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Abstract
This thesis addresses theoretical and practical aspects of identification and subsequent control

of self-exciting point processes. The main contributions correspond to four separate scientific

papers.

In the first paper, we address the challenge of robust identification of controlled Hawkes

processes in applications with sparsely available data. Specifically, we propose an alternative

approach based on an expectation-maximization algorithm, which instrumentalizes the

internal branching structure of the process, thus improving the estimator’s convergence

behavior. Additionally, we show that our method provides a tight lower bound for maximum-

likelihood estimates. The relevance of the proposed technique is demonstrated on the practical

application of credit collections and trading in the presence of macroeconomic news.

The second and third paper focus on the optimal control of self-exciting point processes

using the reinforcement-learning paradigm. Contrary to traditional reinforcement learning

applications, environments driven by Hawkes-like dynamics feature an asynchronous action-

reward relationship which complicates attributing actions to their consequent rewards, and

thus hinders learning. To this end, we formulate a novel reward shaping theorem that provides

a continuous reward analogue that enables learning in such environments. Furthermore, with

the growing need for interpretable machine-learning models we formulate a monotonicity

regularizer that embeds domain expertise into the learning. Our formulation overcomes the

challenge of learning interpretable policies by constraining the policy space with a priori

expected structural properties, producing state-feedback control laws that can be readily

understood and implemented by human decision-makers. Again the results are developed in

the context of credit collections but are straightforwardly applicable to other problems with

self-exciting dynamics.

Finally, the last paper consists of an empirical investigation of cryptocurrency market mi-

crostructure through the optics of Hawkes processes. We construct a ‘reflexivity’ index that

measures the activity generated endogenously within cryptocurrency markets by fitting a uni-

variate self-exciting Hawkes process with two classes of parametric kernels to high-frequency

trading data. Our parsimonious model allows for an elegant separation and quantification

of endogenous and exogenous dynamics, and thus allows for a direct market microstructure

comparison with traditional asset classes in terms of identified branching ratios. Furthermore,

we formulate a ‘Hawkes disorder problem,’ as a generalization of the established Poisson

disorder problem, and provide a simulation-based approach to determining an optimal obser-

vation horizon—a critical consideration in the high-frequency finance context. Our analysis
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Abstract

suggests that Bitcoin mid-price dynamics feature long-memory properties, well explained by

the power-law kernel, at a level of criticality similar to fiat-currency markets.

Key words

Self-exciting point process, Hawkes process, identification, branching structure, reinforcement

learning, monotonicity regularization, market microstructure, cryptoassets.
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Résumé
Cette thèse aborde les aspects théoriques et pratiques de l’identification et du contrôle optimal

des processus ponctuels auto-excitant. Les contributions principales correspondent à quatre

articles scientifiques distincts.

Dans le premier article, nous abordons le défi de l’identification robuste des processus de

Hawkes contrôlés dans des applications avec des données éparses. Plus précisément, nous

proposons une nouvelle approche basée sur un algorithme d’espérance-maximisation, qui

utilise la structure interne du processus pour améliorer les qualités de convergence de l’es-

timateur. De plus, nous montrons que notre méthode produit une borne inférieure stricte

pour les estimations de vraisemblance maximale. La pertinence de la technique proposée est

démontrée sur l’application pratique des recouvrements de crédit et du trading en présence

d’évènements macroéconomiques.

Les deuxième et troisième articles se concentrent sur le contrôle optimal des processus ponc-

tuels auto-excitant en utilisant le paradigme d’apprentissage par renforcement. Contrairement

aux applications traditionnelles d’apprentissage par renforcement, les environnements pilotés

par une dynamique de type Hawkes présentent une relation action-récompense asynchrone

qui complique l’attribution des actions à leurs récompenses. C’est pourquoi nous formu-

lons un nouveau théorème de transformation de récompense (reward shaping) qui permet

l’apprentissage dans de tels environnements. De plus, avec le besoin croissant de modèles

d’apprentissage automatique interprétables, nous proposons une méthode de régularisation

de monotonie qui intègre l’expertise du domaine dans l’apprentissage. Notre formulation

surmonte le défi de l’apprentissage de politiques interprétables en contraignant l’espace des

stratégies faisable en utilisant des propriétés structurelles, produisant des lois de contrôle

par rétroaction d’état qui peuvent être facilement comprises et mises en pratique par les

décideurs humains. Pour ces deux articles aussi, les résultats sont testés dans le contexte des

recouvrements de crédit, mais ils sont également applicables à d’autres problèmes avec une

dynamique d’auto-excitation.

Enfin, le dernier article consiste en une enquête empirique sur la microstructure du marché

des crypto-monnaies à travers l’optique des processus de Hawkes. Nous construisons un

indice de réflexivité qui mesure l’activité générée de manière endogène sur les marchés de

la crypto-monnaie en adaptant un processus de Hawkes auto-excitant univarié avec deux

classes de noyaux paramétriques aux données de trading à haute fréquence. Notre modèle

détaillé permet une séparation et une quantification élégantes des dynamiques endogènes et

exogènes, et permet ainsi une comparaison directe de la microstructure du marché avec les
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classes d’actifs traditionnelles en termes de ratios de branchement identifiés. En outre, nous

formulons un « problème du trouble de Hawkes », en tant que généralisation du problème du

trouble de Poisson établi, et proposons une approche basée sur la simulation pour déterminer

un horizon d’observation optimal — une considération critique dans le contexte financier à

haute fréquence. Notre analyse suggère que la dynamique des prix moyens du Bitcoin présente

des propriétés de mémoire longue, bien expliquées par le noyau de la loi de puissance, à un

niveau de criticité similaire aux marchés de la monnaie fiduciaire.

Mots-clés

Processus de Hawkes, identification, structure de branchement, apprentissage par renforce-

ment, régularisation de monotonie, microstructure du marché, cryptomonnaies.
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Introduction

Motivation

Real-world systems are rarely memoryless. Observable events such as a lightening strike or a

company default principally do not arise as a result of some single invisible force, but rather

as a consequence of previous smaller events and their interactions developed into a complex

network of mutual interdependencies. As a result, when it comes to modeling real event-data

streams a memoryless Poisson point process is often of limited applicability as it is unable

to capture the underlying causal structure of events (see Fig. 1). Hawkes processes, named

after their originator Alan Geoffrey Hawkes, elegantly address this issue by assuming arrival

rate that is history-dependent. Typically, an event induces a jump in the intensity which is

then dissipated through a memory kernel. Consequently, each jump temporarily influences

the probability of additional events occurring which causes arrivals to cluster in time. Not

surprisingly, the self-exciting (or more generally self-modulating) mechanism proves to be

descriptive for many natural and social phenomena. For instance, at the outset of a pandemic

susceptible individuals contracting the disease become carriers that can potentially spread

the disease further, hence giving rise to the self-exciting dynamics. The central aim of this

thesis is to identify such systems (in terms of some parametrization), and subsequently devise

an optimal control schedule that exogenously intervenes in the system intensity in order

to attain some prespecified objective. In the example outlined, a decision maker playing

the role of a government attempts to contain the spread via costly interventions such as

prescribing spread-mitigating measures (e.g., wearing masks or ordering a curfew) which

temporarily decrease the rate of spread. A successful epidemic management then boils down

to a correct identification of the system dynamics and subsequent design of an optimal policy

that minimizes the economic costs incurred by the pandemic. Given the ubiquity of systems

featuring a self-exciting feedback loop, the methods developed in this thesis are applicable

across a wide spectrum of fields, such as optimal credit-collections or high-frequency market

microstructure modelling, both discussed in the main text.
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a)

b)

d)

c)

Time

Figure 1: Human and system interactions are often not adequately described by Poisson
(memoryless) point processes. Therefore, Hawkes processes serve as an appropriate platform
for modeling processes exhibiting such characteristics. a) Snapshot of market orders in the
DAX future contract (1073 events) b) First hour of a twitter cascade of @BarrackObama tweet
(1141 events) c) Synthetic exponential Hawkes process (1371 events) d) Poisson process (1138
events).

Contribution to the Literature

Nowadays, term Hawkes process is used to describe a rather large class of self- and mutually-

exciting point processes that goes beyond the original linear specification (Hawkes, 1971a,b).

Despite their many desirable properties (e.g., intuitive interpretation of parameters through

the branching representation (Hawkes and Oakes, 1974)) and their suitability to capture

stochastic clustering, a phenomenon pervasive in many fields, Hawkes processes long had

very little practical impact. The first significant application likely appeared in seismology (Vere-

Jones, 1975; Adamopoulos, 1976) where the self-exciting mechanism was adopted to model

temporally clustered earthquake and after-shock sequences. A decade later, Ogata (1988)

formulated a more general spatio-temporal version, the Epidemic Type Aftershock Sequence

(ETAS) model, which ignited a steady stream of publications on its many variants (Ogata

and Zhuang, 2006). Gradually, Hawkes processes proliferated to other seemingly unrelated

disciplines ranging from neuroscience (firing of neurons), social media (tweet cascades), and

criminology (terrorist threat modeling) to finance (Truccolo et al., 2005; Truccolo, 2016; Mohler

et al., 2011). Finance especially has been a fertile ground for new applications (Bacry et al.,

2015) that fuelled further theoretical developments, e.g., the development of new nonpara-

metric estimation methods (Bacry et al., 2016). Owing to the process popularity, the problem

of parameter estimation is well explored with classical approaches being direct maximization

of the maximum-likelihood function (Rubin, 1972; Ogata, 1978), expectation-maximization

of the branching structure augmented maximum-likelihood function (Veen and Schoenberg,

2008), or more seldomly a generalized method of moments (Besbes et al., 2010; Chehrazi and

Weber, 2015). On the other hand, the control problem has so far received considerably less

2



Contribution to the Literature

attention. While the theory on the optimal control of Markov jump-diffusion processes and

Markov jump processes is well developed, the control problem for Hawkes processes has been

largely understudied. Chehrazi et al. (2019) study a specific version of this problem in the

context of credit collections. Therein, a debt holder pays off his outstanding balance via a

stream of repayments modeled as a marked exponential Hawkes process, while the collector

influences the debtor’s intensity through costly account treatments in order to maximize the

net present value of the amount collected. The authors provide a semi-analytical recursive

solution for the optimal value function and characterize the optimal policy via action and

inaction regions in the state space. Recent advances in reinforcement learning solicited a

more data-driven approach where the intensity dynamics are not pre-specified but rather

encoded in a recurrent neural network (Upadhyay et al., 2018). The policy is then represented

as a parametric intensity from which action events are sampled, and is learned via an adapted

policy gradient algorithm. Despite its many advantages, model-free reinforcement learning

is infamous for the inherent hyper-parameter fine tuning, further exacerbated by the use of

parameter-rich recurrent networks, and the excessive amounts of data required in order to

obtain a high-confidence fit. As a result, opting for this approach can, in many instances, be

impractical. Interestingly, the control problem is qualitatively similar to the work of Bayraktar

and Ludkovski (2009) who track the state of a hidden Markov jump process by observing a

marked Poisson process with local characteristics (i.e., its intensity and mark distributions)

depending on the latent state. While the latent (true) intensity is unknown, authors compute

a Bayesian estimate of the unobservable intensity which turns out to feature the self-exciting

property. That is, if an observable event occurs a positive jump in the Baysian intensity esti-

mate is induced reflecting a confidence increase of being in a high state, while over the periods

of inactivity the Bayesian estimate exponentially decays.

This thesis adds to the many recent advances in the field and extends the available theory

of identification and control of complex systems with underlying self-exciting dynamics.

Specifically, without loss of generality, we focus on linear controlled Hawkes processes with

intensity

λ(t |H t ) =µ(t )+ ∑
i :τi<t

g (t −τi ,mi )+a(t ), (1)

whereµ(t ) represents a deterministic time-dependent base rate, g (t ,m) specifies the triggering

kernel determining the covariance properties of the process, and an open loop -control term

a(t ). Theσ-algebra H t describes all the available information up to time t , i.e., H t , {(τi ,mi ) :

τi < t } ,where τi and mi denote arrival times and their respective marks.

The orchestration of our approach is depicted in Fig. 2. Firstly, a parametric dynamic system

featuring Eq. (1) is fitted to an observed data stream consisting of marked temporal events and

an open-loop control variable.1 The dynamic system then repeatedly samples independent

1The control variable can always be set to zero returning linear self-exciting dynamics.

3



Thesis Overview
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Figure 2: Schema of the identification and control processes.

history realizations that are transformed into a reward signal that encodes decision maker’s

preferences over realized histories. Taking in the signal and the information about the current

state x(t ), the controller provides the dynamic system with a new policy a(t ) that maximizes

some performance metric Jπ(·), thus finishing a single iteration of the process. The nature

of the solution to the optimal control problem is very much determined by the specific

structure of the action costs. In situations where action entails a fixed cost infrequent impulse-

control interventions become optimal (e.g., in the inventory management it is optimal to do

nothing until the stock drops below some trigger level, at which point it is best to replenish).

Consequently, the optimal action schedule can be broadly characterized by three disjoint

regions in the state space (inaction, action, and holding/transient) (Stokey, 2008).

Thesis Overview

This thesis comprises published, submitted and unpublished articles jointly written with

my supervisor Prof. Thomas Alois Weber, and my collaborators Naveed Chehrazi and Jan

Sila. The thesis contains four chapters divided into three parts. Chapter 1 addresses the

challenge of identification of controlled point processes, specifically in environments with

sparse amounts of data. Chapter 2 and Chapter 3 are dedicated to a model-free reinforcement

learning approach to decision problems with Hawkes-like asynchronous dynamics. Finally,

Chapter 4 contains an empirical investigation of high-frequency market dynamics that adds

to the existing discussion on the endo-exo problem from a new angle of crypto currencies.

The chapters are self-contained and organized as follows:

1. Robust Estimation of Controlled Hawkes Processes

The identification of Hawkes-like processes can pose significant challenges. Despite

substantial amounts of data, standard estimation methods show significant bias or fail

to converge. To overcome these issues, we propose an alternative approach based on an

4
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expectation-maximization algorithm, which instrumentalizes the internal branching

structure of the process, thus improving convergence behavior. Furthermore, we show

that our method provides a tight lower bound for maximum-likelihood estimates. The

approach is discussed in the context of a practical application, namely the collection of

outstanding unsecured consumer debt.

2. Reinforcement Learning Approach to Credit Collections

This paper develops a dynamic reinforcement-learning agent capable of finding high-

quality policies for the practice of debt collections. At its core, the agent effectively

learns how to control a stochastic self-exciting point process in order to maximize an

asynchronously obtained reward. To this end, we formulate a stochastic reward shap-

ing theorem that transforms otherwise discretely observed reward into its continuous

analogue, thus enabling learning. Because we use a general formulation of the problem

as an agent-environment interaction our results are readily extensible beyond the pre-

sented application to other problems featuring dynamics based on self-exciting point

processes. Furthermore, with the growing need for interpretable machine-learning

models we augment the learning procedure with a domaine knowledge regularizer

which makes learned policies and value functions intuitively understandable for human

decision makers. Finally, we demonstrate the viability of our approach on a traditional

neural net approximator as well as on a simpler, linear B-Spline q-function approxima-

tor.

3. Domain-Knowledge Enhanced Policy Gradient: Application to Credit Collections

We develop a deterministic policy gradient method that allows for a natural integration

of domain expertise into the learning procedure. Domain knowledge can often be

formulated in terms of policy monotonicity and/or convexity with respect to relevant

state inputs. We augment the standard actor-critic policy approximator using a mono-

tonically regularized loss function that directly integrates domain expertise into the

learning. Our formulation overcomes the challenge of learning interpretable policies by

constraining the policy space with a priori expected structural properties, producing

state-feedback control laws that can be readily understood and implemented by human

decision makers. We apply our domain-knowledge enhanced learning approach to the

problem of optimal credit collections that features a controlled Hawkes process and an

asynchronous action-feedback relationship.

4. Quantifying Endogeneity of Cryptocurrency Markets

We construct a ‘reflexivity’ index to measure the activity generated endogenously within

a market for cryptocurrencies. For this purpose, we fit a univariate self-exciting Hawkes

process with two classes of parametric kernels to high-frequency trading data. A parsi-

monious model of both endogenous and exogenous dynamics enables a direct compar-

ison with exchanges for traditional asset classes, in terms of identified branching ratios.

We also formulate a ‘Hawkes disorder problem,’ as generalization of the established

Poisson disorder problem, and provide a simulation-based approach to determining an

5



Thesis Overview

optimal observation horizon. Our analysis suggests that Bitcoin mid-price dynamics

feature long-memory properties, well explained by the power-law kernel, at a level of

criticality similar to fiat-currency markets.

6



Part IIdentification

7





1 Robust Estimation of Controlled
Hawkes Processes

This chapter is based on Mark, M. and Weber, T. A. (2020). Robust Identification of Controlled

Hawkes Processes. Physical Review E, 101(4):043305.

1.1 Introduction

In contrast to the exogenous intensity of an inhomogeneous Poisson point process, the

intensity of a Hawkes process is self-exciting: it depends endogenously on the arrival his-

tory (Hawkes, 1971a,b). Any arrival event induces an intensity jump which dissipates through

a memory kernel, and this in turn influences the probability of the next arrival event. The first

applications of Hawkes processes appeared in seismology, for the analysis of earthquakes and

associated aftershock sequences (Hawkes and Adamopoulos, 1973). Since then, self-exciting

processes have proved useful across numerous other fields, including finance (Bacry et al.,

2015), marketing (Xu et al., 2014), and neuroscience (Truccolo, 2016), to name a few. The

performance of the underlying parametric models depends first and foremost on a correct

model specification. Here we focus on the identification of a class of linear controlled marked

Hawkes processes, where the arrival events include scalar marks and the arrival intensity

is regulated by an impulse control. This class of controlled self-exciting processes was first

considered by Chehrazi and Weber (2015) to predict the repayment behavior of unsecured

loans placed in credit collections. In this application, the collector disposes of a set of account-

treatment actions (e.g., establishing first-party contact or sending a notice letter) to exert

pressure on the debtor. A similar class of processes was used by Rambaldi et al. (2015) to

model foreign-exchange price dynamics subject to exogenous deterministic jumps in the form

of news about macroeconomic events.

In the credit-collection example, a misspecification of model parameters leads to faulty pre-

dictions of account values and suboptimal account-treatment schedules.1 Although standard

identification techniques, such as maximum-likelihood estimation (MLE), may well be asymp-

totically consistent, the corresponding estimators tend to exhibit a significant bias as soon

1For optimal closed-loop control of repayment processes, see Chehrazi et al. (2019).
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as the amount of available data is sparse. This is the case in many practical applications

such as credit collections where a delinquent account over the collection history usually

features only a few repayment events. In addition, it is often difficult to compute the best-fit

parameters because of nonconcavities and near-vanishing gradients of the objective function

that lead to ill-conditioned iterations. To ameliorate convergence behavior and estimation

performance of standard MLE-methods, we propose a robust estimation method based on an

expectation-maximization (EM) algorithm. The latter exploits the branching structure of the

process, featuring a primal-dual type approximation. In each iteration, first the lower bound

for the likelihood function is updated (“expectation step”) before the parameter estimate

is reoptimized (“maximization step”). Using a fairly generic setup (in the context of credit

collections, to fix ideas), we show that the EM-algorithm achieves substantial improvements

in convergence behavior and thus an increased robustness with respect to a broad range of

starting values for the parameter vector.

1.1.1 Literature

Due to its relative simplicity, MLE is a common inference method for point processes specified

via conditional intensity. A semi-closed form for the estimator was derived by Rubin (1972)

who established a link between the conditional density function of the interarrival times and

the intensity for regular point processes.2 The performance of MLE was tested for the first

time on seismic data by Ozaki (1979), who also introduced computationally efficient recursive

simplification for MLE and derived the Jacobian and Hessian of the corresponding likelihood

function. Determining the MLE-estimator then amounts to solving a nonconvex program,

using appropriate optimization machinery—with the Jacobian and Hessian readily available

for the univariate case. Although Ogata (1978) proved that the associated MLE-estimator

is asymptotically normal, efficient, and consistent, the amount of data available for fitting

is often insufficient for attaining the asymptotic regime. The resulting estimates tend to be

heavily biased or worse, the estimator fails to converge, in many practical applications. For

example, such convergence issues were noted in the case of our class of controlled Hawkes

processes by Chehrazi and Weber (2015) who proceeded, somewhat ad hoc, to filter out un-

likely local minima using a Cramér-von Mises goodness-of-fit criterion. The generically poor

and unreliable convergence of the MLE-estimator is further exacerbated by the log-likelihood

function’s exhibiting frequently multimodal or extremely flat behavior near its critical points,

resulting overall in a lack of apparent well-posedness (Hadamard, 1902), in the sense that close

initialization values can produce very different estimation results. Veen and Schoenberg (2008)

documented these anomalies for the popular seismological spatial-temporal Epidemic Type

Aftershock Sequence (ETAS) model (Ogata, 1998, 1988, 1993) highlighting the low curvature of

the ETAS log-likelihood which deteriorates the performance of the numerical optimization

routine. Furthermore, multimodality of the log-likelihood has been empirically confirmed,

since for different starting values the optimizer converges generically to different local minima.

2A regular point process, defined on a standard probability space (Ω,Ft ,P), is nonexplosive (i.e., N (t ) <∞ for
all finite t ≥ 0).
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To overcome the associated computational challenges, the authors suggested to take advan-

tage of the natural branching structure of the process (Hawkes and Oakes, 1974) framing the

estimation as an incomplete-data problem where the information about which event triggers

other events is unobservable. Building on the case presented by Veen and Schoenberg for

the ETAS model, we develop an adapted version of the expectation-maximization algorithm

suited for our class of controlled Hawkes processes. Furthermore, we improve the original

method by an additional term that shifts the EM-objective function (i.e., the “expected com-

plete log-likelihood,” see Section 1.3.2) such that, at the optimum, it becomes a tight lower

bound to the log-likelihood function.

1.1.2 Outline

The remainder of this paper is organized as follows. In Section 1.2, we introduce the class of

linear controlled Hawkes processes and showcase its importance in two practical examples.

Section 1.3 first reviews the MLE-estimator pinpointing its shortcomings and then constructs

our estimation method based on the EM-algorithm. In Section 1.4, we compare the two

methods in terms of their respective convergence stability and bias. Section 1.5 concludes.

1.2 Controlled Hawkes Processes

1.2.1 Definition

The intensity of a (linear) controlled Hawkes process (CHP) is given by

λ(t |H t ) =µ(t )+ ∑
i :τi<t

g (t −τi ,mi )+a(t ), (1.1)

where τi ≥ 0 denotes the i -th arrival time and mi ∈ R the corresponding mark, for i ≥ 1.

The background intensity rate µ(t) is a deterministic function of time t ≥ 0, the function

g :R+×R→R+ is a (nonnegative-valued) memory kernel, and the (open-loop) control a(t ) is

assumed to be a right-continuous function of the form

a(t ) = ∑
j :ϑ j<t

Φ j (t −ϑ j ), (1.2)

where each Φ j : R+ → R+ denotes a (nonnegative-valued) exogenous kernel and each ϑ j

an instant at which the control variable a undergoes a jump, for j ≥ 1. The corresponding

control impulses are dissipated via the (nonnegative-valued) exogenous kernelsΦ j as opposed

to the endogenous kernel g which governs the memory from self-excitation. We assume

that on any finite time interval [0, t ] the number of impulses is finite, and the intervention

times ϑ j are known in advance. We also assume that both types of kernels satisfy the usual

stationarity condition, so
∫ ∞

0 max{Φ j (t), g (t)}d t ≤ 1 for all relevant j .3 The σ-algebra H t =

3In applications with a finite observation horizon, it is sufficient to impose
∫ ∞

0 max{Φ j (t ), g (t )}d t <∞.
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Figure 1.1: Dependence of the stochastic intensity λ(t ) on arrival history and control impulses.

{{(τi ,mi )}× {ϑ j } : τi < t ,ϑ j < t } describes the process history, including mark sizes mi and

impulse times ϑ j . A sample intensity path is shown in Fig. 1.1.

1.2.2 Examples

The practical relevance of CHPs is illustrated by the following two examples.

