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Abstract
Electric vehicles (EVs) are already part of today’s reality and their number is expected
to grow rapidly in the near future. A large-scale penetration of EVs will increase
the power consumption during charging periods. Hence, the uncoordinated and
random charging activities could stress the grid hence severely impact the quality
and continuity of the power supply. In particular, excessive power flows can cause
overloads of the grid, which can lead to severe grid damages and blackouts. Due to the
aforementioned issues, there is a need for intelligent control methods of the electric-
vehicle charging stations (CS). In this respect, we focus on the problem of optimal
grid-aware real-time charging/discharging control of EV CSs.

First, we propose a grid-aware real-time control method of EVs charging. The
purpose of the proposed method is to provide flexibility for EVs connected to CSs
for the grid by following an aggregated power-setpoint from a main grid controller
while minimizing the EVs’ battery-wear and keeping the charging balance between
EVs. The aggregated power-setpoint might exhibit rapid variations due to other volatile
resources of the local distribution grid. Naive allocations can transfer such variations to
the EVs’ batteries thus increasing EV battery-wear. One of the challenges is to allocate
powers such that the fluctuation of the aggregated power-setpoint does not cause
power jumps and mini-cycles of the charging power of the EVs. The method uses
a realistic model for the battery charging-power and takes into account a non-ideal
behaviour of EVs. For example, the charging power cannot be arbitrarily small. If
not appropriately handled, the rapid fluctuations of the aggregated power-setpoint
could lead to frequent disconnections and re-connections, which should be avoided.
We also handle a non-ideal response of EVs to the control power-setpoints due to
implementation and reaction delays and inaccuracies. Another challenge is that the
power allocation should keep the charging balance among EVs hence the information
about future arrivals and departures could be unavailable. To address these issues,
we cast the problem as a repeated online optimization. This leads to a mixed-integer
quadratic problem; to solve it in real-time, we develop a heuristic that reduces the
number of integer variables. Then, we implement and validate the method in a real
field experiment, i.e., on real-scale microgrid with real commercial EVs.

Second, we focus on vehicle-to-grid (V2G) technology. In order to minimize global
operational costs, to take into account grid constraints, and to minimize EVs battery
wear, we suggest combining an optimal scheduler that takes care of charging/discharg-
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Abstract

ing EVs and minimizing the global operational costs with a real-time controller that
reacts to grid-aware external setpoints. The scheduler computes optimal powers for
EVs; it considers forecasts of future arrivals, departures, and operations of other energy
resources, i.e., other loads and photo-voltaic panels (PVs). The real-time controller,
in turn, follows an aggregated power-setpoint from a main controller of the local dis-
tribution grid, thus minimizing the EV battery-wear while following the scheduler’s
decisions. We validate our method by simulations and compare it with benchmark
real-time algorithms. We show that our method presents lower operational costs and
EV battery-wear when compared with benchmark algorithms.

Third, we focus on the side effects of CS integration into grid control-systems.
In particular, we address two issues that should be handled by grid control. One
important issue is sudden power-steps caused by a disconnection of a huge load, e.g.,
an EV that directly affects the decisions of the grid controller that aims to avoid voltage
or line-ampacity violations that can cause large sub-optimality of the grid operation.
We propose a method by which a real-time grid control can handle large power steps
by permitting and controlling temporary voltage and current violations in order to
remain within the limits imposed by standards and safe operation. This brings more
flexibility to the grid operation, which can lead to better operational results such as
increased self-consumption or higher EV charging rates.

We also address the occasional losses of messages between the grid controller and
grid resources; this can be caused by, for example, network delays, controller crashes,
and reboots. As a controller performs real-time control at a sub-second scale, such
losses increase the uncertainty in the operation of the controller and deteriorate the
controller’s ability to maintain a feasible control over the grid resources. We present a
method for real-time power-grid control that is robust in non-ideal network conditions.
In this method, resources send information that is valid for long-term horizons, as well
as short-term horizons, and we use long-term information when message loss occurs.

Keywords: Electric vehicles, real-time control, vehicle-to-grid, model predictive
control, mixed-integer programming, fairness, battery protection, software agents,
power steps, microgrid, explicit power-setpoints, soft operational-constraints, grid-
aware control, decentralized algorithms.
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Résumé
Les véhicules électriques (VE) font déjà partie de notre quotidien, et leur nombre
devrait augmenter très rapidement dans les années a venir. Leur utilisation à grande
échelle augmentera considérablement la consommation d’énergie du fait des périodes
de charge. Les rechargements non coordonnés et aléatoires pourraient stresser le
réseau et grandement dégrader la qualité et la continuité de l’approvisionnement en
énergie. En particulier, les flux de puissance excessifs peuvent surcharger le réseau,
ce qui peut conduire à des importantes dégradations et des pannes. Les méthodes
de contrôle intelligentes des stations de recharge électriques (SR) deviennent donc
nécessaires, c’est pourquoi nous étudions dans cette thèse le problème de contrôle
optimal en temps-réel sur le réseau de la charge/décharge d’une SR de VEs.

Premièrement, nous proposons une méthode de contrôle temps-réel sur le réseau
pour la recharge des VEs. L’objectif de la méthode proposée est de fournir une flexi-
bilité au réseau pour les VEs connectés aux SRs en suivant un ensemble de points de
puissance explicites du contrôleur réseau principal tout en minimisant l’usure de la
batterie et en maintenant un équilibre de charge entre les VEs. L’ensemble des points
de puissance explicites doit mettre en avant les variations rapides dues aux autres
resources variables du réseau de distribution local. Des allocations naïves peuvent
transférer ces variations directement à la batterie des VEs, entrainant une usure impor-
tante de cette dernière. L’objectif est donc d’allouer la puissance afin que la variation
de l’ensemble des points de puissance n’entraine pas des sauts de puissance et des
mini-cycles de la puissance de charge des VEs. Notre méthode utilise un modèle réa-
liste pour la puissance de charge des batteries et prend en compte un comportement
non-idéal des VEs. Par example, la puissance de charge ne peut pas être arbitrairement
petite. Si elles ne sont pas traités de manière appropriée, les variations rapides des
points de puissance explicites pourraient conduire à de fréquentes connexions et
déconnexions, ce qui doit être absolument évité. Nous prenons aussi en compte les ré-
ponses non-idéales des VEs au contrôle de points de puissance explicites en raison de
l’implémentation, des délais de réaction et des inexactitudes. Un autre point important
est que l’allocation de puissance doit conserver un équilibre de charge entre les VEs,
même si les informations sur les arrivées et départs futurs sont indisponibles. Pour
ce faire, nous avons modélisé le problème comme une optimisation en-ligne répétée,
qui est quadratique mixte linéaire. Pour le résoudre en temps-réel, on développe une
heuristique qui réduit le nombre de variables entières. Ensuite, cette méthode a été
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Résumé

implementée et validée sur un cas réel : un micro-réseau à échelle réelle avec de vrais
véhicules électriques commerciaux.

Deuxièmement, nous étudions la technologie véhicule-réseau (V2G). Pour mini-
miser les coûts opérationnels globaux en prenant en compte les contraintes réseaux
et en minimisant l’usure de la batterie, on propose de combiner un ordonnanceur
optimal qui prend en compte la charge/décharge des VEs tout en minimisant le coût
opérationnel global avec un contrôleur temps-réel qui réagit à l’ensemble des points
externes du réseau. L’ordonnanceur calcule les puissances optimales pour les VEs :
Il considère les prévisions des arrivées et départs futurs, et des opérations des autres
ressources d’énergie (i.e. autre charges et PVs). Le contrôleur temps-réel, en retour, suit
l’ensemble des points de puissance du contrôleur principal du réseau de distribution
local, et ainsi minimise l’usure de la batterie des VEs tout en suivant les décisions de
l’ordonnanceur. Nous validons notre méthode avec des simulations et les comparons
avec des algorithmes temps-réel de référence. Par comparaison avec les algorithmes
existants, nous montrons que notre méthode présente des couts opérationnels plus
faibles et une moindre usure de batterie du VE.

Troisièmement, nous étudions les effets secondaires de l’intégration des SRs dans
un système contrôle réseau. En particulier, nous abordons deux problèmes qui de-
vraient être traités par le contrôle du réseau. Le premier problème concerne les sauts de
puissance soudains causés par la déconnexion d’une charge importante, par exemple
un VE, qui affecte directement les décisions du contrôleur réseau dont le but est d’évi-
ter les violations de tension ou de courant permanent admissible qui peuvent entrainer
une sous-optimalité importante du fonctionnement du réseau. Nous proposons une
méthode avec laquelle le contrôleur réseau temps-réel peut gérer des grand pas de puis-
sance en acceptant et contrôlant les violations temporaires de courant et de tensions
tout en restant à l’intérieur des limites imposées par les standards et en maintenant un
fonctionnement sûr. Cela apporte plus de flexibilité au fonctionnement du réseau, et
peut conduire a de meilleurs résultats opérationnels, tels qu’une autoconsommation
accrue ou des taux de charge de VE plus élevés.

Pour finir, nous analysons les pertes occasionnelles de messages entre le contrôleur
réseau et les ressources du réseau; cela peut être dû par exemple à des délais sur
le réseau, des accidents du contrôleur, ou des redémarrages. Lorsqu’un contrôleur
effectue un contrôle en temps-réel à une échelle inférieure à la seconde, de telles
pertes augmentent l’incertitude dans le fonctionnement du contrôleur et détériorent la
capacité du contrôleur à maintenir un contrôle réalisable sur les ressources du réseau.
Nous introduisons une méthode de contrôle du réseau électrique temp-réel robuste
dans des conditions de réseau non-idéal. Dans cette méthode, les ressources envoient
des informations valides pour des horizons long-terme, ainsi que des horizons court
terme, et nous utilisons les informations long-terme quand des pertes de message ont
lieu.

Mots clés : Véhicules électriques, contrôle temps-réel, véhicule-réseau, commande
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prédictive (MPC), optimisation linéaire MILP, équité, protection de batterie, agents
logiciels, pas de puissance, micro-réseau, points de puissance explicites, contraintes
opérationnelles souples, contrôle de réseau électrique, algorithmes décentralisés.
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1 Introduction

All of science is nothing more than the refinement of everyday thinking.
— Albert Einstein

1.1 Motivation

Electric Vehicles (EVs) are expected to have a significant increase in market share in the
next decade. Countries all over the world are supporting and promoting EVs for their
energy efficiency and for their potential to reduce CO2 emission in the transportation
sector, in contrast with the conventional fuel-based vehicles [1, 2]. For example, given
an expected growth in sales of 20%, there will be more than four million EVs in the
USA by 2024 [3]. Similar growth is expected, proportionally, in most of the countries
in Europe [4]. This will affect the planning and operation of electrical grids, with a
particular emphasis on distribution networks. Indeed, uncoordinated and random
EV-charging can severely impact the quality and continuity of the power supply. Fur-
thermore, power flows and voltage-quality patterns throughout the grid will be affected
considerably [5] and might increase the risk of local blackouts due to overloads. The
authors in [6, 7, 8, 9, 10] show how an uncontrolled charging of EVs can jeopardize
the operation of the power grid, causing voltage deviations, increasing power-system
losses, and cable or transformer overloading [11, 12, 13, 14]. A possible solution is grid
reinforcement that is often very expensive [15], especially in urban areas. An alterna-
tive solution is to dynamically control the power consumed by charging stations and
to keep the grid in safe operating conditions [16]. In other words, it is possible to use
electric vehicles as flexible resources rather than passive ones, which can enhance the
grid operation (e.g., [17, 18, 19]).

Electric-power delivery systems are divided in two parts: transmission grids and
distribution grids. Transmission grids are responsible for delivering electric power
from centralized power-plants. The power is transmitted at a high voltage and long
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distances from the power plants. Distribution grids, in turn, carry electric power from
the transmission grids to individual consumers. The voltage level in these grids is lower
than in transmission grids. Traditionally, the power flows between transmission and
distribution grids are unidirectional; this means that the power generated by power
plants goes through transmission grids to the distribution grids and then to the end
consumers.

Today, a growing penetration of renewable energy resources, such as batteries,
photo-voltaic plants (PVs) [20] and wind turbines [21], makes it possible to have energy
production available at the distribution-grid level. However, local power consumption
is also increasing. One of the important factors is an emergence of electric-vehicle
charging stations [22, 23, 24] (see Fig. 1.1). These loads could represent one of the
largest loads for the grid. Hence, local power-generation, together with the local power-
consumption, can create excessive power flows, compared to the dimension of the grid.
This excess causes grid overloads and safety issues such as transformer over-rating,
line congestions, and over/under-voltages [25, 26]. Although, grid overloads can be
compensated by a renewable generation, there are still issues due to high volatility and
low inertia of renewable generation.

Figure 1.1 – Transmission and distribution grids. Blue arrows is traditional power flow,
red arrows are flows when there are renewable resources in the grid.

For an example of transformer over-rating, we consider a situation of a distribution
network that contains local generation (e.g., PV panels) and an EV CS, both connected
to the main grid through a transformer. When EVs that are connected to CSs are
charged mostly by the PV production (i.e., during sunny days), there can be a rapid
PV power-drop that can be caused by a passing cloud and can reach up to 60% of the
rated power in a few seconds [27]. This power drop, due to the low inertia of the PV
production, will suddenly increase the power flow through the transformer. This could
cause the transformer to exceed its rated power and create a risk of overloading it.
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Alternatively, the CS can reduce its charging power to compensate for the solar drop.
However, given external conditions, this requires the CS to constantly update the maxi-
mum charging-power it can consume. To solve this issue, the naive approach would
be for the CS to know the exact amount of PV injected-power and of the transformer
rated-power. In the literature, this problem is typically formulated as a cost-driven
demand-response optimization (DR, e.g., [28]), where the forecast of arrivals and de-
partures and of the electricity price is usually fundamental. However, these solutions
are not scalable for different setups due to the complexity of the problem. This is
where real-time control can help. Indeed, the optimal decision should be taken by
an entity (grid controller) that has a broader view of the system operation (e.g., [29])
given by a state estimation process (SE, e.g., [30, 31, 32, 33]). If all flexible devices in the
grid could be manipulated by a grid controller, their flexibility could be used to keep
the grid in a feasible state of operation in terms of line ampacity limits and voltage
magnitudes. The grid controller can also minimise global operational costs of the
entire grid and provide ancillary services, for example, tracking a dispatch plan [34]
(i.e., acting as a virtual power plant to an upper-level grid), thus providing primary [35]
and secondary frequency control [36], etc. In this case, the grid controller computes an
aggregated power-setpoint for an entire CS and considers it as a single resource. The CS,
in turn, allocates an aggregated power-setpoint among connected EVs and advertises
an abstract representation of its internal state and an estimation of their behavior in
the time horizon when the aggregated power-setpoint is expected to be implemented.
Similarly, if we have several CSs, the grid controller computes an aggregated power-
setpoint per CS. This provides scalability to the system, as the grid controller has no
detailed information about the CS and connected EVs: arrivals/departures, amount of
connected EVs, their energy demand and staying times, etc. (see Fig. 1.2).

Figure 1.2 – General architecture of grid control with several CSs.
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1.2 Overview

The integration of EVs in existing power grids and their real-time control will make
for a number of challenges. Taking advantage of the available flexibility means that
CSs are required to frequently change their charging/discharging powers to adapt to
quickly changing grid conditions that can be caused by volatile renewable resources
(e.g., solar and wind generation). One of the main concerns associated with such
a behavior is EV battery-wear, i.e., directly transferring the changes from the CS to
the connected EVs can accelerate the battery wear in terms of capacity loading and
losses increase [37, 38]. Therefore, one of the requirements of real-time control is to
minimize the battery wear and to keep the battery in a safe state of operation. Such a
requirement must be maintained even during periods of substantial changes of the
grid conditions.

Another concern is about the power-allocation strategy among EVs. As every EV
has its own energy demand (amount of energy that user needs for next trip) and
staying time (time that user would like to spend at CS). Both the heterogeneous-energy
demand and staying time define the charging priority of an EV. For example, if the
energy demand of EV A is lower than the energy demand of EV B and the staying time
of A is higher that B, then A has a lower charging priority than B and can be charged
at lower power. In this case, we can decrease the consumption of EV A if there is a
need for the grid service. However, why would a user of EV A to stay longer if they can
just require it to charge as fast as possible and declare a small staying time? The user
should have an economic incentive to stay longer at a CS: for example, a user that stays
longer (EV A, in our case) will pay less for the energy, compared to those who require
faster charging (EV B). In this thesis, we do not study in detail the pricing schemes
(e.g., [39, 40]) that define incentives for users to provide the flexibility to the grid, as
this is out of the scope of the current research. We focus on the development of the
charging method by assuming that users are properly encouraged. In this case, the
method should incorporate a heterogeneity of users’ energy demands, staying times
and incentives for preserving a charging balance between EVs. On one hand, charging
of A should not starve the charging of B. On the other hand, B should not delay the
charge of A. Instead, B (who requires rapid charging) should be prioritised over A, but
not at the expense of A’s satisfaction.

According to the architecture described in Section 1.1, the task of a CS is to maintain
charging/discharging of its connected EVs while tracking aggregated power-setpoints
from the grid controller. The aggregated power-setpoint can exhibit rapid variations
due to other volatile resources of the local distribution grid. The allocation of power to
EVs is a difficult task because an aggregated power-setpoint can change dramatically in
only a few seconds. The naive power allocation, which would transfer these variations
directly to the EVs, could increase their battery wear by creating large power-jumps,
mini-cycles, and frequent on-off switching of the EVs. Furthermore, in order to keep a
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charging balance, the power should be allocated fairly, considering that each EV has its
own energy demand and departure time because the aggregated power-setpoint might
not be enough to satisfy the demand of all EVs. As there is no traditional definition of
a fair charging of EVs, we propose to use definitions that are widely used in resource
sharing and networking: weighted-proportional and weighted-max-min fairnesses [41].
Weights in this case represents the priority of an EV to be charged and computed as
a function of energy demand and staying time. Both allocation strategies are Pareto
optimal [42], and it is often difficult to choose between the two. In this thesis, we prove
that, in our specific setting, both allocations are identical. As a result, the development
of the method that takes into account all objectives listed above remains to be done,
i.e., the method that provides the flexibility of EVs to the grid by fairly allocating the
aggregated power-setpoints among connected EVs while minimizing the battery-wear.
Although the state-of-the-art assumes that EV charging behavior is ideal, we consider
the impact of non-idealities on both the EV and grid operations. To this end, we
implement a number of features that account for the realistic behaviour of EVs by
incorporating results of the measurements on real-field deployment. In particular, our
method considers a non-ideal response, due to internal reaction and implementation
delays, of an EV to a charging power change. The change of a charging power from 0kW
to maximum charging power (depends on the EV type, for example, for Renault Zoe it is
22kW [43]) can take more than 10s in reality, which is a long time-period when we talk
about real-time control. Moreover, an EV might not be able to implement a requested
power-setpoint, due to its internal state (i.e., internal temperature, state-of-charge,
etc.). Furthermore, EVs have a non-zero minimum charging power, i.e., an EV can
be either switched off and consume no power, or charge at a power that lies between
non-zero bounds, where the minimum charging-power cannot be arbitrarily small.
Consequently, the CS should decide which EVs should be switched on and which
should be switched off. This leads to a mixed-integer variables in the optimization
problem. In order to solve this efficiently in real time, we developed a heuristic that
limits the number of integer variables and that enables us to solve the optimization
problem in real time.

Vehicle-to-grid (V2G) is the ability of EVs to discharge their batteries and to deliver
energy back to the grid (e.g., [44, 45]). This technology has the potential to further
increase the flexibility and safety of the grid operation [46, 47, 48], thus further ex-
panding a grid-aware operation of the EVs and increasing the hosting capacity of the
combination of EVs and distributed generation, such as PVs (e.g., [49]).

The V2G operation requires that users have incentives to discharge their batteries
back to the grid, which is different from a charging-only case. As batteries are the most
expensive components of EVs, their users need to have clear incentives to permit the
V2G operation. The discharging of the battery will accelerate its degradation process
by increasing the number of full-equivalent cycles [50], [51]. The main challenge in this
case is to decide when it is more economically convenient for V2G EVs to discharge.
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One possible approach is to discharge EVs whenever there is power deficit caused
by the charging of other EVs or other load consumptions. However, this can be sub-
optimal as the decision is taken based only on current-time information. Indeed, as
V2G EVs can act as storage devices, it could be more beneficial to temporarily keep
the available energy and use it in the future only when, for example, the energy cost
from the grid is high. Such decisions are long-term in the sense that, in order to
make them, the future events in the grid should be anticipated, i.e., arrivals/departure
of EVs, energy demand of charging EVs, staying times, amount of energy that V2G
could provide, PVs production and consumption of loads (e.g., domestic buildings).
The standard technique for these kind of tasks is model predictive control (MPC, [52]).
Adding grid constraints in the scheduling problem significantly increases its complexity
and makes it impractical in the real-time operation of the grid, due to high number of
variables and non-convex grid constraints. To solve this issue, we suggest to combine
the scheduling that performs long-term decisions without grid constraints with a
real-time controller that reacts to grid-aware external setpoints and takes into account
long-term decisions of scheduling.

As was mentioned in Section 1.1, the CS is a part of the grid control-system. How-
ever, there are side effects to this integration. In particular, there are two issues that
must be taken into account by the grid controller itself. First, the sudden EVs (or other
huge loads) disconnections can cause line congestions and voltage violations. When
trying to completely avoid these violations, the control-systems typically have prede-
fined large safety bounds, which means that integration forces the grid operation to be
more restricted, which can lead to large sub-optimality. However, temporary violations
of the steady-state bounds are permitted by grid standards (e.g., [53, 54, 55]) and could
enable the exploitation of the flexibility of other resources to better control the system’s
state. We propose a method by which such temporary violations are controlled so that
they remain within the limits imposed by grid standards and safe operations.

The second issue is message losses between the grid controller and the CS; they
are caused by the inherent uncertainties and non-idealities of communication net-
works and processes. In a real-time control system, occasional message losses are
usually handled by a reliability protocol such as TCP [56]. However, there can still be
occasional message losses due to crashes/reboots of the processes or failures of the
communication nodes or excessive delays in reliable protocols. An occasional loss of
one or more messages can render the controller incapable of issuing valid setpoints,
especially when the control action is taken at a sub-second time-scale. We address this
issue by having the resources send information about their state that is valid for the
long-term, in addition to the short-term information originally sent. This long-term
information is stored by a grid controller and used to compute valid setpoints, in cases
when there are message losses from a resource.

Taking into account the aforementioned challenges, in this thesis, we focus on the
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design concepts and applications of real-time control algorithms for electric-vehicle
charging and discharging. We then test our proposed methods through real-field
deployments on a real-scale CIGRÉ low-voltage benchmark [57] with real EVs.

1.3 Contributions

A detailed list of the contributions of this thesis can be found below.

1. We develop a method for real-time control charging of EVs. The proposed method
meets the following objectives: (i) to follow an aggregated power-setpoint, (ii) to
minimize the battery wear of each EV, and (iii) to fairly allocate the power propor-
tional to the EVs needs. In order to achieve these objectives, we define novel met-
rics and use them to construct a dedicated optimization problem. Our method
enables us to combine the optimal charge of EVs and satisfy dynamic-grid con-
straints. As the charging power is discontinuous (the minimum charging power
is not arbitrarily small), our optimization problem is a mixed integer one.

2. In order to solve the mixed-integer problem in real-time, we propose a heuristic
for reducing the number of integer variables, thus reducing the complexity of
the problem. As a result, our method can solve the mixed-integer problem in
real-time in less than 20 ms.

3. We prove that our method is able to account for an EV’s energy demand and
staying time heterogeneity and that it provides a charging balance between
different EVs.

4. We assess the performance of the proposed control method in a real-field setup
and show that the method works in the field, i.e., the method can control the
charge of commercial EVs that are connected through a CS to a real CIGRÉ
low-voltage benchmark microgrid. We verify the real-time capabilities of the
method and show how it handles the non-ideal response of the EVs to the control
power-setpoints, due to implementation and reaction delays, and inaccuracies.

5. We design and implement a method for taking advantage of the available flexibil-
ity of regular and V2G EVs in a community setting, by minimising the community
energy-cost and by reducing the effect of modifying the charging and discharg-
ing powers in the battery wear. The method is designed as a combination of a
scheduling problem and a real-time problem. In this sense, the method is aware
of the grid operation and takes into account the decisions of the scheduler, thus
satisfying the EV energy-needs and minimizing the EV battery-wear.

6. We compare our method from item five against benchmark real-time methods,
earliest deadline first (EDF) [58] and least laxity first (LLF) [59], and we show
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that our method presents significantly better performance. We also study the
robustness of our method. We simulate the case when the forecasts of EV-users
behaviour are incorrect. Then, we compare the performance of the method to
the oracle that knows the future. The results show that our method performs
close to the oracle, even with inaccurate forecasts.

7. We propose a method that enables a real-time grid controller to continuously
provide optimal control by relaxing the pre-defined hard constraints and that
permits temporary voltage and current violations caused by load (e.g., EV) dis-
connections or load in-rushes. The method improves the performance of the
grid controller, making it less conservative and enabling it to opportunistically
use available resources.

8. We address the possible communication network non-idealities and propose
a method that enables a grid controller to compute and issue setpoints with
partial information from the resources. Using this method, the grid controller
guarantees that grid safety is maintained despite missing advertisements from
resources.

1.4 Dissertation Outline

This thesis is organized as follows.

