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Abstract
In the field of model order reduction for frequency response problems, the minimal
rational interpolation (MRI) method has been shown to be quite effective. However, in
some cases, numerical instabilities may arise when applying MRI to build a surrogate
model over a large frequency range, spanning several orders of magnitude. We
propose a strategy to overcome these instabilities, replacing an unstable global MRI
surrogate with a union of stable local rational models. The partitioning of the
frequency range into local frequency sub-ranges is performed automatically and
adaptively, and is complemented by a (greedy) adaptive selection of the sampled
frequencies over each sub-range. We verify the effectiveness of our proposed method
with two numerical examples.
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1 Introduction
The numerical simulation of frequency-domain dynamical systems is crucial in many en-
gineering applications, spanning from the analysis of the natural modes of elastic struc-
tures to the frequency response of electrical circuits. Under linearity assumptions, we can
cast such problems in the general form

⎧
⎨

⎩

A(z)x(z) = B(z),

y(z) = C(z)x(z) + D(z),
(1)

with z ∈ C the complex frequency. We denote by x(z) ∈ C
nS×nI and y(z) ∈ C

nO×nI the sys-
tem state and output, respectively, whereas A(z) ∈ C

nS×nS , B(z) ∈ C
nS×nI , C(z) ∈ C

nO×nS ,
and D(z) ∈ C

nO×nI are z-dependent matrices.
In the simplest case, e.g., when the time-domain version of the system is linear and time-

invariant, the matrix A depends at most polynomially on the frequency, with the most
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common case being the degree-1 one:

A(z) = A0 + zE. (2)

It is useful to note that, even if A is not of the form (2), it is sometimes possible to recover
a degree-1 form by augmentation, i.e., by increasing the size of the system.

1.1 The model reduction endeavor
Assume that our target is the frequency response analysis of a quantity of interest (QoI)
associated with system (1) (most often, the state x or the linear output y). To this aim, we
have to evaluate the QoI at many values of the frequency, located within a “frequency range
of interest” Z ⊂C, often an interval on the imaginary axis. This entails solving system (1)
many times, thus (potentially) making the overall procedure computationally expensive.
Efficiency is a concern especially when the size of the system state (nSnI ) is large. To allevi-
ate the computational burden, in the field of model order reduction (MOR), it is customary
to build a surrogate model for the QoI and then use such surrogate instead of the original
model when performing the frequency response analysis. We refer to [2] for an overview
of the most used MOR methods for frequency response problems.

Commonly, the reduced model is constructed from (few) samples of the exact QoI at
some frequencies {z1, . . . , zS} ⊂ Z. The precise way in which the surrogate is built can vary:
e.g., the reduced basis method (RBM) performs a Galerkin projection of (1) onto a sub-
space of CnS , whereas, in the Loewner framework and with the vector fitting (VF) method,
one constructs a rational approximation by fitting (possibly in a least-squares sense) the
samples. In this work, we focus on the latter class of MOR approaches, commonly re-
ferred to as non-intrusive, since they only rely on samples of the QoI, and not on the spe-
cific structure of the original system (1). More precisely, we focus on the minimal rational
interpolation (MRI) method introduced in [5]. As opposed to most other non-intrusive
methods (e.g., VF), MRI exploits the samples in an optimal way (hence the “minimal” in
the name), trying to take “as few samples of the QoI as possible”.

Notably, a strategy for an adaptive selection of the sampled frequencies is described
in [7]. Such approach, which we summarize in Sect. 2.1, has the great advantage of not
requiring the user to fix the number and the locations of the sampled frequencies in ad-
vance, but rather finding them on-the-fly. The usefulness of this feature can be easily seen
by observing that number and locations of the samples determine the cost of building and
evaluating the surrogate, but also its accuracy. As such, a poor choice of the samples can
lead to inaccurate or over-expensive surrogates.

Several examples of successful applications of MRI can be found in [5, 7]. However, we
can identify the main drawback of MRI in its difficulty in dealing with very large frequency
ranges, namely, with frequencies spanning several orders of magnitude (this is a situation
of practical interest, e.g., when making Bode diagrams). Indeed, in such cases, numerical
instabilities may arise, hindering the construction of a stable surrogate, as we will discuss
more in detail in Sect. 2.2.