Example 1 (Trading with Macroeconomic News) Rambaldi et al. (2015) analyze the impact

of macroeconomic news on market activity, measured by the rate of change in the best quotes.

They consider a Hawkes process driven by an endogenous and an exogenous kernel. The

self-excitation effect is described by an unmarked endogenous kernel in the form of a linear

combination of exponentials,

g (t ) =αAe−βA t +αB e−βB t ,

and the effect of (recurring) macroeconomic news by an exogenous kernel in the form of a

single exponential,

ΦN (t ) =αN e−βN t .

While best-quote changes occur at the random instants τi , the arrival timesϑ j of news releases

are known in advance, rendering the exogenous kernel deterministic. Provided the control

function a(t ) ≡∑
j :ϑ j<t ΦN (t −ϑ j ), the intensity of the controlled Hawkes process is then given

by Eq. (1.1).

Example 2 (Credit Collections) A CHP was used by Chehrazi and Weber (2015) to predict the

repayment behavior by holders of credit-card accounts in default. A delinquent account with

outstanding balance B(0) > 0 placed into collections at time t = 0 is credited with relative

repayments ri at times {τi }i∈N until the outstanding debt is paid in full. The sequence (τi ,ri ),

12
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for i ≥ 1, constitutes a marked point process with intensity dynamics that can be described by

a mean-reverting stochastic differential equation together with an initial condition:

dλ(t ) = κ (λ∞−λ (t )) d t︸ ︷︷ ︸
mean-reversion

+ δ>1 d J (t )︸ ︷︷ ︸
self-excitation

+d a(t )︸ ︷︷ ︸
control

,

λ(0) =λ0,

(1.3)

where the two-dimensional jump process J(t) = [N (t ),R(t )]> represents the marked and

unmarked version of the same counting process; indeed, N (t ) =∑
i 1{τi<t } captures the holder’s

willingness to pay and R(t ) =∑
i 1{τi<t }ri his or her ability to pay. The parameterλ∞ represents

the long-run steady-state to which the repayment intensity reverts at the rate κ, while δ1 =
[δ10,δ11] denotes the sensitivity to the self-exciting two-dimensional jumps. The control

variable a(t ) is assumed to be a deterministic nondecreasing right-continuous and piecewise-

constant function, taking values in R+. The exogenous kernel is

a(t ;δ2,κ) = ∑
j :ϑ j<t

δ2l (ϑ j )e
−κ(t−ϑ j ),

where the parameter vector δ2 = (δ21,δ22, . . . ,δ2M ) contains the sensitivities of the repayment

intensity to M different account-treatment actions, and the mapping l :R+ →N+ describes

the type l (ϑ j ) of the action taken at time ϑ j . In practice, the impulses map to the available

collector actions which can vary from mild (inducing smaller intensity jumps, e.g., by sending

a letter of notice or making phone calls) to severe (inducing larger intensity jumps, e.g., by

filing a lawsuit). Overall, the repayment intensity evolves according to Eq. (1.1) for mi ≡ ri . In

this, the deterministic drift,

µ(t ) =λ∞+ (λ0 −λ∞)e−κt ,

is exponentially mean-reverting, and the triggering kernel,

g (t −τi ,ri ) = (δ10 +δ11ri )e−κ(t−τi ),

describes the effect of a repayment-event arrival at time τi on the repayment intensity for all

t ≥ τi .

1.2.3 Branching Structure

The branching structure presents an augmented view of a Hawkes point process, consisting

of the Poisson cluster-process representation introduced by Hawkes and Oakes (1974). It

maps event arrivals to clusters, each of which begins with an immigrant arrival following

an inhomogeneous Poisson process of base-rate intensity µ(t)+ a(t). Subsequently, every

immigrant generates its own offsprings following an inhomogeneous Poisson process with

intensity given by the triggering kernel g (t), and this cascades through all offsprings, thus

generically clustering the event arrivals. Conceptually, all events fall into two categories:

immigrant arrivals and offspring arrivals. Offspring events are triggered by existing events in

13
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Figure 1.2: Branching-structure representation with immigrants (�) and offsprings ( ) at the
arrival times τi (×).

the process, while immigrant events arrive independently without being preceded by a parent

event. This conceptual separation provides additional inner structure to the process.4 More

specifically, the branching structure of the i -th arrival at time τi is described by a mapping

u :R+ →N+, so

ui = u(τi ), i ≥ 1, (1.4)

where

ui =
{

i , if arrival i is an immigrant arrival,

j , if the immediate ancestor of arrival i is arrival j .

Assigning either the immediate ancestor j < i (if it exists), or else the current event i , the

variable ui ∈ {1, . . . , i } determines the branching structure of the Hawkes process, by means of

the marked point process (τi ,ui ); see Fig. 1.2.

In practice, the branching structure is usually unobservable. Yet, conditional on a set of

process parameters and a sample sequence (τi ,mi ), it is possible to recover its probability

distribution,

P [ui = i |H t ] = µ(τi )+a(τi )

λ(τi )
and P

[
ui = j |H t

]= g (τi −τ j ,mi )

λ(τi )
, 1 ≤ j < i . (1.5)

Thus, it is possible to probabilistically assign any arrival i to being an immigrant or offspring

(Fig. 1.3b).

As shown in Fig. 1.3a, a Hawkes process can be decomposed into a base-rate process and a sum

of arrival-triggered inhomogeneous Poisson processes. The resulting (probabilistic) branching

structure can be used to perform efficient numerical simulation (Møller and Rasmussen, 2006),

4See Daley and Vere-Jones (2003) for details on the theory of branching processes.
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Figure 1.3: a) Intensity decomposition of the Hawkes process from Fig. 1.2 into a base-rate
process and arrival-triggered inhomogeneous Poisson processes. Notice that the ratio of the
intensity induced due to a particular arrival to the total intensity determines the probability
that the event is an offspring of that particular arrival. b) Representation of the branching
distribution: each row designates the probability mass function for the particular arrival; the
diagonal represents probabilities of events being immigrants.

or as we show in Section 1.3, to improve process identification.

Remark 1 The branching structure implies an intuitive iso-perimetric constraint on the trig-

gering kernel g that ensures the stability of the system. Indeed, the average number of

direct (i.e., first-order) offsprings generated by a single event is the expected branching ra-

tio ν= Em
[∫ ∞

0 g (t ,m)d t
]
, whereby the point process remains stable if and only if ν< 1.5

1.3 Identification

Our estimation procedure is presented in the context of Ex. 2 concerning the collection on

defaulted credit-card accounts. Repayments follow a CHP with intensity described by Eq. (1.1),

conditional on the parameter vector θ = (κ,λ0,λ∞,δ10,δ11,δ2), a known distribution F of

the relative repayments (marks) mi = ri , and a given sequence of account-treatment times

{ϑ j } j∈N. The information from a realization of such a process then consists of event times

{τi }i∈N, associated marks {ri }i∈N (representing a sample draw from the relative-repayment

distribution F ) and associated account-treatment times {ϑ j } j∈N. Note that the components

δ
( j )
2 of the parameter vector δ2 usually take values in a finite set D with nA elements, cor-

responding to the finitely many available actions, some of which (e.g., phone calls or text

messages) may be applied repeatedly to the same account.

In the remainder of this section, we assume that K paths H k
T (for k ∈K ) have been observed

5Stability is defined as “nonexplosiveness” of the process in the sense that the ratio of total events N (t ) to the
number M(t ) = ∫ t

0 (µ(s)+a(s))d s of immigrant events remains bounded with probability 1. The stability criterion
of ν< 1 obtains, since for large t it is N (t ) ≈ M(t )/(1−ν), by the geometric-series formula.
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over a finite time interval [0,T ], corresponding to an account portfolio K = {1, . . . ,K }. The

joint information is summarized by H K
T = {

H k
T : k ∈K

}
.

1.3.1 Maximum-Likelihood Estimation

The conventional MLE-procedure directly solves

max
θ∈Θ

lnL
(
θ|H K

T

)
,

subject to θ ≥ 0.
(M)

where the incomplete data log-likelihood is given by

lnL (θ|H K
T ) =

K∑
k=1

(
−

∫ T

0
λ(s|θ,H k

s )d s +
∫ T

0
lnλ(s|θ,H k

s )d N (s)

)
. (1.6)

The descriptor incomplete was coined by Veen and Schoenberg (2008); it emphasizes the fact

that the estimator does not use additional branching-structure information. The incomplete

log-likelihood estimator derived in this manner is asymptotically normal, efficient, and consis-

tent. However, it suffers from the following two notable defects that significantly deteriorate

its performance:

a) A closed-form solution to the maximization problem (M) is rarely available. Moreover,

the efficiency of first- and second-order numerical methods is often poor, as in many

cases the log-likelihood is extremely flat; see Fig. 1.4. Along certain trajectories even large

disturbances reduce the log-likelihood only marginally. For instance, in the (λ∞,κ)-

subspace the parameter λ∞ can be increased by a factor of 2 without significantly

impacting the objective function.

b) Even in the simplest case of a constant-rate exponential Hawkes process, the log-

likelihood can be multimodal (Ogata and Akaike, 1982). Specifically, the log-likelihood

is concave only in the case where κ is fixed. For more complicated models, such as the

case of the repayment process in Ex. 2, the optimization program is guaranteed to be

nonconvex. Even if the log-likelihood is unimodal, due to the extreme flatness near the

MLE-estimates θ̂, the objective function can become numerically multimodal as a result

of rounding errors.

Although the main focus is to showcase how the branching structure can be employed in

the estimation, we note several possible workarounds for MLE-convergence problems. The

simplest solution to prevent the MLE-estimator from getting stuck at a local minimum is

to solve the optimization program (M) in parallel for a large batch of starting values and

then select the solution that achieves the highest log-likelihood. Although effective, the

main drawback of this method is its computational cost, as will be shown in Section 1.4; the
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Figure 1.4: Flatness of the log-likelihood in multidimensional settings. The flatness is usually
aggravated in a multidimensional context. Pairs of components of θ are varied around their
MLEs θ̂ (green dot), while all other components remain fixed. a) Variation of κ. b) Variation
of δ11.

advantage of this method, compared to the EM-based algorithm presented below, is negligible.

Another highly popular technique relies on the regularization of the estimator, imposing a

coefficient penalty in an L1- or L2-norm (Zhou et al., 2013; Valera and Gomez-Rodriguez,

2015). In the context of Hawkes processes, Guo et al. (2018) proved that the regularized

estimator is stable. However, the exact effects of the regularizer on the convergence are still

not well understood; that is, despite being functional in practice, it does remain a “black-box

solution.”

1.3.2 Expectation-Maximization Algorithm

The expectation-maximization algorithm is based on the branching-structure representation

introduced in Section 1.2.3. The idea is to provide the estimator with additional structural

information about the process conditional on the observed sample in order to improve the

fitting procedure, with the aim of circumventing the problems of ill-conditioning and lack of

convergence that are prevalent in the standard MLE-procedure.

Complete Maximum-Likelihood Estimator. For a known branching structure described with

the mapping u in Eq. (1.4), one obtains the complete data log-likelihood function as a sum of

two terms, L1 and L2.

(i) Log-likelihood for immigrant events arriving with base-rate intensity λb(t |H k
t ) =µ(t )+∑

j :ϑ j<t Φ j (t −ϑ j ), where µ(t ) =λ∞+ (λ0 −λ∞)e−κt is the deterministic intensity of the

inhomogeneous Poisson process for the immigrants and Φ j (t −ϑ j ) = δ2l (ϑ j )e
−κ(t−ϑ j ) is
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Figure 1.5: Convergence problems of the conventional MLE. Except for δ10 and δ11 the starting
values for the estimation procedure are set to their reference values in θr ; see Table 2.1. Black
crosses denote starting values; blue diamonds denote estimation results; the green circle
marks the location of the reference parameters. a) In 39 out of 100 cases, the optimization
converged to absurdly large values and was registered as failed by red squares. b) Although the
MLE-procedure converged in all 100 cases, the two discovered minima are local, both far from
the reference parameters.

the effect of the action j carried out at time ϑ j :

L1

(
κ,λ0,λ∞,δ2|H k

T ,u
)
=−

∫ T

0
λb(s|H k

s )d s +
∫ T

0
lnλb(s|H k

s )d N (s)

=−
(∫ T

0
µ(s)d s + ∑

j :ϑ j<T

∫ T

ϑ j

Φ j (s −ϑ j )d s

)
+ ∑

i :τi≤T
1{ui=i } lnλb(τi |H k

τi
)

=−
(
λ∞T + 1−e−κT

κ
(λ0 −λ∞)+ ∑

j :ϑ j<T
δ2 l (ϑ j )

1−e−κ(T−ϑ j )

κ

)

+ ∑
i :τi≤T

1{ui=i } ln

(
µ(τi )+ ∑

j :ϑ j<τi

δ2 l (ϑ j )e
−κ(τi−ϑ j )

)
,

for all accounts k ∈K .

(ii) Cumulative log-likelihood of offspring events generated, respectively, by the different

inhomogeneous Poisson processes with intensity g (t −τi ,ri ) = (δ10 +δ11ri )e−κ(t−τi ), for
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t ∈ [τi ,T ]:

L2

(
κ,δ10,δ11|H k

T ,u
)
=

N (T )∑
i=1

[
−

∫ T

τi

g (s −τi ,ri )d s +
∫ T

τi

ln g (s −τi ,ri )d N (s)

]

=
N (T )∑
i=1

[
−

∫ T

τi

g (s −τi ,ri )d s +
N (T )∑
j=i+1

1{u j=i } ln g (τ j −τi ,ri )

]
,

for all accounts k ∈K .

Summing L1 +L2 over the available sample paths in the account portfolio K , the complete

log-likelihood of the branching process, with intensity in Eq. (1.1), becomes

lnLC
(
θ|H K

T ,u
)= K∑

k=1

[
L1

(
κ,λ0,λ∞,δ2|H k

T ,u
)
+L2

(
κ,δ10,δ11|H k

T ,u
)]

. (C)

Note that the construction of the complete log-likelihood takes into account that the endoge-

nous processes generating the offspring arrivals are mutually independent and independent

of the exogenous process generating the immigrant arrivals (Hawkes and Oakes, 1974).

As the branching structure is unobservable, the complete log-likelihood is generally unavail-

able. It is therefore natural to resort to the expected complete log-likelihood (ECLL), conditional

on the observed portfolio history H K
T :

E
[
lnLC

(
θ|H K

T

)]= K∑
k=1

E
[
−

∫ T

0
λb(s|θ,H k

s )d s +
N (T )∑
i=1

1{ui=i } lnλb(τi |θ,H k
s )

−
N (T )∑
i=1

∫ T

τi

g (s −τi ,ri )d s +
N (T )∑
i=2

i−1∑
j=1

1{ui= j } ln g (τi −τ j ,r j )
]

.

Using the identity E
[
1{ui= j }|θ,H k

T

]=P[
ui = j |θ,H k

T

]
together with Eq. (1.5), we obtain the

ECLL:

E
[
LC

(
θ|H K

T

)]= K∑
k=1

[
−

∫ T

0
λb(s|θ,H k

T )d s +
N (T )∑
i=1

P
[

ui = i |θ,H k
T

]
lnλb(τi |θ,H k

T )

−
N (T )∑
i=1

∫ T

τi

g (s −τi ,ri )d s +
N (T )∑
i=2

i−1∑
j=1

P
[

ui = j |θ,H k
T

]
ln g (τi −τ j ,r j )

]
. (EC)

EM-Algorithm.The expectation-maximization algorithm is initialized with a parameter value

θ0 obtained by using prior experience or an educated guess. The first step of the two-step

iteration procedure (in iteration n ≥ 1) consists of computing the conditional ECLL of the

branching structure, termed Q(θ,θn), by conditioning the probability distribution of the

branching structure in Eq. (1.5) on the best available parameter estimate θn and the process

parameters on the unknown parameter θ and the available portfolio data H K
T . In the second

step, one then performs a maximization of Q(θ,θn) with respect to θ, resulting in the next
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Chapter 1. Robust Estimation of Controlled Hawkes Processes

iterate: θn+1.

Expectation Step (E-Step). Using standard notation from the unsupervised-learning litera-

ture, where the EM-algorithm is frequently used for clustering purposes (John Lu 2010), the

conditional ECLL becomes

Q(θ,θn) =
K∑

k=1

[
−

∫ T

0
λb(s|θ,H k

T )d s +
N (T )∑
i=1

P
[

ui = i |θn ,H k
T

]
lnλb(τi |θ,H k

T )

−
N (T )∑
i=1

∫ T

τi

g (s −τi ,ri )d s +
N (T )∑
i=2

i−1∑
j=1

P
[

ui = j |θn ,H k
T

]
ln g (τi −τ j ,r j )

]
. (1.7)

Note that the endogenous kernel g is computed conditional on the “true” parameter θ.

Maximization Step (M-Step). Based on the current parameter estimate θn the next iterate is

determined as a result of maximizing the conditional ECLL:

θn+1 ∈ argmax
θ∈Θ

Q(θ,θn), (1.8)

where the compact parameter setΘ is a subset of the positive orthant, chosen by the user so

as to limit the search using standard numerical tools.

Termination. Starting with the initial seed θ0, one iterates through the Expectation and

Maximization steps until the termination condition,

Q(θn+1,θn+1)−Q(θn ,θn) ≤ ε, (1.9)

is satisfied for a sufficiently small tolerance ε> 0. The procedure is summarized hereafter.

Initialize seed θ0 ∈Θ, fix a tolerance ε ∈ (0,1), and set n ← 0, δ← 1 ;
while δ> ε do

E-Step: Calculate P
[
ui = j |θn ,H K

T

]
for all 1 ≤ j ≤ i ≤ N (T ) ;

M-Step: Find θn+1 ∈ argmaxθ∈ΘQ(θ,θn) ;
n ← n +1 and δ←Q(θn+1,θn+1)−Q(θn ,θn) ;

end

Convergence. Dempster et al. (1977) show that the sequence (Q(θn ,θn))n∈N is increasing

and bounded, so that it must converge (Rudin et al., 1976, p. 55). However, there is no

guarantee that the limit of the maximizing sequence (see, e.g., Gelfand and Fomin, 1963,

Ch. 8) is indeed associated with a global extremum. Conceptually, the EM-estimates are

expected MLE-estimates. Dempster et al. (1977) also establish that estimates obtained using

the EM-algorithm are consistent, just as standard MLE-estimates (based on the incomplete

log-likelihood function).

Solving the MLE-problem (M) numerically usually entails local approximations of the objective
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function, followed by choosing an appropriate increment in the direction of steepest ascent.

By contrast, the EM-algorithm produces a local approximation of the objective conditional

on the model parameters and the distribution of the branching structure as a latent variable.

This local approximation constitutes a lower bound for the incomplete log-likelihood (Minka,

1998). The EM-algorithm alternates between updating the lower bound (E-step) in Eq. (1.7)

and updating the parameter estimate (M-step) in Eq. (1.8) until the termination condition in

Eq. (1.9) is satisfied. Thus, by construction, L (θ̂|H K
T ) ≥Q(θ̂, θ̂), as shown in the remark below.

Intuitively, direct maximization can be viewed as fitting a single point process with specified

intensity function, whereas maximizing the conditional ECLL (via the EM-algorithm) simulta-

neously fits N (T )+1 inhomogeneous Poisson processes,6 each weighted by its corresponding

branching-structure probability.

Remark 2 (EM produces lower bound for MLE) For simplicity we assume that a = 0 (or else
consider µ̂=µ+a instead of µ). Comparing the classical incomplete log-likelihood and the
expected complete log-likelihood (as in a log-likelihood-ratio test) yields

lnL −E[lnLC ] =
N (T )∑
i=1

lnλ(τi )−
N (T )∑
i=1

µ(τi )

λ(τi )
lnµ(τi )−

N (T )∑
i=2

i−1∑
j=1

g (τi −τ j ,m j )

λ(τi )
ln g (τi −τ j ,m j )

=
N (T )∑
i=2

[
ln

(
µ(τi )+

i−1∑
j=1

g (τi −τ j ,m j )

)
− µ(τi )

λ(τi )
lnµ(τi )

−
i−1∑
j=1

g (τi −τ j ,m j )

λ(τi )
ln g (τi −τ j ,m j )

]
=

N (T )∑
i=2

[
ln

(
µ(τi )+

i−1∑
j=1

g (τi −τ j ,m j )

)

− ln

(
µ(τi )P[ui=i ]

i−1∏
j=1

g (τi −τ j ,m j )P[ui= j ]

)]

=
N (T )∑
i=2

ln

(
µ(τi )+∑i−1

j=1 g (τi −τ j ,m j )

µ(τi )P[ui=i ] ∏i−1
j=1 g (τi −τ j ,m j )P[ui= j ]

)
≥ 0.

To obtain the last inequality, note first that µ and g have nonnegative values, and P[ui =
i ]+∑i−1

j=1P[ui = j ] = 1, for all i ∈ {1, . . . , N (T )}. Furthermore, it is

µ(τi )+
i−1∑
j=1

g (τi −τ j ) ≥P[ui = i ]µ(τi )+
i−1∑
j=1

g (τi −τ j ,m j )P[ui = j ].

By the concavity of the natural logarithm and Jensen’s inequality we get

ln

(
P[ui = i ]µ(τi )+

i−1∑
j=1

g (τi −τ j ,m j )P[ui = j ]

)
≥P[ui = i ] lnµ(τi )+

i−1∑
j=1

P[ui = j ] ln g (τi −τ j ,m j ).

6Any immigrant arrival triggers an offspring process and so does each offspring arrival. Hence, there is a
process for each arrival (altogether N (T ) processes) and one immigrant process. The N (T )+1 processes are
coupled by the branching distribution in Eq. (1.5), which depends on the parameter vector and the observed
sample data.
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The right-hand side can then be rewritten in the form

lnµ(τi )P[ui= j ] +
i−1∑
j=1

ln g (τi −τ j ,m j )P[ui= j ] = ln

(
µ(τi )P[ui=i ]

i−1∏
j=1

g (τi −τ j ,m j )P[ui= j ]

)
.

Finally, given that the logarithm is an increasing function, it is

µ(τi )+
i−1∑
j=1

g (τi −τ j ,m j ) ≥µ(τi )P[ui= j ]
i−1∏
j=1

g (τi −τ j ,m j )P[ui= j ],

which implies the inequality in question.

Although the objective function in Eq. (1.7) minorizes the log-likelihood, we note that this

lower bound is generally not tight. By taking into account the entropy of the branching

distribution, the following characterization result corrects this shortcoming and provides a

tight lower bound, guaranteeing that the approximation of the log-likelihood becomes exact

at the optimal EM-estimate.

Theorem 1 (Representation) For all θ ∈Θ, the incomplete log-likelihood can be written in the

form

lnL (θ|H K
T ) =Q(θ,θ)+∆(θ), (1.10)

where the nonnegative defect,

∆(θ) =−
K∑

k=1

N (T )∑
i=1

i∑
j=1

P[ui = j |θ,HT ] lnP[ui = j |θ,HT ], (≥ 0) (1.11)

describes the entropy of the branching distribution given the observed history HT .

Proof of Thm. 1. Without any loss of generality, we set K = 1, so that there is only a single

data path in a singleton portfolio, with the superscript k dropped for notational convenience.

Assume a realization X = {(τ1,r1), (τ2,r2), . . . , (τn ,rn)} of a CHP given by Eq. (1.1) with a branch-

ing structure described with a latent variable Y = {y1, y2, · · · , yn} (i.e., yi denotes the ancestor

of the i -th arrival).7 That is, X is the incomplete data with complete data given by Z = (X ,Y ).

Furthermore, we assume a density of the observed variable p(X |θ), an arbitrary density of the

latent variable q(Y ), and a joint density p(X ,Y |θ) between the observed and hidden variables.