In Chapter 2, we provide the context. Specifically we evaluate the literature on
real-time control of EVs charging, V2G operation and scheduling, highlighting the
drawbacks and limitations of existing solutions.

In Chapter 3, we introduce the real-time charging control method for CS that fol-
lows an aggregated power-setpoint in real time. This method is two-fold: from one
side it serves the grid quality by following aggregated power-setpoints sent by a grid
controller, and from other side it optimally charges EVs by minimizing the battery-wear
and by preserving fairness of charge. We introduce weighted-max-min and weighted-
proportional fairness and prove their equivalence in our case. Then, we formulate a
mixed-integer optimization problem to combine all objectives of the method. Subse-
quently, we develop a heuristic for reducing the amount of integer variables that enable
us to solve optimization problems in real time. Finally, we evaluate our method in a
stressed situation when the charging station does not have enough power to charge all
EVs at maximum, and we show the performance of the method.

In Chapter 4, we present a real-field validation of the charging control-method
presented in Chapter 3. We perform several field experiments with different PV pro-
ductions, and EV energy needs and staying times. We show that the method is able to
provide a real-time control (i.e., at sub-second scale) for charging commercial EVs. We
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also study the charging patterns of commercial EVs.

In Chapter 5, we propose grid-aware control and an optimal scheduling of EV CSs
that can provide V2G. First, we present the scheduler that makes long-term decisions
for EVs’ charging/discharging powers based on grid energy-prices, the forecasts of
PV production, load consumption, EV arrivals/departures, the amount of energy that
EVs want to charge/discharge, and their energy prices. This scheduler is formulated
as a scenario-based model predictive control (MPC) problem. Second, we describe
scenario generation and scenario selection techniques. Third, we formulate a real-time
problem that follows an aggregated power-setpoint (i.e., provides grid quality-service),
and we take into account the decisions of the scheduler and minimize the EV-battery
wear. Fourth, we compare our method against benchmark real-time methods, EDF
and LLF. Finally, we study the robustness of our method. That is to say, we simulate the
case when the forecasts of EV-users behavior are incorrect, and these forecasts do not
represent the real behaviour of users. We compare the performance of the method to
the oracle that knows the future. The results show that our method performs close to
the oracle, even with inaccurate forecasts.

In Chapter 6, we move from the charging control and focus on the real-time grid
control itself. We describe, in particular, a method by which a grid real-time control
can handle large power steps by permitting and controlling temporary voltage and
current violations so that they remain within the limits imposed by standards and safe
operation.

In Chapter 7, we go one step forward in real-time grid control. We address the
network non-idealities issue. Mainly, we present a method for real-time grid control
that is robust in non-ideal network conditions.

Finally, in Chapter 8, we conclude this thesis with a summary of the main findings
and possible directions for future work.
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2 State of the Art

The EV control-methods presented in the literature can be classified based on several
aspects. In this thesis, we consider the classification based on control architecture
(centralized, distributed and decentralized) and grid awareness (grid-aware and non-
grid-aware). Grid-aware methods are those that take into account grid constraints (e.g.,
overload control constraints, nodal voltage constraints, ampacity limits constraints),
whereas non-grid-aware methods ignore them. In this chapter, we survey the state of
the art on charging/discharging control of EVs, their integration into the distribution
grids, and possible services that EVs can provide to the power grids. Also, we discuss
the possibility of EVs integrating and participating in the electricity market. This is
addressed by the concept called virtual power-plant (VPP).

2.1 Overview of Control Architectures

In the literature, control architecture, in which EVs are integrated as controllable
resources, are generally clustered in three categories: centralized [60, 61], decentralized
[62, 63] and distributed [64].

Centralized control strategies require a centralized infrastructure to collect infor-
mation from all the EVs and to centrally optimize their charging profiles. In this case,
a central controller has information about its resources and their particular nature.
Using this information, the central controller computes a global optimal solution for
each resource individually. As a result, the controller achieves optimal charging powers
for each EV. Given all the necessary input, the centralized control can guarantee an
optimal solution. The drawback, however, is that the size of centralized optimization
increases with the number of EVs hence causes issues for the scalability of the system.
Additionally, such an architecture requires strong communication network, as all re-
sources should receive the decisions of a central controller. Yet, a single point of failure
at the central controller could potentially collapse the whole system. In order to pre-
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vent this, the duplication strategy (e.g., hot standby, backup, etc) is required. Typically,
centralized control methods are used as benchmarks for the analysis of decentralized
and distributed methods.

With a distributed control, in contrast to a central control, the decisions are made
by local controllers that interact with each other. Every local controller reacts locally by
exchanging information with other controllers, hence each controller needs to solve
its own small-scale problems. In this case, there is a collection of local decisions that
are implemented locally by controllers and that leads to the optimal global solution.
Such architecture is highly scalable, however, the design of a distributed algorithm
is a non-trivial task. Also, the convergence time could be considerably larger than in
centralized algorithms and involves communication between controllers.

Decentralized control is also known as hierarchical control. Usually, the hierarchy
is aligned with the physical hierarchical structure of a distribution grid. In this case,
there is an upper-level controller that takes global decisions based on information
given by local controllers. Local controllers, in turn, receive global decisions from
an upper-level controller (or central controller) and make local decisions based on
local information without requiring permission from the central controller. In other
words, local controllers operate on local information in order to accomplish global
goals. Therefore, decentralized architecture is more scalable than centralized control
as it decreases the need for data exchange, i.e., the local low-level goals are hidden
from the upper levels, where global decisions are made. Similar to centralized control,
decentralized control suffers from a single point of failure and requires strategies to
prevent it.

(a) Centralized (b) Decentralized (c) Distributed

Figure 2.1 – Schematic representation of centralized and decentralized control archi-
tectures. CC - central controller, LC - local controller.
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2.2 Provision of Grid Services

In Chapter 1, we propose that EVs can bring more flexibility and help a grid controller
to keep a grid quality of service. In the literature, there are a number of services that
EVs can provide: voltage control, congestion management, loss reduction, frequency
regulation, spinning reserve, etc.

In this chapter, we present the literature overview of the methods for charging/dis-
charging control of EVs that provide services for the grid by using architectures pre-
sented in Section 2.1.

2.2.1 Voltage Control

Voltage control requires maintaining the voltage deviations within predetermined
limits. For example, standard [65] describes the main voltage parameters and their
allowed deviations: according to the guide, the voltage should remain within ±10%

of the nominal value. These deviations are a result of many factors such as overall
grid load, generation schedule, etc. Traditionally, the voltage control is associated
with reactive power-control, which assumes the decoupling of the active and reactive
power [66]. This is true in the case of transmission grids or grids where resistance is
much smaller than reactance (hence the resistive part is neglected). However, this
assumption is usually true for transmissions grids but is not for distribution ones.
Therefore, the influence of the active power is significant and should be taken into
account. In this respect, authors in [67] developed a decentralized grid-aware real-time
voltage control method, taking into account both active and reactive power injections.
In [68], an emergency real-time voltage-control algorithm is proposed. Under this
method, software agents locally control generators and controllable loads, based on
local measurements and until their control resources saturate, in which case they start
exchange information with peer agents for assistance.

Concerning EV charging control, different schemes for the charging control of EVs
are proposed in the literature. In [69], the authors propose a centralized grid-aware
load-management control strategy for improving the voltage profile and for minimiz-
ing the power losses during peak hours by assuming that EVs are scheduled in three
different types of charging periods and do not violate the voltage limits. In [6], the
authors present a centralized heuristic method for avoiding lines and transformer
congestions and for improving voltage profiles by using an intelligent charging algo-
rithm. Periodically (on an hour time-scale), the algorithm computes power flows and
checks whether the operating conditions are suitable. If conditions are not suitable,
then the algorithm recognizes whether the problem is due to voltage deviations or to
the congestion in the grid; then, it stops charging a predefined percentage of EVs and
adds them to a waiting list. When the grid conditions are suitable, the charge of the
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affected EVs is restarted. A heuristic approach is also used in [70], the method also
checks voltage deviations and congestions. The charging powers are computed such
that power losses are minimized. In [71], the authors propose a scheduling method
for dealing with active and reactive management of a distribution network with EVs
in order to improve the voltage profile and to minimize operation costs. Although
research in [6, 69, 70] takes care of the grid constraints, the user satisfaction is not
taken into account. In [71], it is assumed that users commit in advance their amount
of energy that allows to travel with EVs for the next day which could be unrealistic
requirement.

Decentralized methods that take into account user demand can be found in [72,73].
In [72], a novel method is proposed; it uses historical information of the local voltage
magnitudes at each node to maintain the operational limits of the distribution grid and
coordinate charging of EVs. The authors in [73] design independent fuzzy-logic con-
trollers to keep the voltage and energy storage SoC (state-of-charge) within appropriate
ranges, as well as to keep the power balance among charging stations. The authors
in [74, 75] propose a shrunken primal–dual sub-gradient algorithm to minimize load
variance and to regulate nodal voltage magnitudes. The grid controller (or operator)
controls EVs by broadcasting the dual variable linked to voltage magnitudes and to the
Lagrange gradient that is computed based on previous charging profiles of EVs.

Distributed approaches can be found in [76, 77, 78]. The authors in [76] propose a
droop-based method for reducing voltage imbalances by modulating the EVs’ charging
current by using local voltage measurements. However, the users’ charging demands
are not taken into account. Another decentralized droop-based method can be found
in [77], where their method also relies only on local measurements. Their method
prevents voltage issues, however, it dramatically increases charging time. The authors
in [78] develop a decentralized algorithm for reducing energy costs and to control the
voltage profile.

2.2.2 Congestion Management

The issues of congestion in distribution grids typically appears in situations when
the generation or demand exceeds the grid capacities (e.g., lines, transformer and
other equipment). As a result, the risk of overloading and power losses increases.
The solution to these issues is congestion management. Overloading issues can be
incorporated into the control by taking into account capacity constraints of the grid
equipment (e.g., transformer limits and line-ampacity limits) or adding it into an
objective function of the control problem.

In [79], the authors propose a decentralized congestion management method that
relies on the Alternating Direction Method of Multipliers (ADMM). The optimization
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problem is formulated as a quadratic programming problem with linear capacity
constraints. A centralized approach, with similar constraints, can be found in [80].
However, these approaches require extensive information/visibility of the network
(e.g., voltages and currents) and the state-of-charge (SoC) of the EVs. The authors
in [81] present an online heuristic-based controlled charging-method that takes into
account transformer limits, nodal voltage deviations, and EV user preferences. In [82],
the authors offer a decentralized framework that minimizes the total cost of energy for
the users while preventing a thermal overload of transformers and cables. A similar
approach can be found in [83], which is extended to a V2G operation. A multi-agent
market-based system for congestion management with a non-V2G integration of EVs
is proposed in [84]. The EV charging limit is computed based on market price signals.
A distributed approach that exploits a V2G capability can be found in [85]. The authors
use V2G EVs to minimize the variation of the grid load, however they do not take
into account the EV-user preferences; whereas, the approaches in [84, 85] are highly
dependant on a forecast accuracy.

2.2.3 Power-system Losses

In addition to the voltage control and congestion management, EVs can be used to
minimize power losses. Power losses are dependant on various factors such as length
of the cables, size of conductors, and transformer installations. As losses typically
increase with demand and depend on the current flows through the lines [86, 87],
various strategies were developed to minimize power losses.

In [88], the authors compare three intelligent centralized-charging algorithms that
minimize the effects of EV charging on the distribution grid. First, the algorithm mini-
mizes power losses; second, it minimizes the load variance; and third, it maximizes the
load factor. It is shown that using the load variance or the load factor as the objective
function is better because they have less computation time and complexity, which is a
crucial factor for real-time control applications. However, centralized architectures
require obtaining information from all EVs, which could be problematic in reality. The
authors in [89] also address load variance by developing a double-layer decentralized
optimal-charging control method that exploits the V2G capabilities of EVs. However,
incentives and battery safety are not taken into account. Several centralized meta-
heuristic algorithms, where global operational costs take into consideration the grid
constraints and user satisfaction, are proposed in [90]. The authors in [91] developed a
distributed algorithm for power-loss minimisation during EV charging, taking into ac-
count grid constraints. But, a specific initialization procedure during each EV charging
cycle is needed. A similar distributed approach that accounts for power losses can be
found in [92].
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2.2.4 Frequency Regulation and Spinning Reserve

Frequency regulation is a reserve service that aims to establish an instantaneous
balance between the generation and the demand. This service is divided into three
types: primary, secondary and tertiary. Typically, it is a service that provides for TSO;
however, there are works that consider such a service for DSO for the near future.
This service, in particular, could be interesting for microgrids [93, 94] in order to
improve their stability during islanded (when a grid is disconnected from the main
grid) operations [95].

A substantial amount of the literature focuses on the usage of battery-energy storage
systems (BESS) for providing frequency support. In this regard, the authors in [96, 97]
developed control methods for a BESS to provide a primary frequency and other
ancillary services to the grid in the presence of uncertainties caused by renewable
production. As a V2G EV can be considered an energy storage that is temporarily
connected to a grid, a huge amount of research is addressed to the possibility of a
provision for a frequency regulation on a grid.

The authors in [98] propose a non-grid-aware centralized V2G scheduling for EVs
in order to provide a frequency regulation service. In [99], a decentralized droop-based
V2G control scheme is proposed, considering the charging demands of EV users. In this
case, however, the grid constraints are not taken into account. In [100], a dynamic pro-
gramming non-grid-aware method for V2G is used to achieve an optimized frequency
regulation with V2G. The aggregator maximizes the revenue of EVs that participate in
frequency regulation, but the battery degradation is not taken into account. A heuristic
scheduling method for providing frequency support, which also omits the degradation
of batteries, can be found in [101]. The charging of EVs is based on EDF policy.

The spinning reserve is a generating capacity available to the grid in order to dynam-
ically balance a system load. The authors in [102] propose a non-grid-aware method
where an aggregator controls the charging/discharging of the EVs and participates
in the energy market by sending price signals for EVs. The authors in [103] propose
a V2G decentralized game approach for providing a distributed spinning reserve to
customers with different reliability levels.

2.3 EV-users Mobility and Incentives

One of the main differences of EVs, compared to typical loads (e.g., domestic buildings),
is their mobility. Furthermore, real arrivals, departures, user energy-demands and bids,
and the staying times are uncertain.

As mentioned above, the charging/discharging control of EVs is extensively ex-
ploited in the literature. However, user mobility is not always taken into account. The
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authors in [104, 105] propose a distributed scheduling method that treat EVs as static
loads with fixed parameters. Such assumptions could be unrealistic, as a scheduling
method should adapt to various temporal variations, such as random arrivals, un-
expected departures, and different energy demands. Therefore, in order to handle
the random behaviors of EV users, many scheduling methods perform re-scheduling
at every time slot, with updated information. For example, to minimize the total
cost of the supply of electricity, the authors in [106] adapt to the environment by
repeatedly (every 15 minutes) performing three steps of the developed algorithm. How-
ever, grid constraints in this case are not taken into account. This work was further
extended to handle the arrivals and departures that occur within one time interval
by using an event-driven mechanism [107]. Similarly, the authors in [108] propose
an event-driven approach that activates the scheduling process EV is plugs-in EVs
plugs-out. In [109], the authors propose to formulate the scheduling problem as an
infinite-horizon dynamic program by introducing its state space, admissible action
set, transition probabilities, stage costs, and average-cost objective function. In [110],
the EV charging control problem is formulated as a Markov decision process to handle
the randomness of EV arrivals and the departures and charging demands. Another
approach, which tackles EV users and is the most popular, is called model predictive
control (MPC, e.g., [52]). This method finds charging schedules for a finite-time hori-
zon in the rolling-horizon fashion and takes into account the forecasts of the future
state of the grid (i.e., PV production, load consumption, EVs arrivals/departures, etc.).
At each iteration, an MPC performs a rescheduling of EVs charging/discharging powers,
taking into account the current state of the grid, i.e., it provides feedback control thus
adapting for the possible forecast deviations (e.g., [111]).

EV users should be encouraged to participate in grid services described in Chap-
ter 2.2 and to provide their EVs’ flexibility to the grid and permit the modulation of
their EVs charging/discharging power. For example, the incentive for users can be
to minimize the EV charging cost. These minimizing methods depend on the corre-
sponding electricity market and perform the scheduling to shift charging of EVs in
low-electricity-price times and to prevent the congestion in the grid. However, typically
these methods do not take into account grid constraints [106, 109, 112, 113]. As a result,
the schedules can be infeasible and unsafe for the operation of the grid. The authors
in [114, 115] use MPC-based approaches to incorporate voltage constraints into the
charging-schedule problem. Even though in this case grid constraints are taken into
account, the methods do not see the fast inter-period power fluctuations, as scheduling
is performed on a minute-based scale. In Chapter 5 of this thesis, we show that such
fluctuations can result in severe violations of the grid constraints, and we propose a
two-layer approach to effectively take into account grid constraints and to adapt to the
grid state in real time.
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2.4 VPP and EVs

A VPP is as a cluster of generator units, controllable loads, and storage systems that
is geographically dispersed and aggregated in order to operate as a single power
plant [116, 117] see Fig. 2.2. Thus, VPP represents a single entity for a Distributed
System Operator (DSO) and a Transmission System Operator(TSO). It should be noted
that VPPs are non-grid-aware. These systems can react quickly to changing customer-
load conditions, compared to the fossil central station power plants. VPPs can poten-
tially replace conventional power plants while providing higher efficiency and more
flexibility. Although, more flexibility enables the system to react better to fluctuating
energy needs, the complicated structure of VPPs requires complicated controlling and
monitoring techniques.

Figure 2.2 – General overview of VPP elements.

In the context of a VPP, group of EVs can be seen as distributed energy resources
(DERs) that can provide their flexibility to the power system. The V2G concept adjusts
an ability to use EVs as distributed storage batteries and to utilise their energy when
needed. Due to their fast response times, EVs become suitable candidates to help
utilities solve grid balancing problems. Therefore, EVs can be controlled by VPPs to
participate in energy markets [118].

In the literature, typically hierarchical (decentralized) architecture is used. EVs are
controlled via aggregators that are considered to be the intermediary level between
EVs and VPPs. In [119], the present optimal scheduling of EVs takes into account the
fluctuation of renewable energy. The authors in [120] propose an agent-based method
for VPPs, which consists of wind generation and EVs, in order to address the highly
volatile behaviour of wind-power generation. In this setup, when the price of electricity
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is low, the energy generated by wind is stored in EV batteries, and when the price is
high, it is sold. Day-ahead scheduling is done to maximize VPPs’ profits, and receding
horizon optimisation is done to take into account wind behaviour.

In this thesis, we do not focus on the non-grid-aware control of EVs. The methods
and techniques presented in the thesis can, however, be potentially used for the
integration of EVs into VPPs. For example, in Chapter 3 and Chapter 5, we present
hierarchical methods for controlling EV CSs that follow aggregated power-setpoints as
a single entity. These methods can be used for controlling EVs under VPPs.
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3 Real-Time Control of an Electric-
Vehicle Charging Station

As highlighted in Chapter 2, the progressive penetration of EVs and distributed energy
resources in the distribution grids significantly influences its planning and operation.
In order to avoid grid reinforcement caused by a such penetration, in this chapter
we propose to use smart charging stations that adapt the charging power of EVs to
the instantaneous capability of the grid. More precisely, we consider the problem
of controlling the charging of electric vehicles (EVs) connected to a single charging
station that follows an aggregated power-setpoint from a main controller of the local
distribution grid. To cope with volatile resources such as load or distributed gener-
ation, this controller manages in real time the flexibility of the energy resources in
the distribution grid and uses the charging station to adapt its power consumption.
The aggregated power-setpoint could exhibit rapid variations due to other volatile
resources of the local distribution grid. However, large power jumps and mini-cycles
could increase the EV-battery wear. Hence, our first challenge is to properly allocate
the powers to EVs so that such fluctuations are not directly absorbed by EV-batteries.
We assume that EVs are used as flexible loads and that they do not supply the grid. As
the EVs have a minimum charging power that cannot be arbitrarily small, and as the
rapid fluctuations of the aggregated power-setpoint could lead to frequent disconnec-
tions and re-connections, the second challenge is to avoid these disconnections and
re-connections. The third challenge is to fairly allocate the power in absence of the
information about future EVs arrivals and departures, as this information might be
unavailable in practice. To address these challenges, we formulate an online optimiza-
tion problem and repeatedly solve it by using a mixed-integer-quadratic program. To
do so in real-time, we develop a heuristic that reduces the number of integer variables.
We validate our method by simulations with real-world data.

21



Chapter 3. Real-Time Control of an Electric-Vehicle Charging Station

3.1 Introduction

The allocation of power to EVs is a challenging task because, as previously mentioned
in Chapter 1, an aggregated power-setpoint can change substantially in a few seconds.
The naive power-allocation, which would transfer these variations directly to the EVs,
could increase their battery ageing by creating large power-jumps, mini-cycles, and
frequent on-off switching of EVs. Furthermore, the power should be allocated fairly
considering that each EV has its own energy demand and departure time. Indeed,
the aggregated power-setpoint might not be enough to satisfy the demand of all EVs.
The authors in [102] minimize the battery-degradation cost associated with additional
cycling, assuming that there is sufficient amount of power to satisfy the EVs demand,
and fairness issues are not addressed. Whereas, studies in [112, 121, 122], propose
charging schemes that consider fairness of the power allocation among EVs, but
without accounting for battery wear. The authors in [123] use an on-off strategy
stating that a constant power minimizes the battery wear. However, the large power
jump, from no charge to maximum charge, could represent a significant impact on
the battery’s lifetime. In our formulation we penalize the on/off transition and the
power change, so that the charge smoothness is guaranteed. We develop a method
that considers both battery wear and fair-demand satisfaction and that tracks the
aggregated power-setpoint. Also, the battery size, charging rate, initial state-of-energy,
and desired state-of-energy at departure, can be different for every EV.

The authors in [69] propose a load-management control strategy for minimizing
the power losses and for improving the voltage profile during peak hours by assum-
ing that EVs are scheduled in three different types of charging periods. The authors
in [124] develop a decentralized control-scheme, using concepts from non-cooperative
games, showing optimality when the EVs characteristics are identical (same departure
time, energy demand and maximum charging-power) and all charging schedules are
agreed upon with the CS one-day ahead. [125] proposes an online charging-algorithm,
assuming that no EVs will arrive when a charging schedule is made. In [126], a chance-
constrained optimization problem is formulated to minimize the charging cost. How-
ever, the problem is computationally heavy and might not be appliable in actual real
time. We propose to take a different approach without the need for scenarios but only
with updated information, thus significantly reducing the computational burden and
using the minimum amount of information to represent historical and future events in
the decision taken at each time-step. Studies [5, 127, 128] assume that all the EVs have
the same charging rate. But, such assumptions do not hold in practice. In contrast, our
method considers the EVs heterogeneity. We do not have any information about future
arrivals and departures, nor can we know the real amount of time any charging will
take; we can only estimate it.

A common assumption in the literature is that the charging power of an EV is a
continuous value between 0 and the maximum power (e.g., [112, 127, 128]). However,
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in reality, this is not the case because an EV can be either switched off and consume
no power, or charge at a power that lies between non-zero bounds, where the mini-
mum charging-power cannot be arbitrarily small. The authors in [129] developed a
distributed control-scheme that supports on-off states, but it is limited to a constant
power when on. Whereas, we consider both switch on and off possibilities and not
arbitrarily small minimum charging-power.

The proposed method has the following objectives: (i) follow an aggregated power-
setpoint, (ii) minimize the battery degradation of each EV, and (iii) fairly allocate the
power proportional to the EVs needs. In order to achieve these objectives, we define
novel metrics and use them to construct a dedicated optimization problem. As the
charging power is discontinuous (the minimum charging power is not arbitrarily small),
our optimization problem is mixed integer. As a mixed-integer optimization problem
is difficult to perform in real time, we propose a heuristic for reducing the number of
integer variables, thus reducing the complexity of the problem.

Our main contributions are the following:

• We assume that the control scheme has no internal information about battery
charging (e.g., ramping rates, current state-of-energy), nor about actual departure
time of EVs. This is more realistic, as modern charging stations are myopic to this
kind of parameters.

• Our method provides sub-second-scale control. Whereas most of the existing
methods work on a minute scale, ours enables the CS to react faster to changes
in the grid.

• We use a realistic model for the battery charging-power, i.e., an EV is either
switched off (charging power is 0 W), or its power lies within non-zero bounds.

• We minimize the battery wear by avoiding large power jumps and by reducing
the number of cycles.

3.2 Problem Statement

3.2.1 Charging-Station Model

We consider a charging station (CS) that can hostN EVs. Time is discretized in constant
interval, indexed by k. The CS keeps track of the number of connected EVs at every step
k. A newly arrived EV cannot begin charging before being instructed by the CS. Each EV,
say i, upon its arrival, is assumed to inform the CS of (i) charging-power bounds Pmin

i

andPmax
i , (ii) energy demandEdem

i , and (iii) expected departure time kdep
i . Information

about future arrivals, future expected departures, and future demands is unknown.
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Also, the CS has access to the measured power P̂i[k] of EV i at every time k. The CS
is able to control the charging power of an EV by sending the setpoint Pi[k] to EV i

at time k (see Fig. 3.1). As the CS is connected to a three-phase system, we assume
that the EV charging power is evenly balanced on the three-phases, and we do not
target phase-balancing. The CS receives an aggregated setpoint P req[k] from the grid
controller. In return, it sends its updated status (see Section 3.5 for details).

