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Abstract 

Nanoplasmonic metasurfaces have shown outstanding light-matter interaction enhancement 

capabilities, leading to their emergence as powerful platforms for highly sensitive biospectroscopy. 

Metasurface-enhanced biospectroscopy offers unprecedented opportunities for biological studies, 

and its full potential remains to be unleashed. Mid-IR metasurfaces, in particular, are very 

promising because they can act as amplifiers of fingerprint-like molecule vibrations, which are 

plentiful in this rich spectral range. In this thesis, we develop novel nanoplasmonic designs coupled 

with custom microfluidics and artificial intelligence-based data analysis models to demonstrate 

real-time, label-free, chemically specific, and non-destructive monitoring of biomolecules and 

their interactions in aqueous media. Our first nanoplasmonic design combines optimized grating 

order-coupled nanoantenna arrays with protein-accessible nanogaps to enable the high sensitivity 

monitoring of proteins and their three-dimensional structures in aqueous media. The engineered 

nanoantennas reach electric field intensity enhancements of up to five orders of magnitude and 

provide chemically specific detection of proteins and their secondary structures down to picograms 

and nanograms per milliliter, respectively. 

In the next part of the thesis, we develop multiresonant metasurfaces to monitor interactions 

between biomolecules with vibrational fingerprints in different parts of the mid-IR range. Our first 

effort focuses on developing a nanoplasmonic design for simultaneous monitoring of both proteins 

and lipid molecules. Lipids are another important class of biomolecules as they are the building 

blocks of biological membranes, and lipid-protein interactions are at the core of many cellular 

processes. New analytical tools for their study in water and at the monolayer level are of 

fundamental importance. Therefore, we introduce a dual-resonant nanoplasmonic design coupled 

to machine learning-based data analysis to overcome current sensor challenges. We apply our 

technology to a dynamic system involving synaptic vesicle mimics and demonstrate that we can 

resolve complex mass-preserving biological interactions in real-time. This is a remarkable feat that 

traditional non-chemically specific analytical measurement tools such as surface plasmon 

resonance or quartz crystal microbalance spectroscopy could not achieve. In the final part of the 

thesis, we develop yet another multiresonant design for broadband coverage of the whole mid-IR 

range. We couple our sensor to a deep learning model to resolve a dynamic biological system 

including all major classes of biomolecules simultaneously. Specifically, we resolve the toxic 

peptide-induced release of carbohydrates and nucleotides from exosome-like bionanoparticles. 

Keywords 

biosensors, deep learning, infrared spectroscopy, metasurfaces, plasmonics, artificial intelligence, 

photonics, nanotechnology 
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Résumé 

Les métasurfaces nanoplasmoniques ont montré des capacités exceptionnelles d'exaltation des 

interactions rayonnement-matière, conduisant à leur émergence en tant que plateformes 

puissantes pour la biospectroscopie hautement sensible. La biospectroscopie exaltée par 

métasurface offre des opportunités sans précédent pour les études biologiques, et son plein 

potentiel reste à être exploité. Les métasurfaces infrarouge moyen, en particulier, sont très 

prometteuses car elles peuvent agir comme des amplificateurs de vibrations moléculaires qui sont 

semblables à des empreintes digitales et abondantes dans cette riche gamme spectrale. Dans cette 

thèse, nous développons de nouvelles métasurfaces nanoplasmoniques que nous intégrons dans 

des dispositifs microfluidiques conçus sur mesure et que nous couplons à des modèles d'analyse 

de données, basés sur l'intelligence artificielle. Cela nous permet de démontrer la capacité de nos 

capteurs à faire des mesures en temps réel, sans étiquette, chimiquement spécifiques et non 

destructrices des biomolécules et de leurs interactions en milieux aqueux. Notre première 

conception de métasurface nanoplasmonique est basée sur des réseaux optimisés de 

nanoantennes couplées par ordre de réseau et ayant des intervalles nanométriques accessibles 

aux protéines pour permettre la mesure de leur présence ainsi que de leurs structures 

tridimensionnelles avec haute sensibilité en milieux aqueux. Les nanoantennes conçues atteignent 

des exaltations d'intensité de champ électrique allant jusqu'à cinq ordres de grandeur et 

permettent une détection chimiquement spécifique des protéines et de leurs structures 

secondaires à des concentrations faibles de l’ordre de picogrammes et de nanogrammes par 

millilitre. 

Dans la seconde partie de la thèse, nous développons des métasurfaces multirésonnantes pour 

suivre les interactions entre les biomolécules avec des empreintes vibratoires dans différentes 

bandes de la gamme de l’infrarouge moyen. Notre premier effort se concentre sur le 

développement d'une métasurface nanoplasmonique pour la mesure simultanée des protéines et 

des molécules lipidiques. Les lipides sont une autre classe importante de biomolécules qui sont les 

éléments constitutifs des membranes biologiques, et les interactions lipides-protéines sont au 

cœur de nombreux processus cellulaires. De nouveaux outils analytiques pour leur étude en 

milieux aqueux et de l’ordre de monocouches sont d'une importance fondamentale. Par 

conséquent, nous introduisons une métasurface nanoplasmonique à double résonance couplée à 

une analyse de données basée sur l'apprentissage automatique pour surmonter certaines 

limitations des capteurs actuels. Nous appliquons notre technologie à un système biomoléculaire 

dynamique composé de bionanoparticules similaires à des vésicules synaptiques, et démontrons 

que nous pouvons résoudre en temps réel des interactions biologiques complexes préservant la 

masse. Il s'agit, de fait, d'un exploit remarquable que les outils de mesure analytiques traditionnels 
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chimiquement non spécifiques, tels que la spectroscopie par résonance plasmonique de surface 

ou par microbalance à quartz, ne sont pas en mesure de réaliser. Dans la dernière partie de la 

thèse, nous développons un autre type de métasurface multirésonnantes pour la couverture à 

large bande de toute la gamme de l’infrarouge moyen. Nous couplons notre capteur à un modèle 

de l’intelligence artificielle basé sur l’apprentissage profond pour résoudre un système biologique 

dynamique incluant simultanément toutes les grandes classes de biomolécules. Plus précisément, 

nous résolvons la fuite de glucides et de nucléotides de bionanoparticules similaires à des 

exosomes perforées par des peptides toxiques. 

Mots-clés 

biocapteurs, apprentissage profond, spectroscopie infrarouge, métasurfaces, plasmonique, 

intelligence artificielle, photonique, nanotechnologies 
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Zusammenfassung 

Nanoplasmonische Metaoberflächen zeigen herausragende Fähigkeiten zur Verstärkung von Licht-

Materie-Wechselwirkung, weshalb sie sich als leistungsstarke Plattformen für hochempfindliche 

Biospektroskopie erweisen. Die Metaoberflächen-verstärkte Biospektroskopie bietet beispiellose 

Möglichkeiten für biologische Studien, wobei ihr volles Potenzial noch ausgeschöpft werden muss. 

Metaoberflächen im Mittelinfraroten sind besonders vielversprechend, da sie als Verstärker von 

fingerabdruckähnlichen molekularen Vibrationsbanden fungieren können, die in diesem 

Spektralbereich reichlich vorhanden sind. In dieser Doktorarbeit entwickeln wir neuartige 

nanoplasmonische Designs in Verbindung mit speziell angefertigten mikrofluidichen Zellen und auf 

künstlicher Intelligenz basierenden Datenanalysemodellen. Damit können markierungsfreie, 

chemisch-spezifische und zerstörungsfreie Echtzeitmessungen von Biomolekülen und ihren 

Wechselwirkungen in wässrigen Medien durchgeführt werden. Das erste nanoplasmonische 

Design kombiniert Verstärkungseffekte aus optimierter Gitterkopplung von Nanoantennen-Arrays 

mit nanometergroßen Antennenzwischenräume, die für Proteine zugänglich sind. Damit werden 

hochempfindliche Messungen von Proteinen und ihrer dreidimensionalen Strukturen in wässrigen 

Medien ermöglicht. Die nanofabrizierten Antennen erreichen dabei eine Verstärkung der 

elektrischen Feldstärke von bis zu fünf Größenordnungen und erlauben eine chemisch-spezifische 

Detektion von Proteinen und ihren Sekundärstrukturen bis zu Konzentrationen im Pikogramm bzw. 

Nanogramm pro Milliliter Bereich. 

Im nächsten Teil der Doktorarbeit entwickeln wir multiresonante Metaoberflächen, um 

Wechselwirkungen zwischen Biomolekülen mit charakteristischen molekularen Vibrationsbanden 

in verschiedenen Teilen des Mittelinfraroten zu überwachen. In erster Linie konzentrieren wir uns 

auf die Entwicklung eines nanoplasmonischen Designs zur gleichzeitigen Überwachung von 

Proteinen und Lipidmolekülen. Lipide sind eine weitere wichtige Klasse von Biomolekülen, da sie 

die Bausteine biologischer Membranen sind und Lipid-Protein-Wechselwirkungen den Kern vieler 

zellulärer Prozesse bilden. Neue analytische Messmethoden für solche Wechselwirkungen in 

Wasser und auf Monolagen-Größenordnung sind von grundlegender Bedeutung. Daher stellen wir 

ein dual-resonantes nanoplasmonisches Design in Verbindung mit einer auf maschinellem Lernen 

basierenden Datenanalyse vor, um aktuelle Herausforderungen von biomolekularen Sensoren zu 

überwinden. Als Demonstration wenden wir unsere Technologie auf ein dynamisches biologisches 

System mit synaptischen Vesikel-ähnlichen Bionanopartikeln an und zeigen, dass wir komplexe 

masseerhaltende biologische Wechselwirkungen in Echtzeit auflösen können. Dies ist eine 

bemerkenswerte Leistung, die für herkömmliche, nicht chemisch-spezifische analytische 

Messinstrumente wie Oberflächenplasmonenresonanz- oder Quarzkristall-

Mikrowaagenspektroskopie nicht möglich ist. Im letzten Teil der Arbeit entwickeln wir ein weiteres 

multiresonantes Design für die breitbandige Abdeckung des Mittelinfraroten. Wir koppeln unseren 

Sensor an ein Deep-Learning-Modell, um ein dynamisches biologisches System zu detektieren, das 

alle wichtigen Klassen von Biomolekülen gleichzeitig umfasst. Insbesondere detektieren wir die 

Freisetzung von Kohlenhydraten und Nukleotiden aus exosomartigen Bionanopartikeln durch die 

Wirkung eines toxischen Peptides. 
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Thesis Overview 

Our understanding of health and disease is still very limited due to the incredible 

complexity of biology involving a myriad of biomolecules and interactions. The ability to expand 

our understanding crucially depends on the availability and capability of analytical measurement 

tools. This thesis introduces a new and universal nanophotonic platform for resolving complex 

biomolecular processes in a real-time, non-destructive, label-free, and chemically specific way 

using infrared spectroscopy. 

Chapters 1 to 3 are introductory chapters providing the basics of the fields from the multiple 

scientific domains featured in this thesis, including biochemistry, data science, biotechnology, 

physics, spectroscopy, plasmonics, and photonics. In chapter 1, we give an overview of the 

biomolecular world and its building blocks. In chapter 2, we discuss the importance of biomolecule 

sensing and the principles and methods for doing so. Chapter 3 focuses on mid-IR spectroscopy 

methods and, in particular, surface-enhanced IR absorption (SEIRA) spectroscopy with plasmonic 

metasurfaces. 

After discussing the outstanding potential of SEIRA with plasmonic metasurfaces for biomolecule 

sensing in the introduction, in chapter 4, we focus on developing a plasmonic design with optimized 

sensing performance to target proteins. We introduce novel plasmonic sensors based on grating 

order-coupled nanogap (GONG) arrays that combine design principles from the state-of-the-art of 

the SEIRA field to achieve an optimized sensing performance. The sensors are incorporated into 

custom microfluidic devices to quantify their excellent sensitivity to proteins and their three-

dimensional structures in real-time. Furthermore, we show that the GONG design is flexible and 

can easily be adapted for monitoring other biologically relevant analytes such as liposomes. 

Sensors optimized for detecting a single analyte type, such as proteins or lipids, are not optimal to 

study biological interactions between different classes of biomolecules. It is therefore also helpful 

to develop sensors able to detect different analyte types simultaneously. Consequently, in 

chapter 5, we present a new plasmonic sensor design based on self-similar nanoantenna arrays to 

enable the simultaneous detection of proteins and lipids. We demonstrate its capability to resolve 

mass-preserving biological processes in real-time between cytolytic peptides and lipid vesicles such 

as synaptic vesicle mimics. This achievement represents a significant milestone for studying 

interactions between proteins and biological membranes and is realized by coupling the 

multiresonant metasurface with machine learning-based data analysis. 
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Biomolecular interactions featured in physiology and pathology are, of course, not only limited to 

protein-lipid interactions, as complex processes often involve numerous other biomolecules at the 

same time. Consequently, in chapter 6, we further push the number of bio-analytes that can be 

detected simultaneously to include all major biomolecule classes by upgrading from a dual-

resonant infrared metasurface to a triple-resonant one, and by incorporating deep learning into 

our data analysis approach. The metasurface we introduce in this chapter is a multiresonant 

version of the highly sensitive single-resonant design introduced in chapter 4. We use exosome-

like vesicular bionanoparticles to demonstrate the ability of our sensor to resolve complex 

biological processes between all four major classes of biomolecules. 

Finally, in chapter 7, a summary and discussion of the results of this work are given, pointing out 

limitations and how those could be addressed in the future. An outlook describes the potential 

applications of the technologies developed in this thesis.
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 The Biomolecular World 

1.1 The Biological Building Blocks 

The realm of biomolecules is a fascinating world involving a myriad of agents interacting in various 

ways to define life, from health to disease. Despite the richness in diversity and complexity, the 

building blocks of life can be reduced to four major classes of biomolecules: proteins, nucleic acids, 

lipids, and carbohydrates.1 These building blocks give rise to complex biological entities, e.g., 

glycoproteins, ribosomes, viruses, etc. Glycoproteins are proteins covalently linked to carbohydrates; 

these mixed agents can have various roles, such as recognition elements on the surface of cells to 

interact with other cells, e.g., T cells from the immune system.2 Ribosomes are a more complex 

example of mixed biomolecule classes, they are bio-macromolecular nanomachines which perform 

protein synthesis in cells. Ribosomes are nucleoprotein complexes, i.e., proteins structurally 

associated with nucleic acids.3 Viruses are another interesting example of complex biological entities. 

Glycoproteins are featured in their viral coats, and their cores are filled with nucleic acids containing 

the viral genome used for replication. Some viruses, such as SARS-CoV-2, have a viral envelope made 

from a lipid bilayer.4 Viruses are thus complex biological entities, which can feature all four classes of 

biomolecules in their makeup. In the following subsections, a non-exhaustive overview of the four 

classes of biomolecules is given. 

1.1.1 Proteins 

Proteins are nanostructures and nanomachines that come in all sizes and shapes to carry out a 

plethora of functions. Proteins are constituted from twenty common amino acids, which are 

molecules each containing an amino and a carboxylate group, as well as a side chain unique to each 

of them (Figure 1:1a). The side chain can convey specific characteristics such as hydrophilicity, 

hydrophobicity, or electrical charge. The amino group of one amino acid and the carboxylate group of 

another are linked together to form a peptide bond, and together, the chain of linked amino acids 

forms a linear polypeptide (Figure 1:1a). Proteins acquire their functions once the linear polypeptide 

is folded into a specific three-dimensional shape called conformation. While proteins have unique 

conformations, they feature common structural elements called secondary structure motifs, including 

α-helices, β-sheets, turns, and loops (Figure 1:1b). Multiple distinct polypeptides can also be bound 

together to form a single protein with a complex functional structure.1 
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Figure 1:1 Proteins, polypeptides, and amino acids a) Schematic depiction of an amino acid and a 

polypeptide arising from the linking of amino acids via peptide bonds. b) Ribbon representation of the 

protein bacteriorhodopsin featuring alpha helices (green), beta-strands forming a beta-sheet (red), 

loops, and turns. c) Examples of transmembrane proteins with different functions. d) Kinase enzyme 

activated by phosphorylation via a phosphatase enzyme. Adapted from Ref.5 Copyright 2010, Nature 

Education.  

 A common category of proteins are enzymes, i.e., biological catalysts, which accelerate the 

conversion of reaction substrates to product molecules (Figure 1:1c,d). Many of these enzymes 

feature a substrate-binding cleft, or groove, where the chemical reaction site, i.e., the active site of an 

enzyme, is located. Other proteins are structural components such as the cytoskeleton of cells, which 

are protein filaments interlinking to form a dynamic network.6 Some proteins are hydrophilic and 

soluble in the cytosol of cells, while others have lipophilic parts to make them more soluble within the 

membrane of cells. Proteins spanning the entirety of a cell membrane are called transmembrane 

proteins, and they can be either alpha-helical or beta-barrel types.7,8 Transmembrane proteins can 

form channels for molecules to be transported in and out of a cell, with the process usually involving 

conformational changes (Figure 1:1c). 

Conformational changes are elemental to many physiological processes; however, they are also 

involved in pathological processes such as neurodegeneration, where proteins often become 

misfolded and aggregate to give rise to large inclusion bodies in the brain. Correct protein folding, as 

well as repairing and removal of misfolded proteins, is thus crucial for maintaining proper cellular and 

physiological function. These tasks are carried out by chaperones, which are proteins themselves. 

Chaperones assist with folding, unfolding, refolding, repairing, clearance, and prevention of aggregate 

formation.9 The clearance process is initiated in the case of irreparable damage or excessive aggregate 
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accumulation, e.g., by tagging with ubiquitin for recognition and breakdown by proteasomes, i.e., 

large, multi-protein complexes which degrade proteins by breaking down their peptide bonds.10,11 

The tagging with the small ubiquitin protein, i.e., ubiquitination, is only one of the multiple possible 

post-translational modifications (PTMs) of proteins used to regulate cellular processes.12 For example, 

acetylation is the addition of an acetyl group, which has a considerable impact on gene expression and 

metabolism. It is also used in some pharmaceuticals like acetylsalicylic acid (aspirin) to enable the 

crossing of the blood-brain barrier.13 Other examples of PTMs are methylation and phosphorylation, 

i.e., the addition of a methyl or phosphoryl group, respectively; these represent major biochemical

processes for modifying protein function. The latter is considered the most abundant PTM in 

eukaryotes, with many enzymes’ activity regulated by conformational change-inducing 

phosphorylation and dephosphorylation (Figure 1:1d).14 Some PTMs like phosphorylation can also 

become dysregulated and lead to hyperphosphorylation of proteins such as Tau, which causes its 

misfolding and aggregation, which plays a role in Alzheimer’s disease.15 

1.1.2 Carbohydrates 

From the perspective of mass, carbohydrates are the most abundant biomolecules on Earth. This 

group of biomolecules includes simple sugars and their polymers, i.e., mono- and polysaccharides, 

respectively (Figure 1:2a). All feature several hydroxyl groups, and most of them have either five or six 

carbon atoms forming their rings, with glucose being the most abundant six-carbon sugar.1  

Carbohydrates act as energy carrier molecules, which can be ingested to release adenosine 

triphosphate (ATP) from the oxidation of glucose molecules. ATP is the energy currency of the cell and 

is used for metabolic processes. The main storage form of glucose in the body is glycogen, a 

multibranched polysaccharide of glucose. 
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Figure 1:2 Carbohydrates and glycoconjugates. a) Three-dimensional representation of glucose and 

cellulose carbohydrates. b) Depiction of a cell membrane containing glycoconjugates. Adapted from 

Ref.5 Copyright 2010, Nature Education. 

In addition to acting as energy carrier molecules, carbohydrates are also essential in cell-cell 

interactions such as recognition and adhesion. Complex carbohydrates can be found on the surface of 

cells, and they can be recognized by protein receptors called lectins.16,17 Carbohydrates can form 

glycoconjugates when covalently linked to polypeptides or lipids from the other biomolecule classes 

(Figure 1:2b).18 These derivatives include glycolipids and glycoproteins, which play a role in cellular 

recognition and immune response.2 Five-carbon sugars are also part of the next class of biomolecules 

discussed, i.e., nucleic acids. 

1.1.3 Nucleic Acids 

Similar to proteins/polypeptides and carbohydrates/polysaccharides being polymers of monomer 

subunits, i.e., amino acids and monosaccharides, respectively, nucleic acids / polynucleotides are 

polymers of monomers called nucleotides. Nucleotides consist of a five-carbon sugar and a 

nitrogenous base, as well as at least one phosphate group. For deoxyribonucleic acid (DNA), the sugar 

is deoxyribose, whereas for ribonucleic acid (RNA), the sugar is ribose. There are two families of 

nitrogenous bases, which are called purines and pyrimidines. Adenine (A) and guanine (G) are purines, 

whereas cytosine (C), thymine (T), and uracil (U) are pyrimidines. Polynucleotides are chains of 

nucleotides where the phosphate group of one nucleotide is linked with an oxygen atom from the 

sugar moiety of another nucleotide to form a phosphodiester linkage.1 
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Nucleobases have specific complementarities, i.e., A is complementary to T, and G is complementary 

to C. This complementarity leads to DNA adopting a double helix structure with two complementary 

polynucleotide chains coiling around each other. Unlike double-stranded DNA, RNA is a single-

stranded molecule. However, it can still form three-dimensional structures from intrastrand double 

helices formed by complementary base pairing. In RNA strands, the T nucleobase equivalent is a U 

nucleobase (Figure 1:3). 

 

Figure 1:3 Nucleic acids and nucleotides. Schematic depiction of the structures of nucleotides, RNA, 

and DNA molecules. Image credit: Sponk, Wikimedia Commons. 

The sequence of nucleobases A, G, C, and T/U in DNA/RNA strands encodes information that can be 

translated into proteins by dedicated cell machinery. The protein synthesis process from genetic code 

starts with the transcription of DNA genes in the cell’s nucleus to messenger RNA (mRNA). The 

transcribed sequence is based on the complementarity of nucleobases. After transcription, the mRNA 

strand leaves the nucleus and is translated by ribosomes in the cell’s cytoplasm. The genetic coding 

works in the way that each group of three nucleobases, called a codon, corresponds to a specific amino 

acid. Codons are recognized by transfer RNAs (tRNAs) which carry the corresponding amino acid and 

allow the ribosome machinery to synthesize the polypeptide chain from the polynucleotide chain. This 

process is enabled by yet another type of RNA called ribosomal RNA (rRNA), which mechanically 

enforces the processing of mRNA and tRNA to polypeptides.19  

Similar to proteins, nucleic acids can also be modified such as through methylation to alter their 

activity. Methylation of DNA is essential for normal development, and when located in a gene 

promoter, its effect is usually to repress the transcription of that gene.20 In many diseases, including 
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cancer, hypermethylation of gene promoters can occur, causing transcriptional silencing, which can 

have particularly adverse effects if DNA repair genes are touched.21 

1.1.4 Lipids 

Lipids are a diverse class of biomolecules that can form shape-shifting vessels for transport and 

compartmentalization. They are generally constituted of a hydrophilic head and a hydrophobic tail, 

which leads to the formation of lipid bilayers in aqueous environments, where the hydrophobic tails 

associate and hide from the water leaving only the hydrophilic heads exposed (Figure 1:4a,b). Lipid 

bilayers are of fundamental importance to all biological membranes as they provide a structural basis, 

which is flexible thanks to their noncovalent stabilizing forces. Membranes provide the delimitations 

of cells and separate them from one another, acting as impermeable barriers to most water-soluble 

compounds. The separation from the surrounding environment allows a cell to maintain the right 

conditions, such as ionic concentrations crucial for the proper function of the cell components.22   

Figure 1:4 Lipids and membranes. a) Single glycerophospholipid molecule with hydrophobic fatty acid 

tails (purple) and a hydrophilic head comprising a glycerol moiety (green), a phosphate group (orange), 

and a choline structure (blue). b) Numerous glycerophospholipids forming a lipid bilayer with 

embedded proteins. c) Lipid bilayer shielding the inside of the cell from its surrounding environment, 

and transmembrane proteins regulating the transport of molecules and ions in and out of the cell. 

Adapted from Ref.5 Copyright 2010, Nature Education. 