The purpose of this paper is to remedy this shortcoming of MRI, by devising a strategy
that allows to apply MRI even over very large frequency ranges. Our technique is based
on a partitioning of Z into smaller parts, such that MRI can be applied in a stable fashion
over each of them. Notably, the partitioning of Z is performed automatically, in a fashion
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similar to that described in [4], where, however, the surrogate is built by RBM. Effectively,
this allows to build a surrogate model where the only user inputs are the frequency range
Z and a required accuracy ε > 0. Our proposed method is described in Sect. 3. As a com-
plement to the description of our algorithm, and as a way to validate it, we perform some
numerical experiments in Sect. 4.

2 The greedy minimal rational interpolation method
We start by recalling the MRI method, in its standard non-adaptive form, i.e., when the
(distinct) sampled frequencies {z1, . . . , zS} ⊂ Z are fixed in advance by the user. We restrict
our discussion to the approximation of the state x, since MRI is most commonly used to
construct a surrogate of x rather than of the output y (or of other QoIs). The reason be-
hind this is that building a “good” surrogate via MRI is actually easier if the approximated
quantity is high-dimensional. We refer to [5] for a discussion on this in the scope of a theo-
retical analysis of the properties of MRI. That being said, note that, thanks to the linearity
of (1), an approximation ỹ for the output y can be readily and inexpensively obtained from
the MRI approximation x̃ of the state, by simply applying C(z) from the left and adding
D(z).

Let {ψ0, . . . ,ψS–1} ⊂ P
S–1(C) be a hierarchical polynomial basis, i.e., deg(ψj) = j for all j.

For instance, one may take monomials ψj(z) = zj, or Chebyshev polynomials ψj(z) = Tj(z),
suitably shifted and rescaled to account for the effective frequency range Z. We aim at
building a rational surrogate for the state x, of the form

x̃(z) =
∑S–1

j=0 pjψj(z)
∑S–1

j=0 qjψj(z)
. (3)

The coefficients {qj}S–1
j=0 ⊂C of the denominator are found as follows:

1. Build the generalized Vandermonde matrix V ∈C
S×S , with (V )ij = ψj(zi), and

compute its inverse V –1.
2. Build the diagonal weight matrix D ∈C

S×S , with (D)ij = (V –1)Siδij, where (V –1)Si is
the i-th entry of the last row of V –1 and δij is the Kronecker delta: δij = 1 if i = j and
δij = 0 otherwise.

3. Compute the samples x(z1), . . . , x(zS) and assemble the tensor X ∈C
nS×nI×S , with

(X)ijk = (x(zk))ij.
4. Find the QR decomposition

(X)ijk =
S∑

l=1

(Q)ijl(R)lk , with Q ∈ C
nS×nI×S and R ∈C

S×S,

where Q has orthonormal slices, i.e.,
∑nS

i=1
∑nI

j=1(Q)ijk(Q)ijl = δkl (with a bar over a
quantity, we denote the complex conjugate of such quantity). Note that Q and R can
be efficiently found by computing the QR decomposition of an (nSnI) × S
matricization of X .

5. Find the vector of denominator coefficients (q1, . . . , qS)� ∈C
S as a (normalized)

minimal eigenvector of the positive semidefinite Gramian matrix (RDV )�RDV . By
“minimal eigenvector” we mean any eigenvector corresponding to the smallest
eigenvalue. This can be done by singular value decomposition (SVD) of RDV , with
(q1, . . . , qS)� ∈C

S being a minimal right singular vector of RDV .
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Once the denominator has been found, we build the numerator coefficients {pj}S–1
j=0 ⊂

C
nS×nI by enforcing interpolation conditions. More specifically, we set

(pk)ij =
S∑

l=1

S–1∑

m=0

(X)ijlqmψm(zl)
(
V –1)

kl. (4)

One can verify that this yields an interpolatory surrogate: x̃(zj) = x(zj) for j = 1, . . . , S. Also,
note that x̃(z) belongs to the span of the samples x(z1), . . . , x(zS) for all z, since it is a linear
combination of slices of the snapshot tensor X.

2.1 Adaptive frequency sampling
From the previous section, we know how to build an MRI given a set of sample points.
Two more ingredients are necessary to obtain a fully fledged MOR approach with (greedy)
adaptive frequency sampling: we must be able to tell if a given surrogate is “good enough”
(i.e., if it satisfies the user-prescribed tolerance ε) and to choose where to add a new sample
to improve the current surrogate (whenever the surrogate is not good enough). Several
strategies for these steps are proposed by the authors in [7]. Here, we only recall one.

