estimate a more sophisticated seasonal nonlinear FWI

effect.

Predictive model validation is intricate because of heavy tails and high prediction uncertainty

for individual wildfires. Customary validation scores, such as means of squared or absolute

errors, are not useful. In addition to visual diagnostics, we tackle this difficulty through joint

assessment of several numerical criteria, either through scores for binary data (e.g., Area under

the Curve, Fawcett, 2006) to assess the exceedance behavior over a relevant severity threshold,

or through comparison of probabilistic scores for continuous predictions, such as the scaled

Continuous Ranked Probability Score (Bolin and Wallin, 2020).

We estimate our marked log-Gaussian Cox process in a Bayesian setting using INLA (Illian et al.,

2012) by adopting penalized complexity (PC) priors for hyperparameters (Simpson et al., 2017).

Gaussian process priors follow the Matérn covariance function, and we use the Stochastic

Partial Differential Equation (SPDE) approach of Lindgren et al. (2011) for numerically efficient

Gauss–Markov approximation. Fully Bayesian inference is out of reach, as we have several

million observations of wildfire counts, so we devise a specific subsampling scheme for zero

counts that keeps a relatively larger proportion of observations with high FWI, for which most

wildfires occur. This allows joint Bayesian inference on all components, and we ensure that

our subsample sizes allow the fitting of models on standard personal computers, in contrast

to other recent approaches (e.g., Joseph et al., 2019; Pimont et al., 2021; Opitz et al., 2020b)

requiring high computer memory.

In the remainder of the chapter, we first explore the available data on wildfires and predictors

in §4.3. We provide general background on extreme-value theory and point processes and on

how to combine them in a Bayesian hierarchical model using the INLA-SPDE method in §4.4.

The specific hierarchical structure for the joint analysis of extreme and non-extreme wildfires

is developed in §4.5. Estimation with subsampling of pixel-days without wildfire occurrences

is detailed in §4.4.3. After a comparative analysis of models in §4.6.1, we highlight key findings
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and prediction of wildfire activity components in §4.6.3 and §4.7, and we conclude in §4.8.

4.3 Wildfire data

Since 1973, wildfires occurring in the fire-prone French Mediterranean region have been

recorded in the Prométhée database (www.promethee.com). Each wildfire occurrence is

reported with its fire ignition cell in a 2×2km2 grid, day of detection and burnt area in hectare

(ha). Inconsistent reporting was found for small wildfires, especially smaller than 1 ha, and we

keep only data with reported burnt area larger than 1 ha; i.e., of escaped wildfires that could

not quickly be extinguished. We use the observation period 1995–2018, for which gridded

weather reanalysis data (SAFRAN model of Météo France) and information on forested area

are available.

Figure 4.1 illustrates the heavy tails in the distribution of burnt areas and strong spatial

variability in numbers and sizes of wildfires. It also shows the contours of administrative

areas (“départements”) in the study region. Small to moderately large wildfires dominate

the pie charts for wildfire counts, while large wildfires dominate the those for aggregated

burnt area. Certain spatial patterns are similar in the distribution of numbers and sizes of

wildfires (top and bottom display of Figure 4.1, respectively), but there are notable differences.

For example, large wildfire numbers do not always entail large aggregated burnt areas, as

we see for the Pyrénees-Orientales département in the southwest. The disparities show the

need to model spatiotemporal structures in both wildfire numbers and sizes, as well as in

their interaction. Figure 4.2 (left panel) shows a histogram of burnt area values. The sum of

burnt areas exceeding the empirical 99%-quantile is larger than the corresponding sum for

the remaining wildfires.

The SAFRAN model provides gridded weather reanalyses at 8km resolution. The joint influence

of weather variables such as temperature, precipitation and wind speed on fire activity patterns

is highly complex. Meteorological indices of fire danger have been constructed, such as the

widely used unitless Fire Weather Index (FWI) that was originally defined for Canadian forests.

Its values are often used for direct interpretation and fire danger mapping. Instead, we here

study its relationship to components of fire risk, such as occurrence frequency and wildfire

sizes. For our models, we preprocess SAFRAN data to daily FWI and use the SAFRAN grid by

aggregating daily wildfire counts to its cells; Pimont et al. (2021) provide arguments to use this

spatial-temporal resolution. Forest cover is another crucial explanatory variable. Around 60%

of the study area has forested areas or vegetation types that ignite easily (shrubland; other

natural herbaceous vegetation). Wildfires do not propagate easily through the other available

land cover types. We consider relevant fuel material through the proportion covered by this

vegetation in each SAFRAN grid cell (and day) based on CORINE Land Cover data (CLC). CLC

dynamics are captured by linear temporal interpolation of several inventories. We refer to the

resulting pixel-day predictor as forested area (FA), in %.

91

www.promethee.com


Chapter 4. Spatiotemporal wildfire modeling through point processes with extreme
marks

Mediterranean Sea
42

43

44

45

2.5 5.0 7.5 10.0
Longitude °E

La
tit

ud
e 

°N

Proportions

Q99−Q100

Q95−Q99

Q90−Q95

Q75−Q90

Q50−Q75

Q0−Q50

Mediterranean Sea
42

43

44

45

2.5 5.0 7.5 10.0
Longitude °E

La
tit

ud
e 

°N

Proportions

Q99−Q100

Q95−Q99

Q90−Q95

Q75−Q90

Q50−Q75

Q0−Q50

Figure 4.1 – Maps of Prométhée data aggregated to the SAFRAN grid at 8km resolution. The pie
charts in the grid cells are based on 6 wildfire size classes with boundaries given by empirical
quantile levels 0,0.5,0.75,0.9,0.95,0.99,1 of all burnt areas (June–October). Top display: pie
charts show relative count proportions over the six classes and have size increasing with
increasing counts. Bottom display: pie charts show relative burnt area proportions and have
size increasing with increasing aggregated burnt area.

4.4 Methods for point patterns with extreme marks

4.4.1 Extreme-value theory

Given a random variable X whose distribution F satisfies mild regularity conditions, the

generalized Pareto distribution (GPD) arises asymptotically for the positive excesses of X

above a threshold increasing to x? = sup{x : F (x) < 1} (Coles, 2001). Therefore, given a large

threshold u < x?, the tail behavior of a wide class of random variables X can be approximated
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as

Pr(X > x +u | X > u) ≈ GPDσ,ξ(x) =
{

(1+ξx/σ)−1/ξ
+ ξ 6= 0,

exp(−x/σ) ξ= 0,
x > 0, (4.1)

with shape parameter ξ ∈ R and scale parameter σ = σ(u) > 0, where a+ = max(a,0). The

shape parameter determines the rate of tail decay, with slow power-law decay for ξ > 0,

exponential decay for ξ = 0, and polynomial decay towards a finite upper bound for ξ < 0.

Writing pexc = 1−F (u) for the exceedance probability of X above u, we use (4.1) to approximate

the cumulative distribution function F of X above the threshold u (Davison and Smith, 1990)

as

F (x) ≈ 1−pexcGPDσ,ξ(x −u), x > u, (4.2)

where ξ,σ and pexc are parameters to be estimated. We account for dependence and non-

stationarity among observations by including auxiliary variables and Gaussian random effects

in σ and pexc. Nonstationarity in ξ is often hard to identify, and we therefore keep ξ stationary.

Based on (4.2), we model the conditional GPD of fire size excesses and pexc. To explore the

tail behavior of all fire sizes pooled together and choose an appropriate threshold u, we can

use mean excess plots (see Supplement §4.9.4) or the following threshold stability plot of

parameters, here considered for the GPD shape ξ, estimated by maximum likelihood for

thresholds vm > ·· · > v1. We use multiple statistical tests (Northrop and Coleman, 2014) to

test the null hypotheses that the data come from a common truncated GPD on all intervals

(vk , vk+1), k = 1, . . . ,m, where vm+1 =∞. Using m = 40 equidistant intervals of length 5ha

for fire sizes, Figure 4.2 provides evidence that stability is reached above approximately the

95% quantile (79ha), as we fail to reject the null hypothesis ξk = ·· · = ξm for intervals with

vk > 79ha and estimated shape ξ̂k ≈ 0.7.

Joseph et al. (2019) modeled fire sizes in the contiguous United States and concluded that the

GPD leads to overestimation of extreme fire sizes. However, they fitted the GPD to the full

distribution; Figure 4.2 shows that we would have obtained ξ̂≈ 1.4 for u = 1, corresponding to

extremely slow tail decay.

4.4.2 Mark-dependent thinning of point processes

We consider the point pattern of fire ignitions and burnt areas as a realization of a spa-

tiotemporal marked point process; i.e., of a random count measure N that attributes values

N (B) ∈ {0,1,2, . . .} to Borel sets B ⊂ D ⊂ R2 ×R. We model the intensity function λ(x) of the

point process in the observation window D, defining the expected number of points

Λ(B) = EN (B) = E
N∑

i=1
1(xi ∈ B) =

∫
B
λ(x)dx.