In the setting of CHPs, we can identify the first and the last of the densities with the incomplete

and complete log-likelihoods, i.e.,

p(X |θ) =L (θ|X ), (1.12)

p(X ,Y |θ) =LC (θ|X ,Y ). (1.13)

7The index n describes the total number of arrivals, i.e., n = N (T ).
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1.3 Identification

Let G be a lower bound to the log-likelihood function parametrized by a parameter θ and the

density q(Y ), such that

G(θ, q) = lnL (θ|X )−D
(
q ‖ p(·|X ,θ)

)≤ lnL (θ|X ), (1.14)

where D
(
q ‖ p(·|X ,θ)

)
denotes the Kullback-Leibler divergence (relative entropy) of q with

respect to p(·|X ,θ).8 Clearly, the bound G becomes tight if and only if the two distributions

are identical. The tight lower bound G can therefore be expressed (for q(·) = p(·|X ,θ)) as

G(θ, q) = ln p(X |θ)−EY

[
ln

p(Y |X ,θ)

p(Y |X ,θ)

]
= EY

[
ln

p(Y |X ,θ)

p(Y |X ,θ)
+ ln p(X |θ)

]
= EY

[
ln

p(Y |X ,θ)p(X |θ)

p(Y |X ,θ)

]
= EY

[
ln

p(X ,Y |θ)

p(Y |X ,θ)

]
= EY

[
ln p(X ,Y |θ)

]−EY
[
ln p(Y |X ,θ)

]
,

where the penultimate equality is obtained using the law of total probability. The two terms

correspond to the ECLL in Eq. (1.7) and the adjustment term ∆(θ) in Eq. (1.11), respectively.

Consequently, the branching distribution p(·|X ,θ) is given by

p(Y |X ,θ) =
n∏

i=1
P[ui = yi |θ, X ],

for any branching-structure realization Y (see also Fig. 1.3). Finally, we recover

∆(θ) =−EY
[
ln p(Y |θ, X )

]=−EY

[
ln

n∏
i=1

P[ui = yi |θ, X ]

]
=−EY

[
n∑

i=1
lnP[ui = yi |θ, X ]

]

=−
n∑

i=1
EY

[
lnP[ui = yi |θ, X ]

]=−
n∑

i=1

i∑
j=1

P[ui = j |X ,θ] lnP[ui = j |θ, X ],

which concludes the proof.

Thm. 1 implies that the conditional ECLL Q(θ,θn) can be “adjusted” using the defect ∆ to

become a tight lower bound for the log-likelihood, as follows:

Q̂(θ,θn) =Q(θ,θn)+∆(θ). (1.15)

This adjusted (conditional) ECLL can be written in the form

Q̂(θ,θn) =
K∑

k=1

[
−

∫ T

0
λb(s|θ,H k

T )d s +
N (T )∑
i=1

P
[

ui = i |θn ,H k
T

]
ln

λb(τi |θ,H k
T )

P
[
ui = i |θn ,H k

T

]
−

N (T )∑
i=1

∫ T

τi

g (s −τi ,ri )d s +
N (T )∑
i=2

i−1∑
j=1

P
[

ui = j |θn ,H k
T

]
ln

g (τi −τ j ,r j )

P
[
ui = j |θn ,H k

T

]]
.

8While not being a proper metric, the Kullback-Leibler divergence is nonnegative (Gibbs’ inequality), and it
vanishes if and only if the two distributions in its argument coincide almost everywhere.
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Figure 1.6: Illustration of a single EM-iteration. Each E-step calculates the branching distri-
bution and determines a functional form of the lower bound that is then maximized in the
M-step.

The adjusted ECLL not only establishes direct comparability with the incomplete log-likelihood,

but it also significantly reduces the number of iterations needed for convergence. Henceforth,

all mentions of “ECLL” refer to the adjusted ECLL with objective function Q̂ (instead of Q).

Building on the proof of Thm. 1 (preserving the notation used there), the EM-algorithm can

be described as follows.

Initialize seed θ0 ∈Θ, fix a tolerance ε ∈ (0,1), and set n ← 0, δ← 1 ;

while δ> ε do

E-Step: Calculate qn+1 ∈ argmaxq G(θn , q) = {p(Y |X ,θn)} ;

M-Step: Find θn+1 ∈ argmaxθ∈ΘG(θ, qn+1) ;

n ← n +1 and δ←G(θn+1, qn+1)−G(θn , qn) ;

end

The E-Step determines the next density qn+1 of the latent variable Y (i.e., the branching

distribution), based on the current parameter estimate θn , by maximizing the adjusted (condi-

tional) ECLL G(θn , ·); by Eq. (1.14) the maximum is equal to the incomplete log-likelihood and

is achieved at qn+1 = p (·|X ,θn). The M-Step then provides the next parameter estimate θn+1 by

maximizing the adjusted ECLL G(·, qn+1) on the compact setΘ. Visually, Alg. 2 is represented

in Fig. 1.6.

1.4 Simulation

For a systematic comparison of the proposed EM-algorithm with the standard MLE-procedure,

we are particularly interested in its convergence performance with respect to randomized
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1.4 Simulation

κ λ0 λ∞ δ10 δ11 δ(1)
2 δ(2)

2 δ(3)
2

0.4 0.05 0.03 0.08 0.06 0.03 0.06 0.09

Table 1.1: Specification of the reference repayment process (θr ) for the numerical experiment.

initial values θ0. Convergence performance is key in practice, since an appropriate parameter

range is difficult to determine ex ante. Even “educated guesses” for θ0 are bound to often stray

significantly from the (“true”) reference value θr . The latter is used in our broad numerical

experiment to generate synthetic collections data in the context of Ex. 2.

1.4.1 Data

It is important to note that credit-collections data by their very nature are relatively sparse. A

significant portion of accounts does not exhibit any repayments.9 This is compensated by the

transversal experience across an account portfolio K containing K sample paths. Throughout

the numerical experiment, we consider a CHP driven by the intensity in Eq. (1.1), generated

with the reference parameters specified in Table 2.1. The marks (relative repayments) are

assumed to be independent and identically distributed (i.i.d.), uniformly (i.e., ri ∼U [0,1]).

For each of K = 500 accounts in the portfolio K , we consider L = 100 sample paths, referred

to as “scenarios.” Each scenario ` ∈ {1, . . . ,L} generates a history H K
T (`), based on which

the model identification is performed using the two alternative methods (MLE and EM).

This is done for M = 100 random seeds θ(1)
0 , . . . ,θ(M)

0 , obtained as realizations of the random

variable θr diag(γ), where γ= (γg ) is a vector of the same length as θr with entries of the form

γg = 10βg /(20 dB) describing the gain (positive or negative). In the numerical experiment, gains

are considered to be such that βg ∈ [−26dB,26dB], corresponding to amplitude distortions γg

in the interval [1/20,20].10

Each scenario history H K
T (`) corresponds to data from a portfolio of K treated accounts,

with observation horizon T = 100, where each account k ∈K is associated with an observed

repayment sequence {(τk
i ,r k

i )} and a sequence of three control impulses (account treatments)

at the i.i.d. times ϑk
1 ∼U [0,T ] (chosen such that ϑk

1 <ϑk
2 <ϑk

3 ).

Table 1.2 compares the average performance of the MLE-estimator θ̂MLE and the EM-estimator

θ̂EM over 100 random seeds, distributed uniformly within ±25% of the reference parameter

values. It also indicates how the length of the observation horizon T impacts the respective

accuracy of the two estimators. Interestingly, both methods produce very similar estimates,

although EM tends to be computationally more expensive. This behavior is somewhat ex-

pected, as both methods produce MLE-estimates with the EM-algorithm relying on additional

9Even an “empty” sample path conveys valuable information about the underlying process and thus cannot be
discarded.

10Here we consider a uniform distribution (i.i.d.) of γg on [1/20,20]. We have also run the entire study for a
uniform distribution in the dB-space, i.e., for βg uniformly distributed (i.i.d.) on the interval [−26dB,26dB], with
similar results.
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T κ̂ λ̂0 λ̂∞ δ̂10 δ̂11 δ̂(1)
2 δ̂(2)

2 δ̂(3)
2 Runtime Mean[N (T )]

500
θ̂MLE 0.3920 0.0457 0.0300 0.0823 0.0509 0.0307 0.0594 0.0982

90 s
23

θ̂EM 1,456 s
Bias (-2.05%) (-8.58%) (+0.03%) (+2.83%) (-15.22%) (+2.38%) (-1.10%) (+9.11%)

1000
θ̂MLE 0.3997 0.0473 0.0298 0.0777 0.0645 0.0332 0.0588 0.0905

155 s
42

θ̂EM 2,579 s
Bias (-0.03%) ( -5.35%) (-0.57%) (-2.84%) (+ 7.53%) (+10.54%) (-1.92%) (+0.55%)

2000
θ̂MLE 0.4070 0.0471 0.0301 0.0817 0.0588 0.0359 0.0626 0.0968

426 s
85

θ̂EM 6,144 s
Bias (+1.75%) (-5.71%) (+0.41%) (+2.11%) (-1.99%) (+19.71%) (+4.31%) (+7.53%)

Table 1.2: Asymptotic behavior of the MLE-estimator. Each estimate represents the average
over 20 independently generated portfolios and 10 random starting values distributed ±25%
around the respective (true) reference value.
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a) MLE converging to three distinct points. b) EM converging close to the reference values.

Figure 1.7: Comparison of estimator convergence. Except for λ∞ and δ10 the parameter
starting values are set to their reference values in θr ; see Table 2.1. The black crosses denotes
starting values; blue diamonds denote estimation results; the red circle marks the location of
the reference values λ∞ and δ10.

information related to the branching structure of the repayment process. The real advantage

of the EM-algorithm over direct MLE-maximization becomes apparent when considering

initial seeds θ0 of significant distance to the reference parameter θr or when limiting the

observation horizon.

1.4.2 Results

Consider first the convergence of the estimation in several two-dimensional subspaces of

the parameter space, Θ. For this, the starting values θ(m)
0 , for m ∈ {1, . . . , M }, are set to their

reference value θr , while the investigated pair of parameter components are randomly varied

between -26 dB and +26 dB (corresponding to a maximum variation by a factor of 20) relative

to their corresponding reference values as starting values.

Fig. 1.7 shows that MLE fails to converge to the reference values for more than half of the initial
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-2000%     0% 2000%  4000%  6000%  8000% 10000% 12000%
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EM[Detail]

Deviation from  in %
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a) b)

Figure 1.8: Estimation results for the scenario in Fig. 1.7. The center of the error plot designates
the average bias over 100 starting values θ̂(1) . . . θ̂(100); error bands are based on one standard
deviation. a) Full display of all parameters, with κ̂ attaining high local maxima. b) Detail view
near the zero-bias line.

seeds (in 52 of 100 instances). We note that the optimizer designated all of the estimation

results (blue diamonds) as local minima (implying that a step in any direction would not

improve the objective function). To reveal the performance of the estimator in the complete

parameter space we use error plots investigating the relationship θ(m)
0 → θ̂(m). Fig. 1.8 indicates

that while the EM-algorithm succeeds in bypassing erroneous local minima, it does so with

reduced variance in the estimation results.

Another encountered deficiency is that the MLE-estimator failed to converge entirely for a

subset of starting values, as can be seen in Fig. 1.5.11 Again, this behavior was not registered

for the EM-algorithm, except for cases with starting points deviating by more than +10,000%

(corresponding to about 32 dB) from the reference values.

Remark 3 (Numerical Conditioning) The superior convergence performance of the EM-algorithm

has two possible sources. First, the properties derived for the MLE-estimator hold only asymp-

totically. Although both θ̂MLE and θ̂EM are consistent, in a limited sample both estimates can

differ, as

Q(θ̂EM, θ̂EM) ≥Q(θ̂MLE, θ̂MLE)

and

L (θ̂MLE;H K
T ) ≥L (θ̂EM;H K

T ).

In our application, the number of repayments may not be large enough for attaining an

asymptotic regime in the numerical maximization of the incomplete log-likelihood. On the

11An estimation run is counted as “failed” if any of the estimates exceeds a value of 103.
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Figure 1.9: Sample distribution of the relative error for the best- and worst-case MLE-estimates,
measured in terms of incomplete log-likelihood.

other hand, it might be enough for the EM-algorithm to produce accurate results, due to the

additional branching-structure information captured by the EM-estimator.

Second, given the EM-construction as a lower bound for the MLE, intuitively, it is expected

that the EM-objective function will exhibit a larger “curvature” compared to the incomplete

log-likelihood. Indeed, as shown in Fig. 1.10, the objective function for the EM-algorithm

appears to be a better conditioned objective function for the same problem. We showcase

this property using the condition number of the Hessian matrix, which is intricately linked to

the convergence performance. In particular, we focus on the difference between condition

number for the MLE- and EM-surface; see Fig. 1.11. Computationally we obtain that the

EM-objective shows a better conditioned Hessian on average in 80% of all points in the search

space (θr ±32dB). Nevertheless, it is important to remember that both methods are local

techniques, so neither can provide any guarantee for attaining a global maximizer.

Classical Benchmark. As indicated in Section 1.3.1 the erroneous local minima and hence the

convergence issues can be circumvented using certain heuristic techniques. Disregarding for

a moment the computational burden of repeating the optimization for M initial guesses, we

characterize every batch of starting values by a single vector of estimates θ̄ that produces the

largest incomplete log-likelihood for MLE and EM, respectively:

θ̄MLE ∈ arg max
θ̂∈Θ̂M

L
(
θ̂|H K

T

)
,

and

θ̄EM ∈ arg max
θ̂∈Θ̂M

Q(θ̂, θ̂),
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Figure 1.10: Comparison of the curvature of the objective functions. a) Incomplete log-
likelihood exhibits a long valley around λ∞. b) ECLL Q(θ,θn′), where n′ is the last iterate
before attaining the termination condition.
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Figure 1.11: Comparison of condition numbers for Hessian matrices. a) Red tiles represent
a better-conditioned Hessian for the ECLL, whereas blue tiles represent better-conditioned
incomplete log-likelihood. b) Comparison of the condition numbers in κ-direction.
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where Θ̂M = {θ̂(1), . . . , θ̂(M)} denotes the set of estimates coming from M initial values. The

best MLE-estimates θ̄MLE are then compared to the worst (lowest ECLL) EM-estimates θ
¯ EM for

all scenarios. Table 1.4 presents the results for the scenario with the best MLE-performance

measured as a relative distance from the reference parameter values. Clearly, even the benefit

of M = 100 different starting values is not enough to outperform a single run (here, the

worst case) of the EM. This puts the runtimes in Table 1.2 into perspective. Despite MLE

being significantly faster per single run, a large number of runs is needed in order to ensure

convergence to the global maximum.

To evaluate the accuracy of the estimation with a single number, we define the (aggregate)

relative error for the best (resp., worst) case as:

ē = ‖θ̄−θr ‖
‖θr ‖

and e
¯
= ‖θ

¯
−θr ‖
‖θr ‖

.

The evidence from our data indicates that the worst-case and the best-case EM-estimates

measured in the complete log-likelihood function value are almost indistinguishable. The

difference between highest and lowest value of the complete log-likelihood, over the batch of

initial guesses, was on average in the order of 10−2. This means that the sample distribution

of the relative error for the worst-case and best-case EM-estimates are almost identical. This

dramatically contrasts to the MLE relative-error distribution presented in Fig. 1.9, where the

difference between the best and worst estimates can be extremely large. These empirical

relationships are captured in Table 1.3. The superior convergence performance of the EM-

algorithm and negligible difference in the best to worst comparison advocates for EM as a

more robust method of the two. Throughout the numerical experiment we have not observed

a single instance of the direct MLE-procedure outperforming the EM in terms of convergence.

Given the substantial number of scenarios tested, we believe that this is a representative and

significant result.

Remark 4 (Action Sensitivity) It is worth pointing out that EM may improve the estimation

performance of MLE even in settings with limited significance of the control process a(t ).12

Fig. 1.12 showcases the estimation performance, measured in terms of the relative errors

of both estimation methods for various δ2. We consider a similar setup as in the previous

section (i.e., 10 initial guesses for the solver and 10 independently generated portfolios for

each value δ2). In addition, we employ the same filtering technique using the log-likelihood

function value to separate the best MLE and the worst EM-estimates. As expected, the relative

error of the best MLEs closely corresponds to the EM-estimates; see Fig. 1.12a. However,

when considering the average relative error of all solutions (not just the best), we observe

the previously recorded behavior of MLE’s divergence as a result of disparate local likelihood-

minima; see Fig. 1.12b. This suggests that EM can be a preferred estimation method even for

12For any given realization of a(t ), for t ≥ 0, the importance of the control process for the evolution of the arrival
intensity is fully described by the (nonnegative) sensitivity parameter δ2. The case of an autonomous Hawkes
process (without control) corresponds to a degenerate situation with δ2 = 0.
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Figure 1.12: Impact of sensitivity parameter δ2 on the relative error. Reported values are aver-
ages over 10 independently generated portfolios. a) Relative error of the estimates producing
the highest log-likelihood over 10 initial guesses. b) Average relative error of all estimates
over 10 initial guesses. Error bands mark the applicable coefficients of variation.

Best of 100 Worst of 100

ēEM ≈ e
¯EM

ēMLE ¿ e
¯MLE

ēMLE ≈ e
¯EM

Table 1.3: Empirical relationship between EM-estimates and MLE-estimates.

uncontrolled (i.e., autonomous) Hawkes processes.

1.5 Conclusion

We have constructed an alternative estimation method for (linear) controlled Hawkes pro-

cesses based on the EM-algorithm. Compared to conventional maximum-likelihood max-

imization, the presented method exhibits a substantially more robust behavior in terms of

convergence and choice of the initial guesses. The robustness was tested based on extensive

κ̂ λ̂0 λ̂∞ δ̂11 δ̂12 δ̂21 δ̂22 δ̂23

θ̄MLE 0.3703 0.0434 0.0312 0.0652 0.0726 0.0238 0.0554 0.0695
Bias (-7.44%) (-13.15%) (+4.12%) (-18.53%) (+20.93%) (-20.74%) (-7.71%) (-22.75%)
θ
¯ EM 0.3702 0.0434 0.0312 0.0652 0.0725 0.0238 0.0554 0.0695
Bias (-7.45%) (-13.14%) (+4.11%) (-18.53%) (+20.91%) (-20.69%) (-7.71%) (-22.76%)

Table 1.4: Comparison of the best MLE-estimate to the worst EM-estimate; results rounded to
four significant digits; relative errors (bias) in parentheses.
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synthetic credit-collections data mirroring sparse repayment observations as encountered

in practice. The EM-algorithm performed reliably well across all scenarios and produced

maximum-likelihood estimates with a variance significantly below that produced by the stan-

dard MLE-method. The bias of the EM-method was assessed on the best-case MLE to the

worst-case EM measured in the value of the log-likelihood function. The difference in the

estimates produced was inconsequential (±0.02%) suggesting that the EM-algorithm provides

a significant stability gain and would therefore be the advised method for the estimation of

linear CHP. Our findings suggest that EM is a viable alternative to the conventional MLE, and

in applications where a rich history of observations is unavailable, it is a superior estimation

method. In cases where direct maximization is preferred, the EM-algorithm may be used to

obtain bootstrapped initial seeds of the model parameters in question. On the theoretical

side, we have shown that the (nonnegative) difference between the incomplete log-likelihood

and the expected complete log-likelihood (ECLL) is given by the entropy of the branching

distribution, thus establishing a lower bound for the incomplete log-likelihood which at the

optimal EM-estimator becomes binding.
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1.5 Conclusion

Notation

Symbol Description Range
a(t ) Account treatment schedule R+

g (t ,m) Triggering kernel R

L (·) Incomplete log-likelihood function R

LC (·) Complete log-likelihood function R

mi Relative repayment at time T = τi R+
H t Available information at time t –

J (t ) = [N (t ),R(t )] Repayment process N×R+
N (t ) Repayment counting process N

Q(θ,θn) Expected complete log-likelihood function R

R(t ) Cumulative relative-repayment process R+
ri Relative repayment at time T = τi [0,1]
t Current time R+
T Observation period R++
δ1 Sensitivity of intensity w.r.t. J R

dim(J )
++

δ2 Sensitivity of intensity w.r.t. a RN++
κ Mean-reversion parameter R++
λ(t ) Intensity process R+
λ0 Initial value of intensity (λ(0) =λ0) R++
λ∞ Long-run stationary value of intensity R+
µ(t ) Base-rate intensity R

θ Vector of process parameters (θ = (κ,λ0,λ∞,δ1,δ2)) Θ

ϑ j Time of j -th account-treatment action R++
τi Arrival time of i -th repayment (i ≥ 1) R++
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2 Interpretable Reinforcement Learning
in Credit Collections

The contents of this chapter are inspired by Mark, M., Chehrazi, N., and Weber, T. A. (2020a).

Reinforcement-Learning Approach to Credit Collections. Working Paper, École Polytechnique

Fédérale de Lausanne (EPFL), Lausanne, Switzerland, presented at INFORMS 2020 Annual

Meeting for the Best Student Paper Competition in Finance where it secured first place.

2.1 Introduction

This paper introduces a reinforcement-learning agent that optimizes the process of collecting

outstanding (unsecured) consumer credit balances. A debtor’s repayment behavior, charac-

terized by a stochastic self-exciting point process developed by Chehrazi and Weber (2015),

specifies the timing and the magnitude of random repayments. In this setting, a collector can

optionally administer a costly account treatment, which temporarily increases the intensity

(the probability of repayment) of the repayment process. The collections problem is then for-

mulated in terms of the stochastic optimal control of the conditional repayment intensity, by

means of a dynamic account-treatment policy (characterized by the optimal times and types

of particular account-treatment interventions). We provide a Markov decision process (MDP)

formulation of the problem and, using a combination of several state-of-the art reinforcement-

learning results, construct a highly performing deep-learning agent. From this perspective,

our learning agent can be viewed as a purely data-driven controller (i.e., without specifying

any analytical details of the process dynamics) of a univariate self-exciting point process.

Furthermore, the general framing of the problem as an optimization of agent-environment

interactions allows for an out-of-the-box application to other, more complex models of repay-

ment dynamics. There are three main contributions. Firstly, in contrast to other contemporary

reinforcement-learning applications, our problem features an asynchronous feedback-reward

relationship, which is rarely studied—despite being present in numerous applications (e.g.,

human learning). This dramatically complicates learning, as the learner is effectively unable

to match an action to its probabilistic (and delayed) reward (so called credit assignment prob-

lem). To this end, we formulate a reward shaping theorem that distributes otherwise discretely

perceived reward signals continuously per every step in an episode, hence circumventing the
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Chapter 2. Interpretable Reinforcement Learning in Credit Collections

credit attribution problem and enabling the learning process. We demonstrate the validity of

this result on the collections application in question; however, it is directly applicable to other

problems with dynamics driven by self-exciting point processes. In contrast to the current

state of the art for dealing with asynchronous MDPs which is based on a complex LSTM net

architecture (Upadhyay et al., 2018), our proposed solution is significantly simpler and works

well with plain feed forward neural networks typically used in deep q-learning. Secondly, with

respect to the contemporary discussions around interpretable and ethical machine learning

models, we formulate a domain knowledge regularizer which penalizes the learner so as

to adhere to a priori specified structural constraints, and thus delivers understandable and

interpretable decision rules. The principal objective is to contribute to the reduction of the

“lawlessness of machine learning algorithms’, hence guarantee basic audibility of learned

decision rules. Finally, we provide a linear approximator based on B-Splines state-space fea-

tures, which is capable of delivering a comparable performance while keeping the number of

learnable parameters low. Additionally, thanks to being linear in trainable weights, a number

of convergence results are directly applicable.

2.1.1 Credit Collections

The problem of credit collections as an operations research problem was broached by Mitch-

ner and Peterson (1957). In their seminal contribution, the authors formulate an optimal

stopping problem for determining the best pursuit times for various delinquent debt accounts

at Bank of America. Despite their method leading to tangible improvements in the profits, the

collection problem remained dormant for the next decade. Revisiting the problem, Liebman

(1972) frame the problem as an MDP with transitional probabilities based on various ac-

count characteristics. Their solution then relies on the value-iteration method, which quickly

reaches its computational limits as more granular account information is added. No further

progress on this topic was made until recently, when Abe et al. (2010) modeled the collections

process as a constrained MDP which explicitly takes business, legal, and resource constraints

into account. Most importantly, the authors provide a dataset of accounts subjected to this

new approach while reporting its competitive performance. The same methodology is then

discussed by Miller et al. (2012) who focus on the actual implementation of the system for

collecting delinquent taxes in the state of New York. Finally, Chehrazi and Weber (2015) de-

scribe a dynamic repayment model for the accounts placed in collections. The model is based

on a self-exciting point process which incorporates account-specific information such as the

holder’s FICO score or his annual income, as well as time-varying macroeconomic covariates.