Transport across cell membranes can be regulated by transmembrane proteins such as channel 

proteins or more selective carrier proteins to allow for osmosis and the influx of nutrients as well as 

the excretion of waste (Figure 1:4c). Aquaporin proteins are water channels that facilitate the diffusion 
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of water across lipid membranes to regulate osmotic pressure. Unlike water molecules, which can also 

slowly diffuse through lipid membranes without aquaporins, polar nutrient molecules such as glucose 

are too large to diffuse through lipid membranes and entirely rely on facilitated transport via carrier 

proteins such as the glucose transporter.23 While facilitated diffusion is a passive process that does 

not require energy expenditure, i.e., energy molecules ATP, active transport does require the use of 

ATP. A critical mode of active transport involves using so-called pump proteins such as the sodium-

potassium pump (Na⁺/K⁺-ATPase), which transports Na+ out and K+ into cells against their 

concentration gradients.24 Thereby, electrical gradients across cell membranes are maintained, which 

is particularly important for the ability of nerve cells to respond to stimuli and transmit impulses. 

Lipid bilayers are not only used for delimiting cells but also for compartmentalization within cells. For 

instance, the nuclear envelope consists of two lipid bilayers, an inner and an outer nuclear membrane, 

surrounding the genetic material. Similarly, mitochondria also have a double lipid membrane that 

encloses DNA. Mitochondria are organelles that generate the energy used by cells, i.e., ATP molecules. 

Lipid membranes also provide compartmental structures for lysosomes and the Golgi apparatus, 

which are also essential parts of eukaryotic cells. The Golgi apparatus packages proteins into lipid 

vesicles for transport to their destinations, and lysosomes are spherical lipid vesicles that encapsulate 

enzymes that can break down biomolecules. There are many more types of vesicles,25,26 such as 

synaptic vesicles, exosomes, or artificial liposomes-based drugs, which are discussed in the following 

subsection.  

1.2 Vesicular Bionanoparticles 

Vesicular bionanoparticles are fascinating systems of biomolecule mixes from the different classes. 

Their localization, cargo, and membrane-bound docking biomolecules impart them with various 

functions. In the subsections below, three different types are briefly discussed as examples. 

1.2.1 Synaptic Vesicles 

Synaptic vesicles are intracellular vesicles that are essential for propagating signals between neuron 

cells. They are localized in presynaptic cells and filled with neurotransmitter molecules, which they 

release in the synaptic cleft to bind receptor molecules on the post-synaptic membrane and thereby 

transmit signals from one neuron to another (Figure 1:5a). Despite their small average diameter of 

40 nm,27 synaptic vesicles have several proteins in their membranes. 

The loading of neurotransmitters as cargo molecules occurs via the action of transmembrane 

transporter pump proteins, which are ATP-dependent, such as the gamma-aminobutyric (GABA) 

transporter, which loads the vesicles with GABA neurotransmitters. The transport of synaptic vesicles 

to the synapse is enabled by protein nanomotors from the kinesin family, while the docking to the 

presynaptic membrane and subsequent priming occurs via proteins such as the SNARE proteins. The 

primed vesicles quickly fuse with the presynaptic membrane to release the neurotransmitters in the 

synaptic cleft in response to elevated Ca+ concentrations and transmit electrochemical signals from 

one neuron to another.28 
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1.2.2 Exosomes 

Exosomes are extracellular vesicles with an average diameter of 100 nm,29 and are thus larger 

bionaoparticles than synaptic vesicles, which have an average diameter of 40 nm. Consequently, they 

have room for more cargo molecules such as DNA, RNA, proteins, and amino acids, as well as 

membrane proteins and glycoproteins for adhesion, motility, transport, membrane fusion, signaling, 

and protein trafficking. Exosomes are generated by all cells, and their compositions reflect their origins 

(Figure 1:5b). They are involved in near and long-distance intercellular communication, but there are 

many open questions regarding their exact roles in health and disease.30 

Understanding exosomes can also be translated into new methods for disease diagnosis and novel 

therapeutics based on engineered exosomes. Exosomes have been reported in all biological fluids so 

that liquid biopsies and the profiling of exosomes can be useful for disease diagnosis and patient 

prognosis. Exosome characteristics and properties inspire ways to regulate complex cellular pathways, 

direct therapeutic payloads to the desired target, enhance pharmacokinetics and bioavailability, and 

reduce adverse reactions. Liposome-based drugs will be further discussed in the following subsection. 
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Figure 1:5 Synaptic vesicles, exosomes, and liposomal therapeutics. a) The synaptic vesicle cycle. 

Copyright 2005, WormBook Research Community. b) Exosomes excreted from a parent cell. Adapted 

from Ref.31 Copyright 2020, MDPI. c) Different types of liposomal drug delivery systems. Adapted from 

Ref.32 Copyright 2015, Frontiers Media SA. 

1.2.3 Liposome-Based Drugs 

Liposomes, spherical lipid vesicles, can be used as drug delivery systems for enhanced efficacy and 

reduced toxicity. They are the first nano-drug delivery systems that have been successfully adopted in 

clinical applications. There are many liposome-based drugs currently available on the market for the 

treatment of various diseases and conditions, including cancers, meningitis, leukemia, fungal 

infections, hepatitis A and influenza.33 

The success of liposomes as drug delivery systems stems from the fact that they have high 

biocompatibility and flexible properties. Hydrophobic compounds can be loaded in the membranes, 

while hydrophilic compounds can be encapsulated in their aqueous core (Figure 1:5c). Liposome 

carriers have been shown to stabilize therapeutic compounds. Furthermore, the surface of vesicles 
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can easily be functionalized with ligands and receptors to enhance biodistribution and achieve 

targeted cellular uptake while minimizing toxicity.34 

Nucleic acid therapeutics delivered by liposomes are expected to be unique drugs to treat intractable 

diseases. Among the promising nucleic acid therapeutics are mRNA, small activating RNA (saRNA), 

silencing RNA (siRNA), or antisense oligonucleotides (ASOs). They hold great potential to fulfill unmet 

medical needs, as they can directly act on target genes in a sequence-dependent way, and they can 

be easily chemically synthesized. Liposome carriers could be a solution to address the challenges 

linked to the delivery of RNA molecules, such as easy degradation in vivo and repelling negative charge 

density. Liposomes can provide shelter from degrading enzymes and positively charged lipids to 

screen the negative charges from RNA molecules.35,36 
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Molecule Sensing and Health 

The field of molecule sensing, and particularly biosensing, is expanding, as can be seen from 

the rapidly growing number of publications, startup companies, and funds. There are several driving 

factors for this phenomenon, including the introduction of radically new detection schemes and 

sensor functions resulting from the intertwining of scientific fields such as physics, engineering, 

chemistry, biology, and data science. 

To encompass the exciting wealth of emerging technologies, we use the inclusive terms “molecule 

sensing” or “chemical sensing” to refer to sensor technologies developed for sensing all kinds of 

molecules/chemicals, using various non-restrictive operation principles (Figure 2:1). Biosensors are a 

subcategory of sensors, which specifically use receptors made from biological materials, i.e., bio-

receptors, to bind target analytes, which are usually biomolecules but can also be other chemicals. 

2.1 Importance of Biomolecule Sensing for Healthcare 

The importance and role of biosensors and other molecule sensors in the healthcare sector is growing, 

as such sensors are beneficial on multiple levels, including helping with the diagnosis of diseases, the 

characterization and development of drugs, as well as the understanding of both pathological and 

physiological processes. 

A considerable part of research and investment focuses on developing diagnostic tools for point-of-

care testing (POCT) to help tackle the severe health issues associated with diseases afflicting humans 

worldwide.37 For instance, POCT devices for hepatitis B, malaria, tuberculosis, HIV, and Ebola have 

been developed.38 Another timely example is the use of POCT for Covid-19, where SARS-CoV-2 rapid 

antigen tests were produced and distributed, thereby significantly contributing to reining in the 

pandemic.39,40 

In addition to helping with the diagnosis of diseases, molecule sensors can also play a role in their 

treatment, e.g., by contributing to the development of pharmaceuticals or therapeutic drug 

monitoring for dosage adjustment.41 Biosensors are used for drug discovery/characterization, and the 

analysis of protein stability as well as activity in biopharmaceutical production.42 For example, SPR 

biosensors give access to information such as the binding kinetics of a drug, which is very important 

for establishing its duration of action and clinical benefit, as well as differentiating between similar 

drug compounds.43,44 The emergence of organ-on-a-chip biosensors is also noteworthy, as their ability 

to mimic in vivo microenvironments is of great interest for monitoring drug efficacy and toxicity of 

drugs.45 

Beyond diagnosis and treatment, biosensors can also contribute on a more fundamental level by 

helping to acquire a better understanding of basic cellular processes and disease mechanisms. For 

instance, proximity-dependent biosensors have been used to measure protein-protein interactions in 

cell signaling pathways, which is vital for understanding fundamental cellular regulation and 
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developing therapeutics targeting interactions whose dysregulation is associated with disease.46,47 

Another example is biosensing based on mechanical trapping of molecular interactions to measure 

protein-DNA interactions, enabling the prediction of gene regulatory networks.48 Electrochemical 

biosensors can also be great tools for studying the central nervous system, e.g., by quantifying 

neurotransmitter transport dynamics.49,50 

It is thus clear that molecule sensing, and particularly biosensing, has already taken an important role 

in the healthcare sector, yet, there is still a lot of room for innovations and to demonstrate new sensor 

capabilities. 

2.2 Working Principle of Biomolecule Sensing 

The process of molecule/chemical sensing is composed of several elements that together enable to 

detect signals caused by the binding or mere presence of analytes (Figure 2:1). Samples containing the 

analytes can be complex such as saliva, blood, breath, exhaust, or other fluids containing many 

different molecules, but they can also be simple buffer solutions or gases containing a few or even 

just a single analyte. 

Figure 2:1 General schematic for the process of chemical/molecule sensing and its elements. The 

dotted line rectangles indicate the non-essentiality of an element, whereas the continuous line 

rectangle indicates the element which is a necessary part of the chemical/molecule sensing process. 

Sensors with a binding factor based on bio-receptors are categorized as biosensors. 

Some sensors have an initial amplification step in which the targeted analyte, if present in a sample, 

is replicated to increase its concentration and thereby facilitate its detection. An example is biosensors 

specialized in detecting microRNA (miRNA), which are small biomolecules of high diagnostic value due 

to their essential roles in biological processes and their involvement in cancer. These biosensors often 

use polymerase chain reaction (PCR) methods to amplify the number of miRNA analytes.51,52 PCR 

amplification is also having a prominent role in SARS-CoV-2 RNA detection.53 Some sensors have a 

different type of amplification step, where the targeted analyte is augmented in a way to increase its 

signal impact. One example is the binding of large nanoparticles to the analyte, e.g., to increase its 

mass or optical signal for enhanced detection.54 

A very common, albeit not strictly essential, step for all sensor types is binding the analyte before 

detection. The binding usually occurs via receptors specific to a particular target analyte, and sensors 

that use bio-receptors are called biosensors. Common bio-receptors are antibodies and DNA aptamers 

due to their specificity and affinity for target analytes.55,56 In contrast, some sensors such as electronic 
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tongues and noses use a mix of non-specific receptors with varying degrees of affinity so that analytes 

generate a fingerprint-like binding pattern that enables detection.57–59 Binding can also occur without 

receptors, e.g., by simple physisorption, such as in the case of supported lipid bilayer (SLB) formation 

on silica surfaces,60,61 or the binding of DNA to graphene.62 In fact, some sensors might not even strictly 

require the binding of analytes to detect them. For example, infrared optofluidic sensors can detect 

analytes merely flowing by thanks to the retrieval of characteristic infrared absorption bands, e.g., 

detecting the neurotransmitter GABA with the sensor which we will introduce in Chapter 5. 

 

Figure 2:2 Schematic of QCM sensor operation. A quartz crystal is sandwiched between two electrodes 

which generate an acoustic resonance via the piezoelectric effect. As analytes bind to the surface, the 

mass change ∆𝑚 leads to a change in acoustic resonance ∆𝑓, this acoustic signal is then further 

converted via piezoelectric transduction to an electric signal ∆𝑉 for amplification, processing and 

readout. 

Molecule sensing requires at the very least the generation of a signal, i.e., a change in a physical 

quantity such as mass, light, heat, or electrical charge. Most molecule sensors also include a 

transducer, which converts one form of energy into another to generate a measurable signal.63 

Transducer elements can, for example, be of electrochemical, piezoelectric, or optoelectronic 

nature.64 In the example of quartz crystal microbalance (QCM) sensors (Figure 2:2), the analyte will 

bind and thereby create a change in mass ∆𝑚, this signal will then be converted to a change in acoustic 

resonance ∆𝑓, and the acoustic signal will then further be converted to an electrical signal ∆𝑉 via a 

piezoelectric transducer.65 Another example are sensors based on surface plasmon resonance (SPR),66 

where the binding of an analyte leads to an increase in electron density ∆𝜌𝑒, this signal is then 

converted to a change in optical resonance. This optical signal ∆𝛾 is eventually converted to an 

electrical signal ∆𝑉 via a photodetector, which can be amplified before processing, e.g., to output a 

typical sensorgram for readout (Figure 2:3). It is noteworthy that while some sensors have one or 

more transduction steps, other sensors do not have any transducer element, e.g., the common lateral 

flow pregnancy or rapid SARS-CoV-2 antigen tests, where the optical signal generated upon binding 

can be directly seen by the user.67 
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Figure 2:3 Schematic of SPR sensor operation. A laser beam shines through a prism and impinges on a 

thin nanolayer of gold at the resonance angle 𝜃 that will excite surface plasmon polaritons (SPPs) on 

the gold surface in contact with the sample medium. Analytes in the vicinity of the SPP will modify the 

electron density ∆𝜌𝑒 and thus the resonance angle. This resonance shift can be measured either as a 

change of light intensity at a fixed angle or as a change in resonance angle by angle scanning. This 

optical signal ∆𝛾 is then converted by a photodetector to an electrical signal ∆𝑉 before amplification, 

processing and readout, which is typically in the form of a sensorgram representation. 

2.3 Label-Free and Chemically Specific Sensing Techniques 

It is advantageous to use a real-time and label-free monitoring setup to investigate physiological 

interactions between biomolecules because labels can interfere with the biological process under 

investigation, e.g., attaching fluorescent dyes to analytes can modify their native behavior (Figure 

2:4a). Among the most prominent label-free technologies are SPR and QCM sensors.66,68 These 

techniques are sensitive enough to detect monolayers of biomolecules in aqueous solutions and are 

thus widely used in biochemistry to determine affinities between different biomolecules.69 However, 

they lack the intrinsic capability of giving information on the chemical identity of the biomolecules 

attached to the sensor surface and thus struggle to resolve mass-preserving biological processes 

(Figure 2:4b). Furthermore, they provide only minimal information on the conformation of the bound 

biomolecules, thereby making it challenging to investigate complex biological processes involving 

different chemical species in different conformations. These complex multi-component systems are 

typically studied using a combination of other methods such as nuclear magnetic resonance (NMR),70 

circular dichroism (CD),71 electron spin resonance (ESR),72 Raman,73 or infrared (IR) spectroscopy.74  

 

Figure 2:4 Labels and chemical specificity issues. Illustration of a) label interference in biomolecular 

binding processes b) and limitations of non-chemically specific sensing for resolving mass-preserving 

biological processes. 
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While NMR and ESR spectroscopy provide chemically specific and even conformation-sensitive 

detection, these techniques require significant sample preparation times and large sample quantities. 

Besides, NMR is not well-suited for the analysis of large proteins.75 CD spectroscopy is label-free and 

can resolve the secondary structure of biomolecules, but it is not well-suited for analyzing complex 

mixtures. Raman and IR spectroscopy are methods that, in principle, allow label-free, chemically 

specific, and even conformation-sensitive monitoring of multi-analyte systems. However, each of 

these two techniques has its limitations. Raman spectroscopy uses high-power UV/visible light 

sources, which can be phototoxic to biological samples, thereby restricting the monitoring time during 

experiments.76 Surface-enhanced Raman spectroscopy (SERS) is an extremely sensitive 

implementation of this type of spectroscopy. It makes it possible to detect conformational changes of 

single molecules, such as the flexing of lipids as reported by the Evans group.77 However, this extreme 

sensitivity comes to the cost of exacerbated phototoxicity. In particular, the intense surface-enhanced 

near-fields enhance not only the detected signal but also a whole range of photochemical phenomena 

such as photofragmentation, photodesorption, photoisomerization, and photoreduction.78 

Furthermore, providing optimal enhancement for CH vibration modes around 3000 cm-1, e.g., in lipids, 

can be challenging due to the spectral separation between the excitation wavelength and the 

absorption bands.79,80 Nevertheless, many biological studies can be carried out with SERS under the 

right conditions.81 Phototoxicity is generally not a problem in IR spectroscopy, but this technique, in 

its traditional implementations, is generally plagued by several other limiting aspects. The basics of IR 

spectroscopy and how its limitations can be overcome are discussed in the next chapter. Before 

focusing on IR spectroscopy in the next chapter, the need for chemometrics in vibrational 

spectroscopy is discussed in the following subsection.  

2.4 Artificial Intelligence for Vibrational Spectroscopy 

Vibrational spectroscopy techniques such as Raman and IR Spectroscopy generate spectra composed 

of hundreds or thousands of individual frequency data points. This wealth of data is not only ideal for 

exploitation with artificial intelligence (AI) methods, which are notoriously hungry for large data sets, 

but it is often necessary to resolve the composition of complex systems with partially overlapping 

signal contributions from the different biomolecules.82 In addition to enabling vibrational fingerprint 

recognition with high accuracy, relationships and correlations between spectral features can be 

uncovered by AI methods.83 

AI is a broad term that encompasses several methods from subfields and can be thought of like the 

outer layer of an onion, where the next layer is machine learning (ML), followed by neural networks 

(NNs), and eventually deep neural networks (DNNs) or deep learning at the core. One of the simplest 

but powerful and widely used ML methods is multiple linear regression (MLR). It can decompose 

spectra from samples with two or more analytes with partially overlapping signals to resolve the 

individual signal contributions.84 MLR is part of the many ML methods based on supervised learning, 

i.e., using labeled training data for the algorithm to learn to map outputs to inputs to acquire the

ability to predict input-output pairs from unseen data. Other ML methods based on supervised 
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learning include linear discriminant analysis (LDA), support vector machines (SVMs), k-nearest 

network (KNN), and random forest (RF) algorithms.85 

These ML techniques typically require extensive data preprocessing steps,86 including the removal of 

interference from artifacts. In contrast, DNNs can cope well with spectral artifacts, e.g., from 

environmental, instrumental, or method-specific origins. DNNs offer multiple processing layers, which 

can significantly improve fitting and informative spectral feature extraction capabilities and therefore 

provides a powerful method to deal with various analytical tasks and increasing numbers of analytes 

and sample sources.87,88 
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IR spectroscopy is a label-free and chemically specific technique that has enabled a wide 

range of sensing applications across diverse fields, such as chemical engineering, pharmaceutical 

research, materials science, environmental monitoring, and personal health.89 It can be especially 

impactful for biomolecule sensing, in which the possibility of detecting and differentiating the 

absorption signatures of the basic building blocks of life, including lipids, proteins, and nucleic acids 

(Figure 3:1), is a great asset.  

The mid‐IR spectral range is ideally suited for detecting and identifying a multitude of different 

molecular species because it contains characteristic vibrational absorption bands directly correlated 

with the nature and configuration of the chemical bonds within the molecular structure. IR 

spectroscopy retrieves these molecular absorption fingerprints using Fourier‐transform IR (FTIR) 

spectrometers or tunable laser sources. It can therefore provide chemically specific information on 

the constituent materials in single‐ or multi‐analyte systems.90–94 

 

Figure 3:1 Mid-IR spectroscopy and biomolecules. Fundamental biological building blocks, i.e., lipids, 

proteins, sugars, and nucleic acids, have characteristic molecular bond vibration bands across the mid-

IR range. 

3.1 Traditional IR Spectroscopy Techniques 

Most IR spectroscopy techniques measure absorption; however, it is also possible to measure 

emission or acoustic signals with IR emission spectroscopy (IRES) or photoacoustic IR spectroscopy 

(PA-IRS), respectively.95,96 IRES requires the heating of samples to measure their radiation emission, 

with temperatures typically well above 37 °C, and consequently unsuitable for biological studies. As 

for PA-IRS, measurements are usually performed on bulk materials with thicknesses of at least several 

micrometers,97,98 and thus not suitable for studying biological systems at the nanometric scale. 

In IR absorption spectroscopy techniques, the absorbance A is calculated from the measured light 

intensity I, as shown in Equation 3:1. 

A = − log10 (
𝐼

𝐼0
) = 𝜀 ∙ 𝑑 ∙ 𝐶 

Equation 3:1 – Spectroscopic absorbance and Beer-Lambert’s law. 
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I0 represents the reference light intensity before interacting with the sample of thickness d, 

concentration C, and absorptivity ε. Measurements can be carried out either in transmission or 

reflection so that I = T or I = R, respectively. From Beer-Lambert’s law in Equation 3:1 and Figure 3:2, 

one can see that in simple transmission measurements, minute quantities of analytes (C ↘) and thin 

monolayers of molecules (d ↘) are very challenging to detect.99 This sensitivity limitation can be 

addressed with some IR absorption spectroscopy techniques based on a reflection configuration, e.g., 

attenuated total reflection (ATR) and infrared reflection-absorption spectroscopy (IRRAS). 

 

Figure 3:2 IR transmission spectroscopy. 

In IRRAS, a reflecting substrate coated with analytes is illuminated at a grazing angle 𝜑, which 

increases the pathlength 𝑑′ of the light through the sample (Figure 3:3), leading to increased light-

matter interaction to boost the absorbance signal. Additionally, the signal is increased by a factor of 2 

due to the mirror-dipole effect thanks to the reflective substrate.100 The signal dependence on the 

angle 𝜑 and the sample of thickness d and the perpendicular component of the dielectric function 𝜀⊥ 

can be seen in Equation 3:2, where ω and c represent the circular frequency and the velocity of light, 

respectively.101,102 

𝐼

𝐼0
≈ 1 − 4 ∙ 𝑑 ∙

𝜔

𝑐
∙
sin2 𝜑

cos𝜑
∙ 𝐼𝑚 (

−1

𝜀⊥(𝜔)
) 

Equation 3:2 – IRRAS formula 

 

 

Figure 3:3 Schematic of IRRAS measurement configuration. 

While IRRAS is compatible with measurements of molecule monolayers,103  it is not well-suited for 

measurements in water due to the strong absorption of water molecules, which typically obscure the 

absorption signals of the molecules of interest. Figure 3:4 shows the absorbance spectrum of water in 
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the mid-IR range and its overlap with the two major absorption bands of proteins, i.e., the amide I and 

II bands.  

 

Figure 3:4 Absorbance spectrum of water and its overlap with the amide I and II absorption bands of 

proteins. Adapted from Ref.104. Copyright 2013, Nature Research. 

Water interference is a general issue for IR absorption spectroscopy techniques, but it is especially 

limiting for measurement configurations where the IR light has to directly travel through water, as in 

simple transmission measurements (Figure 3:2) and for IRRAS (Figure 3:3). One reflection technique 

called attenuated total reflection (ATR) IR spectroscopy addresses this issue with a measurement 

configuration that circumvents the need for IR light to travel directly through the water. 

In ATR IR spectroscopy, the sample is in contact with a prism of refractive index higher than that of 

the sample. The angle of incidence of the IR light into the prism is higher than the critical angle so that 

total internal reflection occurs.105 Thereby, only the evanescent field penetrates the sample, which 

can thus be in an aqueous solution. The penetration depth of the evanescent field is generally around 

half a micron and can be tuned by adjusting the incidence angle and the prism refractive index. Using 

multiple reflections can increase the interaction of light with the sample and thereby improve 

sensitivity. However, at the same time, the longer the optical path length, the lower the intensity of 

the collected light. This limits the sensitivity that can be reached, and the geometrical constraints of 

this configuration restrain its applications.104,106 
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Figure 3:5 Schematic of ATR measurement configuration. 