We focus on Poisson point processes characterized by the counts N (B) ∼ Pois{Λ(B)}. With two

types of points, such as non-extreme and extreme points, the point pattern is a superposition
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Figure 4.2 – Burnt area distribution. Left: Histogram of burnt areas (ha) in base-10-logarithm.
Middle: Parameter stability of the tail index. Right: p-values for the null hypothesis of a GPD
distribution above the threshold; tick labels on top indicate the number of fires above the
thresholds.

of the two single-type patterns, and the intensity is a sum λ=λ1 +λ2. The points of a specific

type, say type 2, are generated by thinning the full point pattern; i.e., by removing the points

of other types (here type 1) using the thinning probability p(x) =λ2(x)/λ(x), x ∈D. Extreme

events, characterized as points xi whose magnitude mark yi exceeds a fixed high value u(xi )

are obtained by thinning the full point pattern. Given a point pattern {x1, . . . , xN }, N ≥ 1,

we define variables Ei = I{yi > u(xi )} ∼ Bernoulli{p(xi )}. An independently thinned Poisson

process (i.e., Ei are independent) is again a Poisson process.

4.4.3 Spatiotemporal log-Gaussian Cox processes

Log-Gaussian Cox processes (LGCPs) are Poisson processes with log-Gaussian intensity func-

tion λ(x). This random specification of the intensity function can explain spatiotemporal

variability not captured by deterministic parameters, and provides a natural framework for

the Bayesian modeling of point processes with Gaussian process priors. Two major challenges

arise for likelihood-based inference in LGCPs: (i) intensity functions are conceptually defined

over continuous space; (ii) the Gaussian random effects lead to an intractable likelihood with

no general closed-form expression. Challenge (ii) requires estimation techniques to handle

latent variables; see §4.4.5. As to (i), without considering the marks, LGCPs have no general

closed-form expression for their probability densities

(x1, . . . , xN ) 7→ Eλ exp

(
−

∫
D
λ(x)dx

) n∏
i=1

λ(xi ). (4.3)

Different approximation strategies allow numerical computation of the integral
∫
D λ(x)dx for

a given intensity function. We discretize the observation window using the SAFRAN grid, and

assume that the intensity function does not vary within pixel-day grid cells. Conditional on λ,

the number of points observed in a cell Ck , k = 1, . . . ,K , is Poisson distributed, so estimating
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the LGCP corresponds to performing a (mixed) Poisson regression with log-link;

Nk |λk
ind∼ Pois(|Ck |λk ), log(λk ) =µk , k = 1, . . . ,K , (4.4)

where λk is the constant intensity in cell Ck , |Ck | is the Lebesgue volume of Ck ,
⋃K

k Ck = D

and Ck1 ∩Ck2 = ; if k1 6= k2. The linear predictor µk is a sum of fixed and random effects.

Likelihood-based inference for latent Gaussian processes is often based on Laplace approxi-

mation (Tierney and Kadane, 1986). In particular, the INLA framework assumes conditional

independence of the observations given the latent Gaussian predictor and is thus well suited

for LGCPs, where the Poisson observations Nk are conditionally independent given µk (Illian

et al., 2012; Opitz et al., 2020a). Other approaches for numerically approximating the integral

in (4.3) exist and typically use appropriately weighted sums
∑

k ωkλ(x̃k ) with discretization

points x̃k and weights ωk > 0, leading to variants of Poisson and logistic regression (e.g., the

Berman–Turner 1992 device); see Baddeley et al. (2010).

4.4.4 Data aggregation and subsampling schemes

Spatiotemporal hierarchical modeling is notoriously computer-intensive due to large datasets

and numerical challenges with covariances. The R-INLA implementation (Rue et al., 2017)

can handle up to several hundred thousand observations. Stable inferences may require com-

promises with respect to the complexity of the latent model and the number of observations,

which jointly determine the size and sparsity of the Gaussian precision matrices, which influ-

ence computation times, memory requirements and well-conditioned numerical behavior.

Even stronger restrictions arise with the use of methods such as Markov Chain Monte Carlo

(MCMC) to achieve approximation quality comparable to INLA (Taylor and Diggle, 2014; van

Niekerk et al., 2019). Krainski et al. (2018, §8.4) develop strategies for LGCPs by aggregating

the events to larger mapping units and lowering spatial-temporal resolution of random effects

to decrease computation times, though this impedes the modeling of structures with small

spatiotemporal scales.

Another way to cope with this issue of having too many observations is subsampling (Baddeley

and Turner, 2000; Rathbun et al., 2007; Baddeley et al., 2010; Rathbun, 2013; Baddeley et al.,

2014), where the model is estimated using an appropriately reweighted subsample of data

points, which keeps the loss of information small. Since maximum likelihood estimation

is equivalent to maximizing the empirical expectation of the log-density of observations,

a subsampling scheme is appropriate provided it ensures a faithful approximation of this

expectation. Subsampling in likelihood-based estimation can be interpreted as importance

sampling (Tokdar and Kass, 2010): the original sample with observation weight unity is

replaced by a subsample with larger observation weights. Weighted subsampling theory

goes back to Horvitz and Thompson (1952).

The Poisson intensities λk = exp(µk ) (k = 1, . . . ,K ) in (4.4) are the parameters to be estimated,

and we need a subsample Nk j with weightsω j ( j = 1, . . . , J ) such that the subsample likelihood
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is close to the full density (4.3). The sample size K exceeds 5 million, as there are over 1000

daily-replicated spatial pixels. To enable R-INLA-based estimation, we devise a stratified

subsampling scheme to reduce the number of observations one hundredfold. Observations

Nk > 0 are not subsampled since they are rare and highly informative; we keep them with unit

weights. For the zero wildfire occurrence counts, we link subsampling to Poisson additivity.

The likelihood contribution exp(−λk )ωk = exp(−ωkλk ) with weight ωk ∈ N is equal to the

likelihood of the sum of ωk observations with count 0; the size of the initial sample is divided

by the factor ωk . The predictors (covariates, random effects), and therefore of intensities λk ,

differ between different pixel-days k in our models, so Poisson additivity cannot be applied

without additional approximations. However, the values of such predictors may often be

very similar for cells located close in space and time, so we control the loss of information by

subsampling that preserves a representative coverage of space and time.

We partition our data by years and pixels and then apply subsampling within each partition.

The subsample contains two observations for each year-pixel combination. We thus obtain

approximately 50,000 observations in the subsample, in line with the rule of thumb of Baddeley

et al. (2014, 2015) that the subsample should be at least a factor four larger than the number

of event points. The resulting models can be run on standard desktop computers (16Gb

of memory). Within pixel-year combinations, we use non-uniform random sampling to

overweight specific parts of the predictor space. For inference on the FWI-month interaction,

we set different sampling probabilities for FWI values above and below the empirical FWI-

quantile at pFWI for each pixel-year. Values above the threshold are expected to correspond

to more fire-prone conditions, and we over-represent them, by fixing sampling probabilities

pSS = 0.9 for FWI values below the threshold. To appropriately identify seasonal effects, we

choose the month among June–October at random. For instance, high FWI values tend to be

less frequent in October, but uniform subsampling of months gives them more weight. With

this scheme, we obtain a positive sampling probability pk > 0 for each observation Nk in (4.4),

and likelihood weights are ωk = 1/pk for the selected observations. Simulation experiments

(see Supplement §4.9.5) motivated taking (pFWI, pSS) = (0.7,0.9).

4.4.5 Fully Bayesian inference using INLA-SPDE

Integrated nested Laplace approximation (INLA Rue et al., 2009; Lindgren and Rue, 2015;

Opitz, 2017) is a Bayesian technique for fitting generalized additive models with Gaussian

random effects. It uses astutely designed deterministic approximations for accurate posterior

inference on model parameters, random effects and predictions conditional on data. INLA

enables transfer of information across components, appropriate uncertainty assessment and

estimation of shared effects. A brief overview of INLA is given in the Supplement §4.10. We

implement penalized complexity priors (PC priors, Simpson et al., 2017) in our models to

control the complexity of model components. Such priors penalize the distance of the prior of

a model component towards a simpler baseline at a constant rate.
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Figure 4.3 – Discretization of random effects with SPDE-based Gaussian prior processes. Left:
Triangulation mesh of the study area (blue contours) for the SPDE approach. Neumann
boundary conditions are set on the exterior (black) boundary to obtain a unique solution. The
finite element solution defines a Gauss–Markov random vector with one variable in each node.
Right: Histograms of FWI and FA values. The red points indicate where the spline knots are
placed.