In a follow-on paper, Chehrazi et al. (2019) leverage the same model in order to construct an

account-treatment schedule which maximizes an account’s present value net of collection

costs. The account-treatments are proxied with collection effort (measured in hours spent on

an account). This contrasts with our approach of directly mapping the collector’s available

actions onto intensity impulses, which if paired with a fixed cost per action would render the

original problem analytically intractable. Additionally, despite using the same model for the

repayment behavior, our data-driven policy-construction method is readily extensible to more
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complex repayment dynamics, including entirely data-driven environments.

2.1.2 Outline

The paper proceeds as follows. In Section 2.2, we introduce a model for the repayment

behavior, cast it into a Markov decision process and lay out the credit-collection problem.

In Section 2.3, we construct two benchmark collection policies and a deep reinforcement-

learning q-agent. Section 2.4 compares the agents in terms of various performance metrics

and examines the learning agent’s properties relevant for collection practice. Section 2.5

concludes.

2.2 Model

For the remainder of this section we consider a single delinquent account with outstanding

balance w0 > 0, placed in collections at time t = 0.1 The account is credited with random

repayments of relative size zi at random times τi until the balance is recovered in full.

2.2.1 Repayment Process

As in Chehrazi et al. (2019), we assume that the repayment behavior (τi , zi )i≥0 is described by a

controlled Hawkes process with an intensity given by a mean-reverting stochastic differential

equation (SDE),

dλ(t ) = κ(λ∞−λ(t ))d t︸ ︷︷ ︸
mean-reversion

+ δ>1 d J (t )︸ ︷︷ ︸
self-excitation

+ d A(t )︸ ︷︷ ︸
collection strategy

, t ≥ 0. (2.1)

The dynamics in SDE (2.1) are derived from a continuous-time hidden Markov model where

an account holder can be in one of two distinct states, “H” or “L.” An account holder in state

“H” would make random partial repayments at higher frequency than if he was in state “L.”

The state of the account holder evolves according to a generic Markov dynamics model and

can also be influenced by the credit-issuer through costly collection actions. The account

holder’s state, however, is not observable by the collector, but he can estimate the likelihood

that an account holder is in state “H” or “L” using observed past repayments. The Bayesian

dynamics of these estimates translate to the SDE specification in Eq. (2.1). In particular, the

self-excitation term captures a discrete upward adjustment in the collector’s beliefs upon

observing a repayment. The jump is positive, since a repayment is more likely in state “H”

than in state “L.” In Eq. (2.1), the vector J (t ) = [N (t ), Z (t )]> consists of an unmarked counting

process N (t) = ∑
i 1{τi≤t } and its marked counterpart Z (t) = ∑

i zi 1{τi≤t } with marks drawn

from an empirically identifiable distribution Fz whose support is included in [zmi n ,1] with

minimum relative repayment zmi n > 0. Conceptually, the former represents the holder’s

1A credit account is considered delinquent if it misses a repayment deadline on its outstanding balance by a
prespecified time period (e.g., 30 days).

39



Chapter 2. Interpretable Reinforcement Learning in Credit Collections

ability-to-repay while the latter captures his willingness-to-repay. The vector δ>1 = [δ10,δ11]

describes the sensitivity of the process to repayment events.

In the absence of a repayment, the effective rate of repayment λ(t ) declines, since a period of

inactivity is more likely in state “L” than state “H.” This is captured in Eq. (2.1) by the first term

where the parameter λ∞ determines the steady-state of the effective repayment intensity and

κ determines the rate of convergence. The latter parameter also determines the covariance

properties of the process and can be interpreted in terms of how much “memory” the system

retains.

Unlike λ(t ), the dynamics of the outstanding balance w(t ) are relatively simple. At any repay-

ment time τi , the account’s outstanding balance w(τi ) diminishes by the amount repayed,

i.e., w(τi ) = (1− zi )w(τ−i ). Hence, we have

w(t ) = w(τi ), τi ≤ t < τi+1. (2.2)

Lastly, in the absence of a collection strategy A(t ), the Markovian nature of the process allows

for a compact representation of the intensity flow,

λ (s) =ϕ(s,λ(t )) =λ∞+ (λ(t )−λ∞)e−κs , s ≥ t , (2.3)

which describes the law of motion for the intensity starting at λ(t ), provided no repayments

are received on the interval [t , s].

2.2.2 The Collection Problem

As indicated earlier, to increase the probability of a repayment, the credit-issuer (or a collector)

can take costly collection actions. We assume that the collector is endowed with M ≥ 2 account-

treatment actions (intervention types), each carrying a different temporary impact on the

account’s repayment-arrival intensity. Indeed, the M nontrivial account treatments can range

from mild actions, such as sending a letter of notice (low impact / low cost) to more extreme

measures such as filing a lawsuit (high impact / high cost). An action taken does not guarantee

a repayment, but rather increases the probability of receiving one in the near future (since

it can change the account state from “L” to “H”). Practically, all available collector actions

are mapped onto different intensity impulses in the set δ2 = {δ2,0,δ2,1,δ2,2, . . . ,δ2,M } ⊂ R+,

where δ2,k−1 < δ2,k for k ∈ {1, . . . , M } with δ2,0 = 0 (the magnitude δ2,k of intervention type k

representing its effectiveness). Therefore, any collection strategy can be encapsulated by a

non-decreasing, left-continuous process

A(t ) =
∞∑

j=1
δ2,l (ϑ j )1{ϑ j<t }, t ≥ 0, (2.4)

where the mapping l :R+ → {1, . . . , M } with ϑ j 7→ l (ϑ j ) describes the type of the action taken at

time ϑ j . Given a collection strategy A and an initial intensity λ(0) =λ0, the solution to Eq. (2.1)
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Figure 2.1: Evolution of intensity (a), balance (c) and collection policy (d) in time. The account
path through the state space is in subfigure (b). The collection policy is characterized by two
actions at time ϑ1=0.1 and ϑ2 = 7.9 of respective magnitudes δ2,1 = 2 and δ2,2 = 1.

can be written as

λ(t ) =µ(t )+ ∑
i :τi≤t

(δ10 +δ11zi )e−κ(t−τi ) + ∑
ϑ j :ϑ j<t

δ2,l (ϑ j )e
−κ(t−ϑ j ), (2.5)

where the first term represents a deterministic drift, µ(t ) =λ∞+(λ0−λ∞)e−κt ; the second term

(termed the “endogenous kernel”) encapsulates the self-excitation property of the process; and,

the last term (termed the “exogenous kernel”) features the collection strategy. Additionally, the

process history H t is captured by the σ-algebra generated by repayment times and amounts

up to and including time t as well as account-treatment times and their respective sizes up

to but excluding time t . Figs. 2.1a, 2.1c, and 2.1d depict typical paths of intensity, balance,

and collector interventions (by means of control impulses) for an account in collections (here,

with (λ0, w0) = (0.1,$1000)). Additionally, Fig. 2.1b showcases the account evolution as a path

in the (λ, w) state space. A state-space representation of account evolution and collector

intervention is critical for the effective construction of optimal collection policies.

Assuming a linear cost of collection with marginal cost c > 0, the collection problem boils down
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to finding an optimal collection strategy A?, such that

A? ∈ argmax
A∈A

E

[∫ ∞

0
e−ρs w(s−)d Z (s)− c

∫ ∞

0
e−ρsd A(s)

∣∣∣∣ (λ(0), w(0))

]
, (2.6)

where the parameter ρ ∈R++ denotes a discount rate, and A is the space of H t -predictable

collection strategies.

2.2.3 Agent-Environment Interface

To cast the collections problem into a reinforcement-learning framework, the continuous-time

Markovian dynamics in Eqs. (2.2), (2.4), and (2.5) must be expressed as a discrete-time Markov

chain. In particular, measuring time in small discrete steps of ∆t , we assume—without loss

of generality—that actions are taken at the beginning of an interval [k∆t , (k + 1)∆t ] while

repayments, if they occur, are received at the end of such an interval. In fact, this assumption

is required to make the discrete-time repayment process non-predictable. From the Poisson

dynamics of the repayment process, the likelihood of receiving a repayment at the end of the

interval [k∆t , (k +1)∆t ], given initial intensity λ(k∆t ) and action δ2,l (k∆t ), is

P[N
(
(k +1)∆t

)−N (k∆t ) = n|Hk∆t ] =


1− (

λ(k∆t )+δ2,l (k∆t )
)
∆t +o((∆t )2), n = 0,(

λ(k∆t )+δ2,l (k∆t )
)
∆t +o((∆t )2), n = 1,

o((∆t )n), n ≥ 2.

(2.7)

In the previous equation, the discrete-time dynamics of λ(k∆t ) for k ∈Z+ are as follows:

λ(k∆t ) =ϕ(∆t ,λ
(
(k −1)∆t

)+δ2,l ((k−1)∆t ))+ (δ10 +δ11zk−1)1{N (k∆t )−N ((k−1)∆t )6=0}, (2.8)

with λ(0) = λ0, where we are allowed to use Eq. (2.3), since no discrete event will take place

during (k∆t , (k +1)∆t). Finally, zk , for k ∈ Z+, are independent and identically distributed

(i.i.d.) draws from the relative-repayment distribution Fz , so the account balance evolves

according to

w(k∆t ) = (1− zk−1)w
(
(k −1)∆t

)
1{N (k∆t )−N ((k−1)∆t ) 6=0}, k ≥ 0, (2.9)

with w(0) = w0 and z−1 = 0. Equations (2.7)–(2.9) describe the discrete-time dynamics of the

collection process. To simplify the notation, in what follows we denote
(
λ(k∆t ), w(k∆t ),δ2,l (k∆t )

)
by (λk , wk , ak ). In our numerical implementation, the value of (λk , wk ) is quantized a dis-

crete grid on the set of attainable states (λ, w), denoted by S ( R2+. This last step turns the

discrete-time, continuous-space Markov dynamics of Eq. (2.7)–(2.9) to a discrete-time finite

Markov chain, but otherwise this computational simplification is not critical for our theoretical

developments. In particular, it is important to note that in fact we do not restrict attention to

the discrete grid of states but rather use it to partition the exploration of the state space to the

corresponding subsets (each associated with a corresponding grid point).
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Figure 2.2: Collections process as an MDP.

We can now consider the discrete state-space dynamics, introduced above, as our reinforcement-

learning setting. In particular, consider the behavior of the two parties involved: a decision

maker (also referred to as agent) and an environment that is responsible for providing feedback

on the agent’s action in terms of some reward.2 The environment behavior is described by

Eqs. (2.7)–(2.9). The agent, following a policy π : S → δ2 that prescribes his action for a given

state, repeatedly interacts with the environment. At each (discretized) time step k ≥ 0, the

agent observes his state sk = (λk , wk ) ∈S , selects an action ak ∈ δ2 according to policy π(sk ),

and the environment responds with the subsequent state sk+1 = (λk+1, wk+1), together with

the reward rk ∈R observed for going from sk to sk+1; see Fig. 2.2. The value of the reward rk is

given by

rk =
(zk wk − cak ), repayment received in [k∆t , (k +1)∆t ],

−cak , no repayment in [k∆t , (k +1)∆t ].
(2.10)

The agent’s goal is then to find a solution to the discrete-time collection problem, i.e., find the

policy π that maximizes the net collected amount given by

vπ(λ0, w0) = Eπ
[ ∞∑

k=0
γk wk zk − c

∞∑
k=0

γk ak

]
, (2.11)

where γ= exp(−ρ∆t ).

The preceding specifications are implemented computationally via Alg. 4 (see insert). Equipped

with this algorithm, we now have all building blocks for constructing/learning collection poli-

cies from a sequence of induced agent-environment interactions.

2In engineering applications, the terms system, controller and control signal are used synonymously for the
terms environment, agent, and action employed here.
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Algorithm 1: A discretized simulation algorithm of the repayment process from
Eq. (2.1).

Result: Produces a sequence of states sk for k ∈ {0,1, . . . ,K }, where wk ≤ εw

Algorithm parameters:
(λ0,λ∞,κ,δ1,δ2) - process parameters, ∆t - discretization step, εw - balance-error

tolerance, π - policy
Initialize the current time t = 0, wk = w0,λk =λ0

while wk > εw do
Select a according to a policy π, i.e., a =π(sk )
Set λk =λk +a
if λk∆t ≥U [0,1] then

Draw a relative repayment zk according to Fz

Set λk =ϕ(∆t ,λk )+δ10 +δ11z
else

Set zk = 0
Set λk =ϕ(∆t ,λk )

end
end
Set rk = (zk wk −ac)
Set wk = (1− r )wk

Set k = k +1
end

2.3 Collection Policies

Provided the MDP environment description from the previous section, we now design a

learning agent capable of finding profitable collection policies in finite time. The performance

of a policy is measured, in its simplest form, by the net amount collected, using the value

function from Eq. (2.11).

2.3.1 Autonomous Account Value

In the absence of any collection strategy we label the account to be “autonomous,” i.e., follow-

ing the policy π(s) = 0, for all s ∈ S. The autonomous account value (AAV) is then computed as

u(λ, w) = E
[ ∞∑

k=0
wk zkγ

k
∣∣∣∣w0 = w,λ0 =λ

]
, (2.12)

which can be easily approximated by Monte Carlo simulation.3 This quantity serves as a

basic benchmark for the agent to beat. Indeed, at the very least, a successful agent should be

able to learn to do nothing, that is, to not take collection actions which do not yield tangible

improvements over the AAV.

3Chehrazi and Weber (2015) provide a quasi-analytical solution to the continuous time analogue of Eq. (2.12).
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Figure 2.3: (a) Difference between synchronous and asynchronous reinforcement-learning
setup. (b) Comparison of the continuously reshaped cumulative reward and the original
discrete reward formulation.

2.3.2 Optimal Policy under Continuous Collection Effort

Chehrazi et al. (2019) proposed and solved a variation of the collections problem outlined

above. Specifically, rather than mapping available collection actions to intensity impulses

from δ2, the authors modeled the collection effort proxied as a number of hours spent on each

account. In practice, this means a collector can exert an intensity impulse of size a ∈ R++,

which produces a status change of the account when entering the collection process. Addi-

tionally, the collector can maintain the intensity at a specific intensity level λ̂ via a continuous

infinitesimal thrust, which captures the effect of the action while it is active, for instance, until

an agreement for a repayment plan is reached. This formulation of the discrete-time collection

problem allows for a semi-analytical solution of the value function v?CE(s). Given the more

restrictive set of controls with only a finite number of discrete actions available and without

the possibility to sustain the intensity level, the solution developed by Chehrazi et al. (2019)

acts as a natural upper bound for our problem: v?CE(λ, w) ≥ v?(λ, w), for all (λ, w) ∈R2+.

2.3.3 Deep Q-Approach

Q-learning is a model-free learning algorithm developed by Watkins and Dayan (1992), which

gained enormous popularity especially in recent years—largely thanks to its successful appli-

cation in traditionally difficult environments, such as the Atari game suite (Mnih et al., 2013) or

the game of Go (Silver et al., 2017). In fact, the trained agents were able to attain superhuman

skill levels in both games, something that was previously impossible with the dynamic pro-

gramming (DP) approach. Contrary to a value-iteration algorithm (Bertsekas, 1987) that relies

on learning and subsequent improving of the value function vπ(sk ), the q-agent attempts to

learn a so-called q-function qπ : S ×δ2 →R by quantifying the quality of a state-action pair
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in terms of its value, i.e., qπ(sk , a) = E[rk +γvπ(sk+1)|ak = a].4 In other words a state-action

pair represents the maximum expected return achievable by following policy π, after taking

an action a at state sk , so vπ(sk ) = maxa∈δ2 qπ(sk , a).

Recall from DP, the optimal value function v?, and hence the optimal state-action q?-function,

satisfies the Bellman equation,

q?(sk , ak ) =∑
s′

P (s′|sk , ak )

[
R(sk , ak , s′)+γmax

a′ q?(s′, a′)|sk , ak

]
= Es′∼P (·)

[
R(sk , ak , s′)+γmax

a′ q?(s′, a′)|sk , ak

]
,

(2.13)

where P (s′|sk , ak ) determines the transition probabilities of the environment and R(sk , ak , s′)
is a (possibly random) reward encountered when going from sk to s′ (denoted by sk → s′)
after selecting action ak at time step k. For discrete state-space problems, with completely

known system dynamics, finding the q?-function leads to solving a linear system of |S | ×
|δ2| equations. Therefore, the q?-function would reduce to a simple look-up table with

rows representing the attainable states and columns corresponding to all available actions.

Practically, it is often preferred to solve Eq. (2.13) iteratively, as a fixed point problem resulting

in the value iteration algorithm. That is, using the Bellman backup operator c it is

T q(sk , ak ), Es′∼P (·)
[

R(sk , ak , s′)+γmax
a′∈δ2

q(s′, a′)
]

, (2.14)

and starting from some seed mapping q0 : S ×δ2 →Rwe define a sequence of approximate

q-functions {qi }i∈N obtained as qi+1 =T qi which is proved to converge to the optimal q? as

i →∞ (Bertsekas, 2011).

Finally, for environments with unknown dynamics, we often approximate the expectation

with temporal-difference (TD) updates which form the basis for the q-learning algorithm,

qi+1(sk , ak ), qi (sk , ak )+αk

(
rk +γmax

a′ qi (sk+1, a′)−qi (sk , ak )

)
, (2.15)

where αk > 0 represents the (time-dependent) learning rate and γ ∈ (0,1) the discount factor.

Similar to DP, the estimates are updated with previously learned estimates, i.e., q-learning

relies on bootstrapping. The agent then repeatedly interacts with the environment forming

complete trajectories (episodes) (s0, a0,r0, s1, a1,r1, . . . , sterminal), and after each transition up-

dates his q-value estimate of the visited state-action pair.5 Furthermore, to prevent an agent

from learning sub-optimal policies and repeatedly exploiting the same action (typically at any

time step at least one action yields the highest value), a technique forcing random exploration,

called ε-greedy policy, is applied that guarantees P[π(s) = a] > 0 for all (s, a) ∈S ×A (Sutton

4The subscript π designates the policy that is being followed by the agent.
5A state sk is considered “terminal” (denoted by sterminal) if a balance wk falls below some tolerance εw .
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and Barto, 1998). Lastly, under some mild conditions on the learning rate and provided that

the state and action spaces are finite, the q-learning algorithm from Eq. (2.15) is guaranteed

to converge to an optimal solution (Sutton, 1988; Melo, 2001).

In reality, this look-up table approach is often highly impractical, as the state-action pair is

estimated separately for each sequence, without any generalization. Indeed, when taking an

action from a given state s, the information about the obtained reward is also relevant for

all states in the neighborhood of s. Accordingly, to render the q-learning compliant with the

collection problem, which per se features an infinite state space with (λ, w) ∈ R2, we define

an approximate q-function q̂π(s, a;w), parametrized by a weight vector w ∈ Rd . Instead of

a look-up table qπ(sk , a), the q-function is now approximated using a functional form, so

q̂π(s, a;w) ≈ qπ(s, a). The idea behind using such a parametrization is that the number of

weights (the dimensionality of w) is much smaller than the number of states, i.e., d ¿ |S |.
Typically, the approximators were defined as a linear function of states (linear approximators),

as most of the convergence guarantees were directly applicable (Tsitsiklis and Van Roy, 1997;

Melo and Ribeiro, 2007; Carvalho et al., 2020). Note that the lookup table is a special case

of a linear approximator with a separate weight for each possible state. However, with the

advances in the machine-learning field non-linear approximators, such as neural networks,

became the favored choice.6

Instead of updating the q-values directly at each learning step, we aim to update the weight

vector w, to optimize an accuracy metric like Mean Square Error (MSE) or Huber loss (Huber,

1992). Consequently, finding the optimal approximator becomes a regression problem in the

form of an iterative minimization of loss functions L (wk ),

L (wk ) = 1

2

∑
s∈S

σπ(s)
∑

a∈δ2

P[π(s) = a]
[
(yk (s, a)− q̂(s, a;wk ))2] . (2.16)

In this, yk (s, a) = T q̂(s, a,wk−1) is the target for a state-action pair (s, a) at iteration k, and

σπ(s) denotes the distribution of states under the learned policy π termed on-policy distribu-

tion. Conceptually, σπ(s) is a state distribution (i.e., σπ(s) ≥ 0,
∑

s σπ(s) = 1) that represents

how much we care about the error in each state s. Often, σπ(s) is chosen to be the fraction of

time spent in s (Sutton and Barto, 1998). In continuing tasks (tasks without an end state), the

on-policy distribution is the stationary distribution under π.

We start with a possibly randomly initialized set of weights w and at each iteration we apply a

gradient update,

wk+1 = wk +∇wk L (wk ). (2.17)

Rather than computing the gradient over the full expectation of Eq. (2.16), it is often com-

putationally more efficient to make an approximation using real samples (experience) from

the on-policy distribution. In practice, the training of the q-function relies on the experience

6For a comprehensive review of other commonly used approximators we refer readers to (Ch. 9, Sutton and
Barto, 1998).
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Algorithm 2: Deep Q-agent with experience replay and guided exploration.

Algorithm parameters:
(λ0,λ∞,κ,δ1,δ2) - process parameters, ∆t - discretization step, π - policy,
Nepisodes - number of episodes
Initialize the replay buffer D to some fixed size N
Initialize a neural network with a starting set of weights w0

for episode=1:Nepisodes do
Select a starting state s0 = (λ0, w0) according to the guided-exploration rule
Set k = 0 while sk is not terminal do

Select a random action ak with probability ε, otherwise
ak ∈ argmaxa q(sk , a;wk )

Take an action ak , observe reward rk , next state sk+1 and a Boolean flag
indicating whether sk+1 is terminal state or not

Store the transition τk = (sk , ak ,rk , sk+1) in the experience replay D
Sample a random minibatch of transitions τl from the buffer D

Set yl =
{

rl for terminal sl+1

rl +γmaxa q(sl , a;w) for non-terminal sl+1

Perform a gradient-descent step

wk+1 ∈ argminwk
Eτl∼D

[(
rl +γmaxa∈δ2 q(sl+1, a,wk−1)−q(sl , a,wk )

)2
]

end
end

replay buffer, which allows a reinforcement-learning agent to store experience (trajectories

of the MDP) in the form of transition tuples denoted τk = (sk , ak ,rk , sk+1). At every train-

ing step, these are then randomly sampled, forming a training mini batch for the stochastic

gradient-descent optimization. The intuition behind memory replay is to break extant tempo-

ral correlations among observations, and thus stabilize the learning (Liu and Zou, 2018). The

gradient based of the loss functions is then given by

∇wk L (wk ) = Eτk∼D

[(
rk +γmax

a′ q̂(sk+1, a′;wk−1)− q̂(sk , ak ;wk )

)
∇wk q̂(sk , ak ;wk )

]
, (2.18)

where τk are transition tuples from the replay buffer D , which is designed to store samples for

the past N transitions. Our implementation employs an adaptation of the uniform memory

buffer coined Prioritized Experience Replay (PER); for details, see Appendix A.1.

Q-Function Approximation

Modern reinforcement learning applications often employ deep neural networks as q-function

approximators due to their ability to capture “arbitrarily” complex patterns via universal

approximation theorem (Cybenko, 1989). In this text we consider two types of approximators,
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deep ReLU neural network as a nonlinear approximator and a shallow B-Spline network as a

linear approximator.

Generally, a feedforward ReLU network f :Rd0 →RdL+1 is a superposition of L hidden layers

hi :Rdi →Rdi+1 , each of width {di }L
1 ⊆N, i.e.,

f (x) = WL+1φ(WLφ(WL−1 . . .φ(W2φ(W1x +b1)+b2) · · ·+bL−1)+bL)+bL+1, (2.19)

for all x ∈Rd0 where Wl ∈Rdi×di−1 and bi is the matrix of trainable weights and the vector of bi-

ases for the i -th layer respectively, andφ(x) = max{0, x} is the rectified linear unit activation. In

our application, the input dimension d0 corresponds to the state-space dimensions, whereas

the output dimension dL+1 is equal to the number of actions available. Fig. 2.4a depicts a

sample architecture of a q-approximator with three available actions. Computing the gradient

of Eq. (2.19) is straightforward with the aid of the backpropagation algorithm.