A more recent IR absorption spectroscopy technique overcomes sensitivity and water interference 

issues in a simple geometrical reflection configuration using near normal light reflection from 

plasmonic nanoantenna resonances.104 

3.2 Plasmon-Enhanced Mid-IR Spectroscopy 

Nanotechnology and, specifically, nanophotonics can bridge the gap in length scales between IR 

wavelengths (on the order of microns) and molecular analyte dimensions (on the order of 

nanometers) using resonant nanoantennas for surface-enhanced IR absorption spectroscopy (SEIRAS) 

(Figure 3:6, left).107 Such antenna geometries focus the incident light into hot spots of the 

electromagnetic fields, providing strong light-matter interaction and enabling the detection of 

otherwise weak absorption signatures down to, e.g., monolayers of proteins (Figure 3:6, right).108,109 

SEIRAS techniques leverage an enhancement mechanism proportional to the near‐field intensity 

around the nanostructures, in which spectrally and spatially colocalized vibrational dipoles of 

molecules are excited at an increased rate. The sensitivity and, consequently, the limit of detection of 

SEIRAS is crucially determined by the geometry, material choice, and spatial arrangement of the 

nanostructured antenna elements. The following sections highlight some of the central design 

paradigms for highly sensitive metasurface resonators, focusing on metal‐based, plasmonic antenna 

elements. 
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Figure 3:6 Surface‐enhanced infrared absorption spectroscopy (SEIRAS). Infrared absorption 

spectroscopy optically detects the characteristic vibrational bands of molecules associated with their 

chemical bonds. Resonant nanoantennas can enhance these signatures and access chemical and 

compositional information from monolayers and few‐molecule systems. 

Metal‐dielectric interfaces support propagating electromagnetic surface waves based on the 

collective oscillations of the conduction electrons in the metal, commonly referred to as surface 

plasmon resonances (SPR).66,110 Because of their propagating nature, such SPR systems commonly 

confine electromagnetic energy only in the direction perpendicular to the interface. In contrast, 

specifically designed metal nanoparticles can provide localized surface plasmon resonances (LSPR), 

which can be resonantly driven by an external electromagnetic field and focus light into deeply 

subwavelength volumes, enabling a wide array of nanophotonic sensing schemes over broad 

wavelength ranges.111–114 

3.2.1 Plasmonic Nanoantennas 

In the context of plasmonic SEIRAS, rod‐type nanoantennas constitute an ideal sensing platform due 

to their large dipole moments, comparatively simple resonant mode structure, and strong localization 

of the electric near‐fields at the antenna tips.115 In one of the earlier experimental studies on 

vibrational antenna coupling,100 Neubrech et al. observed significant near‐field intensity enhancement 

factors |E|2/|E0|2 above 2000 in the mid‐IR for rod‐type gold nanoantennas with a length of around 

1.5 μm (Figure 3:7a, top). When performing relative IR transmittance measurements of single 

nanoantennas before and after adding octadecanethiol (ODT) molecules, which exhibit a strong 

vibrational signature at around 2900 cm−1, they found a distinct modulation of the resonance line 

shape associated with the respective absorption bands (Figure 3:7a, bottom). In particular, they 

described these often asymmetric line shapes in terms of a Fano‐type interference between resonant 
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states with strongly dissimilar resonance widths, establishing a link to other fundamental coupling 

phenomena in nanophotonics.116–118 

 

Figure 3:7 Mid-IR plasmonic nanoantennas. a) Electric near‐field enhancement (top) and relative 

transmittance spectra (bottom) of a plasmonic rod‐type nanoantenna after coating with a monolayer 

of ODT molecules. Adapted from Ref.100 Copyright 2008, American Physical Society. b) SEM image of 

a split ring resonator (top) and experimental reflectance spectrum of an array of such resonators 

(bottom). Adapted from Ref.119 Copyright 2009, American Physical Society. 

Besides rods, nanoantennas of various shapes, including circular geometries, have been demonstrated 

(Figure 3:7b). Similarly to tuning the length of nanorods, the spectral position of the resonance can be 

adjusted by tuning the diameter of the circular resonators.119,120 In Figure 3:7b, the far-field response 

of an array of resonators is measured instead of a single resonator as in Figure 3:7a. The benefits of 

using arrays of resonators are discussed in the following subsection. 

3.2.2 Plasmonic Nanoantenna Arrays 

The sensitivity of such antenna systems can be increased significantly by arranging them in periodic 

arrays to leverage the effects of radiative coupling between the individual resonant elements.108,121,122 

In general, strong enhancement is obtained when the antenna resonance frequency matches one of 

the collective excitations associated with the metallic array, which are often referred to as grating 

orders or Rayleigh anomalies.123 Since the spectral positions of the grating orders are governed by the 

array periodicities,124 this opens up new degrees of freedom for sensor design. Adato et al.108 

demonstrated the first use of engineered nanoantenna arrays to enhance the spectroscopic signatures 

of a nanometer‐thick silk protein monolayer. The authors showed that collective coupling of the 

nanoantenna resonances with the proper grating condition could provide more than an order‐of‐

magnitude signal amplification than the nanoantenna resonances in random arrangements. Bagheri 

et al.125 later analyzed the influence of grating coupling on surface‐enhanced sensing performance by 

investigating arrays of identical gold nanoantennas with a wide range of inter‐element distances, both 

parallel (dx) and perpendicular (dy) to the long axis of the antennas (Figure 3:8a, top). Large‐area 

antenna arrays with an antenna length of 2.6 μm were fabricated using femtosecond direct laser 
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writing and ion‐beam etching, followed by evaporation of a thin layer of  4,40-bis(N-carbazolyl)-1,10-

biphenyl (CBP), which provides strong and characteristic vibrational absorption bands at 1230, 1450, 

and 1504 cm−1.126 In mid‐IR reflectance measurements, the authors found that both very dense 

(dx = dy = 1 μm) and very sparse arrays (dx = dy = 8 μm) produced low enhancement factors of the 

vibrational signals. In contrast, a much stronger enhancement was found when the perpendicular 

antenna spacing was adjusted in accordance with the grating coupling condition to dx = 1 μm and 

dy = 2 μm, highlighting the sensitivity impact of tailored array periodicities (Figure 3:8b, bottom). In 

addition to the importance of tuning array periodicities along both x- and y-directions, Maß et al.127 

demonstrated the influence of the incident angle of the exciting light on the grating coupling and how 

it can be used to tune the spectral resonance position without changing the geometrical parameters 

of the antennas Figure 3:8b. The authors experimentally leverage the effect of incident-angle tuning 

to maximize the signal enhancement from self-assembled monolayers of 16-Mercaptohexadecanoic 

acid (16-MHDA) on their antenna arrays. 

Figure 3:8 Nanoantenna arrays. a) SEM images (top) and relative transmittance spectra (bottom) of 

gold antennas in arrays of different inter-antenna distances dx and dy. Adapted from Ref.125 Copyright 

2015, American Chemical Society. b) SEM image of a rod-type antenna array with periodicities px and 

py (top) and schematic of perpendicular polarized light incident on the antenna array with incident 

angle θx, in-plane k component kx, and reciprocal lattice vector 𝐺(𝑖,0)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.127

3.2.3 Multiresonant Plasmonic Metasurfaces 

Going beyond simple rod‐type shapes, antennas with more complex geometrical structures can 

provide increased sensing performance and additional functionalities such as the simultaneous 

enhancement of more than one vibrational band. In this context, Chen et al. have introduced a dual‐

band design for surface‐enhanced spectroscopy,128 which utilizes asymmetric cross‐shaped gold 
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antennas placed above a dielectric spacer layer and a gold mirror in a “perfect absorber” 

configuration.129–132 The authors observed two distinct modes M1 and M2, in this structure, which 

exhibited pronounced resonance line shapes in reflection together with strong near‐field 

enhancements, even for large spectral mode separations (Figure 3:9a, left). Significantly, they also 

found that the resonance frequencies of both modes could be adjusted independently and over a 

broad range by modifying the dimensions of the cross‐shaped antenna, allowing them to target 

different vibrational bands. This capability was demonstrated experimentally by simultaneously 

resolving widely separated absorption bands of a thin PMMA layer with high sensitivity (Figure 3:9a, 

right). 

In IR spectroscopy and sensing, a single resonant nanoantenna cannot access the full set of molecular 

absorption fingerprints and therefore provides only a partial view of the complete chemical 

information available in the infrared spectrum.116,117 Thus, there is an increasing need to conceptualize 

and develop novel nanostructures with wider bandwidth that can manipulate and enhance light over 

extended spectral ranges. 

In the pursuit of broadband light enhancement, various multiresonant plasmonic nanoantenna 

structures are currently under study, including fractal geometries,118,121–124 cross,125,126 and U-T 

shapes,128,129 superimposed Moiré,130 and Fisher patterns,131 concentric nanorings,132 

multigratings,133,134 polarization-dependent antennas,135,136 zigzag trapezoids,137,138 and tapered 

multidipoles.139,140 The common idea behind these methods is using multiscale geometries that allow 

the excitation of multiple resonances. For example, Wallace et al.135 demonstrated dendritic 

structures with different shapes and numbers of branches to provide resonances from the near- to 

the mid-IR (Figure 3:9b). The authors demonstrate the suitability for SEIRA by performing 

measurements with 4-nitrothiophenol (4-NTP) functionalized dendritic fractals. 
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Figure 3:9 Multiresonant IR metasurfaces. a) Electric near‐field enhancement (left) and reflectance 

spectrum (right) of a cross‐type gold antenna placed above a dielectric spacer layer and a gold mirror, 

showing dual resonant SEIRAS operation. Adapted from Ref.128 Copyright 2012, American Chemical 

Association. b) SEM images (scale bar: 400 nm) of dendritic fractals (left) and corresponding, color-

coded absorption spectra.135 c) SEM images (left) of self-similar rod arrays with one to four iterations 

in the fractal-like generation of subarrays, respectively leading to one to four resonance peaks as seen 

in the measured IR reflectance spectra (right).134 

In the design of multiresonant antennas, it is fundamentally challenging to accommodate resonant 

modes with equally strong excitation efficiencies over a broad spectrum due to the large size 

mismatch between the antennas resonating at the far end points of the spectral operating range. In 

particular, the high-frequency modes are typically weak, strongly limiting their usability. Additionally, 

the large nanoantenna array periodicities needed to support long-wavelength operation can produce 

unwanted excitation of grating modes at shorter wavelengths. As a result, current multiresonant 

nanoantennas allow only a small number of resonant modes with nonuniform spectral coverage. 

Furthermore, some of the introduced plasmonic designs are based on complex unit cell geometries 

where scaling and nanofabrication are not straightforward. In such cases, the specific resonance 

wavelengths are mutually interdependent and often cannot be independently controlled in a simple 

manner. Rodrigo et al.134 introduce self-similar nanorod antenna arrays capable of providing a number 

of resonances, depending on the number of iterations in the fractal-like generation procedure of this 

multiresonant nanorod design. Remarkably, the far-field amplitudes of the resonances are relatively 

homogeneous on an ultrabroad spectral range from near- to mid-IR (Figure 3:9c). Furthermore, each 

spectral resonance position can be fine-tuned independently with minimal influence on the 

neighboring resonances. 
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3.2.4 Plasmonic Nanogap Antennas 

The lateral size and geometry of the gap between neighboring antenna elements is another crucial 

parameter for optimizing sensitivity since it determines the maximum enhancement and confinement 

of the electric near‐fields based on the “lightning rod” effect (i.e., the concentration of field lines near 

highly curved surfaces or narrow gaps).138,139 For example, Huck et al.141 leverage the high field 

enhancement from the nanogaps formed by dimer rod antennas to sense nanocoatings of CBP 

molecules with high sensitivity. In Figure 3:10a, it is clearly visible that rod dimers with an 8 nm gap 

give stronger CBP absorption signals than dimers with a larger gap of 50 nm. 

Compared to rod‐type structures, bowtie antennas composed of opposing triangular resonators can 

provide stronger near‐field localization,140 but suffer from lower SEIRA enhancement factors because 

of additional losses in the wider part of the triangular structure.142 To combine the advantages of these 

two geometries, Brown et al. have developed a fan‐shaped antenna geometry,143 consisting of a pair 

of closely spaced resonant rod‐type elements with semicircular ends (Figure 3:10b, left). The authors 

were able to simultaneously realize strong field confinement and SEIRA enhancement at a resonance 

frequency of around 3000 cm−1 (Figure 3:10b, right), which they utilized for the sensitive detection of 

self‐assembled monolayers of ODT molecules. 

 

Figure 3:10 Nanogap antennas. a) Experimental (top) and simulated (bottom) transmittance spectra 

of rod dimers covered with 5 nm-thick CBP layers.141 b) Electric near‐field enhancement (left) and 

absorbance spectra (right) of Fan‐shaped gold structures, which combine rod‐type and bowtie 

antenna shapes for increased sensitivity. Adapted from Ref.143 Copyright 2015, American Chemical 

Society. c) Sketch (left) and transmittance spectra (right) of coaxial resonators with sub‐10 nm gaps 

for high‐contrast SEIRAS. Adapted from Ref.144 Copyright 2018, American Chemical Society. 

Even higher sensitivities can be obtained by decreasing the distance between antenna elements 

towards the few‐nanometer regime to realize so‐called nanogap antennas.145–147 In a recent example, 

Yoo et al. realized resonant coaxial nanoaperture structures (Figure 3:10c, left) using atomic layer 

lithography, which combines atomic layer deposition of a thin sacrificial Al2O3 layer with large‐area 
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photolithography for the high‐throughput fabrication of sub‐10 nm gaps.144 The authors found that 

the coaxial shape of the gaps produced strong and uniform electric near‐fields along the side walls of 

the structure, enabling the detection of large vibrational signals originating from spin‐coated silk 

fibroin molecules (Figure 3:10c, right). Focusing again on rod‐type antenna systems, the enhancement 

effects associated with narrow inter‐antenna gaps and the grating modes of the array can be 

combined in a single nanophotonic geometry as shown by the work of John‐Herpin et al., which 

analyzed and implemented grating‐order coupled nanogap (GONG) antenna geometries for high‐

sensitivity biomolecular detection and protein secondary structure analysis.148 
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4.1 Abstract 

Infrared spectroscopy is widely used for biomolecular studies, but struggles when investigating minute 

quantities of analytes due to the mismatch between vibrational cross sections and IR wavelengths. It 

is therefore beneficial to enhance absorption signals by confining the infrared light to deeply 

subwavelength volumes comparable in size to the biomolecules of interest. This can be achieved with 

surface-enhanced infrared absorption spectroscopy, for which plasmonic nanorod antennas represent 

the predominant implementation. However, unifying design guidelines for such systems are still 

lacking. Here, we introduce an experimentally verified framework for designing antenna-based 

molecular IR spectroscopy sensors. Specifically, we find that in order to maximize the sensing 

performance, it is essential to combine the signal enhancement originating from nanoscale gaps 

between the antenna elements with the enhancement obtained from coupling to the grating order 

modes of the unit cell. Using an optimized grating order-coupled nanogap design, our experiments 

and numerical simulations show a hotspot limit of detection of two proteins per nanogap. 

Furthermore, we introduce and analyze additional limit of detection parameters, specifically for 

deposited surface mass, in-solution concentration, and secondary structure determination. These 

limits of detection provide valuable reference points for performance metrics of surface-enhanced 

infrared absorption spectroscopy in practical applications, such as the characterization of biological 

samples in aqueous solution.  

4.2 Introduction 

Infrared (IR) spectroscopy is a powerful analytical technique that provides remarkable insights into 

the molecular world. IR light can excite molecular vibrations whose resonance frequencies depend on 

the chemical nature of the bonds as well as their configuration and surroundings.149 This technique is 

particularly useful for investigating the structure and behavior of biomolecules in their native 

environment, since it operates without the need for extrinsic labels. For instance, in proteins, amide 

bonds make up the backbone of their structure and can support IR active molecular vibrations such as 

the amide I and II bands at around 1650 and 1550 cm–1, respectively.74 These intrinsic labels can be 

targeted with IR sensors to provide chemically specific detection. Beyond the mere identification of 

analytes, the amide I absorbance signature can be analyzed to retrieve information about molecular 

secondary structure and conformation.150 This information, which can be acquired in real-time, can be 

enhanced with precise three-dimensional structures of biomacromolecules obtained with 

complementary techniques such as X-ray crystallography and nuclear magnetic resonance (NMR) 

spectroscopy.151 

In order to get relevant insights about biomolecular interactions, it is often crucial to probe them in 

physiological conditions, that is, at low concentrations in aqueous solution or at the submonolayer 

level.152 High sensitivity and water-compatibility requirements can usually not be fulfilled by 

traditional IR spectroscopy techniques, in which large sample concentrations are necessitated, and 

strong vibrational bands of water mask much of the proteins’ amide I absorption signature, which 

holds most of the information related to secondary structure.153 Surface-enhanced IR absorption 
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spectroscopy (SEIRAS) can overcome these limitations by utilizing resonant nanoantennas, which can 

strongly enhance the light absorption of near-surface analytes.107,124,143,154,155 In recent years, the 

interest in SEIRAS and its application for biological, chemical, and gas sensing has been increasing with 

the use of plasmonic excitations in metallic and graphene resonators as well as high-Q resonant modes 

of all-dielectric metasurfaces.89,156–158 In metallic IR antennas, the incoming light can be coupled 

efficiently due to the large oscillator strength of localized surface plasmon resonances (LSPR). In 

contrast to traditional refractometric LSPR sensors, SEIRAS provides chemical and conformational 

specificity. 

In this work, we introduce a plasmonic grating order-coupled nanogap (GONG) design to probe the 

limits of detection for protein sensing and find that we can detect as little as two proteins per nanogap. 

To provide reference points for performance metrics of SEIRAS in practical applications, we present 

additional sensitivity assessment criteria: limits of detection for (i) deposited surface mass, (ii) in-

solution concentration, and (iii) secondary structure analysis. We demonstrate the chemically specific 

detection of proteins in aqueous solution with concentrations as low as 100 pg·mL–1 and resolve their 

secondary structure content with concentrations down to 500 ng·mL–1. Conventionally, the analysis of 

protein secondary structure using IR absorbance spectroscopy in aqueous solution is very challenging 

due to interfering water absorbance and requires orders of magnitude higher concentrations with 

traditional methods.153 The presented quantitative study of proteins using optimized resonant 

antennas shows that SEIRAS can achieve limits of detection that are highly competitive with other 

optical label-free biosensors,159 with the additional benefits of chemical and conformational 

specificity. 

In our study, gold antennas on an IR-transparent calcium difluoride (CaF2) substrate are implemented, 

since this material system can provide resonances with large excitation cross sections and strong near-

field enhancements required for efficient SEIRAS.89,135,160 Another advantage of gold is its 

biocompatibility with well-established surface functionalization protocols. Furthermore, on-chip 

plasmonic nanoantennas allow for straightforward integration with microfluidics.60,104,160–163 

Regarding resonator shape, nanorods are the most common plasmonic structures for SEIRAS, as they 

can be tuned to access different spectral ranges and fabricated easily and reproducibly. Their dipolar-

like shape makes them inherently efficient at generating high electric near-field enhancements 

necessary for amplifying molecular vibrations.164 Given the important role of these antenna systems 

in SEIRAS, it is important to maximize their sensing performance.   

4.3 Results and Discussion 

4.3.1 Engineering an Optimized Nanoantenna Array for Protein Sensing 

Nanogaps, that is, spacings between plasmonic structures below a hundredth of the excitation 

wavelength, can generate strong field enhancements165 and are thus interesting for SEIRAS 

applications.141,144,146,147,166,167 Another effective method for increasing sensitivity is to make use of the 

enhancement originating from grating order coupling.108,125 Traditionally, plasmonic sensing 

geometries only focus on optimizing one of these aspects, limiting the available design space. We 
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present a comprehensive framework for determining an optimal antenna unit cell geometry that 

efficiently combines these two enhancement methods simultaneously. Specifically, we demonstrate 

the importance of independently tuning the unit cell x- and y-periodicities to simultaneously achieve 

analyte-accessible nanogaps and strong grating order coupling Figure 4:1a displays a tilted view of a 

GONG sensor, which consists of unit cells with nonequal periodicities Px and Py, each containing a 

single rod antenna. As a consequence of this geometrical arrangement, the nanogaps arise between 

the adjacent unit cells along the x-direction of the array. Figure 4:1b is a schematic of a nanogap with 

two streptavidin proteins in the electromagnetic hotspot region (nanogap surface). The dimensions of 

the array parameters can be visualized in Figure 4:1c,d, which showcase SEM micrographs. The gap 

has a width G = 32 nm and the periodicities are Px = 1516 nm and Py = 3204 nm. 

 

Figure 4:1 Grating order-coupled nanogap (GONG) antennas. a) 3D model of GONG antenna unit cell 

and array. b) Schematic representing two streptavidin proteins localized in a nanogap hotspot in which 

the electromagnetic fields are represented in red and blue gradients (not to scale). c) Scanning 

electron microscope (SEM) image displaying the periodicities Px and Py of a GONG array. d) SEM image 

of a nanogap with a width of G. 

We obtained the optimized GONG design by performing extensive numerical simulations in which we 

vary both the gap size G as well as the strength of the grating order coupling, which is controlled by 

the parameter Py. Numerical simulations are performed for multiple GONG designs in a parameter 

space of gap size and y-periodicity, where each data point is designated by the pair {G, Py}. Specifically, 

we focus on gap sizes between 20 and 100 nm, as this encompasses the relevant range for protein 

studies (Figure 4:2a, bottom). Periodicities are selected so that the associated lowest frequency 

grating orders are tuned over the resonance frequency of the antennas. We benchmark the 

performance of these {G, Py}-sensor designs by comparing their maximum absorbance for a 5 nm thick 

model protein layer placed on the surface of the nanogaps (Figure 4:2a, top). The protein layer is 

modeled with custom optical constants in order to have its extinction peak at 1600 cm–1, between the 

amide I and II bands, and with the nondispersive component of the refractive index equal to 1. 
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Figure 4:2 GONG sensitivity and gap accessibility. a) Lower panel: Size of exemplary protein structures 

on a scale from 20 to 100 nm. From smallest to largest: epidermal growth factor (David Goodsell, DOI: 

10.2210/rcsb_pdb/mom_2010_6), IgG antibodies sandwiching an antigen, fibrinogen (PDB ID: 

1M1J168), SMC protein (PDB ID: 5XEI169), tripeptidyl peptidase II (PDB ID: 3LXU170), kinesin (David 

Goodsell, DOI: 10.2210/rcsb_pdb/mom_2005_4), and amyloid protofibril (reproduced in part from 

Vestergaard et al.171 under the Creative Commons Attribution license, CC BY 4.0). Upper panel: 

Meshed 3D model of a 30 nm gap with a 5 nm thick model protein film (pink layer) on the nanogap 

surfaces as used in the numerical simulations. b) Reflectance spectra Rlayer and Rref obtained from 

numerical simulations of a {G = 30 nm, Py = 3.5 μm} sensor with and without model protein layer, 

respectively. The vertical dashed line at the kink indicates the spectral position of the corresponding 

grating order. c) Absorbance spectrum calculated from the reflectance spectra given in panel b. 

d) Heatmap displaying comparative absorbance strength as a function of gap size G and y-periodicity

Py. The asterisk indicates the array parameters used for the calculations in panels a–c. e) Spectral

position against Py for the three lowest frequency grating orders (dashed curves). The two vertical

dashed lines labeled A and B indicate the critical periodicities for which each of the two lowest

frequency grating orders transitions from high to low frequency side of the near-field resonance peak

at 1600 cm–1 (pink horizontal line) and thereby causes a transition from evanescent (blue gradient

area) to radiative regime (gray shaded area).

Each {G, Py} sensor is adjusted to provide a near-field resonance maximum at 1600 cm–1, and the 

structures are then simulated both with and without model protein layer in order to obtain the 

reflectance spectra (Figure 4:2b), from which we calculate the absorbance spectra (Figure 4:2c). Using 
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the maximum absorbance of each point of the {G, Py} parameter space, we generate a heatmap 

allowing us to compare the performance of the sensors (Figure 4:2d). 