Due to to the large number of pixels in our problem, spatial Gaussian random effects and

their conditional distributions must be tractable in this setting. We use the Matérn covariance

function for random effects (denoted g ), given as follows for two points s1 and s2:

Cov{g (s1), g (s2)} =σ221−ν(κ||s1 − s2||)νKν(κ||s1 − s2||)/Γ(ν), σ,ν> 0,

with Euclidean distance || · ||, gamma function Γ, modified Bessel function of the second

kind Kν, and standard deviation and smoothness parameters σ and ν. The empirical range

at which the correlation drops to approximately 0.1, is r =p
8ν/κ. Numerically convenient

representations by approximating Gauss-Markov random fields (GMRF, characterized by

sparse precision, i.e., inverse covariance, matrices) are constructed by solving a stochastic

partial differential equation (SPDE, Lindgren et al., 2011; Krainski et al., 2018), where we fix the

smoothness ν at unity. The discretization points of the triangulation in the SPDE approach

(full details in the Supplement §4.11) are chosen as the nodes of a finite element representation

(e.g., the triangulation of space for d = 2, or spline nodes for d = 1), which enables efficient

inference for random effects representing spatial variation (d = 2) or nonlinear functions

(d = 1 for the FWI and FA effects). Our spatial triangulation mesh in Figure 4.3 has 1114 nodes.

It is less dense in the extended zone around the study area to ensure that SPDE boundary

conditions have negligible influence on the study area. The four splines knots for FWI and FA

are evenly spaced throughout the feature space.
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4.5 Point processes with moderate and extreme marks

Point processes govern the space-time point patterns of occurrences; size processes govern

the moderate-level and extreme quantitative marks. We write Ni t for the number of wildfire

occurrences on day t ∈ {1, . . . ,n} and over the 8km×8km grid cell i ∈ {1, . . . ,1143} with centroid

si , and Ci ,t ⊂ D for the space-time cell with volume |Ci ,t | = 64 (km2 ×day). If Ni t > 0, we

let Yi t = (Yi t ,1, . . . ,Yi t ,Ni t ) ∈ (1,∞)Ni t denote the corresponding quantitative marks. We write

zk (s, t ) (k = 1, . . . ,K ) for known deterministic covariates.

We model data of escaped fires (> 1 ha), whose occurrence structure is captured by a regression

component COX defining a LGCP. A logistic regression component BIN is used to classify fires

into moderate (0) and large (1) according to their exceedance or not above a fixed threshold

u, i.e., to provide the thinning of the point pattern and leave only extreme wildfires. Based

on Figure 4.2, we consider a fire size Yi t ,k to be extreme if Yi t ,k > 79ha (k = 1, . . . , Ni t ); i.e., we

take u = 79. We write Ri t = (Ri t ,1, . . . ,Ri t ,Ni t ) ∈ {0,1}Ni t for the vector of binary exceedance

indicators Ri t ,k = I(Yi t ,k > u). Moderate wildfire sizes Yi t ,k ∈ (1,u] are modeled through a

Beta regression component BETA applied to (Yi t ,k −1)/(u −1). The Beta distribution, usually

parametrized by two shape parameters a,b > 0, is here parametrized through a precision

parameter φ= a +b > 0 and the mean µBETA
i t = a/(a +b) ∈ (0,1) with logit-link function, such

that a =µBETA
i t φ and b =φ(1−µBETA

i t ); it is a flexible location-shape family for interval-valued

data and can be used with INLA. For large wildfires, we use the extreme-value framework

in §4.4.1 and model excesses Yi t −u > 0 above u through a GPD regression component GPD

to characterize extreme wildfires. Following Opitz et al. (2018), we use a log-link function for

the median µGPD
i t of the GPD.

Some hyperparameters (e.g., precision parameters of priors for fixed effects) are fixed a priori,

but those that may heavily influence the posterior model structure are estimated. The priors

are fully detailed in the Supplement §4.9.6.

4.5.1 Bayesian hierarchical multi-response regression

Our modeling assumptions in §4.4.3 give the linear COX predictor:

µCOX
i t = log

∫
Ci t

λ(s, t )d(s, t ) = logλ(si , t )+ log |Ci t |.

We construct the system of regression equations in a Bayesian generalized additive mixed

model (GAMM):

Ni t |µCOX
i t ∼ Poisson{exp(µCOX

i t )},

Ri t ,k |µBIN
i t ∼ Bernoulli{logit−1(µBIN

i t )}, k = 1, . . . , Ni t ,

{Yi t ,k −u | Ri t ,k = 1, µGPD
i t } ∼ GPD{exp(µGPD

i t ),ξ},

{(Yi t ,k −1)/(u −1) | Ri t ,k = 0, µBETA
i t } ∼ Beta{logit−1(µBETA

i t ),φ};
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µCOMP
i t =

K∑
k=1

g COMP
k {zk (si , t );θCOMP,θSHR}, COMP = {COX,BIN,GPD,BETA};

θ = (ξ,φ,θCOX,θBIN,θGPD,θBETA,θSHR) ∼ Hyperpriors,

where terms g COMP
k capture linear or nonlinear influence of the covariates in the corresponding

model component. The specifics of θ are discussed below.

The intensity function λexc of the point process of large fires satisfies λexc(si , t) ≤ λ(si , t).

The exceedance probability logit−1µBIN
i t =λexc(si , t )/λ(si , t ) defines the independent Bernoulli

probability of the full point pattern in COX. Sinceλexc(si , t ) = exp(µBIN
i t )exp(µCOX

i t )/{1+exp(µBIN
i t )}

and typically exp(µBIN
i t ) ≈ 0, we obtain logλexc(si , t ) ≈µBIN

i t +µCOX
i t .

4.5.2 Sharing latent effects

For maximal flexibility, we could incorporate mutually independent spatial effects into all

model components. However, models would become overly complex, with too many spatial

effects and hyperparameters to estimate, and with high posterior uncertainties in the spatial

effects of the BIN and GPD components due to the small number of large wildfires. We share

spatial random effects between model components of the point and size processes, with a

preliminary model selection procedure (see §4.6.1) that avoids compromising the quality of

model fit and predictions. We assign SPDE-based spatial GMRF priors g COX-BETA, g COX-BIN and

g BIN-GPD (recall §4.4.5) for the shared spatial effects. We use superscripts to indicate the two

components into which we jointly incorporate an effect, and write n to indicate the number

of latent random variables for the corresponding effect (in superscript):

g COX-BETA(si ) ∼GP 2D-SPDE(ω1), nCOX-BETA = 1114,

g COX-BIN(si ) ∼GP 2D-SPDE(ω2), nCOX-BIN = 1114,

g BIN-GPD(si ) ∼GP 2D-SPDE(ω3), nBIN-GPD = 1114,

where ω1, ω2 and ω3 consist of r and σ with PC priors (Fuglstad et al., 2018). Each shared

effect is additively included in the linear predictor of the second component and then shared

towards the first component with scaling factor β ∈ R, with superscripts to denote the two

components. We denote the vector of sharing-related hyperparameters by θSHR = (ω1,ω2,ω3,

βCOX-BETA,βCOX-BIN,βBIN-GPD), and use flat, independent zero-centered Gaussian hyperpriors

for the scaling factors.

Sharing allows modeling of residual spatial effect components that jointly affect multiple

model responses, such as landuse at the Wildland-to-Urban interface (Stewart et al., 2007),

where human activities intermingle with wildland vegetation. Accurate sharing improves

parsimony of the model and borrows estimation strength for random effects across model

components by simultaneously using different types of data. Expert knowledge should guide
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the choice of spatial effects to be shared between specific components; shared coefficients

that differ from zero provide novel insight into the interplay of spatial structures.

4.5.3 Prior structure of linear predictors

We let zFWI(si , t) and zFA(si , t) denote the average FWI and FA on day t in grid cell i , and by

a(t ) and m(t ) the corresponding year and month of day t . Writingα for the intercept and g for

the other GAMM components, the prior structure of the model component COX for escaped

fire occurrences is

µCOX
i t =αCOX + g COX

1 (si )+βCOX-BETAg COX-BETA(si )+βCOX-BINg COX-BIN(si )

+ g COX
2 {zFA(si , t )}+ g COX

3 {zFWI(si , t );m(t )}

+ g COX
4 {a(t )}+ g COX

5 {m(t )};

g COX
1 (si ) iid∼ N {0,1/τ1}, nCOX

1 = 1143,

g COX
2 (•) ∼GP 1D-SPDE(φ1), nCOX

2 = 4,

g COX
3 ( • ;m) ∼GP 1D-SPDE(φ2),

g COX
3 (zFWI; • ) ∼GP RW1(1/τ2), nCOX

3 = 4×5 = 20,

g COX
4 (• ) ∼GP RW1(1/τ3), nCOX

4 = 20,

g COX
5 (• ) ∼GP RW1(1/τ4), nCOX

5 = 5;

θCOX = {αCOX,φ1,φ2,τ1,τ2,τ3,τ4} ∼ Hyperpriors.

Spatial occurrence hot-spots (see Supplement §4.9.3) may arise due to time-invariant landuse.