Additionally, we consider a linear q-function approximator based on Basis spline (B-spline)

features. Technically, we reformulate the minimization problem from Eq. (2.16) as a surface

spline regression, that is, a linear regression with features defined by a tensor product of

B-splines of order three. A set of n B-spline basis functions {Bi ,p;t}n
i=1 of degree p is defined

using the de Boor’s recursion formula as

Bi ,p;t(x) = x − ti

ti+p − ti
Bi ,p−1;t(x)+ ti+p+1 −x

ti+p+1 − ti+1
Bi+1,p−1;t(x),

Bi ,0;t =
1 if ti ≤ x ≤ ti+1,

0 otherwise,

for all x ∈Rwhere a knot vector t = {ti }n+p+1
i=1 is a monotonically increasing sequence of points.

In our application, we define a q-approximator as a tensor product surface defined by two

uniformly spaced knot vectors tω = (ω(0), . . . ,ω(r )) and tλ = (λ(0), . . . ,λ(q)) of respective lengths

r +1 and q+1, withω(0) = 0,ω(r ) = wmax, λ(0) =λ∞ and λ(q) =λmax. Specifically, for each fixed

action a ∈ δ2 the approximate action-value function is defined as

q̂ (s, a;w) =
m∑

i=0

n∑
j=0

ωi , j Bi ,3;tλ(λ)B j ,3;tω(w), (2.20)

where s = (λ, w), w = {ωi , j }(m,n)
(0,0) , m = q −4, and n = r −4. For a thorough analysis of B-spline

properties the reader is referred to Dierckx (1995). Finally, thanks to being linear in weights, we

can directly apply Carvalho et al. (2020) convergence result for off-policy trained q-learning

with linear function approximators. A sample architecture of the B-spline approximator is

demonstrated in Fig. 2.4.

49



Chapter 2. Interpretable Reinforcement Learning in Credit Collections

Hidden Layers q-ValuesInput Layer
Feature Layer q-ValuesInput Layer

(a) (b)

Figure 2.4: a) Neural network architecture of the q-function. b) Architecture of the B-spline
surface approximator.

Continuous Reward Shaping7

The complexity of the problem of maximizing the objective in Eq. (2.11) arises mainly from an

asynchronous relationship between an action and its resulting reward. In contrast to a delayed

reward environment (Campbell et al., 2014) where each reward is stochastically delayed

by times drawn from a known family of stationary distributions, the collections problem

is significantly more intricate. The agent’s actions are asynchronous to the environment’s

discrete feedback; see Fig. 2.3. Despite this formulation being natural to many practical

applications, the vast majority of applications considers synchronous actions and feedback

with the notable exception of Upadhyay et al. (2018).

In reinforcement-learning problems with sparse rewards similar to the collection case, the

inherent difficulty is that the agent does not receive the learning signal sufficiently often to

learn from, and even if he does, it is usually very far (in time) from the actions that led to this

reward. Learning in such environments often takes much longer time or is outright impossible.

A possible remedy is to shape the rewards by providing some auxiliary small reward that nudges

the agent’s learning into the “right” direction. In practice, the auxiliary reward is designed by a

human expert who tries to encourage some positively perceived behavior (e.g., in the game of

Pong, it is common to provide an agent with a small positive reward for every step the ball is

traveling towards the opponent’s paddle). In our case, we leverage the martingale property of

compensated point processes to reshape discrete rewards into a continuous reward stream.

7The idea presented in this subsection is due to Naveed Chehrazi and is further discussed in Mark et al. (2020a).
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Proposition 1 The sparse reward rk obtained at step k

rk =−cak +
zk wk , repayment received in [k∆t , (k +1)∆t ],

0, otherwise.
(2.21)

is in expectation equal to rk = w((k−1)∆t )z̄λ(k∆t )∆t , where z̄ is the mean relative repayment

size, ∆t is the environment’s discretization step, and
(
λ(k∆t ), w(k∆t )

)
represents the account

state at step k.

Proof. Proof of Proposition 1. As a consequence of Eq. (2.6), the value of an account following

a policy π is given by

vπ(λ, w) = Eπ
[∫ ∞

0
e−ρs w(s−)d Z (s)− c

∫ ∞

0
e−ρsd A(s)

∣∣∣H0

]
.

Taking advantage of the martingale identity,

E

[∫ t

0
e−ρs w(s−)d Z (s)

∣∣∣H0

]
= E

[∫ t

0
e−ρs w(s−)z̄λ(s)d s

∣∣∣H0

]
, t ∈R+,

where z̄ = E[zk ], the account value can be rewritten as

vπ(λ, w) = Eπ
[∫ ∞

0
e−ρs w(s−)z̄λ(s)d s − c

∫ ∞

0
e−ρsd A(s)

∣∣∣H0

]
,

where the terms in expectation represent the discounted accumulated reward and cost of

collections, respectively. Discretizing the first integral and omitting the discounting term

yields the continuous one-step reward rk = w((k −1)∆t )z̄λ(k∆t )∆t , analogous to the sparse

one-step reward in Eq. (2.21), which concludes the proof. For a comparison of the sparse and

continuous reward formulations, see Fig. 2.3.

Regularizer-Fitted Q-Learning

Despite major breakthroughs, reinforcement learning has not yet been widely adopted for

business decision making problems (Dulac-Arnold et al., 2019; Ghassemi et al., 2020). The

principal cause is twofold. Firstly, RL algorithms are by their very nature extremely data-

hungry, and, as such, are applicable only where large amounts of data can be generated on

demand (e.g., robotics or model based RL). Secondly, practical applications often impose

additional requirements on the policy that go well beyond mere performance metrics, such

as interpretability of the resulting decision rules and thus their comprehensibility for human

decision makers. For instance, when deciding on how much credit to extend to a car-loan

applicant, we expect this point estimate to be not only sufficiently accurate, but also monoton-

ically increasing in the applicant’s salary and credit rating. However, when training a neural

net on real data, despite a favourable loss metric, the sheer amount of learnable weights

makes the model susceptible to overfitting, and thus to obscuring such an intuitive and im-
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Figure 2.5: (a) Interpretable vs not Interpretable value function (b) Decision rule violating
interpretability in certain regions, λ?(w) denotes the optimal policy for the case with continu-
ous actions.

portant relationship. The resulting local inconsistencies would tend to undermine decision

maker’s confidence in the model, which therefore would not stand a good chance of getting

implemented. Should the model nevertheless pass the validation phase and be adopted in

practice, it is prone to produce locally biased predictions, which would predominantly affect

underrepresented subgroups for which the available data are relatively sparse.

For the collections problem in question, the interpretability of a given policyπ and its associate

value function vπ is closely linked to the structure and the shape of the action set and value

function, respectively. Specifically, this structure must follow systemic consistency conditions

which can be framed as value function and policy monotonicity constraints. That is, values

of accounts for fixed intensity λ need to increase in the outstanding balance w . Similarly, for

accounts with fixed balance w , an increase in intensity λ needs to produce larger account

values so(
w ′ ≥ w ⇒ q̂((λ, w ′), a;w) ≥ q̂((λ, w), a;w)

) ∧ (
λ≥λ′ ⇒ q̂((λ′, w), a;w) ≥ q̂((λ, w), a;w)

)
,

(2.22)

for all a ∈ δ2. Additionally, consistent with the economic principle of free disposal of effort

it is important that the policy presented to a rational decision maker is that if at any point

in the state space (λ, w) a (nonzero) action is prescribed, then actions of at least the same

strength need to also be prescribed for intensities lower than λ and outstanding balances

higher than w .

These consistency conditions, which imply shape constraints on the value function, capture

the economic logic that if it is optimal to act for an account in a lower balance state, then it

must also be optimal to act (at least as forcefully) for an account at a higher balance. Similarly,

an account in lower intensity state is less likely to repay, so an optimal action has to be at

least of the same size. For a detailed analysis of the theoretical properties of policy and value
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function, see Chehrazi et al. (2019) who obtain an optimal solution for the collection problem

in continuous time. The monotonicity constraints in Eq. (2.22) can be regarded as prior

structural knowledge and can be included in the learning by means of a barrier regularization

term,

H(q̂(s, a;w)) = η1 max{0,−∂q̂(s, a;w)

∂λ
}+η2 max{0,−∂q̂(s, a;w)

∂w
}. (2.23)

Therefore, we define a domain-knowledge regularized (DKR) policy iteration algorithm using

a monotonicity-regularized Bellman operator T R

T R q̂(sk , ak ), Esk+1∼P (·|sk ,ak )
[
R̂(sk , ak , sk+1)+γv̂π(sk+1)

]
, (2.24)

where the penalization for monotonicity is absorbed in an augmented reward term

R̂(sk , ak , sk+1) = R(sk , ak , sk+1)−H(q̂(sk , ak ;w)). (2.25)

The augmented reward notation yields an identical update rule to Eq. (2.14); thus, the se-

quence of q-functions, defined recursively by qi+1 = T πqi , converges to a regularized q-

function as i → ∞. The augmented reward acts as a soft penalization of the action-value

functions that violate the nonotonicity constraints via the barrier penalization term. A positive

penalization of the q-network loss encourages monotonicity while not entirely restricting

the weights out of non-monotonic regions. As a result, we expect that such constraint will

favor monotonicity without sacrificing the network’s flexibility. This idea can be extended to

off-policy learning where the DKR loss function from Eq. (2.18) function is modified to

∇wk L (wk ) =Eτk )∼D

[(
rk +γmax

a′ q̂(sk+1, a′;wk−1)− q̂(sk , ak ;wk )

)
×(

∇wk q̂(sk , ak ;wk )−∇wk H(q̂(sk , ak ;wk ))

)]
,

Note that the monotonicity is imposed only “softly,” that is the monotonicity of the q-function

is not guaranteed but simply encouraged via the penalization term. The penalization hyper-

parameters η1 and η2 are set to be polynomialy increasing in the iteration number i , hence

slowly nudging the parameters towards monotonic q-functions. Lastly, using a linear B-spline

the q-approximator has a tangible advantages over the non-linear neural net in a sense that

convergence guarantees for the q-learning exist (Bertsekas and Tsitsiklis, 1996; Tsitsiklis and

Van Roy, 1997), even for the off-policy case with a uniform replay buffer Carvalho et al. (2020).

Additionally, the regularization term featuring the q-function derivatives with respect to

state-space variables is readily available in closed-form via a simple relationship between the

derivative of a spline function and a B-spline of lower degree.
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2.4 Results

The empirical identification of an impulse-controlled Hawkes process is discussed in Chehrazi

and Weber (2015) using GMM and Mark and Weber (2020) using an EM-type algorithm. In

our analysis, we focus on debt holders with similar characteristics, i.e., with fixed repayment-

process parameters from Tab. 2.1. However, we differentiate individual accounts with their

starting state (λ0, w0) ∈ R2+. That is, an account perceived as being of a higher quality will

have a higher starting intensity λ0. To evaluate the performance of the developed learners,

we rely on a robust numerical experiment. Consider a collector endowed with six treatment

actions, no treatment δ2,0 = 0, weak treatments δ2,1 = 0.3,δ2,2 = 0.5, moderate treatment

δ2,3 = 0.7, and severe treatments δ2,4 = 1.0,δ2,5 = 1.5, along with a portfolio of 200 accounts,

P200 = {(λ(p)
0 , w (p)

0 )}200
p=1. Applying the techniques described in Section 2.3, the learning is

carried out over 20,000 collection episodes, where an episode represents a single fully collected

account. To ensure learning of stable policies and sufficient exploration of the state space,

it is imperative to ensure slow and steady learning (large number of episodes with small

and decreasing learning rate αk ). For evaluation of the learning progress we devise three

systematic learning measures linked to our objectives – policy quality, speed of convergence,

and value function interpretability.

Average reward and regret

Traditionally, the performance of a reinforcement learning algorithm is judged via a visual

inspection of its learning curves (i.e., the average reward attained as a function of learning

episodes elapsed). For our purposes, we define a variation of this metric given by

V (e,P200) =
∑200

p=1 v̂(λ(p)
0 , w (p)

0 ;we )∑200
p=1 w (p)

0

. (2.26)

That is, a relative amount collected from the entire portfolio at episode e. Additionally,

in Sec. 2.3.2 we provided a theoretical optimum (unattainable in our case) of the collec-

tion problem with continuous actions that acts as a natural upper bound to our problem,

V (e,P200) ≤V ?
CE(P200 =

∑200
p=1 v?CE(λ(p)

0 ,w (p)
0 )∑200

p=1 w (p)
0

. Therefore, we define a natural yet practically unattain-

able regret of not acting optimally as per the collection policy with continuous and sustain

actions as

G(e,P200) = V ?
CE(P200)−V (e,P200)

V ?
CE(P200)

. (2.27)
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Figure 2.6: (a) Portfolio of accounts used for the evaluation of learning metrics. (b) Relative
amount collected of the entire portfolio. The red and blacked dashed lines represent the

autonomous portfolio value U (P200) =
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i=0 u(λ(p)
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and the theoretical collection bound

V ?
CE(P200), respectively.

Interpretability index

An interpretable value function v̂π(s) = maxa′ q̂π(s, a′) needs to satisfy the structural mono-

tonicity constraints with respect to its states as defined in Eq. (2.22). For this sake, we define

an interpretability index

I = 1

λmax

1

wmax

∫ λmax

λ∞

∫ wmax

0
1 [(∂λv(λ, w) ≥ 0)∧ (∂w v(λ, w) ≥ 0)]dλd w,

that computes the number of violations of the monotonicity constraints in percent.

Convergence speed

Finally, the convergence of a RL algorithm can be observed from the plateauing learning curves.

We define a learning termination episode Eα for some α ∈R+ such that ∀e ≥ Eα G(e,P200) ≤α.

To demonstrate the stability of the agent-learned policies, the performance metrics are com-

puted as an average of ten independent learning instances each originating from a distinct

random seed, with standard deviation bands computed where appropriate. Additionally, for

agents sharing the same architecture (i.e. regularized and not regularized agents) learning is

conducted in pairs with an identical set of starting parameters for each, so as to provide an

apples-to-apples comparison. Fig. 2.6b depicts the comparison of agent performance using

the relative amount collected metric V (e,P200). At first glance, the performance of DQN and

monotonicity regularized DQN is almost identical, while the collection performance of the
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spline approximator is noticeably lagging behind, especially in the initial training stages. A

plausible determining factor is the vast number of parameters (flexibility) the neural network

wields (8,902 individual weights) over the B-spline approximator (252 individual weights). On

the other hand, by the episode 19,000 the linear B-Spline approximator manages to catch up

with the performance of the vastly more complex neural network fitted DQN. Hence, from

a performance per parameter perspective, a linear B-Spline approximator is favored over a

black box neural network.

Additionally, all agents relatively quickly discover a superior policy to the autonomous collec-

tion (i.e., always select inaction), and except for the non-regularized B-Spline learner, all finish

with a policy that is performance-wise comparable to the theoretically unattainable optimum.

The speed of convergence can be judged from the regret metric G(e,P200). Fig. 2.7b demon-

strates that both DQN variants feature comparable convergence speeds while the regularized

B-Spline agent needs twice the time to reach a 10% regret mark, and the non-regularized

B-Spline agent requires more than six times the training time of the vanilla DQN (2,500 vs

5,000 vs 18,000 episodes).

Finally, the interpretability index that counts the number of violations of monotonicity con-

straints as a percentage of the entire statespace non-surprisingly favors the regularized learn-

ing agents (Fig. 2.7). The DQN monotonicity regularized learner produces sensible value

functions and policies already from the first couple hundred learning episodes. In contrast,

DQN that relies on picking up monotonicity from the data samples takes 4000 learning steps

longer while still exhibiting variance across the different learning instances.

To reiterate, in contrast to the work by Chehrazi et al. (2019) the policies derived using the

learning agent in Section 2.3 do not have an explicit access to the exact parameter values.

The repayment-process specification is reflected only in the stochastic feedback the collector

receives in the form of repayments. This carries a significant advantage over an analytically

derived policy, as the learning agent is immediately redeployable in other collection environ-

ments with arbitrarily modified dynamics; i.e., one can hot swap the environment in Fig. 2.2,

and the agent is still capable of learning “high-quality” policies—merely from the (possibly

synthetic) data stream of repayment events.8 As a matter of fact, a more realistic model of

repayment behavior would likely exhibit a non-stationary, state-dependent relative repayment

distribution. Although straightforward to implement, extensions such as this one more often

than not yield analytically intractable problems;9 however, our solution can be out-of-the-box

plugged in as the only requirement is to be able to sample the repayment events.

8For realistic environments, the data stream is usually synthetic based on identified repayment-process
parameters (Mark and Weber, 2020), thus reducing the learning time to the simulation runtime rather than real
collection time.

9Even if an analytical solution might eventually be obtained for a given environment, its derivation would
present important time delays relative to the more immediate collection tasks at hand.
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Figure 2.7: (a) Evolution of the interpretability index I . (b) Evolution of the learning regret
G(e,P200).

κ λ0 λ∞ δ10 δ11 δ20 δ21 ρ c

0.7 0.11 0.1 0.02 0.5 0.0 1.0 15% $10

Table 2.1: Specification of the reference repayment process for the numerical experiment.

2.5 Conclusion

In this paper, we combined a number of state-of-the-art reinforcement-learning results to

develop a learning agent for the practice of credit collections. Firstly, in contrast to the majority

of contemporary reinforcement-learning applications, the collections problem features an

asynchronous action-feedback relationship. That is, a reward for an action taken at state s is

observed at some later time based on the intricate dynamics of the system. Even though this

asynchronous feature is characteristic for a vast number of practically relevant problems (such

as human learning, optimal execution, etc.), the literature on this topic is sparse, with the vast

majority of reinforcement-learning contributions focusing on synchronous action-feedback

environments. To this end, we formulate a stochastic reward shaping theorem which is appli-

cable to all asynchronous environments driven with Hawkes-like state-space dynamics. This

result straightforwardly transforms otherwise discretely observed reward into its continuous

analogue, and thus allows learning in these challenging environments. Secondly, with respect

to the growing need for interpretable and ethical machine-learning models, a regularization

technique that produces consistent and interpretable policies is introduced. In essence, our

regularizer naturaly incorporates structural insights in form of monotonicity and/or convexity

constraints, and thus enables learning of interpretable value functions and policies. Our

experiments demonstrate that the monotonicity penalization term does not affect the overall

performance of the learned policies or their speed of convergence; however, it guarantees

interpretability and consistency of the learned results via the imposed structural constraints.

The importance of interpretable reinforcement learning spans well beyond the discussed
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application to credit collections, and is one of the principal causes hindering wide adoption

of reinforcement learning based decision making in the business context. In contrast to a

theoretical lab experiment, practical applications require learned policies to be subjected

to a human decision maker’s oversight for validation. Thus, in practical settings, decision

maker values consistency, interpretability, and understandability even at the price of slightly

suboptimal performance, as these are key components for auditability of the model. This in

turns allows decision maker to explain the policy to a third party (including a benevolent court

of law if necessary) and can therefore provide a clear rationale (be it ex ante or ex post) for the

implementation of machine-learned actions. In our setting of a stochastic control problem

with asynchronous rewards we have shown that interpretability regularization in fact guides

the learning agent to fully interpretable policies. To quantify the generic suitability of a learned

policy, we have proposed an interpretability index (percentage of monotonicity-constraint ad-

herence of the learned value function) which clearly demonstrates the benefit of monotonicity

regularized q-learning. In this way, the paper contributes to the broader discussion on ethical

machine learning and its implications for business applications. The newly developed agents

were tested against a suite of two other benchmark policies – an autonomous policy and an

optimal policy for an analytically traceable version of the collection problem. All the agents

demonstrated a consistently superior performance to the autonomous inaction policy, while

the DQN based agents delivered performance only 5% below the theoretically unattainable

optimal solution. The significance of our agent lies in its ability to learn from mere interactions

with the environment (debtor), without knowing any analytical details about the repayment

process. This makes our agent highly applicable to other repayment processes (including

fully data-driven environments), and invites future research with more complex (and more

realistic!) model dynamics.
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3 Domain-Knowledge Enhanced Policy
Gradient: Application to Credit Collec-
tions
This chapter is based on Mark, M., Chehrazi, N., Liu, H., and Weber, T. A. (2021). Optimal

Recovery of Unsecured Debt via Interpretable Reinforcement Learning. Working Paper, École

Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

3.1 Introduction

Reinforcement learning has become a popular computational approach for solving real-life

sequential decision-making problems. Over the past few years, it has been steadily gaining

momentum, especially because of its success in complex high-dimensional control tasks

such as playing the Atari game suite (Mnih et al., 2013) or Starcraft at super-human levels

(Vinyals et al., 2019). Despite such celebrated breakthroughs, reinforcement learning has

not yet been broadly adopted by businesses for solving more traditional operations research

(OR) problems. This is often attributed to the data-hungry nature of these algorithms, which

makes them suitable only in applications where large amounts of data can be generated on

demand (e.g., in robotics). Furthermore, business applications tend to impose additional

requirements on machine learning (ML) models that go well beyond mere performance goals,

such as the interpretability of the resulting decision rules and thus their comprehensibility

for human decision makers. For instance, when deciding on how much credit to extend to

a car-loan applicant, we expect this point estimate to be not only sufficiently accurate, but

also monotonically increasing in the applicant’s salary and credit rating. However, when

training a neural network or any other highly flexible approximator on real data, we risk to

locally overfit and thereby obscure this intuitive and important relationship. Consequently,

the local inconsistencies in this dependency produced by standard ML methods would tend

to undermine a decision maker’s confidence in the decision rule, and as a result such a model

would not stand a good chance of getting implemented—despite possibly a good numerical

performance overall. Should the model nevertheless pass the validation phase and be adopted

in practice, it is prone to produce locally biased predictions, which would predominantly

affect underrepresented subgroups (e.g., minorities) for which the available data are relatively
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sparse. Therefore, the notion of interpretability and systemic consistency is closely tied to the

broader challenge of ethical machine learning (Piano, 2020).

In practice, the challenge of interpretable (ethical) ML—often tied to monotonicity and/or

convexity constraints of the learned policy with respect to its inputs—has been steadily gaining

attention in the literature. For instance, You et al. (2017) propose a deep lattice framework (as

a counterpart to neural nets) to learn flexible monotonic functions, and Gupta et al. (2019)

regularize the element-wise loss with local monotonicity constraints to encourage learning

of monotonic neural nets. Similarly, when developing a decision-making system based on

reinforcement learning for business use cases, we require that learned policies be not only

performant but also intuitive and understandable, whence interpretable by human decision

makers. One possible way for achieving policy interpretability is by embedding structural

knowledge into the learner itself. Many practically relevant problems benefit from an ex-

tensive theoretical analysis of the properties of their value functions and optimal policies.

However, this structural knowledge is usually discarded in an ML setting, for a lack of system-

atic procedure for incorporating structural domain knowledge. In this paper, we propose an

adapted deep deterministic policy gradient method that incorporates expert domain knowl-

edge directly into the learning process to obtain interpretable policies. For this we introduce a

monotonicity regularizer for the actor’s loss function which penalizes deviations of policies

from structural properties during the learning procedure. Intuitively, this regularization filters

out undesirable local minima in the policy space by means of an augmented loss gradient

that pushes solutions away from non-interpretable regions towards complete interpretability,

at comparable performance. As a result, we achieve more stable learning with less variance

across runs. We showcase the relevance of our approach in the context of optimal credit

collections, a practically relevant stochastic control problem which features a self-exciting

(Hawkes) repayment process and an asynchronous learning feedback.

3.2 Background

3.2.1 Preliminaries

We study a specific type of reinforcement learning problems, the solution to which may

benefit significantly from structural input provided by domain experts. This is often the case

for control problems in OR, finance, or economics. Specifically, our method is illustrated

by a problem of optimal credit collections which bridges these three areas. The results can

be readily applied to other problems where structural knowledge can be cast in terms of

monotonicity constraints.