This map shows that both the gap size and the y-periodicity strongly influence the performance of the 

sensors. Notably, for a given gap size, we observe that performance is highest for designs directly to 

the left of the dashed lines A and B. This behavior can be understood by considering the position of 

the lowest frequency grating modes with respect to the localized resonance frequency of the 

antennas. These grating orders λi,j are commonly accessed at the conditions of i = 0 and j = ±1 and can 

be described by the following equations derived from previous works:127,172 

λ0,±1
𝑇𝑀 = 𝑃𝑦 ∙ √𝑛𝑠

2 − sin2 𝜃 

λ0,±1
𝑇𝐸 = 𝑃𝑦 ∙ (𝑛𝑠 ∓ sin 𝜃) 

 

Equations 4:1 – Grating orders 

Here, ns is the refractive index of the antennas’ surroundings, θ is the incident light’s inclination angle, 

TE corresponds to transverse electric, and TM corresponds to transverse magnetic light polarization 

(see section 4.5.1 for more details). These equations confirm that only the y-periodicity of the GONG 

unit cell needs to be tuned in order to achieve strong coupling to the grating order at the lowest 

frequency. Consequently, Px could be freely adjusted to achieve a desired nanogap size G and 

resonance position, which can be tuned by choosing the right antenna length L. This results in the 

following condition for the x-periodicity of the GONG unit cell: 

𝑃𝑥 = 𝐿 + 𝐺 

Equation 4:2 – x-periodicity condition 

Using Equations 4:1 and Equation 4:2, we can plot the grating order positions as a function of Py (Figure 

4:2e). We observe that the lines A and B correspond to the periodicities for which the grating orders 

𝜆0,–1
𝑇𝐸  and 𝜆0,±1

𝑇𝑀 , respectively, transition from the high frequency to the low frequency side of the 

antenna’s localized resonance at 1600 cm–1. Therefore, to maximize both far-field and near-field 

responses, we need to place the grating orders with the lowest frequencies directly at the high 

frequency side of the antenna far-field resonance in order to ensure that the antennas are in an 

evanescent regime, that is, their interacting electric field components add in phase to reduce the 

amount of energy that can escape the array as electromagnetic radiation.108 

For increasing y-periodicity from 2 to 3.5 μm, the position of the lowest frequency grating order, that 

is, 𝜆0,–1
𝑇𝐸 , approaches the resonance from the high frequency side (Figure 4:2e), until it reaches 

1711 cm–1, as can be seen as a kink in the reflectance curve in Figure 4:2b (indicated by the vertical 

dashed line). The array is thus in a purely evanescent regime, as opposed to the case when Py = 4 μm, 

for which the position of  𝜆0,–1
𝑇𝐸  moves to the low frequency side of the far-field resonance (Figure 

4:2e), thereby dampening the resonance in the TE channel and consequently decreasing the sensor’s 
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overall response (Figure 4:2d). For Py = 4.5 μm, the position of  𝜆0,–1
𝑇𝐸  is further in the radiative regime 

area, but now we also observe  𝜆0,±1
𝑇𝑀  at 1644 cm–1, that is, positioned at the high frequency side of the 

antenna resonance (Figure 4:2e). This yields an overall high performance of the sensor, however, not 

as high as for Py = 3.5 μm. For Py = 5 μm, the array is in a highly radiative regime which explains the 

drastically weakened sensor performance observed for the sensors featuring this y-periodicity value. 

Within the explored parameter space, the sensor {G = 20 nm, Py = 3.5 μm} yields the best performance 

for protein measurements. Consequently, we choose antenna parameters in the direct vicinity of this 

combination to obtain a high-performance sensor compatible with practical considerations regarding 

nanofabrication reproducibility and the size of the biomacromolecules. In particular, a gap size of 

32 nm is chosen to accommodate a wider range of biomolecules with dimensions above 20 nm, such 

as antibodies sandwiching an antigen (Figure 4:2a), thus making our design broadly applicable to the 

study of proteins. Another parameter that influences the performance of antenna-based sensors is 

the decay characteristics of the electromagnetic near-fields around the hotspots. Through full-wave 

simulations of the electromagnetic fields, we have estimated the decay length as 125 nm for a 

{G = 32 nm, Py = 3204 nm}-GONG sensor (Figure 4:9b). This decay range makes the sensors effective 

for probing a large range of analyte molecules and changes in the environment. 

4.3.2 Benchmarking Sensing Performance in Dry Conditions 

In the following biomolecular studies in dry conditions, {G = 32 nm, Py = 3204 nm}-GONG arrays with 

a size of 200 × 200 μm2 are used for absorbance measurements using Fourier-transform infrared (FTIR) 

spectroscopy. To assess the performance of this optimized design for the detection of protein 

submonolayers, we perform experiments in which minute quantities of proteins are bound onto the 

antennas. Specifically, a piezoelectric microdispenser is used to spot droplets of controlled volume 

containing precise quantities of streptavidin in phosphate buffered saline (PBS) onto the antenna 

arrays (Figure 4:3a). The dispenser is equipped with a side camera to accurately measure the droplet 

size to be spotted on a specific region and by using this volume and the number of droplets being 

spotted, the total mass deposited on each sensor is controlled. Prior to spotting, the antenna surfaces 

are functionalized using biotinylated thiols. This allows us to probe the limit of amide I absorbance 

detection for specifically bound proteins on GONG arrays tuned to have their near-field resonance 

peaks at the amide I absorbance peak (Figure 4:3a). 
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Figure 4:3 Dry protein measurements with GONG sensors. a) Schematics depicting the experimental 

procedure for the preparation of chips with bound streptavidin proteins (not to scale) with the use of 

a microspotting dispenser. b) Plot in which the black data points correspond to the experimentally 

measured absorbance at the amide I peak for different amounts of spotted protein mass. The colored 

triangular data points correspond to absorbance at the amide I peak obtained via simulations with 

different numbers of proteins per nanogap. c) Exemplary absorbance curves which showcase the 

amide I peak. d) 3D model of the simulation strategy followed to obtain the triangular data points 

shown in the plot of panel b. The streptavidin proteins were homogeneously distributed in the 

nanogaps and modeled as 4 × 5 × 5 nm3 blocks with optical constants extracted from infrared 

reflection absorption spectroscopy (IRRAS) measurements (Figure 4:7b). 

Figure 4:3b displays absorbance at the amide I peak against the spotted protein quantity. For spotted 

masses of 99 and 199 pg, the observed amide I absorbance is very strong compared to the noise level, 

but for spotted masses of 6 and 26 pg, we only observe the amide I absorbance peak at 1641 cm–1, 

just above three times the negative control signal level (Figure 4:3c). By using a surface-

functionalization protocol, we ensure that our measured signals originate from specifically bound 

proteins. It is important to note that the measured surface masses are lower than the spotted mass 

quantities due to the thorough rinsing steps after incubation of the protein solutions. Thus, these 

values are conservative estimates and the measured signals should be generated from even lower 

quantities of analytes. Next, we correlate our measured signals with the corresponding number of 

proteins per nanogap using numerical simulations. We model the streptavidin proteins as blocks of 

4 × 5 × 5 nm3, in agreement with reported streptavidin volumes173,174 and use optical constants 



Chapter 4 — Quantifying the Limits of Detection of Surface-Enhanced Infrared Spectroscopy with Grating Order-Coupled Nanogap Antennas 

39 

extracted from IRRAS measurements (Figure 4:3b). In order to not overestimate the sensitivity of our 

sensors, we introduce a 1 nm thick layer with refractive index of 1.4 in between the antenna surface 

and the protein blocks to model the biotinylated thiol layer. Furthermore, we do not locate the blocks 

at the positions of the highest field enhancement, that is, the rounded corners and antenna/substrate 

intersections, but rather homogeneously space them on the gap surface (Figure 4:3d). Given that our 

antennas have a gap cross section of 100 × 100 nm2, a maximum of approximately 800 proteins can 

be bound per nanogap surface area. We find that the numerical simulations for this case match the 

experimentally measured maximal signals very well, and similar results are obtained in the case of 

complete antenna coverage with a streptavidin layer (Figure 4:3c). This confirms that the simulations 

are in line with our measurements and that the signal predominantly originates from proteins within 

the gaps. From simulations with less than 800 proteins per nanogap, we can infer that measurements 

with spotted quantities of 199, 99, 26, and 6 pg correspond to approximately 128, 50, 8, and 2 proteins 

per nanogap. 

4.3.3 Benchmarking Sensing Performance in an Aqueous Medium 

Protein studies are usually conducted in solutions in order to maintain their native conformational 

state and biological function, therefore it is also crucial to establish the concentrations required for 

protein detection and secondary structure analysis in aqueous media. To perform in-solution 

absorbance measurements, we use {G = 32 nm, Py = 3264 nm}-GONG arrays with a size of 

200 × 200 μm2. 

Since our CaF2 substrate is highly transparent in the mid-IR range, we can illuminate our chips from 

the backside and integrate them within custom-made microfluidic devices, as shown in Figure 4:4a. 

By injecting streptavidin at increasing concentrations, we can establish the curve shown in Figure 4:4b. 

We chose this additive injection method due to the strong streptavidin–biotin interaction, which 

prohibits surface regeneration. The obtained S-shaped curve covers a large concentration range from 

100 pg·mL–1 to 100 μg·mL–1. We fit the data using a Hill equation-derived fit, which empirically 

describes the correlation between the absorbance response A of the biosensor and the concentration 

C of the analytes in aqueous solution: 

A(𝐶) = 𝐴𝑚𝑖𝑛 +
𝐴𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛

1 + 10𝑛∙(𝐶0.5−𝐶)

Equation 4:3 – Hill equation-derived absorbance against concentration fit 

Here, Amin and Amax correspond to the minimum and maximum absorbance signals, C0.5 represents the 

concentration, which yields 
𝐴𝑚𝑎𝑥

2
, n is an exponent that is related to binding cooperativity, similarly to

the Hill coefficient.175,176 In our case, we have n < 1 in accordance with the expected negative 

cooperative binding behavior. The inset of Figure 4:4b shows a zoomed linear plot for the lowest 

concentrations ranging from 100 pg·mL–1 to 1 ng·mL–1. The absorbance signal from an injection of 

100 pg·mL–1 streptavidin corresponds to approximately three times the absorbance signal from the 
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injection of analyte-devoid buffer (negative control) and, thus, we can infer that our limit of detection 

is around 100 pg·mL–1. 

 

Figure 4:4 Aqueous protein measurements with GONG sensors. a) Schematic of the in-solution 

experimental setup with the fluidic inlet and outlet as well as the optical path (not to scale). The flow 

channel height H of the polydimethylsiloxane (PDMS) device is 30 μm. The zoomed schematic displays 

functionalized gold antennas displaying biotin groups and the captured proteins from the flowing 

solution. b) Plot of absorbance at the amide II peak for different concentrations of streptavidin. A 

linear fit is displayed in the inset and a fit using Equation 4:3 is displayed in the logarithmic plot. 

4.3.4 Secondary Structure Analysis of Proteins 

Using the same experimental data set, we can also estimate the concentration limit for secondary 

structure analysis. Information regarding the secondary structure of proteins is of great interest for 

unravelling complex biological processes177 such as protein misfolding, which play a major role in 

diseases including Alzheimer’s and Parkinson’s disease.178 Conventional IR spectroscopy of proteins in 

aqueous solution typically requires concentrations > 10 mg·mL–1, which can be very challenging for 

the study of aggregation-prone proteins and peptides as well as rare samples.153 It is thus of great 

interest to find new methods that can reduce the necessary concentrations for IR spectroscopy of 

proteins in aqueous solution.179 In fact, it has recently been shown in a pioneering work that the 

secondary structure of the protein α-synuclein, which is involved in Parkinson’s disease, can be 

analyzed in aqueous solution and in real-time using nanorod antennas.162 The amide I band of proteins 

mainly arises from the C═O stretching of its backbone. This backbone configuration will influence the 

observed amide I absorbance spectrum as a consequence of transition dipole coupling between the 

different amide group oscillators and the particular hydrogen bonding patterns. Consequently, amide 

I absorbance spectra result from the superposition of sub-bands associated with different secondary 

structures present in a particular protein. 

The secondary structure content of tetrameric streptavidin extracted from the current Uniprot 

database is 47.5 % β-strands, 22.4 % disorder, 11.5 % helices, and 18.5 % loops and turns. The 

deconvolution of the absorbance spectrum obtained for a submonolayer of streptavidin in aqueous 

solution (Figure 4:5a), which was obtained upon injection of 2.65 μg·mL–1, yields a secondary structure 

content which agrees well with the database values, that is, we obtain 53.5 % β-strands, 16.9 % 
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disorder, 11.3 % helices, and 18.3 % loops and turns. Noticeably, we observe two bands for the helices 

centered at 1650 and 1666 cm–1, which are known to correspond to regular α-helices and 310-helices, 

respectively (Table 4:1). Furthermore, since in the literature the spectral position of turns tends to be 

reported at slightly higher wavenumbers than the spectral position of loops, we refine our analysis by 

associating the band at 1674 cm–1 with loops and the band at 1679 cm–1 with turns. This yields 

contents of 6.6 %, 4.7 %, 11.1 %, and 7.2 % for 310-helices, α-helices, loops, and turns, respectively. 

These values are in good agreement with the average values calculated from Meskers et al.180: 55.5 % 

β-strands, 19.4 % disorder, 5.8 % 310-helices, 2.5 % α-helices, 12.3 % loops, and 4.5 % turns. 

secondary structures band positions (cm-1) 

antiparallel β-strands 1629, 1639, 1693, 1696 
disorder 1643 
helices 1650, 1666 

loops and turns 1674, 1679 

Table 4:1 Secondary Structure Absorption Band Positions.74,150 

 

Figure 4:5 Secondary structure measurements with GONG sensors. a) Deconvoluted absorbance 

spectrum of a submonolayer of streptavidin in aqueous solution at a concentration of 2.65 μg·mL–1 for 

quantitative identification of different secondary structure motifs, which are listed in the legend on 

the side. The pink dotted curve corresponds to the sum of Gaussian peaks which were used for fitting 

the experimental data (solid black curve). b) The procedure shown in panel (a) is used to obtain the 

NRMSE for the experimental absorbance spectra at lower concentrations (colored dots) with respect 

to the (scaled) fit of the absorbance spectra shown with colored curves in the inset. The black dot with 

the lowest NRMSE corresponds to the data shown in panel (a). 

By calculating the normalized root-mean-square error (NRMSE) for the spectra obtained for lower 

concentrations (Figure 4:5b) with respect to our scaled fit (Figure 4:5a), we see that we can retrieve 

the secondary structure content with high accuracy down to 530 ng·mL–1, where the NMRSE remains 
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below 1 %. For 160 ng·mL–1, the NMRSE falls in the range 1–7.5 %, which still allows for secondary 

structure analysis but with reduced accuracy. For 80 ng·mL–1 the NMRSE is in the range 7.5–15 %, in 

which it is no longer possible to reliably quantify the complete secondary structure content. 

Nonetheless, it is still possible to retrieve the amide I peak position, which can be used to draw 

qualitative conclusions on the dominant secondary structure motif (antiparallel β-sheet in our case). 

Such information can provide important insights into biological processes, for example, as a means to 

diagnose prodromal Alzheimer’s disease.181 

4.4 Conclusion 

Even though our GONG design provides high sensitivities down to ng·mL–1 and pg·mL–1 levels, its 

performance could still be boosted if an increase in structural complexity is acceptable. For instance, 

it has been shown that the access of the enhanced near-fields to the target analyte can be increased 

by placing the plasmonic antennas on pedestals.120,182 Furthermore, in situations where a more 

spatially homogeneous near-field enhancement distribution is desired, other plasmonic designs such 

as ones based on annular gaps could be implemented.144 

In conclusion, we have introduced a framework for designing optimized nanogap arrays as well as 

assessing their performance for SEIRAS of minute quantities of biomolecules. We have used the 

optimized arrays for protein experiments and have shown that concentrations as low as 100 pg·mL–1 

can be detected in aqueous solution using protein-specific absorbance signals and that the secondary 

structure can be accurately retrieved at concentrations on the order of 500 ng·mL–1. Our results 

emphasize the potentials of SEIRAS and nanoplasmonics for protein studies, as traditional IR 

spectroscopy would require orders of magnitude higher concentrations. In addition to protein 

analysis, GONG arrays can be adapted to the study of other classes of biomolecular systems such as 

lipid vesicles and exosomes, which currently attract significant interest due to their relevance to health 

and disease (section 4.5.8). In this context, it has recently been shown that nanophotonic platforms 

based on metallic rods can resolve complex interaction processes in vesicular systems, such as the 

toxin-induced release of neurotransmitter molecules from synaptic vesicle mimics.160 The versatility 

of nanorod antennas for the study of a broad range of biological samples combined with the 

optimization principles presented in this work opens up exciting new applications in fields such as 

diagnostics and pharmacology. 



Chapter 4 — Quantifying the Limits of Detection of Surface-Enhanced Infrared Spectroscopy with Grating Order-Coupled Nanogap Antennas 

43 
 

4.5 Supplementary Information 

4.5.1 Analytical Calculations 

 

Figure 4:6 GONG unit cell and GOs. a) Schematic of GONG unit cell. b) Grating orders for Px ≤ 2 µm. 

Equations 4:1  shown in the main text are derived from the phase-matching condition:110 

𝑘𝑠
⃗⃗⃗⃗ = 𝑘𝑖𝑛𝑐

⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∙ sin 𝜃 + 𝑖 · 𝐺𝑥
⃗⃗⃗⃗ + 𝑗 · 𝐺𝑦

⃗⃗ ⃗⃗   

Equation 4:4 – Phase matching condition 

Where 𝜃 and 𝜑 are the incident light’s inclination and azimuthal angles (Figure 4:6a), respectively, 𝑘𝑠
⃗⃗⃗⃗  

is the tangential momentum of the surface-propagating waves in the medium ‘s’ and 𝑘𝑖𝑛𝑐
⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the 

momentum of the freely propagating incident light in the medium ‘inc’; 𝑖 · 𝐺𝑥
⃗⃗⃗⃗  and j·𝐺𝑦

⃗⃗ ⃗⃗   correspond to 

the lattice momenta in x- and y-direction, respectively, with the integers 𝑖 = 0,  ± 1,  … and 𝑗 = 0,  ±

1,  …, defining the different grating orders. Using the following relations: 

|𝑘𝑖𝑛𝑐
⃗⃗ ⃗⃗ ⃗⃗  ⃗|

𝑛𝑖𝑛𝑐
∙ 𝜆𝑖,𝑗 =

|𝑘𝑠
⃗⃗⃗⃗ |

𝑛𝑠
∙ 𝜆𝑖,𝑗 = |𝐺𝑥

⃗⃗⃗⃗ | · 𝑃𝑥 = |𝐺𝑦
⃗⃗ ⃗⃗  | · 𝑃𝑦 = 2𝜋 

Equation 4:5 – Momentum relations 

We can rewrite Equation 4:4 as: 

(
𝑛𝑠

𝜆𝑖,𝑗
)

2

= (
𝑛𝑖𝑛𝑐

𝜆𝑖,𝑗
· sin 𝜃 · cos𝜑 +

𝑖

𝑃𝑥
)

2

+ (
𝑛𝑖𝑛𝑐

𝜆𝑖,𝑗
· sin 𝜃 · sin 𝜑 +

𝑗

𝑃𝑦
)

2

 

Equation 4:6 – Phase matching condition-derived equation 

The equation for the spectral positions 𝜆𝑖,𝑗 of the GOs follows as: 

𝜆𝑖,𝑗 = −A𝑖,𝑗 + √𝐴𝑖,𝑗
2 − 𝐵𝑖,𝑗  

 

Equation 4:7 – Spectral positions of the GOs 
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With: 

A𝑖,𝑗 =

𝑛𝑖𝑛𝑐 · sin 𝜃 · (cos 𝜑 ·
𝑖
𝑃𝑥

+ sin𝜑 ·
𝑗
𝑃𝑦

)

(
𝑖
𝑃𝑥

)
2

+ (
𝑗
𝑃𝑦

)
2        𝑎𝑛𝑑       𝐵𝑖,𝑗 =

𝑛𝑖𝑛𝑐
2 · sin2 𝜃 − 𝑛𝑠

2

(
𝑖
𝑃𝑥

)
2

+ (
𝑗
𝑃𝑦

)
2  

Equations 4:8 – Definition of factors Ai,j and Bi,j 

In Figure 4:6b we display the grating order curves obtained from Equation 4:7 and Equations 4:8. 

Setting ninc = 1, i = 0, j = ± 1, as well as ϕ = 0 and ϕ = π/2 for the TM and TE cases, respectively, we 

obtain Equations 4:1. 

4.5.2 Numerical Simulations 

The far- and near-field spectra of the nanoantenna structures are calculated using numerical 

simulations performed with CST Microwave Studio’s finite integration solver. The CaF2-supported 

antennas are modelled as 100 nm Au on 5 nm Cr represented as rectangular boxes with blended edges 

using a radius of curvature of 11 nm and meshed using tetrahedrons. In accordance with the numerical 

aperture of the Cassegrain objective used in the experiments, the structures are excited by an 

electromagnetic plane wave incident at an inclination angle 𝜃 of 16.7° on the array unit cell defined 

by Px and Py. The scattering properties of the structure are calculated as the average of the response 

to a TM excitation along the y-direction, which is perpendicular to the long antenna axis, and the 

response to a TE excitation along the x-direction, which is parallel to the long antenna axis. The optical 

constants for the Au and Cr layers were taken from Olmon et al.183 and Rakić et al.184, respectively. The 

refractive index of CaF2 was set to 1.38, in accordance with values reported by Li.185 

For the simulation study presented in Figure 4:2, the optical constants displayed in Figure 4:7a below 

were used for the model protein layer. These values are derived from a Lorentzian model with a 

resonance frequency of 1600 cm-1, an absorption line strength of 200 cm-1 and a damping rate of 

100 cm-1 (similar to the values reported by Rodrigo et al.186). The nondispersive component of the 

refractive index is set to 1 to avoid the shifting of the sensors’ resonance upon addition of the layer. 

This strategy allows us to generalize our sensor performance benchmarking procedure and thereby 

increase the accuracy of the sensor comparison. The simulation results featured in Figure 4:3 are 

based on the optical constants displayed in Figure 4:7b. These values were extracted from IRRAS 

measurements of a monolayer of streptavidin, following the procedure reported by Rodrigo et al.186 

The protein materials used in the simulations were placed exclusively on the gap surfaces, as we 

observe that proteins placed on other parts of the antenna surfaces only negligibly contribute to the 

total IR absorbance (Figure 4:9c). Thereby, we were able to increase numerical simulation efficiency 

and accuracy by improving the mesh resolution in this area of the antenna geometry. 
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Figure 4:7 Optical constants of streptavidin. Refractive index and extinction coefficient used in the 

numerical simulations for (a) the model protein layer and (b) streptavidin. 

4.5.3 Micro-/Nanofabrication 

For plasmonic chip nanofabrication, CaF2 substrates were cleaned with RCA1 solution 

(5:1:1·H2O/NH4OH/H2O2) followed by a sonicated acetone bath. The clean substrates were then spin 

coated with low and high molecular weight poly(methyl methacrylate) electron beam resist and 

sputter-coated with a thin Au layer to avoid electron charging during the subsequent exposure step 

with 100 keV electron beam lithography. The thin gold layer was then wet etched with a solution 

consisting of 25 g·L-1 KI and 12 g·L-1 I2 and the exposed resist was developed with a solution of 

MiBK:IPA 1:3. 100 nm of Au on 5 nm of Cr were then deposited using electron beam evaporation 

followed by wet-chemical liftoff in acetone. To remove resist residues, the chips were then subjected 

to a heated bath of Microposit Remover 1165 solution under sonication as well as an oxygen plasma 

treatment. The arrays have sizes of 200 × 200 µm2, with antenna widths of 100 nm and lengths of 

1156 nm for the in solution measurements and 1484 nm or 1452 nm for the dry measurements. 

For microfluidic device fabrication, a mold was prepared from a Si wafer. The wafer was first spin 

coated with photoresist and subsequently exposed using direct laser writing. The exposed resist was 

then developed before dry etching the patterned Si wafer to achieve a channel depth of 30 µm and 

finally the resist was stripped with an oxygen plasma treatment. The Si mold as well as a mold obtained 

by xurography were then used to fabricate the PDMS devices for in solution SEIRAS experiments. 