Moreover, spatial variation may be shared from patterns in the BETA and BIN components

through the components g COX-BETA(si ) and g COX-BIN(si ). The month and year effects, g COX
4

and g COX
5 , capture spatially homogeneous temporal variation in occurrence intensities. They

are assigned first-order random-walk priors GP RW1 with a sum-to-zero constraint for identifi-

ability; e.g., for the yearly effect and for a = 1995, . . . ,2013,

g COX
4 (a +1)− g COX

4 (a) ∼N (0,1/τ3),
2014∑

i=1995
g COX

4 (i ) = 0.

The quadratic B-spline functions of FWI and FA are assigned priors GP 1D−SPDE, constrained

to zero at the left boundary 0 and to sum to zero, respectively. Most wildfires in the region

are caused by human activity, possibly leading to a nonlinear relationship between FA and

occurrence intensity, as dense forest areas are often exposed to low human activity. We model

monthly variation of the nonlinear FWI effect through separate GP 1D−SPDE-terms in g3 for

each month, linked across successive months with a GP RW1-structure in the prior model.

100



4.5. Point processes with moderate and extreme marks

The regression equation used for the Bernoulli process is

µBIN
i t =αBIN + g COX-BIN(si )+βBIN-GPDg BIN-GPD(si )+ g BIN

1 {zFWI(si , t )}

+ g BIN
2 {zFA(si , t )}+ g BIN

3 {a(t )};

g BIN
k (•) ∼GP 1D-SPDE(ζk ), k = 1,2, nBIN

1 ,nBIN
2 = 5,

g BIN
3 (•) ∼GP RW1(1/τ5), nBIN

3 = 5;

θBIN = {αBIN,ζ1,ζ2,τ5} ∼ Hyperpriors.

The linear predictor of the Bernoulli probability has a simpler form than the occurrence

component but still allows the capture of specific nonlinear effects of FWI and FA. In Figure 4.1,

we discern hot-spot areas of large fire occurrences that differ substantially from the overall

occurrence structure, and we aim to capture these residual effects through the shared spatial

effects.

The prior structure for the two mixture components of quantitative marks is

µBETA
i t =αBETA + g COX-BETA(si )+ g BETA

1 {zFWI(si , t )}+ g BETA
2 {zFA(si , t )},

µGPD
i t =αGPD + g BIN-GPD(si )+ g GPD

1 {zFWI(si , t )}+ g GPD
2 {zFA(si , t )}

+ g GPD
3 {a(t )};

g BETA
k (•), g GPD

k (•) ∼GP 1D-SPDE(κk ), k = 1,2, nGPD
1 ,nGPD

2 ,nBETA
1 ,nBETA

2 = 5,

g GPD
3 (•) ∼GP RW1(1/τ6), nGPD

3 = 5;

θMARK = {αGPD,αBETA,κ1,κ2,τ6} ∼ Hyperpriors.

We assigned random-walk priors to year effects included in some of the components (COX,

BIN, GPD). In all components (BETA, BIN, COX, GPD), we model non-linear relationships with

respect to FWI or FA.

4.5.4 Alternative model specifications

We also consider size processes that do not model the moderate-level and extreme marks

separately; i.e., with no mixture representation of the size process. Similar models have been

proposed in the literature (e.g., Joseph et al., 2019), though without the sharing of random

effects. We use either the Gamma distribution for the full range of marks: Yi t ,k | µSIZE
i t ∼

Gam{exp(µSIZE
i t ),φGam}, or the Normal distribution for the logarithmically transformed marks:

logYi t ,k | µSIZE
i t ∼ N {exp(µSIZE

i t ),φN }, where the distributions are parameterized by the link
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function µSIZE
i t modeling the mean and precision parameters φGam = exp(µSIZE

i t )2/Var(Yi t ,k )

and φN = 1/Var(logYi t ,k ), respectively. In both cases

µSIZE
i t =αSIZE + g SIZE-COX(si )+ g SIZE

1 {zFWI(si , t )}+ g SIZE
2 {zFA(si , t )}

+ g SIZE
3 {a(t )}+ g SIZE(si );

g SIZE
k (•) ∼GP 1D-SPDE(ιk ), k = 1,2, nSIZE

1 ,nSIZE
2 = 5,

g SIZE
3 (•) ∼GP RW1(1/τ7), nSIZE

3 = 5;

θSIZE = {αSIZE,ι1,ι2,τ7} ∼ Hyperpriors,

where the spatial effects g SIZE-COX(si ) and g SIZE(si ) are controlled by Matérn parametersω4

andω5, similar to those in §4.5.2.

4.6 Results

4.6.1 Model selection and comparison

Estimation was carried out using the INLA-SPDE approach described in §4.4.5 by applying the

subsampling scheme proposed in §4.4.4. In a preliminary analysis of the regression models

described in §4.5, we used the Widely Applicable Information Criterion (WAIC, Watanabe,

2010) in a step-wise manner to compare nested models with different components in the

regression equations (e.g., linear vs nonlinear effects of explanatory variables) to choose their

final forms.

We label the model with prior structure detailed in §4.5.3 M1, and the model without spatial

effects in the size and extreme occurrence components M2. We also considered other models

from the recent wildfire modeling literature. We refer to model M2 but without monthly

variation in the FWI effect as M3, which is similar to the approach of Pimont et al. (2021). We

let M4 and M5 denote the models with the point process model of M1 but with no mixture

representation of the size process, for which we use the log-Normal and Gamma distribution

for the size distribution in the model structure described in §4.5.4. These models do not

differentiate between extreme and non-extreme fires, but their response distributions were

found to be good modeling candidates in Joseph et al. (2019), though their approach does not

use shared random effects.

For the observed individual fires in the validation (2015–2018) periods, we generated posterior

predictive distributions of each model based on 500 posterior simulations. First, we evaluated

the models’ ability to predict exceedances above the empirical 90% quantile of burnt areas

using the AUC (Fawcett, 2006) and the Brier score (Brier, 1950). The severity threshold chosen

here is sufficiently high for extreme risk assessment, but low enough to retain enough observa-
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Score Model
M1 M2 M3 M4 M5

Individual fires, n = 823

sCRPS 2.74 2.87 2.94 2.84 3.19
p-value - < 5% < 1% < 5% < 1%
Brierq90 0.0855 0.0868 0.0866 0.0944 0.0967
p-value - < 5% 6% < 1% < 1%

1−AUCq90 0.3052 0.3502 0.3516 0.3184 0.3122
p-value - < 5% < 5% 40% 41%

Dép-month, n = 75 sCRPS 3.55 3.62 3.64 3.62 3.58
p-value - 7% 7% 9% 39%

Table 4.1 – Comparison of models using predictive scores (averaged over n observations)
calculated with data from the validation period: sCRPS, Brier and AUC scores for individual
fires, and sCRPS for the spatiotemporally aggregated burnt areas at month-département
scale, based on 500 simulations of the posterior models, with p-values for a permutation test
comparison with the best model M1. A lower score is better.

tions to evaluate these scores with sufficient precision. As we considered average predictive

score across all observations in the validation set, we also computed the scaled Continuous

Ranked Probability Score (sCRPS Bolin and Wallin, 2020), which scales each observation’s

CRPS before calculating the average. For these analyses, we kept the original locations of

observed fires, and simulated only from the size components. By combining posterior sim-

ulations of the occurrence and size components, we also evaluated burnt area predictions

aggregated at the month-département scale.

Table 4.1 shows good relative performance of M1 for all scores when evaluating wildfire

predictions on the validation period. To better grasp the uncertainty in scores, we show p-

values of a permutation test assessing the significance of negative values in the differences

of scores between M1 and the other models, based on 2000 permutations. For the sCRPS

of individual fires, the score differences are all significant at the 5% level. A general finding

is that using sophisticated structures such as the mixture representation of size processes,

sharing and monthly variation of FWI effect, improves predictions; it further allows for the

novel scientific insights presented in §4.7.

Comparison of M1 and M2 confirms the benefits of incorporating spatial random effects in

the size model components in M1 using the sharing detailed in §4.5.2. M1 performs better

than M2, and M2 and M3 give similar predictions for wildfire sizes and their aggregation.

Model M1 performs better than M4 and M5, especially with respect to Brier and sCRPS

scores, though in some cases improved scores have relatively high p-values. Models M4 and

M5 perform better than M2 and M3 for some scores like the AUC and sCRPS at the month-

département aggregation because of the additional sharing and spatial random effects in the

size component, though they perform worse for the other scores due to having no components

for extreme wildfires. Despite good scores of M4 and M5 on the training set (not shown), their
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worse results on the validation set suggest that the log-Normal and Gamma distributions

for burnt areas do not predict the extremes in new data as well as M1, which does not show

overfitting.

4.6.2 Visual inspection of posterior predictive densities

We also assess the predictive behavior of our chosen model M1 visually. First, we assess

whether the size component correctly predicts extreme wildfires for specific départements.