The collection problem is an OR problem broached by Mitchner and Peterson (1957), often

aptly compared with the game of poker. The collector observes a stochastic sequence of

marked temporal repayment events (τi ,bi )i≥1, where τi and bi denote the i -th repayment

time and repayment magnitude, respectively. To maximize the present value of the revenue
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stream, the collector has the option to perform costly collection actions, at at time t ≥ 0,

that temporarily increase the likelihood of repayment events. Just as in poker, committing to

actions (betting) takes place before the full collection (completion of hand) is observed. Thus,

to stay in the game betting must continue.

We specify the collections problem as a Markov decision process (MDP) with a state space

S , an action space A , transition probabilities P (sk+1, sk , ak ), an initial state distribution ρ0

(on S ), a reward function R : S ×A ×S →R, and a discount factor γ ∈ (0,1). The MDP is a

discrete-time counterpart of the continuous-time repayment process introduced by Chehrazi

and Weber (2015) in terms of a stochastic differential equation (SDE),

dλ(t ) = κ(λ∞−λ(t ))d t︸ ︷︷ ︸
mean-reversion

+ δ>1 d J (t )︸ ︷︷ ︸
self-excitation

+ d A(t )︸ ︷︷ ︸
collection strategy

, t ≥ 0. (3.1)

This mean-reverting SDE describes the intensity dynamics of an account placed in collections

at time t = 0 with (given) initial intensity λ(0) =λ. Eq. (3.1) can be derived from a continuous-

time hidden Markov process where an account holder can be in one of two distinct states, “H”

or “L.” A representative account holder in state “H” would make random partial repayments at

higher frequency than if he was in state “L.” The account holder’s state evolves according to a

generic Markov jump process which can be positively influenced by the credit-issuer through

costly collection actions. While the state cannot be observed directly by the collector, he can

estimate the likelihood of the account holder’s being in either state “H” or “L”—based on the

observed repayment history. The Bayesian dynamics of these estimates translate to the SDE

specification in Eq. (3.1). In particular, the self-excitation term captures a discrete upward

adjustment in the collector’s beliefs upon observing a repayment. The jump is positive, since

a repayment is more likely in state “H” than in state “L.” In that description of the intensity

dynamics, the vector J(t) = [N (t), Z (t)]> consists of an unmarked counting process N (t) =∑
i 1{τi ≤ t } and its marked counterpart Z (t) = ∑

i zi1{τi≤t }. The marks represent relative

repayments, drawn from an empirically identifiable distribution Fz on a support in [zmi n ,1],

with a positive minimum zmi n . The vector δ>1 = [δ10,δ11] describes the sensitivity of the

process to repayment events. In the absence of a repayment, the effective rate of repayment

λ(t) declines, since a period of inactivity is more likely in state “L” than state “H.” This is

captured by the first term in Eq. (3.1), where the parameter λ∞ denotes the steady-state

of the effective repayment intensity and κ the rate of convergence. The latter parameter,

which shapes the covariance properties of the process, determines how much “memory”

the system retains. Unlike the intensity dynamics in Eq. (3.1) (for λ(t)), the dynamics of

the outstanding balance w(t ) are relatively simple: At any repayment time τi , the account’s

outstanding balance w(τi ) diminishes by the amount bi repaid, i.e., w(τi ) = (1− zi )w(τ−i ),

where zi = bi /wi−1 for i ≥ 1. Hence,

w(t ) = w(τi ), τi ≤ t < τi+1. (3.2)

Lastly, in the absence of a collection strategy A(t ), the Markovian nature of the process allows
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for a compact representation,

λ
(
t ′|λ (t )

)=ϕ(
t ′,λ(t )

)=λ∞+ (λ(t )−λ∞)e−κt ′ , t ′ ≥ t , (3.3)

which describes the law of motion for the intensity starting at λ(t ), provided no repayments

were received on the interval [t , t ′].

To cast the collections problem into a reinforcement-learning framework, the continuous-

time Markovian dynamics in Eqs. (3.1) and (3.2) must be expressed as a discrete-time Markov

chain. In particular, measuring time in small discrete steps of ∆t , we assume—without loss

of generality—that actions are taken at the beginning of an interval [k∆t , (k + 1)∆t ] while

repayments, if they occur, are received at the end of such an interval. In fact, this assumption

is required to make the discrete-time repayment process non-predictable. From the Poisson

dynamics of the repayment process, the likelihood of receiving a repayment at the end of the

interval [k∆t , (k +1)∆t ], given initial intensity λ(k∆t ) and action ak∆t , is

P[N
(
(k +1)∆t

)−N (k∆t ) = n|Hk∆t ] =


1− (

λ(k∆t )+ak∆t
)
∆t +o((∆t )2), n = 0,(

λ(k∆t )+ak∆t
)
∆t +o((∆t )2), n = 1,

o((∆t )n), n ≥ 2.

(3.4)

In the previous equation,1 the discrete-time dynamics of λ(k∆t ) for k ∈Z+ follow:

λ(k∆t ) =ϕ(
∆t ,λ

(
(k −1)∆t

)+a(k−1)∆t
)+ (δ10 +δ11zk−1)1{N (k∆t )−N ((k−1)∆t ) 6=0}, (3.5)

with λ(0) =λ0, where we are allowed to use Eq. (3.3), since no discrete event will take place on

the interval (k∆t , (k +1)∆t ). Finally, the zk are independent and identically distributed (i.i.d.)

draws from the relative-repayment distribution Fz , so the account balance evolves according

to

w(k∆t ) = (1− zk−1)w
(
(k −1)∆t

)
1{N (k∆t )−N ((k−1)∆t ) 6=0}, k ≥ 0, (3.6)

with w(0) = w0 and z−1 = 0. Equations (3.4)–(3.6) fully describe the discrete-time dynamics

of the collection process. To simplify the notation, in what follows we denote the tuple(
λ(k∆t ), w(k∆t ), ak∆t

)
by (λk , wk , ak ). In our numerical implementation, the value of (λk , wk )

is discretized on the set of reachable states (λ, w), denoted by S (R2+. This last step turns the

discrete-time, continuous-space Markov dynamics of Eq. (3.4)–(3.6) to a discrete-time finite

Markov chain, but otherwise this computational simplification is not critical for our theoretical

developments. It is important to note that we do not restrict attention to the discrete grid

of states, but rather use it to partition the state-space exploration. The repayment-process

dynamics are illustrated in Fig. 3.1.

We can now consider the discrete state-space dynamics, introduced above, as our reinforcement-

learning setting. In particular, consider the behavior of the two parties involved: a decision

maker (also referred to as agent) and an environment that is responsible for providing feed-

1H t is the information filtration generated by observable events up to time t .
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Figure 3.1: Controlled state-transition dynamics with two action-induced jumps. a) Self-
exciting intensity (t ,λ(t )). b) Account state (λ, w) ∈S .

back on the agent’s action in terms of some reward.2 The environment behavior is described

by Eqs. (3.4)–(3.6). The agent, following a policy π : S → R+ that prescribes his action for a

given state, repeatedly interacts with the environment. At each (discretized) time step k ≥ 0,

the agent observes his state sk = (λk , wk ) ∈S , selects an action π(sk ) = ak ∈A =R+ accord-

ing to policy π, and the environment responds (stochastically) with the subsequent state

sk+1 = (λk+1, wk+1), together with a random reward rk ∈R associated with the state transition

from sk to sk+1 which is of the form

rk ,R(sk , ak , sk+1) =
γzk wk − cak , repayment received in [k∆t , (k +1)∆t ],

−cak , no repayment in [k∆t , (k +1)∆t ],
(3.7)

where γ= exp(−ρ∆t ). The agent’s goal is to find a policy π that maximizes net collections,

vπ(s0) = Eπ
[ ∞∑

k=0
γk+1wk zk − c

∞∑
k=0

γk ak

∣∣∣H0

]
, (3.8)

with ak =π(sk ) and a given initial state s0 = (λ0, w0).

3.2.2 Deterministic Policy Gradient Theorem

The Deterministic Policy Gradient (DPG) is a policy gradient method suitable for control

tasks with continuous action spaces (Silver et al., 2014). In contrast to the standard stochastic

policy gradient, DPG aims to learn a deterministic policy πθ : S →A with parameter vector

θ ∈Rd1 of dimension d1 ¿|S |. Let ρπθ (s′) = ∫
S

∑∞
t=0γ

tρ0(s)Pt (s, s′;πθ)d s be the discounted

state-visitation distribution, where Pt (s, s′;πθ) denotes the probability of going from s to s′

2In engineering applications, the terms system, controller and control signal are used synonymously for the
terms environment, agent, and action employed here.

63



Chapter 3. Domain-Knowledge Enhanced Policy Gradient: Application to Credit
Collections

in t steps under a policy πθ, i.e., P(sk+t = s′|sk = s,πθ).3 We define an optimal policy π?
θ

such

that π?
θ
∈ argmaxθ J (πθ), where

J (πθ), Es0∼ρ0 [vπθ (s0)] =
∫
S
ρπθ (s)r (s,πθ(s))d s = Es∼ρπθ [r (s,πθ(s))] (3.9)

where r (s,πθ(s)) = Es′∼P1(s,s′;πθ)[R(s,πθ(s), s′)]. By the deterministic policy gradient theorem

of Silver et al. (2014), we have

∇θ J (πθ) =
∫
S
ρπθ (s)∇a qπθ (s, a)|a=πθ(s)∇θπθ(s)d s = Es∼ρπθ

[∇a qπθ (s, a)∇θπθ(s)|a=πθ(s)
]

,

(3.10)

where qπθ (s, a) = r (s, a)+γ∫
S P1(s′, s,πθ)vπθ (s′)d s′ is the q-function associated with Eq. (3.8)

for policy πθ. A number of extension algorithms were derived from the vanilla DPG, arguably

the most popular one being Deep DPG (DDPG) (Lillicrap et al., 2015), an off-policy actor-critic

type algorithm that combines DPG and double q-learning (Hessel et al., 2017). In this setting,

the q-function (critic) is parametrized with parameters w ∈ Rd2 , i.e., qπθ (s, a) = q̂πθ (s, a;w),

and is learned by a minimizing loss sequence, of the form

L (wl ) = E(sk ,ak ,rk ,sk+1)∼D

[
1

2

(
(rt +γq̂πθ (sk+1,π(sk+1);wl−1)− q̂πθ (sk , ak ;wl )

)2
]

, (3.11)

for l ≥ 1, where the distribution D samples from a memory buffer of uncorrelated experience

samples (Fedus et al., 2020), and wl−1 is a vector of previously estimated parameters—with w0

being randomly initialized at the start of training. The actor πθ(·) then ascends in the direction

of the gradient of the objective function

J (l )
β

(πθ) =
∫
S
ρβ(s)vπθ (s)d s = Es∼ρβ(·)

[
q̂πθ (s,πθ(s);wl )

]
, (3.12)

where β : S ×A → [0,1] is an arbitrary, possibly stochastic, exploration distribution (behav-

ioral policy) such that
∫
A β(s, a)d a = 1 for all s ∈S . The gradient of this modified objective

can still be easily computed, yet the off-policy training implied by the flexible use of β provides

a better stability and sample efficiency. Furthermore, policy gradient algorithms typically

require some sort of importance sampling for both actor and critic that reweighs the rewards

so as to reflect that actions were taken according to β rather than π. However, because DPG

uses temporal-difference updates for the critic and the policy is deterministic (i.e., the integral

over the actions in the objective function disappears), we can avoid importance sampling

altogether.

3.3 Incorporating Domain Knowledge

For the optimal collection problem, the interpretability of a given policyπ to a human collector

is closely linked to the structure of the action set in the state space. This structure must

3By abuse of notation (and terminology), ρπ is an improper distribution, so generically:
∫
S ρπ(s)d s 6= 1.
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follow systemic consistency conditions which can be framed in terms of policy monotonicity:

first, actions for a fixed account balance w cannot increase when the repayment intensity λ

increases; and second, the actions cannot decrease in the account balance w when the

repayment intensity λ is held constant. That is,(
w ′ ≤ w ⇒ πθ(λ, w ′) ≤πθ(λ, w)

)
and

(
λ≤λ′ ⇒ πθ(λ′, w) ≤πθ(λ, w)

)
. (3.13)

These consistency conditions, which impose shape constraints on the policy, capture the

economic logic that if it is optimal to act for an account in a lower balance state, then it must

also be optimal to act (at least as forcefully) for an account at a higher balance, and similarly,

an account in lower intensity state is less likely to repay, so an optimal action has to be at

least of the same size. For a detailed analysis of the theoretical properties of policy and value

function, see Chehrazi et al. (2019) who obtain an optimal solution for the collection problem

in continuous time. The monotonicity constraints in Eq. (3.13) can be included in the learning

by means of a barrier regularization term,

H(πθ(λ, w)) = η1 max{0,
∂πθ(λ, w)

∂λ
}+η2 max{0,−∂πθ(λ, w)

∂w
}, (3.14)

where η1 and η2 are (generally distinct) penalization constants. Similar to a maximum-entropy

policy gradient framework where a regularizer encourages learning of explorative policies (see,

e.g., Haarnoja et al. (2018)), we add the regularizer to the off-policy performance metric in

Eq. (3.12), so

Ĵ (πθ) = Es∼ρβ(·)
[
qπθ (s,πθ(s))−H(πθ(s))

]
; (3.15)

this “domain-knowledge enhanced objective” still allows for a straightforward computation of

the gradient, as

∇θ Ĵ (πθ) = Es∼ρβ(·)
[∇a q̂πθ (s, a)|a=πθ(s)∇θπθ(s)−∇θH(πθ(s))

]
. (3.16)

The intuition behind the shape regularizer (which can easily be augmented to also contain

higher-order monotonicities, for example to capture the concavity of the action frontier with

respect to w) is to reject critical points in the policy space that yield locally uninterpretable

policies (i.e., violating Eq. (3.13)) in favor of parameters satisfying the systemic consistency

constraint while staying within an ε-neighborhood in the parameter space. For a full learning

algorithm of the domain-knowledge enhanced DPG (DKEDPG), see Alg. 3 specified hereafter.

3.4 Results

Our numerical study comprises 50 independent runs of DDPG (non-penalized) and DKEDPG

(penalized) algorithms on the collection problem, each for 10,000 episodes. An episode

consists of a full collection trajectory from the initial account state s0 to its final state sT at the

end of the time horizon T , where s0 is randomly initialized as a uniformly distributed draw
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Algorithm 3: Domain-Knowledge Enhanced Deterministic Policy Gradient
(DKEDPG).

Algorithm parameters:
(λ0,λ∞,κ,δ1,δ2) - process parameters, ∆t- discretization step, Nepisodes- number of

episodes, ζ- exploration noise, ξ ∈ (0,1)- update sensitivity coefficent, L - batch size

Randomly initialize critic network q̂πθ and actor network πθ with parameters w and θ

Initialize target network q̂ ′
πθ

and π′
θ

with weights θ′ ← θ and w′ ← w
Initialize the replay buffer D [state-transition history with uniform sampling]
for episode=1:Nepisodes do

Select a starting state s0 = (λ0, w0) according to ρ0(·)
Set k = 0 while sk is non-terminal (i.e., wk ≥ 1) do

Select action ak = πθ(sk ) + ζ according to the current policy and exploration
noise

Take an action ak , observe reward rk , next state sk+1, and a Boolean flag
indicating whether sk+1 is terminal state or not

Store the transition (sk , ak ,rk , sk+1) in the experience replay D
Sample a random minibatch of transitions B = {(sl , al ,rl , sl+1)}L

l=1 according
to D

Set yl =
{

rl , for terminal sl+1,

rl +γq̂ ′
πθ

(sl+1,π′
θ

(sl+1);w′) for non-terminal sl+1.

Update the critic weights w ∈ argminw
1

‖B‖
∑L

l=1

[(
yl − q̂πθ (sl , al ;w)

)2
]

Compute the constraint-violation penalty H(πθ(sl ))
Update the actor policy using sampled policy gradient:
∇θ Ĵ (πθ) = 1

‖B‖
∑L

l=1

[∇a q̂πθ (sl , a)|a=πθ(sl )∇θπθ(sl )−∇θH(πθ(sl ))
]

Update the target networks:
θ′ ← ξθ+ (1−ξ)θ′

w′ ← ξw+ (1−ξ)w′
end

end

from the state space S .4 Importantly, in order to not stall learning in early stages, we turn

the monotonicity regularization on from episode 800 onwards (until then the penalization

coefficients are set to zero). To isolate the exact effect of the interpretability regularizer H on

learning, every pair of DDPG and DKEDPG runs is seeded with an identical randomization

seed and initialized using the same network weights.

Fig. 3.3a displays the performance evolution of both agents, averaged over all 50 runs (analo-

gous to learning curves). Since their performance is quasi-identical, we observe no performance-

related cost from implementing policy regularization. In particular, the two learning agents’

performance is identical during the first 800 episodes, due to the same randomization seed and

initial network weights, and it starts to differ only once the policy regularization is activated.

4For the implementation details and specific parameters, see Appendix B.1.
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Figure 3.2: Interpretability of a state-control feedback policy. a) Monotonicity violation. b)
Fully interpretable policy.

In Sec. 3.3, we provide a link between interpretability and policy monotonicity in the state-

space. Fig. 3.2 demonstrates the intuitive meaning of interpretability. The shaded regions

represent the action set C where the collector exerts positive intensity impulses with mag-

nitude illustrated by the heat map. Arguably the most important feature of the policy is its

action frontier F , i.e., the interface between C and inaction region I . The salient systemic

inconsistency of the non-penalized policy is exhibited by the nonmonotonic and non-concave

shape of the action frontier (resulting in a non-convex action set). Accordingly, under such an

inconsistent policy any accounts in states s outside the closure of C but still in the (closed)

convex hull of C , would be discriminated against in treatments. Furthermore, given the

required policy monotonicity in Eq. (3.13), with increasing balance (resp., intensity) we expect

gradually increasing (resp., decreasing) magnitudes of the actions (i.e., no islands in the heat

map), a feature clearly violated by the non-penalized agent in Fig. 3.3. Policy interpretability is

assessed using two distinct metrics. First, we define an interpretability index (with respect to

the policy monotonicity required in the application) as

I = 1

‖C ‖
∫
C
1{(

∂λπθ(λ,w)≤δ
)
∧
(
−δ≤∂wπθ(λ,w)

)}d s, (3.17)

where δ> 0 denotes some tolerance for non-monotonicity (zero being the most strict), and

d s = dλ×d w denotes the standard (Lebesgue-)measure on S . The monotonicity measure

can be interpreted as a relative number of non-violations in the action set C , i.e., how many

percent of the action set is interpretable. Fig. 3.3b depicts the time evolution of the non-

violation (compliance) metric in number of episodes averaged over all runs. The penalization

clearly brings the desired effect producing interpretable policies almost immediately while

non-penalized DPG attains only 90% interpretable policies at the learning termination with

far greater variance among the runs.

Second, we introduce a systemic consistency index (C`) (again, with respect to policy mono-
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Figure 3.3: Comparison of learned policies under DKEDPG and standard DDPG. a) Net collec-
tions. b)Interpretability index

tonicity) so as to connect interpretability to the agent’s learning performance. For this we

consider a learning stopping step Kα such that for all k ≥ Kα (within a sufficiently large learn-

ing horizon T ) the norm of the gradient does not exceed a given positive threshold α, i.e.,

‖∇θ J(πk
θ

)‖ ≤ α. This simple (yet effective) stopping rule uses the fact that the norm of the

learning gradient vanishes approximately near critical points in the policy space. Given this

stopping criterion, to determine C we measure both the stopping time and the interpretability

index at the stopping episode k = Kα. Fig. 3.4a depicts this relationship on a comparison

graph in the spirit of the well-known “q-q plot.” We observe that both agents perform similarly

in terms of convergence, with a majority of points being uniformly dispersed around the

45-degree line. However, as for interpretability only 11 out of the 50 non-penalized runs termi-

nated with an interpretable policy at the `= 95% level of violations (corresponding to I = 95%),

so C95% = 11/50 = 22%. For `= 99% the systemic consistency of the non-penalized agent drops

to zero. By contrast, the penalized agent terminated with an interpretable policy at the 99%

level in all 50 runs, thus attaining perfect systemic consistency at C99% =C95% = 100%. This

indicates that incorporating the interpretability regularizer rendered all policies interpretable,

without any noticeable loss in average performance or convergence speed.

Comparison with theoretical optimum. To highlight and address deficiencies of data-learned

policies, we purposefully selected an analytically well-explored practical problem. Indeed,

Chehrazi et al. (2019) derive an optimal solution for the collection problem with a value

function in semi-closed form (see Fig. 3.4b for the corresponding optimal state-feedback

control law). However, despite knowing the theoretical optimum in this particular setting, the

reinforcement learning approach goes one step further by easily carrying over to analytically

intractable variants of the problem (e.g., with state-dependent repayment distributions or

actions with memory). Finally, given a theoretical solution in our setting it is possible to

compare the performance of both agents against this exact benchmark. From a perspective

of accounts outside of the action region the only relevant part of the policy is the action

frontier. Therefore, in Fig. 3.5a we measure mean squared error (MSE) of both agent-learned
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Figure 3.4: a) Interpretability of non-penalized agent. b) Theoretically optimal policy.

DPG DKEDPG

Interpretability index 89.37% 99.46%
Systemic consistency index (C95%/C99%) 22%/ 0% 100%/ 100%
Averaged MSE of the learned frontier 1.093 0.648
Averaged variance of the learned frontier 0.284 0.228

Table 3.1: Average performance summary at learning termination

frontiers λ̂DDPG(w) and λ̂DKEDPG(w) using our 50 independent runs. Additionally, in Fig. 3.5b

we use our knowledge of theoretically optimal frontier λ?(w) to compute the variances of

λ̂DDPG(w) and λ̂DKEDPG(w), respectively. From Fig. 3.5a, we observe a noticeable reduction

in MSE (on average 0.4, see table 1) when balance w is not too small. From bias-variance

decomposition of MSE, part of this reduction is due to reduction in the variance and the rest

is due to reduction in the bias. Fig. 3.5b indicates that most of the reduction in MSE is due to

reduction in the bias. This is because the average reduction in the variance is roughly 0.05 (see

table 1) which only captures 12% of the reduction in MSE.

3.5 Conclusion

Domain-knowledge enhanced reinforcement learning naturally incorporates structural in-

sights and principles, thus enabling the learning of interpretable policies. The domain ex-

pertise is thereby formulated in terms of monotonicity constraints on the policy, and is

incorporated into the learning algorithm using a barrier regularizer that imposes penalties

for policy violations. Our results demonstrate that penalizing for the monotonicity does not

impact learning speed, convergence or performance; on the upside, it provides quantifiable

guarantees of interpretability in the policy space.
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Figure 3.5: a) MSE of the action frontier (when fixing w) computed over 50 independent runs
λ̂DDPG(w) and λ̂DKEDPG(w). b) Variance of the action frontier (when fixing w) computed over
50 independent runs using the theoretically optimal action frontier (see Fig. 3.4).

Societal Implications and Broader Impact

In contrast to a theoretical reinforcement learning setting where an agent interacts directly

with the learning environment to produce policy updates using quick simulated feedback, in

many practical applications a learned policy is subject to a human decision maker’s oversight

and will need to be validated in a real-world setting. Thus, outside a lab environment, a

decision maker needs consistency—even at the price of somewhat suboptimal performance,

for this provides not only interpretability and understandability as mentioned at the outset,

but also forms the basis of auditability. That is, provided complete interpretability (and

systemic consistency) of a learned policy, the decision maker is able to explain the policy to

a third party (including a benevolent court of law if necessary) and can therefore provide a

clear rationale (be it ex ante or ex post) for the implementation of machine-learned actions.

In the setting of a stochastic control problem with asynchronous rewards we have shown

that interpretability regularization, that is the inclusion of penalty terms for deviations from

policy shape constraints, may guide the learning agent to fully interpretable policies. To

quantify the generic suitability of a learned policy, we have proposed two measures, namely

an interpretability index (as percentage of shape-constraint adherence on the learned action

set) and a systemic consistency index, which measures interpretability at a defined point of

policy convergence. The hope is that these results may contribute to the reduction of the

“lawlessness of machine algorithms” by allowing external parties to verify objective measures

of interpretability and systemic consistency. In this way, the paper contributes to the broader

discussion on ethical machine learning and its implications for business applications.
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4 Quantifying Endogeneity of
Cryptocurrency Markets

This chapter showcases one of the salient applications of Hawkes processes in high-frequency

finance; it is based on Mark, M., Sila, J., and Weber, T. A. (2020b). Quantifying Endogeneity of

Cryptocurrency Markets. European Journal of Finance. DOI: 10.1080/1351847X.2020.1791925.