Figure 3.1 – General setup of the considered charging station.

3.2.2 Constraints of the EVs

We assume that the CS has the ability to stop the charge of an EV. The individual power
flexibility of EV i is defined by the set {0} ∪ [Pmin

i , Pmax
i ]. We denote the on/off decision

for EV i at time k by ωi[k]. Specifically, ωi[k] = 1 (respectively, 0) means that we decide
to switch on (respectively, off) EV i at time k. We assume that an EV is initially switched
off, upon arrival.

When receiving new setpoints from the CS, the EVs cannot immediately change
their charging power due to delays:

• reaction delay is the time an EV takes to start modifying its power after receiving
a new setpoint,

• implementation delay is the time an EV takes to reach a new setpoint, which
depends on the EV charger ramping-rate.

We say that an EV is locked if it is in the process of reacting or implementing a
setpoint. As the specific delays are usually different for every type of EV, it is difficult to
know their exact values. Therefore, we take a conservative upper bound TL (20s in this
work). Specifically, we consider that, after receiving a setpoint, any EV will be locked
for the locking period TL.

Note that the locking of the EVs temporarily shrinks the flexibility of the CS as
the amount of EVs that can change power varies from one control cycle to another.
Thus, this information is supposed to be constantly sent to the grid controller. As the

24



3.3. Control Scheme at the CS

ramping rates and delays are unknown, it is impossible to know a-priori exactly how
the charging power will change when an EV is locked.

3.2.3 Power Allocation to EVs

The CS needs to allocate the time-varying aggregated power-setpoint to the connected
EVs. The purpose of the power-allocation strategy is to allocate the consumed power
in such a way that the satisfaction of the EV demands are maximized and that their
batteries are subjected to minimal wear. In particular, it might not be possible to satisfy
all EV demands if the power capacity is not sufficient. In such a case, power should
be allocated fairly. Furthermore, fast variations of the aggregated setpoint should
be smoothed, otherwise its direct implementation can degrade the EV batteries. In
summary, the objectives of the allocation strategy are

1. track the aggregated setpoint from a grid operator,

2. minimize the wear of EV batteries,

3. maximize the EVs energy-demand satisfaction, while maintaining fairness,

4. minimize the number of times the charging station stops the charging of an EV,
while it is plugged-in.

In this work, we consider all four objectives together. In the next section, we
formulate a specific mixed-integer program and show how we solve it in real-time.

3.3 Control Scheme at the CS

The CS computes setpoints for all EVs that are not locked at time k. At each time k, the
CS has the following inputs, states, and outputs.

• Inputs (as introduced in Section 3.2):

– aggregated power-setpoint P req[k],

– measured powers P̂i[k] for every EV i,

– on/off decisions ωi[k − 1] for every EV i.

• States (will be detailed Section 3.3.2):

– history of charging power changes λi[k],

– the desire of an EV to be charged ρi[k]

• Outputs (as introduced in Section 3.2):
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– the power-setpoints Pi[k],

– on/off decisions ωi[k]

According to the objectives described in Section 3.2.3, the CS solves the following
optimization problem

min
P[k],Ω[k]

c0f0(P[k], P req[k]) + c1(f1(P[k],Λ[k])

+ f2(Ω[k],R[k], P̂[k])) + f3(P[k]) (3.1)

s.t. Pmin
i ωi[k] ≤ Pi[k] ≤ Pmax

i ωi[k] (3.2)

ωi[k] ∈ {0, 1}, ∀i ∈ C[k] (3.3)

where

• C[k] is the collection of EVs that are unlocked at time k (just before starting a new
computation of setpoints),

• P[k] is the collection of setpoints Pi[k] that will be computed for each EV in C[k],

• P̂[k] collects measured powers P̂i[k] for all EVs,

• Ω[k] is the collection of on/off decisions that will be computed for each EV in
C[k],

• Λ[k] = (λi[k])i=1,2.. and R[k] = (ρi[k])i=1,2..,

• functions f0, f1, f2, f3, and parameters c0, c1 > 0 will be described in next subsec-
tions.

Note that this optimization is a mixed-integer problem due to the presence of the
collection of binary control variables Ω[k]. In addition, this problem is online, with
λi[k] and ρi[k] being the proxies for the history and future, respectively.

3.3.1 Aggregated Power-Setpoint Tracking

The first term in (3.1) is responsible for tracking the aggregated power-setpoint P req[k].
As the locked EVs either react to or implement a previous setpoint, they cannot follow
a setpoint and should be removed from the aggregated setpoint, i.e. P̃ req[k] = P req[k]−∑

i∈L[k] Pi[k], where L[k] collects all the locked EVs. In this case, Pi[k] represents the
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very last setpoint that a locked EV has received. This impedes the CS from reallocating
the same power in the unlocked EVs. Finally, f0 can be expressed as

f0(P[k], P req[k]) =

(
P̃ req[k]−

∑
i∈C[k]

Pi[k]

)2

(3.4)

Note that, in this case, the aggregated setpoint might not be followed exactly, due to
the delays mentioned in Section 3.2.2. However, such uncertainty can be informed to
the grid controller, in order to use it in its setpoint-computation process. In Section 3.5,
we explain how this uncertainty is computed.

3.3.2 Battery Wear

In order to minimize the impact of changing power in the EV batteries, we use f1

and f2 in the objective function. f1 penalizes the deviation between the setpoint and
the measured power, together with the changes in the measured power. f2 penalizes
sudden switch off of the EVs caused by the CS. To formalize f1 and f2, let us introduce
new variables. As our method is online, we introduce two non-linear integral terms to
account for (i) the past behaviour of EVs’ charging power, and (ii) the desire of an EV to
be charged.

The first of these terms, λi[k] ∈ [0.5, 1] per EV i, quantifies how long ago and how
large the power changes were. This is used as a priority metric: the smaller λi is, the
more priority to change power there is. Let k′i be the time of the most recent change
of the setpoint for EV i before k (so that Pi[κ] = Pi[k

′
i] for κ = k′i, k

′
i + 1, ..., k − 1). Note

that k′i is also a function of k but, for the ease of notation, we drop this dependency.
When EV i arrives, Pi[k′i] is set to zero. Consequently, we take

λi[k] =


λi[k

′
i] +

(
|P̂i[k]−P̂i[k

′
i]|

Pmax
i

)
(1− λi[k′i]),

if |P̂i[k]− Pi[k′i]| > ε and k − k′i < TL

(λi[k − 1]− 0.5)δ + 0.5,otherwise.

(3.5)

The first case of Eq. (3.5) occurs when EV i is locked and the setpoint is not yet
implemented1. In this case, λi[k] increases linearly with respect to the implemented
power change (grey area on Fig. 3.2). It is defined by the following conditions: (i) if
P̂i[k] = P̂i[k

′
i], then λi[k] = λi[k

′
i], and (ii) if |P̂i[k]− P̂i[k′i]| = Pmax

i , then λi[k] = 1. In the
second case, λi[k] decreases exponentially with a decay δ (see Fig. 3.2). Observe that
the right-hand side of Eq. (3.5) is always in [0.5, 1].

1ε = 100 W is a pertinent safety margin.
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Figure 3.2 – Evolution of λi[k].

f1 uses the term Pi[k]− P̂i[k] and f1(P[k],Λ[k]) as follows

f1(P[k],Λ[k]) =
∑
i∈C[k]

(Pi[k]− P̂i[k])2λi[k]. (3.6)

The second term, ρi[k] ∈ [0.5, 1], expresses the desire of an EV i to charge. It is also
used as a priority metric: the larger the ρi is the higher the priority to increase the
power is. Note that, the CS can keep track of the remaining energy demand ∆Edem

i [k] of
EV i at time k, and expected remaining charging time kdep

i − k. Therefore at time k, the
CS computes the power that EV i needs to satisfy its demand as ∆Edem

i [k]/(kdep
i − k).

And, for k = karr
i this power equals ∆Edem

i [karr
i ]/(kdep

i − karr
i ). With this, we compute

the unit-less quantity per EV as follows

ζi[k] =
1

Pmax
i

H

(
∆Edem

i [karr
i ]

kdep
i − karr

i

,
∆Edem

i [k]

kdep
i − k

)
, (3.7)

where H represents the harmonic mean. By property of the harmonic mean, ζi[k] ∈[
0,

2∆Edem
i [karri ]

Pmax
i (kdepi −karri )

]
, which depends on the initial state of an EV. Moreover, ζi[k] is mono-

tonically increasing function of ∆Edem
i [k]/(kdep

i − k). Consequently,

ρi[k] = 0.5 + ζi[k]/(2 max
i∈C[k]

ζi[k]). (3.8)

28



3.3. Control Scheme at the CS

f2, which penalises the switch off of EVs, is expressed as

f2(Ω[k],R[k], P̂[k]) =
∑
i∈C[k]

(1− ωi[k])ωi[k − 1]ρi[k]P̂ 2
i [k]. (3.9)

We multiply each term by ρi[k] to enforce EVs with larger values to be switched off
at last. We also multiply by ωi[k − 1] to exclude EVs that are switched off.

3.3.3 Fair Allocation of Charging Power

The aggregated power setpoint P req must be allocated fairly among EVs. In order to
anticipate the future information, we allocate the power by using ζi as a weight for EV
i. To this end, at time k, we compute reference powers, P ref

i [k] ∈ [0, Pmax
i ] for all EVs,

ideally fair such that
∑

i∈C[k]∪L[k] P
ref
i [k] = P req[k]. It should be noticed that if P req = 0,

then reference powers of all EVs are also equal to 0. Commonly used fair allocations
are weighted-proportional and weighted-max-min [41]. It is sometimes difficult to
choose between the two. In our specific case, we show that both are identical.

Let us first describe the weighted-max-min fair allocation. As the set of constraints
is convex and compact2, we know that this allocation exists and is unique [41]. In order
to find such an allocation, the water-filling algorithm is used, which works as follows.
The power of all EVs is increased at the same pace, until one or more powers reach their
maximum. The powers that reach their maximum are frozen, and the others continue
to increase at the same pace. The algorithm is repeated until

∑
i∈C∪L P

ref
i = P req

(henceforth, the time index k is omitted for simplicity of notation). For details, see
Fig. 3.3. Here, we use again ζi to prioritize the EVs that need to be charged to satisfy
their demand. Each EV i is represented as a water tank of width ζi and height Pmax

i
ζi

,
the volume of the tank is Pmax

i . The volume of the water in tank is either Pmax
i or hζi,

where h is the common height of the non-saturated tanks. Note that the EV with ζi = 0

is charged fully and, therefore it no longer needs to be considered in the allocation.

Another possibility is to consider weighted-proportional fairness. We find a propor-
tionally fair allocation of power by solving the following convex optimization-problem
in (A):

(A) max
P ref
i

∑
i∈C∪L

ζi logP ref
i

s.t. 0 < P ref
i ≤ Pmax

i (3.10)∑
i∈C∪L

P ref
i = P req (3.11)

2i.e., closed and bounded in Euclidean space.
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Figure 3.3 – Result of the water-filling algorithm for 5 EVs. EVs 1, 4 and 5 are fully filled,
whereas 2 and 3 have reference powers of hζ2 and hζ3, respectively. The reference
powers P ref

1 , P ref
2 , P ref

3 , P ref
4 , P ref

5 are in kW.

We next prove that the above weighted-proportional and weighted-max-min fair
allocations are equivalent. This means that it is possible to find the fair allocation by
either solving the optimization problem (A) or water-filling.

Theorem 3.1. Weighted-proportional and weighted-max-min fair allocations, as de-
fined above, are equivalent.

Proof. Let P ref
i be a weighted-proportional fair allocation. To compute this solution,

we first get the Lagrangian of (A)

L(x, η) = −
∑
i∈C∪L

ζi logP ref
i + η

( ∑
i∈C∪L

P ref
i − P req

)
(3.12)

where 0 < P ref
i ≤ Pmax

i and η is the Lagrange multiplier. The solution of the problem is

P ref
i =

{
ζi
η if ζiη ∈ [0, Pmax

i ]

Pmax
i otherwise

(3.13)

Next, we show that the solution in (3.13) follows the definition of weighted-max-
min fairness in [41]. Mainly, we show that increasing one component i is at the expense
of decreasing other component j such that P ref

j /ζj ≤ P ref
i /ζi. By (3.13), P ref

i is either ζi
η

or Pmax
i . If P ref

i = Pmax
i , this component cannot be increased. Let us consider the case

when P ref
i = ζi

η . If we increase the power of EV i, we have to decrease the power of at
least one other EV, say j, to satisfy constraint (3.11). There are also two cases for EV j:
either P ref

j =
ζj
η or P ref

j = Pmax
j .

If P ref
j =

ζj
η , then

P ref
j

ζj
=

P ref
i
ζi

= 1
η . Hence, the inequality in weighted-max-min

fairness definition holds. If P ref
j = Pmax

j , then P ref
j ≤ ζj

η . Dividing each part by ζj gives
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that:
P ref
j

ζj
≤ 1

η =
P ref
i
ζi

. Therefore, in both cases the inequality holds, proving that the
two types of fairness give the same results.

Finally, after computing the fair allocation P ref
i [k], we construct, at every time-step

k, f3 as follows:

f3(P[k]) =
∑
i∈C[k]

(Pi[k]− P ref
i [k])2. (3.14)

3.3.4 Full Formulation

By combining (3.1), (3.4), (3.6), (3.9), (3.14) with constraints (3.2), (3.3), the optimiza-
tion problem to be solved, at each time k, is

(P) min
Pi[k],ωi[k]

c0

(
P̃ req[k]−

∑
i∈C[k]

Pi[k]

)2

→ reference
tracking

battery
wear

←


+c1

( ∑
i∈C[k]

(Pi[k]− P̂i[k])2λi[k]

+
∑
i∈C[k]

(1− ωi[k])ωi[k − 1]ρi[k]P̂ 2
i [k]

)
fair

allocation
← +

∑
i∈C[k]

(Pi[k]− P ref
i [k])2 (3.15)

s.t. (3.2)− (3.3) (3.16)

3.4 Real-Time Implementation Aspects

3.4.1 Reducing the Number of Integer Variables

As (P) is mixed-integer, its complexity grows exponentially with the number of integer
variables [130] (here ωi). To reduce the problem complexity, we propose a heuristic that
runs at every time k and limits the number of integer variables. The heuristic partitions
the collection of unlocked EVs, C[k], into three collections: EVs that are forced to be
switched (or remain) on (Son[k]), EVs that are forced to be switched (or remain) off
(Soff[k]), and EVs for which the on/off decision is decided by the optimization problem
(S[k]). We require that |S[k]| ≤ m, where m is fixed small number (e.g., m ≤ 10).

In other words, we define a new problem (H) that has at most m integer variables.
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All other ωi[k] remain fixed.

(H) min
Pi[k],ωi[k]

(3.15)

s.t. (3.2), (3.3)

ωi[k] = 1,∀i ∈ Son[k], ωj [k] = 0, ∀j ∈ Soff[k] (3.17)

The constraints in (3.17) force the corresponding EVs to be switched on/off.

Note that, with this consideration, the flexibility that the problem (H) considers is,
however, smaller than that of (P). Specifically, the power to be allocated among the
unlocked EVs, P̃ req[k], might not be able to be tracked, depending on the partition of C.
Let us thus define the full flexibility of the CS at time k, as F (see Section 3.5.2), and
the reduced flexibility (the one available for (H)), as the interval [P lb, P ub] with

P lb =
∑

i∈Son[k]

Pmin
i , P ub =

∑
i∈Son[k]∪S[k]

Pmax
i . (3.18)

Thus, the partition {S[k],Son[k],Soff[k]} should ensure that P̃ req[k] ∈ [P lb, P ub].
Note that we compute the bounds excluding locked EVs. Their power is already defined,
as explained in Section 3.3.3.

We now describe the heuristic, detailed in Alg. 1. First, we define a metric that takes
into account both the past behaviour of the EVs power and their desire to be charged,
as follows:

µi[k] = λi[k] + (1− ωi[k − 1])(1.5− ρi[k]) + ωi[k − 1]ρi[k], (3.19)

with µi[k] ∈ [1, 2], unit-less, and consisting of three parts:

• λi[k] contains information about the past behaviour of the charging power.
Smaller λi[k] means that EV i is more propense to change its power,

• (1− ωi[k − 1])(1.5− ρi[k]) identifies the propensity of a switched-off EV to switch
on,

• ωi[k − 1]ρi[k] identifies the propensity of a switched-on EV to switch off.

Therefore, µi[k] quantifies the propensity of EV i to change its on/off decision and
charging power. Smaller µi[k] indicates more propensity.

Second, we rank the EVs according to their individual operational margins. As
the maximum power an EV i can consume is Pmax

i and the minimum is 0, its positive
margin is Pmax

i − P̂i[k] and its negative margin is P̂i[k]. By dividing these values by
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Algorithm 1 Heuristic for partitioning C[k].

Input: C[k], m ≥ 1, 0 ≤ P̃ req[k] ≤
∑

i∈C[k] P
max
i

Output: partition S[k],Son[k],Soff[k] of C[k], such that |S[k]| ≤ m and P̃ req[k] ∈
[P lb, P ub] computed in (3.18)

1: if |C[k]| ≤ m then
2: S[k] = C[k], Son[k] = Soff[k] = ∅,
3: stop algorithm.
4: else
5: S[k] = top(C[k],m),
6: Son[k] = {i | i ∈R, ωi[k − 1] = 1},
7: Soff[k] = {i | i ∈R, ωi[k − 1] = 0},
8: let R = C[k] \ S[k].
9: end if

10: compute reduced flexibility bounds as in (3.18).
11: while P̃ req[k] /∈ [P lb, P ub] and R 6= ∅ do
12: i = top(R, 1), j = top(S[k], 1)
13: if P̃ req[k] > P ub then
14: Son[k] = Son[k] ∪ {j}
15: else if P̃ req[k] < P lb then
16: Soff[k] = Soff[k] ∪ {j}
17: end if
18: update S[k] = S[k] ∪ {i} \ {j}
19: if i ∈ Son[k] then
20: remove i from Son[k]
21: else
22: remove i from Soff[k]
23: end if
24: recompute bounds according to (3.18)
25: update R = R \ {i}
26: end while

Pmax
i , we obtain normalized margins. Therefore, we introduce the ranking metric ri[k],

which combines the operational margins with µi[k]:

ri[k] =


P̂i[k]

Pmax
i µi[k] if ∆P req[k] < 0,

Pmax
i −P̂i[k]
Pmax
i µi[k] otherwise,

(3.20)

where ∆P req[k] = P̃ req[k]−
∑

i∈C[k] P̂i[k]. Finally, we define the function top(X ,m) that
returns the index of the m elements with the largest ri[k] metric, from a collection X .
In the rest of this section, for sake of clarity, we omit the time index k.

The purpose of the heuristic is to limit the number of integer variables to m. If the
amount of unlocked EVs is initially less than m, then all these EVs can change their
on/off decision (lines 2-3). Otherwise, we take the m EVs with the largest metric ri
(lines 5-8). This choice is sufficient in most of the cases as, according to ri, these EVs
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are the best to be selected. However, it can happen that P̃ req /∈ [P lb, P ub]. In which
case, we loop until fulfilling this constraint. If P̃ req lies above the bounds, we force the
EV from S with highest rank to be switched on and replace it with highest ranked EV in
R = C \ S (lines 12-14, 18-19). Doing this, we automatically increase P ub, eventually
reaching P̃ req (see Theorem 3.2). Similarly, if P̃ req lies below the bounds, we switch off
the highest ranked EV from S (lines 15-17) and replace it with the highest ranked EV in
R.

Theorem 3.2 (Correctness of the heuristic). Given that m ≥ 1, Alg. 1 finds a partition
S, Son, Soff of C, such that P̃ req ∈ [P lb, P ub], |S| ≤ m. Alg. 1 takes at most |C| − m

iterations.

Proof. Let ` be the number of iterations in the while loop between lines 11-26. ` = 0,
when the while loop is not executed. If Alg. 1 enters the loop, we increment ` just
before executing line 12. Denote S(`),Son,(`),Soff,(`),R(`) the state of collections and
[P lb,(`), P ub,(`)] the state of bounds, at the end of the `-th iteration. S(0),Son,(0),Soff,(0),
R(0), [P lb,(0), P ub,(0)] are initial states of collections and bounds.

We now prove the following 5 statements (S1-S5):

(S1) For every ` ≥ 0

R(`) ⊆ Son,(`) ∪ Soff,(`). (3.21)

Indeed, for ` = 0, (3.21) holds by lines 7, 8. Assume that (3.21) holds at ` − 1. We
remove one element from R(`−1) and either from Son,(`−1) or Soff,(`−1) (lines 20,22).
Thus, (3.21) holds at `.

(S2) For every ` ≥ 0, S(`),Son,(`),Soff,(`) is partition of C

C = S(`) ∪ Son,(`) ∪ Soff,(`), (3.22)

S(`) ∩ (Son,(`) ∪ Soff,(`)) = ∅, (3.23)

Son,(`) ∩ Soff,(`) = ∅. (3.24)

Indeed, for ` = 0, S(0), Son,(0), Soff,(0) is a partition of C by construction. Assume that
(3.22)-(3.24) hold at (`−1). Then, S(`) = S(`−1)∪{i}\{j} (line 18) and Soff,(`)∪Son,(`) =

Soff,(`−1) ∪ Son,(`−1) ∪ {j} \ {i} (lines 13-17, 19-23). Since j ∈ S(`−1) and, by (3.21),
i ∈ Son,(`−1) ∪ Soff,(`−1) (3.22) and (3.23) holds at `. Also, we take j from S(`−1) and
move it either to Son,(`−1) (line 14) or Soff,(`−1) (line 16), then (3.24) holds at `.

(S3) If Alg. 1 visits line 14 at iteration `, then P ub,(`−1) ∈ [P lb,(`), P ub,(`)] and, if it
visits line 16 at iteration `, then P lb,(`−1) ∈ [P lb,(`), P ub,(`)].

Let us show (S3) in the first case, i.e., that P ub,(`−1) ≤ P ub,(`) and P ub,(`−1) ≥ P lb,(`).
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To this end, let us first check how Son,(`−1) and S(`−1) are changed by Alg. 1. We take
i from R(`−1) (line 12) and add it to S(`−1). Also, we move j from S(`−1) to Son,(`−1).
Then, we have two cases, since i can be either from Son,(`−1) or Soff,(`−1) (see (3.21) and
(3.24)). If i ∈ Son,(`−1), then Son,(`) = Son,(`−1) ∪ {j} \ {i} and S(`) = S(`−1) ∪ {i} \ {j},
hence S(`)∪Son,(`) = S(`−1)∪Son,(`−1). According to (3.18) P ub,(`−1) = P ub,(`). Rewrite
expressions in (3.18) for P ub,(`−1) and P lb,(`)

P ub,(`−1) =
∑

j′∈Son,(`−1)

Pmax
j′ +

∑
j′∈S(`−1)\{j}

Pmax
j′ + Pmax

j (3.25)

P lb,(`) =
∑

j′∈Son,(`−1)∪{j}\{i}

Pmin
j′ = P lb,(`−1) − Pmin

i + Pmin
j (3.26)

By inspecting (3.25) and (3.26) term by term, we see that each term in (3.25) is not
smaller than the corresponding term in (3.26).

If i ∈ Soff,(`−1) then Son,(`) = Son,(`−1) ∪{j} and S(`) ∪Son,(`) = S(`−1) ∪Son,(`−1) ∪
{i}. By (3.18) P ub,(`−1) ≤ P ub,(`),

P lb,(`) =
∑

j′∈Son,(`−1)∪{j}

Pmin
j′ = P lb,(`−1) + Pmin

j (3.27)

Comparing (3.25) and (3.27), we get P ub,(`−1) ≥ P lb,(`), which concludes the proof.
The proof is similar in the case when algorithm visits line 16.

(S4) If Alg. 1 visits line 14, it will never visit line 16 and vice versa.

Assume that Alg. 1 visits line 14 at iteration `−1. From (S3) we know that P lb,(`−1) ∈
[P lb,(`), P ub,(`)]. We will prove (S4) by contradiction. Assume that Alg. 1 visits line 16 at
`, i.e., P̃ req < P lb,(`). Then, P ub,(`−1) < P̃ req < P lb,(`) (see Fig. 3.4(a)). This is impossible
because P lb,(`) ≤ P ub,(`−1) according to (S3). Similarly, the case for line 16 can be
proven (Fig. 3.4(b)).

`− 1

P
lb;(`−1)

`

P
ub;(`)

`− 1

P
lb;(`)

eP
req[k]

`

P
ub;(`−1)

eP
req[k

(a) (b)

P
ub;(`)

P
lb;(`−1)

P
ub;(`−1)

P
lb (`)

Figure 3.4 – Proof of statement (S4).
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(S5) If Alg. 1 terminates with emptyR(`), then P̃ req ∈ [P lb,(`), P ub,(`)].