In the Supplement §4.9.1 (Figure 4.9), we use simulations from the posterior model at pixel-

days where fires have been observed to compare empirical and predicted excess probabilities

over high thresholds, starting at 100ha. Predictions are generally good, since most empirical

exceedance probabilities fall within the inter-quantile range of simulations, except for the

départements of Var and Haute-Corse, in which there is slight underestimation at very large

thresholds. These two départements have large continuous forest areas and saw unusually

many large wildfires in the summer of 2017. Much of their land has acidic soils that favor

biomass production and is covered by tall and dense shrubland, so the 2017 fires were harder

to contain due to their higher heat release. Overall, the tail behavior in fire-prone and less

fire-prone regions is well modelled.

Next, we ccompare the numbers of simulated and observed fires aggregated by year over the

study region (Supplement §4.9.1 : Figure 4.10, left display). Observed annual fire numbers for

both test and training sets fall within the inter-quantile range of simulations for more than

half of the study period. M1 captures the relatively high observed numbers of 2001, 2003 and

1998 (training) and 2017 (test), while it also accurately predicts the sharp decrease in 2018.

Lastly, we jointly evaluate the size and occurrence components of our model M1. We aggre-

gated simulated burnt areas by year, over the whole spatial region in Figure 4.10 (right display),

and over départements in Figure 4.11. The global time trend in observed burnt areas is well

captured in Supplement §4.9.1, Figure 4.10, with inter-quantile coverage of 42%. M1 captures

the exceptional peak in 2003, which is poorly predicted by M4 and M5 and the Firelihood

model of Pimont et al. (2021). M1 also succeeds in accurately predicting the moderately high

burnt areas in 2001 and 2017, and it generally discriminates well between fire conditions

leading to small, moderate, large and very large fire numbers. Figure 4.11 further shows that

regional differences across départements are well captured by M1. Overall, our model cap-

tures spatiotemporal variation and provides satisfactory regionalized forecasts for operational

purposes.

4.6.3 Principal results of the main model M1

Covariate effects

For the COX component, Figure 4.4 shows that the month-specific FWI effect varies signifi-

cantly across months. For easier comparison, we have centred the curves so that the posterior
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Figure 4.4 – Posterior estimates of g COX
3 (•;m)+ g COX

5 (m), m = 1, . . . ,5, the joint FWI-month
effect, for June–October in the linear predictor of the point process (COX) component. The
blanket of black and blue points at the bottom of each plot shows FWI values for pixel-days
with fires in any month and the specific month, respectively.

mean is 0 for FWI= 0 in September. All the posterior means increase monotonically up to FWI

of 75, and then flatten for higher values, especially at the beginning and end of the wildfire

season, with a slight decrease of the curve towards the highest FWI.

The posterior partial effect of FA on the COX component in Figure 4.5 indicates a “bump”-

shaped effect of FA, which is significant based on pointwise credible intervals. High FA can

be regarded as a good proxy for low human activity, while low FA means lack of fuel. Clearly,

expected wildfire ignition numbers are not proportional to forest area.

As to temporal partial effects without spatial variation (Figure 4.5), the posterior year effect

suggests a significant drop in wildfire activity after 2003, potentially related to policy changes

after the exceptional 2003 events. The partial month effect (top right display of Figure 4.5,

corresponding to the intercept of its combined effect with FWI in Figure 4.4) is lowest at the

start of the wildfire season and peaks in August.

As to the probability of occurrence of large fires (BIN), Figure 4.5 (bottom middle display)

highlights a strong positive posterior effect of FWI, increasing monotonically and significantly

up to FWI values of around 75, before it dampens at very large FWI values, similar to the

COX component: large wildfires are more frequent with moderate to high FWI values. The

probability of large wildfires tends to increase with increasing FA in a grid cell (Figure 4.5,

bottom left display), which is reasonable because more FA fuel is available over large areas. The

pointwise credible bounds of yearly effects across the study period suggest that the occurrence

of large events was significantly higher around the peak in 2003.

The additive effects in the GPD and BETA components of the size distribution, seen in Fig-

ures 4.6, show similar posterior effects of FWI and forest area for extreme and moderate sizes.

The posterior estimates imply that fires become larger when FWI increases until 60 but this ef-

fect flattens for higher FWI. Increasing FA leads to increasing wildfire size in both components

until 50%, then reaches a plateau after. For the year effect in the extreme component GPD, no

clear trend arises, though 2003 has a significantly higher effect than 1998.
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Figure 4.5 – Posterior estimates of g COX
2 (•) (FA effect, top left panel), g COX

4 (•) (year effect, top
middle panel), g COX

5 (•) (month effect, top right panel), g BIN
2 (•) (FA effect, bottom left panel),

g BIN
1 (•) (FWI effect, bottom middle panel) and g BIN

3 (•) (year effect, bottom right panel) in
the linear predictor of the point process (COX) component and large wildfire probability
component (BIN). At the bottom of some displays, the blanket of black and red points shows
FA/FWI values for pixel-days with moderate and large fires, respectively.
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Figure 4.6 – Panels as in Figure 4.5. Posterior estimates of g GPD
2 (•) (FA effect, top left), g GPD

1 (•)
(FWI effect, top middle), g GPD

3 (•) (year effect, top right), g BETA
2 (•) (FA effect, bottom left) and

g BETA
1 (•) (FWI effect, bottom right) in the linear predictor of the large wildfire size component

(GPD) and moderate wildfire size component (BETA).

Sharing effects induce correlated wildfire activity components

Here we focus only on the spatial effects shared between model components. The 95% credible

intervals for the scaling parameters βCOX-BETA, βCOX-BIN and βBIN-GPD do not cover 0; their
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Figure 4.7 – Lengths of the 90% credible intervals of spatial random effect variables at the
SPDE triangulation nodes within the study area in the BIN component, based on 500 posterior
simulations. Boxplots (left), and error bar plots for the models without (top right) and with
sharing (bottom right). Red error bars indicate nodes where the intervals do not include zero.

posterior estimates for the triplet (2.5% quantile, mean, 97.5% quantile) are (6.4,10.3,14.0),

(−3.1,−1.8,−0.9), and (0.5,1.0,1.6), respectively. The posterior mean of βCOX-BETA is positive

and that of βCOX-BIN is negative, confirming significant positive and negative sharing between

COX and BETA, and COX and BIN, respectively; these findings provide new spatial insights for

fire risk management described in §4.7. The posterior means for the effective range parameters

of the shared spatial fields, r COX-BETA, r COX-BIN and r BIN-GPD, are 34.3km, 26.2km and 156.9km,

respectively. Posterior mean maps of their corresponding spatial random effects are shown in

the Supplement §4.9.7.

Sharing decreases uncertainty by borrowing estimation strength between model components.

The average lengths of 95% posterior credible intervals of variables constituting the random

effect shrink by up to 30% (Figure 4.7) because of a higher observation-to-parameter ratio that

enables us to better capture relevant spatial signals.

To identify the hot-spot regions of spatial random effects, we study credible sets for excursion

regions (Bolin and Lindgren, 2015). We evaluate where the fields exceed or fall below the

thresholds u = 0.1 and −u, respectively. These thresholds approximately correspond to a 10%

increase and decrease, respectively, on the scale of the response when taking into account

the log or logistic link. The u-excursion set with probability α, E+
u,α(X ), is defined as the

largest set for which the level u is exceeded at all locations in the set with probability 1−α.

The negative u excursion set with probability α, E−
u,α(X ), is defined as the largest set for

which the process remains below the level −u at all locations in the set with probability

1 −α. This approach determines the largest set contained in the exceedance set with a

minimum probability threshold, and it assumes a parametric family for the exceedance sets.

To visualize excursion sets simultaneously for all values of α, Bolin and Lindgren (2015)

introduced the positive and negative excursion functions F+
u (s) = 1− inf{α | s ∈ E+

u,α} ∈ [0,1]
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Figure 4.8 – Excursion functions of posterior latent fields above 0.1 and below −0.1. Plots show
max{F+

0.1(•),F−
0.1(•)} for the shared spatial random fields g COX-BETA (left panel) and g COX-BIN

(right panel).

and F−
u (s) = 1− inf{α | s ∈ E−

u,α} ∈ [0,1]. Figure 4.8 highlights several hot-spot regions for the

shared spatial effects, which we interpret with respect to wildfire management in §4.7.

4.7 New insights for wildfire science

Pimont et al. (2021) pointed out several critical divergences between simulations of their

model and observed wildfire activity, and they have proposed hypotheses to explain them.

The novel models developed here, especially M1, include components to estimate the sources

of space-time variability conjectured by Pimont et al. (2021), leading to a better fit and more

reliable inferences and predictions. Here, we outline the new insights.