We start from the second point, which we reformulate as: what not-yet-sampled fre-
quency should we add to the sampling set so as to improve the current surrogate as much
as possible? Our answer is: we elect to place the next sample point at the location in Z
where the surrogate residual is largest, namely, at

z� = arg max
z∈Z

∥
∥A(z)̃x(z) – B(z)

∥
∥

F , (5)

where we use ‖ · ‖F to denote the (nS × nI)-Frobenius norm. In [5], it was shown that, if A
and B are both polynomials of degree at most 1 in z, cf. (2), then (5) is exactly equivalent
to the maximization of the scalar and fully explicit quantity

z� = arg max
z∈Z

∏S
j=1 |z – zj|

|∑S–1
j=0 qjψj(z)| , (6)

with {zj}S
j=1 the current sampled frequencies and (qj)S–1

j=0 the denominator coefficients of
the current surrogate. Since the quantity maximized in (6) is, in general, neither convex
nor bounded over Z, instead of finding the maximum over Z, we compute the maximum
over just a discrete subset Ztest ⊂ Z, with a finite (but, generally, very large) number of
points.

Now we move to the first point, which we formalize as: does the current surrogate satisfy
the tolerance ε? To begin with, we must decide on what to enforce the tolerance. One of
the most practical choices is the worst-case relative approximation error

e(Ztest) = max
z∈Ztest

‖̃x(z) – x(z)‖F

‖x(z)‖F
≤ ε. (7)

Note that, once again, we are seeking the maximum only over a subset of Z due to the un-
boundedness of the error on the whole Z, which follows from the rational nature of x (and
of x̃ too). A direct evaluation of e(Ztest) requires computing x at all points of Ztest, which is
out of the question even if Ztest is only modestly sized. Instead, we use the following idea:
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under the assumption that error and residual behave somewhat similarly with respect to z,
we can expect a large error to correspond to a large residual. As such, we replace condition
(7) with the weaker version

e
({

z�
})

=
‖̃x(z�) – x(z�)‖F

‖x(z�)‖F
≤ ε, (8)

where z� is the point of Ztest with largest residual, see (5). This heuristic idea is much
cheaper to apply, since it only requires one extra sample at z�. Notably, such extra sampled
frequency is exactly the one that gets added to the sampling set if the tolerance is not
attained. For this reason, the snapshot x(z�) does not go to waste.

2.2 Numerical stability
When applying MRI (with or without adaptive frequency sampling), numerical instabili-
ties may appear in two steps:1 when inverting the Vandermonde matrix V and when com-
puting the minimal right singular vector of RDV .

To counteract the former issue, one could force the polynomial basis to behave “nicely”
over the sampled frequencies. For instance, if {zj}S

j=1 are the Chebyshev nodes over Z,
then the (shifted and scaled) Chebyshev polynomials yield a perfectly conditioned Vander-
monde matrix. However, this is not always possible, especially considering that a greedily
selected sampling set of frequencies will, in general, not be nicely placed over Z. This being
said, by removing the (admittedly, unnecessary) constraint that the basis {ψj}S–1

j=0 be hierar-
chical,2 we can weaken the ill-conditioning by employing the partial fraction (sometimes
also called “barycentric”) basis

ψ0(z) = 1 and ψj(z) =
ζj

z – ζj
(9)

({ζj}S–1
j=1 ⊂C being arbitrary distinct points), whose Vandermonde matrix has been empir-

ically observed to usually have reasonable condition number. Note that (9) is a polynomial
basis only after multiplication by the nodal polynomial

∏S–1
j=1 (z – ζj).

Dealing with the second issue is considerably trickier, since the conditioning of the SVD
of RDV depends on many more factors, including, notably, the problem (1) itself. In the
SVD step, the ill-conditioning manifests itself in the form of noisy minimal singular values
and singular vectors, which are exactly the quantities in which we are interested. In effect,
this means that the coefficients of the surrogate denominator cannot be identified robustly,
leading to the appearance of so-called spurious poles, i.e., poles of the surrogate that do
not approximate any pole of the original system. We note that similar observations have
been made in [3] in the scope of scalar rational approximation. In [3], it is suggested not
to trust any surrogate built from an SVD where more than one singular value is smaller
than 10–14σmax, with σmax being the largest singular value in question.