Let us prove (S5) when algorithm visits line 14 (similar for line 16). a) We show that
Soff,(`) ⊂ R(`) at every iteration `. If ` = 0 it is true by construction. Let us assume that
Soff,(`−1) ⊂ R(`−1) at `− 1. According to (S4), if Alg. 1 visits line 14 it will never visit line
16, so no new elements are added to Soff,(`−1). Next, if i ∈ Son,(`−1), Soff,(`) = Soff,(`−1),
else (i.e., if i ∈ Soff,(`−1)), Soff,(`) = Soff,(`−1) \ {i}. Also R(`) = R(`−1) \ {i}. Thus,
Soff,(`) ⊂ R(`). Let L be the value of ` when Alg. 1 terminates andR(L) = ∅, therefore
Soff,(L) = ∅, thus C = Son,(L) ∪ S(L) and P ub,(L) =

∑
i∈C P

max
i . According to the input

conditions P̃ req ≤ P ub,(L). Let us show that P̃ req ≥ P lb,(L). Indeed, according to (S4)
Alg. 1 visited line 14 on iteration L− 1, therefore by (S3) P lb,(L) ≤ P ub,(L−1) < P̃ req.

We can now complete the proof by observing that Alg. 1 terminates either when
P̃ req ∈ [P lb,(`), P ub,(`)] or because R` = ∅. However, by (S5) we also have that P̃ req ∈
[P lb,(`), P ub,(`)]. Moreover, Alg. 1 removes 1 element from R at every iteration. The
initial amount of elements in R is |C| −m, then it will terminate in at most |C| −m
iterations.

After constructing {S,Son,Soff}, we solve problem (H) by using Branch-and-Bound
[130].

3.5 Validation

3.5.1 Simulation Setup

To validate our method, we consider a grid with an existing 500 kWp PV plant connected
to the distribution network through a power transformer rated SrTr = 500 kVA3. The CS
has a power rating P rCS = 1000 kW; this is a stress test for our method, as the CS has to
opportunistically use all available power. The CS has 60 slots of 22 kW max.

Figure 3.5 – Structure of the grid. The arrows show the positive directions of the
corresponding active-power flows.

To simulate the PV production, we use real irradiance measurements taken in our

3Note that we do not consider grid constraints other than the transformer rated power.
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laboratory; they are then normalized according to the PV rated power. We simulate
the arrival of EVs to the CS as a homogeneous Poisson process with a rate of 30 ar-
rivals/hour (see Fig. 3.6(d)). We assume that, upon arrival (at karr

i ), EV i informs the
CS of its energy-demand ∆Ei and the expected departure-time kdep

i . We model the
expected staying-time (kdep

i − karr
i ) to be uniformly distributed between 1.5 and 1.6

hours. This assumption has been made only for simulation purposes and serves to
model the behavior of the different users. Furthermore, we consider that an EV can
leave before the informed time. Thus, the real staying-time is uniformly distributed
between 1.4 and 1.5 hours in our simulation. An EV will leave after the real staying-time,
regardless of its level of charge. The proposed control-scheme does not have access to
the information about distributions of expected staying-time and real staying-time;
it uses only the exact value of expected staying-time, declared by users. Given the
distributions of the arrival time and the staying time, it is highly likely that an EV will
find an available slot upon arrival, otherwise this EV is ignored (as in practice this EV
will leave for another charging station). In all our simulation scenarios, this property
was maintained.

We consider two groups of EVs: group A with high and group B with low energy-
demand. The demand is uniformly distributed between 28 and 32 kWh and between
10 and 14 kWh, respectively. Considered reaction times are also uniformly distributed
between 2 and 3 s and the ramping rate is 5 kW/s4. We also ran simulations that
consider different ramping-rates depending on each group: we set 5 kW/s for group
A and 15 kW/s for group B. The obtained results show little difference to the results
presented in Section 3.5.6, thus ensuring that our method is robust against the change
in ramping rates. As these results are almost identical, they are not included in the
work. The minimum and maximum powers of the modelled EVs are 2 kW and 22 kW.

We consider 3 scenarios, mainly defined by the PV trace, that are representative
enough to show all our method features:

• regular production, when the PV production is smooth (see Fig. 3.6(a)),

• fluctuating production, when the PV production has high-frequency fluctuations
(see Fig. 3.6(b)), e.g., due to clouds,

• sharp jump, when, for emergency reasons, part of the PV plant is suddenly
disconnected (see Fig. 3.6(c)).

Finally, we analyze the influence of the combinations of weights c0, c1 in problem
(P) on the method performance.

4This rate was taken according to the maximum charging power, such that the EV will reach its
maximum power before the locking period finishes.
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3.5.2 Model of the Grid Controller

Next, we describe the way we model the decision of the grid controller at time k.
We assume that all resources are connected to the same node, thus simplifying the
power-balance equation to PTr = PCS − PPV, being PTr the transformer, PPV the PV
plant and PCS the charging station powers, respectively (see Fig. 3.5 for the powers
direction convention). The control variable is PCS, whereas the controlled variable is
PTr. The purpose of this controller is to maximize PCS, and to avoid the violation of the
transformer rated-power, i.e., |PTr| ≤ SrTr, subject to the uncertainty produced by (i)
the variation of the injected PV power and (ii) the charging of locked EVs. We focus on
the case when the violation is produced by an overconsumption of the CS. The case
when the violation is produced by an overproduction of the PV plant can be handled
similarly. Hence, the controller’s decision is computed as

P req = P rTr + P ↓PV −∆P ↑CS, (3.28)

where P ↓PV is the one-step-ahead minimum expected PV production, computed
by a short-term forecasting tool [27]. ∆P ↑CS is the maximum possible consumption
increment of locked EVs, i.e., the difference between their individual setpoint and their
current measured power

∆P ↑CS =
∑
i∈L↑

Pi − P̂i, L↑ = {i ∈ L|Pi − P̂i ≥ 0}. (3.29)

This term accounts for the uncertainty of EVs at implementing a setpoint due to the
unknown ramping properties of each EV. Finally, the computed setpoint is saturated,
depending on the current flexibility of the CS, and it is computed by the CS and sent to
the grid controller, represented by the interval

F =

[∑
i∈L

Pi,min

(∑
i∈L

Pi +
∑
i∈C

Pmax
i , P rCS

)]
. (3.30)

It is worth noting that the flexibility is lower bounded by the locked EVs and upper
bounded by the maximum power of the unlocked EVs. The flexibility is not limited
by the minimum power and the handling of any setpoint below mini P

min
i is ensured

by Theorem 2. Besides, the controller cannot instantly ensure that the transformer
rated-power will not be violated due to the ramping mechanism of the locked EVs
but, in the worst-case scenario, it will take a time TL (locking period) to regain more
flexibility, thus decreasing the consumption.
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3.5.3 Performance Evaluation Metrics

As our optimization problem in (H) is multi-objective, we define the following metrics
for the performance evaluation:

• follow-request – measures how well a CS follows the aggregated power-setpoint

M fr =
1

K

K∑
k=1

∣∣∣P req[k]− P̂ [k]
∣∣∣ , (3.31)

where K is the amount of discrete time-steps during the selected control period
and P̂ [k] =

∑
i∈C[k]∪L[k] P̂i[k]. This metric is lower bounded by 0. Then, the closer

M fr is to 0, the better the CS follows the aggregated setpoint.

• non-satisfied demand – measures how well the charging demand of EV i is satis-
fied

Mnsd
i = ∆Ei[k

stop
i ]/∆Ei[k

arr
i ], (3.32)

where ∆Ei[k
stop
i ] is the energy that remains to be satisfied at departure time, and

∆Ei[k
arr
i ] is the initial energy demand. Mnsd

i ∈ [0, 1]. If Mnsd
i = 1, then EV i did

not charge. On contrary, EV i is fully satisfied if Mnsd
i = 0.

• battery-wear – measures the changes of the charge power

Mbw
i =

1

2(Pmax
i )2

K∑
k=1

(Pi[k]− Pi[k − 1])2. (3.33)

This metric shows the effect of the control scheme into the battery life. The closer
Mbw
i is to 0, the less effect is. If Mbw

i < 1 there was no sharp jump of charging
power form 0 to Pmax

i and back.

• violation – measures the maximum per-unit operating (hot-spot) temperature of
the transformer

Mviol = max
k

{
θ[k]

θrated

}
, (3.34)

where θ[k] and θrated are the hot-spot and rated hot-spot transformer tempera-
tures5, and θrated = 160◦C. As a transformer can be overloaded for short time,
this metric shows how the method can exploit this flexibility by respecting the
transformer physical limits.

5We model the dynamic behaviour of the hot-spot temperature θ[k] as a first-order dynamic system
(see [131, 132]): θ[k + 1] = αθ[k] + βPTr[k] + γθamb[k], where θamb is the ambient temperature. The
parameters α, β and γ are estimated using the curves from [132].
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3.5.4 Congestion Indication

As the amount of EVs connected to the CS varies in time, this influences the possibility
of the CS satisfying the demand of EVs. For instance, there might be many EVs charging
at the same time and that have a large energy demand (i.e., congested period). The
Mnsd
i depends on whether CS is congested or not. If the CS is non-congested, we

expect thatMnsd
i is close to 0 for all i. Conversely, ifMnsd

i > 0, CS is congested. In order
to evaluate our method, we define a congestion indicator Icon. Specifically, Icon is an
average non-satisfied demand, assuming that the CS is absolutely fair and attempts to
charge every EV at constant power P avg

i [k] = ∆Edem
i [karr

i ]/(kdep
i − karr

i ). We compute
Icon as follows

Icon =

∑K
k=1(P avg[k]− P avail[k])1P avg[k]≥P avail[k]∑K

k=1 P
avg[k]

, (3.35)

where P avail[k] = P rTr + PPV[k] is the available power that can be consumed by the
CS at time k, and P avg[k] =

∑
i∈C[k]∪L[k] P

avg
i [k]. If Icon ≤ 0, there is no congestion at

CS and all EVs should be satisfied. On the contrary, if Icon is 1, it means that there is no
available power at all.

3.5.5 Results for the Default Weight Combination

In this subsection, we show the results of our method for the default weight combina-
tion (c0 = 1, c1 = 1). We show maximum battery wear (maxi,A(Mbw

i ), maxi,B(Mbw
i )),

standard deviation (σA(Mnsd
i ), σB(Mnsd

i )) and mean value (µA(Mnsd
i ), µB(Mnsd

i )) of
non-satisfied demand per group A and B. We also show Icon, Mviol, M fr and an average
aggregated power-setpoint P̄ req. The results for the scenarios are shown below:

metrics
regular

production
fluctuating
production

sharp
jump

maxi,A(Mbw
i ) (p.u.) 0.19 0.34 0.47

maxi,B(Mbw
i )(p.u.) 0.11 0.44 0.23

µA(Mnsd
i ) (p.u.) 0.28 0.14 0.45

σA(Mnsd
i ) (p.u.) 0.03 0.04 0.03

µB(Mnsd
i ) (p.u.) 0.27 0.12 0.44

σB(Mnsd
i ) (p.u.) 0.03 0.03 0.04

Icon (p.u.) 0.26 0.12 0.42
M fr (kW) 0.51 2.61 0.35
Mviol (p.u.) 0.52 0.53 0.51
P̄ req (kW) 607 709 369
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We see that for all scenarios the µA(Mnsd
i ) and µB(Mnsd

i ) are close to Icon, σA(Mnsd
i )

and σB(Mnsd
i ) are less than 0.04. This means that our method efficiently and fairly

allocates the power among EVs. The battery-wear is also less than 1, meaning that there
were no large jumps of the charging power. Also, the CS correctly tracks an aggregated
power-setpoint since M fr is small compared to the P̄ req. Finally, the Mviol is around
0.5 for all scenarios, i.e., we never overheat the transformer. The results show that
our method has good performance in all scenarios with the default combination of
weights.

3.5.6 Results for the Different Weight Combinations

We studied the behaviour of our method for weights by taking values from the set
{0.01, 0.1, 1, 10, 100}. This gives us 25 combinations, but we show only the results of
nine of them, as the other combinations have significantly worse performances. For a
better visualization, we show the results on eight-dimensional spider plots. We show
violation M fr, Mviol, maximum battery wear (maxi,A(Mbw

i ), maxi,B(Mbw
i )), standard

deviation (σA(Mnsd
i ), σB(Mnsd

i )) and mean value (µA(Mnsd
i )/Icon, µB(Mnsd

i )/Icon) of
non-satisfied demand per group A and B.

Fig. 3.7 shows the results for the regular production. We see that, for all com-
binations of weights, the power allocated fairly among EVs, as µA(Mnsd

i )/Icon and
µB(Mnsd

i )/Icon are 1.07 and 1.03, respectively; whereas, σA(Mnsd
i ) and σB(Mnsd

i ) are
0.03. Our method avoids large power jumps because the battery-wear metric never
exceeds 1 for any weight combination. Overall, all weight combinations have similar
performance, which shows that our method is not sensitive to the weight change in
case of a smooth change of the power production.

Fig. 3.8 shows the results for the fluctuating production. We observe that combina-
tions (c0 = 10, c1 = 1), (c0 = 10, c1 = 0.1) and (c0 = 1, c1 = 0.1) have the worst battery-
wear performance. The combination (c0 = 10, c1 = 0.1) has the worst non-satisfied
demand for group A. Other combinations show close and good general performance
in all metrics. The best combination is (c0 = 1, c1 = 10) in this scenario.

Fig. 3.9 shows the results for the sharp jump. We see that the combination (c0 =

10, c1 = 0.1) has the worst battery-wear performance. The rest of the combinations
have close performance in all metrics, which shows that our method is not sensitive
to the weights and has a good performance if there is a sharp change of the power
production. The best combination is (c0 = 1, c1 = 10) in this scenario. We also observe
that, for all weight combinations, Mviol metric is around 0.5, i.e., we never overheat the
transformer. The method potentially leads to an overshooting of the rated power of
the transformer, which rapidly increases its temperature. However, as we immediately
react to such overshoots, the operating temperature never exceeds the safe limit.
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The above analysis shows that the performance of the method is largely insensitive
to the weights, and that the default combination (c0 = 1, c1 = 1) works well in all
scenarios. It also shows that increasing c1, for example with (c0 = 1, c1 = 10), leads to
slightly better performance. As an example, we show in Fig. 3.10 power traces for the
fluctuating production scenario for this combination. Additionally, we show the evolu-
tion of the power setpoint of two EVs: one from group A (with high energy demand)
and one from group B (with low energy demand). There are no large fluctuations and
mini-cycles can be seen, and the EV with higher energy demand receives more power
according to the fair power allocation.
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(a) PV production for regular production.

(b) PV production for fluctuating production.

(c) PV production for sharp jump.

(d) Number of connected EVs at the CS.

Figure 3.6 – PV production scenarios and the number of EVs.
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Figure 3.7 – Metrics for the regular production.
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Figure 3.9 – Metrics for the sharp jump.
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Figure 3.10 – Fluctuating production, c0 = 1, c1 = 10. This illustrates that CS can oppor-
tunistically use the fluctuated PV power production while respecting the transformer
limit.

Figure 3.11 – Fluctuating production, c0 = 1, c1 = 10. Power setpoints change for EVs
from group A (red curve) and group B (blue curve).
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3.6 Conclusions

In this chapter, we have proposed a control scheme for controlling the charging of
electric vehicles connected to a single charging-station that follows an aggregated
power-setpoint in real time. When the charging station tracks the aggregated power-
setpoint, the overall consumed power is allocated fairly among the connected EVs,
and the effect on the battery life is minimized. Specifically, we have formulated a
mixed-integer-quadratic program based on novel integral terms to cope with time-
dependant variables such as battery wear and remaining energy-demand. To reduce
the problem complexity, we have also proposed a heuristic that reduces the number of
integer variables enabling it to be solved in real time. We have evaluated our method in
a stressed situation when the charging station does not have enough power to charge
all EVs at maximum. We have created three scenarios with different production traces
and have demonstrated the performance based on rigorous metrics. The results show
that the control scheme has potential for a real-world application. In this direction,
in Chapter 4, we continue our work and perform real-field validation of our method.
Additionally, this chapter focuses on charging control of EVs, we further investigate
the possibility to discharge EVs batteries to provide more flexibility to the grid in
Chapter 5.
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4 Experimental Validation of the
Real-Time Control of an Electric-
Vehicle Charging Station

In previous chapter, we introduced real-time charging control method of EVs. This
chapter focuses on real-field validation of the method. Our main goal is to show that
the method works in the field, i.e., it can control the charge of commercial EVs that
are connected to a real grid through a CS. The field validation has two challenges. The
first one is to study the real-time capabilities of the method and by analysing how fast
it computes the control power-setpoints. The second one refers to the handling of
the non-ideal response of EVs to the control power-setpoints due to implementation
and reaction delays and inaccuracies. The experimental results demonstrate the
performance of the method and show that it can be deployed in the field.

4.1 Introduction

The charging control of EVs has been extensively exploited in the literature in order
to provide ancillary services [82, 133, 134, 135]. However, the validation of most of the
methods for the charging control of EVs relies on simulations. Due to its technical
difficulty, the real-field experimental validation is rarely performed. The authors
in [76, 136, 137] experimentally validated a droop-based charging-control method
for the provision of ancillary services, such as frequency control, voltage control and
congestion management. However, the EVs are controlled without accounting for
their charging requirements, i.e., the energy demands and expected charging times.
In this same direction, we report the field validation of the real-time EVs charging
control recently proposed in [138]. The method has following features: (i) it tracks
an aggregated power-setpoint dictated by a grid controller to the CS, (ii) it minimizes
the battery wear of every EV and (iii) it fairly allocates the power to EVs. In order to
achieve all these objectives, the problem is cast as a repeated online optimization. As
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the charging power is discontinuous (the minimum charging power is not arbitrarily
small), the optimization problem is mixed integer. It also does not require the CS to
have precise information about the EVs ramping rates, their state-of-charge (SoC) or
actual departure times. The fairness of allocation is performed using the knowledge of
desired SoC and expected staying time that the user of an EV advertises upon arrival to
the CS.

The main goal in this chapter is to evaluate whether the method works in a real
environment. The experimental validation has two major challenges. First, we need
to verify the real-time capabilities of the method. These characteristics are crucial
as the grid state can change rapidly (in few seconds) due to highly volatile energy
resources, such as PV plants [139]. In order to cope with this, the control method
should be able to work on a sub-second scale. The main issue here is solving a mixed-
integer optimization problem in real-time. In [138], a specific heuristic is proposed to
reduce the amount of integer variables. Then, the problem is solved using Branch-and-
Bound [130]. However, directly solving this problem can take several seconds and a
commercial solver code is needed. Alternatively, in this chapter we suggest a procedure
that solves several strictly convex optimization problems with fixed combinations
of integer variables by using open-source software. We show that the method can
compute the power setpoints for EVs at sub-second scale. Second, most of the control
methods presented in the literature assume that each EV perfectly follows a power
setpoint and does not take into account inaccuracies and delays in the implementation
of the power setpoint. As this non-ideal behaviour could significantly influence the
results, we experimentally assess how fast commercial EVs respond to changes of
power setpoints. In this respect, we perform several EVs charging sessions in the
presence of a rapidly fluctuating PV production. By taking into account these non-
ideal behaviour, we show that the method fairly charges EVs and opportunistically use
the available power, while respecting the grid operational constraints.

Our main contributions are the following:

• We experimentally validate a recently proposed charging-control method on a
real-scale microgrid with real EVs and show fair allocation of a power among
the EVs while tracking an aggregated power-setpoint and minimizing EV battery
wear.

• We implement the method and make it compatible with real equipment and
existing EV charging standards.

• We confirm that EVs charging can be controlled in real-time via time-varying
power setpoints. However, the reaction time to power setpoint change and the
implementation accuracy depends on the EV type. In this respect we show that
the method is capable to account for these inaccuracies and compensate them.
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4.2 Summary of the EV charging station control architecture

4.2.1 Charging-Station Control

In this section, we briefly describe the main principles of the control method proposed
in Chapter 3 ( [138]). We consider a CS that can host N EVs. Time is discretized in
constant intervals, indexed by k. The CS provides, at each time step k, the measured
active charging power P̂i[k] and reactive power Q̂i[k] for the i-th connected EV. The CS
keeps track of the number of connected EVs Γ[k] at every step k. A newly arrived EV
cannot start charging before being instructed by the CS. We also assume that, upon
arrival, every EV user advertises to the CS the following quantities: (i) charging-power
bounds Pmin

i and Pmax
i (ii) energy demand ∆Edem

i , (iii) the expected departure time
kdep
i . At the k-th timestep the CS also receives an aggregated power-setpoint P req[k]

from the grid controller (see Section 4.3.1 for more details). The value of P req[k]

accounts for the current capabilities of the various resources in the grid, (such as PVs),
as well as the grid constraints.

At time step k, the problem is to decide on the collection P[k] = (Pi[k])i=1,...,Γ[k],
where Pi[k] ∈ {0} ∪ [Pmin

i , Pmax
i ] is the charging power assigned by the CS to slot i at

time k and on the collection Ω[k] = (ωi[k])i=1,...,Γ[k], where ωi[k] is the on/off decision
for EV i. Specifically, ωi[k] = 1 (respectively, 0) means that the CS decides to switch EV
i on (respectively, off) at time k. We assume that an EV is initially switched off upon
arrival. When receiving new setpoints from the CS, the EV cannot immediately change
its charging power due to the following delays: reaction delay is the time an EV takes,
after receiving a new setpoint, to start modifying its power, and implementation delay
is the time an EV takes to reach a new setpoint, which depends on the EV charger
ramping rate. The EV is locked if it is in the process of reacting to, or implementing
a setpoint. Let C[k] be the collection of EVs that are unlocked at time k and let L[k]

collect all locked EVs.

The implementation of the method is based on the four-step process described
below. First, two non-linear integral terms are computed to account for: (i) the past
behaviour of EVs’ charging power, and (ii) the desire of an EV to be charged. The first
of these terms, λi[k] ∈ [0.5, 1] per EV i, quantifies how long ago and how large the
power changes were. This is used as a priority metric: the smaller λi, the higher the
priority to change power. The second term, ρi[k] ∈ [0.5, 1], expresses the desire of an
EV i to charge. It is also used as a priority metric: the larger ρi, the higher the priority
to increase power. Let Λ[k] = (λi[k])i=1,...,Γ[k] and R[k] = (ρi[k])i=1,...,Γ[k].

Second, the method finds the power allocation that maximizes EV energy-demand
satisfaction while ensuring fairness, i.e., P req[k] must be allocated fairly among avail-
able EVs. Commonly used fair allocations are weighted proportional and weighted
max-min; in [138] it is proved that they are equivalent in our setting. Thus, the method
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computes, using a water-filling algorithm, the weighted-max-min fair allocation, where
the weight of an EV reflects its energy demand and its expected staying time. The result
of the step is the collection Pref [k] of reference powers, P ref

i [k] ∈ [0, Pmax
i ] for all EVs,

ideally fair and such that
∑

i∈Γ[k] P
ref
i [k] = P req[k].

Third, in order to avoid exponential complexity, the method uses a heuristic that
runs at every time k and limits the number of integer variables. The heuristic partitions
the set of unlocked EVs into three subsets: EVs that are forced to be switched (or
remain) on (Son[k]), EVs that are forced to be switched (or remain) off (Soff[k]), and
EVs for which the on/off decision is decided by the optimization problem (S[k]). It is
required that |S[k]| ≤ m, m is a fixed small number.

Fourth, the method solves the following mixed-integer optimization problem re-
peatedly, at every time-step:

(H) min
P[k],Ω[k]

f0(P[k], P req[k]) + (f1(P[k],Λ[k])

+ f2(Ω[k],R[k], P̂[k])) + f3(P[k],Pref [k]) (4.1)

s.t. Pmin
i ωi[k] ≤ Pi[k] ≤ Pmax

i ωi[k] (4.2)

ωi[k] ∈ {0, 1},∀i ∈ C[k] (4.3)

ωi[k] = 1,∀i ∈ Son[k] (4.4)

ωj [k] = 0, ∀j ∈ Soff[k] (4.5)

The term f0(P[k], P req[k]) implements a soft constraint on the aggregated power-
setpoint P req[k]. The terms f1 and f2 minimize the wear of EV batteries. f1 penalizes
the difference between Pi[k] and the measured power P̂i[k], as well as changes in the
measured power. Let collection P̂[k] = (P̂i[k])i=1,...,Γ[k]. f2 penalizes the EV discon-
nection caused by the CS (i.e., Pi[k] = 0). The term f3 maximizes EV energy-demand
satisfaction while ensuring fairness, by penalizing the deviation between the setpoint
and the fair allocation. For more details about the method see [138].

4.2.2 Charging-Power Computation

In this subsection, we describe how we implement in real-time the solution of the
mixed-integer problem (H). In [138], Branch-and-Bound is used. In this chapter, we
present an alternative approach that does not need a commercial solver.

As mentioned earlier, the number of integer variables in problem (H) is less than or
equal to m. Let us assume that at time k, the amount of integer variables equals v ≤ m.
Each of these v variables can be either 0 or 1. Thus, there are 2v combinations of integer
variables. For example, if v = 2, then the combinations are: {[0, 0], [1, 0], [0, 1], [1, 1]}.
Also, if we choose any fixed combination of integer variables, the problem (H) becomes
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a strictly convex quadratic problem where variables are the collection P[k]. We then
solve the problem for each fixed combination of integer variables by using the Goldfarb-
Idnani active-set dual method [140], the implementation of which is available online.
After this, we evaluate the objective function of (H) for every combination of integer
variables and their corresponding solutions to the (H). Finally, the combination that
gives a minimal objective function value is the solution to our problem.

4.3 Experimental Setup

In order to experimentally validate the charging-control method, we have integrated it
into an existing experimental setup that consist of: (i) real-scale microgrid and EVs,
(ii) microgrid control framework.