4.7.1 FWI and seasonal effects

The estimated FWI effect on all wildfire components (COX, BIN, BETA, GPD) is nonlinear with

a strong increase when moving from FWI= 0 towards FWI≈ 60–80, followed by a dampening

and a slight decrease for extreme FWI values, though with wide credible bounds. Moreover,

seasonal patterns emerge in the joint FWI-month effect in the occurrence component COX.

The common practice of using FWI directly as a proxy for wildfire activity, without a nonlinear

and seasonally varying transfer function as estimated here, would predict extreme wildfires

badly and miss seasonally varying response of fire activity to this index.

This non-linear, even decreasing, response to high FWI and seasonal biases can be attributed

to the excessively sharp exponential response of FWI to wind speed in its upper range and to

the limited ability of the Drought Code (a subcomponent of the FWI) to reproduce live fuel

moisture dynamics in France (Ruffault et al., 2018). In spring, vegetation budburst produces

new foliage with a high water content that is maintained until the onset of the summer drought,

typically in early July. The timing of periodic events in plant life cycles and stomatal control

under drought might also explain why dynamics of soil and vegetation water content are

unsynchronized at certain times. In our COX component, we model not only a seasonal
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effect but also different responses of FWI across the months. The shapes of these monthly

responses vary greatly, so seasonal variations cannot be handled solely through separate

random effects. The response in August did not exhibit any saturation in the upper part of the

FWI range, suggesting that higher values in mostly dry conditions correspond to increased fire

activity; the contribution of wind to FWI could be adequate in these already-dry conditions.

On the contrary, a flattening and notable decrease of the COX response to FWI was observed at

FWI≈ 45–50 for relatively moist conditions in June and October. This supports the hypotheses

that the desynchronization of soil and fuel moistures caused by plant phenology in spring

could be involved, and the response of the FWI to high wind would be inaccurate in such moist

conditions. July and September, with their mixture of dry and moist days, show intermediate

response levels to very high FWI. These findings confirm a need to develop better wildfire

danger indices in the study region.

4.7.2 Time trends during the study period

The year 2003 was catastrophic in terms of fire sizes and burnt area. It has a pivotal role with a

decrease of occurrence numbers and sizes afterwards, as highlighted by the year component

of our posterior model that captures temporal trends not explained through weather and

land-cover related predictors. In 2003, a heat wave coincided with severe drought conditions,

leading to an unusually high number of escaped fires (> 1ha), and of fires larger than 10ha

for several weeks, whose occurrence was not matched by very high values of FWI due to its

weaknesses outlined in §4.7.1. The drop in the estimated yearly effect after 2003 could be due

to official policy measures that have slightly evolved after 2003, and to better prevention or

suppression policies by fire managers (Pimont et al., 2021).

The yearly effect from the BIN component should interest wildfire managers, as it shows that

the probability of observing a large fire increases following a decade of continuous decrease.

Our results also confirm those of Evin et al. (2018), who found no clear time trend for the

probability of extreme fires.

4.7.3 Shared spatial effects for improved regionalized predictions

The shared spatial effects shown in §4.6.3 highlight regional differences in fire size distributions

and provide quantitative interpretations of effects. They also reveal substantial regional

variation in proportions of moderate and extreme fires. In particular, the sharing effect with

significantly negative βCOX-BIN allows for interpretation with respect to different wildland-to-

urban interactions. The lowland area in the western Pyrénées-Orientales region, fairly densely

populated with a large proportion of abandoned agricultural land intermixed with urban

surfaces, appears to have high occurrence intensities, but its combustible area is strongly

fragmented, so wildfires are mostly small. More fires than expected from weather/climate and

forest area occur in densely populated or rural landscapes with significant human activities

promoting fire ignitions, while landscape fragmentation and landscape management reduce
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the likelihood of large fires. The COX-BETA sharing effect is highly positive in Corsica, where

extreme fires become larger more often than elsewhere, perhaps due to longer arrival times

of firefighters in remote Corsican forests and less frequent airborne firefighting. Moreover,

extreme fires tend to be more frequent because of large contiguous forests. Further regional

disparities in predictions are illustrated in the Supplement §4.9.2 where the right panel of

Figure 4.12 highlights significant differences in threshold exceedance probabilities.

4.8 Conclusion

We have implemented a novel Bayesian spatiotemporal model for wildfire activity with specific

components for extreme events, and with shared random effects to account for stochastic

dependence among components not explained by covariates. The sophisticated structure

of our fully Bayesian hierarchical model allows us to accurately disentangle the effects and

interactions of various observed and unobserved drivers. The use of Gaussian random effects

at high spatial resolution provides crucial benefits over frequentist generalized additive models,

since fine-scale spatial variation and associated uncertainties can be identified properly.

Different sharing strategies respond to different considerations. If statistical stability is the fo-

cus, then sharing from well-identified model components towards those less informed by data

is appropriate. If focus is on accurate inference of a specific component (e.g., extremes), then

it is sensible to share effects from this component towards others. In both cases, component-

specific effects without sharing remain important and should be included as far as data allow

them to be estimated. In some applications, however, introducing common components by

sharing is the only way to incorporate spatial effects in certain response variables. For example,

had we chosen a threshold larger than 79ha for large wildfires, we would have had even fewer

observations available for the extreme fire size component. A separate spatial effect in this

component would provide wider credible intervals than those in Figure 4.7 (top right), and be

of less practical use. Our findings improve decision support in wildfire management: shared

spatial effects explain how wildfire numbers and extreme sizes interact by providing maps of

the significant disparities between regions. Moreover, FWI maps used for fire danger rating

must be interpreted with care because of the strong nonlinear and seasonal effect on wildfire

risk identified by our model. Future work could explore the spatial disparity in temporal trends

due to changes in landuse practices and fire management, by incorporating space-varying

temporal random effects.

Beyond wildfire modeling, our approach could be used to provide new insights and improved

extreme-value predictions for other problems. Landslide inventories can be represented as

point processes with heavy-tailed magnitude marks (Stark and Hovius, 2001; Lombardo et al.,

2020). Another promising application is in modeling locations, times and values of high-

impact events extracted from processes indexed over space and time, such as local extremes

in gridded climate data. This would yield a parsimonious representation of extreme events

in such processes. Models for preferentially sampled spatial data (Diggle et al., 2010) can be
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Figure 4.9 – Exceedance probability plots for six départements (in red on the maps) in the
validation period (2015–2018). Boxplots are based on 200 posterior simulations. Red lines
represent observed empirical exceedance probabilities.

viewed as marked point processes with shared effects, such that our approach would allow the

capture of preferential sampling effects specifically in extreme values.

4.9 Supplement

4.9.1 Plots for the inspection of posterior predictive densities

Figures 4.9, 4.10 and 4.11 show our visual assessment of the predictive behavior of our chosen

model M1.

4.9.2 Plots showing regionalized predictions

Figure 4.12 shows the regionalized predictions due to the spatial effects used in our model.

4.9.3 Kernel intensity plot

Figure 4.13 shows a map of the wildfire locations as recorded in the Prométhée database. The

overlaid contour lines of a kernel intensity estimation highlight the strong spatial nonstation-

arity, with several relatively small hotspot areas characterized by high occurrence numbers.
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Figure 4.10 – Boxplots by year for the predicted numbers of fires (left) and total burnt area
(right) across the whole region from 200 simulations of the posterior model. The grey boxplots
indicate the out-sample years. The red lines represent the observed annual total number of
fires and burnt area in the whole region.
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Figure 4.11 – Boxplots by year and département for the predicted logarithmic total burnt area
from 200 simulations of the model. Red dots represent the observed annual log total burnt
area in each département. The département used for each panel is shown in red on the maps.

4.9.4 Mean excess plots

We consider the mean excess plots of burnt areas and log10 BA in the middle and right

displays of Figure 4.14. Given a threshold value u set for a random variable Y , the mean

excess corresponds to the conditional expectation E[Y −u | Y > u], i.e., the expectation of the

positive excess above the threshold. Mean excess plots report the corresponding empirical

means. In case of exponential tail decay Pr(Y > y) = exp{−(y −µ)/λ} for y ≥ u0 with scale
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Figure 4.12 – Left: Exceedance probability plots by département from 1000 posterior samples
of the model M1 on the validation period given fixed FWI and FA. Right: Same as the left panel,
but only for two départements, with corresponding 95% credible intervals.

λ> 0 and an arbitrary shift µ ∈R, the mean excess would be constant λ for thresholds u above

u0. The mean excess plot for log10 BA indicates approximately exponential tail decay for

low thresholds, where mean excess values are relatively stable for threshold values in (0,1.5)

except for rounding of burnt areas. However, the tail decay becomes faster at around 30 ha.

Exponential decay on log-scale would correspond to power-law decay at the original scale;

i.e., to Pareto-like behavior. By contrast, the mean excess plot of original BA values becomes

relatively stable for thresholds above 500 ha, such that the true, ultimate tail decay rate at

very high quantiles could be exponential. These plots reveal the difficulty of choosing an

appropriate probability distribution for burnt areas.