4.5.4 Chip Functionalization 

The chips were functionalized by incubating them for at least 12 hours in a solution of at least 1.5 mM 

biotinylated thiols (HS-C11-EG3-Biotin, ProChimia Surfaces) in ethanol. For IRRAS measurements, 

biotinylated silicon chips coated with 100 nm Au on 5 nm Cr were incubated with 3 µM streptavidin 

(Thermo Fisher Scientific) in phosphate buffered saline (PBS) for 1.5 hours and then rinsed with PBS 

solution containing 0.05 % (wt/vol) polysorbate 20 (Tween 20, Sigma Aldrich) (PBST) to remove non-

specifically bound proteins and then further rinsed with milli-Q water. Different amounts of 

streptavidin were bound onto the plasmonic arrays used for the measurements in dry conditions by 

spotting controlled quantities of streptavidin in 7.5 nL drops of PBS with a piezoelectric 

microdispenser (SciFLEXIARRAYER S3, Scienion) solution. The buffer solution was supplemented with 
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2 % (wt/vol) glycerol to prevent evaporation during the one and a half hour of post-spotting 

incubation. The chips were then rinsed with PBST to remove non-specifically bound proteins and 

further rinsed with milli-Q water. 

4.5.5 Infrared Measurements 

Infrared spectral measurements were carried out with a Bruker Hyperion 3000 microscope coupled to 

a Bruker Vertex Fourier-transform infrared spectrometer at a resolution of 4 cm-1. All SEIRAS 

measurements were performed in reflection mode with a Cassegrain objective (NA = 0.4, 15 × 

magnification, 9.8°-23.6° angular spread), a knife-edge aperture adjusted to match the array sizes of 

200 × 200 µm2, and polarization along the antennas’ long axes. Measurements in dry conditions were 

done with 256 scans per spectrum and in solution measurements were performed with 128 scans per 

spectrum. The plasmonic chips were placed in the microscope’s sample compartment subjected to 

continuous purging with dry air, while the chips for IRRAS measurements were placed in the 

spectrometer’s sample compartment which was under vacuum during the measurements. IRRAS 

measurements were carried out with TM light incident at a grazing angle of 80°. 

4.5.6 Data Analysis 

Extraction of the protein IR fingerprints is performed by normalizing the reflectance spectrum 𝑅 of the 

sensor to that of the functionalized sensor 𝑅0 before analyte injection or spotting (Figure 4:8a, b). The 

differential absorbance spectrum is calculated by subtracting a polynomial baseline fitted by least-

squares method to the normalized reflectance160 (Figure 4:8b, c). We calculate the noise levels using 

negative controls, i.e. from three times the absorbance signals generated by the injection or spotting 

of analyte-devoid buffer solution. All error bars represent the standard error of the mean from two 

measurements. 

 

Figure 4:8 Reflectance to absorbance spectra. a) Experimental reflectance spectra taken before and 

after binding of a streptavidin monolayer to a functionalized {G = 32 nm, Py = 3204 nm, L = 1484 nm}-

GONG sensor. b) Normalized reflectance with polynomial baseline fit. c) Baseline-corrected 

absorbance. 

Secondary structure analysis was carried out using a linear combination of Gaussians to model the 

measured absorbance spectrum and following the guidelines by Yang et al.150 First, we determine the 
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spectral positions of the Gaussians by calculating the second derivative spectrum using the Savitzky-

Golay filter and applying nonlinear least-squares fitting using the Levenberg-Marquardt algorithm. We 

then use the determined central frequencies of the Gaussians to fit the absorbance spectrum and 

eventually integrate the areas under the Gaussian curves to retrieve secondary structure content. 

4.5.7 Experimental Data vs. Numerical Simulations 

 

Figure 4:9 Experimental and simulated results for a GONG sensor with the parameters {G = 32 nm, 

Py = 3204 nm, L = 1484 nm}. a) Reflectance and maximum near-field  intensity enhancement. 

b) Normalized electric field enhancements along the x- and z-directions, which are represented by the 

green and blue arrows in the inset schematic, respectively. The green arrow extends from center to 

center of the gap surface cross sections and the blue arrow has its origin at the center of the gap on 

the substrate and extends upward perpendicular to the substrate. c) Absorbance for a monolayer of 

streptavidin. Both the case of full antenna as well as gap-only coverage is simulated. 

We compare both experimental reflectance and absorbance spectra from experiments in dry 

conditions with spectra obtained using numerical simulations and observe a good agreement (Figure 

4:9). The numerical simulations also reveal that we have a maximum electric near-field intensity 

enhancement on the order of 105 at the amide I band (Figure 4:9a), that the electric field decay length 

is on the order of 125 nm (Figure 4:9b) and that approximately 90 % of the absorbance signal comes 

from analytes located within the antennas’ nanogaps (Figure 4:9c). 

4.5.8 Applying the GONG Design Principles to Other Molecular Analytes 

In this section, we will outline how to adjust the GONG array parameters for the sensing of analytes 

different than proteins. To give a concrete example, we will choose exosomes as the targeted analytes. 

Exosomes are an important class of lipid vesicles and thus abundantly contain lipid molecules, which 

can be targeted by the GONG sensor. Lipids have their strongest IR absorption bands around 

2900 cm−1 and consequently, this is where the near-field resonance of the GONG array should be set. 

The y-periodicity needs to be tuned so to have strong grating order coupling, which can be achieved 

by placing the lowest frequency grating order directly on the high frequency side of where the sensor 

resonance will be. If we choose to place this grating order at 3100 cm-1 and consider ϴ = 16.7° as well 
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as ns = 1.41, than Equations 4:1 yields Py ≈ 1900 nm. In order to choose an adequate gap size, we need 

to consider the size of exosomes, which is usually reported to be between 30 and 100 nm. Accordingly, 

if we set G = 100 nm, the sensor should be accessible to most analytes. With the parameters Py and G 

set, the antenna length can now be tuned so to have the near-field resonance coincide with the 

position of the IR bands around 2900 cm-1. Using numerical simulations we obtain L = 934 nm. The x-

periodicity is determined by Equation 4:2: Px = L + G = 1034 nm. The numerically simulated reflectance 

spectrum for this {G = 100 nm, Py = 1900 nm}-GONG sensor is displayed in Figure 4:10a. To 

demonstrate the lipid sensing capability of this sensor, we create a model of a single lipid vesicle within 

a nanogap (Figure 4:10b) and numerically simulate the resulting absorbance spectrum (Figure 4:10c). 

The lipids’ symmetric and asymmetric CH2 stretching bands are clearly visible. 

 

Figure 4:10 Numerical simulations with a GONG lipid sensor with the parameters {G = 100 nm, 

Py = 1900 nm}. a) Reflectance spectrum. b) Meshed model of a single nanogap-entrapped lipid vesicle 

with a diameter of 100 nm and a bilayer thickness of 6 nm. The DOPC optical constants reported in 

Zawisza et al.187 where used for this lipid vesicle model. Half the vesicle is displayed as partially 

transparent instead of the opaque meshed surface in order to visualize that the vesicle is hollow. 

c) Absorbance spectrum of the nanogap-entrapped lipid vesicle. 
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5.1 Abstract 

A multitude of biological processes are enabled by complex interactions between lipid membranes 

and proteins. To understand such dynamic processes, it is crucial to differentiate the constituent 

biomolecular species and track their individual time evolution without invasive labels. Here, we 

present a label-free mid-infrared biosensor capable of distinguishing multiple analytes in 

heterogeneous biological samples with high sensitivity. Our technology leverages a multiresonant 

metasurface to simultaneously enhance the different vibrational fingerprints of multiple 

biomolecules. By providing up to 1000-fold near-field intensity enhancement over both amide and 

methylene bands, our sensor resolves the interactions of lipid membranes with different 

polypeptides in real time. Significantly, we demonstrate that our label-free chemically specific 

sensor can analyze peptide-induced neurotransmitter cargo release from synaptic vesicle mimics. 

Our sensor opens up exciting possibilities for gaining new insights into biological processes such as 

signaling or transport in basic research as well as provides a valuable toolkit for bioanalytical and 

pharmaceutical applications. 

5.2 Introduction 

Optical spectroscopy approaches, including infrared (IR) absorption, circular dichroism (CD), and 

Raman scattering, are powerful label-free techniques for detecting biomolecules and extracting 

detailed chemical information in a real-time and non-destructive manner.188–191 The mid-infrared 

spectral range is of pivotal importance for these detection approaches due to the presence of 

strong characteristic absorption fingerprints, which enable the specific identification of 

biomolecules of different chemical nature.91–94,108,192 Importantly, all basic building blocks of life 

such as lipids, proteins, and nucleic acids exhibit distinct and unique fingerprints in this spectral 

range. Detecting association, dissociation, and other molecular interactions in mixtures of these 

components are crucial for understanding a multitude of biological systems and processes in health 

and disease. Consequently, differentiating and monitoring individual components in such 

heterogeneous mixtures are a central objective in biosensing. It is particularly important for the 

understanding of pathological conditions, where uncontrolled interactions of cellular membranes 

with lytic peptides lead to membrane perforation and cell death.193,194 Resolving multi-analyte 

systems are also crucial in studying lipid vesicles encapsulating cargo molecules, which are utilized 

by most cell types as biological shuttles and regulate a multitude of important cellular processes.195 

For instance, synaptic vesicles in neurons loaded with neurotransmitter molecules can release their 

cargo upon stimulus to transmit chemical signals to postsynaptic neurons, thereby making 

perception and thought possible.196 

Resolving such dynamic membrane processes with standard label-free assay techniques such as 

quartz crystal microbalance (QCM)197 and surface plasmon resonance (SPR)66 is extremely 

challenging. Indeed, the competing effects of protein association, lipid membrane perforation, and 

cargo release on net analyte mass and refractive index make it difficult to decouple the 

contribution of the individual analytes from the overall signal. Therefore, to study complex 
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interactions in multi-analyte biological systems, it is pivotal to develop new label-free sensing 

platforms that can chemically discriminate different biomolecular species and independently track 

their time evolution. 

Infrared absorption spectroscopy is the prime tool for addressing such challenges, but traditional 

implementations struggle in resolving submonolayer films and ultrathin membrane systems. 

Metasurfaces excel at controlling light on the nanoscale and provide a powerful platform for 

tailoring the spectral response and light localization in nanophotonic devices.198–201 Engineered 

metasurfaces can create intense highly confined hot spots of the electromagnetic field, providing 

strong interaction with adjacent analytes and thus making them ideal candidates for biosensing 

and spectroscopy applications.107,128,202–206 Furthermore, the vibrational–absorption enhancement 

of IR metasurfaces extends tens of nanometers from their surface,60 making them suitable for 

multi-layer assays which are not accessible by their Raman counterparts (surface-enhanced Raman 

spectroscopy), whose enhancement is limited to only a few nanometers.207,208 

In this work, we present a chemically specific, label-free nanophotonic biosensor for distinguishing 

multiple analytes in dynamic lipid membrane processes. Our infrared sensor uses a multiresonant 

metasurface consisting of self-similar overlapping nanoantenna arrays to provide up to 1000-fold 

near-field intensity enhancement over multiple spectral bands. We exploit this metasurface sensor 

concept to unravel the interaction of biomimetic lipid membranes with different polypeptides as 

well as the dynamics of vesicular cargo release. Real-time, chemical-specific detection of these 

biological entities is performed by extracting their characteristic fingerprints in the amide and 

methylene absorption regions. Significantly, we leverage our technology to study the interaction 

of lipid membrane systems with melittin, a toxic pore-forming peptide. We show that our 

technique can monitor in real time the melittin association process and the simultaneous 

disruption of the lipid membrane with high sensitivity, exquisite chemical specificity and without 

labeling. Extending this concept to more complex dynamic membrane processes, we then leverage 

our method to monitor melittin-induced neurotransmitter cargo release from synaptic vesicle 

mimics, paving the way toward exciting applications in neurobiology and drug development for 

brain-related diseases. 

5.3 Results and Discussion 

5.3.1 Multiresonant Metasurface for Molecule-Specific Detection 

The strong near fields excited in the vicinity of metallic nanoantennas provide an ideal platform to 

enhance the weak vibrational fingerprint signals originating from nanometer-sized analytes and 

biological membranes.209 Typically, the resonance frequency of mid-IR nanoantennas is spectrally 

tuned to overlap with the characteristic vibrational modes of the target biomolecules, which has 

previously been demonstrated using arrays incorporating a single antenna length.60,108 Extending 

this functionality to multi-analyte biosensing requires a metasurface that supports multiple 

resonances that can be individually tuned to match the characteristic vibrations of the different 

analytes of interest (Figure 5:1). Current approaches mainly use a uniform array of multiresonant 
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elements.128,203 However, resonances in such systems are typically excited with reduced efficiency 

levels for higher-order modes associated with smaller resonant feature sizes, resulting in 

decreased SEIRAS performance at these frequencies.133,210–212 Furthermore, the electromagnetic 

coupling between the different resonant modes impedes a straightforward spectral tuning of the 

individual resonance frequencies.210,212 Our approach overcomes these two major limitations by 

allocating distinct resonances on multiple overlapping arrays with different periodicities. 
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Figure 5:1 Nanophotonic label-free biosensor for chemically distinguishing multiple analytes in 

biological samples. a) Multiresonant mid-IR nanoantennas are leveraged to enhance the 

vibrational–absorption signals associated with biomimetic lipid membrane formation, 

polypeptide/membrane interaction, and vesicular cargo release on the sensor surface. b) Antenna 

resonance positions are engineered to simultaneously overlap with the vibrational signatures of 

both the amide I, II, and the CH2, CH3 absorption bands, allowing for the simultaneous 

enhancement and detection of lipid- and protein-induced absorption changes. The 3D model of 

melittin used in this figure was imported from RSCB Protein Data Bank, DOI: 

10.2210/pdb2MLT/pdb, which was deposited by D. Eisenberg, M. Gribskov, and T.C. Terwilliger. All 

rights reserved. 

Our metasurface design is composed of two sets of gold nanodipoles that provide simultaneously 

a low- and high-frequency resonance, which can be individually adjusted by tuning the 

corresponding dipole lengths L1 and L2 (Figure 5:2a). The lengths are designed to be approximately 
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half the corresponding operating wavelength accounting for the dielectric environment. 

Additionally, the periodicity is adjusted to make the accumulated scattering cross-section of the 

dipoles equal to the geometrical cross-section of the array, resulting in high reflectance values 

between 60 and 75 % at resonance. In particular, this requires the density of short dipoles (length 

L1) in the multiresonant metasurface to be four times larger than that of long dipoles (length L2). 

This design concept can also be understood as overlapping dipole arrays, where the lateral 

dimensions (both the dipole length and periodicity) of the second array have been almost equally 

scaled with respect to the first array. Because of this self-similar geometry, the spectral response 

is composed of two resonances that are spectrally separated by the geometric scaling factor 

between arrays and are excited with almost identical efficiency. Importantly, our versatile multi-

periodicity self-similarity concept is scalable to achieve multiresonant devices with more than two 

peaks, if required by the target application.134 



Chapter 5 — Resolving Molecule-Specific Information in Dynamic Lipid Membrane Processes with Multiresonant Infrared Metasurfaces 

55 
 

 

Figure 5:2 Multiresonant metasurface sensor platform. a) Schematic of the multiresonant mid-IR 

metasurface composed of two sets of gold nanodipoles (L1 = 1.8 µm, L2 = 0.95 µm, P = 2.6 µm, 

W = t = 100 nm). b) Simulated reflectance spectrum of the multiresonant metasurface for the 

nominal design (black curve), and with varying lengths L1 (red curves) and L2 (green curves) in a 

± 10 % range. An immersion media with refractive index n = 1.32 has been considered to represent 

the aqueous environment. The two resonances are independently adjusted to overlap with amide 

and CH2 bands. c) Near-field distribution of the multiresonant metasurface parallel to the substrate 

plane at the amide and CH2 bands. Each set of dipole nanoantennas is excited and exhibits strong 

near fields (bright yellow color) only for the corresponding resonance frequency. d) Scanning 

electron microscope image of the nanofabricated multiresonant metasurface. e) Experimental 

reflectance spectra of the multiresonant metasurface in phosphate buffer saline (PBS) solution. 

The full frequency–dispersive complex refractive index of water has been considered in the 

simulated reflectance spectrum.213 Peak positions agree well with the simulations from (b). The 

additional dips in the peak lineshapes are due to the absorption bands of water in the mid-IR (blue-

shaded area). 

The optical response of the multiresonant array is investigated using a 3D Maxwell equation solver 

based on the finite element method (see section 5.5.5). The simulated reflectance spectrum of the 

nanoantenna array contains two well-defined resonances, as shown in Figure 5:2b. These 

resonances are carefully adjusted to spectrally match with the amide and CH2 spectral regions, 

which contain the intense IR absorption bands of proteins and lipids, respectively. Specifically, we 

target the amide I and II bands located around 1560 and 1660 cm−1 as well as the methylene 

doublet located around 2850 and 2930 cm−1. Naturally, in addition to proteins and lipids, peptides 
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and other chemicals can equally be detected with our method as long as they support distinct 

fingerprint signatures within the resonance bands of the metasurface. Modifying L1 or L2 shifts the 

corresponding resonance while leaving the other resonance unaffected, indicating that the two 

sets of nanodipoles are weakly coupled and their electromagnetic response is independent from 

each other. Such independence is a key characteristic that allows the metasurface design to be 

adjusted in a straightforward manner to enhance selected vibrational bands from different 

analytes. 

Simulated near-field distributions (Figure 5:2c) show that only one set of nanodipoles is resonantly 

excited for each spectral band of interest, which indicates that our metasurface design can also 

provide spatial sensitivity by detecting only the molecules placed in the near-field hot spots of the 

corresponding antennas. Even though this capability is not exploited in this work, it could find 

applications in multiplexed detection and imaging-based techniques. On the other hand, the spatial 

sensitivity can be a disadvantage in experiments where the analytes are inhomogeneously 

distributed over the surface, or if it is required that the vibrational signals arise from the same 

molecules for all the utilized infrared bands. Overall, our design provides maximum local near-field 

intensity enhancements between three and four orders of magnitude for both bands. 

Furthermore, the near-field intensity extends up to tens of nanometers from the metasurface 

(Figure 5:7), providing penetration depths that are comparable with those in state-of-the-art 

single-band SEIRA substrates. Such extended penetration depths are in contrast to the 1–2 nm 

depths achieved by surface-enhanced Raman spectroscopy and gives SEIRAS a unique advantage 

for probing lipid membranes and vesicles. 

The multiresonant array is fabricated on an IR-transparent CaF2 substrate by electron beam 

lithography and a lift-off process (see section 5.5.1). Scanning electron microscope images of the 

device are shown in Figure 5:2d. The IR reflection spectrum of the array is measured with a FTIR 

spectrometer, illuminating the chip from the backside of the substrate and immersing it in 

phosphate-buffered saline (PBS). The measured reflectance spectrum shown in Figure 5:2e is 

consistent with the dual-resonance spectrum shown in Figure 5:2b when the IR absorption bands 

of water are incorporated and is in good agreement with electromagnetic simulations accounting 

for the frequency–dispersive complex refractive index of water.213 More importantly, the 

measured results confirm the multiresonant response of the metasurface, providing near-field 

enhancements at two spectral bands that overlap with the amide and CH2 vibrations, making it an 

excellent candidate for multi-analyte mid-IR biosensing. 

5.3.2 Simultaneous Monitoring of Multiple Analytes 

To demonstrate the capability of monitoring and distinguishing multiple biological analytes 

simultaneously, we use a bioassay based on the additive association between streptavidin (SA) and 

a phospholipid membrane. Specifically, we utilize 1,2-dioleoyl-sn-glycero-3-phosphocholine 

(DOPC) vesicles to form a supported lipid bilayer (SLB) on the sensor surface, which acts as a model 

cell membrane for the study of protein interaction kinetics.214 Prior to experiments, our plasmonic 

sensor chips are functionalized with a 10 nm silicon dioxide layer coated by atomic layer deposition 
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and exposed to a short oxygen plasma treatment to provide a hydrophilic surface suitable for 

membrane formation.60,215–218 Bilayer membrane fluidity and thickness are confirmed via 

fluorescence recovery after photobleaching (FRAP) and surface plasmon resonance (SPR) 

experiments (Figure 5:8 and Figure 5:9). To selectively bind SA to the membrane, vesicles for 

bilayer formation are prepared from a lipid mixture consisting of DOPC and a small percentage of 

biotinylated lipids. 

During biosensing measurements, the multiresonant metasurface chip is placed into a 

polydimethylsiloxane (PDMS) microfluidic cell to allow for the controlled delivery of the various 

molecules (Figure 5:3a). Real-time mid-IR reflectance spectra are measured with an FTIR 

spectrometer from the backside of the metasurface to prevent the complete absorption of infrared 

light by water and enable in-solution mid-IR experiments. This integrated microfluidic approach 

allows us to resolve the time evolution of both the lipid bilayer formation and subsequent 

streptavidin-binding kinetics in situ. A typical reflectance spectrum of the metasurface chip 

immersed in PBS buffer solution is shown in Figure 5:3b. In addition, a magnified view of the 

reflectance in the CH2 spectral region is presented in Figure 5:3c, highlighting the absorption 

fingerprint after lipid membrane formation on the sensor chip. To aid the subsequent analysis of 

the time-resolved spectral data, the reflectance spectra are converted to differential absorption 

(Figure 5:3d) and baseline corrected.60,104 
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Figure 5:3 Simultaneous monitoring of multiple biological analytes. a) Schematic of the 

experimental configuration. b) Infrared reflectance spectrum of the multiresonant sensor chip in 

PBS buffer solution. c) Reflectance spectra before (R0) and after (R) lipid membrane formation in 

the CH2 band spectral region, magnified from marked area in (b). d) Differential absorption 

spectrum calculated from the reflectance spectra in (c). The dashed line corresponds to the second-

order polynomial used for baseline correction. e) Color-coded time-dependent differential 

absorption spectra acquired during the lipid membrane formation and streptavidin-binding 

experiment. f) Time trace of the integrated absorbance signal in the amide (red-shaded area) and 

CH2 (green-shaded area) bands from (e). The lipid and streptadivin injection steps are indicated by 

the blue- and orange-shaded areas, respectively. The integrated absorbance signals from the 

amide (red curve) and CH2 (green curve) bands exhibit pronounced signal modulations during the 

lipid membrane formation and streptavidin-binding steps, evidencing an inadequate 

discrimination of the two analytes. g) Reference spectra for the lipid (blue-shaded area) and 

streptavidin (orange-shaded area) signal contributions. h) Linear regression signals obtained from 

the spectral data in (e) with respect to the reference spectra in (g). Linear regression signals for 

lipid (blue curve) and streptadivin (orange curve) show a significant signal increase only during the 

corresponding lipid or streptavidin injection step, demonstrating effective chemical discrimination 

The time evolution of the differential absorbance spectra over the course of the experiment is 

shown in Figure 5:3e for both amide and CH2 bands. After filling the fluidic channels with PBS buffer 

solution, 100 nm diameter DOPC vesicles containing 5 % of biotin-functionalized lipids were 

injected and allowed to form the SLB. Subsequently, streptavidin was injected to bind to the 
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biotinylated lipids present in the membrane (see section 5.5.3). The onset of absorption signals in 

both bands can clearly be observed in the differential absorbance results, indicating successful lipid 

membrane formation and streptavidin association in the bioassay. To further visualize these 

results, we calculate and trace the integrated absorbance from 1500 to 1700 cm−1 (amide I–II) and 

from 2800 to 3000 cm−1 (CH2) over time (Figure 5:3f). The lipid bilayer formation results in a 

pronounced increase of the integrated absorbance in the CH2 bands, while streptavidin binding 

produces a respective increase in the amide-integrated absorbance. However, since the molecular 

structure of streptavidin contains CH2 groups, the streptavidin injection also produces a change in 

the CH2 signal. A similar effect can be observed in the amide-integrated absorbance during lipid 

membrane formation, where water displacement produces a negative absorbance signature due 

to the H2O in-plane bending mode. This complex behavior indicates that a simple tracking of the 

integrated absorbance is insufficient to resolve the different analytes in multi-component systems, 

especially if the constituent biomolecules have overlapping absorption signatures. 