4.3.1 Microgrid Control Framework

The microgrid is controlled by the COMMELEC system [29]. It is a multi-agent-based
framework for real-time control of power grids. It uses a hierarchy of software agents
to control a power grid. Each resource is equipped with a resource agent (RA) that is
adapted to the technology features of the resource. The agent responsible to control the
entire grid is called the Grid Agent (GA). The GA communicates with its RAs by using
a common device-independent protocol for message exchange. Each RA advertises
an abstract representation (so-called advertisement) of its internal state by using
the following format: (1) the PQ profile is the set in the (P,Q) plane (for active and
reactive power) that the resource under the control of the RA can deploy, i.e. resource
flexibility. (2) The virtual cost CF (P,Q) is a function that evaluates the preference of a
resource to stay in a particular zone of the PQ profile. (3) The belief function BF (P,Q)

is a set-valued function that accounts for the uncertainty of the resource operation.
Specifically, BF (P,Q) returns a convex set that contains all possible setpoints that the
resource might implement when it is instructed to apply (P,Q).

The objectives of the GA are to: (i) keep the grid in a feasible state of operation, i.e.
such that nodal voltage magnitudes and line currents are in safe bounds, (ii) minimize
the costs of the RAs, (iii) meet the power setpoint requested by an upper GA (for
example a dispatch plan). To perform this, the GA first needs the advertisements
from the resources and the current electrical state of the grid (usually given by a state
estimation process). Then the GA computes optimal power setpoints by minimizing
the sum of the resources cost functions, using a gradient-based method. The GA
ensures that the state of the grid will be feasible by estimating the maximum variation
of control by using belief functions. Finally, GA sends power setpoints to the RAs.
These process is repeated every 100 ms to cope with the fastest possible variations of
distributed resources (see [29] for further details).
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4.3.2 Real-Scale Microgrid and EVs

We validate our method on an implementation of the CIGRÉ benchmark low-voltage
microgrid [57], shown in Fig. 4.1. The microgrid interconnects various resources that,
for this specific experiment, are composed of a 20 kW uncontrollable PV and CS that
can simultaneously charge 2 EVs. The CS uses the IEC 61851 standard to communicate
with EVs [141]. We use two commercially available EVs: a Tesla Model S 90D (90 kWh
Li-Ion battery) and a Renault Zoe (54.7 kWh Li-Ion battery) both equipped with three-
phase chargers.

Figure 4.1 – The experimental microgrid. All elements used in the experiments of this
chapter are shown in black.

4.3.3 Charging Station Agent

In our setting, the charging station is controlled by the GA. For this purpose, it must
be equipped with a RA that receives the aggregated power-setpoint (P req) from the
GA. Then, it first allocates this power among connected EVs. In order to do so, it uses
the method that computes charging powers for all connected EVs (see in Section 4.2).
The CS can only control the maximum current I of and EV. Thus, we need to convert
a power setpoint to a current setpoint. We experimentally discover that charging
patterns for the adopted EVs are significantly different. In order to investigate such
differences, we perform two independent charging sessions of both EVs. We increment
the maximum charging current magnitude (I) starting from 6 A with steps equal to
0.1 A and measure implemented current and voltage fundamental frequency phasors
(Î and V̂ respectively), active power P̂ and power factor cosφ per EV. We show in Fig. 4.2

52



4.3. Experimental Setup

results of the experiment for Tesla and Renault. We observe that, for the Tesla EV, there
is a gap between P̂ and V̂ I equal to 700 W approximately. Also, cosφ is always close to 1.
For the Renault EV, we see that when charging power is more than 12 kW the behavior
is similar to the Tesla EV, i.e., cosφ is close to 1. However, when power is less than 12 kW
the Renault EV reactive power is not equal to 0 due to its controller. It means that for
some EV chargers, in our case the Renault EV, cosφ can be much lower than 1. Thus,
in order to provide high fidelity active power tracking, we created two lookup tables
for both EVs that map the current setpoint to the corresponding consumed power.
Additionally, it is visible that sometimes the Renault EV drops its charging power to 0

and goes back (for example at time close to 1000 s) these jumps take around 2 s and
are caused by the internal controller of this EV.

Figure 4.2 – Tesla and Renault charging patterns.

Since we are using the COMMELEC framework, the agent sends to the GA an ad-
vertisement that contains the representation of the CS internal state: (P,Q) profile,
virtual cost function CF (P,Q) and belief function BF (P,Q) (see Fig. 4.3). The send-
ing/receiving message cycle is repeated continuously and endlessly. As every EV has
its own flexibility and uncertainty, the charging station should be able to advertise the
aggregated information. The presence of delays influences the flexibility of the EV; this
should be taken into account in the aggregated flexibility.
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Figure 4.3 – Overall architecture of the system.

PQ Profile

The locking of EVs reduces the flexibility of the charging station, as it is not permitted
to change the charging power of locked EVs. Hence, the amount of power that the
charging station will consume, if we switch off all unlocked EVs, is computed as:

P lb =
∑
i∈L[k]

Pi[k] (4.6)

At the other extreme, the amount of power that a charging station will consume if
all unlocked EVs consume their maximum power is computed as:

P ub = max

P̂ [k] +
∑
i∈C[k]

(Pmax
i − P̂i[k]), Pmax

CS

 (4.7)

where Pmax
CS is charging station rated power and P̂ [k] =

∑
i∈Γ[k] P̂i[k]. Hence, we com-

pute the feasible operation set asA = {(P,Q)|P lb ≤ P ≤ P ub, Q =
∑

i∈Γ[k] Q̂i[k]}.

Virtual Cost

In this work, the agent prefers to charge the EVs as fast as possible. Therefore, we
define the virtual cost function as:

C(P,Q) =
1

(Pmax
CS )2

P 2 +
2

Pmax
CS

P. (4.8)

As we do not control the reactive power of EVs, Q does not appear in the definition
of the cost.
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Belief Function

One of the main sources of uncertainty is related to the EV delay on the implementation
of a power setpoint, as a setpoint is not implemented immediately, due to the ramping
constraints of the battery. When an EV is unlocked, the expected implemented power
remains the measured power, on the contrary, when an EV is locked, the implemented
power is expected to lie in the range defined by the measured power and the setpoint.
Most of the time, the EV implements the instructed power setpoint accurately (see
Section 4.4). However, if the battery of EV i is almost charged (this depends on the EV;
in our experiments it occurs around 95% and 90% charge for the Tesla and Renault EVs
respectively), it starts to decrease the maximum charging power with a rate ∆ri. The CS
has no information about the EVs’ SoC, also the ∆ri depends on the type of the battery
and its internal conditions. Hence, ∆ri should be estimated dynamically. In this
chapter, we use a Holt-Winters (double exponential weighted moving average) fitter
for ∆ri estimation [142]. The computation of uncertainty bounds Blow

i ,Bup
i per EV i is

detailed in Alg. 2. We detect at line 1 if the EV follows the previously computed setpoint.
If not, we check if the EV itself reduces its charging power (line 2) by comparing the
measured power between two consecutive time steps and update the ∆ri using Holt-
Winters estimation (line 3). As a result, we compute the uncertainty bounds in lines
6− 10. Finally, the belief function is computed as aggregated uncertainty of all EVs as
B(P,Q) = {

∑
i∈Γ[k] Blow

i ≤ P ≤
∑

i∈Γ[k] B
up
i , Q =

∑
i∈Γ[k] Q̂i[k]}}.

Algorithm 2 Belief function computation for EV i.

Input: P̂i[k − 1], P̂i[k], Pi[k − 1], Pi[k]
Output: Blow

i ,Bup
i

1: if Pi[k − 1] > P̂i[k] then
2: if P̂i[k − 1] > P̂i[k] then
3: ∆ri = Holt−Winters(∆r, P̂ [k − 1]− P̂ [k])
4: end if
5: end if
6: if Pi[k] >= P̂i[k − 1] then
7: Blow

i = P̂i[k]−∆ri,Bup
i = Pi[k]

8: else
9: Blow

i = Pi[k]−∆ri,Bup
i = P̂i[k]

10: end if

The RA for CS is implemented in C++ and cross-compiled for embedded platform
and deployed in a NI CRIO 9068.

4.4 Experimental Results

The results described in this section refer to the application of the charging control
method in a real environment: real EVs and real-scale microgrid. Several scenarios
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are considered in order to demonstrate the performance of the method. We use the
root mean square error (RMSE) as a metric to measure how good the CS follows the
PV production. For the fairness and battery wear per EV i we use metrics from [138]:
(i) non-satisfied demand Mnsd

i = 1−∆Ei/∆E
dem
i , where ∆Ei is the energy that EV i

receives while plugged-in, (ii) battery-wear Mbw
i = 1

2(Pmax
i )2

∑K
k=1(Pi[k] − Pi[k − 1])2,

where K is the amount of discrete time-steps during the selected control period.

4.4.1 Self-consumption Scenarios

We first study the performance of the proposed method when the grid state is far from
the operational limits in terms of bus voltages and line ampacity constraints. The GA
is instructed to track 0 kW at the PCC, i.e. the grid should be self consuming as much
as possible. In this case, the CS should follow the fluctuating PV production. In order
to validate the performance of our method, we create two scenarios: (i) Scenario 1,
where both EVs have the same expected staying time (1 h 40 min) and energy demand
(15 kWh), in this case our method should charge both EVs similarly. (ii) Scenario
2 where Renault and Tesla EVs have similar energy demand (10 kWh and 11 kWh
respectively), but the Renault EV has smaller expected staying time (45 min for the
Renault EV and 1 h 10 min for the Tesla EV). Additionally, the Renault EV arrives and
departs while the Tesla one is plugged-in. In this case, the Renault EV should receive
more power than the Tesla EV while plugged-in because it has higher priority to charge.
It should be noticed that in both scenarios the PV production is not enough to satisfy
EVs charging demands fully. Additionally, in both scenarios EVs depart earlier than
expected, i.e. disconnection is caused by a decision of a user.

The results for Scenario 1 are shown in Fig. 4.4. It is visible that CS power perfectly
follows the PV production and PCC power is always close to 0. The RMSE value between
PCC target power (i.e., 0 kW) and the realized one is 254 W. Tesla and Renault EVs share
PV fluctuations, charge almost at the same power due to the equal priority and receive
6.75 kWh (Mnsd = 0.55) and 6.81 kWh (Mnsd = 0.55) respectively at departure. Also, the
EVs accurately follow setpoints due to implemented lookup tables that are explained in
Section 4.3.3. Battery-wear metrics for both EVs are also less than 1, meaning that there
were no large jumps of the charging power: 0.012 for the Tesla EV and 0.091 for the
Renault EV. Finally, we observe two power jumps for the Renault EV around t = 1800 s
and t = 3500 s, the possible reasons are discussed in Section 4.3.3.

The results for Scenario 2 are shown in Fig. 4.5. We observe that, first, the Tesla
EV follows the PV production with high fidelity. Then, the Renault EV arrives around
t = 750 s and start charging. After several seconds the Renault EV charges with higher
power since it has more priority due to short staying time and similar energy demand.
We also see that both EVs follow the PV production and share its fluctuations. The
Renault EV stays around 30 min and departs at around t = 2550 s. Tesla and Renault
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Figure 4.4 – Scenario 1 experimental results.

EVs receive 2.64 kWh (Mnsd = 0.73) and 4.14 kWh (Mnsd = 0.58) respectively during the
Renault EV plugged-in time. Finally, the disconnection of the Renault EV causes a jump
of the power. The reason is that, upon disconnection, the power consumed by the
Renault EV suddenly goes to 0 kW, whereas the Tesla EV cannot immediately react to
power change and need several seconds (around 4 s) to increase its consumption. After
that, the Tesla EV follows the PV production perfectly. The final RMSE value between
PCC target power (i.e., 0 kW) and the realized one is 448 W. In this experiment we also
see the power jump caused by Renault internal behavior (t = 2550 s). Battery-wear
metric 0.006 for the Tesla EV and 0.004 for the Renault EV, i.e, there were no large jumps
of the charging power.

4.4.2 Line Congestion Scenario

In order to study the behavior of the method under binding-grid conditions, we con-
sider a scenario in which the ampacity of the line connecting the CS and the grid (line
L12 in Fig. 4.1) is artificially limited to 23 A. In this case, the GA main priority is to keep
the grid in a feasible operation and prevent voltage and/or current violations by curtail-
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Figure 4.5 – Scenario 2 experimental results.

ing the CS consumption (see [29] for details on how the GA enforces grid constraints).
In this scenario both EVs stay connected for 45 min, but the energy demand of the
Tesla EV is of 15 kWh, whereas for the Renault EV is of 10 kWh.

Fig. 4.6 shows power traces, current at line L12 and EVs active power and setpoints.
The line congestion management is clear around t = 1000 s, the CS follows increas-
ing PV production, however, given the congestion in L12, the consumption of CS is
temporarily reduced by the GA and allows CS to consume only 15 kW. We observe
also that the method reduces the consumption of both EVs, while keeping priority
for the Tesla. Both EVs receive 6.62 kWh (Mnsd = 0.55) and 4.37 kWh (Mnsd = 0.55)
respectively. Additionally, the results show that our control method allows the GA to
fully exploit the flexibility of EVs. In this experiment we also see the spurious jump of
the Renault EV charging power approximately at t = 950 s and t = 2750 s.

In Fig. 4.7, we show the results of the experimental evaluation of the time latencies
incurred in the involved computation processes. The curve in Fig. 4.7 shows the cu-
mulative distribution of the latency of the CS processing-time, i.e., the time that the
CS takes to perform the steps described in Section 4.2 and to construct an advertise-
ment for the GA after receiving an aggregated power-setpoint. The median value of
the processing time is 1.77 ms with a corresponding 95-th percentile of 3.44 ms. The
grid controller issues aggregated power-setpoints every 100 ms. We see that the CS
processing-time is≤ 20 ms and, before a new aggregated power-setpoint is sent by the
GA, the CS finishes the computation of the power setpoints for EVs. Overall, the timing
performance shown here confirms the adequateness of the charging-control method
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Figure 4.6 – Line congestion experimental results.

for the real-time operation of the GA.
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Figure 4.7 – Cumulative distributions of the CS processing-times measured from the
instant when the GA aggregated power-setpoint is sent to the CS.

4.5 Conclusions

In this chapter we have experimentally validated the operation of a recently proposed
real-time control method for charging EVs. We have performed field validation on a
real-scale microgrid with real PV production and two commercially available EVs: a
Tesla Model S 90D and a Renault Zoe. We have conducted several field experiments
with different PV production, EVs energy desires and staying times. We have showed
that the method is able to provide a real-time control (i.e., at sub-second scale) for
charging commercial EVs. The results have also showed that the CS is able to accu-
rately follow an aggregated power-setpoint and capable to satisfy the grid operational
constraints. The method has allocated the power among EVs fairly charging an EV
with higher charging priority and minimizing the battery wear. We have also studied
charging patterns of EVs.
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5 Combined Grid-Aware Control and
Optimal Scheduling of Electric Ve-
hicle Charging Stations with V2G
Capabilities

In this chapter, we consider the problem of controlling the power of EVs that, with
vehicle-to-grid (V2G) capabilities, make their batteries available to decrease the local
price of electricity and to react to real-time uncertainties. The main concern with
such an approach is that the constant change of charging/discharging powers could
accelerate the EV battery-wear. In order to minimize global operational costs, we
suggest combining an optimal scheduler that takes care of charging/discharging EVs,
with a real-time controller that reacts to grid-aware external setpoints. The scheduler
computes optimal powers for EVs that consider forecasts of future arrivals, departures,
and operations of other energy resources (i.e., other loads and PVs). The real-time
controller, in turn, follows an aggregated power-setpoint from a main controller of
the local distribution grid, thus minimizing the EV battery-wear while following the
scheduler’s decisions. We validate our method by simulations and compare it with
benchmark real-time algorithms. We show that our method presents lower operational
costs and EV battery-wear when compared with benchmark algorithms.

5.1 Introduction

V2G technology (e.g., [44, 45]) has the potential to further increase the flexibility and
safety of the grid operation [46, 47, 48], thus enabling a grid-aware operation of the EVs
and increasing the hosting capacity of the combination of EVs and distributed genera-
tion, such as PVs (e.g., [49]). Yet, taking advantage of the available flexibility means that
charging stations (CSs) are required to constantly change their charging/discharging
powers. The main concern of such behaviour could be associated with EV battery-wear,
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i.e., directly transferring the changes from the CS to the connected EVs could accelerate
the battery degradation in terms of capacity loading and losses increase [38]. As batter-
ies are the most expensive component of EVs, their users need to have clear incentives
to enable the V2G operation, because this will accelerate the battery degradation pro-
cess by increasing the number of full-equivalent cycles [50], [51]. For instance, a group
of domestic buildings that hosts regular and V2G EVs could set up a local energy mar-
ket, where V2G EVs can offer their energy. This is typically known in the literature as an
energy community (e.g., [143, 144]). In this context, the V2G EVs can offer the energy
stored in their batteries at a price that compensates for the use. However, considering
the effect of the control scheme on the battery wear is a non-trivial challenge.

This flexibility enables the CS to exploit the available power and, for example, to
charge faster compared to a CS with fixed constraints, thus maximizing the demand
satisfaction. Systems that support such grid-aware opportunistic charging are pro-
posed in [19, 74, 138, 145] for EVs that do not have V2G capabilities. However, the
extension of these works to enable bidirectional V2G is a non-trivial task. In this di-
rection, different control schemes were proposed in the literature. For example, the
authors in [146] propose an online method that uses EVs’ flexibility for peak shaving
and load balance. [147] proposes a centralized control strategy for an EV fleet that pro-
vides frequency support by tracking a regulation signal. The aforementioned papers
do account for operational grid-constraints but are oblivious about incentivizing users
to enable the V2G operation of their EVs. The main challenge in this case is to decide
when it is more economically convenient for V2G EVs to discharge. The naive approach
is to discharge EVs whenever there is power deficit caused by other EVs that are charg-
ing, thus rewarding the V2G users with the payment of the charging EVs. However, this
can be sub-optimal as the decision is taken based only on current-time information.
Indeed, as V2G EVs act as storage devices, it might be more beneficial to temporarily
keep the available energy stored and use it in the future only when, for example, the
energy cost from the grid is high. In order to combine this set of requirements, we
propose a two-layer approach with a scheduler that handles long-time decisions and
a real-time controller that adapts to the state of the grid and to random fluctuations.
The scheduler computes optimal charging/discharging powers for EVs, taking into
account the forecasts of future arrivals, departures, and the operations of other energy
resources (e.g., other loads, distributed generators, etc.). The real-time controller is
defined such that (i) the CS can follow external power-setpoints that come from a grid
operator, i.e., makes the EVs capable of providing services to the grid (e.g., primary and
secondary frequency support, voltage control, congestion management), (ii) it takes
into account the previous decisions issued by the scheduler and, (iii) it minimizes EV
batteries-wear.

The scheduling of charging/discharging of EVs is a difficult task because the real
arrivals, departures, user energy demands and bids, the production of stochastic renew-
ables (e.g., PV or wind turbines), and the load consumption are uncertain, especially
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for long scheduling-horizons. A method that tracks an aggregated signal is shown
in [148], where EV charging and discharging powers are scheduled using model predic-
tive control (MPC), assuming only three possible changing rates and perfect forecasts
of an aggregated signal and EVs departures. However, such assumptions might be
unrealistic. In order to achieve a power balance, P. Kou et al. in [149] developed an
MPC control scheme for EVs charging coordination and wind generation. However,
the economic benefits are not taken into account.

In this chapter, we use a scenario-based approach [150] for handling the uncertainty
of the loads, stochastic generation, and EV user-behaviour. Indeed, a scenario-based
MPC (e.g., [151, 152]) provides a powerful framework for scheduling under uncertain-
ties. It can easily account for time correlations in the realizations of disturbances of,
e.g., PV production. In contrast, this is considerably more complicated with other
methods, such as chance-constrained optimization [153], where a probability of a suc-
cession of constraints over time is needed. In this context, we create several plausible
scenarios based on the existing historical data for PV generation and load consump-
tion and synthetic data representing users behavior. Our approach is to optimize the
average performance over scenarios while satisfying all possible constraints of the
problem. Thus, the scheduler is formulated as a scenario-based MPC to minimize the
cost for the community and maximize the energy satisfaction. The scheduler has a
long-term view and can anticipate or postpone the EV charge/discharge, depending
on the available energy from the V2G EVs and the grid electricity price. Then, the
real-time controller takes care of minimizing the battery wear by avoiding large power
jumps, it follows the scheduler goals, and it reacts to the real-time behaviour of the
uncertain variables.

The chapter is structured as follows. In Section 5.2, we state the main problem and
the separation of concerns for the scheduler and the real-time controller. In Section 5.3,
we describe all the details of the scheduling strategy. In Section 5.4, we formulate and
solve the real-time control problem. We provide a numerical evaluation to validate our
method in Section 5.5. Finally, in Section 5.6, we conclude the chapter.

5.2 Problem Statement

Without loss of generality and to help the reader to understand the ideas, we consider
an energy community that is composed of a set of residential buildings, a PV plant, and
a large CS. The CS has N charging slots that can serve both regular and V2G EVs (see
Fig. 5.1). We assume that the buildings are inflexible, whereas the EVs can modify their
charge and discharge rate, i.e., the CS power can be shifted in time to less expensive
and less congested periods by properly dispatching charging and discharging powers
of connected EVs. The community can obtain energy from the PV, from the main grid,
or from V2G EVs. We assume that the community does not sell energy back to the
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Figure 5.1 – Schematic representation of the energy community.

main grid. The main goal of the community is to minimize the energy expenses and to
maximize the satisfaction of the EV goals. Every EV user willing to sell energy, commits
an energy bid (i.e., amount, price, and expected staying time). With this information,
and knowing the expected day-ahead electricity cost from the grid, the community
can decide where (PV, V2G EVs, or grid) and when it is more convenient to buy energy
and when it is more convenient to charge the charging EVs.

In this chapter, we assume that V2G users have economic incentives for discharging
their EVs. For example, if the users get inexpensive and low-CO2-content energy at
their working place during the day (e.g., from renewable generation) and their battery
is well charged, then it might be economically convenient to sell a fraction of this
energy to the community in the evening. Furthermore, as one of the main goals of the
method is to minimize the EV battery-wear, we enforce cycling avoidance. We consider
that an EV user commits to the CS the desire to buy power from the community (be
a consumer) or to sell energy to the community (be a producer) upon arrival. In
particular, an EV will not be permitted to change from consumer to producer, or vice-
versa, while it is connected. In brief, upon the arrival of an EV, we assume the following
information is available: (i) charging-power bound Pmax, (ii) discharging-power bound
Pmin, (iii) expected departure-time tdep, (iv) energy demand Edem (if consumer), or
energy bid: energy that the user can sellEsell and the price of this energyC (if producer).

With goals and available information already defined, we formulate the problem
in two stages. First, in order to minimize the energy expenses of the community, the
community operator (CO) schedules the power of all charging EVs, and all discharging
EVs, and the power that the community buys from the main grid, from the current
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period until the time horizon (see Section 5.3 for details). In order to solve the schedul-
ing problem, the CO needs the forecasts of PV production, load consumption, and the
following information about EVs: (i) future arrivals, (ii) future departures, (iii) future
energy-demands of consuming EVs, (iv) future energy-bids for producing EVs. How-
ever, the real behaviour of the users, the real PV production, and the load consumption
could be highly uncertain, especially for long time-horizons. To handle these uncer-
tainties, we suggest using the approach based on the scenario-based model predictive
control (MPC) because, as already mentioned, it can easily account for time corre-
lations in the realizations of disturbances. In this sense, the MPC considers a finite
number of possible scenarios. The result of this task is a sequence of EV charging and
discharging powers, as well as the power exchanged with the main grid for every time
interval (e.g., every 15 min) up to some horizon (e.g., 24 h). Only the EV charging and
discharging powers of the first time interval are implemented and used as reference
by the real-time controller. In Section 5.3, we formulate the scenario-based MPC and
describe the scenario generator.

Second, due to the presence of stochastic resources, the forecasts of the state of the
system might be inaccurate. As a result, the CS (as only controllable resource in the
system) can adapt to these stochastic conditions while taking into account long-term
objectives, given by the CO, to exploit the available energy. This is done by a grid
controller that, very frequently (e.g., every 100 msec), computes aggregated power
setpoints for the entire CS while keeping the grid in safe operating conditions [29].
Upon receiving an aggregated power-setpoint, the CS allocates the power, according to
the setpoints obtained from the long-term scheduler, and minimizes the battery wear
of each EV (see Fig. 5.2 for more details).

In summary, the objectives of the real-time controller are

1. track the aggregated setpoint from a grid controller,

2. track the long-term objectives of each EVs decided by the scheduler, and

3. minimize the wear of EV batteries.

The result of this task is a set of charging- and discharging-power setpoints that
the CS instructs for all EVs to implement in real time. In Section 5.4, we formulate a
quadratic optimization problem for this task.
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Figure 5.2 – Scheduling and real-time problems interaction.

5.3 Scheduling Problem

The objective of the scheduler is to determine, for all periods t ∈ [1, H], where H is
the time horizon, the power profiles of (i) the power bought from the grid PG, (ii) the
power bought from (or sold by) V2G EVs (discharging profiles) P−, and (iii) the power
consumed by EVs P+ (charging profiles).