4.9.5 Subsampling experiments

We implemented several experiments to aid the choice of the parameters of the subsampling

scheme detailed in §4.4.4. We fixed the sampling probability parameter to pSS = 0.9 but

allowed the empirical FWI probability pFWI to equal {0.1,0.3,0.5,0.7,0.9}. The case pSS =
1− pFWI, i.e., pFWI = 0.1, corresponds to uniform subsampling, whereas higher values of

pFWI include a relatively larger number of high FWI observations in the subsample. In a first

simulation experiment, we sampled from the COX model with log-linear intensity in §4.5.1,

µCOX
i ,t =α+β1zFWI(si , t )+β2m(t ),

with α=−11, β1 = 0.15 and β2 = 0.1 to reflect intensities that could be realistic in a wildfire

application, and fit this model with INLA. Figure 4.15 highlights the improvement in estimation

quality by moving away from uniform subsampling, with lower root mean squared errors of

the posterior means. In another experiment, we estimated the COX model with the linear

predictor in §4.5.3 and evaluated the sCRPS scores for the annually aggregated predicted and

observed number of fires over the whole spatial region in the training set with 500 posterior

simulations and 50 different subsampling seeds. The left panel of Figure 4.16 shows that

subsampling scheme with (pFWI, pSS)= (0.7,0.9) achieves the best score. Next, we repeated
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Figure 4.13 – Map of Prométhée data in Southern France with the island of Corsica on the
lower right, based on the original DFCI grid used for recording wildfires. Black lines indicate
boundaries of administrative regions (“départements"). Coloured lines correspond to inten-
sities (i.e., to average numbers of wildfires per km2) and highlight areas with many wildfires.
Some of the gray points correspond to multiple wildfire occurrences.

the experiment with a fixed pFWI and pSS, but increased the number of subsamples taken

within each pixel-year. The right panel of Figure 4.16 shows that there is little improvement

in sCRPS score beyond two subsamples per pixel-year, while the computational time and

memory requirements increase strongly and non-linearly with the number of subsamples

(not shown).

4.9.6 Other hyperpriors

All fixed effect coefficients in our models (e.g., αCOX, αBIN, αGPD and αBETA) are assigned flat

Gaussian priors with zero mean and precision 0.001. The prior for each of the scaling parame-

ters βCOX-BETA, βCOX-BIN and βBIN-GPD is a zero-centered Gaussian distribution with precision

1/20. To reduce the number of estimated hyperparameters, we fixed the hyperparameters

associated with the priors GP 1D-SPDE to values guided by prior knowledge about the relation-

ship between FWI/FA and the relevant aspects of wildfire risk. For the tail index parameter

ξ in the GPD component, we assign a exponential distribution with rate unity, which corre-

sponds to an approximate penalized complexity prior (Opitz et al., 2018) with moderate level

of penalization from the base model (ξ= 0). Lastly, we assign a log-Gamma hyperprior with

mean unity and precision 0.0005 to each of the random-walk hyperparameters τ1, τ2, τ3, τ4,

τ5, τ6 and τ7.
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Figure 4.14 – Mean excess plots. Left: for burnt area (in ha). Right: for log10 of burnt area.
Original observations are indicated at the bottom of the mean excess plots. Blue lines indicate
symmetric pointwise confidence intervals at 95%.
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Figure 4.15 – Boxplots of posterior means (rescaled by dividing them by the true parameter
value) of fixed effect coefficients from 100 simulations with different (pFWI, pSS) combinations.
The relative root mean square errors (rRMSE) for each subsampling scheme are displayed
below the corresponding boxplots.

4.9.7 Spatial effects in model M1

Figure 4.17 shows the same plot as Figure 4.8 but for the shared spatial random field g BIN-GPD.

Figure 4.18 shows the posterior means of all the spatial model M1, with priors detailed in

§4.5.3.
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the whole spatial region in the training set (1994–2014), with the subsampling scheme over
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subsample per pixel-year and different (pFWI, pSS) combinations. Left: Boxplots of sCRPS
scores for the subsampling with (pFWI, pSS)=(0.1,0.9), with different number of subsamples
per pixel-year.
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4.10 A brief overview of INLA

The integrated nested Laplace approximation is a Bayesian technique for fitting hierarchical

model with Gaussian random effects. It uses deterministic approximations for accurate

posterior inference on model parameters, random effects and predictions conditional on data.

In a Bayesian hierarchical modelling framework with latent Gaussian components, we typically

have

y | x ,θ ∼∏
i
π(yi | ηi (x),θ),

x | θ ∼N (0,Q(θ)−1),

θ ∼π(θ),

where π(yi | ηi (x),θ) is the univariate density of the data point yi , x is the latent Gaussian com-

ponents that is of dimension n, and θ is a vector of hyperparameters, typically of dimension

below 20 and typically 2–5. The matrix Q is known as the precision matrix. An observation

matrix A links the latent Gaussian components x to observations by

η(x) = {η1(x), . . . ,ηn(x)} = Ax .

For computational tractability when n is high (103–105), we require that there are only few

non-zero entries in each row of A and the data vector y , and that the distribution of the latent

field x | θ is a Gaussian Markov random field (GMRF), so Q has mostly zero entries.

A key purpose of Bayesian inference is to find the posterior marginal densities π(θ j | y) and

π(xk | y), for chosen components j of θ and k of x , and to calculate summaries from these

distributions, e.g., posterior means or 95% credible intervals.

4.10.1 Approximating the posterior marginals for the hyperparameters

Using Bayes’ rule, the joint posterior density for the hyperparameters is

π(θ | y) =
∫
π(x ,θ | y) dx = π(x ,θ | y)

π(x | θ, y)

= π(x ,θ, y)/π(y)

π(x | θ, y)

∝ π(y | x ,θ)π(x | θ)π(θ)

π(x | θ, y)
. (4.5)

In the first step, INLA applies a Laplace approximation π̃L(θ | y) to (4.5). This is equivalent to

approximating the conditional posterior in (4.5), by a multivariate Gaussian density function
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π̃G centered at the mode x∗ = x∗(θ) of π(x ,θ | y), yielding

π̃L(θ | y) ∝ π(y | x ,θ)π(x | θ)π(θ)

π̃G(x | θ, y)

∣∣∣∣∣
x=x∗(θ)

. (4.6)

The Gaussian approximation for the denominator in (4.6) is accurate due to the GMRF as-

sumption imposed on x , as

π(x | θ, y) ∝ exp

{
− 1

2
xT Q(θ)x +∑

i
logπ(yi | xi ,θ)

}
,

while

π̃G(x | θ, y) = (2π)−n/2|P (θ)|1/2 exp

[
− 1

2
{x −µ(θ)}T P (θ){x −µ(θ)}

]
, (4.7)

where P (θ) =Q(θ)+diag{c(θ)} and µ(θ) is the location of the mode. The vector c(θ) contains

the negative second derivatives of the log-likelihood at the mode with respect to xi . If yi is

Gaussian conditional on xi and θ, then logπ(yi | xi ,θ) is quadratic and π̃G(x | θ, y) is exact.

Otherwise, the approximation error is in the omitted third and higher-order terms.

Equation (4.7) is the key that enables fast computation. The Gaussian dependence structure is

unchanged because (4.7) is a GMRF with respect to the same graph as π(x | θ), i.e., P and Q

have the same zero non-diagonal entries, as conditioning on the observations y only shifts the

mean and the diagonal of the precision matrix; the cross terms xi x j Q(θ) remain untouched

due to the conditional independence assumption.

As the dimension of θ is small, a numerical integral approximation can be used in the second

step to obtain the posterior marginal; the integral

π̃(θ j | y) =
∫
π̃L(θ | y) dθ− j ,

is approximated using either a grid approximation, the central composite design (Box and

Wilson, 1951), or by using the mode as the sole integration point.

4.10.2 Approximating the posterior marginals for the latent field

The posterior marginal densities of the latent field are

π(x j | y) =
∫
π(x j ,θ | y) dθ =

∫ ∫
π(x | θ, y) dx− j︸ ︷︷ ︸

π(x j |θ,y)

π(θ | y) dθ, j = 1, . . . ,n.

The term π(θ | y) is approximated by (4.6); the term ‘nested’ in the acronym INLA stems from

this step. The first term π(x j | θ, y) can be replaced by
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1. another Laplace approximation

π̃L(x j | θ, y) ∝ π(y | x ,θ)π(x | θ)

π̃G(x− j | x j ,θ, y)

∣∣∣∣∣
x− j=x∗

− j (x j ,θ)

, j = 1, . . . ,n,

though this involves n Laplace approximations for every configuration of θ needed later

for the numerical integration step, which is computationally very expensive;

2. the multivariate Gaussian joint conditional density π̃G(x | θ, y) computed from (4.7).