1Note that, technically, the evaluation of the surrogate itself might also be unstable if the chosen basis {ψj}S–1j=0 is unstable,
e.g., if it is the Lagrangian basis over uniformly spaced sample points. This issue is closely related (in fact, in some sense,
equivalent) to the Vandermonde ill-conditioning that we describe.
2If the basis is not hierarchical, the scaling matrix D cannot be built from the last row of V–1 as described in Sect. 2. We
refer to, e.g., [7] for the definition of D in the general case.
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In summary, we can try to improve the Vandermonde-related ill-conditioning by choos-
ing a good polynomial basis, but we cannot always improve the SVD-related conditioning.
This justifies our approach based on partitioning the frequency range.

It is important to note that both instabilities described above can be identified on-the-
fly, since they only involve fully computable quantities. Indeed, by SVD, we can directly
find both the condition number of V and the singular values of RDV . Then, we can raise an
“instability flag” (and interrupt the MRI algorithm) if the condition number of V is larger
than, say, 1014 or if more than one singular value of RDV is smaller than, say, 10–14σmax,
with σmax being the largest singular value of RDV .

Before proceeding, we remark that the issues that we have described are somewhat spe-
cific to MRI, as opposed to other MOR approaches. Indeed, in RBM, the surrogate is built
(intrusively and) implicitly, so that there is no need for inversion of Vandermonde matri-
ces nor for the identification of minimal eigenvectors. On the other hand, VF casts the
rational interpolation problem in least-squares form, with well-conditioned rectangular
(tall and skinny) Vandermonde matrices, but pays the price of a large oversampling.

3 Automatic partitioning of the frequency range
For simplicity, we restrict our focus to the extremely common case of the frequency range
Z ⊂C being an interval. Generalizations to more complicated sets Z are not too difficult,
using, e.g., 2D sparse grids on a bounding box of Z, cf. [4].

Assume that we are interested in building a surrogate over Z, with tolerance ε on the
relative approximation error over Ztest ⊂ Z. As such, we start the greedy-MRI approach,
as described in the previous section. However, let us imagine that, at some point, the MRI
algorithm raises one of the above-mentioned instability flags. Then, we partition Z into
two parts, and try to build an independent surrogate over each sub-interval. If any such
sub-surrogate encounters an instability, we partition further, and so on. Note that the pre-
viously computed samples of x should not be thrown away, but reused for the construction
of the surrogate over the sub-interval to which they belong.

Since the original problem (1) is finite-dimensional, if the samples of x are noise-free (or
if the noise is small enough), this procedure necessarily terminates, and we are left with a
collection of patches that cover Z, each with a corresponding surrogate. Now, if we need
to evaluate the overall surrogate at a new point z ∈ C, we just find the patch to which z is
closest (or to which z belongs if z ∈ Z) and evaluate the corresponding local surrogate.

The only remaining ingredient that we must specify is how to partition the frequency
range. Specifically, assume that we want to split Z = [zL, zR] into two parts. Several options
are possible:

• We split at the center, at zL+zR
2 . In practice, note that, when the sampled frequencies

vary over several orders of magnitude, it might make sense to take the geometric
mean √zLzR rather than the arithmetic one, since it corresponds to the “arithmetic
center in log-scale”.

• Based on the S current sample points in Z, we split at the sample point that is closest
to the mean frequency in Z (in the arithmetic or geometric sense). Note that, by
proceeding this way, the sample at the splitting point will be shared between the two
surrogates on the two sub-intervals. This, by the interpolation property, guarantees
continuity of the overall surrogate across the patches, wherever a common sample
point is present.
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Algorithm 1 Greedy-MRI with automatic partitioning of the frequency range
Require: target problem (1), frequency interval Z = [zL, zR] ⊂C, very fine Ztest ⊂ Z
Require: hierarchical family of polynomials {ψj}∞j=0, tolerance ε > 0

compute the initial samples x(zL) and x(zR), and set Zsample := {zL, zR}
initialize the unexplored intervals P := {Z}
while P 	= ∅ do � partitioning loop

select an arbitrary (sub-)interval Z′ = [z′
L, z′

R] ∈ P and remove it from P
find the number of already-explored sample points S0 := #(Zsample ∩ Z′)
for S = S0, S0 + 1, . . . do � greedy-MRI loop

try to build an MRI surrogate x̃ from samples at Zsample ∩ Z′ and basis {ψj}S–1
j=0

if an instability flag was raised then
add [z′

L,
√

z′
Lz′

R] and [
√

z′
Lz′

R, z′
R] to the unexplored intervals P

interrupt for loop � reject local surrogate and partition further
end if
find z� as in (6) with Z replaced by Ztest ∩ Z′ � maximize MRI residual
compute sample x(z�) and append z� to Zsample

if e({z�}) ≤ ε then � check if x̃ is good enough via (8)
store the current MRI surrogate and the corresponding interval Z′ for further
use
interrupt for loop � accept local surrogate

end if
end for

end while
return global reduced model obtained by patching together the local surrogates

We summarize the overall procedure in Algorithm 1, where, for simplicity, we use the
former “geometric mean” approach for the partitioning.