To overcome this challenge, we perform linear regression of the time-dependent differential 

absorbance data with respect to reference spectra for DOPC lipids and streptavidin (Figure 5:3g). 

Reference spectra were obtained by measuring an SLB for the lipid reference and, independently, 

a protein monolayer formed by physisorption for the streptadivin reference. The lipid and protein 

signals directly correspond to the coefficients in the linear combination of reference spectra that 

minimize deviation from the measured reflectance spectrum under the least square criterion (see 

section 5.5.4). This approach enables us to separate and identify the contributions of the two 

biological components in the full differential absorbance signal (Figure 5:3h).219 The effective 

chemical discrimination of the components becomes obvious when examining the lipid and 

streptavidin regression signals, which show a significant signal increase only during the 

corresponding lipid and streptavidin injection steps, respectively. The extracted values of the 

regression signals correspond to the analyte mass on the sensor surface relative to the amount 

present in the corresponding reference. As a result, when the surface density of the molecules 

changes, the regression signals vary accordingly. 

To confirm that two reference spectra used are sufficient to capture the full biological information 

in our time-dependent measurements, we performed principal component analysis (PCA) over the 

spectral data corresponding to all of the time points, and found that 99.7 % of the total variance is 

accounted for by the first two principal components (Figure 5:11). Importantly, our platform is not 

limited to two biochemical species and can be extended to bioassays with a higher number of 

biological components by including the corresponding reference spectra in the linear regression 

analysis, as will be shown in the next section. On the other hand, the linear regression approach 

has limitations when exploring unknown samples or analytes whose absorption spectra are not 

known. A PCA approach could be more suitable in these cases, but the interpretation based on 

principal component scores would be significantly more challenging (section 5.5.12). 
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5.3.3 Melittin-Induced Pore Formation in Membranes 

Moving beyond simple additive protein–membrane association processes, we investigated more 

complex dynamics of lipid membrane disruption induced by toxic peptides. For this purpose, we 

utilize melittin, a hemolytic peptide constituting the main toxic component of apitoxin, the bee 

venom.220 Melittin is well known for its efficient association with lipids and the resulting perforation 

of lipid membranes through the formation of pores.221 Due to its cytotoxicity and membrane 

disruptive properties, melittin is a naturally occurring anti-microbial and holds potential for the 

treatment of immune-related diseases such as many types of cancer.222 To demonstrate the 

versatility of our approach, we study melittin-induced pore formation in membranes for two 

distinct biological schemes: the disruption of a supported lipid membrane and the release of 

encapsulated cargo from surface-attached lipid vesicles. 

In the first scheme, we monitor the interaction between lipids and melittin by forming an SLB from 

unloaded DOPC vesicles, next removing residual vesicles with PBST and subsequently injecting 

increasing concentrations of melittin (Figure 5:4a). In contrast to the previous additive association 

measurements, we observe a clear decrease of the lipid signal upon melittin injection, which 

correlates with a strong increase of the melittin signal after a transient fluctuation induced by PBST. 

This behavior is caused by insertion of melittin into the lipid membrane, which leads to the 

displacement of lipids due to the formation of nanosized pores.223 The observed strong signal 

modulation is caused by the efficient association of melittin to the DOPC lipids, which is confirmed 

with independent bulk circular dichroism measurements (Figure 5:12). Increasing the injected 

melittin concentration from 1 to 100 µM demonstrates a progressively higher and non-

proportional perforation of the lipid membrane. Particularly, for the highest concentration of 

100 µM, more than 60 % of the lipid molecules are displaced from the surface based on the lipid 

regression signal, which is also corroborated by independent fluorescence experiments (Figure 

5:13). The recorded signals capture clearly the melittin association and dissociation during melittin 

injection and PBS rinsing steps, respectively. The association kinetics for 1 µM concentration are 

qualitatively different than for 10 and 100 µM, which we attribute to the presence of melittin 

molecules in the membrane after the first injection step (1 µM). During the dissociation phase, we 

observe that ~80–90 % of the adsorbed melittin remains in the membrane after the PBS rinsing, 

indicating high membrane/melittin affinity. It is important to note that we are able to investigate 

melittin-binding kinetics on a supported lipid membrane (Figure 5:9), using melittin concentrations 

in the same range as in previous works.221 
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Figure 5:4 Melittin-induced membrane disruption and vesicular cargo release. a) Melittin 

association to the supported lipid bilayer (SLB) and melittin-induced disruption of the membrane 

for increasing melittin concentrations (1, 10, and 100 µM). The time evolution of the melittin linear 

regression signal (purple) shows melittin-membrane association and partial dissociation phases for 

each melittin injection time step. The increase in melittin signal is accompanied by a clear decrease 

in the lipid regression signal (blue) evidencing loss-of-membrane integrity, which intensifies with 

increasing melittin concentrations. b) Sketch of the vesicle cargo release experiment. The sensor 

metasurface is functionalized with hydrophilic tethers displaying cholesterol moieties, which are 

then used to capture lipid vesicles loaded with the neurotransmitter gamma-aminobutyric acid 

(GABA). Injection of melittin perforates the lipid vesicle membrane, resulting in a release of GABA 

cargo molecules. c) Time-resolved linear regression signals for the three characteristic biological 

components in the experiment: lipid, GABA, and melittin. After the injection of GABA-loaded 

vesicles, successful attachment of intact, loaded vesicles to the surface is corroborated by the 

stable lipid and GABA regression signals. The strong initial peak of the GABA signal is caused by the 

transient flow of extravesicular GABA molecules present in the bulk solution. Melittin injection 

results in a fast and pronounced decrease of the GABA signal, indicating efficient cargo release. 
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This experiment evidences that our sensor platform could go beyond the capabilities of other label-

free biosensing approaches based on mass or refractive index detection, such as quartz crystal 

microbalance (QCM) or surface plasmon resonance (SPR) techniques, which are considered the 

gold standard in real-time label-free detection of biomolecular interactions.66,224 These techniques 

enable the study of binding kinetics in processes where multiple analytes provide a net 

contribution to the total mass accumulated on the sensor, however, they struggle in situations 

where the injection of one kind of analyte triggers the removal of another analyte that is already 

present on the surface. The chemical specificity of our technique overcomes this fundamental 

limitation and provides exciting opportunities for the study of multi-analyte systems. 

As a final demonstration, we applied our approach to a system with increased complexity, featuring 

small analyte molecules in addition to lipid vesicles and peptides. This system exemplifies that our 

technology can be extended to monitor multiple analytes in more complex scenarios, such as the 

release of cargo molecules from vesicles in our case. We focus on cholesterol-enriched lipid vesicles 

containing neurotransmitters, a system mimicking synaptic vesicles naturally found in neurons. 

Specifically, vesicles are loaded with GABA, which is the major neurotransmitter for inhibitory 

synaptic transmission. Consequently, GABA uptake and release processes influence a multitude of 

brain-related diseases and GABA receptors are major drug targets for such illnesses.225 

To enable the observation of the biological process schematized in Figure 5:4b, we first optimized 

a surface functionalization protocol for capturing intact cargo-filled lipid vesicles with a diameter 

of 50–70 nm on our metasurface chip. This is achieved by functionalizing the gold antenna surface 

using biotinylated thiols, followed by the attachment of streptavidin, which is then utilized to bind 

biotin-PEG-cholesterol vesicle tethers (see section 5.5.3). In a second step, GABA-filled vesicles are 

captured on the functionalized metasurface and the release of the cargo is triggered via the 

melittin-induced perforation of the vesicle membrane. 

To detect the vibrational signature of the GABA molecules, we focus on its distinct absorption peak 

at 1562 cm−1, resulting from the asymmetric stretching of its carboxylate group. Our platform can 

efficiently detect the absorption peak of GABA via the first resonance mode of the metasurface. 

Crucially, the GABA absorption signature exhibits strong spectral overlap with the amide II 

signature of melittin. Therefore, simple analysis based on integrated absorbance over the amide I–

II range is unable to simultaneously trace the signals of GABA and melittin. However, since the 

absorption spectra of the three analytes (lipid, melittin, and GABA) form a linearly independent set 

(Figure 5:14), our linear regression approach can easily extract the signal contributions of each 

molecule. As demonstrated in Figure 5:4c, time-resolved linear regression signals for the three 

biomolecular components in the experiment (lipid, melittin, and GABA) are efficiently 

distinguished. This result demonstrates the applicability of our approach in biological systems with 

more than two analytes, as long as their infrared spectra are sufficiently different and linearly 

independent over the detection bands of the metasurface. 

The injection of GABA-loaded vesicles induces a pronounced increase in the signals corresponding 

to both lipid and GABA channels. After the initial binding phase, both signals remain stable for more 
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than 30 min under continuous buffer solution flow, indicating the capture of intact vesicles on the 

sensor metasurface. The strong, transient peak of the GABA signal during injection is attributed to 

extravesicular GABA molecules in the bulk solution, which are subsequently washed away by the 

flow of buffer solution. Crucially, GABA molecules cannot attach to the functionalized metasurface 

(Figure 5:15), confirming that the stable GABA signal in Figure 5:4c originates from encapsulated 

molecules in the vesicles. 

After melittin injection, the association of this peptide with the vesicle membrane is clearly 

detected as an increase of the melittin regression signal. In contrast to our previous SLB 

experiments, here the lipid regression signal remains constant during melittin association, which is 

attributed to the accommodation of the inserted melittin molecules in the tethered vesicles via a 

slight increase of their size, leaving the density of lipid molecules mostly unaffected. On the other 

hand, the binding of melittin to SLBs in previous experiments produced a lateral displacement of 

lipid molecules, which lead to the reduction of the lipid surface density (compare to Figure 5:4a). 

Strikingly, the injection of melittin causes a simultaneous and pronounced decrease of the GABA 

regression signal. This is unequivocal evidence of the melittin-induced cargo release of the vesicles. 

Based on the relative GABA signal levels before and after the melittin injection step, we conclude 

that around 85 % of the encapsulated GABA molecules are released through the perforated 

membranes. 

5.4 Conclusion 

We have developed a label-free and chemically specific nanophotonic biosensor for extracting and 

distinguishing molecule-specific information in multi-analyte biological systems. Our approach 

leverages a multiresonant mid-IR metasurface that provides up to three orders of magnitude local 

near-field intensity enhancements simultaneously over the amide and methylene bands. The 

introduced metasurface concept is flexible to add additional bands that can be individually 

adjusted to suit different applications. The combination of real-time spectral acquisition with 

advanced linear regression analysis allows to discriminate the different analytes and accurately 

trace the interaction kinetics. We demonstrate that our sensor is well adapted for real-time 

monitoring of lipid–protein systems in aqueous environments and the study of a range of 

important processes such as lipid–protein association, protein-induced disruption of membranes 

and vesicular cargo release. 

By studying the interaction of the pore-forming toxin melittin with lipid membranes, we showed 

that our method could independently trace melittin and lipid signals and reveal melittin-induced 

disruption of the membrane. This experiment highlights that our platform can greatly contribute 

to elucidate the underlying mechanisms of anti-microbial, cytolytic, and cell-penetrating peptides. 

Furthermore, the label-free real-time monitoring of neurotransmitter cargo release from synaptic 

vesicle mimics demonstrates the applicability of the method for biomolecular systems with 

increased complexity. In this regard, our sensor can contribute to study important classes of lipid 
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vesicles such as synaptic vesicles in neurodegenerative diseases, exosomes in cancer, as well as 

drug release mechanisms from liposomes in pharmaceutical research. 

 

5.5 Supplementary Information 

5.5.1 Sensor Nanofabrication 

Metasurfaces are nanofabricated on a CaF2 substrate by electron beam lithography and a lift-off 

process. Poly(methyl methacrylate) (PMMA) is used as the pattern defining electron beam resist 

and a lower molecular weight sublayer is used to help the lift-off process. The resist is coated with 

a 5–10 nm-thick gold layer to reduce electron charging during exposure. Metasurfaces with a 

lateral size of 280 × 280 µm2 are exposed with a 100 keV electron beam, developed in MiBK:IPA 

1:3 solution and the gold conduction layer is wet etched in KI + I2. Metal nanoantennas are formed 

by evaporation of a 5 nm-thick Cr adhesion layer and a 100 nm-thick Au layer, followed by a lift-off 

process carried out in acetone. The chips used for experiments with SLBs are then conformally 

coated with a thin SiO2 layer deposited by atomic layer deposition (ALD). The ALD process is 

performed at 100 °C with alternating cycles of sequentially injecting trimethylaluminum (Al(CH3)3) 

and tris(tert-butoxy)silanol ((tBuO)3SiOH) with a deposition rate of 1.67 Å per cycle. The gold 

antennas without a SiO2 layer used for cargo release experiments were functionalized ex situ by 

incubating the chip with 1.5 mM HS-C11-EG3-Biotin (ProChimia Surfaces) in ethanol for at least 

12 h. 

5.5.2 FTIR Measurements 

Infrared spectral measurements are carried out using a Fourier transform infrared (FTIR) 

spectrometer (Bruker Vertex) coupled to an IR microscope (Hyperion 3000) equipped with a 

reflective Cassegrain objective (NA = 0.4, ×15) and a mercury cadmium telluride (MCT) detector. 

The light polarization is applied parallel to the axis of the nanoantennas and the collected light is 

limited to a 200 × 200 µm2 area by knife edge apertures. Experiments are carried out in a dry air 

purged environment. The measurements are performed in reflectance mode and illuminating the 

nanoantenna arrays from the backside of the substrate to avoid light propagation across the 

infrared-opaque water. For real-time microfluidic measurements, the chip is mounted in a custom-

built polydimethylsiloxane (PDMS) microfluidic cell, which is connected to a pump to control the 

analyte flow through the cell. During experiments with SLBs, the flow rate is fixed at 30 µL·min−1 

apart from the bilayer formation step, which is carried out at a flow rate of 15 µL·min−1 as shown 

previously.60 During the cargo release experiments, the flow rate was 50 µL·min−1. All experiments 

are carried out in PBS buffer (10 mM phosphate buffer, 2.7 mM potassium chloride, and 137 mM 

sodium chloride, pH 7.4). Analyte injections (lipid, streptavidin, melittin, and GABA) are performed 

using a medium pressure injection valve (Upchurch Scientific V-451) to ensure uninterrupted 

analyte delivery. For the cargo release experiments, the gold antennas previously modified with 
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biotinylated alkanethiols are further functionalized in situ by flowing 3 μM streptavidin (Thermo 

Fisher Scientific) followed by 9 μM Cholesterol PEG Biotin (Nanocs Inc.). 

5.5.3 Lipid Vesicle Experiments 

Small unilamellar vesicles are prepared similarly to the protocol from Ref.226. Defined ratios of 

either DOPC (1,2-dioleoyl-sn-glycero-3- phosphocholine, Avanti Polar Lipids, Inc.) and Biotinyl PE 

(1,2-dipalmitoyl-sn- glycero-3-phosphoethanolamine-N-(biotinyl), Avanti Polar Lipids, Inc.) or POPC 

(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, Avanti Polar Lipids, Inc.) and cholesterol 

(Sigma-Aldrich) are mixed in chloroform in a round bottom flask and dried under a stream of N2. 

Remaining solvent is removed by keeping the mixture under vacuum overnight. The dried lipids 

are resuspended in PBS by vortexing to achieve a 1 mg·mL−1 solution of lipids, which is then 

exposed to bath sonication for 30 min. For cargo release experiments, the dried lipids are 

resuspended in PBS with 100 mg·mL−1 GABA. After sonication, the solution is then extruded for a 

minimum of 18 times through 100 nm pore-size polycarbonate filters using an Avestin LiposoFast 

extruder (Avestin Inc.). After SLB formation in real-time infrared experiments, residual vesicles in 

the microfluidic system are rinsed with PBS solution containing 0.05 % (wt/vol) polysorbate 20 

(Tween 20, Sigma-Aldrich) surfactant (PBST). For cargo release experiments, a twofold dilution of 

the vesicles (20 % cholesterol, 80 % POPC) in PBS was carried out prior injection and mem- brane 

perforation was performed with 2 µM melittin (GenScript). 

5.5.4 FTIR Data Analysis 

The extraction of the IR fingerprints of the analyte is performed by normalizing the reflectance 

spectra of the sensor to that of the bare sensor before analyte injection. The differential 

absorbance spectra is calculated by subtracting a second-order polynomial fitted by least-squares 

method to the nor- malized reflectance. The integrated absorbance signal is calculated by 

integrating the extracted amide and CH bands over the 1525–1650 cm−1 and 2835–2935 cm−1 

ranges, respectively. The protein and lipid signals are obtained by linear least- squares regression 

of the absorbance spectrum of the heterogeneous sample using as basis the individual reference 

spectrum of the protein and lipid. The protein and lipid signals (sP,sL) are calculated as (sP, sL) = 

(XTX)−1·XT·a, where a is the absorbance spectrum of the heterogeneous analyte and X = (aP, aL) is 

the reference absorbance matrix formed by the reference absorbance spectra of the protein and 

lipid. The reference spectrum for each individual analyte is obtained from independent experiment 

by measuring: a lipid bilayer formed by vesicle rupture, a streptavidin layer by physisorption, a 

mellitin layer formed by physisorption and GABA molecules by high concentration (100 mg·mL−1) 

in flow measurements. 

5.5.5 Numerical Simulations 

The spectral and near-field characteristics of the nanoantenna arrays are calculated using a 

commercial solver of Maxwell equations (Ansys HFSS) based on the finite elements method. The 

periodicity of the arrays is modeled by periodic boundary conditions delimiting the array unit cell. 
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The structure is excited by an electromagnetic plane wave with light polarization aligned with the 

dipole antennas and including all propagating Floquet modes. The scattering properties are 

calculated over an iteratively refined mesh until convergence is reached. 

5.5.6 Generalized Metasurface with Three Resonances 

The multiresonance metasurface can be generalized to incorporate additional resonances. In 

Figure 5:5 we show the metasurface design that accommodates three resonances. The multi-

resonant metasurface is composed of three sub-arrays of nano-antennas whose periodicities are 

in a 1:2:4 ratio. The experimental reflection spectrum shows three well-defined optical resonances. 

This technique can be further extended to accommodate a larger number of resonances by 

incorporating additional sub-arrays. 

 

Figure 5:5 Generalized self-similar antenna array metasurface. a) Scanning electron microscope 

image of the generalized metasurface that accommodates three resonance peaks. The 

metasurface is composed of three sub-arrays of nanodipoles with lengths L1 = 4.10, L2 = 2.30, 

L3 = 1.27, widths W1 = 0.4, W2 = 0.2, W3 = 0.1 and periodicities P1 = 6.64, P2 = 3.32, P3 = 1.66 (units in 

µm). b) Experimental reflectance spectrum of the generalized metasurface. The reflection 

spectrum shows three well-defined resonances. Each optical resonance is excited by the 

corresponding sub-array of nanodipoles. 

5.5.7 Influence of Water Absorption in the Infrared on Metasurface Transmission 

Microfluidic measurements in the mid-infrared are impacted by strong molecular absorption from 

the required aqueous buffer solutions close to the target amide and methylene bands. To quantify 

the influence of water absorption on the spectral shape of our multi-resonant metasurface, we 

extend the numerical simulations presented in the manuscript by including the full complex 

refractive index of water in this range. Specifically, we consider the metasurface designs from 

Figure 5:2b of the main text. We compare the reflection spectrum of the designs considering a non-

dispersive water environment (Figure 5:6a) and a water environment with a frequency-dispersive 

complex refractive index from tabulated data taken from literature (Figure 5:6b).213 In both cases 

the simulated reflection spectrum of the multi-resonant structure shows two peaks at 1600 and 

3000 cm-1, respectively) that are individually tuned modifying the respective dipole lengths L1 and 
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L2. Due to the effect of water absorption bands in this spectral range, the two resonance peaks in 

the second case show superimposed adsorption bands from water. 

 

Figure 5:6 Simulated reflectance spectrum of the multiresonant metasurface for the nominal 

design (black curve), and with varying lengths L1 (red curves) and L2 (green curves) in a ± 10 % range. 

The simulated environment is represented in (a) as a non-dispersive aqueous medium with 

refractive index n = 1.32. The simulated environment in (b) as an absorptive water layer with a 

frequency-dispersive complex refractive index from tabulated data. 

5.5.8 Near-Field Penetration Depth of the Metasurface 

To evaluate the penetration depth of the near-field intensity away from the multiresonant 

metasurface we have simulated the near-field in the vicinity of the metallic nano-antennas for the 

two bands of interest. The penetration depth of the metasurface is δ = 5 nm for the methylene 

band and δ = 10nm for the amide band (for 1/e drop in intensity). As expected, the penetration 

depth for the amide band is higher than for the methylene band due to longer wavelengths. Of 

course, the near-field extends beyond the penetration depth at a lower intensity and, for instance, 

the metasurface can access up to a 20 nm depth with 10 % of the near-field peak intensity. This 

result contrasts with the 1–2 nm depth achieved in SERS, the Raman counterpart of SEIRAS, and 
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allows the metasurface to probe multiple molecules in multi-layers systems (Figure 5:3) and the 

molecules inside the vesicles in the cargo-release experiments (Figure 5:4b). 

 

Figure 5:7 Simulated near-field intensity for the multiresonant metasurface as a function of the 

distance to the surface of the corresponding nano-antennas. The near- field intensity normalized 

to its maximum value is shown for the amid band (1600 cm−1) and methylene band (2900 cm−1). 

5.5.9 Verification of Membrane Fluidity via FRAP Measurements 

To assess the fluidity of the supported lipid bilayers used in our real-time microfluidic experiments, 

we perform fluorescence recovery after photobleaching (FRAP) measurements. The FRAP 

experiments shown in Figure 5:8 were carried out with a Zeiss LSM 710 upright confocal 

microscope following the protocol from Ref.60, but with NBD-PC (1-palmitoyl-2-{12-[(7-nitro-2-1,3-

benzoxadiazol-4-yl)amino]dodecanoyl}-sn-glycero-3-phosphocholine, Avanti Polar Lipids, Inc.) 

lipids instead of Texas Red DHPE (1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, Life 

Technologies). 
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Figure 5:8 Membrane fluidity. a) FRAP microscopy images of a fluorescently tagged supported lipid 

bilayer at measurement start (t = 0 s), directly after bleaching (t = 6 s) and at t = 60 s. The bleaching 

spots have a diameter of 10 µm and are indicated with yellow circles. b) Data analysis of FRAP 

measurements confirm the fluidity of the lipid membranes utilized in our experiments. The average 

of three measurements as well as the error envelope (standard error of the mean) is shown. 

Data analysis is performed with the FRAP Analyzer program (University of Luxembourg; 

http://actinsim.uni.lu) as described previously.60 After photobleaching, we observe a fast recovery 

of the fluorescence signal on a timescale of 50 s, which confirms the fluidity of the bilayers utilized 

in our experiments and is consistent with previous studies on similar membrane systems.60 

5.5.10 Determination of Supported Lipid Bilayer Thickness 

The thickness of the supported lipid membranes in our experiments is determined via a multi-

parametric surface plasmon resonance (SPR) spectroscopy recording angle-scanning SPR data 

simultaneously at three different wavelengths (Bionavis 210A VASA). In particular, we perform the 

SLB formation using DOPC vesicles prepared in the same way as for the other SLB experiments and 

inject them at the same flow rate over gold chips coated with ALD-deposited silica.  

The resulting SPR signal curves before and after formation of a SLB (labelled baseline and 

membrane, respectively) are shown in Figure 5:9. The formation of the membrane induces a clear 

shift of the resonance angle for all three individual laser wavelengths. To extract the thickness of 

the lipid membrane, we fit a dielectric multilayer model to the measured SPR curves using BioNavis’ 

LayerSolver software. The fitting procedure works by modeling the multilayered optical system in 

terms of thickness, refractive index and attenuation coefficient, and then numerical calculations 

are iteratively performed using Fresnel’s equations and a transfer matrix formalism of 2 × 2 

matrices.227 
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The parameters of the multilayer model for the baseline and membrane cases are shown in Table 

5:1 and  Table 5:2, respectively. The calculations yield a refractive index of n=1.45 and a thickness 

of 5.1 nm for the SLB. Both values agree very well with values reported in the literature228,229 and 

confirm the presence of a single DOPC bilayer on the surface. It is important to note that our multi-

parametric SPR results provide a thickness of 10.48 nm for the SiO2 which is matching to the 

nominally used value in ALD deposition. This also evidences that the thickness readings provided 

by SPR are reliable. 