5.3.1 Definitions

We assign to every EV, either charging or discharging, a unique identifier id. Each
charging EV is associated with a tuple of size 3: {tarr

id , t
dep
id , Etrg

id }. Whereas, each dis-
charging EV is associated with a tuple of size 4: {tarr

id , t
dep
id , Esell

id , Cid}. tarr
id and tdep

id are the
arrival and expected departure times of EV id, respectively. Etrg

id is the energy-goal upon
departure, for EV id, defined by the user upon arrival. Esell

id is the available energy that
discharging EVs can sell before departing, and Cid is the cost of this energy; both are
defined by the user upon arrival. We consider that each user is responsible for defining
their own cost and assume that this is constant while the EV is connected. Hence,
it is an input to our problem formulation. For example, one way to define this cost
would be to consider three components: (i) the cost at which the energy was bought,
(ii) an estimation of the degradation cost, specifically, it is expected that batteries that
participate in this market are cycled more, thus reducing their lifetime; hence this has
to be compensated1 and (iii) a profit for participating in the market.

Furthermore, we assume that we have two maps of EV identifiers at period t: Cht -
connected EVs that want to charge and Dht - connected EVs that want to discharge.

1For example, the degradation cost could be estimated as I
EnomFEC

, where I is the investment in
replacing the battery, FEC the amount of Full Equivalent Cycles, and Enom the rated energy.
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For example, for a discharging EV with id = 1, Dht(1) = {tarr
1 , tdep

1 , Esell
1 , C1}.

5.3.2 Formulation

Let H be a control horizon and N the number of slots sin the CS. We define the matrix
I of size N ×H that stores the identifiers of connected EVs for the control horizon H ,
meaning Ii,t gives the identifier of the EV connected to slot i at period t. If no EV is
connected to slot i at period t, then Ii,t = 0. For example:

I =

1 1 1 5 5 0

0 4 4 4 4 0

2 2 0 6 6 6

3 3 3 0 1 1


 slots N

horizon H

In order to handle uncertainties, we generate M possible scenarios. Each scenario
m = 1, . . . ,M consists of forecasts of PV production PVm

t , of load consumption PLmt ,
and of user behavior Im,Dhmt ,Chmt ,∀t = 1, . . . ,H (see Section 5.3.3 for the details on
how these are generated). Let P+,m

Imi,t,t
be the charging and P−,mImi,t,t the discharging power

of the EV connected to the slot i with id = Imi,t, and PmG,t the power that community
buys from the main grid, for scenario m at time t. Also, let EIi,t,tdepIm

i,t

be an amount of

energy that an EV buy or sell up to time t (initial value is 0). Finally, let SG,t be the price
of the grid power at time t (same for all scenarios).

Given the multiplicity of scenarios, we formulate the scheduling problem by mini-
mizing the weighted-average cost of all scenarios:

(S) min
P+,P−,PG

M∑
m=1

wm

h∑
t=1

(
N∑
i=1

CImi,tP
−,m
Imi,t

+ SmGPmG,t

)
∆t

+ σ
∑

j∈Chm
t

(
EIi,t,tdepIm

i,t

− Etrg
Imj,k

)2

s.t. 0 ≤ P+
Imi,t,t

≤ Pmax
Imi,t , ∀Ii,t ∈ Cht, ∀t (5.1)

− Pmin
Imi,t ≤ P

−
Imi,t,t

≤ 0, Imi,t ∈ Dht, ∀t (5.2)

PmG,t ≤ PTr, ∀t (5.3)

EImi,t,t ≤ E
sell
Ii,t , ∀I

m
i,t ∈ Dht, ∀t (5.4)

EImi,t,t+1 = EImi,t,t + η+P+
Imi,t,t

∆t, (5.5)

∀Imi,t ∈ Cht, ∀t ≤ tdep
Ii,t
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EImi,t,t+1 = EImi,t,t + η−P−Imi,t,t∆t, (5.6)

∀Imi,t ∈ Dht, ∀t ≤ tdep
Imi,t

PVm
t − PLmt =

∑
Imi,t∈Cht

P+
Imi,t,t

+
∑

Imi,t∈Dht

P−Imi,t,t + PmG,t, ∀t (5.7)

P+,m
Imi,1

= P+,p
Ipi,1

, P−,mImi,1 = P−,pIpi,1 ,

PmG,1 = PpG,1, ∀m, p = 1, . . . ,M (5.8)

P+, P−, and PG are the collections of all control variables P+,m
Imi,t,t

,P−,mImi,t,t,P
m
G,t for all

slots i = 1, . . . , N , planning horizon t = 1, . . . ,H , and scenarios m = 1, . . . ,M . The
first linear term in the objective function minimizes the overall cost of the operation,
i.e., it buys the required energy from the less expensive source (either PV, the V2G
EVs, or the grid), for every possible scenario. wm is the weight of scenario m. The
computation of these weights is explained in Section 5.3.3. The second quadratic term
is a soft constraint on the target energy of charging EVs, which cannot be formulated
as a hard constraint as some EVs might not reach their goal. Parameter σ > 0 is a
weight to compare both objectives. ∆t is the amount of time between two consecutive
timesteps.

Constraints (5.1), (5.2) prevent discharging EVs from charging and prevent charg-
ing EVs from discharging, as discussed in Section 5.2. Constraint (5.3) limits the
power at the grid connection-point (GCP) to the transformer rated power PTr. Con-
straint (5.4) fixes the availability of V2G EV to be sold, thus preventing over-discharging.
Constraints (5.5) and (5.6) represent the model of EVs batteries with η+ and η− as
charging and discharging efficiencies, respectively; we consider them constant, with-
out loss of generality. The constraint (5.7) is the community power-balance equation.
Constraint (5.8) ensures that, for every scenario m and every scenario p, the control
decisions are identical for the first time step (t = 1), as these decisions are actually
implemented, following the standard formulation of scenario-based MPC [152].

The result of problem (S) is the schedule of all EV powers and the power that the
community buys from the grid. We define the result of this operation as P . The
scheduled power PG,1 is sent to the local grid controller, i.e., the local controller tracks
this power at the GCP, whereas the powers P+,m

Imi,1,1
,P−,mImi,1,1 are sent to the CS real-time

controller. As (S) is formulated as a quadratic program with linear constraints, it has
polynomial complexity,thus making it tractable.
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5.3.3 Scenario Generation

In this subsection, we describe how the scenarios are generated. The scenario genera-
tor works in a rolling-horizon fashion, i.e., it generates scenarios at every time period t.

PV and Building Power

We describe the generation of traces for the PV production and load consumption. The
method is similar to the one described in [154]. We assume that the scenario generator
has historical data of the PV production and load consumption. For readability, we
describe the generation of traces only for the load consumption (the PV traces are
generated similarly).

First, we find the most similar days to the current calendar-day. This is done by
computing the `2-norm between the trace of the current day and the historical data
of past days. Then, we take D closest days. Next, we take the corresponding horizon-
ahead historical sequences. Second, for each sequence, we compute the mean values
and use them to compute a new collection of zero-mean sequences. Then, using these
zero-mean sequences, we construct the covariance matrix K that accounts for the
correlation between the load consumption at different time-steps. Third, using K,
we generate M zero-mean random samples using multivariate Gaussian distribution
N (0,K). Finally, the traces of the load consumption are computed as the sum of the
generated zero-mean samples and the mean values of the original sequences. As
a result, we have L1 traces for the load consumption. Similarly, using the method
described above, we generate L2 traces for the PV production.2

As an example of the output, Fig. 5.3 and Fig. 5.4 show the load and PV realization
compared to the their lower/upper prediction traces (i.e., minimum and maximum
values for all traces for each time-step). As scenarios are recomputed at every time
period t, we show the snapshot of the traces at time 12:00.

EV User Model and Data

We describe the generation of traces for modelling the EV behaviour. Note that, con-
trary to PV and load, the uncertainty of these traces is higher as it is strongly related to
human behaviour. Therefore, we treat the EV traces as conservative.

To generate traces for the EV behaviour, we need information about the behavior
of EV users that are expected to arrive at the CS after the current time t = 1. Note

2In practice, an AI-based forecasting tool could be used to determine the horizon-ahead traces
(e.g., [155]). Our proposed method is presented only as an alternative to generating the needed scenarios.
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Figure 5.3 – Load consumption realisation vs upper and lower traces of all scenarios.

Figure 5.4 – PV production realisation vs upper and lower traces of all scenarios.

that the state of the CS at t = 1 is known, i.e., we know the following information
about connected EVs: number of charging/discharging EVs, prices of energy and its
available amount for discharging EVs, charging demand for charging EVs, and expected
departure times. Therefore, it is necessary to emulate the behaviour of users at times
t = 2, . . . ,H for the scheduling horizon. In this chapter, we assume that the scenario
generator synthesizes scenarios, based on the following information:

1. arrivals of EVs,

2. the energy demand of charging EVs,

3. the staying time of both charging and discharging EVs,

4. for discharging EVs, the amount of energy that EV users would like to sell and the
price of energy,

5. the average fraction of charging and discharging EVs connected to CS at every
timestep.
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The process for generating the EV traces is described in Alg. 3. The purpose of
the algorithm is to generate traces that emulate: arrivals, departures, the amount of
selling/buying energy and selling prices of different EV users for t = 2, . . . ,H . First, it
defines the number of arrivals A, at time t, using a pre-defined probability distribution
(line 3). Then, we remove the departed EVs from maps Cht and Dht computed in
previous iterations (line 5). For every arrival, we need to choose an available slot at CS.
If there is no free slot, the iteration stops (lines 7-9). Then, we assign a unique id to
the newly arrived EV, decide whether it is charging or discharging EV and generate its
departure time (lines 10). If it charges, we generate the energy demand Etrg

id , create the
corresponding 3-element tuple, and insert it into the map Cht (lines 11-13). Similarly,
if it discharges, we generate the amount of energy that the user wants to sell Esell

id , its
price Cid, we create the corresponding 4-element tuple, and insert it into the map Dht
(lines 14-16). Finally, we modify I accordingly (line 18). We generate L3 traces of EVs
users behavior using Alg. 3.

Scenario Selection

We generate scenarios for the whole community behavior, i.e., we combine the PV, load,
and the EVs traces, thus obtaining L possible scenarios (L = L1 × L2 × L3). However,
as L is expected to be large, it might be prohibitively expensive for the scheduler to
provide results in reasonable time (i.e., before the next time-step). To cope with this
issue, we propose to take the M most representative scenarios (M << L), by defining
two metrics: (i) the energy deficit, defined as the difference between the energy that
charging EVs and the load need to fully satisfy their demand and the energy that
discharging EVs and the PV have available to sell, and (ii) the total price of the available
energy from discharging EVs and the grid. Therefore, we select the scenarios using
k-means clustering, according to the metrics presented above, thus creatingM clusters.
Then, for each cluster, we choose the scenario that is closest to the cluster centroid.
Finally, we compute the weights wm for m = 1, . . . ,M as the fraction of the number of
scenarios in the clusterm and the total number of scenarios. The value ofM is decided
ex-ante as a function of the available computational power to solve (S).
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Algorithm 3 Scenario generation
Input: the state of CS at t = 1: I,Ch1,Dh1

Output: matrix I and collections {Cht,Dht}Ht=1

1: let t = 2
2: while t < H do
3: generate amount of arrivals A
4: initialize Cht = Cht−1, Dht = Dht−1

5: remove departed EVs from Cht and Dht
6: for each arrival a ∈ A do
7: if no empty slots then
8: break loop;
9: end if

10: assign available slot id and generate tdep
id

11: if EV is charging then
12: generate Etrg

id

13: Cht(id) = {t, tdep
id , Etrg

id }
14: else
15: generate Esell

id and Cid

16: Dht(id) = {t, tdep
id , Esell

id , Cid}
17: end if
18: insert id into matrix I
19: end for
20: end while

5.4 Real-Time Problem

In this section, we describe the details of the real-time controller. We assume that
the CS receives an aggregated power setpoint P req[k] from the grid controller at every
time k, and it receives the collection P from the scheduler at every period t (note that
∆t >> ∆k). Contrary to the scheduling operation, where each slot i can have multiple
EVs at different times, in the real-time operation every slot hosts a single EV at time k.
Consequently, in this section we can interpret Pi[k] as the power of slot i or EV i.

The CS computes setpoints Pi[k] for all slot i where an EV is connected at time
k. According to the objectives described in Section 5.2, the CS solves the following
optimization problem:

(RT) min
P[k]

f0(P[k], P req[k]) + c1f1(P[k], P̂[k]))

+ c2f2(P[k],P) (5.9)

s.t. − Pmin
i ≤ Pi[k] ≤ Pmax

i , ∀i ∈ Γ[k] (5.10)

where
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• Γ[k] is the collection of EVs that are connected to the CS at time k,

• P[k] is the collection of resulting setpoints Pi[k] that will be issued to each slot i
where there is a connected EV,

• P req is the aggregated power-setpoint from the grid controller,

• P̂[k] is the collection of measured powers P̂i[k] for slots where there are connected
EVs,

• c1, c2 > 0 are weights.

The first term in the objective function is responsible for tracking the aggregated
power-setpoint P req and can be expressed as

f0(P[k], P req[k]) =

P req[k]−
∑
i∈Γ[k]

Pi[k]

2

(5.11)

The term f1 minimizes the battery wear. As this is a real-time problem, the battery
wear can be minimized by avoiding large power jumps from one time-step to the next
one [123]. Therefore,

f1(P[k], P̂[k]) =
∑
i∈Γ[k]

(
Pi[k]− P̂i[k]

)2
(5.12)

Finally, the term f2 is responsible for following the long-term goals computed by
the scheduler:

f2(P[k],P) =
∑
i∈Γ[k]

(Pi[k]− Pi)2 (5.13)

Notice that according to the constraints (5.8), the long-term goals for all scenarios are
equal for the first time step (t = 1), thus P contains long-term goal of the first scenario
for t = 1.

In summary, we formulate the real-time problem as a quadratic program with
linear constraints.
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5.5 Validation

5.5.1 Benchmarks

In order to benchmark the performance of our solution, we consider two standard
heuristic algorithms: Earliest Deadline First (EDF) [58] and Least Laxity First (LLF) [59].

The EDF algorithm creates a priority list based on the departure times of EVs, in
increasing order. The charging power is assigned to charging EVs, in real time, as the
minimum between the power needed to satisfy the energy demand at departure time,

and the maximum charging power, i.e., min
(

∆E[k]
tdep

, Pmax
)

, where ∆E[k] = Etrg − E[k].

Hence, this algorithm enables the EVs with the latest deadlines to stay at low SoE,
until there are enough resources to charge it. For a fair comparison, we adapt the
EDF algorithm for discharging EVs, i.e., the EVs that depart earlier than others are
discharged first. The discharging powers are computed similarly.

The LLF algorithm creates a list sorted by laxity φ in increasing order. The laxity is
the amount of time needed to satisfy the energy demand at maximum charging power
(see Eq. (5.14)). The laxity is computed at every timestep k as

φ[k] = tdep − k − ∆E[k]

Pmax
(5.14)

The resulting charging power per EV is computed in the same way as in the EDF
algorithm, and it is assigned in order defined by laxity. Similarly to EDF, we adapt the
algorithm for discharging such that the EVs with the smallest laxity are discharged first.

5.5.2 Performance Evaluation Metrics

We define the following metrics for the performance evaluation:

• non-satisfied demand – measures whether the expected energy demand, defined
at arrival, was satisfied upon departure for a charging EV i

Mnsd
i = ∆Ei[t

dep
i ]/Etrg, (5.15)

where ∆Ei[t
dep
i ] is the energy that remains to be satisfied at departure time. Note

that, Mnsd
i ∈ [0, 1]. If Mnsd

i = 1, then EV i did not charge. On the contrary, EV i is
fully satisfied if Mnsd

i = 0.
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• battery-wear – measures the changes of the charge power

Mbw
i =

1

2(Pmax
i )2

K∑
k=1

(Pi[k]− Pi[k − 1])2. (5.16)

This metric shows the effect of the control scheme on the battery life. The closer
Mbw
i is to 0, the less effect there is. If Mbw

i < 1, there would be no sharp jump of
charging power from 0 to Pmax

i and back.

5.5.3 Simulation Setup

To validate our method, we consider the following case: a 70 kWp PV plant and a 220 kW
load are connected to the main grid, through a transformer rated PTr = 250 kVA. At the
same point, a CS with 20 slots of 22 kW is connected. Commonly, such a configuration
would be avoided as, in the worst case when there is no PV generation and the load
and CS are consuming its rated power, the transformer protections would trip, thus
limiting the CS rated power to 30 kW only. However, this is technically an excessively
restrictive constraint as the power variations of PV and load could allow a much larger
power for the CS.

To model the uncontrollable resources, the PV and load, we consider a series of
historical measurements collected on the EPFL campus at 20 ms resolution [31]. The
observations at 15-minute resolution are obtained by average down-sampling the
original time-series. This information was used to create the scenarios described in
Section 5.3.3.

5.5.4 EV-related Hypotheses

For the modelling of the EV arrivals, we consider that they follow a non-homogeneous
Poisson process (Poisson(arr(t))) [156] with a day-dependent rate arr(t). To concretize
the example, we assume that from 18:00 to 22:00 the arrival rate is 8 arrivals/hour,
otherwise it is 4 arrivals/hour. As discussed in [157, 158], usually EVs that arrive
in the evening have energy demands and staying time larger than EVs that arrive
during the day. Hence, we assume, for simulation purposes, that the energy demands
of charging EVs that arrive from 18:00 to 22:00 is distributed normally with mean
80 kWh and standard deviation of 4 kWh (N (80, 4)), and that the staying time (∆t) of
these EVs is also distributed normally with mean 10 h with standard deviation of 1 h
(N (10, 1)). Consequently, EVs that arrive at other times of the day have energy demands
distributed normally N (50, 2) and the staying time follows N (3, 1). For discharging
EVs, we assume that the amount of energy that EV users would like to sell from 18:00 to
22:00 followsN (50, 4) and that the staying time followsN (10, 1). For discharging EVs
that arrive at other times of the day, the amount of energy to sell followsN (15, 2) and
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Parameters / Time from 18:00 to 22:00 other time of the day

arr (arrivals/h) 8 4

Etrg (kWh) N (80, 4) N (50, 2)

Esell (kWh) N (50, 4) N (15, 2)

∆t (h) N (10, 1) N (3, 1)

C (cents/kWh) U(6, 15) U(6, 15)

Table 5.1 – Parameters of EV users behavior

the staying time followsN (3, 1). The energy prices of discharging EVs are assumed to
be uniformly distributed between 6 and 15 cents/kWh. Finally, it is assumed that, upon
arrival, there will be on average 60% of charging EVs and 40% of discharging EVs. See
Table 5.1 for more details. The scenarios of EVs users behavior was created using these
data, as explained is Section 5.3.3. We take L1 = 20, L2 = 20, L3 = 500 and M = 50,
as a trade-off between computational complexity and forecasting performance. In
particular, we show that our method is robust even in case of unexpected situations
when the forecasts are out of the realisation.

5.5.5 Real-Time Control Evaluation

To demonstrate the need of the real-time controller, we compare the behavior of our
method, formulated as the combination of the scheduling problem (S) and the real-
time problem (RT) with the scenario-based scheduler formulated in (S), without a
real-time controller. We perform a 24-hour simulation for both cases and take the
horizon H = 10 hours with step equal to 15 minutes.

Fig. 5.5 shows the PV and load power traces (same for both cases), the CS power
traces, (one under the control of our method and the other only MPC), the transformer
power trace, and the transformer active-power limit. We see that, during the day when
the CS is controlled only by the MPC, there are violations of the transformer limit,
regardless of constraint (5.3). This is due to the fact that the MPC does not see the
inter-period power fluctuations. Fig. 5.6 shows the time window from 14:30 to 14:45
where we zoom in on one of the violation periods of the transformer power limit. We
observe that, in this case, there is 10% violation of transformer limit.

An alternative to avoiding this problem, without real-time control, would be to
have more conservative bounds in the scheduler. However, defining such large bounds
depends on the maximum expected fluctuations of the uncontrollable resources. To
show this, we show a specific case where we increase the PV size, hence we set it equal
to the transformer’s rated power (250 kW) and scale accordingly the PV production.
To compare with the original case, Fig. 5.7 and Fig. 5.8 show the 24 h simulation and
the time window from 14:30 to 14:45, respectively. Here, we see that violation reaches
32 % of the transformer rated power in the case when real-time control is disabled.
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Conservative bounds in this case would significantly decrease the available flexibility
of the CS, whereas real-time control solves this issue by fully exploiting the available
flexibility.

Figure 5.5 – Our method and scenario-based MPC without real-time control 24-hours
simulation.

Figure 5.6 – Our method and scenario-based MPC without real-time control zoom on
15 minutes window.

5.5.6 Comparison against Benchmarks

In this subsection, we show the performance evaluation of our method and the state-
of-the-art real-time control methods, EDF and LLF. We perform a 24-hour simulation
for each method and take the horizon for the scenario-based MPC as H = 10 hours
with step 15 minutes. Fig. 5.9 and Fig. 5.10 show the non-satisfied-demand and the
battery-wear metrics, respectively, of EVs that charged and discharged from 13:00 to
21:00, when there was congestion in the transformer.

These results show that our method performs significantly better than the bench-
mark algorithms. Indeed, the mean of the non-satisfied-demand metric for our method
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Figure 5.7 – Our method and scenario-based MPC without real-time control 24-hours
simulation.

Figure 5.8 – Our method and scenario-based MPC without real-time control zoom on
15 minutes window.

is 0.01 and the whisker of the box that indicate the extreme value equal is to 0.08, hence
most of EVs were fully satisfied. Whereas, the means of non-satisfied-demand metric
are 0.28 and 0.22 with 0.69 and 0.23 extremes for EDF and LLF, respectively. Further-
more, the median of the battery-wear metric for our method is 0.18 with an extreme
value of 0.64. The mean of the battery-wear metric for EDF and LLF is higher than in
case of our method: 0.94 and 1, respectively. And more importantly, the top edge of
our method is only 0.5, whereas for EDF it is 2.14 and for LLF 2.58, which means that
some vehicles will see their batteries strongly affected by these algorithms.

Fig. 5.11 and Fig. 5.12 show the metrics for the EVs that were connected to the CS
during the non-congested part of the day. In this case, we see that all methods fully
charge the EVs (i.e., the non-satisfied-demand metric is close to 0), because there was
a sufficient amount of energy from the different resources. Yet, the battery-wear metric
is smaller with our method. In other words, the mean is 0.16 and the extreme value is
0.43, whereas the mean values for EDF it is 0.82 and for LLF is 0.83. Also, the extreme
value of the non-satisfied-demand metric is 1.82 in the case of EDF and 1.67 in the case
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of LLF. Therefore, as in the congested period of the day, our method shows a reduced
battery wear.

We also evaluated, during the whole period, the total operational cost for the
consumers (load and charging EVs). The total cost in our method is 767 dollars: 836

dollars for EDF, and 841 dollars for LLF. We observe that our method is more optimal
also in terms of overall operational costs.

Figure 5.9 – Non-satisfied demand metric for our method, EDF and LLF during con-
gested period.

Figure 5.10 – Battery-wear metric for our method, EDF and LLF congested period.

5.5.7 Results for Different Grid-Price Traces

We next study the sensitivity of the proposed method against the grid price. For this,
we create 3 different traces of the grid price such that we can see how our method
performs with the increased overall price of the grid (See Fig. 5.13 for more details).

For the comparison, we compute separately the total amount of energy that the
community buys from the main grid (EG) and from the V2G EVs (Ev2g). We observe
that, as expected, EG decreases for larger grid prices, whereas Ev2g increases (see
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Figure 5.11 – Non-satisfied demand metric for our method, EDF and LLF non-
congested period.

Figure 5.12 – Battery-wear metric for our method, EDF and LLF during non-congested
period.

Table 5.2). Still, the overall system cost increases less than the grid prices, by taking
advantage of the less expensive energy in the discharging EVs.

Energy / Cases case I case II case III

EG (MWh) 7.587 7.369 7.154

Ev2g (MWh) 1.153 1.384 1.608

Table 5.2 – Energy bought from the grid and from V2G EVs, for different price cases.

5.5.8 Robustness Evaluation

In this subsection, we study how our method behaves if the prediction scenarios are
off the real behavior of the system. For this purpose, we create an unexpected increase
of the EV demand during the day. We simulate the EV behavior, as in Section 5.5.4,
but we assume that the EVs arriving from 12:00 to 16:00 have a larger energy demand,
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Figure 5.13 – Grid price traces for different cases.

following N (90, 2) (recall that before we considered N (50, 2) in this period). In this
case, the scenarios generated using the parameters from Table 5.1 will not be able to
cover the possible aggregated energy demand of CS.

To evaluate the performance of our method, we compare it with an oracle that
perfectly knows the future. We perform two separated simulations for both methods.
Fig. 5.14 and Fig. 5.15 show the non-satisfied-demand and battery-wear metrics of EVs
during all the simulation periods for the oracle and our method. These results show
that the performance of our method is close to that of the oracle for both metrics. The
mean values of non-satisfied demand are both equal to 0.08, with upper extremes 0.33

and 0.37 for oracle and our method, respectively. The battery-wear mean values are
0.23 for the oracle and 0.27 for our method, with top edges equal to 0.52 and 0.57. We
observe that, due to the fact that we combine MPC and real-time control, our method
is robust: the MPC rolling-horizon adapts to the incorrect forecasts and maximises the
EV energy-demand satisfaction, whereas the real-time control, in turn, avoids large
power jumps to minimize the battery wear.

The total cost when using the oracle is of 767 dollars and 771 dollars for our method,
which is less than a 1% difference.