To conclude the description of our proposed method, we wish to touch upon the mat-
ter of the test set Ztest. In Algorithm 1, we simply choose to partition it along with the
frequency range, so that each sub-interval inherits only the portion of the test set that
belongs to it. However, if a local frequency interval Z′ becomes very small, then the cor-
responding test set Ztest ∩ Z′ might be rather tiny, or even empty, resulting in an overly
early termination of the local greedy-MRI procedure. To overcome this issue, one should
either start with a very fine test set Ztest or enrich the local test set with more elements. In
our numerical experiments, we do both: we start from a fine global test set, but we also
enrich the local test set with 10 logarithmically spaced points over Z′ whenever Ztest ∩ Z′

has less than 15 elements.

Remark 1 It is rather interesting to note that our approach applies refinements both to
the frequency range and to the degree of approximation (i.e., to the degrees of numera-
tor and denominator of the rational approximant (3)). In this sense, we can draw a parallel
with hp-adaptive strategies in finite element approximation [1], where both the spatial nu-
merical mesh and the degree of polynomial approximation are locally adapted. However,
in hp-adaptive finite elements, the adaptivity is usually driven by a cost-benefit criterion,
whereas, here, our main concern is numerical stability.
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4 Numerical experiments
In this section, we showcase our MOR approach by applying it to two different systems
of the form (1). Both our examples can be found among the benchmarks freely available
as part of the SLICOT library. Links to the datasets and to the code used are provided at
the end of the paper. Our simulations were run using Python 3.8.6 on a desktop computer
with an 8-thread 3.60 GHz Intel® Core™ i7-7700 processor.

4.1 Impedance parameters of a transmission line
In our first example, we consider the approximation of the impedance parameters of a
2-port transmission line. After spatial discretization of the distributed circuit, we ob-
tain a system of the form (1) with nS = 256, nI = nO = 2, A(z) = A0 + zE, B and C
frequency-independent matrices, and D = 0. We consider an imaginary frequency range
Z = [107i, 1015i]. We seek a surrogate via MRI, using the hierarchical basis of Legendre
polynomials, setting ε = 0.5% and Ztest ⊂ Z as 104 logarithmically spaced points. As de-
scribed in Sect. 2, we build first a surrogate x̃ for the state x ∈ C

256×2 and only afterwards
the surrogate ỹ(z) = Cx̃(z) ∈C

2×2 for the output.
The greedy-MRI method with these parameters is unable to terminate robustly, due to

an instability in the SVD of RDV . Accordingly, we split the frequency range using Algo-
rithm 1 at the midpoint (logarithmically speaking) z� = 1011i and proceed recursively from
there.

We show the results of the numerical experiment in Fig. 1. In Fig. 1 (top), we see what
sample points are used at each iteration of Algorithm 1. We see that samples are passed
on from one iteration to the next ones, and that the refinements are performed in the
“interesting” frequency region around z = 1011i. In Fig. 1 (middle), we show the mag-
nitude of the surrogate output |̃y21(z)|, along with some validation points |y21(z)|, ob-
tained by solving the original problem. We also show the relative approximation error
|̃y21(z) – y21(z)|/|y21(z)| in Fig. 1 (bottom). We see a good agreement between the overall
surrogate and the exact output.

In the two latter plots, we also display the results obtained with the reduced model ob-
tained at the end of the very first iteration of Algorithm 1, i.e., by simply keeping the MRI
surrogate that is available when the algorithm is first halted for stability reasons. We see
that the approximation quality is quite poor.

Moreover, in Fig. 1 (bottom), we display the results obtained with a benchmark intrusive
MOR approach, namely, RBM, which is trained by using a relative residual estimator with
the same tolerance ε. We do not include the RBM surrogate in Fig. 1 (middle) because
it is indistinguishable from the piecewise-rational one. In the error plot, we see that the
results obtained with the two methods are quite similar. However, there are some notable
differences:

• The piecewise-rational approach uses 52 samples of x while RBM only requires 42.
The main reason for this is that each new RBM sample improves the approximation
quality over the whole frequency range, whereas, in Algorithm 1, each sample only
affects the local interval to which it belongs. Moreover, we should note that another
(minor) reason for this discrepancy is that we are enforcing the tolerance ε on
different relative quantities: error in MRI and residual in RBM.