4.1 Introduction

Bitcoin, introduced by Nakamoto (2008), is arguably one of the most interesting financial

innovations of this century. Without any central authority an ad hoc peer-to-peer network

issues a tradeable asset that can be considered an alternative to fiat currencies, with all the

necessary features such as value storage and fungibility (as a medium of exchange). Moreover,

cryptocurrencies offer certain advantages, such as fast and low-cost execution—particularly

when compared to traditional financial institutions. The underlying blockchain technology

renders the recorded transactions public and transparent. Meanwhile, the cryptocurrency

space has spawned thousands of Bitcoin-like digital assets, creating a financial platform akin

to foreign-exchange markets for fiat currencies. Yet, with a market capitalization of about $200

billion its size is still fairly insignificant in comparison with the $20 trillion invested in the S&P

500 stock index. Current public discussion tends to focus on certain technical or legal points.

Regarding the place of Bitcoin in the current financial system, Baur et al. (2018) conclude that

Bitcoin is a speculative asset and thus far has not served as an alternative currency or medium

of exchange. Kristoufek (2015)—using a wavelet analysis—recognizes Bitcoin as a hybrid asset

whose price is influenced by money supply and adoption in trade, quite in accordance with

standard economic theory. As of now, our understanding of cryptocurrencies and their place

within the traditional monetary system remains sketchy. Despite the fact that crypto-market

capitalization has grown significantly, the market itself has been almost entirely unregulated.

The lack of a centralized regulatory body, together with extreme market swings, has given rise

to much criticism and caution. On the other hand, the apparently functioning crypto-market

presents a natural experiment introducing one of the most laissez-faire financial exchanges

of all time, which invites research on market dynamics and investment behavior. Indeed,

cryptocurrency exchanges offer unprecedented public access to market data, thus allowing
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for in-depth analyses and comparisons to the theory describing their traditional counterparts.

Conceptually, one can think of financial markets as devices to convert information and beliefs

about underlying fundamentals into prices (Grossman, 1989). A critical question, that still

remains largely unanswered (not only for cryptocurrencies), is how much prices are indeed

driven by observable information. In other words, are markets sufficiently immediate and

efficient to track rapid changes of security valuations with commensurate price adjustments?

According to the strong version of the Efficient Market Hypothesis (EMH), prices are a perfect

reflection of available news (Fama, 1970). That is, markets are driven exogenously: 1 any new

information is instantaneously absorbed and reflected in a new equilibrium price. If this is the

case (and investors are rational), a market crash can arise only as a consequence of a negative

high-impact news release or when significant indicator thresholds are crossed (Reinhard and

Rogoff, 2009). However, global financial markets have witnessed multiple flash-crash events

in which vast amounts of capital were lost and again recovered in a matter of minutes, without

any clear exogenous trigger. Using high-frequency data, Bouchaud (2009) concludes that

merely a small fraction of significant price jumps can be explained by exogenous events. Fur-

thermore, empirical anomalies do not conform with the neoclassical framework, such as the

“excess volatility puzzle” where prices move more than would be justified by the pertinent news

flows (LeRoy and Porter, 1981; Shiller, 1981). Even in the cryptocurrency research community

the EMH has been a source of persistent controversy. For instance, Kristoufek (2018) and

Urquhart (2016) conclude that bitcoin markets are close-to-efficient. By contrast, Jiang et al.

(2018), as well as Vidal-Tomás et al. (2019), obtain empirical results which tend to contradict

the EMH. The latter evidence suggests the presence of a significant endogenous component,

especially on smaller timescales, critical for the price evolution of digital currencies. Thus, one

expects that overall price dynamics must be driven by a time-dependent complex interplay

of exogenous and endogenous factors. Collective behavioral phenomena, such as herding

or imitation (Hong et al., 2005; Lux, 1995), offer some plausible explanations. Indeed, Bouri

et al. (2019) and Ajaz and Kumar (2018) provide empirical evidence for herding behavior in

cryptocurrency markets. However, their respective methodologies—based on cross-sectional

standard deviations of daily returns—are impervious to the more granular intra-day trad-

ing events. Additional sources of the unexplained endogeneity are frequently attributed to

strategic order splitting, margin calls, stop-loss triggers, or high-frequency traders.

Recently, a class of self-exciting point processes was recognized as a suitable tool for disen-

tangling and quantifying the underlying dynamics of the price process, as one of its inherent

features is a neat separation of the endogenous and exogenous action triggers. The discussion

on endogeneity and its evolution in the markets (i.e., the endo-exo problem) was broached by

Filimonov and Sornette (2012), who fit a univariate exponential Hawkes process to E-mini S&P

500 futures traded between 1998 and 2010. They discuss reflexivity2 on a micro scale (i.e., in

1At this point, we disregard systemic general-equilibrium feedback effects based on the fact that price levels
impact investors’ budgets, which in turn changes their consumption behavior, thus generically influencing the
prices of the underlying assets (as in the well-known “Ford effect”), albeit on a slow timescale.

2Market reflexivity is a term coined by Soros (1994) highlighting the positive feedback mechanism where
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intervals of less than 1 hour) and report a significant increase in the level of endogeneity over

the observed period (from 0.3 in 1998 to 0.8 in 2012), which can be attributed to the rise in

algorithmic trading. Hardiman et al. (2013) (“HBB”) revisit this problem with the same dataset;

however, instead of the fast decaying exponential, they opt for a heavy-tail long-memory

power-law kernel. While agreeing about the rise in the short-term reflexivity, the authors

conclude that markets were in fact persistently operating around the criticality level. Their

corollary is that price dynamics are therefore best described by two separate kernels, one for

long- and one for short-term memory—thus taking into account the meso market structure

(in intervals of about 1 day). This argument has been refuted by Filimonov and Sornette

(2015) who identify numerous estimation-related issues in HBB’s methodology, such as an

upward bias in the presence of outliers for the power-law kernel norm, whence questioning

HBB’s results. To settle the discussion Hardiman and Bouchaud (2014) develop an empirical

estimator of the branching ratio, further supporting their claims of market criticality and the

presence of long-memory properties. However, such a moment-based estimator attributes

all the dispersion beyond the homogenous Poisson process to the branching ratio. Conse-

quently, when fitted to empirical financial data, infamous for trends, data artifacts, and other

non-stationarities, the branching ratio is expected to be noticeably biased upward. In fact,

Wehrli et al. (2021) showed that any data set that exhibits long-range dependence according

to second-order properties yields a critical branching ratio estimate by construction. Wheat-

ley et al. (2019) addresses the problem of data non-stationarities by utilizing a flexible base

rate function based on B-Splines. Their results suggest that although the market mid-price

changes are strongly self-excited, the criticality is strongly rejected, at least for the univariate

microstructure Hawkes model. The methodology framed in this paper closely follows the

one of Filimonov and Sornette (2012) and therefore is aimed at measuring and investigating

endogeneity on the micro-scale level (i.e.,/ 1 hour).

Despite cryptocurrencies being an active field of research, to the best of our knowledge, as of

yet there has been no discussion on the origins of price dynamics. In this paper, we quantify

the degree of market endogeneity and investigate its temporal dependence. This allows us

to estimate the market susceptibility (and inefficiency due) to endogenous behavioral biases

(such as herding) as well as its reactiveness to exogenous shocks. We also uncover structural

similarities in the price dynamics of cryptocurrencies, equities, commodities, and foreign

exchange (FX). The findings shed light on the nature of Bitcoin from the vantage point of

self-exciting point processes.

Our paper proceeds as follows. Section 4.2 motivates and introduces the Hawkes model along

with its branching-structure representation which allows us to characterize the endo-exo

dynamics. Section 4.3 follows with a description of the dataset. Section 4.4 presents the key

findings, and Sec. 4.5 concludes.

investors’ anticipation leads to self-fulfilling prophecies, just as in a Keynesian beauty contest (Keynes, 1936).
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4.2 Model

4.2.1 Motivation

Before diving into the methodology of self-exciting point processes, it is useful to pinpoint

the salient deficiencies of standard models which do not capture the endogenous component

in the price dynamics. Consider a finite sequence of trade times (T1,T2, . . . ,Tn). Disregarding

the direction and volume of the trades, and assuming independence among them (i.e., every

trader acts independently based on private information), this description corresponds to a

perfectly exogenous market without behavioral biases such as imitation or herding. Therefore,

for sufficiently small time intervals (to account for intra-day structural breaks) the observed

order arrivals should reasonably well follow a homogenous Poisson point process (HPP).

Fig. 4.1 shows an empirical realization of trade arrivals (in a 30-minute window), next to a

simulated sequence of Poisson arrivals at the same rate. It can be easily seen that an HPP

does not capture the essence of the empirical sequence, since observed market orders exhibit

marked clustering—quite in contrast to a memoryless Poisson process.3

A natural extension of an HPP is a Markov-modulated Poisson process (MMPP), as an in-

stance of a “hidden Markov model.” An MMPP is a doubly stochastic point process whose

intensity depends on the (unobserved) state of a Markov process. MMPPs have been applied

successfully to return data in view of identifying structural breaks and distinguishing different

volatility regimes (Engel, 1994). However, when setting up an MMPP, a critical decision has

to be made at the model-specification stage on the number of hidden states, for example,

with help of information criteria. In our dataset, a reliable calibration of an MMPP proved

infeasible: our fits indicated an improvement with an increasing number of hidden states (to

more than 10) with respect to both AIC and BIC,4 suggesting a fragmented process with no

clear state separation.

Remark 5 Using the CSR (complete spatial randomness) framework described by Clark and

Evans (1954) one can strongly reject the null hypothesis of spatial randomness, practically

for any time horizon (ranging from mere minutes to full days). This finding is in line with the

barcode in Fig. 4.1a, which features heavy clustering.

4.2.2 Univariate Hawkes Process

A univariate Hawkes process is a linear self-exciting point process with a conditional intensity

function, defined as

λ(t |H t ) =µ(t )+
∫ t

0
g (t −τ)d Nτ =µ(t )+ ∑

i :τi<t
g (t −τi ), (4.1)

3Using our dataset, we fitted HPPs to 30-minute intervals of a given trading day, and find that HPPs are ill-suited
for the description of order arrivals. In particular, all residual tests in Sec. 4.2.4 failed.

4AIC: Akaike Information Criterion; BIC: Bayesian Information Criterion.
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Figure 4.1: Barcode plots. a) Empirical mid-price change times over 30 minutes (267 arrivals).
b) Simulation of a homogenous Poisson point process with intensity estimated from the
empirical data (290 arrivals).

where τi ≥ 0 denotes the i -th arrival time (for i ≥ 1). The baseline intensity µ(t ) is a determin-

istic function of time, while g :R+ →R+ is a (nonnegative-valued) self-excitation function (or

“memory kernel”) which determines the covariance properties of the process. The filtration H t

describes the estimation-relevant record of the process history and for our purposes includes

all event-arrival times on the interval [0, t ).

In the framework of Hawkes processes, “endogeneity” refers to the ability of generating new

arrivals from past events. This notion of endogeneity can be reinforced and formalized using

an alternative but equivalent view of the process in terms of a (stochastic) branching structure

(Hawkes and Oakes, 1974). The latter provides for a direct mapping between arrivals and

clusters, where each cluster starts with an immigrant generated from an inhomogeneous

Poisson process with baseline intensity µ. Consistent with Eq. (4.1), every arrival triggers a

spike in the intensity through the memory kernel, thus generating its own offspring arrivals

according to an inhomogeneous Poisson process of intensity g . This cascades through all

offsprings, effectively creating a hierarchical branching structure. Eventually, every event can

be labeled either as an “immigrant,” generated exogenously through the deterministic drift

without an existing parent, or as an endogenously created “offspring.” The central parameter

controlling the size of endogenously generated offspring families, generally referred to as the

“branching ratio” n, is defined as the average number of offsprings per event:

n =
∫ ∞

0
g (t )d t . (4.2)

Conceptually, the branching ratio determines the degree of self-excitation in the process. The

latter captures the percentage of the arrivals that are generated endogenously—as a conse-

quence of previous arrivals. Based on the value of the branching ratio, one can distinguish

four different regimes:
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(i) n = 0 (memoryless): inhomogeneous Poisson point process which features exclusively

immigrant arrivals;

(ii) n < 1 (sub-critical): nonexplosive process;5

(iii) n = 1 (critical): marginally unstable (or stable) process where a generation of offsprings

lives indefinitely (the existence of such processes was proved by Brémaud and Massoulié

(2001) for µ(t ) = 0);

(iv) n > 1 (super-critical): nonstationary explosive process with finite intensity but in-

finite/nonintegrable covariance. (In other words, a single event starts an infinite family,

and the process explodes.)

This fourfold separation provides a succinct partition for the endo-exo market dynamics,

similar in interpretation to such distinctions in the context of well-established autoregressive

processes. Ultimately, it allows us to describe the endogeneity by a characteristic number,

comparable across asset classes and financial instruments.

When inferring the branching ratio from data one has two main options: either stochastic

declustering (Zhuang et al., 2002) (which essentially requires reverse-engineering of the clus-

ters) or maximum-likelihood estimation (MLE) in combination with Eq. (4.2). In the remainder

of the paper, we pursue the second approach for its relative simplicity and clarity.

4.2.3 Parametric Kernels

The two most prominent classes of (parametrized) self-excitation functions are “exponential”

and “power-law.”

(a) Exponential kernel:

g (t ) = n

β
exp

[
− t

β

]
, t ≥ 0, (4.3)

where n ≥ 0 denotes the branching ratio and β> 0 is the decay parameter. The exponen-

tial kernel satisfies the Markov property, rendering it particularly popular. Furthermore,

as shown by Ogata (1981), it allows for recursive maximum-likelihood computations

which reduce the computational complexity from O (N 2
T ) to O (NT ).

(b) Power-law kernel:

g (t ) = n ετε0
(t +τ0)1+ε , t ≥ 0, (4.4)

where n ≥ 0 denotes the branching ratio; the shift parameter τ0 > 0 ensures the inte-

grability of the kernel, and ε> 0 sets the decay speed. This particular form gained its

5This holds, as long as the immigrant generation process µ(t ) remains bounded.
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popularity through the epidemic-type aftershock sequence model of earthquake occur-

rences.6 Compared to the exponential kernel, the power-law kernel features a “long

memory” (due to its relatively thick tail) that may be better suited for financial markets

than the exponential kernel. Additionally, there exist other variations of the power-

law kernel that differ in the way the regularization is introduced. The primary reason

for using this class of kernels is the fat tail shared by its various members (at least

approximately; see Remark 6).

Remark 6 Applying directly the power-law kernel as specified in Eq. (4.4) carries a significant

computational burden, as Ogata’s recursive MLE formulation (Ogata, 1978) is not available. In

order to expedite computations, we consider an approximation constructed from a power-

law-weighted sum of exponential kernels (Bochud and Challet, 2007)

g (t ) ≈ ĝ (t ) ≡ n

Z

M−1∑
k=0

a−(1+ε)
k exp

[
− t

ak

]
, t ≥ 0, (4.4’)

where ak = τ0mk . The power-law substitute ĝ is parametrized by the branching ratio n, the tail

exponent ε, and the shift parameter τ0. The additional tuning parameters m > 1 (best chosen

not too large to avoid an excessive saw-tooth pattern for small t ) and M > 1 impact the quality

and range of the approximation. This approximation, employed by HBB, captures long-term

dependencies while leveraging a recursive formulation of the maximum-likelihood function,

resulting in reduced fitting times. In fact, the formulation allows to accurately reproduce

a power-law decaying kernel g (t) ∼ t−1−ε for τ0 = a0 ¿ t ¿ aM−1 (Bouchaud et al., 2018).

The parameter Z is chosen such that n is equal to the true branching ratio of the kernel,∫ ∞
0 ĝ (t )d t = n, i.e., Z =∑M−1

k=0 (τ0mk )−ε = τ−ε0 (1−m−εM )/(1−m−ε).

In what follows, all references to a power-law kernel refer to the substitute ĝ in Eq. (4.4’), with

tuning-parameter values (m, M) = (2,10). For more discussion about kernel properties and

their differences, see the comprehensive review by Bacry et al. (2015).

4.2.4 Goodness-of-Fit Tests

A standard method for assessing the quality of a point-process fit is the “residual analysis,”

which consists of computing the time-deformed series of durations {ξi }∞i=1 using the estimated

conditional intensity λ̂(s|HT ),7

ξi =
∫ τi

τi−1

λ̂(s|HT )d s,

6The power-law kernel in Eq. (4.4) corresponds in fact to a (renormalized) Pareto-distribution.
7The estimated conditional intensity λ̂(·|HT ) is obtained via simulation of Eq. (4.1) using maximum-likelihood

parameters, conditional on the available data HT on the observation interval [0,T ].
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and then statistically testing it for theoretical properties. In the case where a Hawkes process

presents a fairly accurate description of the empirical data, residuals of the interarrival times

are independently and identically distributed (i.i.d.) draws from an exponential distribution

with parameter λ = 1. We assess three theoretical properties using the standard statistical

tests, as follows:

(A) Ljung and Box (1978) test (LB) for the absence of autocorrelations to ensure indepen-

dence of residuals, using up to 20 lags;

(B) Kolgomorov-Smirnov test (KS) for the distance between the empirical and the theoretical

distribution of the residual process;

(C) Engle and Russell (1998) test (ED) for excess dispersion in the residuals.

In our setting, a parametrized model that passes all three tests simultaneously is considered

“successful” and considered a viable explanation of the observed data.

Remark 7 (Brock-Dechert-Scheinkman (BDS) Independence Test) The triade of statistical

tests (A), (B) and (C) constitutes quite a standard testing suite for Hawkes-process residuals.

For the sake of robustness, we performed an additional BDS test of independence (Brock et al.,

1996). Given that this additional test did not change the test-survival statistics by much, we

argue that a check of the independence hypothesis can be captured satisfactorily by the LB

autocorrelation test.

4.3 Data

Our data set includes all executed transactions on the BitMEX cryptocurrency exchange

between March 1 and May 1 of 2019. BitMEX was selected as the largest crypto-exchange

in terms of its trading volume, particularly with respect to Bitcoin (BTC) contracts settled in

USD. The trading is open 24 hours a day, so that it closely resembles traditional FX markets.

Each trade is recorded with its corresponding time stamp, volume, price, and whether or not

the transaction changed the last transaction price (resulting in an uptick or downtick). The

available millisecond resolution in the data presents the highest available granularity for this

market.

Even though our dataset tracks all BitMEX-traded instruments, including exotics such as

Cardano (ADA) or Tron (TRX), we restrict attention to Bitcoin contracts (ticker XBTUSD), since

it accounts for the vast majority of trading volume; see Fig. 4.2.8

8A full description of all available contracts can be found at www.bitmex.com. BitMEX was founded in 2014; it
is currently owned and operated by HDR Global Trading Ltd.
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Figure 4.2: On any given day, the number of transactions (or Hawkes-process arrivals) differs
greatly among currencies. Bitcoin contracts account for almost two thirds of the trading
activity, and together with the Ethereum market, it accounts for practically all trades. The
average number of arrivals on the XBTUSD market is almost an order of magnitude larger
than for other currencies, with a peak daily activity of around 1 million recorded trades.

timestamp ordertype volume price ticktype arrival

2019-02-02 22:45:58.560 Buy 20 3433.5 PlusTick 0.000
2019-02-02 22:46:03.493 Sell 10 3433.0 MinusTick 4.933
2019-02-02 22:46:06.754 Sell 50 3433.0 ZeroMinusTick 8.194
2019-02-02 22:46:09.639 Sell 4 3433.0 ZeroMinusTick 11.079
2019-02-02 22:46:10.679 Buy 21 3433.5 PlusTick 12.119

Table 4.1: Description of the market-order data from the BitMEX exchange, which accounts
for about 10 percent of the entire BTC trading volume.

4.3.1 Measures of Market Activity

The precise definition of the “events” to be considered is not only critical for the ex-post

confidence in the identification of the arrival process, but also for the informational value

the estimated coefficients may carry. It is therefore imperative to select a reliable measure of

market activity which is robust to the “microstructure noise” omnipresent in high-frequency

data. In the finance literature thus far, Hawkes processes have been fitted mainly to the most

granular (and noisy) trade data or to various “price actions” (i.e., movements) near the “best

prices” (i.e., a(t ) or b(t ); see below). Although the trade-arrival rate may, at first glance, seem

to be a reasonable metric for market activity, it does come with an important drawback, as not

all trades are equal in their impact due to their quite disparate volumes. To take trade sizes

into account, one would need to consider a “marked” version of a Hawkes process which is

significantly more intricate to fit.9 Practitioners commonly track four different quotations (as

9While the inclusion of i.i.d. marks, independent of the event-arrival distribution, is a straightforward ex-
tension of a standard Hawkes-process estimation (Chehrazi and Weber, 2015), identification without such an
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a function of time t ), each giving rise to a price action and serving a different purpose:

• best-bid b(t );

• best-ask a(t );

• last transaction price ptr(t );

• mid-price pm(t ) = (a(t )+b(t ))/2.

Best-bid and best-ask reflect the upper and lower price boundaries of the standing limit orders

(Fig. 4.3a), at which a trader can immediately engage in selling or buying (with a market order),

respectively, up to the cumulative volume of standing orders in the limit-order book (LOB)

at the given price level. They can be regarded as proxies for the market makers’ supply and

demand.

4.3.2 Mid-Price Tracking

When a buy (resp., sell) market order arrives on an exchange at time t , it is paired with the best-

ask (resp., best-bid) price available, completing a trade that produces a last transaction price

ptr(t ). As trades arrive in random order, with the direction of the trade being a random variable

as well, the last transaction price jumps sporadically—at times even without concomitant

change in supply or demand. This behavior is referred to as “bid-ask bounce,” and it has

been established as a proper noise source in its own right (Aït-Sahalia and Yu, 2008; Black,

1986). Hence, the mid-price is regarded as a more reliable proxy for asset values than the

aforementioned best prices (i.e., a(t) and b(t)), particularly because it does not suffer from

the bid-ask bounce; Fig. 4.3b shows that pm(t) is much less noisy than ptr(t). A change in

mid-price can arise due to one of the following three reasons:

(I) Cancellation of an existing limit order at the best-bid/ask price;

(II) Submission of a new limit order at a new best-bid/ask price;

(III) Depletion of the available LOB volume at the best-bid/ask price by market orders.

Even though causes (I) and (II) result from limit orders submitted by liquidity providers (who

want to trade), the publicly visible LOB does not reflect the true supply and demand in the

market. This comes as a consequence of market participants’ (particularly large liquidity

providers’) reluctance to disclose private information by openly displaying their intentions

and intended future positions. Consequently, in fast markets, such as the Bitcoin exchange

considered here, a large portion of cancelled orders and new limit orders represent so-called

ghost orders (Lewis and Baker, 2014) whose main purpose is to pry for private information.

i.i.d. assumption—as needed for trade volumes in relation to the trade-arrival process—is still an open problem.
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Figure 4.3: Illustrative model of the limit-order book (LOB) a) and construction of the mid-
price from transactional data (b).

Indeed, in our dataset cancellations and limit orders account for about 15% of all mid-price

changes. We argue that—unlike the first two—it is cause (III) that principally reflects the actual

interaction of supply and demand, and as such it should be considered the most reliable

information source.

4.4 Results

Tracking Bitcoin mid-price changes (caused by filled orders between March 1 and May 1, 2019),

we now fit a univariate Hawkes process, defined in Eq. (4.1), with exponential and power-law

kernels, as in Eqs. (4.3) and (4.4), using maximum-likelihood estimation. MLE is our technique

of choice for the identification of Hawkes processes, which amounts to solving the following

optimization program:
max
θ∈Θ

logL (θ|HT ) ,

subject to θ ≥ 0,
(M)

where θ represents a vector of kernel and base-rate parameters. The likelihood function,

derived by Rubin (1972), is asymptotically normal, efficient, and consistent (Ogata, 1978).