Finally, we show in Fig. 5.16 power traces for the PV production, load consumption,
CS controlled by our method, and the transformer power for the robustness evaluation.
We see that the power at the transformer never exceeds the transformer limit, even
though the forecasts are not correct. This is achieved by the real-time control that
maintains the grid in safe operation and prevents transformer overloading.
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Figure 5.14 – Non-satisfied demand metric for the oracle and our method.

Figure 5.15 – Battery-wear metric for the oracle and our method.

Figure 5.16 – Robustness simulation results.
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5.6 Conclusions

In this chapter, we have proposed a method for taking advantage of the available
flexibility of regular and V2G EVs in a community setting, by minimizing the commu-
nity energy-cost and reducing the impact of modifying the charging and discharging
powers in the battery wear. The method is proposed as a combination of a schedul-
ing problem and a real-time problem. In this sense, the method is aware of the grid
operation, while taking into account the decisions of the scheduler, satisfying the EV
energy-needs and minimizing the EV battery-wear. With the proposed method, we
show the importance of incorporating the real-time control by demonstrating that
the scenario-based MPC on its own is not capable of accounting for the intra-period
fluctuations, reducing the capability of the controller to take advantage of the available
flexibility and, in consequence, the hosting capacity of EVs and distributed generation.
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6 Handling Large Power Steps in
Real-Time Microgrid Control via
Explicit Power Setpoints

In this chapter, we focus on one of the issues of CS integration in grid-control system.
As we mention in Chapter 1, CS itself is a controllable resource from the point of view
of the grid controller. We consider a microgrid with real-time control using explicit
power-setpoints. Sudden power-steps, such as load disconnections or load in-rushes,
directly affect the decisions of the microgrid controller that aims at avoiding voltage
or line-ampacity violations. When trying to completely avoid these violations, the
microgrid operation may be too restricted, which may lead to large suboptimality.
However, temporary violations of the steady-state bounds are allowed by grid stan-
dards and could enable the exploitation of the flexibility of other resources to better
control the system’s state. In this chapter, we propose a method by which such tem-
porary violations are controlled so that they remain within the limits imposed by grid
standards and safe operation. The method is experimentally tested and validated on a
real microgrid.

6.1 Introduction

As was mentioned in Chapter 1, the number of high-power energy resources in distribu-
tion grids, such as electric vehicles (EV), is growing rapidly. These loads could represent
the largest ones in microgrids, having a non-negligible impact on their operation. In-
deed, the sudden connection or disconnection of such resources may heavily impact
the operation of the electrical grid. Specifically, the two major challenges related to
distribution systems operation are voltage control and lines congestion management.
Possible solutions are grid reinforcement, advanced droop control or real-time agent
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based control. In this chapter we are interested in the last solution.

As an example, consider a grid-tied microgrid, that contains local generation (PV or
storage system) and electric vehicle charging stations. When an EV suddenly discon-
nects (e.g., by decision of the EV user) a large power step occurs, potentially leading
to overvoltages or overcurrents1 caused by the local generation that was absorbed
by the EV before the step. With real-time agent-based controls, possible solutions
might curtail local generation or reduce the EV charging power prior to the step, thus
enabling the grid to be always prepared for the large power step.

However, hardly defined operational limits can be violated for short amounts of
time with no harm to the grid. For instance, for voltage violations, electric standards
(such as [53]) define time-dependent operational bounds. For maximum currents on
power lines, line ampacities2 are typically not violated. However, the actual operational
constraint of a line is its conductor temperature [54]. The line can therefore be tem-
porarily and safely overloaded3; the limit depends on specific energy characteristic [55].

In this chapter, we propose a method that allows a real-time grid controller to
continuously provide optimal control by relaxing the pre-defined hard constraints and
allowing temporary voltage and current violations. More precisely, we make use of
the specific real-time control framework in COMMELEC [29] and modify the decision
process of the grid controller (a.k.a grid agent), by defining state-dependent penalty
functions in the optimization process. We evaluate our proposed solution using a real
scale microgrid equipped with real loads, distributed generators and storage. To the
best of our knowledge, this is the first attempt to design a real-time grid controller that
accounts for temporary voltage and current violations according to electric standards.

The structure of this chapter is the following. Section 6.2 briefly describes the
COMMELEC framework. In Section 6.3, we focus on the details of the proposed
methodology. Finally, Section 6.4 provides the results of the experimental validation of
the method on a real microgrid.

6.2 The Commelec Framework

COMMELEC is multi agent-based framework for real-time control of an electrical grid.
The agents are responsible for an entire grid (Grid Agent - GA) or for single resources
(Resource Agents - RA [159]).

The GA communicates with its RAs using a common, device-independent protocol
for message exchange. More precisely, each RA advertises an abstract representation

1In this chapter we do not consider electromagnetic transients.
2also known as Permanently Admissible Tramission Loading: PATL
3known as Temporarily Admissible Tramission Loading: TATL
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of its internal state using the following format: (1) The PQ profile is the set in the (P,Q)

plane (for active and reactive power) that the resource under the control of the RA can
deploy. (2) The virtual cost C(P,Q) is a function, that evaluates the preference of a
system to stay in a particular zone of the PQ profile. (3) The belief function BF (P,Q)

is a set valued function that accounts for the uncertainty of the resource operation.
Specifically, it returns a convex set that contains all possible set-points that the resource
might implement when it is instructed to apply (P,Q).

The main goal of the GA is to steer the electrical state of its grid in real-time by
explicitly setting the power setpoints so that the grid is in a feasible state of operation,
that is, the nodal voltage magnitudes and line currents are in safe bounds. To perform
this, the GA first needs the advertisements from the resources and the estimation of
the current electrical state of the grid. Then the GA computes optimal power setpoints,
using a gradient-based method, and sends them to RAs. These process is repeated
every 100ms. Thus, the GA has a software-based delay in the sense that it cannot
control the grid between two consecutive time-steps. However, the GA makes sure that
the state of the grid will be feasible during the next 100 ms by estimating the maximum
variation of control using the belief functions. For instance, for EVs, which can be
disconnected at any moment, the belief function should take into account the fact that
the power consumption might be suddenly equal to zero. Therefore, the advertised
belief function is equals to BF (P ) = [−P, 0] (assuming reactive power Q = 0).

6.3 Penalty Functions in the Grid Agent

As already mentioned, the main task of the GA is to compute setpoints for each RA. To
do so, the GA attempts to minimize an objective function that integrates the virtual
costs of the resources and a penalty term J that is used to keep voltages and currents
between admissible bounds. Let us denote the penalty term for voltage as JV and
penalty term for current as JI , so that J = JV +JI . In [29] these functions are chosen as
follows (in the next subsection, we propose a suitable modification of these functions):

JV =
∑
k

JV,k(Vk) (6.1)

where

JV,k(Vk) ,
(Vk − V nom

k )2

β2
k − (Vk − V nom

k )2

if Vk ∈ [V nom
k − βk, V nom

k + βk]

=∞ otherwise, and (6.2)
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JI =
∑
l

I2
l

(Imaxl )2 − I2
l

if Il ≤ Imaxl

=∞ otherwise. (6.3)

In the above βk (typically 10% of the nominal voltage) and Imaxl are threshold variables,
Vk is the voltage magnitude at bus k and V nom

k its nominal value. Il is the current
magnitude at a line l. In other words, the original penalty functions introduce hard
constraints on voltages and currents.

6.3.1 Modification to the Voltage Penalty-Function

The standard [53] claims that an undervoltage of 30% and an overvoltage of 20% of the
nominal voltage are allowed for at most Tv = 500ms. We call Tv the violation period.
To account for this, we first replace the hard constraints involving βk in Eq. (6.2) by

Vk ∈ [V nom
k − γk

¯
, V nom

k + γ̄k] (6.4)

where γk
¯
, γ̄k > βk represent the 20% overvoltage and 30% undervoltage bounds respec-

tively. We also define the relaxation period Tr, as the time-window that should elapse
between two-consecutive violations periods. Note that standards do not explicit such
a period. However, in our understanding, a relaxation period of several minutes is
necessary in order to avoid repetitive violations. In this work, we take Tr = 3min.

Second, we define four states, that indicate whether the bus is in relaxation or
violation period, as defined below:

States I II III IV
in relaxation (τr,k < Tr) No No Yes Yes
in violation (τv,k < Tv) No Yes Yes No

where timers τr,k and τv,k count the time that a bus k is in relaxation or violation period
respectively. Fig. 6.1 shows the associated state-machine.

Third, the voltage penalty term depends on the state:

JV,k(Vk) =

{
JA,k(Vk) if bus k in state I, II or III

JB,k(Vk) if bus k in state IV,

where JA,k and JB,k are defined next. JA,k enforces the hard constraint in Eq. (6.4),
and has a fast increasing gradient outside the region (V nom

k − βk + ε, V nom
k + βk − ε),

where ε > 0 is a safety margin. This has the effect that voltage remains in the safe
region (V nom

k −βk, V nom
k +βk) when there is no power step and an occasional excursion
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I

[V /∈ F ]
start τv

V ∈ F
II

III

[V ∈ F ]
start τr

V /∈ F AND τv < Tv

[V /∈ F ]
stop τr

IV [τv ≥ Tv]
stop τv

[τv ≥ Tv]
start τr
stop τv

[τr ≥ Tr]
stop τr

V ∈ F AND τr < Trτr < Tr
JV = JA

V

JV = JA
V

JV = JB
V

JV = JA
V

Figure 6.1 – States transitions per bus. F = [V nom− β, V nom + β] represents the voltage
feasible state. In brackets we describe the condition under which the transition will
occur. In red we describe the action associated with the transition. In green we describe
the properties of the state.

outside the safe region is allowed when there is a power step. JB,k differs from JA,k in
that it has a dramatically larger gradient outside the safe region, so that the voltage
quickly returns to it (see Fig. 6.2).

V

JA,k

JB,k

1 + �k � ✏

1 + �k

1 � �k + ✏

1 � �k 1

JV,k

1 + �̄k

JP,k

1 � �k

Figure 6.2 – Functions JA,k(V ) and JB,k(V ), α = 104 and V nom
k = 1.

We now give the description of JA,k and JB,k. Note that we impose JA,k and JB,k to
have continuous gradients in order to avoid oscillations, which explains some of the
complexities of the definitions below.
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First, we define Fk(V, µ) by:

Fk(V, µ) =
(V − V nom

k )2

µ2 − (V − V nom
k )2

(6.5)

Note that Fk is the function that was used in the Eq. (2). Second, we define the function
JP,k(V ) by:

1. defined on [V nom
k + βk − ε, V nom

k + βk] as the unique quadratic function that
satisfies

(a) ∇V JP,k(V nom
k + βk − ε) = ∇V Fk(V nom

k + βk − ε, γ̄k)

(b) ∇V JP,k(V nom
k + βk) = α∇V Fk(V nom

k + βk, γ̄k)

(c) JP,k(V nom
k + βk − ε) = Fk(V

nom
k + βk − ε, γ̄k)

2. defined on [V nom
k − βk, V

nom
k − βk + ε] as the unique quadratic function that

satisfies

(a) ∇V JP,k(V nom
k − βk + ε) = ∇V Fk(V nom

k − βk + ε, γk
¯

)

(b) ∇V JP,k(V nom
k − βk) = α∇V Fk(V nom

k − βk, γk
¯

)

(c) JP,k(V nom
k − βk + ε) = Fk(V

nom
k − βk + ε, γk

¯
)

where α is a very large parameter (= 104 in our case).

Third we introduce the functions C1,k(V ) and C2,k(V ).
C1,k(V ) is defined on [V nom

k + βk, V
nom
k + γ̄k] as the unique linear function with the

following properties:

1. ∇V Fk(V nom
k + βk, γ̄k) +∇V C1,k = ∇V JP,k(V nom

k + βk)

2. Fk(V nom
k + βk, γ̄k) + C1,k(V

nom
k + βk) = JP,k(V

nom
k + βk).

C2,k(V ) is defined on [V nom
k − γ̄k, V nom

k − βk] as the unique linear function with the
following properties:

1. ∇V Fk(V nom
k − βk, γk

¯
) +∇V C2,k = ∇V JP,k(V nom

k − βk)

2. Fk(V nom
k − βk, γ̄k) + C2,k(V

nom
k − βk) = JP,k(V

nom
k − βk).
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Now we can define JA,k as follows:

JA,k(V ) =

Fk(V, γ̄k) + C1,k(V ) if V ∈ [V nom
k + βk, V

nom
k + γ̄k]

JP,k(V ) if V ∈ [V nom
k + βk − ε, V nom

k + βk]

Fk(V, γ̄k) if V ∈ [V nom
k , V nom

k + βk − ε]
Fk(V, γk

¯
) if V ∈ [V nom

k − βk + ε, V nom
k ]

JP,k(V ) if V ∈ [V nom
k − βk, V nom

k − βk + ε]

Fk(V, γk
¯

) + C2,k(V ) if V ∈ [V nom
k − γk

¯
, V nom

k − βk]
∞ otherwise.

In other words, JA,k is given by the function Fk inside (V nom
k − βk + ε, V nom

k + βk − ε),
by the function Fk plus a large linear function outside the region (V nom

k − βk, V nom
k +

βk), and is patched between the two by means of JP,k such that it has a continuous
derivative. Last, JB,k is defined by

JB,k(V ) =



αJA,k(V )− (α− 1)JA,k(V
nom
k + βk)

if V ≥ V nom
k + βk

JA,k(V )

if V ∈ [V nom
k − βk, V nom

k + βk]

αJA,k(V )− (α− 1)JA,k(V
nom
k − βk)

if V ≤ V nom
k − βk.

We next show how the algorithm handles overvoltages. The idea is schematically
illustrated on Fig. 6.3 for a possible voltage trajectory (with βk = 0.1 and γ̄k = 0.2). The
trajectory starts with no violation. Then, at time t1 a violation of the V nom

k + βk bound
occurs, and τv,k starts counting; at time t2 the voltage goes back below the bounds and
τr,k starts counting. Note that, at this stage, the violation is still allowed, since τv,k has
not elapsed. Finally, at time t3 the violation period ends.

6.3.2 Modification to the Current Penalty-Function

In the case of the current penalty function, we propose a method to track the thermal
limit Imaxl , and we propose a new definition for the current penalty-function. For
the first, we rely on the fact that the operational limit of a conductor is its maximum
temperature, which will be reached at different speed depending on the magnitude of
the transferred current. We consider the energy balance equation of a conductor [160],
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1.2

1.1

V

t

τv

τr

I II III IV I

t1 t2 t3

in relaxation
in violation

No
No

No
Yes Yes

YesYes
No

Figure 6.3 – Voltage trajectory with time period dynamics.

RI2 = mcpθ̇(t) + ktS(θ(t)− θa), (6.6)

where θa is the ambient temperature, I is the current magnitude and θ the conductor’s
temperature, while R, m, cp, kt and S are physical parameters of the conductor (the
per-unit-length resistance of the conductor [Ω/m], the per-unit-length mass of the
cable insulator [kg/m], the specific heat of the insulator [J/(kg◦C)] and the global heat-
exchange coefficient of the cable [W/(m2◦C)] respectively). The three elements of the
equation represent: Joule losses, heat capacity and forced convection respectively. We
assume that all other sources of heating or cooling are negligible (e.g. solar radiation,
radiated heat, etc.). In practice, many of the parameters of Eq. (6.6) are difficult to find
in datasheets and the temperature estimation through a model becomes an untractable
problem.

Instead, we propose to re-write Eq. (6.6) as

(θm − θa)I/I = H/I
2
θ̇(t) + (θ(t)− θa), (6.7)

where θm is the maximum temperature, I is the ampacity andH is the heat impulse4 (in
A2s) of the conductor. These three parameters are typically found in cables datasheets.

In practice, Eq. (6.7) represents the time to reach the maximum temperature for a
given current magnitude. Indeed, when the current magnitude is below the ampacity
the conductor can operate forever since θ|t=∞ < θm, while the time will be finite only
for values above the ampacity. The current-dependent energy involved in this process
is known as the specific energy (in A2s). This suggests that, in general, the conductor has
an energy quota that is only used for values larger than the ampacity. This definition
follows the IEC standard [54], that bounds the loss of insulation life of the cable per
overload. To account for this use, we continuously evaluate the integral of Joule iJ , that

4Where H =
mcp
R

(θm − θ0), and θ0 is the initial conductor-temperature.
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represents a state, using

iJ [k] =


iJ [k − 1] + I[k]2∆t if I > I,

iJ [k − 1]e−∆t/τI if I < (1− εI)I,
iJ [k − 1] otherwise,

(6.8)

where I is the current magnitude, ∆t the time spent between time-steps k − 1 and k,
εI > 0 and τI = H/I

2
represents the decay time-constant of Eq. (6.7). Using this state,

the maximum allowed current magnitude Imax is the solution of

I2∆t̂ = −H/I2
ln(1− (I/I)2)I2 − iJ , (6.9)

where ∆t̂ is the estimation of the time that current I will be implemented. The equation
cannot be solved analytically. It is solvable, instead, numerically using a lookup-
table approach, compatible with the real-time operation. In order to account for the
temporal reduction of the maximum allowed current, we propose the following penalty
function

JI =
∑
l

(
I∗l
Imax
l

)2
I2
l

(I∗l )2 − I2
l

,

where I∗l is the maximum allowed current when iJ = 0 for ∆t̂, that is used as a hard
constraint.

6.4 Validation

We evaluate the proposed method using both simulation and an implementation in a
real-scale microgrid. In this chapter we give results obtained by simulation and results
from the implementation in the real-scale microgrid (see Fig. 6.6).

6.4.1 Simulation Scenario

Our simulation setup consists of the following elements: a battery (B), an electric vehi-
cle (EV) and a photovoltaic plant (PV). The PV is uncontrollable and is characterized
by a rated power of 20kW. It is assumed that the PV injects only active power. The
EV, assumed to behave as an uncontrollable load, constantly consumes 30kW (Pmax).
The battery in our case is considered as a fully controllable device and its rated power
25kW. We assume that the battery is almost charged (90%) at the beginning and has a
long-term objective to get discharged. For both battery and PV plant the PQ profile,
virtual cost and belief function are adopted from [159].
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Our goal is to simulate a sudden disconnection of the EV. For that reason we
assume that initially the EV active power is −Pmax and it suddenly goes to zero (at
time t2). As the resource cannot be controlled, we define the PQ profile as the actual
measured active-power, the virtual cost equals to zero and the BF will express the
power change uncertainty. At the beginning of the simulation, the EV agent advertises
a small belief set [−Pmax,−Pmax + δ]5. At time t1, as the agent predicts that the EV may
get disconnected, it will advertise the belief set [−Pmax, 0]. In this specific scenario, we
use small bounds for the voltage and current constraints, so that they are replicable in
the real-scale microgrid.

6.4.2 Simulation Results: Voltage Violation

For the validation of the proposed method, we present two cases: case 1 using the GA
as described in [29] and case 2 with the proposed method integrating the new voltage
penalty. The simulation results are shown in Fig. 6.4, that shows the battery power and
the voltage profile of the bus where the EV is connected. Note that, at the beginning of
the simulation, the GA in both cases behaves similarly as expected. That is, the battery
is allowed to provide the same amount of active power. However, at time t1 the EV
agent expands its belief function. The GA of case 1 will try to prevent the worst-possible
scenario, namely, a large voltage-step caused by a sudden EV disconnection, before
it happens. Since in our setup the only controllable device is the battery, the GA, in a
conservative action, reduces the battery production. On the contrary, the GA of case 2
will continue allowing the battery to produce power. We also shown that, when the
EV actually disconnects (at time t2), the voltage does not exceed the smaller bound, in
case 1. In case 2, the GA reduces the power production of the battery and brings the
voltage back to the safe region after the allowed violation period ends at time t3.

6.4.3 Simulation Results: Current Violation

We present in Fig. 6.5 the evolution in time of the current in a congested line, the state
variable iJ of the same line and the active power of the battery. Before t2, the power of
the battery slightly decreases. When the EV is disconnected, the lines gets congested
and iJ of the line of interest quickly increases. Consequently, the dynamic current
limit Imaxl decreases, forcing the actual flowing current magnitude to decrease as well.
When the current magnitude goes below (1− εI)I, iJ decreases exponentially letting
the battery to increase the power back6.

5Negative power indicates consumption. We take δ = 10% of Pmax
6We take εI = 0.1.
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Figure 6.4 – Simulation results for the voltage violation case.

6.4.4 Experimental Setup

The results described in this section refer to the application of the proposed methodol-
ogy to a real-scale microgrid, that represents at real-scale the CIGRÉ low-voltage (400V
at 50Hz) microgrid benchmark defined in [57]. For simplicity, we only use a subset
of the energy resources: a controllable resource (L1), a battery (B) and a photovoltaic
plant (PV). L1 is a fully controllable 4-quadrants resource, that is used in this case for
creating the power step.

The microgrid of Fig. 6.6 is connected to a 20 kV grid at bus B01 via a suitable
transformer. The line that connects to the transformer, L01, has a current limit of 40 A,
i.e. a power transfer limit of ca. 28 kVA.

6.4.5 Experimental Results: Voltage Violation

Since our experimental setup (see Fig. 6.6) does not have a real EV, we use the control-
lable resource L1 instead, in order to emulate a large power step. In this section, we
present the behavior of the voltage at the node where L1 is located (B03) when a large
power step of 30 kW is produced by L1.

At the beginning of the experiment, L1 consumes 15 kW. Then, we emulate the
power step by producing 15 kW with it. This 30 kW power step causes a violation of
β = 4% of the nominal voltage. In Fig. 6.7 we show how the GA reduces the power
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Figure 6.5 – Simulation results for the current violation case.

production of the battery and brings the voltage of node B03 back to the safe region
after the allowed violation period ends. Also, it is interesting to see that due to the
definition of JP , the voltage stabilizes below its soft limit β.

6.4.6 Experimental Results: Current Violation

In this section, we focus on the behavior of the current of line L01 when a large power
step of 20 kW is produced by the sudden increment of L1. The emulated load has a
power factor of 0.9, thus the reactive power consumption also increases accordingly.
In this specific scenario, we have considered that the PV is not injecting power into
the microgrid and that the battery is being charged. In Figure 6.8 we show how the
proposed methodology allows an initial current violation, that triggers the increment
of the line’s integral of Joule iJ . Consequently, after solving Eq. (6.9), the maximum
allowed current Imaxl decreases, forcing the GA to quickly steer the battery power
to reduce the current at L01. When the current magnitude reaches safe values, iJ
smoothly decreases following Eq. (6.8). This smooth behavior permits that the current
Il stabilizes at safe values even when the perturbation is persistent.
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Figure 6.6 – The experimental microgrid. In black all elements participating in this
work’s experiments. Location of measurement devices for state estimation (PMUs) are
also indicated.

Figure 6.7 – Experimental results for the voltage violation case.

97



Chapter 6. Handling Large Power Steps in Real-Time Microgrid Control via
Explicit Power Setpoints

Figure 6.8 – Experimental results for the current violation case. The plots in the lower
part refer to line L01 of Fig.6.6.
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6.5 Conclusions

In this chapter we have proposed a method by which a grid real-time control can handle
large power steps by allowing and controlling temporary voltage and current violations
so that they remain within the limits imposed by standards and safe operation. This
brings more flexibility to the grid operation, which can lead to better operational
results such as increased self-consumption or higher EV charging rates. The proposed
methodology has been validated both with simulations and experimentally.
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7 Robust Real-Time Control of
Power Grids in the Presence of
Communication Network Non-
Idealities

In this chapter, we discuss the issue of message losses caused by the inherent uncer-
tainties and non-idealities of communication networks and processes in the context
of real-time power grid control. More precisely, we consider a hierarchical power
grid controller that monitors and controls resources in real-time. The resources send
advertisements that contain information about their state, and an estimation of their
behavior in the time horizon when the control action is expected to be implemented.
The controller uses this information to compute and issue setpoints that are thus only
valid for this time horizon. An occasional loss of one or more advertisements might
render the controller incapable of issuing valid setpoints. We introduce advertise-
ments with a longer-term prediction interval, which are constantly sent along with
the short-term ones, and can be used by the controller when it is missing information
from some or all resources. We show the advantages of using such an approach on a
controller that, by exploiting local resources flexibilities, performs frequency support
on the CIGRÉ benchmark low-voltage microgrid.

7.1 Introduction

7.1.1 Background

The trend in power distribution-grid control is to aggregate in real-time the network
flexibilities in order to achieve local and global objectives. Controllers that implement
real-time (sub-second) functionalities, will occasionally experience communication
network non-idealities during deployment, such as message losses and delays. This
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Figure 7.1 – COMMELEC Architecture

increases the uncertainty in the operation of the controller, and limits its ability to
maintain a feasible control over the grid resources. Given the mission-critical nature
of power grid control, and the possible consequences that might arise in case of
failure [161], it is essential for power grid controllers to be robust in the presence of
such uncertainties.

Several controller designs presented in literature assume an ideal communication
network [29, 162, 163] since, as they are designed for real-time, they can quickly coun-
teract an occasional missing package. However, despite advances in improving the
resiliency and reliability of communication networks in power grids [164, 165, 166],
non-idealities cannot be eliminated due to the stochastic nature of wide-spread com-
munication networks. This is especially true for real-time applications, in which low
latencies are required.

As an example, in this work we consider the COMMELEC framework [29], initially
designed with the assumption of ideal communication, and we propose a method that
makes it robust to message losses and delays. COMMELEC is a multi-agent framework
for real-time control of distribution power grids using explicit power setpoints. How-
ever, the method presented in this chapter is not limited to this framework and can be
applied to any application with real-time decisions.