This is fast as it uses the univariate marginal distribution whose mean value can be

read from x∗(θ) and whose variance is easily calculated from a partial inversion of

the precision P (θ). However, as discussed in §4.10, this may be inaccurate because

conditioning on the data can introduce skewness and heavy-tailed behaviour into the

marginals of the joint conditional distributions; or

3. computing a Taylor expansion around the mode of the Laplace approximation, which

provides linear and cubic correction terms to the standardized Gaussian (more details

in Rue et al., 2009).

Once an approximation has been chosen and π̃(x j | θ, y) computed, the integrals

π̃(x j | y) =
∫
π̃(x j | θ, y)π̃(θ | y) dθ, j = 1, . . . ,n.

are computed with a chosen numerical integration method, e.g., grid approxmation, central

composite design or sole integration point, similar to the last step of §4.10.1.
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4.11 A brief overview of the SPDE approach

The main computational limitation of using high dimensional Gaussian fields is the O (N 3) cost

of factorising dense N ×N covariance matrices. Rue et al. (2009) solve this ‘big N ’ problem by

using a Gaussian Markov random field (GMRF) representation. A GMRF is a Gaussian field x ∼
N (µ,Q−1) such that Qi , j 6= 0 ⇐⇒ j ∈ δi∪{i } (Rue, 2005), for some set of neighboursδi for each

component i of x . Using Markov properties, GMRFs are discretely indexed representations

of Gaussian fields that decrease the number of non-zero entries in the precision matrix; this

typically reduces the computation cost to O (N 3/2) for a two-dimensional field.

The Matérn covariance function for two points s and s ′ in R2 is given as follows:

Cov{x(s), x(s ′)} =σ221−ν(κ||s − s ′||)νKν(κ||s − s ′||)/Γ(ν), σ,ν> 0, (4.8)

with Euclidean distance || · ||, gamma function Γ, modified Bessel function of the second kind

Kν, scale κ, and standard deviation and smoothness parameters σ and ν.

Lindgren et al. (2011) showed that GMRF representations of Gaussian fields with Matérn

covariances can be constructed through the solution to a linear fractional stochastic partial

differential equation (SPDE)

(κ2 −∆)α/2x(s) =W (s), s = (s1, s2) ∈D, (4.9)

where W is a spatial Gaussian white noise process, D ⊂R2 is the spatial domain, α controls the

smoothness, κ is a scale parameter from the Matérn covariance function, and the Laplacian

operator ∆ is defined as

∆= ∂2

∂s2
1

+ ∂2

∂s2
2

.

Equations (4.8) and (4.9) are linked through the equality α= ν+d/2, where d is the dimension

of the process (equal to 2 here), and the marginal variance

σ2 = Γ(ν)

Γ(ν+d/2)(4π)d/2κ2ν
.

Lindgren et al. (2011) propose to triangulate the spatial domain for irregular point data to

solve (4.9). First, consider a set of test functions ξ = (ξ1, . . . ,ξm), where m is the number of

vertices in the triangulation. The stochastic weak solution to the SPDE for any field x(s) is

found by requiring that ∫
D
ξk (s)(κ2 −∆)α−2x(s)ds

d=
∫
D
ξk (s)dW (s), (4.10)

where the equality is in distribution.
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We can construct a finite element representation of the solution to the SPDE as

x(s) =
m∑

k=1
ψk (s)wk , (4.11)

where ψ1, . . . ,ψm are basis functions and w = (w1, . . . , wm) are Gaussian weights. If one uses

piecewise linear basis functions such that ψk = 1 at vertex k and 0 at the other vertices, we get

a Markov structure where values of x at vertices are determined by the weights w , and x evalu-

ated at any other point is found by linear interpolation from the three surrounding vertices;

the joint distribution of w thus determines the distribution of the continuous solution.

Given appropriate test functions ξ1, . . .ξk , the finite element solution (4.11) can be obtained

by finding the distribution of w that satisfies (4.10). Lindgren et al. (2011) choose ξk = (κ2 −
∆)1/2ψk for α= 1 and ξk =ψk for α= 2. Define the m ×m matrices C , G and Kτ as

Ci , j = 〈ψi ,ψ j 〉, Gi , j = 〈∆ψi ,∆ψ j 〉, (Kκ)i , j = κ2Ci , j +Gi , j ,

where 〈 f , g 〉 = ∫
D f (s)g (s)ds.

Let Qα,κ (which depends on κ) be the precision matrix for the Gaussian weights w for α= 1,2.

The finite-dimensional representations of the solutions to (4.9) have precision matrices (full

derivations in Lindgren et al., 2011)

Q1,κ = Kκ, Q2,κ = KκC−1Kκ,

and the authors further suggest replacing C with the diagonal matrix C̃ = 〈ψi ,1〉. Finally, we

have a finite element solution to the SPDE that provides a mapping from the parameters of

the Matérn Gaussian field to the elements of the GMRF’s precision matrix.
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5 Conclusion

The latest IPCC report considers compound extremes (Seneviratne et al., 2021), which can be

characterized into four main categories, though with soft boundaries (Zscheischler et al., 2020).

These events include amplified impacts that occur due either to a hazard on a precondition

(preconditioned), to multiple concurrent drivers (multivariate), to a sequence of hazards

(temporally compounding), or to spatially concurrent hazards (spatially compounding). This

thesis discussed environmental extremes that fit into these categories.

In Chapter 2, we tackled spatially compounding extremes via the analysis of the spatial ex-

tremal dependencies of environments related to severe thunderstorms across the contiguous

US using max-stable fields. Extreme wildfires are preconditioned compound events, where the

initial fuel moisture heavily dictates the vegetation susceptibility to ignition. The Fire Weather

Index (FWI) introduced in Chapter 4 incorporates the Fine Fuel Moisture Code, Duff Moisture

Code and Drought Code, which are proxies of the fuel moisture at different soil depths and

over different time scales (van Wagner, 1977). Large fire spreads may also be temporally and

spatially compounding, and are partly governed by land-use, fuel composition and policy

changes over the region; our model in Chapter 4 captured some of these features of wildfires by

having spatially or temporally dependent random effects that were shared between different

aspects of wildfire risk.

Another unifying theme of this thesis is the identification and incorporation of trends to better

model and predict environmental extremes. The effect of the El Niño-Southern Oscillation

on the magnitude and spatial extent of severe thunderstorm drivers was the main focus of

Chapters 1 and 2, while Chapter 4 focused on the effect of FWI, forest area and spatial/temporal

proxies of unmeasured effects on the spatial extent, frequency, intensity and timing of wildfire

occurrences and sizes. Although the emphasis of Chapter 3 focused on good prediction, a

by-product was the identification of the most important covariates for predicting wildfires.

Chapter 1 used false discovery control for multiple significance testing, based on the argument

that our data resemble those considered in Ventura et al. (2004). A more rigorous argument

should show that the test statistics are asymptotically jointly Gaussian and that Theorem 2.1 of

Benjamini and Yekutieli (2001) can be applied, and this could be in the scope of future work.
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Severe thunderstorms can also be regarded as multivariate compound extremes because

elevated levels of both SRH and CAPE are necessary for their formation. The focus in Chapter 2

was on modelling these variables and a product variable separately. Future work could model

the extremes of SRH and CAPE simultaneously with bivariate fields that account for their

inter-variable dependence, while modelling their spatial dependencies (e.g., Genton et al.,

2015); one should explore how to keep computational costs manageable when fitting such

models with many data locations.

To further address the preconditioned nature of extreme wildfires, one could engineer new

covariates based on existing meteorological ones with a time lag (e.g., of a month and up to a

year) to allow covariates like past precipitation or temperature to provide information about

the preconditions necessary for large fires. A machine learning technique such as the gradient

boosting approach in Chapter 3 would select which covariates are most relevant.

Alternatives to the SPDE approach used in Chapters 3 and 4 for sparse modelling of high-

dimensional Gaussian include the nearest-neighbour Gaussian processes (Datta et al., 2016);

their predictive and computational performances have been compared in a case study compe-

tition (Heaton et al., 2019).

The random effects in Chapter 4 are spatially or temporally, but not spatio-temporally, de-

pendent. Future work could address unmeasured trends over time with these random effects,

linked perhaps to the changing wildland-to-urban interface in the region. While the focus in

this chapter was on generative and predictive modeling, the adaptation of descriptive tools

from stochastic geometry (K-functions, mark correlation functions, see Chiu et al., 2013)

would further improve the analysis of point processes with extreme marks.

This research poses more questions than answers for the growing field of environmental

extremes, where one should always exploit climate and weather-specific expertise to guide

model choice. The model frameworks built in this thesis could be applied not only to wildfires

and severe thunderstorms, but to other environmental extremes, such as landslides, floods

and heatwaves, and using these frameworks could give insights into the mechanisms driving

these events, thus helping to provide more accurate risk estimation and mitigation solutions.
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