 

Figure 5:9 SPR measurement for confirming membrane thickness. Angle-scanning SPR signal curves 

for the three individual laser sources with multi-parametric Bionavis 210A VASA SPR instrument. 

The formation of the membrane induces a clear shift of the resonance angle in all three 

measurement channels. 

Layer Support Au SiO2 PBS 

n 670 nm 1.5202 0.17215 1.43351 1.33011 

785 nm 1.5162 0.19226 1.45443 1.32887 

980 nm 1.5129 0.26653 1.41842 1.32533 

k 670 nm 0 3.86192 0.00213 0.00178 

785 nm 0 4.78515 0.00633 0.00011 

980 nm 0 6.22052 0 0 

d (nm) ∞ 57.01 10.48 ∞ 

Table 5:1 Model parameters from the baseline measurement (without membrane) establish the 

properties of the multilayer system. Obtained values show fair agreement with tabulated values 

for the constituent material components. Values on grey shaded cells indicate parameters which 

were fixed, and values on orange shaded cells indicate parameters which were set as variables in 

the calculations. 
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Layer Support Au SiO2 DOPC PBS 

n 670 nm 1.5202 0.17215 1.43351 1.45068 1.33011 

785 nm 1.5162 0.19226 1.45443 1.45169 1.32887 

980 nm 1.5129 0.26653 1.41842 1.451 1.32533 

k 670 nm 0 3.86192 0.00213 0.00578 0.00178 

785 nm 0 4.78515 0.00633 0.00208 0.00011 

980 nm 0 6.22052 0 0 0 

d (nm) ∞ 57.01 10.48 5.07 ∞ 

Table 5:2 SPR multilayer model fitting results, membrane. Model parameters for a fully formed 

supported lipid membrane on the SPR chip. A membrane thickness of 5.07 nm is obtained, 

indicating the presence of a single bilayer membrane on the surface. Values in grey shaded cells 

indicate parameters which were fixed, and values on orange shaded cells indicate parameters 

which were set as variables in the calculations. 

5.5.11 Regression Signals for a Variable Surface Density of Streptavidin Molecules 

We have replicated the lipid-streptavidin binding experiment in Figure 5:3 for a variable density of 

streptavidin molecules in the surface. This density has been controlled by modifying the 

concentration of biotinylated lipid in the membrane, which corresponds to the density of binding 

site available for streptavidin. As observed in Figure 5:10, the levels reached by the streptavidin 

regression signals vary accordingly to the biotinylated lipid concentration in the membrane. For a 

biotinylated lipid concentration of 0 %, 1 % and 5 %, the streptavidin signal values are 0.0, 0.2 and 

1.0, demonstrating the direct correlation between streptavidin amount and regression signal. For 

a streptavidin monolayer, the density of molecules on the surface has been approximated as 

5 × 1012 molecules·cm−2.174 Consequently, we can estimate the amount of bound streptavidin 

molecules in our experiments as 0, 1 × 1012 and 5 × 1012 molecules·cm−2 for the given biotinylated 

lipid amounts of 0 %, 1 % and 5 %. This result illustrates that the regression signals are able to 

capture the number of molecules in the sensor surface relative to the density of molecules in the 

experiment done to obtain the reference spectrum for the same analyte. 
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Figure 5:10 Regression signals for a variable surface density of streptavidin molecules. 

5.5.12 Principal Component Analysis 

The linear regression analysis in the manuscript decomposes the measured time-resolved 

absorbance spectra into a linear combination of the two reference absorbance spectra for lipid and 

protein (see, e.g., Figure 5:3). The linear regression results are valid as long as the infrared 

absorption spectrum of the heterogeneous sample is the addition of the absorption of its individual 

constituents, a condition that is satisfied in all our experiments and analyte concentrations used. 

To confirm that two reference spectra used in the experiment corresponding to Figure 5:3 are 

sufficient to capture the full biological information contained in our time-dependent 

measurements, we performed principal component analysis (PCA) over the spectral data for all the 

time points in the experiment. In the PCA analysis the time-dependent spectra are decomposed 

into orthogonal spectra (principal components) maximizing the variance for the first principal 

component (PC1) and iteratively for the next components (PC2, PC3…). In Figure 5:11a we see that 

the first two principal components account for 99.7 % of the total variance contained in the data, 

indicating that there are two linearly independent components in our spectral data (lipid and 

streptavidin). In Figure 5:11b we show the PCA scores representing the time evolution of the 

experiment. There are three regions in the principal component space where the data points 

accumulate, which correspond to (a) the start of the experiment with no molecules adsorbed, (b) 

the lipid membrane and (c) the lipid membrane with immobilized streptavidin. The data points 
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linking these three regions correspond to the transients when the lipid bilayer is being formed and 

during the streptavidin binding. The interpretation of principal components is not straightforward 

in general, however in this case it is clear that the first principal component (PC1) corresponds 

mainly to the streptavidin spectrum and the second principal component (PC2) corresponds mainly 

to the lipid spectrum. Additionally, the large variance explained by PC1 (> 80 %) is due to the fact 

that the lipid injection took place at the beginning of the experiment and only a small fraction of 

the time points are free of lipids, leaving a relatively small variance for PC2 (lipid). 

In addition, we compared the measured spectrum (dashed lines) and the linear regression result 

(solid lines) in the relevant amide and methylene bands. As an example, we show in Figure 5:11c 

the comparison for a specific time point after the lipid and streptavidin binding. Agreement 

between the data sets is excellent, validating the suitability of utilizing a linear regression for 

analyzing our experimental data. This agreement is not specific to the chosen time point and all 

other time points show similar agreement between measured data and linear regression results. 

 

Figure 5:11 Validation of linear regression approach. a) PCA explained variance for the time-

resolved absorbance spectra in Figure 5:3e, which confirm the presence of two independent 

components in the experimental data set. b) PCA scores for the main two principal components 

obtained from the spectral data over all the time points show the lipid bilayer formation and the 

melittin binding. c) The measured experimental absorbance spectrum (dashed lines) is in excellent 

agreement with the linear regression result (solid lines) based on the two reference spectra for 

lipid and protein. 
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5.5.13 Bulk Circular Dichroism Measurements of Lipid/Melittin Association 

To validate the association of the melittin used in our experiments to the lipid membrane, we 

performed circular dichroism (CD) measurement in bulk solution. CD spectra were recorded on a 

Jasco J-815 CD spectrometer operated at 20 °C, and acquired from 195 nm to 250 nm at a scan rate 

of 50 nm·min−1 and in increments of 0.2 nm. For each sample, five spectra are averaged and 

smoothed using binomial approximation. The melittin and vesicles concentrations are 20 µM and 

1 mg·ml−1, respectively. 

Bulk CD results in Figure 5:12 clearly show that the random coil secondary structure of melittin 

changes into a α-helical conformation in the presence of DOPC lipid vesicles, confirming the 

efficient association of melittin to the lipid membrane observed in our microfluidic measurements. 

 

Figure 5:12 Bulk circular dichroism measurements. CD spectra of a melittin solution before (purple 

line) and after (blue line) the addition of DOPC vesicles clearly show a strong conformational 

change of the melittin secondary structure, confirming its efficient association with the lipid 

membrane. 

5.5.14 Fluorescence Validation of Melittin-Induced Lipid Membrane Disruption 

To confirm the displacement of lipids in the bilayer membrane as a consequence of the injection 

of melittin (Figure 5:4a) we reproduced the experiment with fluorescently-tagged lipids. To ensure 

consistency with the presented FTIR results, the same microfluidic setup of PDMS cell and syringe 

pump is used. The experiments start with the formation of supported lipid bilayer with 

fluorescence tagged lipids (Texas Red 1,2‐dihexadecanoyl‐sn‐glycero‐3‐phosphoethanolamine) on 

the SiO2 coated substrates. Continuous fluorescence images are recorded during bilayer formation 

and subsequent melittin‐induced disruption using a confocal laser‐scanning microscope (LSM 700, 

Zeiss Microscopy) with a 10x objective and analyzed using the Zen software (Zeiss Microscopy). 

The fluorescence signal is obtained by integrating the fluorescence image over a square region 

corresponding to an area of approximately 100 μm by 100 μm on the chip. We observed that the 

arrival of melittin molecules at 100 µM concentration induces a decrease of the fluorescent signal 

from lipid molecules. The decrease of fluorescent signal is approximately 50 %, which is consistent 
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with the SEIRAS signals in Figure 5:4a. This strong decrease of the lipid fluorescence contrast to the 

relatively flat fluorescent signal measured in the absence of melittin. 

 

Figure 5:13 Validating fluorescence measurements of the melittin-induced disruption of the lipid 

membrane using a fluorescently tagged lipid membrane. The decrease in fluorescence signal level 

produced after the injection of melittin at 100 µM concentration indicates a displacement of lipid 

molecules upon melittin association, while the control with no melittin results in a flat fluorescence 

signal. 

5.5.15 Linear Regression Reference Spectra for Vesicular Cargo Release Experiment 

The vesicular cargo release experiment in Figure 5:4b of the main text includes three significant 

molecular components: lipid vesicles, melittin, and GABA cargo. The corresponding reference 

spectra for use in the linear regression analysis were acquired during independent measurements 

and are shown in Figure 5:14. Significantly, the three reference spectra form a linearly independent 

set, allowing for the efficient differentiation of the compounds using linear regression analysis. 
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Figure 5:14 Reference spectra for the vesicular cargo release experiment. Reference spectra for 

the three significant biological components are acquired in separate experiments and demonstrate 

sufficient linear independence for linear-regression-based chemical discrimination. 

5.5.16 GABA Sensing on Functionalized Metasurface 

To confirm that the stable GABA regression signal in Figure 5:4b of the main text originates from 

GABA molecules encapsulated in the lipid vesicles and not from simple adsorption to the sensor 

metasurface, we flow a large concentration (100 mg·mL−1) of GABA over our sensor metasurface 

without the presence of any lipid vesicles (Figure 5:15). We observe a strong peak of the GABA 

regression signal, which disappears completely through continuous washing with running buffer 

solution. These results show that GABA does not readily adsorb on our sensor metasurface and 

thus validates that we indeed observe encapsulated GABA molecules in our synaptic vesicle mimic 

experiment in Figure 5:4b of the main text. 

 

Figure 5:15 GABA adsorption directly on functionalized metasurface. The control experiment is 

performed by injecting GABA directly on top of the funtionalized metasurface, without 

encapsulating it in vesicles. We observe a strong peak of the GABA regression signal, which 

disappears completely through continuous washing with running buffer solution. This behaviour 

confirms that GABA molecules do not adsorb on the sensor metasurface. For easier comparison, 

the scale in the right panel is chosen to match the scale in Figure 5:4. 
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6.1 Abstract 

Insights into the fascinating molecular world of biological processes are crucial for understanding 

diseases, developing diagnostics, and effective therapeutics. These processes are complex as they 

involve interactions between four major classes of biomolecules, i.e., proteins, nucleic acids, 

carbohydrates, and lipids, which makes it important to be able to discriminate between all these 

different biomolecular species. In this work, a deep learning‐augmented, chemically‐specific 

nanoplasmonic technique that enables such a feat in a label‐free manner to not disrupt native 

processes is presented. The method uses a highly sensitive multiresonant plasmonic metasurface 

in a microfluidic device, which enhances infrared absorption across a broadband mid‐IR spectrum 

and in water, despite its strongly overlapping absorption bands. The real‐time format of the 

optofluidic method enables the collection of a vast amount of spectrotemporal data, which allows 

the construction of a deep neural network to discriminate accurately between all major classes of 

biomolecules. The capabilities of the new method are demonstrated by monitoring a multistep 

bioassay containing sucrose‐ and nucleotides‐loaded liposomes interacting with a small, lipid 

membrane‐perforating peptide. It is envisioned that the presented technology will impact the 

fields of biology, bioanalytics, and pharmacology from fundamental research and disease 

diagnostics to drug development. 

6.2 Introduction 

The ability to detect and monitor biomolecules is essential to extend our understanding of 

biological processes of both physiological and pathological order. Biosensors enabling the analysis 

of biomolecules from a wide range of samples are indispensable tools for analytical and 

biochemical studies as well as for medical diagnostics, safety, and industrial applications. In this 

regard, plasmonic biosensors employing nanoparticles and localized surface plasmon resonances 

(LSPR) have been receiving significant attention over the years due to their advantages, including 

high sensitivity and label‐free operation.230 By detecting trace amounts of molecular compounds 

from minute samples, their use has been shown in various settings including for diagnostics,231,232 

environmental monitoring,233 food industry,234 and consumer products.235 Access to kinetic 

information at the monolayer level has also been demonstrated with applications in bioanalytics 

and pharmacology.236,237 The vast majority of LSPR sensors rely on refractive index change 

detection, and despite their advantage of high sensitivity, the method is inherently nonspecific and 

unable to identify the nature of the matter causing the refractive index shift. In order to achieve 

specificity with selective binding of the targeted analytes, LSPR sensors require biofunctionalization 

through surface chemistry. However, going beyond the detection of one or two target analytes is 

very challenging, especially for processes in which the net refractive index remains mostly 

unchanged due to simultaneously occurring association, dissociation, and removal events, making 

it difficult to perform accurate measurements and decouple the contribution of the individual 

analytes from the overall signal.160 This is where plasmonic biosensors tailored for optical 

spectroscopy bring unique advantages because nanoantenna sensors can be tuned so that their 

resonances spectrally match molecular vibrations of analytes of interest, thereby making 
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chemically specific detection possible.147,154 While surface‐enhanced Raman spectroscopy allows 

the detection of single molecules due to its extremely tight near‐field confinement on the surface 

(with a decay length of a few nanometers only),238 SEIRAS nanosensors have a biologically relevant 

sensing depth (several tens of nanometers), which make it possible to monitor larger entities, such 

as lipid vesicles interacting with various other biomolecules.60 These types of biological samples 

play a pivotal role in numerous physiological and biomedical studies, e.g., in the investigation of 

exosomes carrying proteins and nucleic acids used for intercellular communication or the 

characterization of liposomes loaded with drugs such as siRNA to treat pathological conditions.30,35 

SEIRAS using engineered nanoantennas is the ideal candidate for such studies; however, this 

research field is still in its infancy and several challenges remain to be addressed before a more 

widespread use can emerge. So far, most of the SEIRAS sensors exhibit narrowband resonances, 

thereby strongly restricting the number of absorption bands and analytes that can be analyzed. 

Many of these sensors have been tuned for protein detection via their characteristic Amide I and 

II absorption bands,108,144,202,239,240 with some even operating in water and providing information 

about their 3D structures.148,162,241,242 Given the importance of proteins in physiology and the 

challenge of their detection with IR spectroscopy due to the overlap between water and Amide 

absorption bands, such SEIRAS sensors represent an important milestone. The next challenge is to 

simultaneously detect different classes of biomolecules, which is complicated due to the 

broadband nature of IR spectroscopy. For instance, while the Amide I and II bands of proteins 

absorb around 6 µm, lipids absorb more strongly near 3 µm and nucleic acids and carbohydrates 

around 10 µm; this demands to have a wide spectral coverage over 7 µm. Multiresonant 

metasurfaces represent a promising approach to address this challenge by providing several 

resonances to target spectrally distant absorption bands.128,134,203,243,244 At the same time, the 

increased wealth of collected absorption signals and their partial overlap requires the use of 

chemometrics to effectively discriminate between analytes spectroscopically.86 Recently, multiple 

linear regression (MLR) was used to resolve protein–lipid interactions in processes involving lipid 

vesicles with dual‐resonant metasurfaces consisting of plasmonic nanorod antennas.160 While this 

approach showed promises, further developments are needed for simultaneous monitoring of a 

large number of analytes from all four major biomolecular classes without erroneous signal 

attributions by the readout system. 

In this work, we experimentally demonstrate that deep learning empowers broadband plasmonic 

metasurfaces for SEIRAS by enabling the study of a multianalyte bioparticle system in water and in 

real‐time. The biosample consists of liposome nanoparticles loaded with both sucrose and 

nucleotides, and upon their binding on the surface of the SEIRAS sensor integrated with 

microfluidics, we introduce melittin, a small cytolytic peptide, which perforates the lipid 

membranes of the liposomes. This interaction leads to the breakage of liposomes and dual cargo 

release as well as the formation of supported lipid bilayer (SLB) patches on the sensor. With our 

optofluidic biosensor we can resolve in real‐time these interaction events between all four major 

classes of biomolecules without using any external labels. This feat is achieved by engineering a 

highly sensitive multiresonant metasurface providing large signal enhancements across a broad 
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mid‐IR spectrum ranging from below 1000 to above 3000 cm−1 to cover all the major absorption 

bands of biomolecules. Significantly, the signals from the broadband metasurface is extracted with 

a deep neural network (DNN) for effective and reliable discrimination between all the 

simultaneously present biomolecules. By introducing for the first time a deep learning approach to 

real‐time in situ SEIRAS measurements with nanoantennas, we expand the capabilities to new 

horizons where experiment complexity and training data wealth go hand in hand. Augmenting 

SEIRAS with deep learning unleashes a vast potential to tap into and provides a powerful tool for 

unraveling open questions in biology, such the role of exosomes in health and disease. 

6.3 Results and Discussion 

6.3.1 Multiresonant Metasurface for Broadband Mid-IR Sensing in Aqueous Media 

To perform in situ SEIRAS, we nanofabricate gold antenna arrays on a transparent calcium 

difluoride substrate (Figure 6:1a) and integrate the plasmonic chip in a polydimethylsiloxane 

(PDMS) microfluidic device so that the incident light comes from the backside of the chip and 

reflects back to the objective above (Figure 6:1b). In this way, less IR light gets lost due to 

absorption by water and the analytes flowing through the microfluidic device can be sensed via the 

evanescent electric fields emanating from the resonant nanoantennas (Figure 6:1c). The 

nanoantennas are tuned so as to provide three resonances (Figure 6:1d, black and gray curves) 

which overlap with the molecular vibrations of all the major biological building blocks, i.e., 

polypeptides, nucleic acids/nucleotides, lipids, and polysaccharides (Figure 6:1d, colored curves). 

In the experimentally measured reflectance (Figure 6:1d, dotted gray curve), in addition to the 

three resonance peaks of the nanoantennas, we observe two large reflectance dips caused by the 

absorption due to water molecule vibrations around 1650 and 3500 cm−1. The numerical simulation 

(Figure 6:1d, solid black curve) does not feature these water absorption‐caused modulations, as 

the imaginary part of water was not taken into account (kwater = 0) to visualize better the antenna 

resonances. The low‐frequency antenna resonance around 1200 cm−1 is suitable to sense the 

strong asymmetric phosphate group stretching vibrations from nucleic acids (≈ 1230 cm−1) as well 

the characteristic stretching motion of the CO bond within the glycosidic linkage of carbohydrates 

(≈ 1142 cm−1),149,245 while the other two resonances around 1600 and 2900 cm−1 are tuned to sense 

the Amide I‐II vibrations of proteins (≈ 1650, ≈ 1550 cm−1) and methylene stretching vibrations of 

lipids (≈ 2850, ≈ 2920 cm−1), respectively.160 



Chapter 6 — Infrared Metasurface Augmented by Deep Learning for Monitoring Dynamics between All Major Classes of Biomolecules 

81 
 

 

Figure 6:1 Plasmonic chip and its microfluidics integration for bio-experiments in water. a) Top: 

Top‐view picture of a representative plasmonic chip. Bottom: Side view schematic. b) Fluidic setup 

used for in situ micro‐FTIR bioexperiments in water. A plasmonic chip is integrated into a PDMS 

device clamped below the micro‐FTIR objective. c) Artwork showcasing the flow over plasmonic 

antennas of polypeptides, nucleic acids, lipid vesicles, and polysaccharides. d) Plot displaying the 

metasurface's numerically simulated (black solid curve) as well as experimentally measured 

reflectance spectrum in water (gray dotted curve) together with the absorption spectra of five 

species from all the major classes of biomolecules (colored curves). In the simulation, the imaginary 

part of water was not taken into account (kwater =  0) to visualize better the antenna resonances, 

which are highlighted with colored, shaded areas. 

Our nanoplasmonic metasurface is a multiresonant grating order‐coupled nanogap (MR‐GONG) 

design based on the recently introduced grating order‐coupled nanogap (GONG) antenna arrays.148 

It combines a single resonant array (SR‐GONG) with a novel dual resonant array (DR‐GONG). Each 

biochip (Figure 6:1a) contains pairs of 250 × 250 µm2 SR‐ and DR‐GONG arrays separated by 

100 µm2, which as a whole define a MR‐GONG metasurface sensor (Figure 6:2a). In order to 

spectrally target four different major classes at the same time, we design the three resonances of 

the metasurface to be at 1200, 1600, and 2900 cm−1 by tuning the geometrical parameters of the 

two types of arrays as seen in Figure 6:2b. 
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Figure 6:2 MR-GONG metasurface. a) Infrared reflectance microscopy image in dry conditions 

obtained using quantum cascade laser light at 6 µm wavelength. Two 250 × 250 µm2 arrays can be 

seen with red and blue squares identifying DR‐ and SR‐GONG arrays, respectively. Together, the 

two arrays form the MR‐GONG metasurface indicated with the purple rectangle. b) Scanning 

electron microscopy (SEM) images of: i) a DR‐GONG array with periodicities Px,DR = 2.4 µm and 

Py,DR  = 2.9 µm, and ii) antenna lengths  L1  = 2.32 µm and L3 = 0.72 µm as well as interantenna gap 

size G = 80 nm, iii) an SR‐GONG array with periodicities Px,SR  = 1.58 µm, Py,SR = 3.2 µm and antenna 

length L2 = 1.5 µm, and iv) an interantenna gap size G = 80 nm. c) Micro‐FTIR measured SR‐ and DR‐

GONG arrays in water as well as the combined MR‐GONG metasurface reflectance, incl. 

numerically simulated spectrum. The arrows indicate the spectral positions at which we show 

d) numerically simulated electric field enhancements around the three resonances in water. 

The experimentally measured reflectance spectra from SR‐, DR‐, and MR‐GONG in water match 

well with the numerical simulations (Figure 6:2c). Here, the imaginary part of the refractive index 

for water has been used in the simulation to take into account absorption by water. The positions 

of the grating orders were tuned by the y‐periodicities of the arrays to boost the electric near field 

enhancements around the 1200, 1600, and 2900 cm−1 resonances (Figure 6:2d). The maximum 

near‐field intensity enhancement in water surpasses 50 000 for the lower frequency resonance 

and scales with the third power of the wavelength for the two higher frequency resonances, in 

accordance with classical antenna theory.246 The grating order presence can be observed as small 

modulations in the reflectance spectra at multiple locations, and the most prominent ones are 

around 2000 and 3800 cm−1. 

6.3.2 Multi-Analyte Bio-Experiment with Vesicular Bionanoparticles 

Next, we experimentally demonstrate the applicability of the metasurface with a dynamically 

interacting nanoparticle biosystem (Figure 6:1c), which features multiple different species, 

including melittin polypeptides and lipid vesicles loaded with nucleotides as well as sucrose 
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polysaccharides. Successfully resolving the interactions between all these analytes in water 

medium would open the door to studies with native vesicles, such as exosomes or biomedical 

liposomes loaded with drugs. To perform real‐time in situ SEIRAS measurements, we continuously 

measure the reflectance spectrum R of the MR‐GONG metasurface and compute the absorbance 

with respect to the initial baseline spectrum R0 as ‐103·log10(R/R0). The thereby obtained real‐time 

absorbance spectra incorporate the IR signatures of the four analytes (Figure 6:3a). The grayscale 

color bar in Figure 6:3a represents discrete time points, and the complete spectrotemporal data 

can be seen in Figure 6:4d as a 3D plot. To identify the contributions of each analyte at different 

time points, we have initially tested the use of MLR to model the relationship between the overall 

real‐time absorbance signal and the individual analyte absorbance signal contributions by least‐

squares fitting. 
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Figure 6:3 Multiple linear regression analysis of dual cargo release bio-experiment. a) Real‐time 

absorbance spectra calculated as −103·log10(R/R0) with R the reflectance spectrum of the MR‐GONG 

metasurface and R0 the baseline reflectance. The asymmetric least squares (ALS) fit for the ultimate 

spectrum is also shown. The grayscale bar represents discrete time points. b) Absorbance spectra 

after subtracting the ALS fit for each spectrum. c) Reference absorption spectra for the four 

bioanalytes used to apply MLR to obtain d) the regression curves of the dynamic experiment 

involving lipid vesicles, sucrose, nucleotides, and melittin. e) Schematic depiction of the 

experiment. 