As such, it constitutes a straightforward statistical inference technique for the family of self-

exciting point processes. The flipside is that its nonconvexity in the decay parameter (β

for the exponential and ε for the power-law kernel, respectively), coupled with an extreme

flatness of the log-likelihood surface near the optimum (Veen and Schoenberg, 2008), makes

reliable calibration a challenging task (Mark and Weber, 2020). In order to circumvent these

problems we solve the optimization program (M) in parallel, for a batch of 500 starting guesses

and then single out the estimation result for the parameter vector which attains the highest

log-likelihood.

Next, we consider the—from a practitioner’s standpoint—important question (neglected in

the literature thus far) of how to determine the optimal observation length T for an effective

estimation of the point-process model in Eq. (4.1). After this, we are ready to construct a
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Figure 4.4: Impact of a differing estimation horizon T ∈ {4,6,12} hours on the estimate’s accu-
racy. In contrast to simulated data coming from a single point process realization, empirical
data features intra-day seasonalities that significantly affect the maximum-likelihood esti-
mates. a) Empirical data from April 1, 2019. Total number of arrivals: NT = 30,683 (for T = 12).
b)Data simulated from an exponential Hawkes process with parameters µ= 0.05, β= 1 and
n = 0.85. Total number of observations: NT = 27,540 (for T = 12).)

reflexivity index for cryptocurrency markets (so as to quantify their endogeneity).

4.4.1 Optimal Estimation Horizon

When deliberating about a most preferred observation horizon T , at least for a stationary

process with constant parameters a greedy approach (i.e., pursuing “more is better”) would

indeed appear to be successful. However, in a real-world situation, the empirical trade data at

hand most likely would not derive from a single, long, and historically consistent generating

process. Thus, a more considerate and appropriate view would be to account for switching

regimes, thus allowing conceptually for a data history generated by a concatenation of ma-

terially different processes. This problem of detecting the corresponding phase-transition

times, commonly known as the Poisson disorder problem (Peskir and Shiryaev, 2002), has

been studied in the context of homogeneous Poisson processes and unfortunately does not

have a straightforward extension to self-exciting processes. Therefore, one has to carefully cal-

ibrate the length of the estimation windows such that the history contains a sufficiently large

sample for obtaining accurate estimates, while at the same time avoiding a calibration across

multiple regimes. On one hand, an inference from a shorter window plays into the assumption

of a constant base rate, narrowing the view sufficiently to be able to negate the empirical

regularity that mid-price changes feature marked intra-day seasonalities. On the other hand,

short estimation windows do limit the kernel’s memory and thus disregard interdependencies

across time, which develop over hours, days, or even longer periods of time. This interplay of

phenomena is illustrated in Fig. 4.4 which compares fits over various observation horizons,

for both simulated and empirical data.

In order to resolve this tradeoff, we rely on a robust numerical experiment. As discussed
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above, we try to identify a minimal window size T such that the number of observations is

sufficient for an “accurate” inference. Consider a family of exponential Hawkes processes with

a moderate branching ratio n = 0.5 but variable baseline intensity µ ∈ [0,0.2] representing

different market regimes.10 We perform an estimation of each process, given observation

horizons T ∈ [60,10800],11 and we measure the relative estimation error e = ‖θ̂−θ‖2
‖θ‖2

, where ‖·‖2

denotes the standard Euclidean distance (2-norm). To ensure robustness of the experiment,

we obtain a mean relative error for every individual horizon T (using Monte Carlo simulation

over 1,000 process realizations). Fig. 4.5a depicts the relationship between the observation

horizon T and relative error e, obtained as a mean across all simulation paths, together with

bootstrapped (5%/95%)-confidence intervals (Efron and Tibshirani, 1994).

As expected, higher µ-regimes can handle shorter observation horizons—without a significant

impact on accuracy. The most preferred (i.e., “optimal”) horizon, denoted by Tα, is selected

such that for all T ≥ Tα, e0.95(T ) < α, where α is a given acceptance threshold.12 In other

words, the optimal observation horizon is the minimal horizon beyond which the relative

error does not exceed α at a 95%-confidence level. Fig. 4.5b illustrates the determination of

this threshold for various values of µ, resulting in a effective decision tool for determining

the optimal observation horizon conditional for a given baseline intensity. More specifically,

consider the realization of a self-exciting point process on [0,T ], formed as a concatenation

of K ≥ 1 Hawkes processes with different regime parameters (µk ,nk ), for k ∈ {1, . . . ,K }, each

lasting Tk , so
∑K

k=1 Tk = T . The goal is to estimate this process on a rolling horizon, using

an observation window of smallest possible length T , so as to prevent averaging the fit over

multiple regimes. We approximate the mean intensity of the compound process as follows:

Λ=
K∑

k=1

Tk

T
Λk ≈ #events on [0,T ]

T
; (4.5)

using the identity for the average intensity (Hawkes, 1971b), together with a reasonable upper

bound n̄ for the branching ratio n. We thus recover

µ=Λ(1− n̄), (4.6)

which constitutes an approximate lower bound for the baseline mean µ. Together with

the downward-sloping dependence of the relative error e on T (depicted in Fig. 4.5b for

α ∈ {10%,15%,20%}), the latter yields a minimal observation horizon, which we refer to as

“optimal estimation horizon” Tα, as it most effectively trades off the data requirements for

estimation against the volatile nature of regime changes in the trading activity.

Remark 8 Although the preceding analysis is purely simulation-based, the results pinpoint

10Indeed, market shifts tend to manifest themselves in µ rather than in the mode of self-excitation (so g remains
fixed), as suggested by our data and Wheatley et al. (2019).

11This corresponds to a range of time horizons between 1 minute and 3 hours.
12The observed relative errors e0.05(T ) and e0.95(T ), over the observation interval [0,T ], mark the deviations

relative to 5% and 95% of the data, respectively; see Fig. 4.5a.
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Figure 4.5: Monte Carlo analysis of the relative error for various baseline regimes. Although
Fig. 4.4 was constructed using a fixed self-excitation parameter n = 0.5, the results serve as
a conservative decision tool for the optimal horizon Tα, as higher n-values translate into
more observations and thus faster and more reliable calibration. The value was not chosen
arbitrarily; it is the lowest self-excitation measured on nonoverlapping 10-minute windows
using the approximate branching-ratio estimator (Hardiman and Bouchaud, 2014). a) Relative
error as a function of the time horizon, for representative base-rate regimes. Red-shaded
area represents bootstrapped mean confidence intervals. b) Relationship between optimal
(minimal) observation horizons and different µ-regimes for three representative acceptance
thresholds.

high-quality approximations. Indeed, to the best of our knowledge the given simulation-based

method provides the first effective work-around for the (as of yet unsolved) “Hawkes disorder

problem.” The practical significance of this problem can be gauged by inspecting Fig. 4.9,

which shows a typical section of historical price movements and volatility—featuring two

distinct regimes of activity. We also note that the empirical results were derived using a Hawkes

process with exponential kernel. They readily extend to the power-law formulation in Eq. (4.4’),

provided that the tail of the kernel does not significantly exceed the observation window. g

4.4.2 Reflexivity Index

Building on the analysis from the previous subsection, we now determine the adequate look-

back period first by measuring the mean intensity, Λ= 416,019 events
5,184,000 s = 0.08. Next, we recover

the baseline intensity, µ=Λ(1− n̄) = 0.16, which corresponds approximately to a 60-minute

look-back period T for a 15% relative error; see Fig. 4.5b.13 For direct comparison with the

study conducted by Filimonov and Sornette (2012) on S&P 500 E-mini contracts, we calibrate

the process for both parametric kernels described in Sec. 4.2.3 with the additional look-back

periods of 10 and 30 minutes, on a minute-by-minute rolling horizon.

To judge the significance of the results, we refer to Table 4.2, which contains pass rates for the

13Value n̄ = 0.8 was chosen, for it is the mean value of the branching ratio measured on nonoverlapping
10-minute windows using the approximate branching-ratio estimator (Hardiman and Bouchaud, 2014).
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Figure 4.6: Fractions of significant fits (in percent) passing the goodness-of-fit criteria. a)
Exponential kernel. b) Power-law kernel.
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Figure 4.7: Comparison of theoretical and empirical densities of transformed interarrival times
ξi . The Kullback-Leibler divergence is calculated between the theoretical density P ∼ Exp(λ=
1) and the empirical density of the residuals Q in Eq. (4.1) using the estimator developed by
Wang et al. (2009).
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Figure 4.8: The empirical distribution of transformed arrival times ξi . a) Q-Q plot of all 60-
minute look-back residuals. b) Average daily p-value of the KS test. The dashed red line
represents the 5%-significance level α.

statistical tests—together with BIC-values that average across all fits.14 We observe that with

an increasing observation horizon the kernel choice becomes more and more consequential,

progressively favoring the power-law variant. Indeed, on the 10-minute timescale the pass

rates are almost indistinguishable, with a mild preference for the power-law kernel (based

on the BIC value). This is somewhat expected, as a shorter horizon prevents the power-law

kernel to leverage its long-memory property; hence, on very short timescales the use of an

exponential kernel may well be justified.

The situation dramatically changes for somewhat larger observation windows, of 30-minute

length, and a fortiori for a 60-minute observation horizon, where the power-law proves to

be a superior choice. This can be deduced from the simultaneous pass for the test triad

(KS∩LB∩ED), and it is further illustrated by Fig. 4.8 which features a quantile-quantile plot

of the process residuals for a 60-minute time window, together with the KS p-values for both

kernels (calculated as daily averages). A compounding final piece of evidence is given by

the empirical distribution of the transformed time series; see Fig. 4.7—which also shows the

Kullback-Leibler divergence for each kernel. Because of its consistent superiority we restrict

attention to the power-law kernel.

Fig. 4.9 displays the time evolution of the endogenous and exogenous components of the

process, and constitutes the Bitcoin reflexivity index for the period. It was obtained from

individual fits pooled and averaged in a single point representing a 4-hour period. We observe

that the level of endogeneity oscillates around the value n = 0.8 and consistently keeps a

significant distance from criticality. This renders Bitcoin comparable to traditional FX markets

which exhibit similar values of endogeneity (Lallouache and Challet, 2016; Rambaldi et al.,

14Wheatley et al. (2019) confirmed BIC’s usefulness as an effective tool for optimal endo-exo Hawkes-model
selection. The authors consider the estimation of Hawkes processes from synthetic data, with a base-rate intensity
that is parametrized by log-splines of various degrees. In all considered cases, BIC is instrumental for determining
the appropriate generating process.
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Figure 4.9: Price and volatility (in USD) in the cryptocurrency market; fluctuations of the
baseline intensity (µ); Bitcoin reflexivity index n (in red, for the favored 60-minute interval),
computed as a mean of 4-hour windows. The shaded areas bracket the 5%- and 95%-quantiles.
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Exponential kernel Power-law kernel

KS LB ED KS ∩ LB ∩ ED Mean BIC KS LB ED KS ∩ LB ∩ ED Mean BIC
10 min 99.32% 96.32% 98.10% 93.97% 212.71 99.79% 96.34% 99.70% 95.90% 211.12
30 min 96.44% 98.72% 90.79% 88.03% 583.35 99.19% 98.72% 98.81% 97.23% 576.03
60 min 89.19% 99.61% 74.78% 71.96% 1150.49 97.65% 99.61% 95.09% 94.19% 1131.62

Table 4.2: Fraction of acceptable fits relative to different statistical tests at the 5%-significance
level. The joint pass rates for a 60-minute estimation window are given in Fig. 4.6. Look-back
windows with less than 50 mid-price changes have been excluded.

2015). On the other hand, studies on other asset classes report branching ratios strikingly

different. For instance, HBB find that futures on equity indices exhibit near-criticality levels of

the branching ratio, while Filimonov et al. (2014) conclude that within the commodity futures

market only around 60% of mid-price changes can be considered endogenous. From the

perspective of market microstructure, this suggests that Bitcoin is closer to a fiat currency than

gold.15

Measured levels of endogeneity tend to decrease with longer look-back periods, whereas

base-rate estimates go up when increasing the observation horizon. Indeed, by shortening

the horizon of the look-back window one tends to ignore events whose impact had not yet

fully dissipated. Thus, the estimation (erroneously) credits an excessive portion of the realized

intensity to the exogenous component instead of attributing it correctly to self-excitation. This

confirms that even events developed on longer timescales (over tens of minutes and more)

play an important role in the microstructure and therefore should not be omitted (e.g., by

tightening the observation window)—at least in the absence of base-rate regime changes.

Lastly, we point out that based on the daily profile of the estimates µ̂ and n̂ (Fig. 4.10), the

Bitcoin exchange behaves like a true 24/7-market. Again, we emphasize the comparison with

FX and equity markets where one clearly observes a “lunch lull” in the form of a U-shaped

activity (that has to be accounted for in the estimation).

4.5 Conclusion

We have constructed a reflexivity index for the Bitcoin market that indicates an endogeneity of

about 80%. That is, approximately four-fifth of the mid-price changes are determined within

the market itself. While this value of the branching ratio is significantly lower than for equity

indices (the latter being close to 1), it exceeds the reflexivity of the commodities16 (such as

gold) to which Bitcoin is often compared. The crypto-market endogeneity corresponds by

and large to branching ratios found in FX markets for national currencies with which Bitcoin

shares certain important traits (Barber et al., 2012; Grinberg, 2012). On the methodological

15Gold is often compared to Bitcoin, the former requiring physical prospecting while the latter needs virtual
mining, both in need of increasing resources to extend supplies.

16Filimonov et al. (2014) measured the endogeneity of commodities such as sugar, wheat, or Brent crude, and
found them to operate on sub-critical levels (with values between 0.4 and 0.7).

90



4.5 Conclusion

70
0

60
0

50
0

40
0

30
0

20
0

10
0 0

03
:2

0
00

:0
0

06
:4

0

Ti
m

e 
(U

TC
)

10
:0

0
13

:2
0

16
:4

0
20

:0
0

23
:2

0

Number of arrivals

1.
1

1.
0

0.
9

0.
8

0.
7

0.
6

Branching ratio n

10
 m

in

30
 m

in

60
 m

in

0.
07

0.
06

0.
04

0.
05

0.
03

0.
02

0.
01

0.
00

Baseline intensity 

10
 m

in

30
 m

in

60
 m

in

Figure 4.10: Average number of trade arrivals by time-of-day; average fluctuation of the
baseline intensity (µ) by time-of-day; Bitcoin reflexivity index n by time-of-day (in red, for
the favored 60-minute interval). The shaded areas represent 5%- and 95%-quantiles. [Daily
profile are computed as averages over all significant fits.]
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side, our study highlights the importance of determining an appropriate estimation horizon

to deal with the significant nonstationarity of market activity (balancing estimation accuracy

against robustness to regime changes) to reliably identify Hawkes processes with market data.

Finally, our findings suggest that the generating process for Bitcoin mid-price changes features

long-memory properties (i.e., a small ε in the power-law kernel), explaining the comparatively

unreliable results produced by the family of exponential kernels. This is particularly evident

for longer look-back windows, where the performance of the exponential kernel significantly

deteriorates. Furthermore, the long-memory property of the process is observable through

the impact of the window length on the estimated endo-exo levels, i.e., shorter observation

horizons produce a significant upward bias in estimates of the exogenous baseline rate. To

conclude, our results indicate that a Hawkes-process model with power-law kernel and op-

timized observation horizon(s) may well lead to excellent fits for the mid-price dynamics in

Bitcoin markets.
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A Supplemental material for Chapter 2

A.1 Prioritized Experience Replay

Training of the DQN architecture relies on the experience replay buffer which stores experience

in the form of transition tuples τk = (sk , ak ,rk , sk+1). Rather than directly learning online

and discarding the “consumed” samples thereafter, sampling from the stored transitions

breaks the temporal correlations which in turn allows re-using already encountered samples

in future learning. In contrast to a uniform memory buffer, prioritized sampling weights the

samples so that the important ones are drawn more frequently for training. In particular,

samples that produced high temporal-difference error have presumably more information to

be learned from, and hence should be sampled more frequently. To this end, each transition

tuple added to the memory buffer is designated with its priority |δk |. This enriched replay

buffer contains samples (sk , ak ,rk , sk+1, |δk |), with priorities being updated only when the

particular experience is used in a minibatch for the gradient descent. Given the absolute TD

terms, we use the proportional method to obtain priorities pi , i.e.,

pi = |δi |+ε, (A.1)

where ε is a small constant ensuring that any sample has some non-zero probability of being

drawn.1 Consequently, the probability distribution of the prioritized samples is given by

P (i ) = pα
i∑

k pα
k

, (A.2)

where α determines the level of prioritization. Indeed, for α→ 0 we get no prioritization, i.e.,

the uniformly sampled experience buffer.

1Although functionally similar to the ε used for policy exploration, this constant constant is different and fixed
for the whole training period.
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A.1.1 Double Deep Q-Learning

Our implementation of the deep-q agent is, in fact, a double deep q architecture. That is, the

agent is initialized with two networks, one target and one main with separate set of parameters

w− and w. Double DQN is designed to handle the problem of overestimation of q-values. The

main network is used to predict what action to take when agent encounters a new state while

the target network is used to decouple the agent selection process from the construction of the

new target. This way the agent is not trying to minimize loss with respect to a moving target

which results in more stable learning. The TD error of the double deep q-learning defined as

δk = rk +γq̂(sk+1,argmax
a∈A

q̂(sk+1, a;w−))− q̂(sk , ak ;w), (A.3)

where the qw− represents the target network and qw the main network. The target network

weights are then updated from the main network every 50 learning iterations.
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B Supplemental Material for Chapter 3

B.1 Appendix: Implementation Details

To ensure the exact reproducibility of Section 3.4 we now provide an exhaustive list of the

hyperparameters used, followed by some practical considerations for the implementation of

the DKEDPG agent discussed in the main text. The debt holders in our setting feature similar

characteristics, and thus fixed repayment-process parameters. The heterogeneity in account

quality is captured by the initial intensity λ0 ∈ R++. That is, an account perceived as high

quality will have a larger starting intensity in comparison with a low-quality account. Due to

the nonconvex nature of likelihood estimation of the repayment-process parameters (which

are observed as part of an impulse-controlled Hawkes process during ongoing collections),

an efficient identification usually needs additional considerations such as a Cramér-von

Mises goodness-of-fit criterion (Chehrazi and Weber, 2015) or the branching structure in an

expectation-maximization algorithm (Mark and Weber, 2020).

B.1.1 Repayment Process Specification

The repayment process in an MDP environment is described in Section 3.2.1. It features a

uniform distribution ρ0(λ, w) of initial states on the rectangular support S0 = [λ∞,λmax]×
[wmin, wmax] ⊂S . The support S0 also serves as an invariant set that contains all active states.

That is, an action (or event) that would risk pushing the agent out of S0 is bound to receive a

capped intensity increment (to ensure that the repayment intensity after the control impulse

does not exceed λmax). The corresponding bounds are wmin = 1 and wmax = 200 (in dollars),

and λmax = 26.6. The minimal balance implies that any account with w < wmin is considered

fully collected, thus defining [λ∞,λmax]× [0, wmin) as the set of terminal states which stop the

account-collection procedure. The relative repayment distribution is uniform on the support

[zmin,1], where zmin = 0.1 designates the minimal relative repayment. The chosen repayment-

process parameters correspond to the practical setting with a unit time period commensurate

to a three-month (single-quarter) collection period. The mean-reversion constant κ is set

to 0.7, and the long-run steady state is λ∞ = 0.1. Intuitively, the mean-reversion parameter

95



Appendix B. Supplemental Material for Chapter 3

κ determines the covariance properties of the process and can be interpreted in terms of

how much memory the system retains (a larger κ increases the speed of repayment-intensity

dissipation, thus decreasing the system memory). Therefore, in the absence of repayment

events and account-treatment actions, the repayment intensity of an untreated account

decays by e−0.7∆t after each time step. The step size ∆t = 0.05 was carefully chosen as a

maximum step size that still produces a self-exciting Hawkes process with a 99% confidence

level. The sensitivity of the repayment process with respect to jumps (willingness to repay) is

δ10 = 0.02 and with respect to relative repayment sizes (ability to repay) is δ11 = 0.5. Finally, the

sensitivity of the repayment process with respect to collection effort (exerted by implementing

account-treatment actions) is δ2 = 1.0, effectively normalizing the magnitude of the effort—

commensurable with the repayment intensity. All admissible actions ak are contained in the

interval [0,5]; they are costly with a constant marginal cost of c = 1 (in dollars) for providing

an intensity boost. The time value of money is captured by the effective (continuous-time)

discount rate ρ = 15%. The exact algorithm governing the MDP collections environment is

sketched in Alg. 4. We note that the chosen parameters are in line with collection practice as

reported by Chehrazi and Weber (2015), and the results presented in Section 3.4 are robust

with respect to their particular values. Different runs were performed at different parameter

configurations with qualitatively identical results.

B.1.2 Experiment Settings

Our actor implementation features a deep neural net (DNN) parametrization with two hidden

layers, each spanning 64 individual neurons, as shown in Fig. B.1a. The critic network is also

parameterized with a DNN. States are fed into a DNN with two hidden layers of size 16 and 32,

respectively. Actions are fed into a different DNN with one hidden layer of size 32. The output

of these two DNNs are combined to pass through two hidden layers of 256 neurons each; see

Fig. B.1. Training is performed in batches of 512 samples using a uniform experience replay

buffer at a maximum total capacity of 1,000,000 transitions. Both the critic and actor networks

use an Adam optimization algorithm with a learning-rate parameter that decays linearly from

10−4 (resp., 2×10−3) to 10−6 (resp., 2×10−6). The penalization coefficient is 0 for the first 800

episodes of the training and 0.1 thereafter, with equal penalization for intensity and balance

monotonicity (i.e., η1 = η2 = 0.1). The random exploration noise ζ is independently drawn

from a Gaussian distribution with mean 0 and standard deviation 0.83. Finally, to update the

target networks at each step, the permeability constant ξ is set to 0.005.

B.2 Frontier Sensitivity

The parameter vector (λ∞,κ,δ10,δ11,δ2) for the repayment process in Algorithm 4 determines

the location and shape of the action frontier F . An increase of the treatment sensitivity δ2

renders actions more effective. That is, producing a unit intensity increase becomes cheaper

(compared to the base case), so the action region grows (and F moves up). An increase in the
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Output layerHidden layer(s)Input layer

Input λ 

Input w 

Action

Size 64 Size 64

Size 16 Size 32

Input a 

Size 32

Critic Value

Size 256 Size 256
Input λ 

Input w 

Input layer Hidden layer(s) Output layer

a) b)

Figure B.1: a) DNN actor-critic architecture. a) Actor network b) Critic network

Algorithm 4: A discretized simulation algorithm of the repayment process from
Eq. (2.1).

Result: Produces a sequence of states sk for k ∈ {0,1, . . . ,K }, where wK ≤ wmin

Algorithm parameters:
(λ0,λ∞,κ,δ10,δ11,δ2) - process parameters, ∆t - discretization step, π - policy
Initialize the current time t = 0, wk = w0,λk =λ0

while wk > εw do
Select a according to a policy π, i.e., a =π(sk )
Set λk =λk +a
if λk∆t ≥U [0,1] then

Draw a relative repayment zk according to Fz

Set λk =ϕ(∆t ,λk )+δ10 +δ11z
else

Set zk = 0
Set λk =ϕ(∆t ,λk )

end
end
Set rk = (zk wk −ac)
Set wk = (1− zk )wk

Set k = k +1
end

decay parameter κ implies a faster reversion towards λ∞. Thus, maintaining the repayment

intensity becomes more expensive, and F is pushed up for larger balances: both earlier and

more forceful actions are justified by the larger expected rewards. Conversely, the treatment of

low-balance accounts is delayed, for the smaller expected repayment no longer justifies the

same costly collection actions. Finally, an increase of either jump sensitivity δ10 or repayment

sensitivity δ11 (or both) produces larger arrival-induced intensity jumps, and therefore a higher

likelihood of repayment arrivals. This decreases the need for account treatment and thus

lowers the action frontier F .
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