• Despite the higher number of samples, Algorithm 1 is approximately 55 times faster
than training the RBM surrogate. This is thanks to the greedy estimator (6), which is
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Figure 1 Results for the transmission line example. In the top plot, we show the sampled frequencies
considered at each iteration. We denote partition boundaries by dotted vertical lines. In the middle plot, the
surrogate output magnitude |̃y21(z)|. In the bottom plot, the relative approximation error

extremely efficient when compared to the standard RBM residual estimator. A more
in-depth discussion on this can be found in [7].

• Evaluating the piecewise-rational surrogate at a new frequency only involves small
local reduced models, and is quite efficient. This allows for a significant time save with
respect to the solution of the original problem. On the other hand, evaluating the
RBM surrogate requires solving a linear system of modest size. In practice, evaluating
the piecewise-rational model is about 20 times faster than solving the RBM reduced
system and extracting the RBM surrogate output from it.

Before proceeding, we note that we have looked at the approximation of just a single
entry of the 2 × 2 output matrix y. The results for the other entries are similar.

4.2 Structural analysis of an international space station module
As a second example, we consider the structural analysis of the Russian service module of
the International Space Station. The spatial discretization of the frequency-domain linear
elasticity PDE yields a system3 of the form (1), with nS = 270, nI = nO = 3, A(z) = A0 + zE, B
and C frequency-independent matrices, and D = 0. We consider an imaginary frequency

3Note that, in the time domain, the linear elasticity PDE is of hyperbolic type, and a second-order time derivative appears
in it. As such, augmentation must be applied to obtain a first-order frequency-domain system: the state x contains both
point-displacements and point-momenta of the elastic structure.
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Figure 2 Results for the structural analysis example with (geometric) central splitting. In the top plot, we
show the sampled frequencies considered at each iteration. We denote partition boundaries by dotted
vertical lines. In the middle plot, the surrogate output magnitude |̃y32(z)|. In the bottom plot, the relative
approximation error

range Z = [10–2i, 103i]. As in the previous example, we seek a surrogate via MRI, using the
hierarchical basis of Legendre polynomials, setting ε = 0.5% and Ztest ⊂ Z as 104 logarith-
mically spaced points.

Algorithm 1 is able to provide a piecewise-rational surrogate satisfying the tolerance,
by partitioning Z into 10 automatically generated sub-intervals. We refer to Fig. 2 (top)
for a depiction of the partitioning process. We can observe that most of the partitions are
concentrated around the “busiest” frequency region [20i, 60i].

We show in Fig. 2 (middle) the reduced model for one entry of the output, namely, y32

(which is the one with the “most jagged” behavior). The accuracy seems good, as we also
verify by looking at the relative error plot in Fig. 2 (bottom). As in the previous section, we
also show the relative approximation error obtained with RBM, where, again, the training
of the surrogate is done by using a relative residual estimator with the same tolerance
ε. Once more, we see that the results of the two methods are similar. In this example,
the difference in the total number of snapshots is slightly larger, with 143 samples for the
piecewise-rational surrogate versus 93 for the RBM one. This being said, speedups similar
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to those from the previous section (∼ 55 and ∼ 20, respectively) can be observed between
the training times and the evaluation times of the two approaches.

To conclude, we believe it interesting to note that the relative errors of both MRI and
RBM exceed slightly the threshold ε at a few frequencies around z = 50i. This is reason-
able, since, after all, we are plotting the output error, whereas the tolerance is imposed on
the relative state error (for MRI) or residual (for RBM), which are not necessarily upper
bounds for the relative error in the output.

5 Conclusions
We have presented a strategy for overcoming some instability issues that sometimes occur
when applying the MRI approach to frequency response problems. Notably, we propose
to replace an unstable global surrogate with a union of stable local surrogates. The par-
titioning of the frequency range into sub-intervals is performed automatically and adap-
tively. Good approximation properties have been observed in two numerical examples
with rather wide frequency ranges.

The partitioning process makes the local surrogates depend on disjoint sample sets (ex-
cept when samples are taken at the partition points). We observed numerically that this
may increase the number of samples necessary to attain the prescribed accuracy. As a way
to weaken this issue, we envision the possibility of sharing (few) samples between adjacent
sub-intervals.
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