SEIRAS spectra typically appear on a skewed baseline (Figure 6:3a) as a consequence of spectral 

shifting of the antenna resonance wavelengths throughout the experiment, which is due to the 

effective refractive index change in the antenna vicinity as analytes are introduced. We take this 

effect into account in the preprocessing of the raw spectra where we subtract an asymmetric least 

squares (ALS) fit to have the real‐time absorbance signals centered around zero (Figure 6:3b). To 

implement MLR, the resulting spectra (Figure 6:3b) and the reference absorbance spectra of all the 

analytes present in the experiment (Figure 6:3c) are fed into the model to extract the regression 

coefficients for each analyte and time point (Figure 6:3d). Most of the substantial absorbance 

changes (Figure 6:3a,b) happen within the first hour after baseline, i.e., between 30 and 90 min 
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(Figure 6:3d) and the rest of the experiment features only subtle spectral changes over a longer 

time window, i.e., from 100 to 320 min. As shown in Figure 6:3e, we start the assay with a 

plasmonic chip functionalized with biotinylated thiols to which biotinylated vesicle tethers are 

bound via an intercalated streptavidin layer, which corresponds to the initial stable baseline in 

Figure 6:3d. Half an hour after the start of the experiment, the lipid, sucrose, and nucleotide signals 

start to rise, as can be seen in the tricolor shaded area of Figure 6:3d. This corresponds to the 

injection and capturing of liposomes filled and surrounded with nucleotides and sucrose, as is 

depicted in Figure 6:3e. Interestingly, this injection also induces a negative melittin curve, although 

the peptide is only introduced later in the experiment; we will discuss this point later in the text. 

The liposome capture is followed by the rinsing of the surface with the buffer solution (white 

shaded areas in Figure 6:3d), leading to the stabilization of the signals at t = 100 min. Specifically, 

the lipid signal reaches a stable maximum, while the sucrose and nucleotide signals peak before 

stabilizing above zero. This can be understood with the help of Figure 6:3e schematics, i.e., the 

loaded liposomes are captured by the surface‐displayed tethers, while the extravesicular 

nucleotide and sucrose molecules gradually rinse off with the flowing buffer. The remaining 

nucleotide and sucrose signals correspond to the molecules trapped as liposome cargo on the 

antenna surfaces. 

An hour after all the signals have stabilized, we perform the first injection of 3 × 10−6 M cytolytic 

polypeptide melittin, which results in a slight increase of the melittin curve while the curves of the 

other analytes remain largely unaffected. It appears that at this concentration melittin binds 

without forming pores in the membranes221 composed of 40 mol% 1‐palmitoyl‐2‐oleoyl‐sn‐glycero‐

3‐phosphocholine (POPC), 20 mol% 1,2‐dioleoyl‐sn‐glycero‐3‐phosphoethanolamine (DOPE), 

20 mol% 1‐palmitoyl‐2‐oleoyl‐sn‐glycero‐3‐phospho‐l‐serine (POPS), and 20 mol% cholesterol. For 

the second injection at t = 220 min, we increase the melittin concentration to 6 × 10−6 M. At this 

higher concentration the peptides should breach the lipid membranes and thereby lead to the 

release of nucleotides and sucrose.223 However, this is not observed in the MLR sensorgrams, which 

points toward the limitations of the analysis. Another artefact of the MLR analysis is that before 

the peptide is even introduced on the sensor, the melittin curve becomes negative after the 

nanoparticle injection and remains below zero throughout the experiment. We believe that this 

artefact is mostly caused by the displaced water molecules from the binding of the nanoparticles 

on the sensors’ surface and the overlapping water absorption band with the Amide I band of 

polypeptides. In addition to the water interference, another complication for the MLR analysis 

arises from erroneous absorption signals caused by the grating order positions shifting with the 

change in the effective refractive index within the vicinity of the antennas throughout the 

experiment. This effect can be clearly visualized in Figure 6:3c, where we detect signal that 

resembles absorption bands in a spectral window (2000–2200 cm−1), which should normally be 

transparent. In fact, the origin of this signal can be traced back to the grating orders in that range 

because their corresponding peaks are observable in the resonance spectrum of the metasurface 

(Figure 6:1d and Figure 6:2c). Overall, even though the spectral signatures extracted by MLR give 

some insights into the molecular events happening on the metasurface, it is evident that MLR is 
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not performing accurately. In fact in comparison to our earlier work with fewer numbers of 

analytes (i.e., three excluding the water medium),160 we encounter that MLR is rather simplistic to 

fully resolve the signals over a broader spectrum when there are more analytes present in the 

sample simultaneously. 

6.3.3 Deep Learning for Improved Discrimination Between Analytes 

To address these shortcomings, we develop a DNN to discriminate between different molecular 

components effectively. In general, deep learning models require a large set of input data to work 

accurately;247–249 this is in stark contrast to the MLR approach, which only needed one spectrum 

per analyte for the input references. These single spectra references (Figure 6:3c) were extracted 

from additional real‐time measurements featuring only one analyte at a time. These 

measurements can be seen in Figure 6:4a, where we performed three real‐time in situ 

experiments, i.e., one with melittin, one with nucleotides as well as sucrose, and one with empty 

lipid vesicles. In the first experiment, we flow melittin onto the bare sensing surface while 

continuously measuring the spectra to obtain a 3D plot of absorbance for each spectral and 

temporal point. Next, we extract a single spectrum around the time of maximum signal, which we 

then use as a reference spectrum to get regression coefficients (Figure 6:4b). For the nucleotides 

and sucrose, we flow the molecules sequentially onto the sensor in a single experiment, as it is 

visible that these completely rinse off the functionalized surface (Figure 6:4b). Given the real‐time 

format of these measurements, more spectral data are available than the one that is used for the 

MLR analysis. We utilize all these spectra (Figure 6:4a) as well as their associated regression 

coefficients (Figure 6:4b) as input to build the DNN. Beyond the data shown in Figure 6:4a,b, we 

record a total input data set of more than three million spectrotemporal data points, from 

measurements featuring up to three analytes simultaneously (Figure 6:5a,b), which we use to fit 

our DNN. The DNN input layer has 1089 nodes to match the wavenumber points of our spectra 

that spans from 960 to 3060 cm−1 with a 4 cm−1 resolution, and the output layer has four nodes to 

match the number of analytes (Figure 6:4c). After training/validating the DNN, we input the data 

of the experiment with the four analytes (Figure 6:4d) to predict the output weights for each 

analyte and time point (Figure 6:4e). 
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Figure 6:4 Deep learning analysis of dual cargo release bio-experiment. a) From several real‐time 

measurements featuring melittin, nucleotides, sucrose, and lipids, the real‐time 3D plots of 

absorbance signal versus time and wavenumber are extracted, b) as well as the associated 

regression curves obtained by MLR. c) The absorbance plots together with the associated 

regression coefficients shown in (a,b) are then used to fit the deep neural network. d) The 

spectrotemporal data points of the dual cargo release experiment were subsequently fed into the 

trained network to e) predict the scaled DNN output weight curves for each analyte.S 

In Figure 6:4e, we observe the increase of lipid, sucrose, and nucleotide signals after half an hour 

of baseline as the liposomes and cargo/extravesicular molecules are injected onto the 

metasurface. At the end of the injection, the lipid signal stabilizes as the liposomes are captured 

on the surface, while the sucrose and nucleotide molecule signals initially drop as the buffer rinses 

the molecules off and then stabilize at t = 100 min, corresponding to the signal from the trapped 

cargo molecules only. In contrast with Figure 6:3d, the melittin signal barely features erroneous 
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negative values and remains stable around zero before we introduce it onto the surface. 

Furthermore, as compared to Figure 6:3d, we can see a clear drop in the cargo molecule signals 

with the second melittin injection, evidencing the content release from the breached liposome 

membranes. As could already be seen previously in Figure 6:3d, this second melittin injection also 

leads to a pronounced increase in the lipid curve, which can be understood as the opening of some 

of the liposomes to form patches of SLBs in closer proximity to the sensing surfaces and thus giving 

stronger signals (Figure 6:7). This effectively demonstrates the suitability of SEIRAS for sensing 

small molecules simultaneously with larger structures, such as lipid assemblies, as the antennas’ 

evanescent fields can probe tens of nanometers away from the surface, thereby giving additional 

information regarding the analyte distribution along the surface normal. It is also important to 

highlight that the DNN approach helped to effectively reduce the interfering effects of grating 

orders and water displacement. These results show that the information extracted by the DNN 

yields superior performance in comparison to using only MLR. 

6.4 Conclusion 

In conclusion, we have introduced a deep learning‐augmented infrared nanoplasmonic 

metasurface, which is broadly applicable to the study of biomolecular interactions. In addition to 

the high sensitivity, label‐free, and chemical specificity characteristics of the spectroscopic 

biosensor, we also demonstrated its versatility and universality by simultaneously monitoring 

major biomolecule classes in water. Significantly, we could observe in real‐time vesicle capture, 

perforation with dual cargo release, and partial transition to planar lipid bilayers. The biosensor 

offers numerous application prospects, including characterization of liposomal drugs,250,251 

antimicrobial peptides,252,253 and exosomes.254,255 Besides biomolecular interactions involving lipid 

membranes, bioanalytical studies for the characterization of protein‐DNA interactions in gene 

regulation,256 or protein–polysaccharide interactions in neurodegenerative diseases,257,258 could 

also be investigated. The complexity of the tackled bioanalytical studies go hand in hand with the 

wealth of available DNN training data, which is both a blessing and a curse, as extensive data 

collection can be tedious but also brings the prospect of eventually unraveling the biomolecular 

events.259 Looking forward to future developments, one can envision the adaption of the 

technology to become compatible with mass‐production methods144,260–262 and miniaturization 

efforts158,263–265 for convenient diagnostics and therapeutics. This will probably require a move 

away from Au as the resonator material, and a Fourier‐transform infrared (FTIR) spectroscope as 

the measurement instrument, because the former is not complementary metal–oxide–

semiconductor (CMOS)‐compatible and the latter is bulky and expensive. Among the alternatives 

to Au as the resonator material, CMOS‐compatible materials such as Al and Si have shown 

promising results for SEIRAS via plasmonic and dielectric resonances, respectively.158,266 As for 

overcoming FTIR‐related limitations, cutting edge measurement tools based on quantum cascade 

lasers and imaging‐based microarrays offer the prospect of biosensor miniaturization.158,267,268 
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6.5 Supplementary Information 

6.5.1 Chip Functionalization 

The antenna surfaces were first modified ex-situ by incubating them for a minimum of 12 hours in 

a solution of 2 mM biotinylated thiols (HS-(CH2)11-EG3-Biotin, ProChimia Surfaces) mixed in a 1:9 

ratio with spacer thiols (HS-(CH2)6-EG3-OH, ProChimia Surfaces) in ethanol. Subsequent 

functionalization steps were carried out in situ by injecting 300 µL of 1 µM streptavidin (Thermo 

Fisher Scientific) followed by 300 µL of 3 µM Biotin-TTCACT-Cholesterol-TEG (IDT). The liposomes 

were prepared as reported previously.160 A twofold dilution in PBS of the 2 mg·mL-1 liposome 

solution with 200 mg·mL-1 nucleotides and sucrose, respectively, was carried out just before 

injection into the optofluidic device.  

6.5.2 Data Processing and Analysis 

The MR-GONG metasurface reflectance spectra are obtained by alternately measuring SR- and DR-

GONG arrays and averaging the spectra. The absorbance spectra are then extracted by first dividing 

the reflectance spectra of the metasurface by that of the bare metasurface baseline before any 

analyte injection, and then subtracting an asymmetric least squares (ALS) fit.269 The smoothness 

and asymmetry parameter pair used is (5·103, 0.5), except for illustrative Figure 6:1d where (1·104, 

0.1) was used. The analyte regression signals are obtained by linear least-squares regression of the 

absorbance spectrum of the heterogeneous solution using as a basis the individual reference 

spectra of the analytes. Our DNN training/validation data set comprises 3 325 806 spectrotemporal 

data points obtained from real-time measurements featuring up to three analytes simultaneously, 

including Figure 6:4a,b and Figure 6:5a,b. We randomly split these data in a 4:1 ratio to define 

training and validation sets to build a hundred DNN models slightly differing only because of their 

different random weight initializations. This process is repeated ten times using a different random 

4:1 training/validation data set split, and then the results of the 100 x 10 models are averaged. The 

average learning curves, as well as average standard deviation of the mean (SDM) for each analyte 

are shown in Figure 6:5c and Figure 6:5d, respectively. To build the DNN models, we use the 

Sequential model of Python’s Keras library, which uses Tensorflow as backend. The “Dense” type 

layers use ReLU activation functions, and we compile the models with the mean absolute error as 

the loss function and Adam as the optimizer.270 The data is fitted using 150 epochs. 
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Figure 6:5 DNN training data and model evaluation. a) Real-time 3D plot of absorbance signal 

versus time and wavenumber b) as well as the associated regression curves obtained by MLR. 

c) Mean squared error (MSE) of DNN training and validation data fits plotted on a logarithmic scale 

against the number of epochs. d) Average standard deviation of the mean (SDM) for each analyte 

DNN output weights against the number of models. 

We perform a test experiment where we inject nucleotides and sucrose in different ratios and 

analyze it with our DNN approach. The output weights (Figure 6:6) are in good agreement with the 

injected quantities; and therefore validate the capability of the DNN approach to pick out the 

signals of our cargo molecules, despite their strongly overlapping absorption bands. 
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Figure 6:6 DNN output weights for a test experiment with different ratios of sucrose and 

nucleotides, where 100 % corresponds to 100 mg/mL in PBS buffer. 

6.5.3 Fluorescence Measurements 

To assess the effect of melittin on the surface-tethered liposomes, we perform fluorescence 

recovery after photobleaching (FRAP) measurements. The FRAP experiments were carried out with 

a Zeiss LSM 710 upright confocal microscope and liposomes supplemented with 1 %mol NBD-PC 

(1-palmitoyl-2-{12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl}-sn-glycero-3-

phosphocholine, Avanti Polar Lipids, Inc.) lipids. The liposomes were attached to a 100 nm gold-

coated silicon wafer fragment with surface modifications as used in the SEIRAS experiments. After 

photobleaching, we observe no recovery of the fluorescence signal, except after incubation with 

9 µM melittin, where a small diffusion constant of 0.029 ± 0.008 µm2·s-1 can be extracted. Data 

analysis is performed with the FRAP Analyzer program (University of Luxembourg) as described 

previously.60,160 As for our SEIRAS measurements, this data supports the likely formation of 

supported lipid bilayer (SLB) patches after melittin-induced liposome breakage. 
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Figure 6:7 Fluorescence recovery after photobleaching (FRAP) measurements. Normalized 

fluorescence signal before and after incubation of the surface tethered liposomes with melittin. 

The curves are averaged from two different measurements on different areas, respectively. A fit of 

the FRAP post melittin incubation is also displayed.
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In recent years, the field of molecular spectroscopy has seen rapid progress through the 

introduction of surface-enhanced technologies. Plasmonics has provided a powerful toolkit for 

concentrating and controlling light at the nanoscale, providing amplified electromagnetic fields for 

outstanding signal enhancements of targeted analytes. These technologies have opened the door 

to a plethora of unprecedented applications, such as the label-free monitoring of complex, water-

solvated bio-systems and their interaction dynamics. In this thesis, the vast potential of 

metasurface-enhanced biospectroscopy is unleashed by combining novel single and multiresonant 

infrared metasurfaces with artificial intelligence methods, including deep neural networks. The 

thereby created platforms represent new analytical measurement tools for studies in health and 

disease. 

7.1 Achieved Results 

We have developed three different nanoplasmonic metasurfaces coupled to three different types 

of data analysis methods to explore and push the limits of metasurface-enhanced mid-IR 

biospectroscopy. 

In the first original contribution, we introduce grating order-coupled nanogap (GONG) antenna 

arrays, which achieve extremely high electric field intensity enhancement values of up to five 

orders of magnitude. This is enabled by combining two sensitivity enhancement principles into one 

congruent plasmonic design. The first sensitivity-boosting strategy taps into nanogaps to create 

hotspots for strong light-matter interactions. The second strategy uses the coupling to the grating 

orders to optimally benefit from constructively interfering electric fields from resonators in an 

array. The asymmetrical tuning of the array periodicities was the key to create these GONG sensors. 

Nanogaps with sizes down to 32 nm were fabricated with electron beam lithography to provide 

protein-accessible hotspots. The performance of the GONG sensors has been benchmarked with 

extensive numerical simulations and bio-experiments in both dry and aqueous medium conditions. 

In dry conditions, the detection limit was found to be down to two proteins per nanogap. In 

aqueous solution, proteins could be detected in real-time and chemically specifically at 

concentrations down to picograms per milliliter, outclassing traditional mid-IR spectroscopy by 

orders of magnitudes. Furthermore, by applying data analysis methods based on the Savitzky-

Golay filter and nonlinear least-squares fitting, secondary structure motifs of proteins could be 

detected down to concentrations in the nanograms per milliliter range. Analytical tools for 

assessing the three-dimensional structure of proteins are essential to health and disease, as the 

structures are linked to the proteins' functionality and possible pathological behavior. 

In the second original contribution, we introduce a dual-resonant metasurface based on a self-

similar nanoantenna array design. The far-field resonances are of similar amplitude and tuned to 

overlap with the characteristic absorption bands of proteins and lipids. Protein-lipid interactions 

are crucial to physiological processes such as intercellular communication, and we demonstrate 

that we can resolve them with our platform. We show this using bio-experiments featuring 
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liposomes and peptides dynamically interacting on the metasurfaces. In one experiment, we 

monitor the formation of supported lipid bilayers followed by their disintegration by the action of 

cytolytic peptides. In another experiment, we resolve the neurotransmitter release from synaptic 

vesicle mimics perforated by the toxic peptides. Resolving these mass-preserving processes 

represents a remarkable feat that could not be achieved with established label-free sensors such 

as surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) sensors. This 

achievement is enabled by coupling our dual-resonant metasurfaces with machine learning 

algorithms and custom microfluidic devices. 

In the third and final original contribution, we developed a triple-resonant metasurface based on 

the previously introduced GONG design concept. The three resonances provide broadband signal 

enhancement from around 3 to 10 µm over the entire mid-IR range to overlap with the fingerprint-

like absorption bands of different analytes from all four major biomolecule classes, i.e., nucleic 

acids, carbohydrates, proteins, and lipids. We showcase the ability of our sensor to resolve 

interactions between all the classes simultaneously by integrating the chip in a microfluidic device 

and carrying out real-time experiments with exosome-like bionanoparticles loaded with 

carbohydrates and nucleotides. We successfully track the dual cargo release from the vesicles 

breached by the injection and binding of toxic peptides. The accurate discrimination between 

analytes is enabled by the extensive collection of absorption bands across the mid-IR range and a 

deep neural network model, which we built to handle the complexity of this dynamic bio-system. 

The introduction of this universal biomolecule sensor based on mid-IR metasurfaces and deep 

learning provides a potent new analytical measurement tool for applications ranging from 

pharmaceutical drug development to the unraveling of cellular processes. 

7.2 Future Developments 

Our mid-IR metasurface sensors are timely and provide significant advancements in the field of 

biomolecule sensing. Nonetheless, as with any technology, some limitations remain to be 

overcome. For example, the use of sizable FTIR spectrometers and optical components hinders the 

portability and accessibility of our sensors. Moreover, mass-production of our sensors would 

further open the path towards their widespread application, but our current use of non-CMOS-

compatible gold as the resonator material impedes this prospect. 

The capability of real-time measurements is a significant advantage of our sensors, as they provide 

vital information about biological systems. Nevertheless, our temporal resolution is not suitable 

for resolving fast biomolecular interactions in the microsecond range. 

Fortunately, as discussed below in more detail, the development of novel surface-enhanced 

molecular spectroscopy technologies is currently the subject of immense interest. This 

demonstrated by the emergence of a new generation of metasurface-based biospectroscopies that 

use novel sensing schemes, various materials, and advanced artificial intelligence implementations 

to reach new functionalities and application prospects. Though these advanced metasurface 
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approaches are still in their infancy, they present exciting opportunities to further the research and 

overcome challenges, including those listed above. 

7.2.1 New Materials for Advancing Metasurface-based Mid-IR Spectroscopy 

2D materials such as graphene offer exciting possibilities for SEIRA as they provide plasmonic 

resonances in the mid-IR with extreme near-field confinements,89 enabling the detection of very 

small analytes such as volatile organic compounds in gas sensors.271 Furthermore, their electronic 

properties have allowed novel functionalities such as voltage-controlled resonance tuning and 

dielectrophoretic analyte trapping for advanced biomolecule sensing.202,272 The mechanically 

flexible nature of these materials could also be used for flexible bioelectronic sensor 

technologies.273  

CMOS-compatible resonator materials like aluminum or silicon have excellent prospects for SEIRA 

as they bring a range of new opportunities. Aluminum is a low-cost and highly abundant material 

capable of supporting plasmonic resonances over a vast spectral range spanning from the UV to 

the IR.155,266,274,275 Unlike gold, it rapidly oxidizes, but the oxide layer is so thin (3-5 nm) that it only 

minimally buries the evanescent field available for sensing. Furthermore, this Al2O3 layer acts as a 

protective layer against corrosion and can also be readily functionalized for biosensing 

applications.239 Its compatibility with wafer-scale fabrication could enable the mass-production of 

metasurface-based SEIRA chips for disposable diagnostic devices. Silicon benefits from the same 

CMOS-compatibility aspects, but silicon is not a plasmonic material in contrast to aluminum. 

Nevertheless, dielectric materials such as silicon and germanium have recently attracted much 

attention due to their ability to support resonances that can reach very high quality factors (high 

Q-factors), e.g., by supporting quasi-bound states in the continuum (quasi-BIC).276 The high Q-

factor of dielectric resonators enables new functionalities such as spectroscopy without bulky FTIR 

spectrometers, thereby paving the way for the miniaturization of SEIRA sensors.158,264 

7.2.2 Sensor Miniaturization 

High Q-factor dielectrics are not the sole enablers of miniaturization, and other emerging 

developments are playing key roles. Coupling the light from the source to the SEIRA resonators 

typically requires bulky optics such as reflective Cassegrain objectives. Besides this setup's 

relatively large space requirement, the coupling of light is also relatively inefficient due to the size 

mismatch between the micrometer-large light spot and the nanometer-sized resonators. These 

limitations can be overcome with on-chip light sources and waveguides to provide efficient light 

coupling and a considerably reduced setup footprint.277 The recent development of light sources 

such as quantum cascade lasers (QCLs) is particularly appealing, and their high brilliance enables 

the use of resonator arrays with minimal footprints. The integration of nanoantenna resonators 

with waveguide photonics represents a promising strategy for the miniaturization of SEIRA sensor 

technologies.263 
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7.2.3 A New Era for Metasurface-based Mid-IR Biospectroscopy 

QCLs are also extremely interesting for hyperspectral imaging in the mid-IR; they enable chemical 

imaging of biosamples such as tissues and fluids using fast uncooled detectors with a large field of 

view (FOV), outclassing traditional FTIR instruments.278 Furthermore, QCL-based frequency combs 

represent yet another mid-IR spectroscopy revolution by improving temporal resolution by orders 

of magnitudes to enable microsecond-resolved measurements at high signal-to-noise ratio 

(SNR).279,280 Coupling all these benefits with highly sensitive metasurfaces integrated into advanced 

microfluidics will generate an incredible wealth of data with a high SNR and outstanding temporal, 

spatial, and spectral resolution. We can envision that these large data cubes will be combined with 

advanced artificial intelligence models to usher in a new era for biospectroscopy.
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