Such a method complements the traditional redundancy approach in achieving a
higher degree of reliability [167, 168].

The COMMELEC architecture is shown in Figure 7.1. It consists of a main controller,
henceforth the Grid Agent (GA), and several local controllers, each in charge of a
specific resource, henceforth the Resource Agents (RAs). An RA captures the inner
state of its resource and sends it as an advertisement to the GA. The GA uses the
received advertisements to compute and issue explicit power setpoints that the RAs
will instruct their resources to implement. The setpoints are computed such that their
implementation: (1) maintains the grid in a feasible state (i.e. within voltage and
current bounds), (2) tracks an upper-level request, such as dispatching a power profile
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or providing frequency support, and (3) tries to yield to the desired operation of the
resources.

The advertisements sent by the RAs consist of, among other entries, the following
two fields. (1) A PQ profile which represents the feasibility region of the resource, the
region in the PQ-plane (for active and reactive power) in which the resource can be
instructed to operate. (2) A Belief function B(u), which captures the uncertainty of
the resource. It maps every point u = (P,Q) in the PQ profile to a set of points in the
PQ-plane, which the resource might implement if instructed to implement u. The
above fields are constructed by RAs such that they are only valid for a short-horizon ϑ,
i.e. they need to be updated in the next setpoint implementation.

Under ideal communication network conditions (i.e. in the absence of messages
losses and delays), the GA receives the latest advertisement from each RA, and performs
the setpoint computation. For each resource, the GA determines a power setpoint
from its PQ profile, such that the set of power setpoints for all resources results in a
feasible grid state and maximizes the tracking of the requested external signal. This
computation relies on the prediction in the advertisement, which is only valid for the
horizon ϑ. An occasional lost or delayed advertisement from a resource might render
the GA incapable of computing setpoints that satisfy the mentioned constraints. In
principle, the GA waits until the advertisement is received, causing a loss of control for
that period.

As an example, consider a grid-tied microgrid, as shown in Figure 7.1, that consists
of a battery, a PV, and a load. Let us suppose that the GA has the objective of providing
primary frequency support to the main grid by controlling the battery power flow
injection/absorption. It also needs to ensure that the bus-voltage and line-current
magnitudes are within the safety limits, despite the stochastic profile of the PV injec-
tions and load consumption. A quick change in the frequency signal, PV production,
or load consumption, coupled with a loss of advertisements, renders the GA unaware
of the present and future state of the grid resources, and thus incapable of computing
valid setpoints in the next cycle.

7.1.2 Contributions

In this chapter, we propose a method that augments the RA advertisement, enabling
the GA to become robust to communication network non-idealities. More precisely,
we introduce two fields into the advertisements, constituting long-term information
valid for a period greater than ϑ. We modify the GA in order to store the latest received
advertisement, and make use of the long-term fields in the stored advertisement
when the present advertisement is lost from some resource. The newly added fields
are constructed in a way that ensures the safety of the grid, when they are used in a
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setpoint computation.

We validate our method and compare it to alternative methods, using a virtual
commissioning tool that simulates the CIGRÉ benchmark low-voltage microgrid [57]
consisting of a battery, a PV plant, and a load. This tool enables us to emulate non-ideal
network conditions and study the behavior of the actual COMMELEC implementations
under such conditions.

The structure of this chapter is as follows. Section 7.2 focuses on the details of
our proposed methodology, highlighting the properties of the newly added fields. In
Section 7.3, we describe the setup under study. Section 7.4 provides the results of the
validation and comparative experiments. Finally, we conclude the chapter and discuss
future work in Section 7.5.

7.2 Method

We augment the COMMELEC advertisements to include two new fields: (1) a long-term
PQ profile (Al), and (2) a long-term Belief function (Bl). The original PQ profile (A)
and Belief function (B) are henceforth referred to as short-term fields. As mentioned
earlier, the short-term fields estimate the behavior of the resource in the horizon
that the control action is expected to be implemented, ϑ. This horizon should be
short enough to allow the main controller to cope with the fastest dynamics in the
system. On the other hand, long-term fields must be valid for a longer horizon Λ,
taking into account all possible control actions and internal/external changes that
might occur during this time. In practice, Λ should be chosen to ensure that a setpoint
will be received during that horizon even in the presence of communication network
non-idealities.

In general, the choice of a time horizon (ϑ or Λ) is a trade-off between several
factors. A shorter horizon requires less time to compute, provides a more accurate
prediction, and exports less uncertainty to the GA. However, as the horizon is shorter,
the GA is not robust to losses. Therefore, sending both short-term and long-term
fields allows us to take advantage of the accuracy of the short-term prediction, and the
robustness of having a longer-term time horizon.1

Note that since the PQ profile and the Belief function have a time horizon in
which they are valid, they implicitly contain a time argument that represents their
construction time, i.e. the time from which they are valid. This argument is made
explicit in the rest of this section.

1Note that, the proposed method is independent of the choice of ϑ and Λ.
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7.2.1 Properties of Long-term Fields of an Advertisement

Formally, the following properties must hold for the long-term fields of an advertise-
ment.

Property 7.1 (Long-term PQ profile).

∀t′ ∈ [t, t+ Λ], Al(t) ⊆ A(t′)

In other words, the long-term PQ profile should be a subset of all short-term PQ

profiles that lie within its horizon. This ensures that any setpoint inAl lies within the
flexibility region of the resource for the entire long-term horizon. Therefore, if the
GA chooses a setpoint from Al(t), the implementation of this setpoint at the RA is
guaranteed to be feasible if it is received at a time t′ ≤ t+ Λ.

Property 7.2 (Long-term Belief function).

∀t′ ∈ [t, t+ Λ], ∀u ∈ Al(t), B(t′)(u) ⊆ Bl(t)(u)

As the belief function encapsulates the uncertainty of the resource when instructed
to implement a setpoint u = (P,Q), the long-term belief set of a setpoint should
contain all the short-term belief sets of that setpoint in the long-term horizon. This
ensures that any actual implementation lies within the long-term belief set of the
issued setpoint. Therefore, if the GA computes a setpoint that is valid when considering
the uncertainty advertised in Bl(t), then it is valid in the actual uncertainty B(t′), for
t′ ≤ t+ Λ.

Note that the condition in Property 7.2 must hold for all u inAl(t). Given that the
domain of Bl(t) isAl(t) and the domain of B(t′) isA(t′), then Property 7.1 guarantees
that all the elements ofAl(t) are in the domain of B(t′) as well.

7.2.2 Constructing Long-term Fields

Here, we define how the long-term fields can be constructed for the three types of re-
sources of our case study, namely a battery, an uncontrollable PV, and an uncontrollable
load. The method presented builds on the method defined in [159] for constructing
the original COMMELEC advertisement (containing only the short-term fields).
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Batteries

To compute the short-term fields, the battery agent makes use of the battery model
proposed in [169]. Note that, assuming that the batteries are fully controllable, there is
no uncertainty to deploy a setpoint. Thus, only thePQ profile needs to be continuously
updated but not the Belief function. In particular, only the minimum and maximum
active power, Pmin and Pmax (that depend on the state-of-charge of the battery, for
details see [159]), need to be estimated. In general, the battery advertisement is defined
by:

A = {(P,Q) ∈ IR2|Pmin ≤ P ≤ Pmax,
√
P 2 +Q2 ≤ Sr},

B(P,Q) = {(P,Q)}, (7.1)

where Sr represents the rated power of the battery converter.

Now, assuming that the state-of-charge (SoC) of the battery changes little in a
ϑ-horizon, the battery agent is able to compute P ϑmin and P ϑmax, which represent the
power limits that can be applied at horizon ϑ. Note that, this computation depends on
the last implemented setpoint P . The pseudo-algorithm of this process is detailed in
Algorithm 4.

Algorithm 4 Compute Power Bounds for the ϑ-horizon

Function: getShortTermBounds(P , ϑ, SoC)

1: Get the corresponding DC power p from the setpoint P implemented at t, using a
converter model

2: Use p and SoC to compute the SoCϑ: the state of the battery at t+ ϑ
3: Compute the DC short-term power bounds ( [159]), pϑmin, pϑmax, that respect the DC

voltage and current limits
4: Use the converter model to get P ϑmin, P ϑmax return P ϑmin, P ϑmax, SoCϑ

In order to compute the PQ profile at the horizon Λ, we use Algorithm 4, 2(n−1)+1

times, with:

n =

⌈
Λ

ϑ

⌉
(7.2)

In other words, after computing the short-term power bounds, we use them as inputs
for the computation of the bounds at the next ϑ-horizon (since they are valid). Note
that, this is a worst-case analysis since the actual implemented power will always
respect the pre-computed bounds. We repeat the same until reaching the nϑ-horizon,
using the P iϑmin as input for computing the P (i+1)ϑ

min bound (and similarly for Pmax). In
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general, the computed power bounds are not monotonic with time, hence we take:

PΛ
min = max

i∈[1,n]
P iϑmin,

PΛ
max = min

i∈[1,n]
P iϑmax

(7.3)

This will ensure that Al ⊆ A, satisfying Property 7.1 from Section 7.2.1. We sum-
marise this process in Algorithm 5.

Algorithm 5 Compute Power Bounds for the Λ-horizon

Function: getLongTermBounds(P , ϑ, Λ)

1: Compute n = dΛ/ϑe
2: [P ϑmin, P ϑmax, SoCϑ] = getShortTermBounds(P , ϑ, SoC)

3: SoCϑ = SoC
ϑ

= SoCϑ

4: for all i ∈ [1, n− 1] do
5: [P

(i+1)ϑ
min ,−, SoC(i+1)ϑ] =

6: getShortTermBounds(P iϑmin, ϑ, SoCiϑ)

7: [−, P (i+1)ϑ
max , SoC

(i+1)ϑ
] =

8: getShortTermBounds(P iϑmax, ϑ, SoC
iϑ

)
9: end for

10: PΛ
min = maxi∈[1,n] P

iϑ
min

11: PΛ
max = mini∈[1,n] P

iϑ
max return PΛ

min, PΛ
max

Uncontrollable PV

In the case of an uncontrollable resource, the GA does not count on the flexibility
to request a setpoint different to what the resource is able to do. Thus, the short-
and long-term PQ profiles will be same and equal to the forecasted power injection
(Pf , Qf ). In general, the uncontrollable-PV advertisement is defined by:

A = {(Pf , Qf )},

B(Pf , Qf ) ={(P,Q) ∈ IR2|Pmin ≤ P ≤ Pmax,
Qmin ≤ Q ≤ Qmax}

(7.4)

For computing the long-term Belief function we use the same method as the one
used for the short-term one, as proposed in [170]. This method predicts the interval
where the injected power will lie in a given time-horizon. It consists of a training
stage where it learns from past data, sampled at the desired horizon. Then, in an
on-line stage, it uses the results of the training stage and the current measured value to
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estimate a prediction interval for the pre-defined horizon. As in practice longer term PV
dynamics are larger than short-term ones, this method ensures that B ⊆ Bl by the use
of historical data in the training stage, satisfying Property 7.2 of Section 7.2.1. Finally,
we deploy two parallel predictions for both the short- and the long-term horizons.

Uncontrollable Load

As in the previous case, this agent only needs to update the Belief function. Likewise,
the advertisement can be defined as in Eq. (7.4).

In order to have control on the validity of the advertisements, we use in this case a
simple predictor for both short- and long-term fields. This is, we use the persistence
method as a point predictor for both horizons and we compute the power bounds (in
this case for both active and reactive power) using:

Pmin(t+ ϑ) = (1− αϑP )P̂ (t),

Pmax(t+ ϑ) = (1 + αϑP )P̂ (t),

Qmin(t+ ϑ) = (1− αϑQ)Q̂(t),

Qmax(t+ ϑ) = (1 + αϑQ)Q̂(t),

(7.5)

where (P̂ (t), Q̂(t)) is the measured power at time t, and the parameters αϑP , α
ϑ
Q ∈ (0, 1].

The same definition can be used for Λ, and in order to guarantee Property 7.2 of
Section 7.2.1, αΛ ≥ αϑ must hold for both P and Q.

7.3 Experimental Setup

We test our method on the CIGRÉ benchmark low-voltage microgrid [57], shown in
Figure 7.2. The microgrid is connected to the main grid, and consists of a 25 kW
uncontrollable PV, a 30 kW / 90 kWh battery, and a 5 kW uncontrollable load. The GA
is instructed to provide frequency support to the main grid, in addition to tracking a
pre-determined power profile.

In our setup, we compare four different implementations of the COMMELEC GA.
(1) The Normal GA, which is the original implementation that keeps requesting adver-
tisements until it receives them from all RAs. (2) The Robust GA, which is our proposed
methodology with short- and long-term fields in the advertisement. This GA replaces
any missing short-term advertisement with valid long-term fields from that resource,
if available. (3) The Only-long GA, which is a variation of the Robust GA, in that it
only uses long-term fields throughout its operation (i.e. just by replacing ϑ by Λ in the
Normal GA). This decreases the size of an advertisement and simplifies the design of
the GA. (4) The Previous-short GA, which replaces any missing advertisement with
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Figure 7.2 – CIGRÉ low-voltage benchmark microgrid. The resources not used for our
experiments are greyed-out.

the latest previously received advertisement from that RA. This eliminates the need to
construct, send, or handle long-term fields. In this work, we consider ϑ = 100 ms and
Λ = 1 s.

We use T-RECS [171], a virtual commissioning tool, to perform our tests on a
simulated version of the grid. T-RECS enables us to use the actual GA and RA code, a
simulated version of the resources, and the messages are exchanged over an emulated
communication network. The topology consists of one router, with each software
agent (GA and RAs) on a different subnet. Resources are on the same host machine as
the RAs. With T-RECS, we are able to vary the link loss rate, and we analyze different
values between 0% and 20%.

We use the root mean square error (RMSE) as a metric to measure the performance
of the different GA implementations. The RMSE is calculated between the measured
power at the slack and the frequency support signal (or dispatch plan signal). This
shows how well each implementation can track the signal, and how robust each is to
message losses.
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Figure 7.3 – Frequency signal imposed by the main grid used to provide frequency
support.

Method / Loss rate 0% 5% 10% 15% 20%

Normal 121.65 198.95 317.48 541.52 1442.98
Robust 120.44 129.03 147.25 150.55 188.12

Only-long 121.65 130.36 153.84 154.99 178.85
Previous-short 121.65 122.18 139.40 154.77 451.17

Table 7.1 – Root mean square error (in Watts) between the real power at the slack bus
and the requested tracking signal, for a 10-minute interval

7.4 Results

In this section, we illustrate the performance of the proposed method of handling com-
munication network non-idealities under different conditions, and compare the results
for the four different GAs described in Section 7.3. Several scenarios are considered in
order to highlight the conditions under which each method performs well.

7.4.1 Frequency Support with Non-binding Grid Constraints

We first study the performance of the methods when the grid state is far from the
operational limits in terms of bus voltages and line currents. The GA is instructed to
provide frequency support to the main grid, based on the frequency signal of Figure 7.3,
which represents quick dynamics. As we are interested in studying the effects of the
losses in the network, we vary the link loss rate between the GA and the RAs in the
range [0%, 20%].

Table 7.1 and Figure 7.4 show the resulting RMSE for the different methods across
the different link loss rates, for an interval of 10 minutes. The RMSE is calculated
between the actual power at the slack, and the result of S = −σ(f − f0), where S
is the expected power at the PCC when providing frequency support, computed by
multiplying the droop parameter σ with the divergence of the grid frequency f from
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Figure 7.4 – Root mean square error (in Watts) between the real power at the slack bus
and the requested tracking signal, for a 10-minute interval

the reference frequency f0 = 50 Hz.2

We observe that the performance of the Normal GA rapidly deteriorates as the link
loss rate increases. This follows directly from the fact that it is extremely sensitive to the
amount of available information, and fails to follow the request in our quick dynamic
scenario. The Previous-short GA maintains a good level of tracking until the loss rate
is too high. This is expected as the information it uses in case of a loss (the previous
advertisements) is invalid, and as the loss rate increases, tracking the quick frequency
changes becomes increasingly unlikely.

The Robust and Only-long GA manage to provide frequency support even under
20% link loss rate, although the Only-long GA obtains worse performance throughout,
especially for lower loss rates. This stems from the fact that its computations are always
conservative, as they all use advertisements with a long-term horizon Λ. The effects
of this are not drastic in such a scenario, but will appear when the grid conditions are
binding, as presented in the next section.

7.4.2 Tracking a Power Profile with Binding Grid Constraints

In order to study the behavior of the Robust and Only-long GA under binding grid
conditions, we consider a scenario in which the GA is instructed to follow a pre-
computed dispatch plan. The slower dynamics in this experiment allow us to better
visualize the tracking performance. Moreover, we artificially limit the ampacity of the
line connecting the microgrid to the main grid (FD1) to 16 A, i.e. a power limit of c.a.
11 kVA.

Figures 7.5 and 7.6 show the tracking results of Only-long GA and Robust GA,
respectively, when the link loss rate is 2%. We observe that, although both manage to
track the 10 kW request fully (as it results in a current far away from the ampacity limit

2We take σ = 100 kW/Hz in our experiments.
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Figure 7.5 – Tracking experiment of Only-long GA with binding grid conditions and a
2% loss rate

Figure 7.6 – Tracking experiment of Robust GA with binding grid conditions and a 2%
loss rate

of line FD1), only the Robust GA manages to track the 11 kW signal. The Only-long GA
uses advertisements with larger uncertainty, and is thus conservative in order to avoid
current violations. The Robust GA maintains tracking as it can safely do so without
risking violation, due to the accuracy of the short-term advertisements it uses.

The conservative nature of the Only-long GA is highlighted in such binding grid
constraints. Similar results are observed for frequency support experiments.

The Previous-short GA is not conservative, and thus maintains tracking (under low
loss rates) even in binding grid conditions. However, as it uses invalid information, it
might cause voltage and/or current violations.

7.4.3 Validation

Finally, we validate the Robust method via a 24-hour frequency support experiment
with a 2% link loss rate. The 24-hour simulation, with the profiles of the PV and the
load taken from an actual experimental run, enables us to see the performance under
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Figure 7.7 – 24-hour frequency support Robust experiment with a 2% link loss rate. The
power at the slack is not visible since it is below the reference (tracking).

Figure 7.8 – Battery state-of-charge (SoC) during the 24-hour experiment

different and realistic grid conditions. In this particular case, the battery power is
used as the slack variable compensate for the PV power-variations and adapting to the
frequency signal to provide frequency support. The initial state of charge of the battery
(20%) is pre-defined by the forecasted PV and load powers the day before.

Figure 7.7 shows the results of the tracking, in addition to the power at the buses of
the battery, the PV, and the load. Although the comparison between the reference signal
and the measured power is not visible in the graph, the computed RMSE is 145.67 W
for the entire day. We also measure the RMSE over a rolling window of 20 minutes, and
the resulting average and the maximum RMSE are 142.40 W and 263.53 W, respectively.
This shows the robustness of our method throughout the daily cycle. Furthermore, the
state-of-charge of the battery during the experiment is shown in Figure 7.8, showing
the capabilities of the battery to provide such an ancillary service to the main grid.
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7.5 Conclusions

We present a method for real-time power grid control that is robust in non-ideal net-
work conditions. We take an example of a state-of-the-art framework for power grid
control, and augment it such that it maintains its performance in spite of commu-
nication failures that lead to losses or delays of messages from the resources to the
controller. This is done by having the resources send information about their state that
is valid for a longer time horizon, in addition to the short-term information originally
sent. The long-term information can be used to compute valid setpoints in cases when
the short-term messages are lost due to a non-ideal network.

We show that our method guarantees grid safety, by construction. We also show a
validation of our method over a 24-hour period, and provide a comparative analysis
with alternative methods. We observe that the Robust GA is able to track the requested
frequency signal better than alternative methods, under both binding and non-binding
grid conditions.

For scenarios in which the dynamics are not as quick, such as power profile tracking,
and under non-binding grid conditions, we find that the Only-long GA alternative is
comparable with the proposed Robust method, but still performs worse. Our proposed
methodology comes at no additional expense, and provides significant advantages in
deployment conditions.

Here, we address losses of advertisements, and our proposed methodology focuses
on dealing with communication failures that affect these messages, without explicitly
dealing with the dual issue of lost setpoints. However, our experimental setup was
designed to test for random communication failures, with the RAs maintaining the
previous setpoint until a new one is issued. This problem will be studied further in
future research.
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8 Conclusions and Directions for
Future Work

In this thesis, we have studied the problems of designing grid-aware real-time optimal
control for the charging/discharging of EVs.

First, in Chapter 3, we focus on grid-aware real-time charging control of an EVs.
We developed a method that, on one side, helps the grid to keep its state in safe op-
erating conditions by exploiting EVs flexibility and, on the other side, minimizes the
EVs-battery wear and keeps the charging balance between EVs connected to a CS.
More precisely, the CS follows an aggregated power-setpoint issued by a grid-control
system. By following an aggregated power-setpoint, a CS participates in the control
of the grid and helps the controller to keep a grid in safe operation conditions and
to provide services to an upper-level grid. The grid control sees a CS as a single con-
trollable resource, i.e., all connected EVs are not visible for the grid control, instead
it has abstract aggregated information about their flexibility, implementation uncer-
tainty, and preferences to implement power-setpoints. A CS, in turn, should allocate
an aggregated power-setpoint among EVs. The allocation among EVs has the following
features: it keeps the charging balance between connected EVs and it minimizes the
battery wear of EVs. Although the state of the art assumes that EV charging behavior is
ideal, we consider the impact of non-idealities on both the EV and the grid operations.
We implement a number of features that account for the realistic behaviour of EVs
by incorporating the results of the measurements on real-field deployment. In par-
ticular, our method considers a non-ideal response, due to the internal reaction and
implementation delays, of an EV to a charging power change. Furthermore, EVs have a
non-zero minimum charging power, i.e., an EV can be either switched off and consume
no power, or can charge at a power that lies between non-zero bounds, where the
minimum charging-power cannot be arbitrarily small. Consequently, the CS should
decide which EVs should be switched on and which should be switched off. This leads
to mixed-integer variables in the optimization problem. In order to solve this efficiently
in real time, we have proposed a heuristic that limits the number of integer variables
and that enables us to solve the optimization problem in real time. In Chapter 4, the
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method has been deployed and validated in real field on a real-scale microgrid with
real commercial EVs.

Second, we have studied the real-time grid-aware V2G control of EVs. The main
difference in this case is the decision regarding the discharging of EVs. Compared to
charging only EVs, where EVs are used as flexible loads, V2G EVs can be used as energy
storage and discharge their batteries when it is needed. However to do so, the control
method should take into account users’ incentives as V2G operations accelerate the
degradation of the EVs batteries. These decisions are long-term, meaning that in order
to decide when to discharge an EV, the future such as arrivals/departure of an EV, the
energy demands of charging the EV, staying times, amount of energy that V2G could
provide, and the PV production and consumption of loads (e.g., domestic buildings)
should be taken into account. We have suggested using a scenario-based MPC tech-
nique for performing the scheduling of charging/discharging of EVs. However, MPC
becomes highly computationally complicated and difficult if we add grid constraints.
Alternatively, we have proposed using a two-layer approach by using real-time grid-
aware control that keeps the grid operating safely and takes into account the decisions
of the scheduling. We have shown that the real-time control method is crucial in
order to handle intra-period fluctuations, because a scheduling layer is blind to them.
Using this method, the controller can take advantage of the available flexibility of EVs
while handling the incentives of the users’ behavior and reacting to the fluctuations of
renewable generation in order to keep the grid in safe operating conditions.

Finally, we have addressed the issues related to the integration of CSs into a grid-
control system. In Chapter 6 we have proposed a method that handles sudden un-
expected power-steps, such as load disconnections. These events can cause voltage
or line-ampacity violations. The traditional approach, i.e., avoid violations by incor-
porating hard predefined safety bounds, could be too restricted, which leads to large
sub-optimality of the grid operation. Our method permits temporary violations of the
steady-state bounds allowed by grid standards and could enable the exploitation of
the flexibility of other resources to better control the system’s state.

In Chapter 7, we have focused on non-idealities of communication communication
networks and processes and their influence on real-time control of a power grid. We
have presented a method for a real-time power grid-control that is robust in non-ideal
network conditions. We have achieved robustness by expanding the original short-
term message that resources send to the grid controller. Short-term messages are
valid for the next control period, additional information provides the estimation of
the resource state for longer time-horizons. This information is stored by the grid
controller and used in case of message loss.

Based on the work done in this thesis, there are several directions for further
research on V2G. First, in our method, we schedule each EV individually, which can be
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computationally heavy with the increasing number of EVs. However, we can improve
our solution by aggregating separately charging and discharging EVs and by having
only two variables to schedule. This would requires the method to aggregate a charging
demands of charging only EVs defined by its users and a method to aggregate energy
bids (amount of energy that an EV is planning to sell and its price) for discharging EVs.
Then, at the real-time control level, we need a technique to disaggregate the scheduled
powers among charging and discharging EVs. Second, we currently assume that EVs
can either charge or discharge. In this direction, we can expand our solution to handle
the charging-discharging operations of EVs while they are plugged-in to CSs. This
will require defining the pricing policy of EVs that are selling their energy to the grid,
because the selling energy price will now depend on the selling and buying operations
of an EV. Also, in this setting, the user can have its own strategy of selling/buying energy
from the grid. These strategies are also the directions of further investigation.
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